#include "jemalloc/internal/jemalloc_preamble.h" #include "jemalloc/internal/jemalloc_internal_includes.h" #include "jemalloc/internal/assert.h" #include "jemalloc/internal/mutex.h" #include "jemalloc/internal/safety_check.h" #include "jemalloc/internal/san.h" #include "jemalloc/internal/sc.h" /******************************************************************************/ /* Data. */ bool opt_tcache = true; /* tcache_maxclass is set to 32KB by default. */ size_t opt_tcache_max = ((size_t)1) << 15; /* Reasonable defaults for min and max values. */ unsigned opt_tcache_nslots_small_min = 20; unsigned opt_tcache_nslots_small_max = 200; unsigned opt_tcache_nslots_large = 20; /* * We attempt to make the number of slots in a tcache bin for a given size class * equal to the number of objects in a slab times some multiplier. By default, * the multiplier is 2 (i.e. we set the maximum number of objects in the tcache * to twice the number of objects in a slab). * This is bounded by some other constraints as well, like the fact that it * must be even, must be less than opt_tcache_nslots_small_max, etc.. */ ssize_t opt_lg_tcache_nslots_mul = 1; /* * Number of allocation bytes between tcache incremental GCs. Again, this * default just seems to work well; more tuning is possible. */ size_t opt_tcache_gc_incr_bytes = 65536; /* * With default settings, we may end up flushing small bins frequently with * small flush amounts. To limit this tendency, we can set a number of bytes to * "delay" by. If we try to flush N M-byte items, we decrease that size-class's * delay by N * M. So, if delay is 1024 and we're looking at the 64-byte size * class, we won't do any flushing until we've been asked to flush 1024/64 == 16 * items. This can happen in any configuration (i.e. being asked to flush 16 * items once, or 4 items 4 times). * * Practically, this is stored as a count of items in a uint8_t, so the * effective maximum value for a size class is 255 * sz. */ size_t opt_tcache_gc_delay_bytes = 0; /* * When a cache bin is flushed because it's full, how much of it do we flush? * By default, we flush half the maximum number of items. */ unsigned opt_lg_tcache_flush_small_div = 1; unsigned opt_lg_tcache_flush_large_div = 1; cache_bin_info_t *tcache_bin_info; /* Total stack size required (per tcache). Include the padding above. */ static size_t tcache_bin_alloc_size; static size_t tcache_bin_alloc_alignment; /* Number of cache bins enabled, including both large and small. */ unsigned nhbins; /* Max size class to be cached (can be small or large). */ size_t tcache_maxclass; tcaches_t *tcaches; /* Index of first element within tcaches that has never been used. */ static unsigned tcaches_past; /* Head of singly linked list tracking available tcaches elements. */ static tcaches_t *tcaches_avail; /* Protects tcaches{,_past,_avail}. */ static malloc_mutex_t tcaches_mtx; /******************************************************************************/ size_t tcache_salloc(tsdn_t *tsdn, const void *ptr) { return arena_salloc(tsdn, ptr); } uint64_t tcache_gc_new_event_wait(tsd_t *tsd) { return opt_tcache_gc_incr_bytes; } uint64_t tcache_gc_postponed_event_wait(tsd_t *tsd) { return TE_MIN_START_WAIT; } uint64_t tcache_gc_dalloc_new_event_wait(tsd_t *tsd) { return opt_tcache_gc_incr_bytes; } uint64_t tcache_gc_dalloc_postponed_event_wait(tsd_t *tsd) { return TE_MIN_START_WAIT; } static uint8_t tcache_gc_item_delay_compute(szind_t szind) { assert(szind < SC_NBINS); size_t sz = sz_index2size(szind); size_t item_delay = opt_tcache_gc_delay_bytes / sz; size_t delay_max = ZU(1) << (sizeof(((tcache_slow_t *)NULL)->bin_flush_delay_items[0]) * 8); if (item_delay >= delay_max) { item_delay = delay_max - 1; } return (uint8_t)item_delay; } static void tcache_gc_small(tsd_t *tsd, tcache_slow_t *tcache_slow, tcache_t *tcache, szind_t szind) { /* Aim to flush 3/4 of items below low-water. */ assert(szind < SC_NBINS); cache_bin_t *cache_bin = &tcache->bins[szind]; cache_bin_sz_t ncached = cache_bin_ncached_get_local(cache_bin, &tcache_bin_info[szind]); cache_bin_sz_t low_water = cache_bin_low_water_get(cache_bin, &tcache_bin_info[szind]); assert(!tcache_slow->bin_refilled[szind]); size_t nflush = low_water - (low_water >> 2); if (nflush < tcache_slow->bin_flush_delay_items[szind]) { /* Workaround for a conversion warning. */ uint8_t nflush_uint8 = (uint8_t)nflush; assert(sizeof(tcache_slow->bin_flush_delay_items[0]) == sizeof(nflush_uint8)); tcache_slow->bin_flush_delay_items[szind] -= nflush_uint8; return; } else { tcache_slow->bin_flush_delay_items[szind] = tcache_gc_item_delay_compute(szind); } tcache_bin_flush_small(tsd, tcache, cache_bin, szind, (unsigned)(ncached - nflush)); /* * Reduce fill count by 2X. Limit lg_fill_div such that * the fill count is always at least 1. */ if ((cache_bin_info_ncached_max(&tcache_bin_info[szind]) >> (tcache_slow->lg_fill_div[szind] + 1)) >= 1) { tcache_slow->lg_fill_div[szind]++; } } static void tcache_gc_large(tsd_t *tsd, tcache_slow_t *tcache_slow, tcache_t *tcache, szind_t szind) { /* Like the small GC; flush 3/4 of untouched items. */ assert(szind >= SC_NBINS); cache_bin_t *cache_bin = &tcache->bins[szind]; cache_bin_sz_t ncached = cache_bin_ncached_get_local(cache_bin, &tcache_bin_info[szind]); cache_bin_sz_t low_water = cache_bin_low_water_get(cache_bin, &tcache_bin_info[szind]); tcache_bin_flush_large(tsd, tcache, cache_bin, szind, (unsigned)(ncached - low_water + (low_water >> 2))); } static void tcache_event(tsd_t *tsd) { tcache_t *tcache = tcache_get(tsd); if (tcache == NULL) { return; } tcache_slow_t *tcache_slow = tsd_tcache_slowp_get(tsd); szind_t szind = tcache_slow->next_gc_bin; bool is_small = (szind < SC_NBINS); cache_bin_t *cache_bin = &tcache->bins[szind]; tcache_bin_flush_stashed(tsd, tcache, cache_bin, szind, is_small); cache_bin_sz_t low_water = cache_bin_low_water_get(cache_bin, &tcache_bin_info[szind]); if (low_water > 0) { if (is_small) { tcache_gc_small(tsd, tcache_slow, tcache, szind); } else { tcache_gc_large(tsd, tcache_slow, tcache, szind); } } else if (is_small && tcache_slow->bin_refilled[szind]) { assert(low_water == 0); /* * Increase fill count by 2X for small bins. Make sure * lg_fill_div stays greater than 0. */ if (tcache_slow->lg_fill_div[szind] > 1) { tcache_slow->lg_fill_div[szind]--; } tcache_slow->bin_refilled[szind] = false; } cache_bin_low_water_set(cache_bin); tcache_slow->next_gc_bin++; if (tcache_slow->next_gc_bin == nhbins) { tcache_slow->next_gc_bin = 0; } } void tcache_gc_event_handler(tsd_t *tsd, uint64_t elapsed) { assert(elapsed == TE_INVALID_ELAPSED); tcache_event(tsd); } void tcache_gc_dalloc_event_handler(tsd_t *tsd, uint64_t elapsed) { assert(elapsed == TE_INVALID_ELAPSED); tcache_event(tsd); } void * tcache_alloc_small_hard(tsdn_t *tsdn, arena_t *arena, tcache_t *tcache, cache_bin_t *cache_bin, szind_t binind, bool *tcache_success) { tcache_slow_t *tcache_slow = tcache->tcache_slow; void *ret; assert(tcache_slow->arena != NULL); unsigned nfill = cache_bin_info_ncached_max(&tcache_bin_info[binind]) >> tcache_slow->lg_fill_div[binind]; arena_cache_bin_fill_small(tsdn, arena, cache_bin, &tcache_bin_info[binind], binind, nfill); tcache_slow->bin_refilled[binind] = true; ret = cache_bin_alloc(cache_bin, tcache_success); return ret; } static const void * tcache_bin_flush_ptr_getter(void *arr_ctx, size_t ind) { cache_bin_ptr_array_t *arr = (cache_bin_ptr_array_t *)arr_ctx; return arr->ptr[ind]; } static void tcache_bin_flush_metadata_visitor(void *szind_sum_ctx, emap_full_alloc_ctx_t *alloc_ctx) { size_t *szind_sum = (size_t *)szind_sum_ctx; *szind_sum -= alloc_ctx->szind; util_prefetch_write_range(alloc_ctx->edata, sizeof(edata_t)); } JEMALLOC_NOINLINE static void tcache_bin_flush_size_check_fail(cache_bin_ptr_array_t *arr, szind_t szind, size_t nptrs, emap_batch_lookup_result_t *edatas) { bool found_mismatch = false; for (size_t i = 0; i < nptrs; i++) { szind_t true_szind = edata_szind_get(edatas[i].edata); if (true_szind != szind) { found_mismatch = true; safety_check_fail_sized_dealloc( /* current_dealloc */ false, /* ptr */ tcache_bin_flush_ptr_getter(arr, i), /* true_size */ sz_index2size(true_szind), /* input_size */ sz_index2size(szind)); } } assert(found_mismatch); } static void tcache_bin_flush_edatas_lookup(tsd_t *tsd, cache_bin_ptr_array_t *arr, szind_t binind, size_t nflush, emap_batch_lookup_result_t *edatas) { /* * This gets compiled away when config_opt_safety_checks is false. * Checks for sized deallocation bugs, failing early rather than * corrupting metadata. */ size_t szind_sum = binind * nflush; emap_edata_lookup_batch(tsd, &arena_emap_global, nflush, &tcache_bin_flush_ptr_getter, (void *)arr, &tcache_bin_flush_metadata_visitor, (void *)&szind_sum, edatas); if (config_opt_safety_checks && unlikely(szind_sum != 0)) { tcache_bin_flush_size_check_fail(arr, binind, nflush, edatas); } } JEMALLOC_ALWAYS_INLINE bool tcache_bin_flush_match(edata_t *edata, unsigned cur_arena_ind, unsigned cur_binshard, bool small) { if (small) { return edata_arena_ind_get(edata) == cur_arena_ind && edata_binshard_get(edata) == cur_binshard; } else { return edata_arena_ind_get(edata) == cur_arena_ind; } } JEMALLOC_ALWAYS_INLINE void tcache_bin_flush_impl(tsd_t *tsd, tcache_t *tcache, cache_bin_t *cache_bin, szind_t binind, cache_bin_ptr_array_t *ptrs, unsigned nflush, bool small) { tcache_slow_t *tcache_slow = tcache->tcache_slow; /* * A couple lookup calls take tsdn; declare it once for convenience * instead of calling tsd_tsdn(tsd) all the time. */ tsdn_t *tsdn = tsd_tsdn(tsd); if (small) { assert(binind < SC_NBINS); } else { assert(binind < nhbins); } arena_t *tcache_arena = tcache_slow->arena; assert(tcache_arena != NULL); /* * Variable length array must have > 0 length; the last element is never * touched (it's just included to satisfy the no-zero-length rule). */ VARIABLE_ARRAY(emap_batch_lookup_result_t, item_edata, nflush + 1); tcache_bin_flush_edatas_lookup(tsd, ptrs, binind, nflush, item_edata); /* * The slabs where we freed the last remaining object in the slab (and * so need to free the slab itself). * Used only if small == true. */ unsigned dalloc_count = 0; VARIABLE_ARRAY(edata_t *, dalloc_slabs, nflush + 1); /* * We're about to grab a bunch of locks. If one of them happens to be * the one guarding the arena-level stats counters we flush our * thread-local ones to, we do so under one critical section. */ bool merged_stats = false; while (nflush > 0) { /* Lock the arena, or bin, associated with the first object. */ edata_t *edata = item_edata[0].edata; unsigned cur_arena_ind = edata_arena_ind_get(edata); arena_t *cur_arena = arena_get(tsdn, cur_arena_ind, false); /* * These assignments are always overwritten when small is true, * and their values are always ignored when small is false, but * to avoid the technical UB when we pass them as parameters, we * need to intialize them. */ unsigned cur_binshard = 0; bin_t *cur_bin = NULL; if (small) { cur_binshard = edata_binshard_get(edata); cur_bin = arena_get_bin(cur_arena, binind, cur_binshard); assert(cur_binshard < bin_infos[binind].n_shards); /* * If you're looking at profiles, you might think this * is a good place to prefetch the bin stats, which are * often a cache miss. This turns out not to be * helpful on the workloads we've looked at, with moving * the bin stats next to the lock seeming to do better. */ } if (small) { malloc_mutex_lock(tsdn, &cur_bin->lock); } if (!small && !arena_is_auto(cur_arena)) { malloc_mutex_lock(tsdn, &cur_arena->large_mtx); } /* * If we acquired the right lock and have some stats to flush, * flush them. */ if (config_stats && tcache_arena == cur_arena && !merged_stats) { merged_stats = true; if (small) { cur_bin->stats.nflushes++; cur_bin->stats.nrequests += cache_bin->tstats.nrequests; cache_bin->tstats.nrequests = 0; } else { arena_stats_large_flush_nrequests_add(tsdn, &tcache_arena->stats, binind, cache_bin->tstats.nrequests); cache_bin->tstats.nrequests = 0; } } /* * Large allocations need special prep done. Afterwards, we can * drop the large lock. */ if (!small) { for (unsigned i = 0; i < nflush; i++) { void *ptr = ptrs->ptr[i]; edata = item_edata[i].edata; assert(ptr != NULL && edata != NULL); if (tcache_bin_flush_match(edata, cur_arena_ind, cur_binshard, small)) { large_dalloc_prep_locked(tsdn, edata); } } } if (!small && !arena_is_auto(cur_arena)) { malloc_mutex_unlock(tsdn, &cur_arena->large_mtx); } /* Deallocate whatever we can. */ unsigned ndeferred = 0; /* Init only to avoid used-uninitialized warning. */ arena_dalloc_bin_locked_info_t dalloc_bin_info = {0}; if (small) { arena_dalloc_bin_locked_begin(&dalloc_bin_info, binind); } for (unsigned i = 0; i < nflush; i++) { void *ptr = ptrs->ptr[i]; edata = item_edata[i].edata; assert(ptr != NULL && edata != NULL); if (!tcache_bin_flush_match(edata, cur_arena_ind, cur_binshard, small)) { /* * The object was allocated either via a * different arena, or a different bin in this * arena. Either way, stash the object so that * it can be handled in a future pass. */ ptrs->ptr[ndeferred] = ptr; item_edata[ndeferred].edata = edata; ndeferred++; continue; } if (small) { if (arena_dalloc_bin_locked_step(tsdn, cur_arena, cur_bin, &dalloc_bin_info, binind, edata, ptr)) { dalloc_slabs[dalloc_count] = edata; dalloc_count++; } } else { if (large_dalloc_safety_checks(edata, ptr, binind)) { /* See the comment in isfree. */ continue; } large_dalloc_finish(tsdn, edata); } } if (small) { arena_dalloc_bin_locked_finish(tsdn, cur_arena, cur_bin, &dalloc_bin_info); malloc_mutex_unlock(tsdn, &cur_bin->lock); } arena_decay_ticks(tsdn, cur_arena, nflush - ndeferred); nflush = ndeferred; } /* Handle all deferred slab dalloc. */ assert(small || dalloc_count == 0); for (unsigned i = 0; i < dalloc_count; i++) { edata_t *slab = dalloc_slabs[i]; arena_slab_dalloc(tsdn, arena_get_from_edata(slab), slab); } if (config_stats && !merged_stats) { if (small) { /* * The flush loop didn't happen to flush to this * thread's arena, so the stats didn't get merged. * Manually do so now. */ bin_t *bin = arena_bin_choose(tsdn, tcache_arena, binind, NULL); malloc_mutex_lock(tsdn, &bin->lock); bin->stats.nflushes++; bin->stats.nrequests += cache_bin->tstats.nrequests; cache_bin->tstats.nrequests = 0; malloc_mutex_unlock(tsdn, &bin->lock); } else { arena_stats_large_flush_nrequests_add(tsdn, &tcache_arena->stats, binind, cache_bin->tstats.nrequests); cache_bin->tstats.nrequests = 0; } } } JEMALLOC_ALWAYS_INLINE void tcache_bin_flush_bottom(tsd_t *tsd, tcache_t *tcache, cache_bin_t *cache_bin, szind_t binind, unsigned rem, bool small) { tcache_bin_flush_stashed(tsd, tcache, cache_bin, binind, small); cache_bin_sz_t ncached = cache_bin_ncached_get_local(cache_bin, &tcache_bin_info[binind]); assert((cache_bin_sz_t)rem <= ncached); unsigned nflush = ncached - rem; CACHE_BIN_PTR_ARRAY_DECLARE(ptrs, nflush); cache_bin_init_ptr_array_for_flush(cache_bin, &tcache_bin_info[binind], &ptrs, nflush); tcache_bin_flush_impl(tsd, tcache, cache_bin, binind, &ptrs, nflush, small); cache_bin_finish_flush(cache_bin, &tcache_bin_info[binind], &ptrs, ncached - rem); } void tcache_bin_flush_small(tsd_t *tsd, tcache_t *tcache, cache_bin_t *cache_bin, szind_t binind, unsigned rem) { tcache_bin_flush_bottom(tsd, tcache, cache_bin, binind, rem, true); } void tcache_bin_flush_large(tsd_t *tsd, tcache_t *tcache, cache_bin_t *cache_bin, szind_t binind, unsigned rem) { tcache_bin_flush_bottom(tsd, tcache, cache_bin, binind, rem, false); } /* * Flushing stashed happens when 1) tcache fill, 2) tcache flush, or 3) tcache * GC event. This makes sure that the stashed items do not hold memory for too * long, and new buffers can only be allocated when nothing is stashed. * * The downside is, the time between stash and flush may be relatively short, * especially when the request rate is high. It lowers the chance of detecting * write-after-free -- however that is a delayed detection anyway, and is less * of a focus than the memory overhead. */ void tcache_bin_flush_stashed(tsd_t *tsd, tcache_t *tcache, cache_bin_t *cache_bin, szind_t binind, bool is_small) { cache_bin_info_t *info = &tcache_bin_info[binind]; /* * The two below are for assertion only. The content of original cached * items remain unchanged -- the stashed items reside on the other end * of the stack. Checking the stack head and ncached to verify. */ void *head_content = *cache_bin->stack_head; cache_bin_sz_t orig_cached = cache_bin_ncached_get_local(cache_bin, info); cache_bin_sz_t nstashed = cache_bin_nstashed_get_local(cache_bin, info); assert(orig_cached + nstashed <= cache_bin_info_ncached_max(info)); if (nstashed == 0) { return; } CACHE_BIN_PTR_ARRAY_DECLARE(ptrs, nstashed); cache_bin_init_ptr_array_for_stashed(cache_bin, binind, info, &ptrs, nstashed); san_check_stashed_ptrs(ptrs.ptr, nstashed, sz_index2size(binind)); tcache_bin_flush_impl(tsd, tcache, cache_bin, binind, &ptrs, nstashed, is_small); cache_bin_finish_flush_stashed(cache_bin, info); assert(cache_bin_nstashed_get_local(cache_bin, info) == 0); assert(cache_bin_ncached_get_local(cache_bin, info) == orig_cached); assert(head_content == *cache_bin->stack_head); } void tcache_arena_associate(tsdn_t *tsdn, tcache_slow_t *tcache_slow, tcache_t *tcache, arena_t *arena) { assert(tcache_slow->arena == NULL); tcache_slow->arena = arena; if (config_stats) { /* Link into list of extant tcaches. */ malloc_mutex_lock(tsdn, &arena->tcache_ql_mtx); ql_elm_new(tcache_slow, link); ql_tail_insert(&arena->tcache_ql, tcache_slow, link); cache_bin_array_descriptor_init( &tcache_slow->cache_bin_array_descriptor, tcache->bins); ql_tail_insert(&arena->cache_bin_array_descriptor_ql, &tcache_slow->cache_bin_array_descriptor, link); malloc_mutex_unlock(tsdn, &arena->tcache_ql_mtx); } } static void tcache_arena_dissociate(tsdn_t *tsdn, tcache_slow_t *tcache_slow, tcache_t *tcache) { arena_t *arena = tcache_slow->arena; assert(arena != NULL); if (config_stats) { /* Unlink from list of extant tcaches. */ malloc_mutex_lock(tsdn, &arena->tcache_ql_mtx); if (config_debug) { bool in_ql = false; tcache_slow_t *iter; ql_foreach(iter, &arena->tcache_ql, link) { if (iter == tcache_slow) { in_ql = true; break; } } assert(in_ql); } ql_remove(&arena->tcache_ql, tcache_slow, link); ql_remove(&arena->cache_bin_array_descriptor_ql, &tcache_slow->cache_bin_array_descriptor, link); tcache_stats_merge(tsdn, tcache_slow->tcache, arena); malloc_mutex_unlock(tsdn, &arena->tcache_ql_mtx); } tcache_slow->arena = NULL; } void tcache_arena_reassociate(tsdn_t *tsdn, tcache_slow_t *tcache_slow, tcache_t *tcache, arena_t *arena) { tcache_arena_dissociate(tsdn, tcache_slow, tcache); tcache_arena_associate(tsdn, tcache_slow, tcache, arena); } bool tsd_tcache_enabled_data_init(tsd_t *tsd) { /* Called upon tsd initialization. */ tsd_tcache_enabled_set(tsd, opt_tcache); tsd_slow_update(tsd); if (opt_tcache) { /* Trigger tcache init. */ tsd_tcache_data_init(tsd); } return false; } static void tcache_init(tsd_t *tsd, tcache_slow_t *tcache_slow, tcache_t *tcache, void *mem) { tcache->tcache_slow = tcache_slow; tcache_slow->tcache = tcache; memset(&tcache_slow->link, 0, sizeof(ql_elm(tcache_t))); tcache_slow->next_gc_bin = 0; tcache_slow->arena = NULL; tcache_slow->dyn_alloc = mem; /* * We reserve cache bins for all small size classes, even if some may * not get used (i.e. bins higher than nhbins). This allows the fast * and common paths to access cache bin metadata safely w/o worrying * about which ones are disabled. */ unsigned n_reserved_bins = nhbins < SC_NBINS ? SC_NBINS : nhbins; memset(tcache->bins, 0, sizeof(cache_bin_t) * n_reserved_bins); size_t cur_offset = 0; cache_bin_preincrement(tcache_bin_info, nhbins, mem, &cur_offset); for (unsigned i = 0; i < nhbins; i++) { if (i < SC_NBINS) { tcache_slow->lg_fill_div[i] = 1; tcache_slow->bin_refilled[i] = false; tcache_slow->bin_flush_delay_items[i] = tcache_gc_item_delay_compute(i); } cache_bin_t *cache_bin = &tcache->bins[i]; cache_bin_init(cache_bin, &tcache_bin_info[i], mem, &cur_offset); } /* * For small size classes beyond tcache_maxclass (i.e. nhbins < NBINS), * their cache bins are initialized to a state to safely and efficiently * fail all fastpath alloc / free, so that no additional check around * nhbins is needed on fastpath. */ for (unsigned i = nhbins; i < SC_NBINS; i++) { /* Disabled small bins. */ cache_bin_t *cache_bin = &tcache->bins[i]; void *fake_stack = mem; size_t fake_offset = 0; cache_bin_init(cache_bin, &tcache_bin_info[i], fake_stack, &fake_offset); assert(tcache_small_bin_disabled(i, cache_bin)); } cache_bin_postincrement(tcache_bin_info, nhbins, mem, &cur_offset); /* Sanity check that the whole stack is used. */ assert(cur_offset == tcache_bin_alloc_size); } /* Initialize auto tcache (embedded in TSD). */ bool tsd_tcache_data_init(tsd_t *tsd) { tcache_slow_t *tcache_slow = tsd_tcache_slowp_get_unsafe(tsd); tcache_t *tcache = tsd_tcachep_get_unsafe(tsd); assert(cache_bin_still_zero_initialized(&tcache->bins[0])); size_t alignment = tcache_bin_alloc_alignment; size_t size = sz_sa2u(tcache_bin_alloc_size, alignment); void *mem = ipallocztm(tsd_tsdn(tsd), size, alignment, true, NULL, true, arena_get(TSDN_NULL, 0, true)); if (mem == NULL) { return true; } tcache_init(tsd, tcache_slow, tcache, mem); /* * Initialization is a bit tricky here. After malloc init is done, all * threads can rely on arena_choose and associate tcache accordingly. * However, the thread that does actual malloc bootstrapping relies on * functional tsd, and it can only rely on a0. In that case, we * associate its tcache to a0 temporarily, and later on * arena_choose_hard() will re-associate properly. */ tcache_slow->arena = NULL; arena_t *arena; if (!malloc_initialized()) { /* If in initialization, assign to a0. */ arena = arena_get(tsd_tsdn(tsd), 0, false); tcache_arena_associate(tsd_tsdn(tsd), tcache_slow, tcache, arena); } else { arena = arena_choose(tsd, NULL); /* This may happen if thread.tcache.enabled is used. */ if (tcache_slow->arena == NULL) { tcache_arena_associate(tsd_tsdn(tsd), tcache_slow, tcache, arena); } } assert(arena == tcache_slow->arena); return false; } /* Created manual tcache for tcache.create mallctl. */ tcache_t * tcache_create_explicit(tsd_t *tsd) { /* * We place the cache bin stacks, then the tcache_t, then a pointer to * the beginning of the whole allocation (for freeing). The makes sure * the cache bins have the requested alignment. */ size_t size = tcache_bin_alloc_size + sizeof(tcache_t) + sizeof(tcache_slow_t); /* Naturally align the pointer stacks. */ size = PTR_CEILING(size); size = sz_sa2u(size, tcache_bin_alloc_alignment); void *mem = ipallocztm(tsd_tsdn(tsd), size, tcache_bin_alloc_alignment, true, NULL, true, arena_get(TSDN_NULL, 0, true)); if (mem == NULL) { return NULL; } tcache_t *tcache = (void *)((uintptr_t)mem + tcache_bin_alloc_size); tcache_slow_t *tcache_slow = (void *)((uintptr_t)mem + tcache_bin_alloc_size + sizeof(tcache_t)); tcache_init(tsd, tcache_slow, tcache, mem); tcache_arena_associate(tsd_tsdn(tsd), tcache_slow, tcache, arena_ichoose(tsd, NULL)); return tcache; } static void tcache_flush_cache(tsd_t *tsd, tcache_t *tcache) { tcache_slow_t *tcache_slow = tcache->tcache_slow; assert(tcache_slow->arena != NULL); for (unsigned i = 0; i < nhbins; i++) { cache_bin_t *cache_bin = &tcache->bins[i]; if (i < SC_NBINS) { tcache_bin_flush_small(tsd, tcache, cache_bin, i, 0); } else { tcache_bin_flush_large(tsd, tcache, cache_bin, i, 0); } if (config_stats) { assert(cache_bin->tstats.nrequests == 0); } } } void tcache_flush(tsd_t *tsd) { assert(tcache_available(tsd)); tcache_flush_cache(tsd, tsd_tcachep_get(tsd)); } static void tcache_destroy(tsd_t *tsd, tcache_t *tcache, bool tsd_tcache) { tcache_slow_t *tcache_slow = tcache->tcache_slow; tcache_flush_cache(tsd, tcache); arena_t *arena = tcache_slow->arena; tcache_arena_dissociate(tsd_tsdn(tsd), tcache_slow, tcache); if (tsd_tcache) { cache_bin_t *cache_bin = &tcache->bins[0]; cache_bin_assert_empty(cache_bin, &tcache_bin_info[0]); } idalloctm(tsd_tsdn(tsd), tcache_slow->dyn_alloc, NULL, NULL, true, true); /* * The deallocation and tcache flush above may not trigger decay since * we are on the tcache shutdown path (potentially with non-nominal * tsd). Manually trigger decay to avoid pathological cases. Also * include arena 0 because the tcache array is allocated from it. */ arena_decay(tsd_tsdn(tsd), arena_get(tsd_tsdn(tsd), 0, false), false, false); if (arena_nthreads_get(arena, false) == 0 && !background_thread_enabled()) { /* Force purging when no threads assigned to the arena anymore. */ arena_decay(tsd_tsdn(tsd), arena, /* is_background_thread */ false, /* all */ true); } else { arena_decay(tsd_tsdn(tsd), arena, /* is_background_thread */ false, /* all */ false); } } /* For auto tcache (embedded in TSD) only. */ void tcache_cleanup(tsd_t *tsd) { tcache_t *tcache = tsd_tcachep_get(tsd); if (!tcache_available(tsd)) { assert(tsd_tcache_enabled_get(tsd) == false); assert(cache_bin_still_zero_initialized(&tcache->bins[0])); return; } assert(tsd_tcache_enabled_get(tsd)); assert(!cache_bin_still_zero_initialized(&tcache->bins[0])); tcache_destroy(tsd, tcache, true); if (config_debug) { /* * For debug testing only, we want to pretend we're still in the * zero-initialized state. */ memset(tcache->bins, 0, sizeof(cache_bin_t) * nhbins); } } void tcache_stats_merge(tsdn_t *tsdn, tcache_t *tcache, arena_t *arena) { cassert(config_stats); /* Merge and reset tcache stats. */ for (unsigned i = 0; i < nhbins; i++) { cache_bin_t *cache_bin = &tcache->bins[i]; if (i < SC_NBINS) { bin_t *bin = arena_bin_choose(tsdn, arena, i, NULL); malloc_mutex_lock(tsdn, &bin->lock); bin->stats.nrequests += cache_bin->tstats.nrequests; malloc_mutex_unlock(tsdn, &bin->lock); } else { arena_stats_large_flush_nrequests_add(tsdn, &arena->stats, i, cache_bin->tstats.nrequests); } cache_bin->tstats.nrequests = 0; } } static bool tcaches_create_prep(tsd_t *tsd, base_t *base) { bool err; malloc_mutex_assert_owner(tsd_tsdn(tsd), &tcaches_mtx); if (tcaches == NULL) { tcaches = base_alloc(tsd_tsdn(tsd), base, sizeof(tcache_t *) * (MALLOCX_TCACHE_MAX+1), CACHELINE); if (tcaches == NULL) { err = true; goto label_return; } } if (tcaches_avail == NULL && tcaches_past > MALLOCX_TCACHE_MAX) { err = true; goto label_return; } err = false; label_return: return err; } bool tcaches_create(tsd_t *tsd, base_t *base, unsigned *r_ind) { witness_assert_depth(tsdn_witness_tsdp_get(tsd_tsdn(tsd)), 0); bool err; malloc_mutex_lock(tsd_tsdn(tsd), &tcaches_mtx); if (tcaches_create_prep(tsd, base)) { err = true; goto label_return; } tcache_t *tcache = tcache_create_explicit(tsd); if (tcache == NULL) { err = true; goto label_return; } tcaches_t *elm; if (tcaches_avail != NULL) { elm = tcaches_avail; tcaches_avail = tcaches_avail->next; elm->tcache = tcache; *r_ind = (unsigned)(elm - tcaches); } else { elm = &tcaches[tcaches_past]; elm->tcache = tcache; *r_ind = tcaches_past; tcaches_past++; } err = false; label_return: malloc_mutex_unlock(tsd_tsdn(tsd), &tcaches_mtx); witness_assert_depth(tsdn_witness_tsdp_get(tsd_tsdn(tsd)), 0); return err; } static tcache_t * tcaches_elm_remove(tsd_t *tsd, tcaches_t *elm, bool allow_reinit) { malloc_mutex_assert_owner(tsd_tsdn(tsd), &tcaches_mtx); if (elm->tcache == NULL) { return NULL; } tcache_t *tcache = elm->tcache; if (allow_reinit) { elm->tcache = TCACHES_ELM_NEED_REINIT; } else { elm->tcache = NULL; } if (tcache == TCACHES_ELM_NEED_REINIT) { return NULL; } return tcache; } void tcaches_flush(tsd_t *tsd, unsigned ind) { malloc_mutex_lock(tsd_tsdn(tsd), &tcaches_mtx); tcache_t *tcache = tcaches_elm_remove(tsd, &tcaches[ind], true); malloc_mutex_unlock(tsd_tsdn(tsd), &tcaches_mtx); if (tcache != NULL) { /* Destroy the tcache; recreate in tcaches_get() if needed. */ tcache_destroy(tsd, tcache, false); } } void tcaches_destroy(tsd_t *tsd, unsigned ind) { malloc_mutex_lock(tsd_tsdn(tsd), &tcaches_mtx); tcaches_t *elm = &tcaches[ind]; tcache_t *tcache = tcaches_elm_remove(tsd, elm, false); elm->next = tcaches_avail; tcaches_avail = elm; malloc_mutex_unlock(tsd_tsdn(tsd), &tcaches_mtx); if (tcache != NULL) { tcache_destroy(tsd, tcache, false); } } static unsigned tcache_ncached_max_compute(szind_t szind) { if (szind >= SC_NBINS) { assert(szind < nhbins); return opt_tcache_nslots_large; } unsigned slab_nregs = bin_infos[szind].nregs; /* We may modify these values; start with the opt versions. */ unsigned nslots_small_min = opt_tcache_nslots_small_min; unsigned nslots_small_max = opt_tcache_nslots_small_max; /* * Clamp values to meet our constraints -- even, nonzero, min < max, and * suitable for a cache bin size. */ if (opt_tcache_nslots_small_max > CACHE_BIN_NCACHED_MAX) { nslots_small_max = CACHE_BIN_NCACHED_MAX; } if (nslots_small_min % 2 != 0) { nslots_small_min++; } if (nslots_small_max % 2 != 0) { nslots_small_max--; } if (nslots_small_min < 2) { nslots_small_min = 2; } if (nslots_small_max < 2) { nslots_small_max = 2; } if (nslots_small_min > nslots_small_max) { nslots_small_min = nslots_small_max; } unsigned candidate; if (opt_lg_tcache_nslots_mul < 0) { candidate = slab_nregs >> (-opt_lg_tcache_nslots_mul); } else { candidate = slab_nregs << opt_lg_tcache_nslots_mul; } if (candidate % 2 != 0) { /* * We need the candidate size to be even -- we assume that we * can divide by two and get a positive number (e.g. when * flushing). */ ++candidate; } if (candidate <= nslots_small_min) { return nslots_small_min; } else if (candidate <= nslots_small_max) { return candidate; } else { return nslots_small_max; } } bool tcache_boot(tsdn_t *tsdn, base_t *base) { tcache_maxclass = sz_s2u(opt_tcache_max); assert(tcache_maxclass <= TCACHE_MAXCLASS_LIMIT); nhbins = sz_size2index(tcache_maxclass) + 1; if (malloc_mutex_init(&tcaches_mtx, "tcaches", WITNESS_RANK_TCACHES, malloc_mutex_rank_exclusive)) { return true; } /* Initialize tcache_bin_info. See comments in tcache_init(). */ unsigned n_reserved_bins = nhbins < SC_NBINS ? SC_NBINS : nhbins; size_t size = n_reserved_bins * sizeof(cache_bin_info_t); tcache_bin_info = (cache_bin_info_t *)base_alloc(tsdn, base, size, CACHELINE); if (tcache_bin_info == NULL) { return true; } for (szind_t i = 0; i < nhbins; i++) { unsigned ncached_max = tcache_ncached_max_compute(i); cache_bin_info_init(&tcache_bin_info[i], ncached_max); } for (szind_t i = nhbins; i < SC_NBINS; i++) { /* Disabled small bins. */ cache_bin_info_init(&tcache_bin_info[i], 0); assert(tcache_small_bin_disabled(i, NULL)); } cache_bin_info_compute_alloc(tcache_bin_info, nhbins, &tcache_bin_alloc_size, &tcache_bin_alloc_alignment); return false; } void tcache_prefork(tsdn_t *tsdn) { malloc_mutex_prefork(tsdn, &tcaches_mtx); } void tcache_postfork_parent(tsdn_t *tsdn) { malloc_mutex_postfork_parent(tsdn, &tcaches_mtx); } void tcache_postfork_child(tsdn_t *tsdn) { malloc_mutex_postfork_child(tsdn, &tcaches_mtx); } void tcache_assert_initialized(tcache_t *tcache) { assert(!cache_bin_still_zero_initialized(&tcache->bins[0])); }