#include "test/jemalloc_test.h" #include "jemalloc/internal/fxp.h" static double fxp2double(fxp_t a) { double intpart = (double)(a >> 16); double fracpart = (double)(a & ((1U << 16) - 1)) / (1U << 16); return intpart + fracpart; } /* Is a close to b? */ static bool double_close(double a, double b) { /* * Our implementation doesn't try for precision. Correspondingly, don't * enforce it too strenuously here; accept values that are close in * either relative or absolute terms. */ return fabs(a - b) < 0.01 || fabs(a - b) / a < 0.01; } static bool fxp_close(fxp_t a, fxp_t b) { return double_close(fxp2double(a), fxp2double(b)); } static fxp_t xparse_fxp(const char *str) { fxp_t result; bool err = fxp_parse(&result, str, NULL); assert_false(err, "Invalid fxp string: %s", str); return result; } static void expect_parse_accurate(const char *str, const char *parse_str) { double true_val = strtod(str, NULL); fxp_t fxp_val; char *end; bool err = fxp_parse(&fxp_val, parse_str, &end); expect_false(err, "Unexpected parse failure"); expect_ptr_eq(parse_str + strlen(str), end, "Didn't parse whole string"); expect_true(double_close(fxp2double(fxp_val), true_val), "Misparsed %s", str); } static void parse_valid_trial(const char *str) { /* The value it parses should be correct. */ expect_parse_accurate(str, str); char buf[100]; snprintf(buf, sizeof(buf), "%swith_some_trailing_text", str); expect_parse_accurate(str, buf); snprintf(buf, sizeof(buf), "%s with a space", str); expect_parse_accurate(str, buf); snprintf(buf, sizeof(buf), "%s,in_a_malloc_conf_string:1", str); expect_parse_accurate(str, buf); } TEST_BEGIN(test_parse_valid) { parse_valid_trial("0"); parse_valid_trial("1"); parse_valid_trial("2"); parse_valid_trial("100"); parse_valid_trial("345"); parse_valid_trial("00000000123"); parse_valid_trial("00000000987"); parse_valid_trial("0.0"); parse_valid_trial("0.00000000000456456456"); parse_valid_trial("100.00000000000456456456"); parse_valid_trial("123.1"); parse_valid_trial("123.01"); parse_valid_trial("123.001"); parse_valid_trial("123.0001"); parse_valid_trial("123.00001"); parse_valid_trial("123.000001"); parse_valid_trial("123.0000001"); parse_valid_trial(".0"); parse_valid_trial(".1"); parse_valid_trial(".01"); parse_valid_trial(".001"); parse_valid_trial(".0001"); parse_valid_trial(".00001"); parse_valid_trial(".000001"); parse_valid_trial(".1"); parse_valid_trial(".10"); parse_valid_trial(".100"); parse_valid_trial(".1000"); parse_valid_trial(".100000"); } TEST_END static void expect_parse_failure(const char *str) { fxp_t result = FXP_INIT_INT(333); char *end = (void *)0x123; bool err = fxp_parse(&result, str, &end); expect_true(err, "Expected a parse error on: %s", str); expect_ptr_eq((void *)0x123, end, "Parse error shouldn't change results"); expect_u32_eq(result, FXP_INIT_INT(333), "Parse error shouldn't change results"); } TEST_BEGIN(test_parse_invalid) { expect_parse_failure("123."); expect_parse_failure("3.a"); expect_parse_failure(".a"); expect_parse_failure("a.1"); expect_parse_failure("a"); /* A valid string, but one that overflows. */ expect_parse_failure("123456789"); expect_parse_failure("0000000123456789"); expect_parse_failure("1000000"); } TEST_END static void expect_init_percent(unsigned percent, const char *str) { fxp_t result_init = FXP_INIT_PERCENT(percent); fxp_t result_parse = xparse_fxp(str); expect_u32_eq(result_init, result_parse, "Expect representations of FXP_INIT_PERCENT(%u) and " "fxp_parse(\"%s\") to be equal; got %x and %x", percent, str, result_init, result_parse); } /* * Every other test uses either parsing or FXP_INIT_INT; it gets tested in those * ways. We need a one-off for the percent-based initialization, though. */ TEST_BEGIN(test_init_percent) { expect_init_percent(100, "1"); expect_init_percent(75, ".75"); expect_init_percent(1, ".01"); expect_init_percent(50, ".5"); } TEST_END static void expect_add(const char *astr, const char *bstr, const char* resultstr) { fxp_t a = xparse_fxp(astr); fxp_t b = xparse_fxp(bstr); fxp_t result = xparse_fxp(resultstr); expect_true(fxp_close(fxp_add(a, b), result), "Expected %s + %s == %s", astr, bstr, resultstr); } TEST_BEGIN(test_add_simple) { expect_add("0", "0", "0"); expect_add("0", "1", "1"); expect_add("1", "1", "2"); expect_add("1.5", "1.5", "3"); expect_add("0.1", "0.1", "0.2"); expect_add("123", "456", "579"); } TEST_END static void expect_sub(const char *astr, const char *bstr, const char* resultstr) { fxp_t a = xparse_fxp(astr); fxp_t b = xparse_fxp(bstr); fxp_t result = xparse_fxp(resultstr); expect_true(fxp_close(fxp_sub(a, b), result), "Expected %s - %s == %s", astr, bstr, resultstr); } TEST_BEGIN(test_sub_simple) { expect_sub("0", "0", "0"); expect_sub("1", "0", "1"); expect_sub("1", "1", "0"); expect_sub("3.5", "1.5", "2"); expect_sub("0.3", "0.1", "0.2"); expect_sub("456", "123", "333"); } TEST_END static void expect_mul(const char *astr, const char *bstr, const char* resultstr) { fxp_t a = xparse_fxp(astr); fxp_t b = xparse_fxp(bstr); fxp_t result = xparse_fxp(resultstr); expect_true(fxp_close(fxp_mul(a, b), result), "Expected %s * %s == %s", astr, bstr, resultstr); } TEST_BEGIN(test_mul_simple) { expect_mul("0", "0", "0"); expect_mul("1", "0", "0"); expect_mul("1", "1", "1"); expect_mul("1.5", "1.5", "2.25"); expect_mul("100.0", "10", "1000"); expect_mul(".1", "10", "1"); } TEST_END static void expect_div(const char *astr, const char *bstr, const char* resultstr) { fxp_t a = xparse_fxp(astr); fxp_t b = xparse_fxp(bstr); fxp_t result = xparse_fxp(resultstr); expect_true(fxp_close(fxp_div(a, b), result), "Expected %s / %s == %s", astr, bstr, resultstr); } TEST_BEGIN(test_div_simple) { expect_div("1", "1", "1"); expect_div("0", "1", "0"); expect_div("2", "1", "2"); expect_div("3", "2", "1.5"); expect_div("3", "1.5", "2"); expect_div("10", ".1", "100"); expect_div("123", "456", ".2697368421"); } TEST_END static void expect_round(const char *str, uint32_t rounded_down, uint32_t rounded_nearest) { fxp_t fxp = xparse_fxp(str); uint32_t fxp_rounded_down = fxp_round_down(fxp); uint32_t fxp_rounded_nearest = fxp_round_nearest(fxp); expect_u32_eq(rounded_down, fxp_rounded_down, "Mistake rounding %s down", str); expect_u32_eq(rounded_nearest, fxp_rounded_nearest, "Mistake rounding %s to nearest", str); } TEST_BEGIN(test_round_simple) { expect_round("1.5", 1, 2); expect_round("0", 0, 0); expect_round("0.1", 0, 0); expect_round("0.4", 0, 0); expect_round("0.40000", 0, 0); expect_round("0.5", 0, 1); expect_round("0.6", 0, 1); expect_round("123", 123, 123); expect_round("123.4", 123, 123); expect_round("123.5", 123, 124); } TEST_END static void expect_mul_frac(size_t a, const char *fracstr, size_t expected) { fxp_t frac = xparse_fxp(fracstr); size_t result = fxp_mul_frac(a, frac); expect_true(double_close(expected, result), "Expected %zu * %s == %zu (fracmul); got %zu", a, fracstr, expected, result); } TEST_BEGIN(test_mul_frac_simple) { expect_mul_frac(SIZE_MAX, "1.0", SIZE_MAX); expect_mul_frac(SIZE_MAX, ".75", SIZE_MAX / 4 * 3); expect_mul_frac(SIZE_MAX, ".5", SIZE_MAX / 2); expect_mul_frac(SIZE_MAX, ".25", SIZE_MAX / 4); expect_mul_frac(1U << 16, "1.0", 1U << 16); expect_mul_frac(1U << 30, "0.5", 1U << 29); expect_mul_frac(1U << 30, "0.25", 1U << 28); expect_mul_frac(1U << 30, "0.125", 1U << 27); expect_mul_frac((1U << 30) + 1, "0.125", 1U << 27); expect_mul_frac(100, "0.25", 25); expect_mul_frac(1000 * 1000, "0.001", 1000); } TEST_END static void expect_print(const char *str) { fxp_t fxp = xparse_fxp(str); char buf[FXP_BUF_SIZE]; fxp_print(fxp, buf); expect_d_eq(0, strcmp(str, buf), "Couldn't round-trip print %s", str); } TEST_BEGIN(test_print_simple) { expect_print("0.0"); expect_print("1.0"); expect_print("2.0"); expect_print("123.0"); /* * We hit the possibility of roundoff errors whenever the fractional * component isn't a round binary number; only check these here (we * round-trip properly in the stress test). */ expect_print("1.5"); expect_print("3.375"); expect_print("0.25"); expect_print("0.125"); /* 1 / 2**14 */ expect_print("0.00006103515625"); } TEST_END TEST_BEGIN(test_stress) { const char *numbers[] = { "0.0", "0.1", "0.2", "0.3", "0.4", "0.5", "0.6", "0.7", "0.8", "0.9", "1.0", "1.1", "1.2", "1.3", "1.4", "1.5", "1.6", "1.7", "1.8", "1.9", "2.0", "2.1", "2.2", "2.3", "2.4", "2.5", "2.6", "2.7", "2.8", "2.9", "17.0", "17.1", "17.2", "17.3", "17.4", "17.5", "17.6", "17.7", "17.8", "17.9", "18.0", "18.1", "18.2", "18.3", "18.4", "18.5", "18.6", "18.7", "18.8", "18.9", "123.0", "123.1", "123.2", "123.3", "123.4", "123.5", "123.6", "123.7", "123.8", "123.9", "124.0", "124.1", "124.2", "124.3", "124.4", "124.5", "124.6", "124.7", "124.8", "124.9", "125.0", "125.1", "125.2", "125.3", "125.4", "125.5", "125.6", "125.7", "125.8", "125.9"}; size_t numbers_len = sizeof(numbers)/sizeof(numbers[0]); for (size_t i = 0; i < numbers_len; i++) { fxp_t fxp_a = xparse_fxp(numbers[i]); double double_a = strtod(numbers[i], NULL); uint32_t fxp_rounded_down = fxp_round_down(fxp_a); uint32_t fxp_rounded_nearest = fxp_round_nearest(fxp_a); uint32_t double_rounded_down = (uint32_t)double_a; uint32_t double_rounded_nearest = (uint32_t)round(double_a); expect_u32_eq(double_rounded_down, fxp_rounded_down, "Incorrectly rounded down %s", numbers[i]); expect_u32_eq(double_rounded_nearest, fxp_rounded_nearest, "Incorrectly rounded-to-nearest %s", numbers[i]); for (size_t j = 0; j < numbers_len; j++) { fxp_t fxp_b = xparse_fxp(numbers[j]); double double_b = strtod(numbers[j], NULL); fxp_t fxp_sum = fxp_add(fxp_a, fxp_b); double double_sum = double_a + double_b; expect_true( double_close(fxp2double(fxp_sum), double_sum), "Miscomputed %s + %s", numbers[i], numbers[j]); if (double_a > double_b) { fxp_t fxp_diff = fxp_sub(fxp_a, fxp_b); double double_diff = double_a - double_b; expect_true( double_close(fxp2double(fxp_diff), double_diff), "Miscomputed %s - %s", numbers[i], numbers[j]); } fxp_t fxp_prod = fxp_mul(fxp_a, fxp_b); double double_prod = double_a * double_b; expect_true( double_close(fxp2double(fxp_prod), double_prod), "Miscomputed %s * %s", numbers[i], numbers[j]); if (double_b != 0.0) { fxp_t fxp_quot = fxp_div(fxp_a, fxp_b); double double_quot = double_a / double_b; expect_true( double_close(fxp2double(fxp_quot), double_quot), "Miscomputed %s / %s", numbers[i], numbers[j]); } } } } TEST_END int main(void) { return test_no_reentrancy( test_parse_valid, test_parse_invalid, test_init_percent, test_add_simple, test_sub_simple, test_mul_simple, test_div_simple, test_round_simple, test_mul_frac_simple, test_print_simple, test_stress); }