/* * Copyright (c) 2013-2014, yinqiwen * Copyright (c) 2014, Matt Stancliff . * Copyright (c) 2015-2016, Salvatore Sanfilippo . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Redis nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* This is a C++ to C conversion from the ardb project. * This file started out as: * https://github.com/yinqiwen/ardb/blob/d42503/src/geo/geohash_helper.cpp */ #include "fmacros.h" #include "geohash_helper.h" #include "debugmacro.h" #include #define D_R (M_PI / 180.0) #define R_MAJOR 6378137.0 #define R_MINOR 6356752.3142 #define RATIO (R_MINOR / R_MAJOR) #define ECCENT (sqrt(1.0 - (RATIO *RATIO))) #define COM (0.5 * ECCENT) /// @brief The usual PI/180 constant const double DEG_TO_RAD = 0.017453292519943295769236907684886; /// @brief Earth's quatratic mean radius for WGS-84 const double EARTH_RADIUS_IN_METERS = 6372797.560856; const double MERCATOR_MAX = 20037726.37; const double MERCATOR_MIN = -20037726.37; static inline double deg_rad(double ang) { return ang * D_R; } static inline double rad_deg(double ang) { return ang / D_R; } /* This function is used in order to estimate the step (bits precision) * of the 9 search area boxes during radius queries. */ uint8_t geohashEstimateStepsByRadius(double range_meters, double lat) { if (range_meters == 0) return 26; int step = 1; while (range_meters < MERCATOR_MAX) { range_meters *= 2; step++; } step -= 2; /* Make sure range is included in most of the base cases. */ /* Wider range towards the poles... Note: it is possible to do better * than this approximation by computing the distance between meridians * at this latitude, but this does the trick for now. */ if (lat > 66 || lat < -66) { step--; if (lat > 80 || lat < -80) step--; } /* Frame to valid range. */ if (step < 1) step = 1; if (step > 26) step = 26; return step; } /* Return the bounding box of the search area by shape (see geohash.h GeoShape) * bounds[0] - bounds[2] is the minimum and maximum longitude * while bounds[1] - bounds[3] is the minimum and maximum latitude. * since the higher the latitude, the shorter the arc length, the box shape is as follows * (left and right edges are actually bent), as shown in the following diagram: * * \-----------------/ -------- \-----------------/ * \ / / \ \ / * \ (long,lat) / / (long,lat) \ \ (long,lat) / * \ / / \ / \ * --------- /----------------\ /---------------\ * Northern Hemisphere Southern Hemisphere Around the equator */ int geohashBoundingBox(GeoShape *shape, double *bounds) { if (!bounds) return 0; double longitude = shape->xy[0]; double latitude = shape->xy[1]; double height = shape->conversion * (shape->type == CIRCULAR_TYPE ? shape->t.radius : shape->t.r.height/2); double width = shape->conversion * (shape->type == CIRCULAR_TYPE ? shape->t.radius : shape->t.r.width/2); const double lat_delta = rad_deg(height/EARTH_RADIUS_IN_METERS); const double long_delta_top = rad_deg(width/EARTH_RADIUS_IN_METERS/cos(deg_rad(latitude+lat_delta))); const double long_delta_bottom = rad_deg(width/EARTH_RADIUS_IN_METERS/cos(deg_rad(latitude-lat_delta))); /* The directions of the northern and southern hemispheres * are opposite, so we choice different points as min/max long/lat */ int southern_hemisphere = latitude < 0 ? 1 : 0; bounds[0] = southern_hemisphere ? longitude-long_delta_bottom : longitude-long_delta_top; bounds[2] = southern_hemisphere ? longitude+long_delta_bottom : longitude+long_delta_top; bounds[1] = latitude - lat_delta; bounds[3] = latitude + lat_delta; return 1; } /* Calculate a set of areas (center + 8) that are able to cover a range query * for the specified position and shape (see geohash.h GeoShape). * the bounding box saved in shaple.bounds */ GeoHashRadius geohashCalculateAreasByShapeWGS84(GeoShape *shape) { GeoHashRange long_range, lat_range; GeoHashRadius radius; GeoHashBits hash; GeoHashNeighbors neighbors; GeoHashArea area; double min_lon, max_lon, min_lat, max_lat; int steps; geohashBoundingBox(shape, shape->bounds); min_lon = shape->bounds[0]; min_lat = shape->bounds[1]; max_lon = shape->bounds[2]; max_lat = shape->bounds[3]; double longitude = shape->xy[0]; double latitude = shape->xy[1]; /* radius_meters is calculated differently in different search types: * 1) CIRCULAR_TYPE, just use radius. * 2) RECTANGLE_TYPE, we use sqrt((width/2)^2 + (height/2)^2) to * calculate the distance from the center point to the corner */ double radius_meters = shape->type == CIRCULAR_TYPE ? shape->t.radius : sqrt((shape->t.r.width/2)*(shape->t.r.width/2) + (shape->t.r.height/2)*(shape->t.r.height/2)); radius_meters *= shape->conversion; steps = geohashEstimateStepsByRadius(radius_meters,latitude); geohashGetCoordRange(&long_range,&lat_range); geohashEncode(&long_range,&lat_range,longitude,latitude,steps,&hash); geohashNeighbors(&hash,&neighbors); geohashDecode(long_range,lat_range,hash,&area); /* Check if the step is enough at the limits of the covered area. * Sometimes when the search area is near an edge of the * area, the estimated step is not small enough, since one of the * north / south / west / east square is too near to the search area * to cover everything. */ int decrease_step = 0; { GeoHashArea north, south, east, west; geohashDecode(long_range, lat_range, neighbors.north, &north); geohashDecode(long_range, lat_range, neighbors.south, &south); geohashDecode(long_range, lat_range, neighbors.east, &east); geohashDecode(long_range, lat_range, neighbors.west, &west); if (north.latitude.max < max_lat) decrease_step = 1; if (south.latitude.min > min_lat) decrease_step = 1; if (east.longitude.max < max_lon) decrease_step = 1; if (west.longitude.min > min_lon) decrease_step = 1; } if (steps > 1 && decrease_step) { steps--; geohashEncode(&long_range,&lat_range,longitude,latitude,steps,&hash); geohashNeighbors(&hash,&neighbors); geohashDecode(long_range,lat_range,hash,&area); } /* Exclude the search areas that are useless. */ if (steps >= 2) { if (area.latitude.min < min_lat) { GZERO(neighbors.south); GZERO(neighbors.south_west); GZERO(neighbors.south_east); } if (area.latitude.max > max_lat) { GZERO(neighbors.north); GZERO(neighbors.north_east); GZERO(neighbors.north_west); } if (area.longitude.min < min_lon) { GZERO(neighbors.west); GZERO(neighbors.south_west); GZERO(neighbors.north_west); } if (area.longitude.max > max_lon) { GZERO(neighbors.east); GZERO(neighbors.south_east); GZERO(neighbors.north_east); } } radius.hash = hash; radius.neighbors = neighbors; radius.area = area; return radius; } GeoHashFix52Bits geohashAlign52Bits(const GeoHashBits hash) { uint64_t bits = hash.bits; bits <<= (52 - hash.step * 2); return bits; } /* Calculate distance using simplified haversine great circle distance formula. * Given longitude diff is 0 the asin(sqrt(a)) on the haversine is asin(sin(abs(u))). * arcsin(sin(x)) equal to x when x ∈[−𝜋/2,𝜋/2]. Given latitude is between [−𝜋/2,𝜋/2] * we can simplify arcsin(sin(x)) to x. */ double geohashGetLatDistance(double lat1d, double lat2d) { return EARTH_RADIUS_IN_METERS * fabs(deg_rad(lat2d) - deg_rad(lat1d)); } /* Calculate distance using haversine great circle distance formula. */ double geohashGetDistance(double lon1d, double lat1d, double lon2d, double lat2d) { double lat1r, lon1r, lat2r, lon2r, u, v, a; lon1r = deg_rad(lon1d); lon2r = deg_rad(lon2d); v = sin((lon2r - lon1r) / 2); /* if v == 0 we can avoid doing expensive math when lons are practically the same */ if (v == 0.0) return geohashGetLatDistance(lat1d, lat2d); lat1r = deg_rad(lat1d); lat2r = deg_rad(lat2d); u = sin((lat2r - lat1r) / 2); a = u * u + cos(lat1r) * cos(lat2r) * v * v; return 2.0 * EARTH_RADIUS_IN_METERS * asin(sqrt(a)); } int geohashGetDistanceIfInRadius(double x1, double y1, double x2, double y2, double radius, double *distance) { *distance = geohashGetDistance(x1, y1, x2, y2); if (*distance > radius) return 0; return 1; } int geohashGetDistanceIfInRadiusWGS84(double x1, double y1, double x2, double y2, double radius, double *distance) { return geohashGetDistanceIfInRadius(x1, y1, x2, y2, radius, distance); } /* Judge whether a point is in the axis-aligned rectangle, when the distance * between a searched point and the center point is less than or equal to * height/2 or width/2 in height and width, the point is in the rectangle. * * width_m, height_m: the rectangle * x1, y1 : the center of the box * x2, y2 : the point to be searched */ int geohashGetDistanceIfInRectangle(double width_m, double height_m, double x1, double y1, double x2, double y2, double *distance) { /* latitude distance is less expensive to compute than longitude distance * so we check first for the latitude condition */ double lat_distance = geohashGetLatDistance(y2, y1); if (lat_distance > height_m/2) { return 0; } double lon_distance = geohashGetDistance(x2, y2, x1, y2); if (lon_distance > width_m/2) { return 0; } *distance = geohashGetDistance(x1, y1, x2, y2); return 1; }