/* * Copyright (c) 2009-2012, Salvatore Sanfilippo * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Redis nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "server.h" #include "intset.h" /* Compact integer set structure */ /*----------------------------------------------------------------------------- * Set Commands *----------------------------------------------------------------------------*/ void sunionDiffGenericCommand(client *c, robj **setkeys, int setnum, robj *dstkey, int op); /* Factory method to return a set that *can* hold "value". When the object has * an integer-encodable value, an intset will be returned. Otherwise a listpack * or a regular hash table. * * The size hint indicates approximately how many items will be added which is * used to determine the initial representation. */ robj *setTypeCreate(sds value, size_t size_hint) { if (isSdsRepresentableAsLongLong(value,NULL) == C_OK && size_hint <= server.set_max_intset_entries) return createIntsetObject(); if (size_hint <= server.set_max_listpack_entries) return createSetListpackObject(); /* We may oversize the set by using the hint if the hint is not accurate, * but we will assume this is acceptable to maximize performance. */ robj *o = createSetObject(); dictExpand(o->ptr, size_hint); return o; } /* Check if the existing set should be converted to another encoding based off the * the size hint. */ void setTypeMaybeConvert(robj *set, size_t size_hint) { if ((set->encoding == OBJ_ENCODING_LISTPACK && size_hint > server.set_max_listpack_entries) || (set->encoding == OBJ_ENCODING_INTSET && size_hint > server.set_max_intset_entries)) { setTypeConvertAndExpand(set, OBJ_ENCODING_HT, size_hint, 1); } } /* Return the maximum number of entries to store in an intset. */ static size_t intsetMaxEntries(void) { size_t max_entries = server.set_max_intset_entries; /* limit to 1G entries due to intset internals. */ if (max_entries >= 1<<30) max_entries = 1<<30; return max_entries; } /* Converts intset to HT if it contains too many entries. */ static void maybeConvertIntset(robj *subject) { serverAssert(subject->encoding == OBJ_ENCODING_INTSET); if (intsetLen(subject->ptr) > intsetMaxEntries()) setTypeConvert(subject,OBJ_ENCODING_HT); } /* When you know all set elements are integers, call this to convert the set to * an intset. No conversion happens if the set contains too many entries for an * intset. */ static void maybeConvertToIntset(robj *set) { if (set->encoding == OBJ_ENCODING_INTSET) return; /* already intset */ if (setTypeSize(set) > intsetMaxEntries()) return; /* can't use intset */ intset *is = intsetNew(); char *str; size_t len; int64_t llval; setTypeIterator *si = setTypeInitIterator(set); while (setTypeNext(si, &str, &len, &llval) != -1) { if (str) { /* If the element is returned as a string, we may be able to convert * it to integer. This happens for OBJ_ENCODING_HT. */ serverAssert(string2ll(str, len, (long long *)&llval)); } uint8_t success = 0; is = intsetAdd(is, llval, &success); serverAssert(success); } setTypeReleaseIterator(si); freeSetObject(set); /* frees the internals but not robj itself */ set->ptr = is; set->encoding = OBJ_ENCODING_INTSET; } /* Add the specified sds value into a set. * * If the value was already member of the set, nothing is done and 0 is * returned, otherwise the new element is added and 1 is returned. */ int setTypeAdd(robj *subject, sds value) { return setTypeAddAux(subject, value, sdslen(value), 0, 1); } /* Add member. This function is optimized for the different encodings. The * value can be provided as an sds string (indicated by passing str_is_sds = * 1), as string and length (str_is_sds = 0) or as an integer in which case str * is set to NULL and llval is provided instead. * * Returns 1 if the value was added and 0 if it was already a member. */ int setTypeAddAux(robj *set, char *str, size_t len, int64_t llval, int str_is_sds) { char tmpbuf[LONG_STR_SIZE]; if (!str) { if (set->encoding == OBJ_ENCODING_INTSET) { uint8_t success = 0; set->ptr = intsetAdd(set->ptr, llval, &success); if (success) maybeConvertIntset(set); return success; } /* Convert int to string. */ len = ll2string(tmpbuf, sizeof tmpbuf, llval); str = tmpbuf; str_is_sds = 0; } serverAssert(str); if (set->encoding == OBJ_ENCODING_HT) { /* Avoid duping the string if it is an sds string. */ sds sdsval = str_is_sds ? (sds)str : sdsnewlen(str, len); dict *ht = set->ptr; void *position = dictFindPositionForInsert(ht, sdsval, NULL); if (position) { /* Key doesn't already exist in the set. Add it but dup the key. */ if (sdsval == str) sdsval = sdsdup(sdsval); dictInsertAtPosition(ht, sdsval, position); } else if (sdsval != str) { /* String is already a member. Free our temporary sds copy. */ sdsfree(sdsval); } return (position != NULL); } else if (set->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *lp = set->ptr; unsigned char *p = lpFirst(lp); if (p != NULL) p = lpFind(lp, p, (unsigned char*)str, len, 0); if (p == NULL) { /* Not found. */ if (lpLength(lp) < server.set_max_listpack_entries && len <= server.set_max_listpack_value && lpSafeToAdd(lp, len)) { if (str == tmpbuf) { /* This came in as integer so we can avoid parsing it again. * TODO: Create and use lpFindInteger; don't go via string. */ lp = lpAppendInteger(lp, llval); } else { lp = lpAppend(lp, (unsigned char*)str, len); } set->ptr = lp; } else { /* Size limit is reached. Convert to hashtable and add. */ setTypeConvertAndExpand(set, OBJ_ENCODING_HT, lpLength(lp) + 1, 1); serverAssert(dictAdd(set->ptr,sdsnewlen(str,len),NULL) == DICT_OK); } return 1; } } else if (set->encoding == OBJ_ENCODING_INTSET) { long long value; if (string2ll(str, len, &value)) { uint8_t success = 0; set->ptr = intsetAdd(set->ptr,value,&success); if (success) { maybeConvertIntset(set); return 1; } } else { /* Check if listpack encoding is safe not to cross any threshold. */ size_t maxelelen = 0, totsize = 0; unsigned long n = intsetLen(set->ptr); if (n != 0) { size_t elelen1 = sdigits10(intsetMax(set->ptr)); size_t elelen2 = sdigits10(intsetMin(set->ptr)); maxelelen = max(elelen1, elelen2); size_t s1 = lpEstimateBytesRepeatedInteger(intsetMax(set->ptr), n); size_t s2 = lpEstimateBytesRepeatedInteger(intsetMin(set->ptr), n); totsize = max(s1, s2); } if (intsetLen((const intset*)set->ptr) < server.set_max_listpack_entries && len <= server.set_max_listpack_value && maxelelen <= server.set_max_listpack_value && lpSafeToAdd(NULL, totsize + len)) { /* In the "safe to add" check above we assumed all elements in * the intset are of size maxelelen. This is an upper bound. */ setTypeConvertAndExpand(set, OBJ_ENCODING_LISTPACK, intsetLen(set->ptr) + 1, 1); unsigned char *lp = set->ptr; lp = lpAppend(lp, (unsigned char *)str, len); lp = lpShrinkToFit(lp); set->ptr = lp; return 1; } else { setTypeConvertAndExpand(set, OBJ_ENCODING_HT, intsetLen(set->ptr) + 1, 1); /* The set *was* an intset and this value is not integer * encodable, so dictAdd should always work. */ serverAssert(dictAdd(set->ptr,sdsnewlen(str,len),NULL) == DICT_OK); return 1; } } } else { serverPanic("Unknown set encoding"); } return 0; } /* Deletes a value provided as an sds string from the set. Returns 1 if the * value was deleted and 0 if it was not a member of the set. */ int setTypeRemove(robj *setobj, sds value) { return setTypeRemoveAux(setobj, value, sdslen(value), 0, 1); } /* Remove a member. This function is optimized for the different encodings. The * value can be provided as an sds string (indicated by passing str_is_sds = * 1), as string and length (str_is_sds = 0) or as an integer in which case str * is set to NULL and llval is provided instead. * * Returns 1 if the value was deleted and 0 if it was not a member of the set. */ int setTypeRemoveAux(robj *setobj, char *str, size_t len, int64_t llval, int str_is_sds) { char tmpbuf[LONG_STR_SIZE]; if (!str) { if (setobj->encoding == OBJ_ENCODING_INTSET) { int success; setobj->ptr = intsetRemove(setobj->ptr,llval,&success); return success; } len = ll2string(tmpbuf, sizeof tmpbuf, llval); str = tmpbuf; str_is_sds = 0; } if (setobj->encoding == OBJ_ENCODING_HT) { sds sdsval = str_is_sds ? (sds)str : sdsnewlen(str, len); int deleted = (dictDelete(setobj->ptr, sdsval) == DICT_OK); if (deleted && htNeedsResize(setobj->ptr)) dictResize(setobj->ptr); if (sdsval != str) sdsfree(sdsval); /* free temp copy */ return deleted; } else if (setobj->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *lp = setobj->ptr; unsigned char *p = lpFirst(lp); if (p == NULL) return 0; p = lpFind(lp, p, (unsigned char*)str, len, 0); if (p != NULL) { lp = lpDelete(lp, p, NULL); setobj->ptr = lp; return 1; } } else if (setobj->encoding == OBJ_ENCODING_INTSET) { long long llval; if (string2ll(str, len, &llval)) { int success; setobj->ptr = intsetRemove(setobj->ptr,llval,&success); if (success) return 1; } } else { serverPanic("Unknown set encoding"); } return 0; } /* Check if an sds string is a member of the set. Returns 1 if the value is a * member of the set and 0 if it isn't. */ int setTypeIsMember(robj *subject, sds value) { return setTypeIsMemberAux(subject, value, sdslen(value), 0, 1); } /* Membership checking optimized for the different encodings. The value can be * provided as an sds string (indicated by passing str_is_sds = 1), as string * and length (str_is_sds = 0) or as an integer in which case str is set to NULL * and llval is provided instead. * * Returns 1 if the value is a member of the set and 0 if it isn't. */ int setTypeIsMemberAux(robj *set, char *str, size_t len, int64_t llval, int str_is_sds) { char tmpbuf[LONG_STR_SIZE]; if (!str) { if (set->encoding == OBJ_ENCODING_INTSET) return intsetFind(set->ptr, llval); len = ll2string(tmpbuf, sizeof tmpbuf, llval); str = tmpbuf; str_is_sds = 0; } if (set->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *lp = set->ptr; unsigned char *p = lpFirst(lp); return p && lpFind(lp, p, (unsigned char*)str, len, 0); } else if (set->encoding == OBJ_ENCODING_INTSET) { long long llval; return string2ll(str, len, &llval) && intsetFind(set->ptr, llval); } else if (set->encoding == OBJ_ENCODING_HT && str_is_sds) { return dictFind(set->ptr, (sds)str) != NULL; } else if (set->encoding == OBJ_ENCODING_HT) { sds sdsval = sdsnewlen(str, len); int result = dictFind(set->ptr, sdsval) != NULL; sdsfree(sdsval); return result; } else { serverPanic("Unknown set encoding"); } } setTypeIterator *setTypeInitIterator(robj *subject) { setTypeIterator *si = zmalloc(sizeof(setTypeIterator)); si->subject = subject; si->encoding = subject->encoding; if (si->encoding == OBJ_ENCODING_HT) { si->di = dictGetIterator(subject->ptr); } else if (si->encoding == OBJ_ENCODING_INTSET) { si->ii = 0; } else if (si->encoding == OBJ_ENCODING_LISTPACK) { si->lpi = NULL; } else { serverPanic("Unknown set encoding"); } return si; } void setTypeReleaseIterator(setTypeIterator *si) { if (si->encoding == OBJ_ENCODING_HT) dictReleaseIterator(si->di); zfree(si); } /* Move to the next entry in the set. Returns the object at the current * position, as a string or as an integer. * * Since set elements can be internally be stored as SDS strings, char buffers or * simple arrays of integers, setTypeNext returns the encoding of the * set object you are iterating, and will populate the appropriate pointers * (str and len) or (llele) depending on whether the value is stored as a string * or as an integer internally. * * If OBJ_ENCODING_HT is returned, then str points to an sds string and can be * used as such. If OBJ_ENCODING_INTSET, then llele is populated and str is * pointed to NULL. If OBJ_ENCODING_LISTPACK is returned, the value can be * either a string or an integer. If *str is not NULL, then str and len are * populated with the string content and length. Otherwise, llele populated with * an integer value. * * Note that str, len and llele pointers should all be passed and cannot * be NULL since the function will try to defensively populate the non * used field with values which are easy to trap if misused. * * When there are no more elements -1 is returned. */ int setTypeNext(setTypeIterator *si, char **str, size_t *len, int64_t *llele) { if (si->encoding == OBJ_ENCODING_HT) { dictEntry *de = dictNext(si->di); if (de == NULL) return -1; *str = dictGetKey(de); *len = sdslen(*str); *llele = -123456789; /* Not needed. Defensive. */ } else if (si->encoding == OBJ_ENCODING_INTSET) { if (!intsetGet(si->subject->ptr,si->ii++,llele)) return -1; *str = NULL; } else if (si->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *lp = si->subject->ptr; unsigned char *lpi = si->lpi; if (lpi == NULL) { lpi = lpFirst(lp); } else { lpi = lpNext(lp, lpi); } if (lpi == NULL) return -1; si->lpi = lpi; unsigned int l; *str = (char *)lpGetValue(lpi, &l, (long long *)llele); *len = (size_t)l; } else { serverPanic("Wrong set encoding in setTypeNext"); } return si->encoding; } /* The not copy on write friendly version but easy to use version * of setTypeNext() is setTypeNextObject(), returning new SDS * strings. So if you don't retain a pointer to this object you should call * sdsfree() against it. * * This function is the way to go for write operations where COW is not * an issue. */ sds setTypeNextObject(setTypeIterator *si) { int64_t intele; char *str; size_t len; if (setTypeNext(si, &str, &len, &intele) == -1) return NULL; if (str != NULL) return sdsnewlen(str, len); return sdsfromlonglong(intele); } /* Return random element from a non empty set. * The returned element can be an int64_t value if the set is encoded * as an "intset" blob of integers, or an string. * * The caller provides three pointers to be populated with the right * object. The return value of the function is the object->encoding * field of the object and can be used by the caller to check if the * int64_t pointer or the str and len pointers were populated, as for * setTypeNext. If OBJ_ENCODING_HT is returned, str is pointed to a * string which is actually an sds string and it can be used as such. * * Note that both the str, len and llele pointers should be passed and cannot * be NULL. If str is set to NULL, the value is an integer stored in llele. */ int setTypeRandomElement(robj *setobj, char **str, size_t *len, int64_t *llele) { if (setobj->encoding == OBJ_ENCODING_HT) { dictEntry *de = dictGetFairRandomKey(setobj->ptr); *str = dictGetKey(de); *len = sdslen(*str); *llele = -123456789; /* Not needed. Defensive. */ } else if (setobj->encoding == OBJ_ENCODING_INTSET) { *llele = intsetRandom(setobj->ptr); *str = NULL; /* Not needed. Defensive. */ } else if (setobj->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *lp = setobj->ptr; int r = rand() % lpLength(lp); unsigned char *p = lpSeek(lp, r); unsigned int l; *str = (char *)lpGetValue(p, &l, (long long *)llele); *len = (size_t)l; } else { serverPanic("Unknown set encoding"); } return setobj->encoding; } /* Pops a random element and returns it as an object. */ robj *setTypePopRandom(robj *set) { robj *obj; if (set->encoding == OBJ_ENCODING_LISTPACK) { /* Find random and delete it without re-seeking the listpack. */ unsigned int i = 0; unsigned char *p = lpNextRandom(set->ptr, lpFirst(set->ptr), &i, 1, 0); unsigned int len = 0; /* initialize to silence warning */ long long llele = 0; /* initialize to silence warning */ char *str = (char *)lpGetValue(p, &len, &llele); if (str) obj = createStringObject(str, len); else obj = createStringObjectFromLongLong(llele); set->ptr = lpDelete(set->ptr, p, NULL); } else { char *str; size_t len = 0; int64_t llele = 0; int encoding = setTypeRandomElement(set, &str, &len, &llele); if (str) obj = createStringObject(str, len); else obj = createStringObjectFromLongLong(llele); setTypeRemoveAux(set, str, len, llele, encoding == OBJ_ENCODING_HT); } return obj; } unsigned long setTypeSize(const robj *subject) { if (subject->encoding == OBJ_ENCODING_HT) { return dictSize((const dict*)subject->ptr); } else if (subject->encoding == OBJ_ENCODING_INTSET) { return intsetLen((const intset*)subject->ptr); } else if (subject->encoding == OBJ_ENCODING_LISTPACK) { return lpLength((unsigned char *)subject->ptr); } else { serverPanic("Unknown set encoding"); } } /* Convert the set to specified encoding. The resulting dict (when converting * to a hash table) is presized to hold the number of elements in the original * set. */ void setTypeConvert(robj *setobj, int enc) { setTypeConvertAndExpand(setobj, enc, setTypeSize(setobj), 1); } /* Converts a set to the specified encoding, pre-sizing it for 'cap' elements. * The 'panic' argument controls whether to panic on OOM (panic=1) or return * C_ERR on OOM (panic=0). If panic=1 is given, this function always returns * C_OK. */ int setTypeConvertAndExpand(robj *setobj, int enc, unsigned long cap, int panic) { setTypeIterator *si; serverAssertWithInfo(NULL,setobj,setobj->type == OBJ_SET && setobj->encoding != enc); if (enc == OBJ_ENCODING_HT) { dict *d = dictCreate(&setDictType); sds element; /* Presize the dict to avoid rehashing */ if (panic) { dictExpand(d, cap); } else if (dictTryExpand(d, cap) != DICT_OK) { dictRelease(d); return C_ERR; } /* To add the elements we extract integers and create redis objects */ si = setTypeInitIterator(setobj); while ((element = setTypeNextObject(si)) != NULL) { serverAssert(dictAdd(d,element,NULL) == DICT_OK); } setTypeReleaseIterator(si); freeSetObject(setobj); /* frees the internals but not setobj itself */ setobj->encoding = OBJ_ENCODING_HT; setobj->ptr = d; } else if (enc == OBJ_ENCODING_LISTPACK) { /* Preallocate the minimum two bytes per element (enc/value + backlen) */ size_t estcap = cap * 2; if (setobj->encoding == OBJ_ENCODING_INTSET && setTypeSize(setobj) > 0) { /* If we're converting from intset, we have a better estimate. */ size_t s1 = lpEstimateBytesRepeatedInteger(intsetMin(setobj->ptr), cap); size_t s2 = lpEstimateBytesRepeatedInteger(intsetMax(setobj->ptr), cap); estcap = max(s1, s2); } unsigned char *lp = lpNew(estcap); char *str; size_t len; int64_t llele; si = setTypeInitIterator(setobj); while (setTypeNext(si, &str, &len, &llele) != -1) { if (str != NULL) lp = lpAppend(lp, (unsigned char *)str, len); else lp = lpAppendInteger(lp, llele); } setTypeReleaseIterator(si); freeSetObject(setobj); /* frees the internals but not setobj itself */ setobj->encoding = OBJ_ENCODING_LISTPACK; setobj->ptr = lp; } else { serverPanic("Unsupported set conversion"); } return C_OK; } /* This is a helper function for the COPY command. * Duplicate a set object, with the guarantee that the returned object * has the same encoding as the original one. * * The resulting object always has refcount set to 1 */ robj *setTypeDup(robj *o) { robj *set; setTypeIterator *si; serverAssert(o->type == OBJ_SET); /* Create a new set object that have the same encoding as the original object's encoding */ if (o->encoding == OBJ_ENCODING_INTSET) { intset *is = o->ptr; size_t size = intsetBlobLen(is); intset *newis = zmalloc(size); memcpy(newis,is,size); set = createObject(OBJ_SET, newis); set->encoding = OBJ_ENCODING_INTSET; } else if (o->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *lp = o->ptr; size_t sz = lpBytes(lp); unsigned char *new_lp = zmalloc(sz); memcpy(new_lp, lp, sz); set = createObject(OBJ_SET, new_lp); set->encoding = OBJ_ENCODING_LISTPACK; } else if (o->encoding == OBJ_ENCODING_HT) { set = createSetObject(); dict *d = o->ptr; dictExpand(set->ptr, dictSize(d)); si = setTypeInitIterator(o); char *str; size_t len; int64_t intobj; while (setTypeNext(si, &str, &len, &intobj) != -1) { setTypeAdd(set, (sds)str); } setTypeReleaseIterator(si); } else { serverPanic("Unknown set encoding"); } return set; } void saddCommand(client *c) { robj *set; int j, added = 0; set = lookupKeyWrite(c->db,c->argv[1]); if (checkType(c,set,OBJ_SET)) return; if (set == NULL) { set = setTypeCreate(c->argv[2]->ptr, c->argc - 2); dbAdd(c->db,c->argv[1],set); } else { setTypeMaybeConvert(set, c->argc - 2); } for (j = 2; j < c->argc; j++) { if (setTypeAdd(set,c->argv[j]->ptr)) added++; } if (added) { signalModifiedKey(c,c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_SET,"sadd",c->argv[1],c->db->id); } server.dirty += added; addReplyLongLong(c,added); } void sremCommand(client *c) { robj *set; int j, deleted = 0, keyremoved = 0; if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,set,OBJ_SET)) return; for (j = 2; j < c->argc; j++) { if (setTypeRemove(set,c->argv[j]->ptr)) { deleted++; if (setTypeSize(set) == 0) { dbDelete(c->db,c->argv[1]); keyremoved = 1; break; } } } if (deleted) { signalModifiedKey(c,c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_SET,"srem",c->argv[1],c->db->id); if (keyremoved) notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1], c->db->id); server.dirty += deleted; } addReplyLongLong(c,deleted); } void smoveCommand(client *c) { robj *srcset, *dstset, *ele; srcset = lookupKeyWrite(c->db,c->argv[1]); dstset = lookupKeyWrite(c->db,c->argv[2]); ele = c->argv[3]; /* If the source key does not exist return 0 */ if (srcset == NULL) { addReply(c,shared.czero); return; } /* If the source key has the wrong type, or the destination key * is set and has the wrong type, return with an error. */ if (checkType(c,srcset,OBJ_SET) || checkType(c,dstset,OBJ_SET)) return; /* If srcset and dstset are equal, SMOVE is a no-op */ if (srcset == dstset) { addReply(c,setTypeIsMember(srcset,ele->ptr) ? shared.cone : shared.czero); return; } /* If the element cannot be removed from the src set, return 0. */ if (!setTypeRemove(srcset,ele->ptr)) { addReply(c,shared.czero); return; } notifyKeyspaceEvent(NOTIFY_SET,"srem",c->argv[1],c->db->id); /* Remove the src set from the database when empty */ if (setTypeSize(srcset) == 0) { dbDelete(c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1],c->db->id); } /* Create the destination set when it doesn't exist */ if (!dstset) { dstset = setTypeCreate(ele->ptr, 1); dbAdd(c->db,c->argv[2],dstset); } signalModifiedKey(c,c->db,c->argv[1]); server.dirty++; /* An extra key has changed when ele was successfully added to dstset */ if (setTypeAdd(dstset,ele->ptr)) { server.dirty++; signalModifiedKey(c,c->db,c->argv[2]); notifyKeyspaceEvent(NOTIFY_SET,"sadd",c->argv[2],c->db->id); } addReply(c,shared.cone); } void sismemberCommand(client *c) { robj *set; if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,set,OBJ_SET)) return; if (setTypeIsMember(set,c->argv[2]->ptr)) addReply(c,shared.cone); else addReply(c,shared.czero); } void smismemberCommand(client *c) { robj *set; int j; /* Don't abort when the key cannot be found. Non-existing keys are empty * sets, where SMISMEMBER should respond with a series of zeros. */ set = lookupKeyRead(c->db,c->argv[1]); if (set && checkType(c,set,OBJ_SET)) return; addReplyArrayLen(c,c->argc - 2); for (j = 2; j < c->argc; j++) { if (set && setTypeIsMember(set,c->argv[j]->ptr)) addReply(c,shared.cone); else addReply(c,shared.czero); } } void scardCommand(client *c) { robj *o; if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,o,OBJ_SET)) return; addReplyLongLong(c,setTypeSize(o)); } /* Handle the "SPOP key " variant. The normal version of the * command is handled by the spopCommand() function itself. */ /* How many times bigger should be the set compared to the remaining size * for us to use the "create new set" strategy? Read later in the * implementation for more info. */ #define SPOP_MOVE_STRATEGY_MUL 5 void spopWithCountCommand(client *c) { long l; unsigned long count, size; robj *set; /* Get the count argument */ if (getPositiveLongFromObjectOrReply(c,c->argv[2],&l,NULL) != C_OK) return; count = (unsigned long) l; /* Make sure a key with the name inputted exists, and that it's type is * indeed a set. Otherwise, return nil */ if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.emptyset[c->resp])) == NULL || checkType(c,set,OBJ_SET)) return; /* If count is zero, serve an empty set ASAP to avoid special * cases later. */ if (count == 0) { addReply(c,shared.emptyset[c->resp]); return; } size = setTypeSize(set); /* Generate an SPOP keyspace notification */ notifyKeyspaceEvent(NOTIFY_SET,"spop",c->argv[1],c->db->id); server.dirty += (count >= size) ? size : count; /* CASE 1: * The number of requested elements is greater than or equal to * the number of elements inside the set: simply return the whole set. */ if (count >= size) { /* We just return the entire set */ sunionDiffGenericCommand(c,c->argv+1,1,NULL,SET_OP_UNION); /* Delete the set as it is now empty */ dbDelete(c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1],c->db->id); /* todo: Move the spop notification to be executed after the command logic. */ /* Propagate this command as a DEL or UNLINK operation */ robj *aux = server.lazyfree_lazy_server_del ? shared.unlink : shared.del; rewriteClientCommandVector(c, 2, aux, c->argv[1]); signalModifiedKey(c,c->db,c->argv[1]); return; } /* Case 2 and 3 require to replicate SPOP as a set of SREM commands. * Prepare our replication argument vector. Also send the array length * which is common to both the code paths. */ unsigned long batchsize = count > 1024 ? 1024 : count; robj **propargv = zmalloc(sizeof(robj *) * (2 + batchsize)); propargv[0] = shared.srem; propargv[1] = c->argv[1]; unsigned long propindex = 2; addReplySetLen(c,count); /* Common iteration vars. */ char *str; size_t len; int64_t llele; unsigned long remaining = size-count; /* Elements left after SPOP. */ /* If we are here, the number of requested elements is less than the * number of elements inside the set. Also we are sure that count < size. * Use two different strategies. * * CASE 2: The number of elements to return is small compared to the * set size. We can just extract random elements and return them to * the set. */ if (remaining*SPOP_MOVE_STRATEGY_MUL > count && set->encoding == OBJ_ENCODING_LISTPACK) { /* Specialized case for listpack. Traverse it only once. */ unsigned char *lp = set->ptr; unsigned char *p = lpFirst(lp); unsigned int index = 0; unsigned char **ps = zmalloc(sizeof(char *) * count); for (unsigned long i = 0; i < count; i++) { p = lpNextRandom(lp, p, &index, count - i, 0); unsigned int len; str = (char *)lpGetValue(p, &len, (long long *)&llele); if (str) { addReplyBulkCBuffer(c, str, len); propargv[propindex++] = createStringObject(str, len); } else { addReplyBulkLongLong(c, llele); propargv[propindex++] = createStringObjectFromLongLong(llele); } /* Replicate/AOF this command as an SREM operation */ if (propindex == 2 + batchsize) { alsoPropagate(c->db->id, propargv, propindex, PROPAGATE_AOF | PROPAGATE_REPL); for (unsigned long j = 2; j < propindex; j++) { decrRefCount(propargv[j]); } propindex = 2; } /* Store pointer for later deletion and move to next. */ ps[i] = p; p = lpNext(lp, p); index++; } lp = lpBatchDelete(lp, ps, count); zfree(ps); set->ptr = lp; } else if (remaining*SPOP_MOVE_STRATEGY_MUL > count) { for (unsigned long i = 0; i < count; i++) { propargv[propindex] = setTypePopRandom(set); addReplyBulk(c, propargv[propindex]); propindex++; /* Replicate/AOF this command as an SREM operation */ if (propindex == 2 + batchsize) { alsoPropagate(c->db->id, propargv, propindex, PROPAGATE_AOF | PROPAGATE_REPL); for (unsigned long j = 2; j < propindex; j++) { decrRefCount(propargv[j]); } propindex = 2; } } } else { /* CASE 3: The number of elements to return is very big, approaching * the size of the set itself. After some time extracting random elements * from such a set becomes computationally expensive, so we use * a different strategy, we extract random elements that we don't * want to return (the elements that will remain part of the set), * creating a new set as we do this (that will be stored as the original * set). Then we return the elements left in the original set and * release it. */ robj *newset = NULL; /* Create a new set with just the remaining elements. */ if (set->encoding == OBJ_ENCODING_LISTPACK) { /* Specialized case for listpack. Traverse it only once. */ newset = createSetListpackObject(); unsigned char *lp = set->ptr; unsigned char *p = lpFirst(lp); unsigned int index = 0; unsigned char **ps = zmalloc(sizeof(char *) * remaining); for (unsigned long i = 0; i < remaining; i++) { p = lpNextRandom(lp, p, &index, remaining - i, 0); unsigned int len; str = (char *)lpGetValue(p, &len, (long long *)&llele); setTypeAddAux(newset, str, len, llele, 0); ps[i] = p; p = lpNext(lp, p); index++; } lp = lpBatchDelete(lp, ps, remaining); zfree(ps); set->ptr = lp; } else { while(remaining--) { int encoding = setTypeRandomElement(set, &str, &len, &llele); if (!newset) { newset = str ? createSetListpackObject() : createIntsetObject(); } setTypeAddAux(newset, str, len, llele, encoding == OBJ_ENCODING_HT); setTypeRemoveAux(set, str, len, llele, encoding == OBJ_ENCODING_HT); } } /* Transfer the old set to the client. */ setTypeIterator *si; si = setTypeInitIterator(set); while (setTypeNext(si, &str, &len, &llele) != -1) { if (str == NULL) { addReplyBulkLongLong(c,llele); propargv[propindex++] = createStringObjectFromLongLong(llele); } else { addReplyBulkCBuffer(c, str, len); propargv[propindex++] = createStringObject(str, len); } /* Replicate/AOF this command as an SREM operation */ if (propindex == 2 + batchsize) { alsoPropagate(c->db->id, propargv, propindex, PROPAGATE_AOF | PROPAGATE_REPL); for (unsigned long i = 2; i < propindex; i++) { decrRefCount(propargv[i]); } propindex = 2; } } setTypeReleaseIterator(si); /* Assign the new set as the key value. */ dbReplaceValue(c->db,c->argv[1],newset); } /* Replicate/AOF the remaining elements as an SREM operation */ if (propindex != 2) { alsoPropagate(c->db->id, propargv, propindex, PROPAGATE_AOF | PROPAGATE_REPL); for (unsigned long i = 2; i < propindex; i++) { decrRefCount(propargv[i]); } propindex = 2; } zfree(propargv); /* Don't propagate the command itself even if we incremented the * dirty counter. We don't want to propagate an SPOP command since * we propagated the command as a set of SREMs operations using * the alsoPropagate() API. */ preventCommandPropagation(c); signalModifiedKey(c,c->db,c->argv[1]); } void spopCommand(client *c) { robj *set, *ele; if (c->argc == 3) { spopWithCountCommand(c); return; } else if (c->argc > 3) { addReplyErrorObject(c,shared.syntaxerr); return; } /* Make sure a key with the name inputted exists, and that it's type is * indeed a set */ if ((set = lookupKeyWriteOrReply(c,c->argv[1],shared.null[c->resp])) == NULL || checkType(c,set,OBJ_SET)) return; /* Pop a random element from the set */ ele = setTypePopRandom(set); notifyKeyspaceEvent(NOTIFY_SET,"spop",c->argv[1],c->db->id); /* Replicate/AOF this command as an SREM operation */ rewriteClientCommandVector(c,3,shared.srem,c->argv[1],ele); /* Add the element to the reply */ addReplyBulk(c, ele); decrRefCount(ele); /* Delete the set if it's empty */ if (setTypeSize(set) == 0) { dbDelete(c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1],c->db->id); } /* Set has been modified */ signalModifiedKey(c,c->db,c->argv[1]); server.dirty++; } /* handle the "SRANDMEMBER key " variant. The normal version of the * command is handled by the srandmemberCommand() function itself. */ /* How many times bigger should be the set compared to the requested size * for us to don't use the "remove elements" strategy? Read later in the * implementation for more info. */ #define SRANDMEMBER_SUB_STRATEGY_MUL 3 /* If client is trying to ask for a very large number of random elements, * queuing may consume an unlimited amount of memory, so we want to limit * the number of randoms per time. */ #define SRANDFIELD_RANDOM_SAMPLE_LIMIT 1000 void srandmemberWithCountCommand(client *c) { long l; unsigned long count, size; int uniq = 1; robj *set; char *str; size_t len; int64_t llele; dict *d; if (getRangeLongFromObjectOrReply(c,c->argv[2],-LONG_MAX,LONG_MAX,&l,NULL) != C_OK) return; if (l >= 0) { count = (unsigned long) l; } else { /* A negative count means: return the same elements multiple times * (i.e. don't remove the extracted element after every extraction). */ count = -l; uniq = 0; } if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.emptyarray)) == NULL || checkType(c,set,OBJ_SET)) return; size = setTypeSize(set); /* If count is zero, serve it ASAP to avoid special cases later. */ if (count == 0) { addReply(c,shared.emptyarray); return; } /* CASE 1: The count was negative, so the extraction method is just: * "return N random elements" sampling the whole set every time. * This case is trivial and can be served without auxiliary data * structures. This case is the only one that also needs to return the * elements in random order. */ if (!uniq || count == 1) { addReplyArrayLen(c,count); if (set->encoding == OBJ_ENCODING_LISTPACK && count > 1) { /* Specialized case for listpack, traversing it only once. */ unsigned long limit, sample_count; limit = count > SRANDFIELD_RANDOM_SAMPLE_LIMIT ? SRANDFIELD_RANDOM_SAMPLE_LIMIT : count; listpackEntry *entries = zmalloc(limit * sizeof(listpackEntry)); while (count) { sample_count = count > limit ? limit : count; count -= sample_count; lpRandomEntries(set->ptr, sample_count, entries); for (unsigned long i = 0; i < sample_count; i++) { if (entries[i].sval) addReplyBulkCBuffer(c, entries[i].sval, entries[i].slen); else addReplyBulkLongLong(c, entries[i].lval); } if (c->flags & CLIENT_CLOSE_ASAP) break; } zfree(entries); return; } while(count--) { setTypeRandomElement(set, &str, &len, &llele); if (str == NULL) { addReplyBulkLongLong(c,llele); } else { addReplyBulkCBuffer(c, str, len); } if (c->flags & CLIENT_CLOSE_ASAP) break; } return; } /* CASE 2: * The number of requested elements is greater than the number of * elements inside the set: simply return the whole set. */ if (count >= size) { setTypeIterator *si; addReplyArrayLen(c,size); si = setTypeInitIterator(set); while (setTypeNext(si, &str, &len, &llele) != -1) { if (str == NULL) { addReplyBulkLongLong(c,llele); } else { addReplyBulkCBuffer(c, str, len); } size--; } setTypeReleaseIterator(si); serverAssert(size==0); return; } /* CASE 2.5 listpack only. Sampling unique elements, in non-random order. * Listpack encoded sets are meant to be relatively small, so * SRANDMEMBER_SUB_STRATEGY_MUL isn't necessary and we rather not make * copies of the entries. Instead, we emit them directly to the output * buffer. * * And it is inefficient to repeatedly pick one random element from a * listpack in CASE 4. So we use this instead. */ if (set->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *lp = set->ptr; unsigned char *p = lpFirst(lp); unsigned int i = 0; addReplyArrayLen(c, count); while (count) { p = lpNextRandom(lp, p, &i, count--, 0); unsigned int len; str = (char *)lpGetValue(p, &len, (long long *)&llele); if (str == NULL) { addReplyBulkLongLong(c, llele); } else { addReplyBulkCBuffer(c, str, len); } p = lpNext(lp, p); i++; } return; } /* For CASE 3 and CASE 4 we need an auxiliary dictionary. */ d = dictCreate(&sdsReplyDictType); /* CASE 3: * The number of elements inside the set is not greater than * SRANDMEMBER_SUB_STRATEGY_MUL times the number of requested elements. * In this case we create a set from scratch with all the elements, and * subtract random elements to reach the requested number of elements. * * This is done because if the number of requested elements is just * a bit less than the number of elements in the set, the natural approach * used into CASE 4 is highly inefficient. */ if (count*SRANDMEMBER_SUB_STRATEGY_MUL > size) { setTypeIterator *si; /* Add all the elements into the temporary dictionary. */ si = setTypeInitIterator(set); dictExpand(d, size); while (setTypeNext(si, &str, &len, &llele) != -1) { int retval = DICT_ERR; if (str == NULL) { retval = dictAdd(d,sdsfromlonglong(llele),NULL); } else { retval = dictAdd(d, sdsnewlen(str, len), NULL); } serverAssert(retval == DICT_OK); } setTypeReleaseIterator(si); serverAssert(dictSize(d) == size); /* Remove random elements to reach the right count. */ while (size > count) { dictEntry *de; de = dictGetFairRandomKey(d); dictUnlink(d,dictGetKey(de)); sdsfree(dictGetKey(de)); dictFreeUnlinkedEntry(d,de); size--; } } /* CASE 4: We have a big set compared to the requested number of elements. * In this case we can simply get random elements from the set and add * to the temporary set, trying to eventually get enough unique elements * to reach the specified count. */ else { unsigned long added = 0; sds sdsele; dictExpand(d, count); while (added < count) { setTypeRandomElement(set, &str, &len, &llele); if (str == NULL) { sdsele = sdsfromlonglong(llele); } else { sdsele = sdsnewlen(str, len); } /* Try to add the object to the dictionary. If it already exists * free it, otherwise increment the number of objects we have * in the result dictionary. */ if (dictAdd(d,sdsele,NULL) == DICT_OK) added++; else sdsfree(sdsele); } } /* CASE 3 & 4: send the result to the user. */ { dictIterator *di; dictEntry *de; addReplyArrayLen(c,count); di = dictGetIterator(d); while((de = dictNext(di)) != NULL) addReplyBulkSds(c,dictGetKey(de)); dictReleaseIterator(di); dictRelease(d); } } /* SRANDMEMBER [] */ void srandmemberCommand(client *c) { robj *set; char *str; size_t len; int64_t llele; if (c->argc == 3) { srandmemberWithCountCommand(c); return; } else if (c->argc > 3) { addReplyErrorObject(c,shared.syntaxerr); return; } /* Handle variant without argument. Reply with simple bulk string */ if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.null[c->resp])) == NULL || checkType(c,set,OBJ_SET)) return; setTypeRandomElement(set, &str, &len, &llele); if (str == NULL) { addReplyBulkLongLong(c,llele); } else { addReplyBulkCBuffer(c, str, len); } } int qsortCompareSetsByCardinality(const void *s1, const void *s2) { if (setTypeSize(*(robj**)s1) > setTypeSize(*(robj**)s2)) return 1; if (setTypeSize(*(robj**)s1) < setTypeSize(*(robj**)s2)) return -1; return 0; } /* This is used by SDIFF and in this case we can receive NULL that should * be handled as empty sets. */ int qsortCompareSetsByRevCardinality(const void *s1, const void *s2) { robj *o1 = *(robj**)s1, *o2 = *(robj**)s2; unsigned long first = o1 ? setTypeSize(o1) : 0; unsigned long second = o2 ? setTypeSize(o2) : 0; if (first < second) return 1; if (first > second) return -1; return 0; } /* SINTER / SMEMBERS / SINTERSTORE / SINTERCARD * * 'cardinality_only' work for SINTERCARD, only return the cardinality * with minimum processing and memory overheads. * * 'limit' work for SINTERCARD, stop searching after reaching the limit. * Passing a 0 means unlimited. */ void sinterGenericCommand(client *c, robj **setkeys, unsigned long setnum, robj *dstkey, int cardinality_only, unsigned long limit) { robj **sets = zmalloc(sizeof(robj*)*setnum); setTypeIterator *si; robj *dstset = NULL; char *str; size_t len; int64_t intobj; void *replylen = NULL; unsigned long j, cardinality = 0; int encoding, empty = 0; for (j = 0; j < setnum; j++) { robj *setobj = lookupKeyRead(c->db, setkeys[j]); if (!setobj) { /* A NULL is considered an empty set */ empty += 1; sets[j] = NULL; continue; } if (checkType(c,setobj,OBJ_SET)) { zfree(sets); return; } sets[j] = setobj; } /* Set intersection with an empty set always results in an empty set. * Return ASAP if there is an empty set. */ if (empty > 0) { zfree(sets); if (dstkey) { if (dbDelete(c->db,dstkey)) { signalModifiedKey(c,c->db,dstkey); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",dstkey,c->db->id); server.dirty++; } addReply(c,shared.czero); } else if (cardinality_only) { addReplyLongLong(c,cardinality); } else { addReply(c,shared.emptyset[c->resp]); } return; } /* Sort sets from the smallest to largest, this will improve our * algorithm's performance */ qsort(sets,setnum,sizeof(robj*),qsortCompareSetsByCardinality); /* The first thing we should output is the total number of elements... * since this is a multi-bulk write, but at this stage we don't know * the intersection set size, so we use a trick, append an empty object * to the output list and save the pointer to later modify it with the * right length */ if (dstkey) { /* If we have a target key where to store the resulting set * create this key with an empty set inside */ if (sets[0]->encoding == OBJ_ENCODING_INTSET) { /* The first set is an intset, so the result is an intset too. The * elements are inserted in ascending order which is efficient in an * intset. */ dstset = createIntsetObject(); } else if (sets[0]->encoding == OBJ_ENCODING_LISTPACK) { /* To avoid many reallocs, we estimate that the result is a listpack * of approximately the same size as the first set. Then we shrink * it or possibly convert it to intset in the end. */ unsigned char *lp = lpNew(lpBytes(sets[0]->ptr)); dstset = createObject(OBJ_SET, lp); dstset->encoding = OBJ_ENCODING_LISTPACK; } else { /* We start off with a listpack, since it's more efficient to append * to than an intset. Later we can convert it to intset or a * hashtable. */ dstset = createSetListpackObject(); } } else if (!cardinality_only) { replylen = addReplyDeferredLen(c); } /* Iterate all the elements of the first (smallest) set, and test * the element against all the other sets, if at least one set does * not include the element it is discarded */ int only_integers = 1; si = setTypeInitIterator(sets[0]); while((encoding = setTypeNext(si, &str, &len, &intobj)) != -1) { for (j = 1; j < setnum; j++) { if (sets[j] == sets[0]) continue; if (!setTypeIsMemberAux(sets[j], str, len, intobj, encoding == OBJ_ENCODING_HT)) break; } /* Only take action when all sets contain the member */ if (j == setnum) { if (cardinality_only) { cardinality++; /* We stop the searching after reaching the limit. */ if (limit && cardinality >= limit) break; } else if (!dstkey) { if (str != NULL) addReplyBulkCBuffer(c, str, len); else addReplyBulkLongLong(c,intobj); cardinality++; } else { if (str && only_integers) { /* It may be an integer although we got it as a string. */ if (encoding == OBJ_ENCODING_HT && string2ll(str, len, (long long *)&intobj)) { if (dstset->encoding == OBJ_ENCODING_LISTPACK || dstset->encoding == OBJ_ENCODING_INTSET) { /* Adding it as an integer is more efficient. */ str = NULL; } } else { /* It's not an integer */ only_integers = 0; } } setTypeAddAux(dstset, str, len, intobj, encoding == OBJ_ENCODING_HT); } } } setTypeReleaseIterator(si); if (cardinality_only) { addReplyLongLong(c,cardinality); } else if (dstkey) { /* Store the resulting set into the target, if the intersection * is not an empty set. */ if (setTypeSize(dstset) > 0) { if (only_integers) maybeConvertToIntset(dstset); if (dstset->encoding == OBJ_ENCODING_LISTPACK) { /* We allocated too much memory when we created it to avoid * frequent reallocs. Therefore, we shrink it now. */ dstset->ptr = lpShrinkToFit(dstset->ptr); } setKey(c,c->db,dstkey,dstset,0); addReplyLongLong(c,setTypeSize(dstset)); notifyKeyspaceEvent(NOTIFY_SET,"sinterstore", dstkey,c->db->id); server.dirty++; } else { addReply(c,shared.czero); if (dbDelete(c->db,dstkey)) { server.dirty++; signalModifiedKey(c,c->db,dstkey); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",dstkey,c->db->id); } } decrRefCount(dstset); } else { setDeferredSetLen(c,replylen,cardinality); } zfree(sets); } /* SINTER key [key ...] */ void sinterCommand(client *c) { sinterGenericCommand(c, c->argv+1, c->argc-1, NULL, 0, 0); } /* SINTERCARD numkeys key [key ...] [LIMIT limit] */ void sinterCardCommand(client *c) { long j; long numkeys = 0; /* Number of keys. */ long limit = 0; /* 0 means not limit. */ if (getRangeLongFromObjectOrReply(c, c->argv[1], 1, LONG_MAX, &numkeys, "numkeys should be greater than 0") != C_OK) return; if (numkeys > (c->argc - 2)) { addReplyError(c, "Number of keys can't be greater than number of args"); return; } for (j = 2 + numkeys; j < c->argc; j++) { char *opt = c->argv[j]->ptr; int moreargs = (c->argc - 1) - j; if (!strcasecmp(opt, "LIMIT") && moreargs) { j++; if (getPositiveLongFromObjectOrReply(c, c->argv[j], &limit, "LIMIT can't be negative") != C_OK) return; } else { addReplyErrorObject(c, shared.syntaxerr); return; } } sinterGenericCommand(c, c->argv+2, numkeys, NULL, 1, limit); } /* SINTERSTORE destination key [key ...] */ void sinterstoreCommand(client *c) { sinterGenericCommand(c, c->argv+2, c->argc-2, c->argv[1], 0, 0); } void sunionDiffGenericCommand(client *c, robj **setkeys, int setnum, robj *dstkey, int op) { robj **sets = zmalloc(sizeof(robj*)*setnum); setTypeIterator *si; robj *dstset = NULL; char *str; size_t len; int64_t llval; int encoding; int j, cardinality = 0; int diff_algo = 1; int sameset = 0; for (j = 0; j < setnum; j++) { robj *setobj = lookupKeyRead(c->db, setkeys[j]); if (!setobj) { sets[j] = NULL; continue; } if (checkType(c,setobj,OBJ_SET)) { zfree(sets); return; } sets[j] = setobj; if (j > 0 && sets[0] == sets[j]) { sameset = 1; } } /* Select what DIFF algorithm to use. * * Algorithm 1 is O(N*M) where N is the size of the element first set * and M the total number of sets. * * Algorithm 2 is O(N) where N is the total number of elements in all * the sets. * * We compute what is the best bet with the current input here. */ if (op == SET_OP_DIFF && sets[0] && !sameset) { long long algo_one_work = 0, algo_two_work = 0; for (j = 0; j < setnum; j++) { if (sets[j] == NULL) continue; algo_one_work += setTypeSize(sets[0]); algo_two_work += setTypeSize(sets[j]); } /* Algorithm 1 has better constant times and performs less operations * if there are elements in common. Give it some advantage. */ algo_one_work /= 2; diff_algo = (algo_one_work <= algo_two_work) ? 1 : 2; if (diff_algo == 1 && setnum > 1) { /* With algorithm 1 it is better to order the sets to subtract * by decreasing size, so that we are more likely to find * duplicated elements ASAP. */ qsort(sets+1,setnum-1,sizeof(robj*), qsortCompareSetsByRevCardinality); } } /* We need a temp set object to store our union/diff. If the dstkey * is not NULL (that is, we are inside an SUNIONSTORE/SDIFFSTORE operation) then * this set object will be the resulting object to set into the target key*/ dstset = createIntsetObject(); if (op == SET_OP_UNION) { /* Union is trivial, just add every element of every set to the * temporary set. */ for (j = 0; j < setnum; j++) { if (!sets[j]) continue; /* non existing keys are like empty sets */ si = setTypeInitIterator(sets[j]); while ((encoding = setTypeNext(si, &str, &len, &llval)) != -1) { cardinality += setTypeAddAux(dstset, str, len, llval, encoding == OBJ_ENCODING_HT); } setTypeReleaseIterator(si); } } else if (op == SET_OP_DIFF && sameset) { /* At least one of the sets is the same one (same key) as the first one, result must be empty. */ } else if (op == SET_OP_DIFF && sets[0] && diff_algo == 1) { /* DIFF Algorithm 1: * * We perform the diff by iterating all the elements of the first set, * and only adding it to the target set if the element does not exist * into all the other sets. * * This way we perform at max N*M operations, where N is the size of * the first set, and M the number of sets. */ si = setTypeInitIterator(sets[0]); while ((encoding = setTypeNext(si, &str, &len, &llval)) != -1) { for (j = 1; j < setnum; j++) { if (!sets[j]) continue; /* no key is an empty set. */ if (sets[j] == sets[0]) break; /* same set! */ if (setTypeIsMemberAux(sets[j], str, len, llval, encoding == OBJ_ENCODING_HT)) break; } if (j == setnum) { /* There is no other set with this element. Add it. */ cardinality += setTypeAddAux(dstset, str, len, llval, encoding == OBJ_ENCODING_HT); } } setTypeReleaseIterator(si); } else if (op == SET_OP_DIFF && sets[0] && diff_algo == 2) { /* DIFF Algorithm 2: * * Add all the elements of the first set to the auxiliary set. * Then remove all the elements of all the next sets from it. * * This is O(N) where N is the sum of all the elements in every * set. */ for (j = 0; j < setnum; j++) { if (!sets[j]) continue; /* non existing keys are like empty sets */ si = setTypeInitIterator(sets[j]); while((encoding = setTypeNext(si, &str, &len, &llval)) != -1) { if (j == 0) { cardinality += setTypeAddAux(dstset, str, len, llval, encoding == OBJ_ENCODING_HT); } else { cardinality -= setTypeRemoveAux(dstset, str, len, llval, encoding == OBJ_ENCODING_HT); } } setTypeReleaseIterator(si); /* Exit if result set is empty as any additional removal * of elements will have no effect. */ if (cardinality == 0) break; } } /* Output the content of the resulting set, if not in STORE mode */ if (!dstkey) { addReplySetLen(c,cardinality); si = setTypeInitIterator(dstset); while (setTypeNext(si, &str, &len, &llval) != -1) { if (str) addReplyBulkCBuffer(c, str, len); else addReplyBulkLongLong(c, llval); } setTypeReleaseIterator(si); server.lazyfree_lazy_server_del ? freeObjAsync(NULL, dstset, -1) : decrRefCount(dstset); } else { /* If we have a target key where to store the resulting set * create this key with the result set inside */ if (setTypeSize(dstset) > 0) { setKey(c,c->db,dstkey,dstset,0); addReplyLongLong(c,setTypeSize(dstset)); notifyKeyspaceEvent(NOTIFY_SET, op == SET_OP_UNION ? "sunionstore" : "sdiffstore", dstkey,c->db->id); server.dirty++; } else { addReply(c,shared.czero); if (dbDelete(c->db,dstkey)) { server.dirty++; signalModifiedKey(c,c->db,dstkey); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",dstkey,c->db->id); } } decrRefCount(dstset); } zfree(sets); } /* SUNION key [key ...] */ void sunionCommand(client *c) { sunionDiffGenericCommand(c,c->argv+1,c->argc-1,NULL,SET_OP_UNION); } /* SUNIONSTORE destination key [key ...] */ void sunionstoreCommand(client *c) { sunionDiffGenericCommand(c,c->argv+2,c->argc-2,c->argv[1],SET_OP_UNION); } /* SDIFF key [key ...] */ void sdiffCommand(client *c) { sunionDiffGenericCommand(c,c->argv+1,c->argc-1,NULL,SET_OP_DIFF); } /* SDIFFSTORE destination key [key ...] */ void sdiffstoreCommand(client *c) { sunionDiffGenericCommand(c,c->argv+2,c->argc-2,c->argv[1],SET_OP_DIFF); } void sscanCommand(client *c) { robj *set; unsigned long cursor; if (parseScanCursorOrReply(c,c->argv[2],&cursor) == C_ERR) return; if ((set = lookupKeyReadOrReply(c,c->argv[1],shared.emptyscan)) == NULL || checkType(c,set,OBJ_SET)) return; scanGenericCommand(c,set,cursor); }