start_server {tags {"zset"}} { proc create_zset {key items} { r del $key foreach {score entry} $items { r zadd $key $score $entry } } # A helper function to verify either ZPOP* or ZMPOP* response. proc verify_pop_response {pop res zpop_expected_response zmpop_expected_response} { if {[string match "*ZM*" $pop]} { assert_equal $res $zmpop_expected_response } else { assert_equal $res $zpop_expected_response } } # A helper function to verify either ZPOP* or ZMPOP* response when given one input key. proc verify_zpop_response {rd pop key count zpop_expected_response zmpop_expected_response} { if {[string match "ZM*" $pop]} { lassign [split $pop "_"] pop where if {$count == 0} { set res [$rd $pop 1 $key $where] } else { set res [$rd $pop 1 $key $where COUNT $count] } } else { if {$count == 0} { set res [$rd $pop $key] } else { set res [$rd $pop $key $count] } } verify_pop_response $pop $res $zpop_expected_response $zmpop_expected_response } # A helper function to verify either BZPOP* or BZMPOP* response when given one input key. proc verify_bzpop_response {rd pop key timeout count bzpop_expected_response bzmpop_expected_response} { if {[string match "BZM*" $pop]} { lassign [split $pop "_"] pop where if {$count == 0} { $rd $pop $timeout 1 $key $where } else { $rd $pop $timeout 1 $key $where COUNT $count } } else { $rd $pop $key $timeout } verify_pop_response $pop [$rd read] $bzpop_expected_response $bzmpop_expected_response } # A helper function to verify either ZPOP* or ZMPOP* response when given two input keys. proc verify_bzpop_two_key_response {rd pop key key2 timeout count bzpop_expected_response bzmpop_expected_response} { if {[string match "BZM*" $pop]} { lassign [split $pop "_"] pop where if {$count == 0} { $rd $pop $timeout 2 $key $key2 $where } else { $rd $pop $timeout 2 $key $key2 $where COUNT $count } } else { $rd $pop $key $key2 $timeout } verify_pop_response $pop [$rd read] $bzpop_expected_response $bzmpop_expected_response } # A helper function to execute either BZPOP* or BZMPOP* with one input key. proc bzpop_command {rd pop key timeout} { if {[string match "BZM*" $pop]} { lassign [split $pop "_"] pop where $rd $pop $timeout 1 $key $where COUNT 1 } else { $rd $pop $key $timeout } } # A helper function to verify nil response in readraw base on RESP version. proc verify_nil_response {resp nil_response} { if {$resp == 2} { assert_equal $nil_response {*-1} } elseif {$resp == 3} { assert_equal $nil_response {_} } } # A helper function to verify zset score response in readraw base on RESP version. proc verify_score_response {rd resp score} { if {$resp == 2} { assert_equal [$rd read] {$1} assert_equal [$rd read] $score } elseif {$resp == 3} { assert_equal [$rd read] ",$score" } } proc basics {encoding} { set original_max_entries [lindex [r config get zset-max-ziplist-entries] 1] set original_max_value [lindex [r config get zset-max-ziplist-value] 1] if {$encoding == "listpack"} { r config set zset-max-ziplist-entries 128 r config set zset-max-ziplist-value 64 } elseif {$encoding == "skiplist"} { r config set zset-max-ziplist-entries 0 r config set zset-max-ziplist-value 0 } else { puts "Unknown sorted set encoding" exit } test "Check encoding - $encoding" { r del ztmp r zadd ztmp 10 x assert_encoding $encoding ztmp } test "ZSET basic ZADD and score update - $encoding" { r del ztmp r zadd ztmp 10 x r zadd ztmp 20 y r zadd ztmp 30 z assert_equal {x y z} [r zrange ztmp 0 -1] r zadd ztmp 1 y assert_equal {y x z} [r zrange ztmp 0 -1] } test "ZSET element can't be set to NaN with ZADD - $encoding" { assert_error "*not*float*" {r zadd myzset nan abc} } test "ZSET element can't be set to NaN with ZINCRBY - $encoding" { assert_error "*not*float*" {r zincrby myzset nan abc} } test "ZADD with options syntax error with incomplete pair - $encoding" { r del ztmp catch {r zadd ztmp xx 10 x 20} err set err } {ERR*} test "ZADD XX option without key - $encoding" { r del ztmp assert {[r zadd ztmp xx 10 x] == 0} assert {[r type ztmp] eq {none}} } test "ZADD XX existing key - $encoding" { r del ztmp r zadd ztmp 10 x assert {[r zadd ztmp xx 20 y] == 0} assert {[r zcard ztmp] == 1} } test "ZADD XX returns the number of elements actually added - $encoding" { r del ztmp r zadd ztmp 10 x set retval [r zadd ztmp 10 x 20 y 30 z] assert {$retval == 2} } test "ZADD XX updates existing elements score - $encoding" { r del ztmp r zadd ztmp 10 x 20 y 30 z r zadd ztmp xx 5 foo 11 x 21 y 40 zap assert {[r zcard ztmp] == 3} assert {[r zscore ztmp x] == 11} assert {[r zscore ztmp y] == 21} } test "ZADD GT updates existing elements when new scores are greater - $encoding" { r del ztmp r zadd ztmp 10 x 20 y 30 z assert {[r zadd ztmp gt ch 5 foo 11 x 21 y 29 z] == 3} assert {[r zcard ztmp] == 4} assert {[r zscore ztmp x] == 11} assert {[r zscore ztmp y] == 21} assert {[r zscore ztmp z] == 30} } test "ZADD LT updates existing elements when new scores are lower - $encoding" { r del ztmp r zadd ztmp 10 x 20 y 30 z assert {[r zadd ztmp lt ch 5 foo 11 x 21 y 29 z] == 2} assert {[r zcard ztmp] == 4} assert {[r zscore ztmp x] == 10} assert {[r zscore ztmp y] == 20} assert {[r zscore ztmp z] == 29} } test "ZADD GT XX updates existing elements when new scores are greater and skips new elements - $encoding" { r del ztmp r zadd ztmp 10 x 20 y 30 z assert {[r zadd ztmp gt xx ch 5 foo 11 x 21 y 29 z] == 2} assert {[r zcard ztmp] == 3} assert {[r zscore ztmp x] == 11} assert {[r zscore ztmp y] == 21} assert {[r zscore ztmp z] == 30} } test "ZADD LT XX updates existing elements when new scores are lower and skips new elements - $encoding" { r del ztmp r zadd ztmp 10 x 20 y 30 z assert {[r zadd ztmp lt xx ch 5 foo 11 x 21 y 29 z] == 1} assert {[r zcard ztmp] == 3} assert {[r zscore ztmp x] == 10} assert {[r zscore ztmp y] == 20} assert {[r zscore ztmp z] == 29} } test "ZADD XX and NX are not compatible - $encoding" { r del ztmp catch {r zadd ztmp xx nx 10 x} err set err } {ERR*} test "ZADD NX with non existing key - $encoding" { r del ztmp r zadd ztmp nx 10 x 20 y 30 z assert {[r zcard ztmp] == 3} } test "ZADD NX only add new elements without updating old ones - $encoding" { r del ztmp r zadd ztmp 10 x 20 y 30 z assert {[r zadd ztmp nx 11 x 21 y 100 a 200 b] == 2} assert {[r zscore ztmp x] == 10} assert {[r zscore ztmp y] == 20} assert {[r zscore ztmp a] == 100} assert {[r zscore ztmp b] == 200} } test "ZADD GT and NX are not compatible - $encoding" { r del ztmp catch {r zadd ztmp gt nx 10 x} err set err } {ERR*} test "ZADD LT and NX are not compatible - $encoding" { r del ztmp catch {r zadd ztmp lt nx 10 x} err set err } {ERR*} test "ZADD LT and GT are not compatible - $encoding" { r del ztmp catch {r zadd ztmp lt gt 10 x} err set err } {ERR*} test "ZADD INCR LT/GT replies with nill if score not updated - $encoding" { r del ztmp r zadd ztmp 28 x assert {[r zadd ztmp lt incr 1 x] eq {}} assert {[r zscore ztmp x] == 28} assert {[r zadd ztmp gt incr -1 x] eq {}} assert {[r zscore ztmp x] == 28} } test "ZADD INCR LT/GT with inf - $encoding" { r del ztmp r zadd ztmp +inf x -inf y assert {[r zadd ztmp lt incr 1 x] eq {}} assert {[r zscore ztmp x] == inf} assert {[r zadd ztmp gt incr -1 x] eq {}} assert {[r zscore ztmp x] == inf} assert {[r zadd ztmp lt incr -1 x] eq {}} assert {[r zscore ztmp x] == inf} assert {[r zadd ztmp gt incr 1 x] eq {}} assert {[r zscore ztmp x] == inf} assert {[r zadd ztmp lt incr 1 y] eq {}} assert {[r zscore ztmp y] == -inf} assert {[r zadd ztmp gt incr -1 y] eq {}} assert {[r zscore ztmp y] == -inf} assert {[r zadd ztmp lt incr -1 y] eq {}} assert {[r zscore ztmp y] == -inf} assert {[r zadd ztmp gt incr 1 y] eq {}} assert {[r zscore ztmp y] == -inf} } test "ZADD INCR works like ZINCRBY - $encoding" { r del ztmp r zadd ztmp 10 x 20 y 30 z r zadd ztmp INCR 15 x assert {[r zscore ztmp x] == 25} } test "ZADD INCR works with a single score-elemenet pair - $encoding" { r del ztmp r zadd ztmp 10 x 20 y 30 z catch {r zadd ztmp INCR 15 x 10 y} err set err } {ERR*} test "ZADD CH option changes return value to all changed elements - $encoding" { r del ztmp r zadd ztmp 10 x 20 y 30 z assert {[r zadd ztmp 11 x 21 y 30 z] == 0} assert {[r zadd ztmp ch 12 x 22 y 30 z] == 2} } test "ZINCRBY calls leading to NaN result in error - $encoding" { r zincrby myzset +inf abc assert_error "*NaN*" {r zincrby myzset -inf abc} } test "ZADD - Variadic version base case - $encoding" { r del myzset list [r zadd myzset 10 a 20 b 30 c] [r zrange myzset 0 -1 withscores] } {3 {a 10 b 20 c 30}} test "ZADD - Return value is the number of actually added items - $encoding" { list [r zadd myzset 5 x 20 b 30 c] [r zrange myzset 0 -1 withscores] } {1 {x 5 a 10 b 20 c 30}} test "ZADD - Variadic version does not add nothing on single parsing err - $encoding" { r del myzset catch {r zadd myzset 10 a 20 b 30.badscore c} e assert_match {*ERR*not*float*} $e r exists myzset } {0} test "ZADD - Variadic version will raise error on missing arg - $encoding" { r del myzset catch {r zadd myzset 10 a 20 b 30 c 40} e assert_match {*ERR*syntax*} $e } test "ZINCRBY does not work variadic even if shares ZADD implementation - $encoding" { r del myzset catch {r zincrby myzset 10 a 20 b 30 c} e assert_match {*ERR*wrong*number*arg*} $e } test "ZCARD basics - $encoding" { r del ztmp r zadd ztmp 10 a 20 b 30 c assert_equal 3 [r zcard ztmp] assert_equal 0 [r zcard zdoesntexist] } test "ZREM removes key after last element is removed - $encoding" { r del ztmp r zadd ztmp 10 x r zadd ztmp 20 y assert_equal 1 [r exists ztmp] assert_equal 0 [r zrem ztmp z] assert_equal 1 [r zrem ztmp y] assert_equal 1 [r zrem ztmp x] assert_equal 0 [r exists ztmp] } test "ZREM variadic version - $encoding" { r del ztmp r zadd ztmp 10 a 20 b 30 c assert_equal 2 [r zrem ztmp x y a b k] assert_equal 0 [r zrem ztmp foo bar] assert_equal 1 [r zrem ztmp c] r exists ztmp } {0} test "ZREM variadic version -- remove elements after key deletion - $encoding" { r del ztmp r zadd ztmp 10 a 20 b 30 c r zrem ztmp a b c d e f g } {3} test "ZRANGE basics - $encoding" { r del ztmp r zadd ztmp 1 a r zadd ztmp 2 b r zadd ztmp 3 c r zadd ztmp 4 d assert_equal {a b c d} [r zrange ztmp 0 -1] assert_equal {a b c} [r zrange ztmp 0 -2] assert_equal {b c d} [r zrange ztmp 1 -1] assert_equal {b c} [r zrange ztmp 1 -2] assert_equal {c d} [r zrange ztmp -2 -1] assert_equal {c} [r zrange ztmp -2 -2] # out of range start index assert_equal {a b c} [r zrange ztmp -5 2] assert_equal {a b} [r zrange ztmp -5 1] assert_equal {} [r zrange ztmp 5 -1] assert_equal {} [r zrange ztmp 5 -2] # out of range end index assert_equal {a b c d} [r zrange ztmp 0 5] assert_equal {b c d} [r zrange ztmp 1 5] assert_equal {} [r zrange ztmp 0 -5] assert_equal {} [r zrange ztmp 1 -5] # withscores assert_equal {a 1 b 2 c 3 d 4} [r zrange ztmp 0 -1 withscores] } test "ZREVRANGE basics - $encoding" { r del ztmp r zadd ztmp 1 a r zadd ztmp 2 b r zadd ztmp 3 c r zadd ztmp 4 d assert_equal {d c b a} [r zrevrange ztmp 0 -1] assert_equal {d c b} [r zrevrange ztmp 0 -2] assert_equal {c b a} [r zrevrange ztmp 1 -1] assert_equal {c b} [r zrevrange ztmp 1 -2] assert_equal {b a} [r zrevrange ztmp -2 -1] assert_equal {b} [r zrevrange ztmp -2 -2] # out of range start index assert_equal {d c b} [r zrevrange ztmp -5 2] assert_equal {d c} [r zrevrange ztmp -5 1] assert_equal {} [r zrevrange ztmp 5 -1] assert_equal {} [r zrevrange ztmp 5 -2] # out of range end index assert_equal {d c b a} [r zrevrange ztmp 0 5] assert_equal {c b a} [r zrevrange ztmp 1 5] assert_equal {} [r zrevrange ztmp 0 -5] assert_equal {} [r zrevrange ztmp 1 -5] # withscores assert_equal {d 4 c 3 b 2 a 1} [r zrevrange ztmp 0 -1 withscores] } test "ZRANK/ZREVRANK basics - $encoding" { set nullres {$-1} if {$::force_resp3} { set nullres {_} } r del zranktmp r zadd zranktmp 10 x r zadd zranktmp 20 y r zadd zranktmp 30 z assert_equal 0 [r zrank zranktmp x] assert_equal 1 [r zrank zranktmp y] assert_equal 2 [r zrank zranktmp z] assert_equal 2 [r zrevrank zranktmp x] assert_equal 1 [r zrevrank zranktmp y] assert_equal 0 [r zrevrank zranktmp z] r readraw 1 assert_equal $nullres [r zrank zranktmp foo] assert_equal $nullres [r zrevrank zranktmp foo] r readraw 0 # withscore set nullres {*-1} if {$::force_resp3} { set nullres {_} } assert_equal {0 10} [r zrank zranktmp x withscore] assert_equal {1 20} [r zrank zranktmp y withscore] assert_equal {2 30} [r zrank zranktmp z withscore] assert_equal {2 10} [r zrevrank zranktmp x withscore] assert_equal {1 20} [r zrevrank zranktmp y withscore] assert_equal {0 30} [r zrevrank zranktmp z withscore] r readraw 1 assert_equal $nullres [r zrank zranktmp foo withscore] assert_equal $nullres [r zrevrank zranktmp foo withscore] r readraw 0 } test "ZRANK - after deletion - $encoding" { r zrem zranktmp y assert_equal 0 [r zrank zranktmp x] assert_equal 1 [r zrank zranktmp z] assert_equal {0 10} [r zrank zranktmp x withscore] assert_equal {1 30} [r zrank zranktmp z withscore] } test "ZINCRBY - can create a new sorted set - $encoding" { r del zset r zincrby zset 1 foo assert_equal {foo} [r zrange zset 0 -1] assert_equal 1 [r zscore zset foo] } test "ZINCRBY - increment and decrement - $encoding" { r zincrby zset 2 foo r zincrby zset 1 bar assert_equal {bar foo} [r zrange zset 0 -1] r zincrby zset 10 bar r zincrby zset -5 foo r zincrby zset -5 bar assert_equal {foo bar} [r zrange zset 0 -1] assert_equal -2 [r zscore zset foo] assert_equal 6 [r zscore zset bar] } test "ZINCRBY return value - $encoding" { r del ztmp set retval [r zincrby ztmp 1.0 x] assert {$retval == 1.0} } proc create_default_zset {} { create_zset zset {-inf a 1 b 2 c 3 d 4 e 5 f +inf g} } test "ZRANGEBYSCORE/ZREVRANGEBYSCORE/ZCOUNT basics - $encoding" { create_default_zset # inclusive range assert_equal {a b c} [r zrangebyscore zset -inf 2] assert_equal {b c d} [r zrangebyscore zset 0 3] assert_equal {d e f} [r zrangebyscore zset 3 6] assert_equal {e f g} [r zrangebyscore zset 4 +inf] assert_equal {c b a} [r zrevrangebyscore zset 2 -inf] assert_equal {d c b} [r zrevrangebyscore zset 3 0] assert_equal {f e d} [r zrevrangebyscore zset 6 3] assert_equal {g f e} [r zrevrangebyscore zset +inf 4] assert_equal 3 [r zcount zset 0 3] # exclusive range assert_equal {b} [r zrangebyscore zset (-inf (2] assert_equal {b c} [r zrangebyscore zset (0 (3] assert_equal {e f} [r zrangebyscore zset (3 (6] assert_equal {f} [r zrangebyscore zset (4 (+inf] assert_equal {b} [r zrevrangebyscore zset (2 (-inf] assert_equal {c b} [r zrevrangebyscore zset (3 (0] assert_equal {f e} [r zrevrangebyscore zset (6 (3] assert_equal {f} [r zrevrangebyscore zset (+inf (4] assert_equal 2 [r zcount zset (0 (3] # test empty ranges r zrem zset a r zrem zset g # inclusive assert_equal {} [r zrangebyscore zset 4 2] assert_equal {} [r zrangebyscore zset 6 +inf] assert_equal {} [r zrangebyscore zset -inf -6] assert_equal {} [r zrevrangebyscore zset +inf 6] assert_equal {} [r zrevrangebyscore zset -6 -inf] # exclusive assert_equal {} [r zrangebyscore zset (4 (2] assert_equal {} [r zrangebyscore zset 2 (2] assert_equal {} [r zrangebyscore zset (2 2] assert_equal {} [r zrangebyscore zset (6 (+inf] assert_equal {} [r zrangebyscore zset (-inf (-6] assert_equal {} [r zrevrangebyscore zset (+inf (6] assert_equal {} [r zrevrangebyscore zset (-6 (-inf] # empty inner range assert_equal {} [r zrangebyscore zset 2.4 2.6] assert_equal {} [r zrangebyscore zset (2.4 2.6] assert_equal {} [r zrangebyscore zset 2.4 (2.6] assert_equal {} [r zrangebyscore zset (2.4 (2.6] } test "ZRANGEBYSCORE with WITHSCORES - $encoding" { create_default_zset assert_equal {b 1 c 2 d 3} [r zrangebyscore zset 0 3 withscores] assert_equal {d 3 c 2 b 1} [r zrevrangebyscore zset 3 0 withscores] } test "ZRANGEBYSCORE with LIMIT - $encoding" { create_default_zset assert_equal {b c} [r zrangebyscore zset 0 10 LIMIT 0 2] assert_equal {d e f} [r zrangebyscore zset 0 10 LIMIT 2 3] assert_equal {d e f} [r zrangebyscore zset 0 10 LIMIT 2 10] assert_equal {} [r zrangebyscore zset 0 10 LIMIT 20 10] assert_equal {f e} [r zrevrangebyscore zset 10 0 LIMIT 0 2] assert_equal {d c b} [r zrevrangebyscore zset 10 0 LIMIT 2 3] assert_equal {d c b} [r zrevrangebyscore zset 10 0 LIMIT 2 10] assert_equal {} [r zrevrangebyscore zset 10 0 LIMIT 20 10] } test "ZRANGEBYSCORE with LIMIT and WITHSCORES - $encoding" { create_default_zset assert_equal {e 4 f 5} [r zrangebyscore zset 2 5 LIMIT 2 3 WITHSCORES] assert_equal {d 3 c 2} [r zrevrangebyscore zset 5 2 LIMIT 2 3 WITHSCORES] assert_equal {} [r zrangebyscore zset 2 5 LIMIT 12 13 WITHSCORES] } test "ZRANGEBYSCORE with non-value min or max - $encoding" { assert_error "*not*float*" {r zrangebyscore fooz str 1} assert_error "*not*float*" {r zrangebyscore fooz 1 str} assert_error "*not*float*" {r zrangebyscore fooz 1 NaN} } proc create_default_lex_zset {} { create_zset zset {0 alpha 0 bar 0 cool 0 down 0 elephant 0 foo 0 great 0 hill 0 omega} } test "ZRANGEBYLEX/ZREVRANGEBYLEX/ZLEXCOUNT basics - $encoding" { create_default_lex_zset # inclusive range assert_equal {alpha bar cool} [r zrangebylex zset - \[cool] assert_equal {bar cool down} [r zrangebylex zset \[bar \[down] assert_equal {great hill omega} [r zrangebylex zset \[g +] assert_equal {cool bar alpha} [r zrevrangebylex zset \[cool -] assert_equal {down cool bar} [r zrevrangebylex zset \[down \[bar] assert_equal {omega hill great foo elephant down} [r zrevrangebylex zset + \[d] assert_equal 3 [r zlexcount zset \[ele \[h] # exclusive range assert_equal {alpha bar} [r zrangebylex zset - (cool] assert_equal {cool} [r zrangebylex zset (bar (down] assert_equal {hill omega} [r zrangebylex zset (great +] assert_equal {bar alpha} [r zrevrangebylex zset (cool -] assert_equal {cool} [r zrevrangebylex zset (down (bar] assert_equal {omega hill} [r zrevrangebylex zset + (great] assert_equal 2 [r zlexcount zset (ele (great] # inclusive and exclusive assert_equal {} [r zrangebylex zset (az (b] assert_equal {} [r zrangebylex zset (z +] assert_equal {} [r zrangebylex zset - \[aaaa] assert_equal {} [r zrevrangebylex zset \[elez \[elex] assert_equal {} [r zrevrangebylex zset (hill (omega] } test "ZLEXCOUNT advanced - $encoding" { create_default_lex_zset assert_equal 9 [r zlexcount zset - +] assert_equal 0 [r zlexcount zset + -] assert_equal 0 [r zlexcount zset + \[c] assert_equal 0 [r zlexcount zset \[c -] assert_equal 8 [r zlexcount zset \[bar +] assert_equal 5 [r zlexcount zset \[bar \[foo] assert_equal 4 [r zlexcount zset \[bar (foo] assert_equal 4 [r zlexcount zset (bar \[foo] assert_equal 3 [r zlexcount zset (bar (foo] assert_equal 5 [r zlexcount zset - (foo] assert_equal 1 [r zlexcount zset (maxstring +] } test "ZRANGEBYSLEX with LIMIT - $encoding" { create_default_lex_zset assert_equal {alpha bar} [r zrangebylex zset - \[cool LIMIT 0 2] assert_equal {bar cool} [r zrangebylex zset - \[cool LIMIT 1 2] assert_equal {} [r zrangebylex zset \[bar \[down LIMIT 0 0] assert_equal {} [r zrangebylex zset \[bar \[down LIMIT 2 0] assert_equal {bar} [r zrangebylex zset \[bar \[down LIMIT 0 1] assert_equal {cool} [r zrangebylex zset \[bar \[down LIMIT 1 1] assert_equal {bar cool down} [r zrangebylex zset \[bar \[down LIMIT 0 100] assert_equal {omega hill great foo elephant} [r zrevrangebylex zset + \[d LIMIT 0 5] assert_equal {omega hill great foo} [r zrevrangebylex zset + \[d LIMIT 0 4] } test "ZRANGEBYLEX with invalid lex range specifiers - $encoding" { assert_error "*not*string*" {r zrangebylex fooz foo bar} assert_error "*not*string*" {r zrangebylex fooz \[foo bar} assert_error "*not*string*" {r zrangebylex fooz foo \[bar} assert_error "*not*string*" {r zrangebylex fooz +x \[bar} assert_error "*not*string*" {r zrangebylex fooz -x \[bar} } test "ZREMRANGEBYSCORE basics - $encoding" { proc remrangebyscore {min max} { create_zset zset {1 a 2 b 3 c 4 d 5 e} assert_equal 1 [r exists zset] r zremrangebyscore zset $min $max } # inner range assert_equal 3 [remrangebyscore 2 4] assert_equal {a e} [r zrange zset 0 -1] # start underflow assert_equal 1 [remrangebyscore -10 1] assert_equal {b c d e} [r zrange zset 0 -1] # end overflow assert_equal 1 [remrangebyscore 5 10] assert_equal {a b c d} [r zrange zset 0 -1] # switch min and max assert_equal 0 [remrangebyscore 4 2] assert_equal {a b c d e} [r zrange zset 0 -1] # -inf to mid assert_equal 3 [remrangebyscore -inf 3] assert_equal {d e} [r zrange zset 0 -1] # mid to +inf assert_equal 3 [remrangebyscore 3 +inf] assert_equal {a b} [r zrange zset 0 -1] # -inf to +inf assert_equal 5 [remrangebyscore -inf +inf] assert_equal {} [r zrange zset 0 -1] # exclusive min assert_equal 4 [remrangebyscore (1 5] assert_equal {a} [r zrange zset 0 -1] assert_equal 3 [remrangebyscore (2 5] assert_equal {a b} [r zrange zset 0 -1] # exclusive max assert_equal 4 [remrangebyscore 1 (5] assert_equal {e} [r zrange zset 0 -1] assert_equal 3 [remrangebyscore 1 (4] assert_equal {d e} [r zrange zset 0 -1] # exclusive min and max assert_equal 3 [remrangebyscore (1 (5] assert_equal {a e} [r zrange zset 0 -1] # destroy when empty assert_equal 5 [remrangebyscore 1 5] assert_equal 0 [r exists zset] } test "ZREMRANGEBYSCORE with non-value min or max - $encoding" { assert_error "*not*float*" {r zremrangebyscore fooz str 1} assert_error "*not*float*" {r zremrangebyscore fooz 1 str} assert_error "*not*float*" {r zremrangebyscore fooz 1 NaN} } test "ZREMRANGEBYRANK basics - $encoding" { proc remrangebyrank {min max} { create_zset zset {1 a 2 b 3 c 4 d 5 e} assert_equal 1 [r exists zset] r zremrangebyrank zset $min $max } # inner range assert_equal 3 [remrangebyrank 1 3] assert_equal {a e} [r zrange zset 0 -1] # start underflow assert_equal 1 [remrangebyrank -10 0] assert_equal {b c d e} [r zrange zset 0 -1] # start overflow assert_equal 0 [remrangebyrank 10 -1] assert_equal {a b c d e} [r zrange zset 0 -1] # end underflow assert_equal 0 [remrangebyrank 0 -10] assert_equal {a b c d e} [r zrange zset 0 -1] # end overflow assert_equal 5 [remrangebyrank 0 10] assert_equal {} [r zrange zset 0 -1] # destroy when empty assert_equal 5 [remrangebyrank 0 4] assert_equal 0 [r exists zset] } test "ZREMRANGEBYLEX basics - $encoding" { proc remrangebylex {min max} { create_default_lex_zset assert_equal 1 [r exists zset] r zremrangebylex zset $min $max } # inclusive range assert_equal 3 [remrangebylex - \[cool] assert_equal {down elephant foo great hill omega} [r zrange zset 0 -1] assert_equal 3 [remrangebylex \[bar \[down] assert_equal {alpha elephant foo great hill omega} [r zrange zset 0 -1] assert_equal 3 [remrangebylex \[g +] assert_equal {alpha bar cool down elephant foo} [r zrange zset 0 -1] assert_equal 6 [r zcard zset] # exclusive range assert_equal 2 [remrangebylex - (cool] assert_equal {cool down elephant foo great hill omega} [r zrange zset 0 -1] assert_equal 1 [remrangebylex (bar (down] assert_equal {alpha bar down elephant foo great hill omega} [r zrange zset 0 -1] assert_equal 2 [remrangebylex (great +] assert_equal {alpha bar cool down elephant foo great} [r zrange zset 0 -1] assert_equal 7 [r zcard zset] # inclusive and exclusive assert_equal 0 [remrangebylex (az (b] assert_equal {alpha bar cool down elephant foo great hill omega} [r zrange zset 0 -1] assert_equal 0 [remrangebylex (z +] assert_equal {alpha bar cool down elephant foo great hill omega} [r zrange zset 0 -1] assert_equal 0 [remrangebylex - \[aaaa] assert_equal {alpha bar cool down elephant foo great hill omega} [r zrange zset 0 -1] assert_equal 9 [r zcard zset] # destroy when empty assert_equal 9 [remrangebylex - +] assert_equal 0 [r zcard zset] assert_equal 0 [r exists zset] } test "ZUNIONSTORE against non-existing key doesn't set destination - $encoding" { r del zseta{t} assert_equal 0 [r zunionstore dst_key{t} 1 zseta{t}] assert_equal 0 [r exists dst_key{t}] } test "ZUNION/ZINTER/ZINTERCARD/ZDIFF against non-existing key - $encoding" { r del zseta assert_equal {} [r zunion 1 zseta] assert_equal {} [r zinter 1 zseta] assert_equal 0 [r zintercard 1 zseta] assert_equal 0 [r zintercard 1 zseta limit 0] assert_equal {} [r zdiff 1 zseta] } test "ZUNIONSTORE with empty set - $encoding" { r del zseta{t} zsetb{t} r zadd zseta{t} 1 a r zadd zseta{t} 2 b r zunionstore zsetc{t} 2 zseta{t} zsetb{t} r zrange zsetc{t} 0 -1 withscores } {a 1 b 2} test "ZUNION/ZINTER/ZINTERCARD/ZDIFF with empty set - $encoding" { r del zseta{t} zsetb{t} r zadd zseta{t} 1 a r zadd zseta{t} 2 b assert_equal {a 1 b 2} [r zunion 2 zseta{t} zsetb{t} withscores] assert_equal {} [r zinter 2 zseta{t} zsetb{t} withscores] assert_equal 0 [r zintercard 2 zseta{t} zsetb{t}] assert_equal 0 [r zintercard 2 zseta{t} zsetb{t} limit 0] assert_equal {a 1 b 2} [r zdiff 2 zseta{t} zsetb{t} withscores] } test "ZUNIONSTORE basics - $encoding" { r del zseta{t} zsetb{t} zsetc{t} r zadd zseta{t} 1 a r zadd zseta{t} 2 b r zadd zseta{t} 3 c r zadd zsetb{t} 1 b r zadd zsetb{t} 2 c r zadd zsetb{t} 3 d assert_equal 4 [r zunionstore zsetc{t} 2 zseta{t} zsetb{t}] assert_equal {a 1 b 3 d 3 c 5} [r zrange zsetc{t} 0 -1 withscores] } test "ZUNION/ZINTER/ZINTERCARD/ZDIFF with integer members - $encoding" { r del zsetd{t} zsetf{t} r zadd zsetd{t} 1 1 r zadd zsetd{t} 2 2 r zadd zsetd{t} 3 3 r zadd zsetf{t} 1 1 r zadd zsetf{t} 3 3 r zadd zsetf{t} 4 4 assert_equal {1 2 2 2 4 4 3 6} [r zunion 2 zsetd{t} zsetf{t} withscores] assert_equal {1 2 3 6} [r zinter 2 zsetd{t} zsetf{t} withscores] assert_equal 2 [r zintercard 2 zsetd{t} zsetf{t}] assert_equal 2 [r zintercard 2 zsetd{t} zsetf{t} limit 0] assert_equal {2 2} [r zdiff 2 zsetd{t} zsetf{t} withscores] } test "ZUNIONSTORE with weights - $encoding" { assert_equal 4 [r zunionstore zsetc{t} 2 zseta{t} zsetb{t} weights 2 3] assert_equal {a 2 b 7 d 9 c 12} [r zrange zsetc{t} 0 -1 withscores] } test "ZUNION with weights - $encoding" { assert_equal {a 2 b 7 d 9 c 12} [r zunion 2 zseta{t} zsetb{t} weights 2 3 withscores] assert_equal {b 7 c 12} [r zinter 2 zseta{t} zsetb{t} weights 2 3 withscores] } test "ZUNIONSTORE with a regular set and weights - $encoding" { r del seta{t} r sadd seta{t} a r sadd seta{t} b r sadd seta{t} c assert_equal 4 [r zunionstore zsetc{t} 2 seta{t} zsetb{t} weights 2 3] assert_equal {a 2 b 5 c 8 d 9} [r zrange zsetc{t} 0 -1 withscores] } test "ZUNIONSTORE with AGGREGATE MIN - $encoding" { assert_equal 4 [r zunionstore zsetc{t} 2 zseta{t} zsetb{t} aggregate min] assert_equal {a 1 b 1 c 2 d 3} [r zrange zsetc{t} 0 -1 withscores] } test "ZUNION/ZINTER with AGGREGATE MIN - $encoding" { assert_equal {a 1 b 1 c 2 d 3} [r zunion 2 zseta{t} zsetb{t} aggregate min withscores] assert_equal {b 1 c 2} [r zinter 2 zseta{t} zsetb{t} aggregate min withscores] } test "ZUNIONSTORE with AGGREGATE MAX - $encoding" { assert_equal 4 [r zunionstore zsetc{t} 2 zseta{t} zsetb{t} aggregate max] assert_equal {a 1 b 2 c 3 d 3} [r zrange zsetc{t} 0 -1 withscores] } test "ZUNION/ZINTER with AGGREGATE MAX - $encoding" { assert_equal {a 1 b 2 c 3 d 3} [r zunion 2 zseta{t} zsetb{t} aggregate max withscores] assert_equal {b 2 c 3} [r zinter 2 zseta{t} zsetb{t} aggregate max withscores] } test "ZINTERSTORE basics - $encoding" { assert_equal 2 [r zinterstore zsetc{t} 2 zseta{t} zsetb{t}] assert_equal {b 3 c 5} [r zrange zsetc{t} 0 -1 withscores] } test "ZINTER basics - $encoding" { assert_equal {b 3 c 5} [r zinter 2 zseta{t} zsetb{t} withscores] } test "ZINTERCARD with illegal arguments" { assert_error "ERR syntax error*" {r zintercard 1 zseta{t} zseta{t}} assert_error "ERR syntax error*" {r zintercard 1 zseta{t} bar_arg} assert_error "ERR syntax error*" {r zintercard 1 zseta{t} LIMIT} assert_error "ERR LIMIT*" {r zintercard 1 myset{t} LIMIT -1} assert_error "ERR LIMIT*" {r zintercard 1 myset{t} LIMIT a} } test "ZINTERCARD basics - $encoding" { assert_equal 2 [r zintercard 2 zseta{t} zsetb{t}] assert_equal 2 [r zintercard 2 zseta{t} zsetb{t} limit 0] assert_equal 1 [r zintercard 2 zseta{t} zsetb{t} limit 1] assert_equal 2 [r zintercard 2 zseta{t} zsetb{t} limit 10] } test "ZINTER RESP3 - $encoding" { r hello 3 assert_equal {{b 3.0} {c 5.0}} [r zinter 2 zseta{t} zsetb{t} withscores] r hello 2 } test "ZINTERSTORE with weights - $encoding" { assert_equal 2 [r zinterstore zsetc{t} 2 zseta{t} zsetb{t} weights 2 3] assert_equal {b 7 c 12} [r zrange zsetc{t} 0 -1 withscores] } test "ZINTER with weights - $encoding" { assert_equal {b 7 c 12} [r zinter 2 zseta{t} zsetb{t} weights 2 3 withscores] } test "ZINTERSTORE with a regular set and weights - $encoding" { r del seta{t} r sadd seta{t} a r sadd seta{t} b r sadd seta{t} c assert_equal 2 [r zinterstore zsetc{t} 2 seta{t} zsetb{t} weights 2 3] assert_equal {b 5 c 8} [r zrange zsetc{t} 0 -1 withscores] } test "ZINTERSTORE with AGGREGATE MIN - $encoding" { assert_equal 2 [r zinterstore zsetc{t} 2 zseta{t} zsetb{t} aggregate min] assert_equal {b 1 c 2} [r zrange zsetc{t} 0 -1 withscores] } test "ZINTERSTORE with AGGREGATE MAX - $encoding" { assert_equal 2 [r zinterstore zsetc{t} 2 zseta{t} zsetb{t} aggregate max] assert_equal {b 2 c 3} [r zrange zsetc{t} 0 -1 withscores] } foreach cmd {ZUNIONSTORE ZINTERSTORE} { test "$cmd with +inf/-inf scores - $encoding" { r del zsetinf1{t} zsetinf2{t} r zadd zsetinf1{t} +inf key r zadd zsetinf2{t} +inf key r $cmd zsetinf3{t} 2 zsetinf1{t} zsetinf2{t} assert_equal inf [r zscore zsetinf3{t} key] r zadd zsetinf1{t} -inf key r zadd zsetinf2{t} +inf key r $cmd zsetinf3{t} 2 zsetinf1{t} zsetinf2{t} assert_equal 0 [r zscore zsetinf3{t} key] r zadd zsetinf1{t} +inf key r zadd zsetinf2{t} -inf key r $cmd zsetinf3{t} 2 zsetinf1{t} zsetinf2{t} assert_equal 0 [r zscore zsetinf3{t} key] r zadd zsetinf1{t} -inf key r zadd zsetinf2{t} -inf key r $cmd zsetinf3{t} 2 zsetinf1{t} zsetinf2{t} assert_equal -inf [r zscore zsetinf3{t} key] } test "$cmd with NaN weights - $encoding" { r del zsetinf1{t} zsetinf2{t} r zadd zsetinf1{t} 1.0 key r zadd zsetinf2{t} 1.0 key assert_error "*weight*not*float*" { r $cmd zsetinf3{t} 2 zsetinf1{t} zsetinf2{t} weights nan nan } } } test "ZDIFFSTORE basics - $encoding" { assert_equal 1 [r zdiffstore zsetc{t} 2 zseta{t} zsetb{t}] assert_equal {a 1} [r zrange zsetc{t} 0 -1 withscores] } test "ZDIFF basics - $encoding" { assert_equal {a 1} [r zdiff 2 zseta{t} zsetb{t} withscores] } test "ZDIFFSTORE with a regular set - $encoding" { r del seta{t} r sadd seta{t} a r sadd seta{t} b r sadd seta{t} c assert_equal 1 [r zdiffstore zsetc{t} 2 seta{t} zsetb{t}] assert_equal {a 1} [r zrange zsetc{t} 0 -1 withscores] } test "ZDIFF subtracting set from itself - $encoding" { assert_equal 0 [r zdiffstore zsetc{t} 2 zseta{t} zseta{t}] assert_equal {} [r zrange zsetc{t} 0 -1 withscores] } test "ZDIFF algorithm 1 - $encoding" { r del zseta{t} zsetb{t} zsetc{t} r zadd zseta{t} 1 a r zadd zseta{t} 2 b r zadd zseta{t} 3 c r zadd zsetb{t} 1 b r zadd zsetb{t} 2 c r zadd zsetb{t} 3 d assert_equal 1 [r zdiffstore zsetc{t} 2 zseta{t} zsetb{t}] assert_equal {a 1} [r zrange zsetc{t} 0 -1 withscores] } test "ZDIFF algorithm 2 - $encoding" { r del zseta{t} zsetb{t} zsetc{t} zsetd{t} zsete{t} r zadd zseta{t} 1 a r zadd zseta{t} 2 b r zadd zseta{t} 3 c r zadd zseta{t} 5 e r zadd zsetb{t} 1 b r zadd zsetc{t} 1 c r zadd zsetd{t} 1 d assert_equal 2 [r zdiffstore zsete{t} 4 zseta{t} zsetb{t} zsetc{t} zsetd{t}] assert_equal {a 1 e 5} [r zrange zsete{t} 0 -1 withscores] } test "ZDIFF fuzzing - $encoding" { for {set j 0} {$j < 100} {incr j} { unset -nocomplain s array set s {} set args {} set num_sets [expr {[randomInt 10]+1}] for {set i 0} {$i < $num_sets} {incr i} { set num_elements [randomInt 100] r del zset_$i{t} lappend args zset_$i{t} while {$num_elements} { set ele [randomValue] r zadd zset_$i{t} [randomInt 100] $ele if {$i == 0} { set s($ele) x } else { unset -nocomplain s($ele) } incr num_elements -1 } } set result [lsort [r zdiff [llength $args] {*}$args]] assert_equal $result [lsort [array names s]] } } foreach {pop} {ZPOPMIN ZPOPMAX} { test "$pop with the count 0 returns an empty array" { r del zset r zadd zset 1 a 2 b 3 c assert_equal {} [r $pop zset 0] # Make sure we can distinguish between an empty array and a null response r readraw 1 assert_equal {*0} [r $pop zset 0] r readraw 0 assert_equal 3 [r zcard zset] } test "$pop with negative count" { r set zset foo assert_error "ERR *must be positive" {r $pop zset -1} r del zset assert_error "ERR *must be positive" {r $pop zset -2} r zadd zset 1 a 2 b 3 c assert_error "ERR *must be positive" {r $pop zset -3} } } foreach {popmin popmax} {ZPOPMIN ZPOPMAX ZMPOP_MIN ZMPOP_MAX} { test "Basic $popmin/$popmax with a single key - $encoding" { r del zset verify_zpop_response r $popmin zset 0 {} {} create_zset zset {-1 a 1 b 2 c 3 d 4 e} verify_zpop_response r $popmin zset 0 {a -1} {zset {{a -1}}} verify_zpop_response r $popmin zset 0 {b 1} {zset {{b 1}}} verify_zpop_response r $popmax zset 0 {e 4} {zset {{e 4}}} verify_zpop_response r $popmax zset 0 {d 3} {zset {{d 3}}} verify_zpop_response r $popmin zset 0 {c 2} {zset {{c 2}}} assert_equal 0 [r exists zset] } test "$popmin/$popmax with count - $encoding" { r del z1 verify_zpop_response r $popmin z1 2 {} {} create_zset z1 {0 a 1 b 2 c 3 d} verify_zpop_response r $popmin z1 2 {a 0 b 1} {z1 {{a 0} {b 1}}} verify_zpop_response r $popmax z1 2 {d 3 c 2} {z1 {{d 3} {c 2}}} } } foreach {popmin popmax} {BZPOPMIN BZPOPMAX BZMPOP_MIN BZMPOP_MAX} { test "$popmin/$popmax with a single existing sorted set - $encoding" { set rd [redis_deferring_client] create_zset zset {0 a 1 b 2 c 3 d} verify_bzpop_response $rd $popmin zset 5 0 {zset a 0} {zset {{a 0}}} verify_bzpop_response $rd $popmax zset 5 0 {zset d 3} {zset {{d 3}}} verify_bzpop_response $rd $popmin zset 5 0 {zset b 1} {zset {{b 1}}} verify_bzpop_response $rd $popmax zset 5 0 {zset c 2} {zset {{c 2}}} assert_equal 0 [r exists zset] $rd close } test "$popmin/$popmax with multiple existing sorted sets - $encoding" { set rd [redis_deferring_client] create_zset z1{t} {0 a 1 b 2 c} create_zset z2{t} {3 d 4 e 5 f} verify_bzpop_two_key_response $rd $popmin z1{t} z2{t} 5 0 {z1{t} a 0} {z1{t} {{a 0}}} verify_bzpop_two_key_response $rd $popmax z1{t} z2{t} 5 0 {z1{t} c 2} {z1{t} {{c 2}}} assert_equal 1 [r zcard z1{t}] assert_equal 3 [r zcard z2{t}] verify_bzpop_two_key_response $rd $popmax z2{t} z1{t} 5 0 {z2{t} f 5} {z2{t} {{f 5}}} verify_bzpop_two_key_response $rd $popmin z2{t} z1{t} 5 0 {z2{t} d 3} {z2{t} {{d 3}}} assert_equal 1 [r zcard z1{t}] assert_equal 1 [r zcard z2{t}] $rd close } test "$popmin/$popmax second sorted set has members - $encoding" { set rd [redis_deferring_client] r del z1{t} create_zset z2{t} {3 d 4 e 5 f} verify_bzpop_two_key_response $rd $popmax z1{t} z2{t} 5 0 {z2{t} f 5} {z2{t} {{f 5}}} verify_bzpop_two_key_response $rd $popmin z1{t} z2{t} 5 0 {z2{t} d 3} {z2{t} {{d 3}}} assert_equal 0 [r zcard z1{t}] assert_equal 1 [r zcard z2{t}] $rd close } } foreach {popmin popmax} {ZPOPMIN ZPOPMAX ZMPOP_MIN ZMPOP_MAX} { test "Basic $popmin/$popmax - $encoding RESP3" { r hello 3 create_zset z1 {0 a 1 b 2 c 3 d} verify_zpop_response r $popmin z1 0 {a 0.0} {z1 {{a 0.0}}} verify_zpop_response r $popmax z1 0 {d 3.0} {z1 {{d 3.0}}} r hello 2 } test "$popmin/$popmax with count - $encoding RESP3" { r hello 3 create_zset z1 {0 a 1 b 2 c 3 d} verify_zpop_response r $popmin z1 2 {{a 0.0} {b 1.0}} {z1 {{a 0.0} {b 1.0}}} verify_zpop_response r $popmax z1 2 {{d 3.0} {c 2.0}} {z1 {{d 3.0} {c 2.0}}} r hello 2 } } foreach {popmin popmax} {BZPOPMIN BZPOPMAX BZMPOP_MIN BZMPOP_MAX} { test "$popmin/$popmax - $encoding RESP3" { r hello 3 set rd [redis_deferring_client] create_zset zset {0 a 1 b 2 c 3 d} verify_bzpop_response $rd $popmin zset 5 0 {zset a 0} {zset {{a 0}}} verify_bzpop_response $rd $popmax zset 5 0 {zset d 3} {zset {{d 3}}} verify_bzpop_response $rd $popmin zset 5 0 {zset b 1} {zset {{b 1}}} verify_bzpop_response $rd $popmax zset 5 0 {zset c 2} {zset {{c 2}}} assert_equal 0 [r exists zset] r hello 2 $rd close } } r config set zset-max-ziplist-entries $original_max_entries r config set zset-max-ziplist-value $original_max_value } basics listpack basics skiplist test "ZPOP/ZMPOP against wrong type" { r set foo{t} bar assert_error "*WRONGTYPE*" {r zpopmin foo{t}} assert_error "*WRONGTYPE*" {r zpopmin foo{t} 0} assert_error "*WRONGTYPE*" {r zpopmax foo{t}} assert_error "*WRONGTYPE*" {r zpopmax foo{t} 0} assert_error "*WRONGTYPE*" {r zpopmin foo{t} 2} assert_error "*WRONGTYPE*" {r zmpop 1 foo{t} min} assert_error "*WRONGTYPE*" {r zmpop 1 foo{t} max} assert_error "*WRONGTYPE*" {r zmpop 1 foo{t} max count 200} r del foo{t} r set foo2{t} bar assert_error "*WRONGTYPE*" {r zmpop 2 foo{t} foo2{t} min} assert_error "*WRONGTYPE*" {r zmpop 2 foo2{t} foo1{t} max count 1} } test "ZMPOP with illegal argument" { assert_error "ERR wrong number of arguments for 'zmpop' command" {r zmpop} assert_error "ERR wrong number of arguments for 'zmpop' command" {r zmpop 1} assert_error "ERR wrong number of arguments for 'zmpop' command" {r zmpop 1 myzset{t}} assert_error "ERR numkeys*" {r zmpop 0 myzset{t} MIN} assert_error "ERR numkeys*" {r zmpop a myzset{t} MIN} assert_error "ERR numkeys*" {r zmpop -1 myzset{t} MAX} assert_error "ERR syntax error*" {r zmpop 1 myzset{t} bad_where} assert_error "ERR syntax error*" {r zmpop 1 myzset{t} MIN bar_arg} assert_error "ERR syntax error*" {r zmpop 1 myzset{t} MAX MIN} assert_error "ERR syntax error*" {r zmpop 1 myzset{t} COUNT} assert_error "ERR syntax error*" {r zmpop 1 myzset{t} MAX COUNT 1 COUNT 2} assert_error "ERR syntax error*" {r zmpop 2 myzset{t} myzset2{t} bad_arg} assert_error "ERR count*" {r zmpop 1 myzset{t} MIN COUNT 0} assert_error "ERR count*" {r zmpop 1 myzset{t} MAX COUNT a} assert_error "ERR count*" {r zmpop 1 myzset{t} MIN COUNT -1} assert_error "ERR count*" {r zmpop 2 myzset{t} myzset2{t} MAX COUNT -1} } test "ZMPOP propagate as pop with count command to replica" { set repl [attach_to_replication_stream] # ZMPOP min/max propagate as ZPOPMIN/ZPOPMAX with count r zadd myzset{t} 1 one 2 two 3 three # Pop elements from one zset. r zmpop 1 myzset{t} min r zmpop 1 myzset{t} max count 1 # Now the zset have only one element r zmpop 2 myzset{t} myzset2{t} min count 10 # No elements so we don't propagate. r zmpop 2 myzset{t} myzset2{t} max count 10 # Pop elements from the second zset. r zadd myzset2{t} 1 one 2 two 3 three r zmpop 2 myzset{t} myzset2{t} min count 2 r zmpop 2 myzset{t} myzset2{t} max count 1 # Pop all elements. r zadd myzset{t} 1 one 2 two 3 three r zadd myzset2{t} 4 four 5 five 6 six r zmpop 2 myzset{t} myzset2{t} min count 10 r zmpop 2 myzset{t} myzset2{t} max count 10 assert_replication_stream $repl { {select *} {zadd myzset{t} 1 one 2 two 3 three} {zpopmin myzset{t} 1} {zpopmax myzset{t} 1} {zpopmin myzset{t} 1} {zadd myzset2{t} 1 one 2 two 3 three} {zpopmin myzset2{t} 2} {zpopmax myzset2{t} 1} {zadd myzset{t} 1 one 2 two 3 three} {zadd myzset2{t} 4 four 5 five 6 six} {zpopmin myzset{t} 3} {zpopmax myzset2{t} 3} } close_replication_stream $repl } {} {needs:repl} foreach resp {3 2} { set rd [redis_deferring_client] if {[lsearch $::denytags "resp3"] >= 0} { if {$resp == 3} {continue} } elseif {$::force_resp3} { if {$resp == 2} {continue} } r hello $resp $rd hello $resp $rd read test "ZPOPMIN/ZPOPMAX readraw in RESP$resp" { r del zset{t} create_zset zset2{t} {1 a 2 b 3 c 4 d 5 e} r readraw 1 # ZPOP against non existing key. assert_equal {*0} [r zpopmin zset{t}] assert_equal {*0} [r zpopmin zset{t} 1] # ZPOP without COUNT option. assert_equal {*2} [r zpopmin zset2{t}] assert_equal [r read] {$1} assert_equal [r read] {a} verify_score_response r $resp 1 # ZPOP with COUNT option. if {$resp == 2} { assert_equal {*2} [r zpopmax zset2{t} 1] assert_equal [r read] {$1} assert_equal [r read] {e} } elseif {$resp == 3} { assert_equal {*1} [r zpopmax zset2{t} 1] assert_equal [r read] {*2} assert_equal [r read] {$1} assert_equal [r read] {e} } verify_score_response r $resp 5 r readraw 0 } test "BZPOPMIN/BZPOPMAX readraw in RESP$resp" { r del zset{t} create_zset zset2{t} {1 a 2 b 3 c 4 d 5 e} $rd readraw 1 # BZPOP released on timeout. $rd bzpopmin zset{t} 0.01 verify_nil_response $resp [$rd read] $rd bzpopmax zset{t} 0.01 verify_nil_response $resp [$rd read] # BZPOP non-blocking path. $rd bzpopmin zset1{t} zset2{t} 0.1 assert_equal [$rd read] {*3} assert_equal [$rd read] {$8} assert_equal [$rd read] {zset2{t}} assert_equal [$rd read] {$1} assert_equal [$rd read] {a} verify_score_response $rd $resp 1 # BZPOP blocking path. $rd bzpopmin zset{t} 5 wait_for_blocked_client r zadd zset{t} 1 a assert_equal [$rd read] {*3} assert_equal [$rd read] {$7} assert_equal [$rd read] {zset{t}} assert_equal [$rd read] {$1} assert_equal [$rd read] {a} verify_score_response $rd $resp 1 $rd readraw 0 } test "ZMPOP readraw in RESP$resp" { r del zset{t} zset2{t} create_zset zset3{t} {1 a} create_zset zset4{t} {1 a 2 b 3 c 4 d 5 e} r readraw 1 # ZMPOP against non existing key. verify_nil_response $resp [r zmpop 1 zset{t} min] verify_nil_response $resp [r zmpop 1 zset{t} max count 1] verify_nil_response $resp [r zmpop 2 zset{t} zset2{t} min] verify_nil_response $resp [r zmpop 2 zset{t} zset2{t} max count 1] # ZMPOP with one input key. assert_equal {*2} [r zmpop 1 zset3{t} max] assert_equal [r read] {$8} assert_equal [r read] {zset3{t}} assert_equal [r read] {*1} assert_equal [r read] {*2} assert_equal [r read] {$1} assert_equal [r read] {a} verify_score_response r $resp 1 # ZMPOP with COUNT option. assert_equal {*2} [r zmpop 2 zset3{t} zset4{t} min count 2] assert_equal [r read] {$8} assert_equal [r read] {zset4{t}} assert_equal [r read] {*2} assert_equal [r read] {*2} assert_equal [r read] {$1} assert_equal [r read] {a} verify_score_response r $resp 1 assert_equal [r read] {*2} assert_equal [r read] {$1} assert_equal [r read] {b} verify_score_response r $resp 2 r readraw 0 } test "BZMPOP readraw in RESP$resp" { r del zset{t} zset2{t} create_zset zset3{t} {1 a 2 b 3 c 4 d 5 e} $rd readraw 1 # BZMPOP released on timeout. $rd bzmpop 0.01 1 zset{t} min verify_nil_response $resp [$rd read] $rd bzmpop 0.01 2 zset{t} zset2{t} max verify_nil_response $resp [$rd read] # BZMPOP non-blocking path. $rd bzmpop 0.1 2 zset3{t} zset4{t} min assert_equal [$rd read] {*2} assert_equal [$rd read] {$8} assert_equal [$rd read] {zset3{t}} assert_equal [$rd read] {*1} assert_equal [$rd read] {*2} assert_equal [$rd read] {$1} assert_equal [$rd read] {a} verify_score_response $rd $resp 1 # BZMPOP blocking path with COUNT option. $rd bzmpop 5 2 zset{t} zset2{t} max count 2 wait_for_blocked_client r zadd zset2{t} 1 a 2 b 3 c assert_equal [$rd read] {*2} assert_equal [$rd read] {$8} assert_equal [$rd read] {zset2{t}} assert_equal [$rd read] {*2} assert_equal [$rd read] {*2} assert_equal [$rd read] {$1} assert_equal [$rd read] {c} verify_score_response $rd $resp 3 assert_equal [$rd read] {*2} assert_equal [$rd read] {$1} assert_equal [$rd read] {b} verify_score_response $rd $resp 2 } $rd close r hello 2 } test {ZINTERSTORE regression with two sets, intset+hashtable} { r del seta{t} setb{t} setc{t} r sadd set1{t} a r sadd set2{t} 10 r zinterstore set3{t} 2 set1{t} set2{t} } {0} test {ZUNIONSTORE regression, should not create NaN in scores} { r zadd z{t} -inf neginf r zunionstore out{t} 1 z{t} weights 0 r zrange out{t} 0 -1 withscores } {neginf 0} test {ZINTERSTORE #516 regression, mixed sets and ziplist zsets} { r sadd one{t} 100 101 102 103 r sadd two{t} 100 200 201 202 r zadd three{t} 1 500 1 501 1 502 1 503 1 100 r zinterstore to_here{t} 3 one{t} two{t} three{t} WEIGHTS 0 0 1 r zrange to_here{t} 0 -1 } {100} test {ZUNIONSTORE result is sorted} { # Create two sets with common and not common elements, perform # the UNION, check that elements are still sorted. r del one{t} two{t} dest{t} set cmd1 [list r zadd one{t}] set cmd2 [list r zadd two{t}] for {set j 0} {$j < 1000} {incr j} { lappend cmd1 [expr rand()] [randomInt 1000] lappend cmd2 [expr rand()] [randomInt 1000] } {*}$cmd1 {*}$cmd2 assert {[r zcard one{t}] > 100} assert {[r zcard two{t}] > 100} r zunionstore dest{t} 2 one{t} two{t} set oldscore 0 foreach {ele score} [r zrange dest{t} 0 -1 withscores] { assert {$score >= $oldscore} set oldscore $score } } test "ZUNIONSTORE/ZINTERSTORE/ZDIFFSTORE error if using WITHSCORES " { assert_error "*ERR*syntax*" {r zunionstore foo{t} 2 zsetd{t} zsetf{t} withscores} assert_error "*ERR*syntax*" {r zinterstore foo{t} 2 zsetd{t} zsetf{t} withscores} assert_error "*ERR*syntax*" {r zdiffstore foo{t} 2 zsetd{t} zsetf{t} withscores} } test {ZMSCORE retrieve} { r del zmscoretest r zadd zmscoretest 10 x r zadd zmscoretest 20 y r zmscore zmscoretest x y } {10 20} test {ZMSCORE retrieve from empty set} { r del zmscoretest r zmscore zmscoretest x y } {{} {}} test {ZMSCORE retrieve with missing member} { r del zmscoretest r zadd zmscoretest 10 x r zmscore zmscoretest x y } {10 {}} test {ZMSCORE retrieve single member} { r del zmscoretest r zadd zmscoretest 10 x r zadd zmscoretest 20 y r zmscore zmscoretest x } {10} test {ZMSCORE retrieve requires one or more members} { r del zmscoretest r zadd zmscoretest 10 x r zadd zmscoretest 20 y catch {r zmscore zmscoretest} e assert_match {*ERR*wrong*number*arg*} $e } test "ZSET commands don't accept the empty strings as valid score" { assert_error "*not*float*" {r zadd myzset "" abc} } test "zunionInterDiffGenericCommand at least 1 input key" { assert_error {*at least 1 input key * 'zunion' command} {r zunion 0 key{t}} assert_error {*at least 1 input key * 'zunionstore' command} {r zunionstore dst_key{t} 0 key{t}} assert_error {*at least 1 input key * 'zinter' command} {r zinter 0 key{t}} assert_error {*at least 1 input key * 'zinterstore' command} {r zinterstore dst_key{t} 0 key{t}} assert_error {*at least 1 input key * 'zdiff' command} {r zdiff 0 key{t}} assert_error {*at least 1 input key * 'zdiffstore' command} {r zdiffstore dst_key{t} 0 key{t}} assert_error {*at least 1 input key * 'zintercard' command} {r zintercard 0 key{t}} } proc stressers {encoding} { set original_max_entries [lindex [r config get zset-max-ziplist-entries] 1] set original_max_value [lindex [r config get zset-max-ziplist-value] 1] if {$encoding == "listpack"} { # Little extra to allow proper fuzzing in the sorting stresser r config set zset-max-ziplist-entries 256 r config set zset-max-ziplist-value 64 set elements 128 } elseif {$encoding == "skiplist"} { r config set zset-max-ziplist-entries 0 r config set zset-max-ziplist-value 0 if {$::accurate} {set elements 1000} else {set elements 100} } else { puts "Unknown sorted set encoding" exit } test "ZSCORE - $encoding" { r del zscoretest set aux {} for {set i 0} {$i < $elements} {incr i} { set score [expr rand()] lappend aux $score r zadd zscoretest $score $i } assert_encoding $encoding zscoretest for {set i 0} {$i < $elements} {incr i} { # If an IEEE 754 double-precision number is converted to a decimal string with at # least 17 significant digits (reply of zscore), and then converted back to double-precision representation, # the final result replied via zscore command must match the original number present on the $aux list. # Given Tcl is mostly very relaxed about types (everything is a string) we need to use expr to convert a string to float. assert_equal [expr [lindex $aux $i]] [expr [r zscore zscoretest $i]] } } test "ZMSCORE - $encoding" { r del zscoretest set aux {} for {set i 0} {$i < $elements} {incr i} { set score [expr rand()] lappend aux $score r zadd zscoretest $score $i } assert_encoding $encoding zscoretest for {set i 0} {$i < $elements} {incr i} { # Check above notes on IEEE 754 double-precision comparison assert_equal [expr [lindex $aux $i]] [expr [r zscore zscoretest $i]] } } test "ZSCORE after a DEBUG RELOAD - $encoding" { r del zscoretest set aux {} for {set i 0} {$i < $elements} {incr i} { set score [expr rand()] lappend aux $score r zadd zscoretest $score $i } r debug reload assert_encoding $encoding zscoretest for {set i 0} {$i < $elements} {incr i} { # Check above notes on IEEE 754 double-precision comparison assert_equal [expr [lindex $aux $i]] [expr [r zscore zscoretest $i]] } } {} {needs:debug} test "ZSET sorting stresser - $encoding" { set delta 0 for {set test 0} {$test < 2} {incr test} { unset -nocomplain auxarray array set auxarray {} set auxlist {} r del myzset for {set i 0} {$i < $elements} {incr i} { if {$test == 0} { set score [expr rand()] } else { set score [expr int(rand()*10)] } set auxarray($i) $score r zadd myzset $score $i # Random update if {[expr rand()] < .2} { set j [expr int(rand()*1000)] if {$test == 0} { set score [expr rand()] } else { set score [expr int(rand()*10)] } set auxarray($j) $score r zadd myzset $score $j } } foreach {item score} [array get auxarray] { lappend auxlist [list $score $item] } set sorted [lsort -command zlistAlikeSort $auxlist] set auxlist {} foreach x $sorted { lappend auxlist [lindex $x 1] } assert_encoding $encoding myzset set fromredis [r zrange myzset 0 -1] set delta 0 for {set i 0} {$i < [llength $fromredis]} {incr i} { if {[lindex $fromredis $i] != [lindex $auxlist $i]} { incr delta } } } assert_equal 0 $delta } test "ZRANGEBYSCORE fuzzy test, 100 ranges in $elements element sorted set - $encoding" { set err {} r del zset for {set i 0} {$i < $elements} {incr i} { r zadd zset [expr rand()] $i } assert_encoding $encoding zset for {set i 0} {$i < 100} {incr i} { set min [expr rand()] set max [expr rand()] if {$min > $max} { set aux $min set min $max set max $aux } set low [r zrangebyscore zset -inf $min] set ok [r zrangebyscore zset $min $max] set high [r zrangebyscore zset $max +inf] set lowx [r zrangebyscore zset -inf ($min] set okx [r zrangebyscore zset ($min ($max] set highx [r zrangebyscore zset ($max +inf] if {[r zcount zset -inf $min] != [llength $low]} { append err "Error, len does not match zcount\n" } if {[r zcount zset $min $max] != [llength $ok]} { append err "Error, len does not match zcount\n" } if {[r zcount zset $max +inf] != [llength $high]} { append err "Error, len does not match zcount\n" } if {[r zcount zset -inf ($min] != [llength $lowx]} { append err "Error, len does not match zcount\n" } if {[r zcount zset ($min ($max] != [llength $okx]} { append err "Error, len does not match zcount\n" } if {[r zcount zset ($max +inf] != [llength $highx]} { append err "Error, len does not match zcount\n" } foreach x $low { set score [r zscore zset $x] if {$score > $min} { append err "Error, score for $x is $score > $min\n" } } foreach x $lowx { set score [r zscore zset $x] if {$score >= $min} { append err "Error, score for $x is $score >= $min\n" } } foreach x $ok { set score [r zscore zset $x] if {$score < $min || $score > $max} { append err "Error, score for $x is $score outside $min-$max range\n" } } foreach x $okx { set score [r zscore zset $x] if {$score <= $min || $score >= $max} { append err "Error, score for $x is $score outside $min-$max open range\n" } } foreach x $high { set score [r zscore zset $x] if {$score < $max} { append err "Error, score for $x is $score < $max\n" } } foreach x $highx { set score [r zscore zset $x] if {$score <= $max} { append err "Error, score for $x is $score <= $max\n" } } } assert_equal {} $err } test "ZRANGEBYLEX fuzzy test, 100 ranges in $elements element sorted set - $encoding" { set lexset {} r del zset for {set j 0} {$j < $elements} {incr j} { set e [randstring 0 30 alpha] lappend lexset $e r zadd zset 0 $e } set lexset [lsort -unique $lexset] for {set j 0} {$j < 100} {incr j} { set min [randstring 0 30 alpha] set max [randstring 0 30 alpha] set mininc [randomInt 2] set maxinc [randomInt 2] if {$mininc} {set cmin "\[$min"} else {set cmin "($min"} if {$maxinc} {set cmax "\[$max"} else {set cmax "($max"} set rev [randomInt 2] if {$rev} { set cmd zrevrangebylex } else { set cmd zrangebylex } # Make sure data is the same in both sides assert {[r zrange zset 0 -1] eq $lexset} # Get the Redis output set output [r $cmd zset $cmin $cmax] if {$rev} { set outlen [r zlexcount zset $cmax $cmin] } else { set outlen [r zlexcount zset $cmin $cmax] } # Compute the same output via Tcl set o {} set copy $lexset if {(!$rev && [string compare $min $max] > 0) || ($rev && [string compare $max $min] > 0)} { # Empty output when ranges are inverted. } else { if {$rev} { # Invert the Tcl array using Redis itself. set copy [r zrevrange zset 0 -1] # Invert min / max as well lassign [list $min $max $mininc $maxinc] \ max min maxinc mininc } foreach e $copy { set mincmp [string compare $e $min] set maxcmp [string compare $e $max] if { ($mininc && $mincmp >= 0 || !$mininc && $mincmp > 0) && ($maxinc && $maxcmp <= 0 || !$maxinc && $maxcmp < 0) } { lappend o $e } } } assert {$o eq $output} assert {$outlen eq [llength $output]} } } test "ZREMRANGEBYLEX fuzzy test, 100 ranges in $elements element sorted set - $encoding" { set lexset {} r del zset{t} zsetcopy{t} for {set j 0} {$j < $elements} {incr j} { set e [randstring 0 30 alpha] lappend lexset $e r zadd zset{t} 0 $e } set lexset [lsort -unique $lexset] for {set j 0} {$j < 100} {incr j} { # Copy... r zunionstore zsetcopy{t} 1 zset{t} set lexsetcopy $lexset set min [randstring 0 30 alpha] set max [randstring 0 30 alpha] set mininc [randomInt 2] set maxinc [randomInt 2] if {$mininc} {set cmin "\[$min"} else {set cmin "($min"} if {$maxinc} {set cmax "\[$max"} else {set cmax "($max"} # Make sure data is the same in both sides assert {[r zrange zset{t} 0 -1] eq $lexset} # Get the range we are going to remove set torem [r zrangebylex zset{t} $cmin $cmax] set toremlen [r zlexcount zset{t} $cmin $cmax] r zremrangebylex zsetcopy{t} $cmin $cmax set output [r zrange zsetcopy{t} 0 -1] # Remove the range with Tcl from the original list if {$toremlen} { set first [lsearch -exact $lexsetcopy [lindex $torem 0]] set last [expr {$first+$toremlen-1}] set lexsetcopy [lreplace $lexsetcopy $first $last] } assert {$lexsetcopy eq $output} } } test "ZSETs skiplist implementation backlink consistency test - $encoding" { set diff 0 for {set j 0} {$j < $elements} {incr j} { r zadd myzset [expr rand()] "Element-$j" r zrem myzset "Element-[expr int(rand()*$elements)]" } assert_encoding $encoding myzset set l1 [r zrange myzset 0 -1] set l2 [r zrevrange myzset 0 -1] for {set j 0} {$j < [llength $l1]} {incr j} { if {[lindex $l1 $j] ne [lindex $l2 end-$j]} { incr diff } } assert_equal 0 $diff } test "ZSETs ZRANK augmented skip list stress testing - $encoding" { set err {} r del myzset for {set k 0} {$k < 2000} {incr k} { set i [expr {$k % $elements}] if {[expr rand()] < .2} { r zrem myzset $i } else { set score [expr rand()] r zadd myzset $score $i assert_encoding $encoding myzset } set card [r zcard myzset] if {$card > 0} { set index [randomInt $card] set ele [lindex [r zrange myzset $index $index] 0] set rank [r zrank myzset $ele] if {$rank != $index} { set err "$ele RANK is wrong! ($rank != $index)" break } } } assert_equal {} $err } foreach {pop} {BZPOPMIN BZMPOP_MIN} { test "$pop, ZADD + DEL should not awake blocked client" { set rd [redis_deferring_client] r del zset bzpop_command $rd $pop zset 0 wait_for_blocked_client r multi r zadd zset 0 foo r del zset r exec r del zset r zadd zset 1 bar verify_pop_response $pop [$rd read] {zset bar 1} {zset {{bar 1}}} $rd close } test "$pop, ZADD + DEL + SET should not awake blocked client" { set rd [redis_deferring_client] r del zset bzpop_command $rd $pop zset 0 wait_for_blocked_client r multi r zadd zset 0 foo r del zset r set zset foo r exec r del zset r zadd zset 1 bar verify_pop_response $pop [$rd read] {zset bar 1} {zset {{bar 1}}} $rd close } } test "BZPOPMIN with same key multiple times should work" { set rd [redis_deferring_client] r del z1{t} z2{t} # Data arriving after the BZPOPMIN. $rd bzpopmin z1{t} z2{t} z2{t} z1{t} 0 wait_for_blocked_client r zadd z1{t} 0 a assert_equal [$rd read] {z1{t} a 0} $rd bzpopmin z1{t} z2{t} z2{t} z1{t} 0 wait_for_blocked_client r zadd z2{t} 1 b assert_equal [$rd read] {z2{t} b 1} # Data already there. r zadd z1{t} 0 a r zadd z2{t} 1 b $rd bzpopmin z1{t} z2{t} z2{t} z1{t} 0 assert_equal [$rd read] {z1{t} a 0} $rd bzpopmin z1{t} z2{t} z2{t} z1{t} 0 assert_equal [$rd read] {z2{t} b 1} $rd close } foreach {pop} {BZPOPMIN BZMPOP_MIN} { test "MULTI/EXEC is isolated from the point of view of $pop" { set rd [redis_deferring_client] r del zset bzpop_command $rd $pop zset 0 wait_for_blocked_client r multi r zadd zset 0 a r zadd zset 1 b r zadd zset 2 c r exec verify_pop_response $pop [$rd read] {zset a 0} {zset {{a 0}}} $rd close } test "$pop with variadic ZADD" { set rd [redis_deferring_client] r del zset if {$::valgrind} {after 100} bzpop_command $rd $pop zset 0 wait_for_blocked_client if {$::valgrind} {after 100} assert_equal 2 [r zadd zset -1 foo 1 bar] if {$::valgrind} {after 100} verify_pop_response $pop [$rd read] {zset foo -1} {zset {{foo -1}}} assert_equal {bar} [r zrange zset 0 -1] $rd close } test "$pop with zero timeout should block indefinitely" { set rd [redis_deferring_client] r del zset bzpop_command $rd $pop zset 0 wait_for_blocked_client after 1000 r zadd zset 0 foo verify_pop_response $pop [$rd read] {zset foo 0} {zset {{foo 0}}} $rd close } } r config set zset-max-ziplist-entries $original_max_entries r config set zset-max-ziplist-value $original_max_value } tags {"slow"} { stressers listpack stressers skiplist } test "BZPOP/BZMPOP against wrong type" { r set foo{t} bar assert_error "*WRONGTYPE*" {r bzpopmin foo{t} 1} assert_error "*WRONGTYPE*" {r bzpopmax foo{t} 1} assert_error "*WRONGTYPE*" {r bzmpop 1 1 foo{t} min} assert_error "*WRONGTYPE*" {r bzmpop 1 1 foo{t} max} assert_error "*WRONGTYPE*" {r bzmpop 1 1 foo{t} min count 10} r del foo{t} r set foo2{t} bar assert_error "*WRONGTYPE*" {r bzmpop 1 2 foo{t} foo2{t} min} assert_error "*WRONGTYPE*" {r bzmpop 1 2 foo2{t} foo{t} max count 1} } test "BZMPOP with illegal argument" { assert_error "ERR wrong number of arguments for 'bzmpop' command" {r bzmpop} assert_error "ERR wrong number of arguments for 'bzmpop' command" {r bzmpop 0 1} assert_error "ERR wrong number of arguments for 'bzmpop' command" {r bzmpop 0 1 myzset{t}} assert_error "ERR numkeys*" {r bzmpop 1 0 myzset{t} MIN} assert_error "ERR numkeys*" {r bzmpop 1 a myzset{t} MIN} assert_error "ERR numkeys*" {r bzmpop 1 -1 myzset{t} MAX} assert_error "ERR syntax error*" {r bzmpop 1 1 myzset{t} bad_where} assert_error "ERR syntax error*" {r bzmpop 1 1 myzset{t} MIN bar_arg} assert_error "ERR syntax error*" {r bzmpop 1 1 myzset{t} MAX MIN} assert_error "ERR syntax error*" {r bzmpop 1 1 myzset{t} COUNT} assert_error "ERR syntax error*" {r bzmpop 1 1 myzset{t} MIN COUNT 1 COUNT 2} assert_error "ERR syntax error*" {r bzmpop 1 2 myzset{t} myzset2{t} bad_arg} assert_error "ERR count*" {r bzmpop 1 1 myzset{t} MIN COUNT 0} assert_error "ERR count*" {r bzmpop 1 1 myzset{t} MAX COUNT a} assert_error "ERR count*" {r bzmpop 1 1 myzset{t} MIN COUNT -1} assert_error "ERR count*" {r bzmpop 1 2 myzset{t} myzset2{t} MAX COUNT -1} } test "BZMPOP with multiple blocked clients" { set rd1 [redis_deferring_client] set rd2 [redis_deferring_client] set rd3 [redis_deferring_client] set rd4 [redis_deferring_client] r del myzset{t} myzset2{t} $rd1 bzmpop 0 2 myzset{t} myzset2{t} min count 1 wait_for_blocked_clients_count 1 $rd2 bzmpop 0 2 myzset{t} myzset2{t} max count 10 wait_for_blocked_clients_count 2 $rd3 bzmpop 0 2 myzset{t} myzset2{t} min count 10 wait_for_blocked_clients_count 3 $rd4 bzmpop 0 2 myzset{t} myzset2{t} max count 1 wait_for_blocked_clients_count 4 r multi r zadd myzset{t} 1 a 2 b 3 c 4 d 5 e r zadd myzset2{t} 1 a 2 b 3 c 4 d 5 e r exec assert_equal {myzset{t} {{a 1}}} [$rd1 read] assert_equal {myzset{t} {{e 5} {d 4} {c 3} {b 2}}} [$rd2 read] assert_equal {myzset2{t} {{a 1} {b 2} {c 3} {d 4} {e 5}}} [$rd3 read] r zadd myzset2{t} 1 a 2 b 3 c assert_equal {myzset2{t} {{c 3}}} [$rd4 read] r del myzset{t} myzset2{t} $rd1 close $rd2 close $rd3 close $rd4 close } test "BZMPOP propagate as pop with count command to replica" { set rd [redis_deferring_client] set repl [attach_to_replication_stream] # BZMPOP without being blocked. r zadd myzset{t} 1 one 2 two 3 three r zadd myzset2{t} 4 four 5 five 6 six r bzmpop 0 1 myzset{t} min r bzmpop 0 2 myzset{t} myzset2{t} max count 10 r bzmpop 0 2 myzset{t} myzset2{t} max count 10 # BZMPOP that gets blocked. $rd bzmpop 0 1 myzset{t} min count 1 wait_for_blocked_client r zadd myzset{t} 1 one $rd bzmpop 0 2 myzset{t} myzset2{t} min count 5 wait_for_blocked_client r zadd myzset{t} 1 one 2 two 3 three $rd bzmpop 0 2 myzset{t} myzset2{t} max count 10 wait_for_blocked_client r zadd myzset2{t} 4 four 5 five 6 six # Released on timeout. assert_equal {} [r bzmpop 0.01 1 myzset{t} max count 10] r set foo{t} bar ;# something else to propagate after, so we can make sure the above pop didn't. $rd close assert_replication_stream $repl { {select *} {zadd myzset{t} 1 one 2 two 3 three} {zadd myzset2{t} 4 four 5 five 6 six} {zpopmin myzset{t} 1} {zpopmax myzset{t} 2} {zpopmax myzset2{t} 3} {zadd myzset{t} 1 one} {zpopmin myzset{t} 1} {zadd myzset{t} 1 one 2 two 3 three} {zpopmin myzset{t} 3} {zadd myzset2{t} 4 four 5 five 6 six} {zpopmax myzset2{t} 3} {set foo{t} bar} } close_replication_stream $repl } {} {needs:repl} test "BZMPOP should not blocks on non key arguments - #10762" { set rd1 [redis_deferring_client] set rd2 [redis_deferring_client] r del myzset myzset2 myzset3 $rd1 bzmpop 0 1 myzset min count 10 wait_for_blocked_clients_count 1 $rd2 bzmpop 0 2 myzset2 myzset3 max count 10 wait_for_blocked_clients_count 2 # These non-key keys will not unblock the clients. r zadd 0 100 timeout_value r zadd 1 200 numkeys_value r zadd min 300 min_token r zadd max 400 max_token r zadd count 500 count_token r zadd 10 600 count_value r zadd myzset 1 zset r zadd myzset3 1 zset3 assert_equal {myzset {{zset 1}}} [$rd1 read] assert_equal {myzset3 {{zset3 1}}} [$rd2 read] $rd1 close $rd2 close } {0} {cluster:skip} test {ZSET skiplist order consistency when elements are moved} { set original_max [lindex [r config get zset-max-ziplist-entries] 1] r config set zset-max-ziplist-entries 0 for {set times 0} {$times < 10} {incr times} { r del zset for {set j 0} {$j < 1000} {incr j} { r zadd zset [randomInt 50] ele-[randomInt 10] } # Make sure that element ordering is correct set prev_element {} set prev_score -1 foreach {element score} [r zrange zset 0 -1 WITHSCORES] { # Assert that elements are in increasing ordering assert { $prev_score < $score || ($prev_score == $score && [string compare $prev_element $element] == -1) } set prev_element $element set prev_score $score } } r config set zset-max-ziplist-entries $original_max } test {ZRANGESTORE basic} { r flushall r zadd z1{t} 1 a 2 b 3 c 4 d set res [r zrangestore z2{t} z1{t} 0 -1] assert_equal $res 4 r zrange z2{t} 0 -1 withscores } {a 1 b 2 c 3 d 4} test {ZRANGESTORE RESP3} { r hello 3 assert_equal [r zrange z2{t} 0 -1 withscores] {{a 1.0} {b 2.0} {c 3.0} {d 4.0}} r hello 2 } test {ZRANGESTORE range} { set res [r zrangestore z2{t} z1{t} 1 2] assert_equal $res 2 r zrange z2{t} 0 -1 withscores } {b 2 c 3} test {ZRANGESTORE BYLEX} { set res [r zrangestore z2{t} z1{t} \[b \[c BYLEX] assert_equal $res 2 r zrange z2{t} 0 -1 withscores } {b 2 c 3} test {ZRANGESTORE BYSCORE} { set res [r zrangestore z2{t} z1{t} 1 2 BYSCORE] assert_equal $res 2 r zrange z2{t} 0 -1 withscores } {a 1 b 2} test {ZRANGESTORE BYSCORE LIMIT} { set res [r zrangestore z2{t} z1{t} 0 5 BYSCORE LIMIT 0 2] assert_equal $res 2 r zrange z2{t} 0 -1 withscores } {a 1 b 2} test {ZRANGESTORE BYSCORE REV LIMIT} { set res [r zrangestore z2{t} z1{t} 5 0 BYSCORE REV LIMIT 0 2] assert_equal $res 2 r zrange z2{t} 0 -1 withscores } {c 3 d 4} test {ZRANGE BYSCORE REV LIMIT} { r zrange z1{t} 5 0 BYSCORE REV LIMIT 0 2 WITHSCORES } {d 4 c 3} test {ZRANGESTORE - src key missing} { set res [r zrangestore z2{t} missing{t} 0 -1] assert_equal $res 0 r exists z2{t} } {0} test {ZRANGESTORE - src key wrong type} { r zadd z2{t} 1 a r set foo{t} bar assert_error "*WRONGTYPE*" {r zrangestore z2{t} foo{t} 0 -1} r zrange z2{t} 0 -1 } {a} test {ZRANGESTORE - empty range} { set res [r zrangestore z2{t} z1{t} 5 6] assert_equal $res 0 r exists z2{t} } {0} test {ZRANGESTORE BYLEX - empty range} { set res [r zrangestore z2{t} z1{t} \[f \[g BYLEX] assert_equal $res 0 r exists z2{t} } {0} test {ZRANGESTORE BYSCORE - empty range} { set res [r zrangestore z2{t} z1{t} 5 6 BYSCORE] assert_equal $res 0 r exists z2{t} } {0} test {ZRANGE BYLEX} { r zrange z1{t} \[b \[c BYLEX } {b c} test {ZRANGESTORE invalid syntax} { catch {r zrangestore z2{t} z1{t} 0 -1 limit 1 2} err assert_match "*syntax*" $err catch {r zrangestore z2{t} z1{t} 0 -1 WITHSCORES} err assert_match "*syntax*" $err } test {ZRANGESTORE with zset-max-listpack-entries 0 #10767 case} { set original_max [lindex [r config get zset-max-listpack-entries] 1] r config set zset-max-listpack-entries 0 r del z1{t} z2{t} r zadd z1{t} 1 a assert_encoding skiplist z1{t} assert_equal 1 [r zrangestore z2{t} z1{t} 0 -1] assert_encoding skiplist z2{t} r config set zset-max-listpack-entries $original_max } test {ZRANGESTORE with zset-max-listpack-entries 1 dst key should use skiplist encoding} { set original_max [lindex [r config get zset-max-listpack-entries] 1] r config set zset-max-listpack-entries 1 r del z1{t} z2{t} z3{t} r zadd z1{t} 1 a 2 b assert_equal 1 [r zrangestore z2{t} z1{t} 0 0] assert_encoding listpack z2{t} assert_equal 2 [r zrangestore z3{t} z1{t} 0 1] assert_encoding skiplist z3{t} r config set zset-max-listpack-entries $original_max } test {ZRANGE invalid syntax} { catch {r zrange z1{t} 0 -1 limit 1 2} err assert_match "*syntax*" $err catch {r zrange z1{t} 0 -1 BYLEX WITHSCORES} err assert_match "*syntax*" $err catch {r zrevrange z1{t} 0 -1 BYSCORE} err assert_match "*syntax*" $err catch {r zrangebyscore z1{t} 0 -1 REV} err assert_match "*syntax*" $err } proc get_keys {l} { set res {} foreach {score key} $l { lappend res $key } return $res } # Check whether the zset members belong to the zset proc check_member {mydict res} { foreach ele $res { assert {[dict exists $mydict $ele]} } } # Check whether the zset members and score belong to the zset proc check_member_and_score {mydict res} { foreach {key val} $res { assert_equal $val [dict get $mydict $key] } } foreach {type contents} "listpack {1 a 2 b 3 c} skiplist {1 a 2 b 3 [randstring 70 90 alpha]}" { set original_max_value [lindex [r config get zset-max-ziplist-value] 1] r config set zset-max-ziplist-value 10 create_zset myzset $contents assert_encoding $type myzset test "ZRANDMEMBER - $type" { unset -nocomplain myzset array set myzset {} for {set i 0} {$i < 100} {incr i} { set key [r zrandmember myzset] set myzset($key) 1 } assert_equal [lsort [get_keys $contents]] [lsort [array names myzset]] } r config set zset-max-ziplist-value $original_max_value } test "ZRANDMEMBER with RESP3" { r hello 3 set res [r zrandmember myzset 3 withscores] assert_equal [llength $res] 3 assert_equal [llength [lindex $res 1]] 2 set res [r zrandmember myzset 3] assert_equal [llength $res] 3 assert_equal [llength [lindex $res 1]] 1 r hello 2 } test "ZRANDMEMBER count of 0 is handled correctly" { r zrandmember myzset 0 } {} test "ZRANDMEMBER with against non existing key" { r zrandmember nonexisting_key 100 } {} test "ZRANDMEMBER count overflow" { r zadd myzset 0 a assert_error {*value is out of range*} {r zrandmember myzset -9223372036854770000 withscores} assert_error {*value is out of range*} {r zrandmember myzset -9223372036854775808 withscores} assert_error {*value is out of range*} {r zrandmember myzset -9223372036854775808} } {} # Make sure we can distinguish between an empty array and a null response r readraw 1 test "ZRANDMEMBER count of 0 is handled correctly - emptyarray" { r zrandmember myzset 0 } {*0} test "ZRANDMEMBER with against non existing key - emptyarray" { r zrandmember nonexisting_key 100 } {*0} r readraw 0 foreach {type contents} " skiplist {1 a 2 b 3 c 4 d 5 e 6 f 7 g 7 h 9 i 10 [randstring 70 90 alpha]} listpack {1 a 2 b 3 c 4 d 5 e 6 f 7 g 7 h 9 i 10 j} " { test "ZRANDMEMBER with - $type" { set original_max_value [lindex [r config get zset-max-ziplist-value] 1] r config set zset-max-ziplist-value 10 create_zset myzset $contents assert_encoding $type myzset # create a dict for easy lookup set mydict [dict create {*}[r zrange myzset 0 -1 withscores]] # We'll stress different parts of the code, see the implementation # of ZRANDMEMBER for more information, but basically there are # four different code paths. # PATH 1: Use negative count. # 1) Check that it returns repeated elements with and without values. # 2) Check that all the elements actually belong to the original zset. set res [r zrandmember myzset -20] assert_equal [llength $res] 20 check_member $mydict $res set res [r zrandmember myzset -1001] assert_equal [llength $res] 1001 check_member $mydict $res # again with WITHSCORES set res [r zrandmember myzset -20 withscores] assert_equal [llength $res] 40 check_member_and_score $mydict $res set res [r zrandmember myzset -1001 withscores] assert_equal [llength $res] 2002 check_member_and_score $mydict $res # Test random uniform distribution # df = 9, 40 means 0.00001 probability set res [r zrandmember myzset -1000] assert_lessthan [chi_square_value $res] 40 check_member $mydict $res # 3) Check that eventually all the elements are returned. # Use both WITHSCORES and without unset -nocomplain auxset set iterations 1000 while {$iterations != 0} { incr iterations -1 if {[expr {$iterations % 2}] == 0} { set res [r zrandmember myzset -3 withscores] foreach {key val} $res { dict append auxset $key $val } } else { set res [r zrandmember myzset -3] foreach key $res { dict append auxset $key } } if {[lsort [dict keys $mydict]] eq [lsort [dict keys $auxset]]} { break; } } assert {$iterations != 0} # PATH 2: positive count (unique behavior) with requested size # equal or greater than set size. foreach size {10 20} { set res [r zrandmember myzset $size] assert_equal [llength $res] 10 assert_equal [lsort $res] [lsort [dict keys $mydict]] check_member $mydict $res # again with WITHSCORES set res [r zrandmember myzset $size withscores] assert_equal [llength $res] 20 assert_equal [lsort $res] [lsort $mydict] check_member_and_score $mydict $res } # PATH 3: Ask almost as elements as there are in the set. # In this case the implementation will duplicate the original # set and will remove random elements up to the requested size. # # PATH 4: Ask a number of elements definitely smaller than # the set size. # # We can test both the code paths just changing the size but # using the same code. foreach size {1 2 8} { # 1) Check that all the elements actually belong to the # original set. set res [r zrandmember myzset $size] assert_equal [llength $res] $size check_member $mydict $res # again with WITHSCORES set res [r zrandmember myzset $size withscores] assert_equal [llength $res] [expr {$size * 2}] check_member_and_score $mydict $res # 2) Check that eventually all the elements are returned. # Use both WITHSCORES and without unset -nocomplain auxset unset -nocomplain allkey set iterations [expr {1000 / $size}] set all_ele_return false while {$iterations != 0} { incr iterations -1 if {[expr {$iterations % 2}] == 0} { set res [r zrandmember myzset $size withscores] foreach {key value} $res { dict append auxset $key $value lappend allkey $key } } else { set res [r zrandmember myzset $size] foreach key $res { dict append auxset $key lappend allkey $key } } if {[lsort [dict keys $mydict]] eq [lsort [dict keys $auxset]]} { set all_ele_return true } } assert_equal $all_ele_return true # df = 9, 40 means 0.00001 probability assert_lessthan [chi_square_value $allkey] 40 } } r config set zset-max-ziplist-value $original_max_value } test {zset score double range} { set dblmax 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368.00000000000000000 r del zz r zadd zz $dblmax dblmax assert_encoding listpack zz r zscore zz dblmax } {1.7976931348623157e+308} test {zunionInterDiffGenericCommand acts on SET and ZSET} { r del set_small{t} set_big{t} zset_small{t} zset_big{t} zset_dest{t} foreach set_type {intset listpack hashtable} { # Restore all default configurations before each round of testing. r config set set-max-intset-entries 512 r config set set-max-listpack-entries 128 r config set zset-max-listpack-entries 128 r del set_small{t} set_big{t} if {$set_type == "intset"} { r sadd set_small{t} 1 2 3 r sadd set_big{t} 1 2 3 4 5 assert_encoding intset set_small{t} assert_encoding intset set_big{t} } elseif {$set_type == "listpack"} { # Add an "a" and then remove it, make sure the set is listpack encoding. r sadd set_small{t} a 1 2 3 r sadd set_big{t} a 1 2 3 4 5 r srem set_small{t} a r srem set_big{t} a assert_encoding listpack set_small{t} assert_encoding listpack set_big{t} } elseif {$set_type == "hashtable"} { r config set set-max-intset-entries 0 r config set set-max-listpack-entries 0 r sadd set_small{t} 1 2 3 r sadd set_big{t} 1 2 3 4 5 assert_encoding hashtable set_small{t} assert_encoding hashtable set_big{t} } foreach zset_type {listpack skiplist} { r del zset_small{t} zset_big{t} if {$zset_type == "listpack"} { r zadd zset_small{t} 1 1 2 2 3 3 r zadd zset_big{t} 1 1 2 2 3 3 4 4 5 5 assert_encoding listpack zset_small{t} assert_encoding listpack zset_big{t} } elseif {$zset_type == "skiplist"} { r config set zset-max-listpack-entries 0 r zadd zset_small{t} 1 1 2 2 3 3 r zadd zset_big{t} 1 1 2 2 3 3 4 4 5 5 assert_encoding skiplist zset_small{t} assert_encoding skiplist zset_big{t} } # Test one key is big and one key is small separately. # The reason for this is because we will sort the sets from smallest to largest. # So set one big key and one small key, then the test can cover more code paths. foreach {small_or_big set_key zset_key} { small set_small{t} zset_big{t} big set_big{t} zset_small{t} } { # The result of these commands are not related to the order of the keys. assert_equal {1 2 3 4 5} [lsort [r zunion 2 $set_key $zset_key]] assert_equal {5} [r zunionstore zset_dest{t} 2 $set_key $zset_key] assert_equal {1 2 3} [lsort [r zinter 2 $set_key $zset_key]] assert_equal {3} [r zinterstore zset_dest{t} 2 $set_key $zset_key] assert_equal {3} [r zintercard 2 $set_key $zset_key] # The result of sdiff is related to the order of the keys. if {$small_or_big == "small"} { assert_equal {} [r zdiff 2 $set_key $zset_key] assert_equal {0} [r zdiffstore zset_dest{t} 2 $set_key $zset_key] } else { assert_equal {4 5} [lsort [r zdiff 2 $set_key $zset_key]] assert_equal {2} [r zdiffstore zset_dest{t} 2 $set_key $zset_key] } } } } r config set set-max-intset-entries 512 r config set set-max-listpack-entries 128 r config set zset-max-listpack-entries 128 } foreach type {single multiple single_multiple} { test "ZADD overflows the maximum allowed elements in a listpack - $type" { r del myzset set max_entries 64 set original_max [lindex [r config get zset-max-listpack-entries] 1] r config set zset-max-listpack-entries $max_entries if {$type == "single"} { # All are single zadd commands. for {set i 0} {$i < $max_entries} {incr i} { r zadd myzset $i $i } } elseif {$type == "multiple"} { # One zadd command to add all elements. set args {} for {set i 0} {$i < $max_entries * 2} {incr i} { lappend args $i } r zadd myzset {*}$args } elseif {$type == "single_multiple"} { # First one zadd adds an element (creates a key) and then one zadd adds all elements. r zadd myzset 1 1 set args {} for {set i 0} {$i < $max_entries * 2} {incr i} { lappend args $i } r zadd myzset {*}$args } assert_encoding listpack myzset assert_equal $max_entries [r zcard myzset] assert_equal 1 [r zadd myzset 1 b] assert_encoding skiplist myzset r config set zset-max-listpack-entries $original_max } } }