summaryrefslogtreecommitdiffstats
path: root/deps/jemalloc/src/eset.c
blob: 6f8f335e198b255dbdaf37852c0ef4baddc18a1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"

#include "jemalloc/internal/eset.h"

#define ESET_NPSIZES (SC_NPSIZES + 1)

static void
eset_bin_init(eset_bin_t *bin) {
	edata_heap_new(&bin->heap);
	/*
	 * heap_min doesn't need initialization; it gets filled in when the bin
	 * goes from non-empty to empty.
	 */
}

static void
eset_bin_stats_init(eset_bin_stats_t *bin_stats) {
	atomic_store_zu(&bin_stats->nextents, 0, ATOMIC_RELAXED);
	atomic_store_zu(&bin_stats->nbytes, 0, ATOMIC_RELAXED);
}

void
eset_init(eset_t *eset, extent_state_t state) {
	for (unsigned i = 0; i < ESET_NPSIZES; i++) {
		eset_bin_init(&eset->bins[i]);
		eset_bin_stats_init(&eset->bin_stats[i]);
	}
	fb_init(eset->bitmap, ESET_NPSIZES);
	edata_list_inactive_init(&eset->lru);
	eset->state = state;
}

size_t
eset_npages_get(eset_t *eset) {
	return atomic_load_zu(&eset->npages, ATOMIC_RELAXED);
}

size_t
eset_nextents_get(eset_t *eset, pszind_t pind) {
	return atomic_load_zu(&eset->bin_stats[pind].nextents, ATOMIC_RELAXED);
}

size_t
eset_nbytes_get(eset_t *eset, pszind_t pind) {
	return atomic_load_zu(&eset->bin_stats[pind].nbytes, ATOMIC_RELAXED);
}

static void
eset_stats_add(eset_t *eset, pszind_t pind, size_t sz) {
	size_t cur = atomic_load_zu(&eset->bin_stats[pind].nextents,
	    ATOMIC_RELAXED);
	atomic_store_zu(&eset->bin_stats[pind].nextents, cur + 1,
	    ATOMIC_RELAXED);
	cur = atomic_load_zu(&eset->bin_stats[pind].nbytes, ATOMIC_RELAXED);
	atomic_store_zu(&eset->bin_stats[pind].nbytes, cur + sz,
	    ATOMIC_RELAXED);
}

static void
eset_stats_sub(eset_t *eset, pszind_t pind, size_t sz) {
	size_t cur = atomic_load_zu(&eset->bin_stats[pind].nextents,
	    ATOMIC_RELAXED);
	atomic_store_zu(&eset->bin_stats[pind].nextents, cur - 1,
	    ATOMIC_RELAXED);
	cur = atomic_load_zu(&eset->bin_stats[pind].nbytes, ATOMIC_RELAXED);
	atomic_store_zu(&eset->bin_stats[pind].nbytes, cur - sz,
	    ATOMIC_RELAXED);
}

void
eset_insert(eset_t *eset, edata_t *edata) {
	assert(edata_state_get(edata) == eset->state);

	size_t size = edata_size_get(edata);
	size_t psz = sz_psz_quantize_floor(size);
	pszind_t pind = sz_psz2ind(psz);

	edata_cmp_summary_t edata_cmp_summary = edata_cmp_summary_get(edata);
	if (edata_heap_empty(&eset->bins[pind].heap)) {
		fb_set(eset->bitmap, ESET_NPSIZES, (size_t)pind);
		/* Only element is automatically the min element. */
		eset->bins[pind].heap_min = edata_cmp_summary;
	} else {
		/*
		 * There's already a min element; update the summary if we're
		 * about to insert a lower one.
		 */
		if (edata_cmp_summary_comp(edata_cmp_summary,
		    eset->bins[pind].heap_min) < 0) {
			eset->bins[pind].heap_min = edata_cmp_summary;
		}
	}
	edata_heap_insert(&eset->bins[pind].heap, edata);

	if (config_stats) {
		eset_stats_add(eset, pind, size);
	}

	edata_list_inactive_append(&eset->lru, edata);
	size_t npages = size >> LG_PAGE;
	/*
	 * All modifications to npages hold the mutex (as asserted above), so we
	 * don't need an atomic fetch-add; we can get by with a load followed by
	 * a store.
	 */
	size_t cur_eset_npages =
	    atomic_load_zu(&eset->npages, ATOMIC_RELAXED);
	atomic_store_zu(&eset->npages, cur_eset_npages + npages,
	    ATOMIC_RELAXED);
}

void
eset_remove(eset_t *eset, edata_t *edata) {
	assert(edata_state_get(edata) == eset->state ||
	    edata_state_in_transition(edata_state_get(edata)));

	size_t size = edata_size_get(edata);
	size_t psz = sz_psz_quantize_floor(size);
	pszind_t pind = sz_psz2ind(psz);
	if (config_stats) {
		eset_stats_sub(eset, pind, size);
	}

	edata_cmp_summary_t edata_cmp_summary = edata_cmp_summary_get(edata);
	edata_heap_remove(&eset->bins[pind].heap, edata);
	if (edata_heap_empty(&eset->bins[pind].heap)) {
		fb_unset(eset->bitmap, ESET_NPSIZES, (size_t)pind);
	} else {
		/*
		 * This is a little weird; we compare if the summaries are
		 * equal, rather than if the edata we removed was the heap
		 * minimum.  The reason why is that getting the heap minimum
		 * can cause a pairing heap merge operation.  We can avoid this
		 * if we only update the min if it's changed, in which case the
		 * summaries of the removed element and the min element should
		 * compare equal.
		 */
		if (edata_cmp_summary_comp(edata_cmp_summary,
		    eset->bins[pind].heap_min) == 0) {
			eset->bins[pind].heap_min = edata_cmp_summary_get(
			    edata_heap_first(&eset->bins[pind].heap));
		}
	}
	edata_list_inactive_remove(&eset->lru, edata);
	size_t npages = size >> LG_PAGE;
	/*
	 * As in eset_insert, we hold eset->mtx and so don't need atomic
	 * operations for updating eset->npages.
	 */
	size_t cur_extents_npages =
	    atomic_load_zu(&eset->npages, ATOMIC_RELAXED);
	assert(cur_extents_npages >= npages);
	atomic_store_zu(&eset->npages,
	    cur_extents_npages - (size >> LG_PAGE), ATOMIC_RELAXED);
}

/*
 * Find an extent with size [min_size, max_size) to satisfy the alignment
 * requirement.  For each size, try only the first extent in the heap.
 */
static edata_t *
eset_fit_alignment(eset_t *eset, size_t min_size, size_t max_size,
    size_t alignment) {
        pszind_t pind = sz_psz2ind(sz_psz_quantize_ceil(min_size));
        pszind_t pind_max = sz_psz2ind(sz_psz_quantize_ceil(max_size));

	for (pszind_t i =
	    (pszind_t)fb_ffs(eset->bitmap, ESET_NPSIZES, (size_t)pind);
	    i < pind_max;
	    i = (pszind_t)fb_ffs(eset->bitmap, ESET_NPSIZES, (size_t)i + 1)) {
		assert(i < SC_NPSIZES);
		assert(!edata_heap_empty(&eset->bins[i].heap));
		edata_t *edata = edata_heap_first(&eset->bins[i].heap);
		uintptr_t base = (uintptr_t)edata_base_get(edata);
		size_t candidate_size = edata_size_get(edata);
		assert(candidate_size >= min_size);

		uintptr_t next_align = ALIGNMENT_CEILING((uintptr_t)base,
		    PAGE_CEILING(alignment));
		if (base > next_align || base + candidate_size <= next_align) {
			/* Overflow or not crossing the next alignment. */
			continue;
		}

		size_t leadsize = next_align - base;
		if (candidate_size - leadsize >= min_size) {
			return edata;
		}
	}

	return NULL;
}

/*
 * Do first-fit extent selection, i.e. select the oldest/lowest extent that is
 * large enough.
 *
 * lg_max_fit is the (log of the) maximum ratio between the requested size and
 * the returned size that we'll allow.  This can reduce fragmentation by
 * avoiding reusing and splitting large extents for smaller sizes.  In practice,
 * it's set to opt_lg_extent_max_active_fit for the dirty eset and SC_PTR_BITS
 * for others.
 */
static edata_t *
eset_first_fit(eset_t *eset, size_t size, bool exact_only,
    unsigned lg_max_fit) {
	edata_t *ret = NULL;
	edata_cmp_summary_t ret_summ JEMALLOC_CC_SILENCE_INIT({0});

	pszind_t pind = sz_psz2ind(sz_psz_quantize_ceil(size));

	if (exact_only) {
		return edata_heap_empty(&eset->bins[pind].heap) ? NULL :
		    edata_heap_first(&eset->bins[pind].heap);
	}

	for (pszind_t i =
	    (pszind_t)fb_ffs(eset->bitmap, ESET_NPSIZES, (size_t)pind);
	    i < ESET_NPSIZES;
	    i = (pszind_t)fb_ffs(eset->bitmap, ESET_NPSIZES, (size_t)i + 1)) {
		assert(!edata_heap_empty(&eset->bins[i].heap));
		if (lg_max_fit == SC_PTR_BITS) {
			/*
			 * We'll shift by this below, and shifting out all the
			 * bits is undefined.  Decreasing is safe, since the
			 * page size is larger than 1 byte.
			 */
			lg_max_fit = SC_PTR_BITS - 1;
		}
		if ((sz_pind2sz(i) >> lg_max_fit) > size) {
			break;
		}
		if (ret == NULL || edata_cmp_summary_comp(
		    eset->bins[i].heap_min, ret_summ) < 0) {
			/*
			 * We grab the edata as early as possible, even though
			 * we might change it later.  Practically, a large
			 * portion of eset_fit calls succeed at the first valid
			 * index, so this doesn't cost much, and we get the
			 * effect of prefetching the edata as early as possible.
			 */
			edata_t *edata = edata_heap_first(&eset->bins[i].heap);
			assert(edata_size_get(edata) >= size);
			assert(ret == NULL || edata_snad_comp(edata, ret) < 0);
			assert(ret == NULL || edata_cmp_summary_comp(
			    eset->bins[i].heap_min,
			    edata_cmp_summary_get(edata)) == 0);
			ret = edata;
			ret_summ = eset->bins[i].heap_min;
		}
		if (i == SC_NPSIZES) {
			break;
		}
		assert(i < SC_NPSIZES);
	}

	return ret;
}

edata_t *
eset_fit(eset_t *eset, size_t esize, size_t alignment, bool exact_only,
    unsigned lg_max_fit) {
	size_t max_size = esize + PAGE_CEILING(alignment) - PAGE;
	/* Beware size_t wrap-around. */
	if (max_size < esize) {
		return NULL;
	}

	edata_t *edata = eset_first_fit(eset, max_size, exact_only, lg_max_fit);

	if (alignment > PAGE && edata == NULL) {
		/*
		 * max_size guarantees the alignment requirement but is rather
		 * pessimistic.  Next we try to satisfy the aligned allocation
		 * with sizes in [esize, max_size).
		 */
		edata = eset_fit_alignment(eset, esize, max_size, alignment);
	}

	return edata;
}