summaryrefslogtreecommitdiffstats
path: root/deps/jemalloc/src/sc.c
blob: e4a94d89f24546b8c77bd26ba3dd69a7fba8e414 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#include "jemalloc/internal/jemalloc_preamble.h"

#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/bit_util.h"
#include "jemalloc/internal/bitmap.h"
#include "jemalloc/internal/pages.h"
#include "jemalloc/internal/sc.h"

/*
 * This module computes the size classes used to satisfy allocations.  The logic
 * here was ported more or less line-by-line from a shell script, and because of
 * that is not the most idiomatic C.  Eventually we should fix this, but for now
 * at least the damage is compartmentalized to this file.
 */

size_t
reg_size_compute(int lg_base, int lg_delta, int ndelta) {
	return (ZU(1) << lg_base) + (ZU(ndelta) << lg_delta);
}

/* Returns the number of pages in the slab. */
static int
slab_size(int lg_page, int lg_base, int lg_delta, int ndelta) {
	size_t page = (ZU(1) << lg_page);
	size_t reg_size = reg_size_compute(lg_base, lg_delta, ndelta);

	size_t try_slab_size = page;
	size_t try_nregs = try_slab_size / reg_size;
	size_t perfect_slab_size = 0;
	bool perfect = false;
	/*
	 * This loop continues until we find the least common multiple of the
	 * page size and size class size.  Size classes are all of the form
	 * base + ndelta * delta == (ndelta + base/ndelta) * delta, which is
	 * (ndelta + ngroup) * delta.  The way we choose slabbing strategies
	 * means that delta is at most the page size and ndelta < ngroup.  So
	 * the loop executes for at most 2 * ngroup - 1 iterations, which is
	 * also the bound on the number of pages in a slab chosen by default.
	 * With the current default settings, this is at most 7.
	 */
	while (!perfect) {
		perfect_slab_size = try_slab_size;
		size_t perfect_nregs = try_nregs;
		try_slab_size += page;
		try_nregs = try_slab_size / reg_size;
		if (perfect_slab_size == perfect_nregs * reg_size) {
			perfect = true;
		}
	}
	return (int)(perfect_slab_size / page);
}

static void
size_class(
    /* Output. */
    sc_t *sc,
    /* Configuration decisions. */
    int lg_max_lookup, int lg_page, int lg_ngroup,
    /* Inputs specific to the size class. */
    int index, int lg_base, int lg_delta, int ndelta) {
	sc->index = index;
	sc->lg_base = lg_base;
	sc->lg_delta = lg_delta;
	sc->ndelta = ndelta;
	size_t size = reg_size_compute(lg_base, lg_delta, ndelta);
	sc->psz = (size % (ZU(1) << lg_page) == 0);
	if (index == 0) {
		assert(!sc->psz);
	}
	if (size < (ZU(1) << (lg_page + lg_ngroup))) {
		sc->bin = true;
		sc->pgs = slab_size(lg_page, lg_base, lg_delta, ndelta);
	} else {
		sc->bin = false;
		sc->pgs = 0;
	}
	if (size <= (ZU(1) << lg_max_lookup)) {
		sc->lg_delta_lookup = lg_delta;
	} else {
		sc->lg_delta_lookup = 0;
	}
}

static void
size_classes(
    /* Output. */
    sc_data_t *sc_data,
    /* Determined by the system. */
    size_t lg_ptr_size, int lg_quantum,
    /* Configuration decisions. */
    int lg_tiny_min, int lg_max_lookup, int lg_page, int lg_ngroup) {
	int ptr_bits = (1 << lg_ptr_size) * 8;
	int ngroup = (1 << lg_ngroup);
	int ntiny = 0;
	int nlbins = 0;
	int lg_tiny_maxclass = (unsigned)-1;
	int nbins = 0;
	int npsizes = 0;

	int index = 0;

	int ndelta = 0;
	int lg_base = lg_tiny_min;
	int lg_delta = lg_base;

	/* Outputs that we update as we go. */
	size_t lookup_maxclass = 0;
	size_t small_maxclass = 0;
	int lg_large_minclass = 0;
	size_t large_maxclass = 0;

	/* Tiny size classes. */
	while (lg_base < lg_quantum) {
		sc_t *sc = &sc_data->sc[index];
		size_class(sc, lg_max_lookup, lg_page, lg_ngroup, index,
		    lg_base, lg_delta, ndelta);
		if (sc->lg_delta_lookup != 0) {
			nlbins = index + 1;
		}
		if (sc->psz) {
			npsizes++;
		}
		if (sc->bin) {
			nbins++;
		}
		ntiny++;
		/* Final written value is correct. */
		lg_tiny_maxclass = lg_base;
		index++;
		lg_delta = lg_base;
		lg_base++;
	}

	/* First non-tiny (pseudo) group. */
	if (ntiny != 0) {
		sc_t *sc = &sc_data->sc[index];
		/*
		 * See the note in sc.h; the first non-tiny size class has an
		 * unusual encoding.
		 */
		lg_base--;
		ndelta = 1;
		size_class(sc, lg_max_lookup, lg_page, lg_ngroup, index,
		    lg_base, lg_delta, ndelta);
		index++;
		lg_base++;
		lg_delta++;
		if (sc->psz) {
			npsizes++;
		}
		if (sc->bin) {
			nbins++;
		}
	}
	while (ndelta < ngroup) {
		sc_t *sc = &sc_data->sc[index];
		size_class(sc, lg_max_lookup, lg_page, lg_ngroup, index,
		    lg_base, lg_delta, ndelta);
		index++;
		ndelta++;
		if (sc->psz) {
			npsizes++;
		}
		if (sc->bin) {
			nbins++;
		}
	}

	/* All remaining groups. */
	lg_base = lg_base + lg_ngroup;
	while (lg_base < ptr_bits - 1) {
		ndelta = 1;
		int ndelta_limit;
		if (lg_base == ptr_bits - 2) {
			ndelta_limit = ngroup - 1;
		} else {
			ndelta_limit = ngroup;
		}
		while (ndelta <= ndelta_limit) {
			sc_t *sc = &sc_data->sc[index];
			size_class(sc, lg_max_lookup, lg_page, lg_ngroup, index,
			    lg_base, lg_delta, ndelta);
			if (sc->lg_delta_lookup != 0) {
				nlbins = index + 1;
				/* Final written value is correct. */
				lookup_maxclass = (ZU(1) << lg_base)
				    + (ZU(ndelta) << lg_delta);
			}
			if (sc->psz) {
				npsizes++;
			}
			if (sc->bin) {
				nbins++;
				/* Final written value is correct. */
				small_maxclass = (ZU(1) << lg_base)
				    + (ZU(ndelta) << lg_delta);
				if (lg_ngroup > 0) {
					lg_large_minclass = lg_base + 1;
				} else {
					lg_large_minclass = lg_base + 2;
				}
			}
			large_maxclass = (ZU(1) << lg_base)
			    + (ZU(ndelta) << lg_delta);
			index++;
			ndelta++;
		}
		lg_base++;
		lg_delta++;
	}
	/* Additional outputs. */
	int nsizes = index;
	unsigned lg_ceil_nsizes = lg_ceil(nsizes);

	/* Fill in the output data. */
	sc_data->ntiny = ntiny;
	sc_data->nlbins = nlbins;
	sc_data->nbins = nbins;
	sc_data->nsizes = nsizes;
	sc_data->lg_ceil_nsizes = lg_ceil_nsizes;
	sc_data->npsizes = npsizes;
	sc_data->lg_tiny_maxclass = lg_tiny_maxclass;
	sc_data->lookup_maxclass = lookup_maxclass;
	sc_data->small_maxclass = small_maxclass;
	sc_data->lg_large_minclass = lg_large_minclass;
	sc_data->large_minclass = (ZU(1) << lg_large_minclass);
	sc_data->large_maxclass = large_maxclass;

	/*
	 * We compute these values in two ways:
	 *   - Incrementally, as above.
	 *   - In macros, in sc.h.
	 * The computation is easier when done incrementally, but putting it in
	 * a constant makes it available to the fast paths without having to
	 * touch the extra global cacheline.  We assert, however, that the two
	 * computations are equivalent.
	 */
	assert(sc_data->npsizes == SC_NPSIZES);
	assert(sc_data->lg_tiny_maxclass == SC_LG_TINY_MAXCLASS);
	assert(sc_data->small_maxclass == SC_SMALL_MAXCLASS);
	assert(sc_data->large_minclass == SC_LARGE_MINCLASS);
	assert(sc_data->lg_large_minclass == SC_LG_LARGE_MINCLASS);
	assert(sc_data->large_maxclass == SC_LARGE_MAXCLASS);

	/*
	 * In the allocation fastpath, we want to assume that we can
	 * unconditionally subtract the requested allocation size from
	 * a ssize_t, and detect passing through 0 correctly.  This
	 * results in optimal generated code.  For this to work, the
	 * maximum allocation size must be less than SSIZE_MAX.
	 */
	assert(SC_LARGE_MAXCLASS < SSIZE_MAX);
}

void
sc_data_init(sc_data_t *sc_data) {
	size_classes(sc_data, LG_SIZEOF_PTR, LG_QUANTUM, SC_LG_TINY_MIN,
	    SC_LG_MAX_LOOKUP, LG_PAGE, SC_LG_NGROUP);

	sc_data->initialized = true;
}

static void
sc_data_update_sc_slab_size(sc_t *sc, size_t reg_size, size_t pgs_guess) {
	size_t min_pgs = reg_size / PAGE;
	if (reg_size % PAGE != 0) {
		min_pgs++;
	}
	/*
	 * BITMAP_MAXBITS is actually determined by putting the smallest
	 * possible size-class on one page, so this can never be 0.
	 */
	size_t max_pgs = BITMAP_MAXBITS * reg_size / PAGE;

	assert(min_pgs <= max_pgs);
	assert(min_pgs > 0);
	assert(max_pgs >= 1);
	if (pgs_guess < min_pgs) {
		sc->pgs = (int)min_pgs;
	} else if (pgs_guess > max_pgs) {
		sc->pgs = (int)max_pgs;
	} else {
		sc->pgs = (int)pgs_guess;
	}
}

void
sc_data_update_slab_size(sc_data_t *data, size_t begin, size_t end, int pgs) {
	assert(data->initialized);
	for (int i = 0; i < data->nsizes; i++) {
		sc_t *sc = &data->sc[i];
		if (!sc->bin) {
			break;
		}
		size_t reg_size = reg_size_compute(sc->lg_base, sc->lg_delta,
		    sc->ndelta);
		if (begin <= reg_size && reg_size <= end) {
			sc_data_update_sc_slab_size(sc, reg_size, pgs);
		}
	}
}

void
sc_boot(sc_data_t *data) {
	sc_data_init(data);
}