summaryrefslogtreecommitdiffstats
path: root/src/dict.c
blob: e34fa029a2fc00aa7df332cc4b573101f0049a27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
/* Hash Tables Implementation.
 *
 * This file implements in memory hash tables with insert/del/replace/find/
 * get-random-element operations. Hash tables will auto resize if needed
 * tables of power of two in size are used, collisions are handled by
 * chaining. See the source code for more information... :)
 *
 * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of Redis nor the names of its contributors may be used
 *     to endorse or promote products derived from this software without
 *     specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "fmacros.h"

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdarg.h>
#include <limits.h>
#include <sys/time.h>

#include "dict.h"
#include "zmalloc.h"
#include "redisassert.h"

/* Using dictEnableResize() / dictDisableResize() we make possible to disable
 * resizing and rehashing of the hash table as needed. This is very important
 * for Redis, as we use copy-on-write and don't want to move too much memory
 * around when there is a child performing saving operations.
 *
 * Note that even when dict_can_resize is set to DICT_RESIZE_AVOID, not all
 * resizes are prevented: a hash table is still allowed to grow if the ratio
 * between the number of elements and the buckets > dict_force_resize_ratio. */
static dictResizeEnable dict_can_resize = DICT_RESIZE_ENABLE;
static unsigned int dict_force_resize_ratio = 5;

/* -------------------------- types ----------------------------------------- */

struct dictEntry {
    void *key;
    union {
        void *val;
        uint64_t u64;
        int64_t s64;
        double d;
    } v;
    struct dictEntry *next;     /* Next entry in the same hash bucket. */
    void *metadata[];           /* An arbitrary number of bytes (starting at a
                                 * pointer-aligned address) of size as returned
                                 * by dictType's dictEntryMetadataBytes(). */
};

typedef struct {
    void *key;
    dictEntry *next;
} dictEntryNoValue;

/* -------------------------- private prototypes ---------------------------- */

static int _dictExpandIfNeeded(dict *d);
static signed char _dictNextExp(unsigned long size);
static int _dictInit(dict *d, dictType *type);
static dictEntry *dictGetNext(const dictEntry *de);
static dictEntry **dictGetNextRef(dictEntry *de);
static void dictSetNext(dictEntry *de, dictEntry *next);

/* -------------------------- hash functions -------------------------------- */

static uint8_t dict_hash_function_seed[16];

void dictSetHashFunctionSeed(uint8_t *seed) {
    memcpy(dict_hash_function_seed,seed,sizeof(dict_hash_function_seed));
}

uint8_t *dictGetHashFunctionSeed(void) {
    return dict_hash_function_seed;
}

/* The default hashing function uses SipHash implementation
 * in siphash.c. */

uint64_t siphash(const uint8_t *in, const size_t inlen, const uint8_t *k);
uint64_t siphash_nocase(const uint8_t *in, const size_t inlen, const uint8_t *k);

uint64_t dictGenHashFunction(const void *key, size_t len) {
    return siphash(key,len,dict_hash_function_seed);
}

uint64_t dictGenCaseHashFunction(const unsigned char *buf, size_t len) {
    return siphash_nocase(buf,len,dict_hash_function_seed);
}

/* --------------------- dictEntry pointer bit tricks ----------------------  */

/* The 3 least significant bits in a pointer to a dictEntry determines what the
 * pointer actually points to. If the least bit is set, it's a key. Otherwise,
 * the bit pattern of the least 3 significant bits mark the kind of entry. */

#define ENTRY_PTR_MASK     7 /* 111 */
#define ENTRY_PTR_NORMAL   0 /* 000 */
#define ENTRY_PTR_NO_VALUE 2 /* 010 */

/* Returns 1 if the entry pointer is a pointer to a key, rather than to an
 * allocated entry. Returns 0 otherwise. */
static inline int entryIsKey(const dictEntry *de) {
    return (uintptr_t)(void *)de & 1;
}

/* Returns 1 if the pointer is actually a pointer to a dictEntry struct. Returns
 * 0 otherwise. */
static inline int entryIsNormal(const dictEntry *de) {
    return ((uintptr_t)(void *)de & ENTRY_PTR_MASK) == ENTRY_PTR_NORMAL;
}

/* Returns 1 if the entry is a special entry with key and next, but without
 * value. Returns 0 otherwise. */
static inline int entryIsNoValue(const dictEntry *de) {
    return ((uintptr_t)(void *)de & ENTRY_PTR_MASK) == ENTRY_PTR_NO_VALUE;
}

/* Creates an entry without a value field. */
static inline dictEntry *createEntryNoValue(void *key, dictEntry *next) {
    dictEntryNoValue *entry = zmalloc(sizeof(*entry));
    entry->key = key;
    entry->next = next;
    return (dictEntry *)(void *)((uintptr_t)(void *)entry | ENTRY_PTR_NO_VALUE);
}

static inline dictEntry *encodeMaskedPtr(const void *ptr, unsigned int bits) {
    assert(((uintptr_t)ptr & ENTRY_PTR_MASK) == 0);
    return (dictEntry *)(void *)((uintptr_t)ptr | bits);
}

static inline void *decodeMaskedPtr(const dictEntry *de) {
    assert(!entryIsKey(de));
    return (void *)((uintptr_t)(void *)de & ~ENTRY_PTR_MASK);
}

/* Decodes the pointer to an entry without value, when you know it is an entry
 * without value. Hint: Use entryIsNoValue to check. */
static inline dictEntryNoValue *decodeEntryNoValue(const dictEntry *de) {
    return decodeMaskedPtr(de);
}

/* Returns 1 if the entry has a value field and 0 otherwise. */
static inline int entryHasValue(const dictEntry *de) {
    return entryIsNormal(de);
}

/* ----------------------------- API implementation ------------------------- */

/* Reset hash table parameters already initialized with _dictInit()*/
static void _dictReset(dict *d, int htidx)
{
    d->ht_table[htidx] = NULL;
    d->ht_size_exp[htidx] = -1;
    d->ht_used[htidx] = 0;
}

/* Create a new hash table */
dict *dictCreate(dictType *type)
{
    size_t metasize = type->dictMetadataBytes ? type->dictMetadataBytes() : 0;
    dict *d = zmalloc(sizeof(*d) + metasize);
    if (metasize) {
        memset(dictMetadata(d), 0, metasize);
    }

    _dictInit(d,type);
    return d;
}

/* Initialize the hash table */
int _dictInit(dict *d, dictType *type)
{
    _dictReset(d, 0);
    _dictReset(d, 1);
    d->type = type;
    d->rehashidx = -1;
    d->pauserehash = 0;
    return DICT_OK;
}

/* Resize the table to the minimal size that contains all the elements,
 * but with the invariant of a USED/BUCKETS ratio near to <= 1 */
int dictResize(dict *d)
{
    unsigned long minimal;

    if (dict_can_resize != DICT_RESIZE_ENABLE || dictIsRehashing(d)) return DICT_ERR;
    minimal = d->ht_used[0];
    if (minimal < DICT_HT_INITIAL_SIZE)
        minimal = DICT_HT_INITIAL_SIZE;
    return dictExpand(d, minimal);
}

/* Expand or create the hash table,
 * when malloc_failed is non-NULL, it'll avoid panic if malloc fails (in which case it'll be set to 1).
 * Returns DICT_OK if expand was performed, and DICT_ERR if skipped. */
int _dictExpand(dict *d, unsigned long size, int* malloc_failed)
{
    if (malloc_failed) *malloc_failed = 0;

    /* the size is invalid if it is smaller than the number of
     * elements already inside the hash table */
    if (dictIsRehashing(d) || d->ht_used[0] > size)
        return DICT_ERR;

    /* the new hash table */
    dictEntry **new_ht_table;
    unsigned long new_ht_used;
    signed char new_ht_size_exp = _dictNextExp(size);

    /* Detect overflows */
    size_t newsize = 1ul<<new_ht_size_exp;
    if (newsize < size || newsize * sizeof(dictEntry*) < newsize)
        return DICT_ERR;

    /* Rehashing to the same table size is not useful. */
    if (new_ht_size_exp == d->ht_size_exp[0]) return DICT_ERR;

    /* Allocate the new hash table and initialize all pointers to NULL */
    if (malloc_failed) {
        new_ht_table = ztrycalloc(newsize*sizeof(dictEntry*));
        *malloc_failed = new_ht_table == NULL;
        if (*malloc_failed)
            return DICT_ERR;
    } else
        new_ht_table = zcalloc(newsize*sizeof(dictEntry*));

    new_ht_used = 0;

    /* Is this the first initialization? If so it's not really a rehashing
     * we just set the first hash table so that it can accept keys. */
    if (d->ht_table[0] == NULL) {
        d->ht_size_exp[0] = new_ht_size_exp;
        d->ht_used[0] = new_ht_used;
        d->ht_table[0] = new_ht_table;
        return DICT_OK;
    }

    /* Prepare a second hash table for incremental rehashing */
    d->ht_size_exp[1] = new_ht_size_exp;
    d->ht_used[1] = new_ht_used;
    d->ht_table[1] = new_ht_table;
    d->rehashidx = 0;
    return DICT_OK;
}

/* return DICT_ERR if expand was not performed */
int dictExpand(dict *d, unsigned long size) {
    return _dictExpand(d, size, NULL);
}

/* return DICT_ERR if expand failed due to memory allocation failure */
int dictTryExpand(dict *d, unsigned long size) {
    int malloc_failed;
    _dictExpand(d, size, &malloc_failed);
    return malloc_failed? DICT_ERR : DICT_OK;
}

/* Performs N steps of incremental rehashing. Returns 1 if there are still
 * keys to move from the old to the new hash table, otherwise 0 is returned.
 *
 * Note that a rehashing step consists in moving a bucket (that may have more
 * than one key as we use chaining) from the old to the new hash table, however
 * since part of the hash table may be composed of empty spaces, it is not
 * guaranteed that this function will rehash even a single bucket, since it
 * will visit at max N*10 empty buckets in total, otherwise the amount of
 * work it does would be unbound and the function may block for a long time. */
int dictRehash(dict *d, int n) {
    int empty_visits = n*10; /* Max number of empty buckets to visit. */
    unsigned long s0 = DICTHT_SIZE(d->ht_size_exp[0]);
    unsigned long s1 = DICTHT_SIZE(d->ht_size_exp[1]);
    if (dict_can_resize == DICT_RESIZE_FORBID || !dictIsRehashing(d)) return 0;
    if (dict_can_resize == DICT_RESIZE_AVOID && 
        ((s1 > s0 && s1 / s0 < dict_force_resize_ratio) ||
         (s1 < s0 && s0 / s1 < dict_force_resize_ratio)))
    {
        return 0;
    }

    while(n-- && d->ht_used[0] != 0) {
        dictEntry *de, *nextde;

        /* Note that rehashidx can't overflow as we are sure there are more
         * elements because ht[0].used != 0 */
        assert(DICTHT_SIZE(d->ht_size_exp[0]) > (unsigned long)d->rehashidx);
        while(d->ht_table[0][d->rehashidx] == NULL) {
            d->rehashidx++;
            if (--empty_visits == 0) return 1;
        }
        de = d->ht_table[0][d->rehashidx];
        /* Move all the keys in this bucket from the old to the new hash HT */
        while(de) {
            uint64_t h;

            nextde = dictGetNext(de);
            void *key = dictGetKey(de);
            /* Get the index in the new hash table */
            if (d->ht_size_exp[1] > d->ht_size_exp[0]) {
                h = dictHashKey(d, key) & DICTHT_SIZE_MASK(d->ht_size_exp[1]);
            } else {
                /* We're shrinking the table. The tables sizes are powers of
                 * two, so we simply mask the bucket index in the larger table
                 * to get the bucket index in the smaller table. */
                h = d->rehashidx & DICTHT_SIZE_MASK(d->ht_size_exp[1]);
            }
            if (d->type->no_value) {
                if (d->type->keys_are_odd && !d->ht_table[1][h]) {
                    /* Destination bucket is empty and we can store the key
                     * directly without an allocated entry. Free the old entry
                     * if it's an allocated entry.
                     *
                     * TODO: Add a flag 'keys_are_even' and if set, we can use
                     * this optimization for these dicts too. We can set the LSB
                     * bit when stored as a dict entry and clear it again when
                     * we need the key back. */
                    assert(entryIsKey(key));
                    if (!entryIsKey(de)) zfree(decodeMaskedPtr(de));
                    de = key;
                } else if (entryIsKey(de)) {
                    /* We don't have an allocated entry but we need one. */
                    de = createEntryNoValue(key, d->ht_table[1][h]);
                } else {
                    /* Just move the existing entry to the destination table and
                     * update the 'next' field. */
                    assert(entryIsNoValue(de));
                    dictSetNext(de, d->ht_table[1][h]);
                }
            } else {
                dictSetNext(de, d->ht_table[1][h]);
            }
            d->ht_table[1][h] = de;
            d->ht_used[0]--;
            d->ht_used[1]++;
            de = nextde;
        }
        d->ht_table[0][d->rehashidx] = NULL;
        d->rehashidx++;
    }

    /* Check if we already rehashed the whole table... */
    if (d->ht_used[0] == 0) {
        zfree(d->ht_table[0]);
        /* Copy the new ht onto the old one */
        d->ht_table[0] = d->ht_table[1];
        d->ht_used[0] = d->ht_used[1];
        d->ht_size_exp[0] = d->ht_size_exp[1];
        _dictReset(d, 1);
        d->rehashidx = -1;
        return 0;
    }

    /* More to rehash... */
    return 1;
}

long long timeInMilliseconds(void) {
    struct timeval tv;

    gettimeofday(&tv,NULL);
    return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
}

/* Rehash in ms+"delta" milliseconds. The value of "delta" is larger 
 * than 0, and is smaller than 1 in most cases. The exact upper bound 
 * depends on the running time of dictRehash(d,100).*/
int dictRehashMilliseconds(dict *d, int ms) {
    if (d->pauserehash > 0) return 0;

    long long start = timeInMilliseconds();
    int rehashes = 0;

    while(dictRehash(d,100)) {
        rehashes += 100;
        if (timeInMilliseconds()-start > ms) break;
    }
    return rehashes;
}

/* This function performs just a step of rehashing, and only if hashing has
 * not been paused for our hash table. When we have iterators in the
 * middle of a rehashing we can't mess with the two hash tables otherwise
 * some elements can be missed or duplicated.
 *
 * This function is called by common lookup or update operations in the
 * dictionary so that the hash table automatically migrates from H1 to H2
 * while it is actively used. */
static void _dictRehashStep(dict *d) {
    if (d->pauserehash == 0) dictRehash(d,1);
}

/* Return a pointer to the metadata section within the dict. */
void *dictMetadata(dict *d) {
    return &d->metadata;
}

/* Add an element to the target hash table */
int dictAdd(dict *d, void *key, void *val)
{
    dictEntry *entry = dictAddRaw(d,key,NULL);

    if (!entry) return DICT_ERR;
    if (!d->type->no_value) dictSetVal(d, entry, val);
    return DICT_OK;
}

/* Low level add or find:
 * This function adds the entry but instead of setting a value returns the
 * dictEntry structure to the user, that will make sure to fill the value
 * field as they wish.
 *
 * This function is also directly exposed to the user API to be called
 * mainly in order to store non-pointers inside the hash value, example:
 *
 * entry = dictAddRaw(dict,mykey,NULL);
 * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
 *
 * Return values:
 *
 * If key already exists NULL is returned, and "*existing" is populated
 * with the existing entry if existing is not NULL.
 *
 * If key was added, the hash entry is returned to be manipulated by the caller.
 */
dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
{
    /* Get the position for the new key or NULL if the key already exists. */
    void *position = dictFindPositionForInsert(d, key, existing);
    if (!position) return NULL;

    /* Dup the key if necessary. */
    if (d->type->keyDup) key = d->type->keyDup(d, key);

    return dictInsertAtPosition(d, key, position);
}

/* Adds a key in the dict's hashtable at the position returned by a preceding
 * call to dictFindPositionForInsert. This is a low level function which allows
 * splitting dictAddRaw in two parts. Normally, dictAddRaw or dictAdd should be
 * used instead. */
dictEntry *dictInsertAtPosition(dict *d, void *key, void *position) {
    dictEntry **bucket = position; /* It's a bucket, but the API hides that. */
    dictEntry *entry;
    /* If rehashing is ongoing, we insert in table 1, otherwise in table 0.
     * Assert that the provided bucket is the right table. */
    int htidx = dictIsRehashing(d) ? 1 : 0;
    assert(bucket >= &d->ht_table[htidx][0] &&
           bucket <= &d->ht_table[htidx][DICTHT_SIZE_MASK(d->ht_size_exp[htidx])]);
    size_t metasize = dictEntryMetadataSize(d);
    if (d->type->no_value) {
        assert(!metasize); /* Entry metadata + no value not supported. */
        if (d->type->keys_are_odd && !*bucket) {
            /* We can store the key directly in the destination bucket without the
             * allocated entry.
             *
             * TODO: Add a flag 'keys_are_even' and if set, we can use this
             * optimization for these dicts too. We can set the LSB bit when
             * stored as a dict entry and clear it again when we need the key
             * back. */
            entry = key;
            assert(entryIsKey(entry));
        } else {
            /* Allocate an entry without value. */
            entry = createEntryNoValue(key, *bucket);
        }
    } else {
        /* Allocate the memory and store the new entry.
         * Insert the element in top, with the assumption that in a database
         * system it is more likely that recently added entries are accessed
         * more frequently. */
        entry = zmalloc(sizeof(*entry) + metasize);
        assert(entryIsNormal(entry)); /* Check alignment of allocation */
        if (metasize > 0) {
            memset(dictEntryMetadata(entry), 0, metasize);
        }
        entry->key = key;
        entry->next = *bucket;
    }
    *bucket = entry;
    d->ht_used[htidx]++;

    return entry;
}

/* Add or Overwrite:
 * Add an element, discarding the old value if the key already exists.
 * Return 1 if the key was added from scratch, 0 if there was already an
 * element with such key and dictReplace() just performed a value update
 * operation. */
int dictReplace(dict *d, void *key, void *val)
{
    dictEntry *entry, *existing;

    /* Try to add the element. If the key
     * does not exists dictAdd will succeed. */
    entry = dictAddRaw(d,key,&existing);
    if (entry) {
        dictSetVal(d, entry, val);
        return 1;
    }

    /* Set the new value and free the old one. Note that it is important
     * to do that in this order, as the value may just be exactly the same
     * as the previous one. In this context, think to reference counting,
     * you want to increment (set), and then decrement (free), and not the
     * reverse. */
    void *oldval = dictGetVal(existing);
    dictSetVal(d, existing, val);
    if (d->type->valDestructor)
        d->type->valDestructor(d, oldval);
    return 0;
}

/* Add or Find:
 * dictAddOrFind() is simply a version of dictAddRaw() that always
 * returns the hash entry of the specified key, even if the key already
 * exists and can't be added (in that case the entry of the already
 * existing key is returned.)
 *
 * See dictAddRaw() for more information. */
dictEntry *dictAddOrFind(dict *d, void *key) {
    dictEntry *entry, *existing;
    entry = dictAddRaw(d,key,&existing);
    return entry ? entry : existing;
}

/* Search and remove an element. This is a helper function for
 * dictDelete() and dictUnlink(), please check the top comment
 * of those functions. */
static dictEntry *dictGenericDelete(dict *d, const void *key, int nofree) {
    uint64_t h, idx;
    dictEntry *he, *prevHe;
    int table;

    /* dict is empty */
    if (dictSize(d) == 0) return NULL;

    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);

    for (table = 0; table <= 1; table++) {
        idx = h & DICTHT_SIZE_MASK(d->ht_size_exp[table]);
        he = d->ht_table[table][idx];
        prevHe = NULL;
        while(he) {
            void *he_key = dictGetKey(he);
            if (key == he_key || dictCompareKeys(d, key, he_key)) {
                /* Unlink the element from the list */
                if (prevHe)
                    dictSetNext(prevHe, dictGetNext(he));
                else
                    d->ht_table[table][idx] = dictGetNext(he);
                if (!nofree) {
                    dictFreeUnlinkedEntry(d, he);
                }
                d->ht_used[table]--;
                return he;
            }
            prevHe = he;
            he = dictGetNext(he);
        }
        if (!dictIsRehashing(d)) break;
    }
    return NULL; /* not found */
}

/* Remove an element, returning DICT_OK on success or DICT_ERR if the
 * element was not found. */
int dictDelete(dict *ht, const void *key) {
    return dictGenericDelete(ht,key,0) ? DICT_OK : DICT_ERR;
}

/* Remove an element from the table, but without actually releasing
 * the key, value and dictionary entry. The dictionary entry is returned
 * if the element was found (and unlinked from the table), and the user
 * should later call `dictFreeUnlinkedEntry()` with it in order to release it.
 * Otherwise if the key is not found, NULL is returned.
 *
 * This function is useful when we want to remove something from the hash
 * table but want to use its value before actually deleting the entry.
 * Without this function the pattern would require two lookups:
 *
 *  entry = dictFind(...);
 *  // Do something with entry
 *  dictDelete(dictionary,entry);
 *
 * Thanks to this function it is possible to avoid this, and use
 * instead:
 *
 * entry = dictUnlink(dictionary,entry);
 * // Do something with entry
 * dictFreeUnlinkedEntry(entry); // <- This does not need to lookup again.
 */
dictEntry *dictUnlink(dict *d, const void *key) {
    return dictGenericDelete(d,key,1);
}

/* You need to call this function to really free the entry after a call
 * to dictUnlink(). It's safe to call this function with 'he' = NULL. */
void dictFreeUnlinkedEntry(dict *d, dictEntry *he) {
    if (he == NULL) return;
    dictFreeKey(d, he);
    dictFreeVal(d, he);
    if (!entryIsKey(he)) zfree(decodeMaskedPtr(he));
}

/* Destroy an entire dictionary */
int _dictClear(dict *d, int htidx, void(callback)(dict*)) {
    unsigned long i;

    /* Free all the elements */
    for (i = 0; i < DICTHT_SIZE(d->ht_size_exp[htidx]) && d->ht_used[htidx] > 0; i++) {
        dictEntry *he, *nextHe;

        if (callback && (i & 65535) == 0) callback(d);

        if ((he = d->ht_table[htidx][i]) == NULL) continue;
        while(he) {
            nextHe = dictGetNext(he);
            dictFreeKey(d, he);
            dictFreeVal(d, he);
            if (!entryIsKey(he)) zfree(decodeMaskedPtr(he));
            d->ht_used[htidx]--;
            he = nextHe;
        }
    }
    /* Free the table and the allocated cache structure */
    zfree(d->ht_table[htidx]);
    /* Re-initialize the table */
    _dictReset(d, htidx);
    return DICT_OK; /* never fails */
}

/* Clear & Release the hash table */
void dictRelease(dict *d)
{
    _dictClear(d,0,NULL);
    _dictClear(d,1,NULL);
    zfree(d);
}

dictEntry *dictFind(dict *d, const void *key)
{
    dictEntry *he;
    uint64_t h, idx, table;

    if (dictSize(d) == 0) return NULL; /* dict is empty */
    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);
    for (table = 0; table <= 1; table++) {
        idx = h & DICTHT_SIZE_MASK(d->ht_size_exp[table]);
        he = d->ht_table[table][idx];
        while(he) {
            void *he_key = dictGetKey(he);
            if (key == he_key || dictCompareKeys(d, key, he_key))
                return he;
            he = dictGetNext(he);
        }
        if (!dictIsRehashing(d)) return NULL;
    }
    return NULL;
}

void *dictFetchValue(dict *d, const void *key) {
    dictEntry *he;

    he = dictFind(d,key);
    return he ? dictGetVal(he) : NULL;
}

/* Find an element from the table, also get the plink of the entry. The entry
 * is returned if the element is found, and the user should later call
 * `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if
 * the key is not found, NULL is returned. These two functions should be used in pair.
 * `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash.
 *
 * We can use like this:
 *
 * dictEntry *de = dictTwoPhaseUnlinkFind(db->dict,key->ptr,&plink, &table);
 * // Do something, but we can't modify the dict
 * dictTwoPhaseUnlinkFree(db->dict,de,plink,table); // We don't need to lookup again
 *
 * If we want to find an entry before delete this entry, this an optimization to avoid
 * dictFind followed by dictDelete. i.e. the first API is a find, and it gives some info
 * to the second one to avoid repeating the lookup
 */
dictEntry *dictTwoPhaseUnlinkFind(dict *d, const void *key, dictEntry ***plink, int *table_index) {
    uint64_t h, idx, table;

    if (dictSize(d) == 0) return NULL; /* dict is empty */
    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);

    for (table = 0; table <= 1; table++) {
        idx = h & DICTHT_SIZE_MASK(d->ht_size_exp[table]);
        dictEntry **ref = &d->ht_table[table][idx];
        while (ref && *ref) {
            void *de_key = dictGetKey(*ref);
            if (key == de_key || dictCompareKeys(d, key, de_key)) {
                *table_index = table;
                *plink = ref;
                dictPauseRehashing(d);
                return *ref;
            }
            ref = dictGetNextRef(*ref);
        }
        if (!dictIsRehashing(d)) return NULL;
    }
    return NULL;
}

void dictTwoPhaseUnlinkFree(dict *d, dictEntry *he, dictEntry **plink, int table_index) {
    if (he == NULL) return;
    d->ht_used[table_index]--;
    *plink = dictGetNext(he);
    dictFreeKey(d, he);
    dictFreeVal(d, he);
    if (!entryIsKey(he)) zfree(decodeMaskedPtr(he));
    dictResumeRehashing(d);
}

void dictSetKey(dict *d, dictEntry* de, void *key) {
    assert(!d->type->no_value);
    if (d->type->keyDup)
        de->key = d->type->keyDup(d, key);
    else
        de->key = key;
}

void dictSetVal(dict *d, dictEntry *de, void *val) {
    assert(entryHasValue(de));
    de->v.val = d->type->valDup ? d->type->valDup(d, val) : val;
}

void dictSetSignedIntegerVal(dictEntry *de, int64_t val) {
    assert(entryHasValue(de));
    de->v.s64 = val;
}

void dictSetUnsignedIntegerVal(dictEntry *de, uint64_t val) {
    assert(entryHasValue(de));
    de->v.u64 = val;
}

void dictSetDoubleVal(dictEntry *de, double val) {
    assert(entryHasValue(de));
    de->v.d = val;
}

int64_t dictIncrSignedIntegerVal(dictEntry *de, int64_t val) {
    assert(entryHasValue(de));
    return de->v.s64 += val;
}

uint64_t dictIncrUnsignedIntegerVal(dictEntry *de, uint64_t val) {
    assert(entryHasValue(de));
    return de->v.u64 += val;
}

double dictIncrDoubleVal(dictEntry *de, double val) {
    assert(entryHasValue(de));
    return de->v.d += val;
}

/* A pointer to the metadata section within the dict entry. */
void *dictEntryMetadata(dictEntry *de) {
    assert(entryHasValue(de));
    return &de->metadata;
}

void *dictGetKey(const dictEntry *de) {
    if (entryIsKey(de)) return (void*)de;
    if (entryIsNoValue(de)) return decodeEntryNoValue(de)->key;
    return de->key;
}

void *dictGetVal(const dictEntry *de) {
    assert(entryHasValue(de));
    return de->v.val;
}

int64_t dictGetSignedIntegerVal(const dictEntry *de) {
    assert(entryHasValue(de));
    return de->v.s64;
}

uint64_t dictGetUnsignedIntegerVal(const dictEntry *de) {
    assert(entryHasValue(de));
    return de->v.u64;
}

double dictGetDoubleVal(const dictEntry *de) {
    assert(entryHasValue(de));
    return de->v.d;
}

/* Returns a mutable reference to the value as a double within the entry. */
double *dictGetDoubleValPtr(dictEntry *de) {
    assert(entryHasValue(de));
    return &de->v.d;
}

/* Returns the 'next' field of the entry or NULL if the entry doesn't have a
 * 'next' field. */
static dictEntry *dictGetNext(const dictEntry *de) {
    if (entryIsKey(de)) return NULL; /* there's no next */
    if (entryIsNoValue(de)) return decodeEntryNoValue(de)->next;
    return de->next;
}

/* Returns a pointer to the 'next' field in the entry or NULL if the entry
 * doesn't have a next field. */
static dictEntry **dictGetNextRef(dictEntry *de) {
    if (entryIsKey(de)) return NULL;
    if (entryIsNoValue(de)) return &decodeEntryNoValue(de)->next;
    return &de->next;
}

static void dictSetNext(dictEntry *de, dictEntry *next) {
    assert(!entryIsKey(de));
    if (entryIsNoValue(de)) {
        dictEntryNoValue *entry = decodeEntryNoValue(de);
        entry->next = next;
    } else {
        de->next = next;
    }
}

/* Returns the memory usage in bytes of the dict, excluding the size of the keys
 * and values. */
size_t dictMemUsage(const dict *d) {
    return dictSize(d) * sizeof(dictEntry) +
        dictSlots(d) * sizeof(dictEntry*);
}

size_t dictEntryMemUsage(void) {
    return sizeof(dictEntry);
}

/* A fingerprint is a 64 bit number that represents the state of the dictionary
 * at a given time, it's just a few dict properties xored together.
 * When an unsafe iterator is initialized, we get the dict fingerprint, and check
 * the fingerprint again when the iterator is released.
 * If the two fingerprints are different it means that the user of the iterator
 * performed forbidden operations against the dictionary while iterating. */
unsigned long long dictFingerprint(dict *d) {
    unsigned long long integers[6], hash = 0;
    int j;

    integers[0] = (long) d->ht_table[0];
    integers[1] = d->ht_size_exp[0];
    integers[2] = d->ht_used[0];
    integers[3] = (long) d->ht_table[1];
    integers[4] = d->ht_size_exp[1];
    integers[5] = d->ht_used[1];

    /* We hash N integers by summing every successive integer with the integer
     * hashing of the previous sum. Basically:
     *
     * Result = hash(hash(hash(int1)+int2)+int3) ...
     *
     * This way the same set of integers in a different order will (likely) hash
     * to a different number. */
    for (j = 0; j < 6; j++) {
        hash += integers[j];
        /* For the hashing step we use Tomas Wang's 64 bit integer hash. */
        hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;
        hash = hash ^ (hash >> 24);
        hash = (hash + (hash << 3)) + (hash << 8); // hash * 265
        hash = hash ^ (hash >> 14);
        hash = (hash + (hash << 2)) + (hash << 4); // hash * 21
        hash = hash ^ (hash >> 28);
        hash = hash + (hash << 31);
    }
    return hash;
}

void dictInitIterator(dictIterator *iter, dict *d)
{
    iter->d = d;
    iter->table = 0;
    iter->index = -1;
    iter->safe = 0;
    iter->entry = NULL;
    iter->nextEntry = NULL;
}

void dictInitSafeIterator(dictIterator *iter, dict *d)
{
    dictInitIterator(iter, d);
    iter->safe = 1;
}

void dictResetIterator(dictIterator *iter)
{
    if (!(iter->index == -1 && iter->table == 0)) {
        if (iter->safe)
            dictResumeRehashing(iter->d);
        else
            assert(iter->fingerprint == dictFingerprint(iter->d));
    }
}

dictIterator *dictGetIterator(dict *d)
{
    dictIterator *iter = zmalloc(sizeof(*iter));
    dictInitIterator(iter, d);
    return iter;
}

dictIterator *dictGetSafeIterator(dict *d) {
    dictIterator *i = dictGetIterator(d);

    i->safe = 1;
    return i;
}

dictEntry *dictNext(dictIterator *iter)
{
    while (1) {
        if (iter->entry == NULL) {
            if (iter->index == -1 && iter->table == 0) {
                if (iter->safe)
                    dictPauseRehashing(iter->d);
                else
                    iter->fingerprint = dictFingerprint(iter->d);
            }
            iter->index++;
            if (iter->index >= (long) DICTHT_SIZE(iter->d->ht_size_exp[iter->table])) {
                if (dictIsRehashing(iter->d) && iter->table == 0) {
                    iter->table++;
                    iter->index = 0;
                } else {
                    break;
                }
            }
            iter->entry = iter->d->ht_table[iter->table][iter->index];
        } else {
            iter->entry = iter->nextEntry;
        }
        if (iter->entry) {
            /* We need to save the 'next' here, the iterator user
             * may delete the entry we are returning. */
            iter->nextEntry = dictGetNext(iter->entry);
            return iter->entry;
        }
    }
    return NULL;
}

void dictReleaseIterator(dictIterator *iter)
{
    dictResetIterator(iter);
    zfree(iter);
}

/* Return a random entry from the hash table. Useful to
 * implement randomized algorithms */
dictEntry *dictGetRandomKey(dict *d)
{
    dictEntry *he, *orighe;
    unsigned long h;
    int listlen, listele;

    if (dictSize(d) == 0) return NULL;
    if (dictIsRehashing(d)) _dictRehashStep(d);
    if (dictIsRehashing(d)) {
        unsigned long s0 = DICTHT_SIZE(d->ht_size_exp[0]);
        do {
            /* We are sure there are no elements in indexes from 0
             * to rehashidx-1 */
            h = d->rehashidx + (randomULong() % (dictSlots(d) - d->rehashidx));
            he = (h >= s0) ? d->ht_table[1][h - s0] : d->ht_table[0][h];
        } while(he == NULL);
    } else {
        unsigned long m = DICTHT_SIZE_MASK(d->ht_size_exp[0]);
        do {
            h = randomULong() & m;
            he = d->ht_table[0][h];
        } while(he == NULL);
    }

    /* Now we found a non empty bucket, but it is a linked
     * list and we need to get a random element from the list.
     * The only sane way to do so is counting the elements and
     * select a random index. */
    listlen = 0;
    orighe = he;
    while(he) {
        he = dictGetNext(he);
        listlen++;
    }
    listele = random() % listlen;
    he = orighe;
    while(listele--) he = dictGetNext(he);
    return he;
}

/* This function samples the dictionary to return a few keys from random
 * locations.
 *
 * It does not guarantee to return all the keys specified in 'count', nor
 * it does guarantee to return non-duplicated elements, however it will make
 * some effort to do both things.
 *
 * Returned pointers to hash table entries are stored into 'des' that
 * points to an array of dictEntry pointers. The array must have room for
 * at least 'count' elements, that is the argument we pass to the function
 * to tell how many random elements we need.
 *
 * The function returns the number of items stored into 'des', that may
 * be less than 'count' if the hash table has less than 'count' elements
 * inside, or if not enough elements were found in a reasonable amount of
 * steps.
 *
 * Note that this function is not suitable when you need a good distribution
 * of the returned items, but only when you need to "sample" a given number
 * of continuous elements to run some kind of algorithm or to produce
 * statistics. However the function is much faster than dictGetRandomKey()
 * at producing N elements. */
unsigned int dictGetSomeKeys(dict *d, dictEntry **des, unsigned int count) {
    unsigned long j; /* internal hash table id, 0 or 1. */
    unsigned long tables; /* 1 or 2 tables? */
    unsigned long stored = 0, maxsizemask;
    unsigned long maxsteps;

    if (dictSize(d) < count) count = dictSize(d);
    maxsteps = count*10;

    /* Try to do a rehashing work proportional to 'count'. */
    for (j = 0; j < count; j++) {
        if (dictIsRehashing(d))
            _dictRehashStep(d);
        else
            break;
    }

    tables = dictIsRehashing(d) ? 2 : 1;
    maxsizemask = DICTHT_SIZE_MASK(d->ht_size_exp[0]);
    if (tables > 1 && maxsizemask < DICTHT_SIZE_MASK(d->ht_size_exp[1]))
        maxsizemask = DICTHT_SIZE_MASK(d->ht_size_exp[1]);

    /* Pick a random point inside the larger table. */
    unsigned long i = randomULong() & maxsizemask;
    unsigned long emptylen = 0; /* Continuous empty entries so far. */
    while(stored < count && maxsteps--) {
        for (j = 0; j < tables; j++) {
            /* Invariant of the dict.c rehashing: up to the indexes already
             * visited in ht[0] during the rehashing, there are no populated
             * buckets, so we can skip ht[0] for indexes between 0 and idx-1. */
            if (tables == 2 && j == 0 && i < (unsigned long) d->rehashidx) {
                /* Moreover, if we are currently out of range in the second
                 * table, there will be no elements in both tables up to
                 * the current rehashing index, so we jump if possible.
                 * (this happens when going from big to small table). */
                if (i >= DICTHT_SIZE(d->ht_size_exp[1]))
                    i = d->rehashidx;
                else
                    continue;
            }
            if (i >= DICTHT_SIZE(d->ht_size_exp[j])) continue; /* Out of range for this table. */
            dictEntry *he = d->ht_table[j][i];

            /* Count contiguous empty buckets, and jump to other
             * locations if they reach 'count' (with a minimum of 5). */
            if (he == NULL) {
                emptylen++;
                if (emptylen >= 5 && emptylen > count) {
                    i = randomULong() & maxsizemask;
                    emptylen = 0;
                }
            } else {
                emptylen = 0;
                while (he) {
                    /* Collect all the elements of the buckets found non empty while iterating.
                     * To avoid the issue of being unable to sample the end of a long chain,
                     * we utilize the Reservoir Sampling algorithm to optimize the sampling process.
                     * This means that even when the maximum number of samples has been reached,
                     * we continue sampling until we reach the end of the chain.
                     * See https://en.wikipedia.org/wiki/Reservoir_sampling. */
                    if (stored < count) {
                        des[stored] = he;
                    } else {
                        unsigned long r = randomULong() % (stored + 1);
                        if (r < count) des[r] = he;
                    }

                    he = dictGetNext(he);
                    stored++;
                }
                if (stored >= count) goto end;
            }
        }
        i = (i+1) & maxsizemask;
    }

end:
    return stored > count ? count : stored;
}


/* Reallocate the dictEntry, key and value allocations in a bucket using the
 * provided allocation functions in order to defrag them. */
static void dictDefragBucket(dict *d, dictEntry **bucketref, dictDefragFunctions *defragfns) {
    dictDefragAllocFunction *defragalloc = defragfns->defragAlloc;
    dictDefragAllocFunction *defragkey = defragfns->defragKey;
    dictDefragAllocFunction *defragval = defragfns->defragVal;
    while (bucketref && *bucketref) {
        dictEntry *de = *bucketref, *newde = NULL;
        void *newkey = defragkey ? defragkey(dictGetKey(de)) : NULL;
        void *newval = defragval ? defragval(dictGetVal(de)) : NULL;
        if (entryIsKey(de)) {
            if (newkey) *bucketref = newkey;
            assert(entryIsKey(*bucketref));
        } else if (entryIsNoValue(de)) {
            dictEntryNoValue *entry = decodeEntryNoValue(de), *newentry;
            if ((newentry = defragalloc(entry))) {
                newde = encodeMaskedPtr(newentry, ENTRY_PTR_NO_VALUE);
                entry = newentry;
            }
            if (newkey) entry->key = newkey;
        } else {
            assert(entryIsNormal(de));
            newde = defragalloc(de);
            if (newde) de = newde;
            if (newkey) de->key = newkey;
            if (newval) de->v.val = newval;
        }
        if (newde) {
            *bucketref = newde;
            if (d->type->afterReplaceEntry)
                d->type->afterReplaceEntry(d, newde);
        }
        bucketref = dictGetNextRef(*bucketref);
    }
}

/* This is like dictGetRandomKey() from the POV of the API, but will do more
 * work to ensure a better distribution of the returned element.
 *
 * This function improves the distribution because the dictGetRandomKey()
 * problem is that it selects a random bucket, then it selects a random
 * element from the chain in the bucket. However elements being in different
 * chain lengths will have different probabilities of being reported. With
 * this function instead what we do is to consider a "linear" range of the table
 * that may be constituted of N buckets with chains of different lengths
 * appearing one after the other. Then we report a random element in the range.
 * In this way we smooth away the problem of different chain lengths. */
#define GETFAIR_NUM_ENTRIES 15
dictEntry *dictGetFairRandomKey(dict *d) {
    dictEntry *entries[GETFAIR_NUM_ENTRIES];
    unsigned int count = dictGetSomeKeys(d,entries,GETFAIR_NUM_ENTRIES);
    /* Note that dictGetSomeKeys() may return zero elements in an unlucky
     * run() even if there are actually elements inside the hash table. So
     * when we get zero, we call the true dictGetRandomKey() that will always
     * yield the element if the hash table has at least one. */
    if (count == 0) return dictGetRandomKey(d);
    unsigned int idx = rand() % count;
    return entries[idx];
}

/* Function to reverse bits. Algorithm from:
 * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel */
static unsigned long rev(unsigned long v) {
    unsigned long s = CHAR_BIT * sizeof(v); // bit size; must be power of 2
    unsigned long mask = ~0UL;
    while ((s >>= 1) > 0) {
        mask ^= (mask << s);
        v = ((v >> s) & mask) | ((v << s) & ~mask);
    }
    return v;
}

/* dictScan() is used to iterate over the elements of a dictionary.
 *
 * Iterating works the following way:
 *
 * 1) Initially you call the function using a cursor (v) value of 0.
 * 2) The function performs one step of the iteration, and returns the
 *    new cursor value you must use in the next call.
 * 3) When the returned cursor is 0, the iteration is complete.
 *
 * The function guarantees all elements present in the
 * dictionary get returned between the start and end of the iteration.
 * However it is possible some elements get returned multiple times.
 *
 * For every element returned, the callback argument 'fn' is
 * called with 'privdata' as first argument and the dictionary entry
 * 'de' as second argument.
 *
 * HOW IT WORKS.
 *
 * The iteration algorithm was designed by Pieter Noordhuis.
 * The main idea is to increment a cursor starting from the higher order
 * bits. That is, instead of incrementing the cursor normally, the bits
 * of the cursor are reversed, then the cursor is incremented, and finally
 * the bits are reversed again.
 *
 * This strategy is needed because the hash table may be resized between
 * iteration calls.
 *
 * dict.c hash tables are always power of two in size, and they
 * use chaining, so the position of an element in a given table is given
 * by computing the bitwise AND between Hash(key) and SIZE-1
 * (where SIZE-1 is always the mask that is equivalent to taking the rest
 *  of the division between the Hash of the key and SIZE).
 *
 * For example if the current hash table size is 16, the mask is
 * (in binary) 1111. The position of a key in the hash table will always be
 * the last four bits of the hash output, and so forth.
 *
 * WHAT HAPPENS IF THE TABLE CHANGES IN SIZE?
 *
 * If the hash table grows, elements can go anywhere in one multiple of
 * the old bucket: for example let's say we already iterated with
 * a 4 bit cursor 1100 (the mask is 1111 because hash table size = 16).
 *
 * If the hash table will be resized to 64 elements, then the new mask will
 * be 111111. The new buckets you obtain by substituting in ??1100
 * with either 0 or 1 can be targeted only by keys we already visited
 * when scanning the bucket 1100 in the smaller hash table.
 *
 * By iterating the higher bits first, because of the inverted counter, the
 * cursor does not need to restart if the table size gets bigger. It will
 * continue iterating using cursors without '1100' at the end, and also
 * without any other combination of the final 4 bits already explored.
 *
 * Similarly when the table size shrinks over time, for example going from
 * 16 to 8, if a combination of the lower three bits (the mask for size 8
 * is 111) were already completely explored, it would not be visited again
 * because we are sure we tried, for example, both 0111 and 1111 (all the
 * variations of the higher bit) so we don't need to test it again.
 *
 * WAIT... YOU HAVE *TWO* TABLES DURING REHASHING!
 *
 * Yes, this is true, but we always iterate the smaller table first, then
 * we test all the expansions of the current cursor into the larger
 * table. For example if the current cursor is 101 and we also have a
 * larger table of size 16, we also test (0)101 and (1)101 inside the larger
 * table. This reduces the problem back to having only one table, where
 * the larger one, if it exists, is just an expansion of the smaller one.
 *
 * LIMITATIONS
 *
 * This iterator is completely stateless, and this is a huge advantage,
 * including no additional memory used.
 *
 * The disadvantages resulting from this design are:
 *
 * 1) It is possible we return elements more than once. However this is usually
 *    easy to deal with in the application level.
 * 2) The iterator must return multiple elements per call, as it needs to always
 *    return all the keys chained in a given bucket, and all the expansions, so
 *    we are sure we don't miss keys moving during rehashing.
 * 3) The reverse cursor is somewhat hard to understand at first, but this
 *    comment is supposed to help.
 */
unsigned long dictScan(dict *d,
                       unsigned long v,
                       dictScanFunction *fn,
                       void *privdata)
{
    return dictScanDefrag(d, v, fn, NULL, privdata);
}

/* Like dictScan, but additionally reallocates the memory used by the dict
 * entries using the provided allocation function. This feature was added for
 * the active defrag feature.
 *
 * The 'defragfns' callbacks are called with a pointer to memory that callback
 * can reallocate. The callbacks should return a new memory address or NULL,
 * where NULL means that no reallocation happened and the old memory is still
 * valid. */
unsigned long dictScanDefrag(dict *d,
                             unsigned long v,
                             dictScanFunction *fn,
                             dictDefragFunctions *defragfns,
                             void *privdata)
{
    int htidx0, htidx1;
    const dictEntry *de, *next;
    unsigned long m0, m1;

    if (dictSize(d) == 0) return 0;

    /* This is needed in case the scan callback tries to do dictFind or alike. */
    dictPauseRehashing(d);

    if (!dictIsRehashing(d)) {
        htidx0 = 0;
        m0 = DICTHT_SIZE_MASK(d->ht_size_exp[htidx0]);

        /* Emit entries at cursor */
        if (defragfns) {
            dictDefragBucket(d, &d->ht_table[htidx0][v & m0], defragfns);
        }
        de = d->ht_table[htidx0][v & m0];
        while (de) {
            next = dictGetNext(de);
            fn(privdata, de);
            de = next;
        }

        /* Set unmasked bits so incrementing the reversed cursor
         * operates on the masked bits */
        v |= ~m0;

        /* Increment the reverse cursor */
        v = rev(v);
        v++;
        v = rev(v);

    } else {
        htidx0 = 0;
        htidx1 = 1;

        /* Make sure t0 is the smaller and t1 is the bigger table */
        if (DICTHT_SIZE(d->ht_size_exp[htidx0]) > DICTHT_SIZE(d->ht_size_exp[htidx1])) {
            htidx0 = 1;
            htidx1 = 0;
        }

        m0 = DICTHT_SIZE_MASK(d->ht_size_exp[htidx0]);
        m1 = DICTHT_SIZE_MASK(d->ht_size_exp[htidx1]);

        /* Emit entries at cursor */
        if (defragfns) {
            dictDefragBucket(d, &d->ht_table[htidx0][v & m0], defragfns);
        }
        de = d->ht_table[htidx0][v & m0];
        while (de) {
            next = dictGetNext(de);
            fn(privdata, de);
            de = next;
        }

        /* Iterate over indices in larger table that are the expansion
         * of the index pointed to by the cursor in the smaller table */
        do {
            /* Emit entries at cursor */
            if (defragfns) {
                dictDefragBucket(d, &d->ht_table[htidx1][v & m1], defragfns);
            }
            de = d->ht_table[htidx1][v & m1];
            while (de) {
                next = dictGetNext(de);
                fn(privdata, de);
                de = next;
            }

            /* Increment the reverse cursor not covered by the smaller mask.*/
            v |= ~m1;
            v = rev(v);
            v++;
            v = rev(v);

            /* Continue while bits covered by mask difference is non-zero */
        } while (v & (m0 ^ m1));
    }

    dictResumeRehashing(d);

    return v;
}

/* ------------------------- private functions ------------------------------ */

/* Because we may need to allocate huge memory chunk at once when dict
 * expands, we will check this allocation is allowed or not if the dict
 * type has expandAllowed member function. */
static int dictTypeExpandAllowed(dict *d) {
    if (d->type->expandAllowed == NULL) return 1;
    return d->type->expandAllowed(
                    DICTHT_SIZE(_dictNextExp(d->ht_used[0] + 1)) * sizeof(dictEntry*),
                    (double)d->ht_used[0] / DICTHT_SIZE(d->ht_size_exp[0]));
}

/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d)
{
    /* Incremental rehashing already in progress. Return. */
    if (dictIsRehashing(d)) return DICT_OK;

    /* If the hash table is empty expand it to the initial size. */
    if (DICTHT_SIZE(d->ht_size_exp[0]) == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);

    /* If we reached the 1:1 ratio, and we are allowed to resize the hash
     * table (global setting) or we should avoid it but the ratio between
     * elements/buckets is over the "safe" threshold, we resize doubling
     * the number of buckets. */
    if ((dict_can_resize == DICT_RESIZE_ENABLE &&
         d->ht_used[0] >= DICTHT_SIZE(d->ht_size_exp[0])) ||
        (dict_can_resize != DICT_RESIZE_FORBID &&
         d->ht_used[0] / DICTHT_SIZE(d->ht_size_exp[0]) > dict_force_resize_ratio))
    {
        if (!dictTypeExpandAllowed(d))
            return DICT_OK;
        return dictExpand(d, d->ht_used[0] + 1);
    }
    return DICT_OK;
}

/* Our hash table capability is a power of two */
static signed char _dictNextExp(unsigned long size)
{
    if (size <= DICT_HT_INITIAL_SIZE) return DICT_HT_INITIAL_EXP;
    if (size >= LONG_MAX) return (8*sizeof(long)-1);

    return 8*sizeof(long) - __builtin_clzl(size-1);
}

/* Finds and returns the position within the dict where the provided key should
 * be inserted using dictInsertAtPosition if the key does not already exist in
 * the dict. If the key exists in the dict, NULL is returned and the optional
 * 'existing' entry pointer is populated, if provided. */
void *dictFindPositionForInsert(dict *d, const void *key, dictEntry **existing) {
    unsigned long idx, table;
    dictEntry *he;
    uint64_t hash = dictHashKey(d, key);
    if (existing) *existing = NULL;
    if (dictIsRehashing(d)) _dictRehashStep(d);

    /* Expand the hash table if needed */
    if (_dictExpandIfNeeded(d) == DICT_ERR)
        return NULL;
    for (table = 0; table <= 1; table++) {
        idx = hash & DICTHT_SIZE_MASK(d->ht_size_exp[table]);
        /* Search if this slot does not already contain the given key */
        he = d->ht_table[table][idx];
        while(he) {
            void *he_key = dictGetKey(he);
            if (key == he_key || dictCompareKeys(d, key, he_key)) {
                if (existing) *existing = he;
                return NULL;
            }
            he = dictGetNext(he);
        }
        if (!dictIsRehashing(d)) break;
    }

    /* If we are in the process of rehashing the hash table, the bucket is
     * always returned in the context of the second (new) hash table. */
    dictEntry **bucket = &d->ht_table[dictIsRehashing(d) ? 1 : 0][idx];
    return bucket;
}

void dictEmpty(dict *d, void(callback)(dict*)) {
    _dictClear(d,0,callback);
    _dictClear(d,1,callback);
    d->rehashidx = -1;
    d->pauserehash = 0;
}

void dictSetResizeEnabled(dictResizeEnable enable) {
    dict_can_resize = enable;
}

uint64_t dictGetHash(dict *d, const void *key) {
    return dictHashKey(d, key);
}

/* Finds the dictEntry using pointer and pre-calculated hash.
 * oldkey is a dead pointer and should not be accessed.
 * the hash value should be provided using dictGetHash.
 * no string / key comparison is performed.
 * return value is a pointer to the dictEntry if found, or NULL if not found. */
dictEntry *dictFindEntryByPtrAndHash(dict *d, const void *oldptr, uint64_t hash) {
    dictEntry *he;
    unsigned long idx, table;

    if (dictSize(d) == 0) return NULL; /* dict is empty */
    for (table = 0; table <= 1; table++) {
        idx = hash & DICTHT_SIZE_MASK(d->ht_size_exp[table]);
        he = d->ht_table[table][idx];
        while(he) {
            if (oldptr == dictGetKey(he))
                return he;
            he = dictGetNext(he);
        }
        if (!dictIsRehashing(d)) return NULL;
    }
    return NULL;
}

/* ------------------------------- Debugging ---------------------------------*/

#define DICT_STATS_VECTLEN 50
size_t _dictGetStatsHt(char *buf, size_t bufsize, dict *d, int htidx, int full) {
    unsigned long i, slots = 0, chainlen, maxchainlen = 0;
    unsigned long totchainlen = 0;
    unsigned long clvector[DICT_STATS_VECTLEN];
    size_t l = 0;

    if (d->ht_used[htidx] == 0) {
        return snprintf(buf,bufsize,
            "Hash table %d stats (%s):\n"
            "No stats available for empty dictionaries\n",
            htidx, (htidx == 0) ? "main hash table" : "rehashing target");
    }

    if (!full) {
        l += snprintf(buf+l,bufsize-l,
            "Hash table %d stats (%s):\n"
            " table size: %lu\n"
            " number of elements: %lu\n",
            htidx, (htidx == 0) ? "main hash table" : "rehashing target",
            DICTHT_SIZE(d->ht_size_exp[htidx]), d->ht_used[htidx]);

        /* Make sure there is a NULL term at the end. */
        buf[bufsize-1] = '\0';
        /* Unlike snprintf(), return the number of characters actually written. */
        return strlen(buf);
    }

    /* Compute stats. */
    for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
    for (i = 0; i < DICTHT_SIZE(d->ht_size_exp[htidx]); i++) {
        dictEntry *he;

        if (d->ht_table[htidx][i] == NULL) {
            clvector[0]++;
            continue;
        }
        slots++;
        /* For each hash entry on this slot... */
        chainlen = 0;
        he = d->ht_table[htidx][i];
        while(he) {
            chainlen++;
            he = dictGetNext(he);
        }
        clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
        if (chainlen > maxchainlen) maxchainlen = chainlen;
        totchainlen += chainlen;
    }

    /* Generate human readable stats. */
    l += snprintf(buf+l,bufsize-l,
        "Hash table %d stats (%s):\n"
        " table size: %lu\n"
        " number of elements: %lu\n"
        " different slots: %lu\n"
        " max chain length: %lu\n"
        " avg chain length (counted): %.02f\n"
        " avg chain length (computed): %.02f\n"
        " Chain length distribution:\n",
        htidx, (htidx == 0) ? "main hash table" : "rehashing target",
        DICTHT_SIZE(d->ht_size_exp[htidx]), d->ht_used[htidx], slots, maxchainlen,
        (float)totchainlen/slots, (float)d->ht_used[htidx]/slots);

    for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
        if (clvector[i] == 0) continue;
        if (l >= bufsize) break;
        l += snprintf(buf+l,bufsize-l,
            "   %ld: %ld (%.02f%%)\n",
            i, clvector[i], ((float)clvector[i]/DICTHT_SIZE(d->ht_size_exp[htidx]))*100);
    }

    /* Make sure there is a NULL term at the end. */
    buf[bufsize-1] = '\0';
    /* Unlike snprintf(), return the number of characters actually written. */
    return strlen(buf);
}

void dictGetStats(char *buf, size_t bufsize, dict *d, int full) {
    size_t l;
    char *orig_buf = buf;
    size_t orig_bufsize = bufsize;

    l = _dictGetStatsHt(buf,bufsize,d,0,full);
    if (dictIsRehashing(d) && bufsize > l) {
        buf += l;
        bufsize -= l;
        _dictGetStatsHt(buf,bufsize,d,1,full);
    }
    /* Make sure there is a NULL term at the end. */
    orig_buf[orig_bufsize-1] = '\0';
}

/* ------------------------------- Benchmark ---------------------------------*/

#ifdef REDIS_TEST
#include "testhelp.h"

#define UNUSED(V) ((void) V)

uint64_t hashCallback(const void *key) {
    return dictGenHashFunction((unsigned char*)key, strlen((char*)key));
}

int compareCallback(dict *d, const void *key1, const void *key2) {
    int l1,l2;
    UNUSED(d);

    l1 = strlen((char*)key1);
    l2 = strlen((char*)key2);
    if (l1 != l2) return 0;
    return memcmp(key1, key2, l1) == 0;
}

void freeCallback(dict *d, void *val) {
    UNUSED(d);

    zfree(val);
}

char *stringFromLongLong(long long value) {
    char buf[32];
    int len;
    char *s;

    len = snprintf(buf,sizeof(buf),"%lld",value);
    s = zmalloc(len+1);
    memcpy(s, buf, len);
    s[len] = '\0';
    return s;
}

dictType BenchmarkDictType = {
    hashCallback,
    NULL,
    NULL,
    compareCallback,
    freeCallback,
    NULL,
    NULL
};

#define start_benchmark() start = timeInMilliseconds()
#define end_benchmark(msg) do { \
    elapsed = timeInMilliseconds()-start; \
    printf(msg ": %ld items in %lld ms\n", count, elapsed); \
} while(0)

/* ./redis-server test dict [<count> | --accurate] */
int dictTest(int argc, char **argv, int flags) {
    long j;
    long long start, elapsed;
    dict *dict = dictCreate(&BenchmarkDictType);
    long count = 0;
    int accurate = (flags & REDIS_TEST_ACCURATE);

    if (argc == 4) {
        if (accurate) {
            count = 5000000;
        } else {
            count = strtol(argv[3],NULL,10);
        }
    } else {
        count = 5000;
    }

    start_benchmark();
    for (j = 0; j < count; j++) {
        int retval = dictAdd(dict,stringFromLongLong(j),(void*)j);
        assert(retval == DICT_OK);
    }
    end_benchmark("Inserting");
    assert((long)dictSize(dict) == count);

    /* Wait for rehashing. */
    while (dictIsRehashing(dict)) {
        dictRehashMilliseconds(dict,100);
    }

    start_benchmark();
    for (j = 0; j < count; j++) {
        char *key = stringFromLongLong(j);
        dictEntry *de = dictFind(dict,key);
        assert(de != NULL);
        zfree(key);
    }
    end_benchmark("Linear access of existing elements");

    start_benchmark();
    for (j = 0; j < count; j++) {
        char *key = stringFromLongLong(j);
        dictEntry *de = dictFind(dict,key);
        assert(de != NULL);
        zfree(key);
    }
    end_benchmark("Linear access of existing elements (2nd round)");

    start_benchmark();
    for (j = 0; j < count; j++) {
        char *key = stringFromLongLong(rand() % count);
        dictEntry *de = dictFind(dict,key);
        assert(de != NULL);
        zfree(key);
    }
    end_benchmark("Random access of existing elements");

    start_benchmark();
    for (j = 0; j < count; j++) {
        dictEntry *de = dictGetRandomKey(dict);
        assert(de != NULL);
    }
    end_benchmark("Accessing random keys");

    start_benchmark();
    for (j = 0; j < count; j++) {
        char *key = stringFromLongLong(rand() % count);
        key[0] = 'X';
        dictEntry *de = dictFind(dict,key);
        assert(de == NULL);
        zfree(key);
    }
    end_benchmark("Accessing missing");

    start_benchmark();
    for (j = 0; j < count; j++) {
        char *key = stringFromLongLong(j);
        int retval = dictDelete(dict,key);
        assert(retval == DICT_OK);
        key[0] += 17; /* Change first number to letter. */
        retval = dictAdd(dict,key,(void*)j);
        assert(retval == DICT_OK);
    }
    end_benchmark("Removing and adding");
    dictRelease(dict);
    return 0;
}
#endif