1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
|
/* Listpack -- A lists of strings serialization format
*
* This file implements the specification you can find at:
*
* https://github.com/antirez/listpack
*
* Copyright (c) 2017, Salvatore Sanfilippo <antirez at gmail dot com>
* Copyright (c) 2020, Redis Labs, Inc
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <limits.h>
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "listpack.h"
#include "listpack_malloc.h"
#include "redisassert.h"
#include "util.h"
#define LP_HDR_SIZE 6 /* 32 bit total len + 16 bit number of elements. */
#define LP_HDR_NUMELE_UNKNOWN UINT16_MAX
#define LP_MAX_INT_ENCODING_LEN 9
#define LP_MAX_BACKLEN_SIZE 5
#define LP_ENCODING_INT 0
#define LP_ENCODING_STRING 1
#define LP_ENCODING_7BIT_UINT 0
#define LP_ENCODING_7BIT_UINT_MASK 0x80
#define LP_ENCODING_IS_7BIT_UINT(byte) (((byte)&LP_ENCODING_7BIT_UINT_MASK)==LP_ENCODING_7BIT_UINT)
#define LP_ENCODING_7BIT_UINT_ENTRY_SIZE 2
#define LP_ENCODING_6BIT_STR 0x80
#define LP_ENCODING_6BIT_STR_MASK 0xC0
#define LP_ENCODING_IS_6BIT_STR(byte) (((byte)&LP_ENCODING_6BIT_STR_MASK)==LP_ENCODING_6BIT_STR)
#define LP_ENCODING_13BIT_INT 0xC0
#define LP_ENCODING_13BIT_INT_MASK 0xE0
#define LP_ENCODING_IS_13BIT_INT(byte) (((byte)&LP_ENCODING_13BIT_INT_MASK)==LP_ENCODING_13BIT_INT)
#define LP_ENCODING_13BIT_INT_ENTRY_SIZE 3
#define LP_ENCODING_12BIT_STR 0xE0
#define LP_ENCODING_12BIT_STR_MASK 0xF0
#define LP_ENCODING_IS_12BIT_STR(byte) (((byte)&LP_ENCODING_12BIT_STR_MASK)==LP_ENCODING_12BIT_STR)
#define LP_ENCODING_16BIT_INT 0xF1
#define LP_ENCODING_16BIT_INT_MASK 0xFF
#define LP_ENCODING_IS_16BIT_INT(byte) (((byte)&LP_ENCODING_16BIT_INT_MASK)==LP_ENCODING_16BIT_INT)
#define LP_ENCODING_16BIT_INT_ENTRY_SIZE 4
#define LP_ENCODING_24BIT_INT 0xF2
#define LP_ENCODING_24BIT_INT_MASK 0xFF
#define LP_ENCODING_IS_24BIT_INT(byte) (((byte)&LP_ENCODING_24BIT_INT_MASK)==LP_ENCODING_24BIT_INT)
#define LP_ENCODING_24BIT_INT_ENTRY_SIZE 5
#define LP_ENCODING_32BIT_INT 0xF3
#define LP_ENCODING_32BIT_INT_MASK 0xFF
#define LP_ENCODING_IS_32BIT_INT(byte) (((byte)&LP_ENCODING_32BIT_INT_MASK)==LP_ENCODING_32BIT_INT)
#define LP_ENCODING_32BIT_INT_ENTRY_SIZE 6
#define LP_ENCODING_64BIT_INT 0xF4
#define LP_ENCODING_64BIT_INT_MASK 0xFF
#define LP_ENCODING_IS_64BIT_INT(byte) (((byte)&LP_ENCODING_64BIT_INT_MASK)==LP_ENCODING_64BIT_INT)
#define LP_ENCODING_64BIT_INT_ENTRY_SIZE 10
#define LP_ENCODING_32BIT_STR 0xF0
#define LP_ENCODING_32BIT_STR_MASK 0xFF
#define LP_ENCODING_IS_32BIT_STR(byte) (((byte)&LP_ENCODING_32BIT_STR_MASK)==LP_ENCODING_32BIT_STR)
#define LP_EOF 0xFF
#define LP_ENCODING_6BIT_STR_LEN(p) ((p)[0] & 0x3F)
#define LP_ENCODING_12BIT_STR_LEN(p) ((((p)[0] & 0xF) << 8) | (p)[1])
#define LP_ENCODING_32BIT_STR_LEN(p) (((uint32_t)(p)[1]<<0) | \
((uint32_t)(p)[2]<<8) | \
((uint32_t)(p)[3]<<16) | \
((uint32_t)(p)[4]<<24))
#define lpGetTotalBytes(p) (((uint32_t)(p)[0]<<0) | \
((uint32_t)(p)[1]<<8) | \
((uint32_t)(p)[2]<<16) | \
((uint32_t)(p)[3]<<24))
#define lpGetNumElements(p) (((uint32_t)(p)[4]<<0) | \
((uint32_t)(p)[5]<<8))
#define lpSetTotalBytes(p,v) do { \
(p)[0] = (v)&0xff; \
(p)[1] = ((v)>>8)&0xff; \
(p)[2] = ((v)>>16)&0xff; \
(p)[3] = ((v)>>24)&0xff; \
} while(0)
#define lpSetNumElements(p,v) do { \
(p)[4] = (v)&0xff; \
(p)[5] = ((v)>>8)&0xff; \
} while(0)
/* Validates that 'p' is not outside the listpack.
* All function that return a pointer to an element in the listpack will assert
* that this element is valid, so it can be freely used.
* Generally functions such lpNext and lpDelete assume the input pointer is
* already validated (since it's the return value of another function). */
#define ASSERT_INTEGRITY(lp, p) do { \
assert((p) >= (lp)+LP_HDR_SIZE && (p) < (lp)+lpGetTotalBytes((lp))); \
} while (0)
/* Similar to the above, but validates the entire element length rather than just
* it's pointer. */
#define ASSERT_INTEGRITY_LEN(lp, p, len) do { \
assert((p) >= (lp)+LP_HDR_SIZE && (p)+(len) < (lp)+lpGetTotalBytes((lp))); \
} while (0)
static inline void lpAssertValidEntry(unsigned char* lp, size_t lpbytes, unsigned char *p);
/* Don't let listpacks grow over 1GB in any case, don't wanna risk overflow in
* Total Bytes header field */
#define LISTPACK_MAX_SAFETY_SIZE (1<<30)
int lpSafeToAdd(unsigned char* lp, size_t add) {
size_t len = lp? lpGetTotalBytes(lp): 0;
if (len + add > LISTPACK_MAX_SAFETY_SIZE)
return 0;
return 1;
}
/* Convert a string into a signed 64 bit integer.
* The function returns 1 if the string could be parsed into a (non-overflowing)
* signed 64 bit int, 0 otherwise. The 'value' will be set to the parsed value
* when the function returns success.
*
* Note that this function demands that the string strictly represents
* a int64 value: no spaces or other characters before or after the string
* representing the number are accepted, nor zeroes at the start if not
* for the string "0" representing the zero number.
*
* Because of its strictness, it is safe to use this function to check if
* you can convert a string into a long long, and obtain back the string
* from the number without any loss in the string representation. *
*
* -----------------------------------------------------------------------------
*
* Credits: this function was adapted from the Redis source code, file
* "utils.c", function string2ll(), and is copyright:
*
* Copyright(C) 2011, Pieter Noordhuis
* Copyright(C) 2011, Salvatore Sanfilippo
*
* The function is released under the BSD 3-clause license.
*/
int lpStringToInt64(const char *s, unsigned long slen, int64_t *value) {
const char *p = s;
unsigned long plen = 0;
int negative = 0;
uint64_t v;
/* Abort if length indicates this cannot possibly be an int */
if (slen == 0 || slen >= LONG_STR_SIZE)
return 0;
/* Special case: first and only digit is 0. */
if (slen == 1 && p[0] == '0') {
if (value != NULL) *value = 0;
return 1;
}
if (p[0] == '-') {
negative = 1;
p++; plen++;
/* Abort on only a negative sign. */
if (plen == slen)
return 0;
}
/* First digit should be 1-9, otherwise the string should just be 0. */
if (p[0] >= '1' && p[0] <= '9') {
v = p[0]-'0';
p++; plen++;
} else {
return 0;
}
while (plen < slen && p[0] >= '0' && p[0] <= '9') {
if (v > (UINT64_MAX / 10)) /* Overflow. */
return 0;
v *= 10;
if (v > (UINT64_MAX - (p[0]-'0'))) /* Overflow. */
return 0;
v += p[0]-'0';
p++; plen++;
}
/* Return if not all bytes were used. */
if (plen < slen)
return 0;
if (negative) {
if (v > ((uint64_t)(-(INT64_MIN+1))+1)) /* Overflow. */
return 0;
if (value != NULL) *value = -v;
} else {
if (v > INT64_MAX) /* Overflow. */
return 0;
if (value != NULL) *value = v;
}
return 1;
}
/* Create a new, empty listpack.
* On success the new listpack is returned, otherwise an error is returned.
* Pre-allocate at least `capacity` bytes of memory,
* over-allocated memory can be shrunk by `lpShrinkToFit`.
* */
unsigned char *lpNew(size_t capacity) {
unsigned char *lp = lp_malloc(capacity > LP_HDR_SIZE+1 ? capacity : LP_HDR_SIZE+1);
if (lp == NULL) return NULL;
lpSetTotalBytes(lp,LP_HDR_SIZE+1);
lpSetNumElements(lp,0);
lp[LP_HDR_SIZE] = LP_EOF;
return lp;
}
/* Free the specified listpack. */
void lpFree(unsigned char *lp) {
lp_free(lp);
}
/* Shrink the memory to fit. */
unsigned char* lpShrinkToFit(unsigned char *lp) {
size_t size = lpGetTotalBytes(lp);
if (size < lp_malloc_size(lp)) {
return lp_realloc(lp, size);
} else {
return lp;
}
}
/* Stores the integer encoded representation of 'v' in the 'intenc' buffer. */
static inline void lpEncodeIntegerGetType(int64_t v, unsigned char *intenc, uint64_t *enclen) {
if (v >= 0 && v <= 127) {
/* Single byte 0-127 integer. */
intenc[0] = v;
*enclen = 1;
} else if (v >= -4096 && v <= 4095) {
/* 13 bit integer. */
if (v < 0) v = ((int64_t)1<<13)+v;
intenc[0] = (v>>8)|LP_ENCODING_13BIT_INT;
intenc[1] = v&0xff;
*enclen = 2;
} else if (v >= -32768 && v <= 32767) {
/* 16 bit integer. */
if (v < 0) v = ((int64_t)1<<16)+v;
intenc[0] = LP_ENCODING_16BIT_INT;
intenc[1] = v&0xff;
intenc[2] = v>>8;
*enclen = 3;
} else if (v >= -8388608 && v <= 8388607) {
/* 24 bit integer. */
if (v < 0) v = ((int64_t)1<<24)+v;
intenc[0] = LP_ENCODING_24BIT_INT;
intenc[1] = v&0xff;
intenc[2] = (v>>8)&0xff;
intenc[3] = v>>16;
*enclen = 4;
} else if (v >= -2147483648 && v <= 2147483647) {
/* 32 bit integer. */
if (v < 0) v = ((int64_t)1<<32)+v;
intenc[0] = LP_ENCODING_32BIT_INT;
intenc[1] = v&0xff;
intenc[2] = (v>>8)&0xff;
intenc[3] = (v>>16)&0xff;
intenc[4] = v>>24;
*enclen = 5;
} else {
/* 64 bit integer. */
uint64_t uv = v;
intenc[0] = LP_ENCODING_64BIT_INT;
intenc[1] = uv&0xff;
intenc[2] = (uv>>8)&0xff;
intenc[3] = (uv>>16)&0xff;
intenc[4] = (uv>>24)&0xff;
intenc[5] = (uv>>32)&0xff;
intenc[6] = (uv>>40)&0xff;
intenc[7] = (uv>>48)&0xff;
intenc[8] = uv>>56;
*enclen = 9;
}
}
/* Given an element 'ele' of size 'size', determine if the element can be
* represented inside the listpack encoded as integer, and returns
* LP_ENCODING_INT if so. Otherwise returns LP_ENCODING_STR if no integer
* encoding is possible.
*
* If the LP_ENCODING_INT is returned, the function stores the integer encoded
* representation of the element in the 'intenc' buffer.
*
* Regardless of the returned encoding, 'enclen' is populated by reference to
* the number of bytes that the string or integer encoded element will require
* in order to be represented. */
static inline int lpEncodeGetType(unsigned char *ele, uint32_t size, unsigned char *intenc, uint64_t *enclen) {
int64_t v;
if (lpStringToInt64((const char*)ele, size, &v)) {
lpEncodeIntegerGetType(v, intenc, enclen);
return LP_ENCODING_INT;
} else {
if (size < 64) *enclen = 1+size;
else if (size < 4096) *enclen = 2+size;
else *enclen = 5+(uint64_t)size;
return LP_ENCODING_STRING;
}
}
/* Store a reverse-encoded variable length field, representing the length
* of the previous element of size 'l', in the target buffer 'buf'.
* The function returns the number of bytes used to encode it, from
* 1 to 5. If 'buf' is NULL the function just returns the number of bytes
* needed in order to encode the backlen. */
static inline unsigned long lpEncodeBacklen(unsigned char *buf, uint64_t l) {
if (l <= 127) {
if (buf) buf[0] = l;
return 1;
} else if (l < 16383) {
if (buf) {
buf[0] = l>>7;
buf[1] = (l&127)|128;
}
return 2;
} else if (l < 2097151) {
if (buf) {
buf[0] = l>>14;
buf[1] = ((l>>7)&127)|128;
buf[2] = (l&127)|128;
}
return 3;
} else if (l < 268435455) {
if (buf) {
buf[0] = l>>21;
buf[1] = ((l>>14)&127)|128;
buf[2] = ((l>>7)&127)|128;
buf[3] = (l&127)|128;
}
return 4;
} else {
if (buf) {
buf[0] = l>>28;
buf[1] = ((l>>21)&127)|128;
buf[2] = ((l>>14)&127)|128;
buf[3] = ((l>>7)&127)|128;
buf[4] = (l&127)|128;
}
return 5;
}
}
/* Decode the backlen and returns it. If the encoding looks invalid (more than
* 5 bytes are used), UINT64_MAX is returned to report the problem. */
static inline uint64_t lpDecodeBacklen(unsigned char *p) {
uint64_t val = 0;
uint64_t shift = 0;
do {
val |= (uint64_t)(p[0] & 127) << shift;
if (!(p[0] & 128)) break;
shift += 7;
p--;
if (shift > 28) return UINT64_MAX;
} while(1);
return val;
}
/* Encode the string element pointed by 's' of size 'len' in the target
* buffer 's'. The function should be called with 'buf' having always enough
* space for encoding the string. This is done by calling lpEncodeGetType()
* before calling this function. */
static inline void lpEncodeString(unsigned char *buf, unsigned char *s, uint32_t len) {
if (len < 64) {
buf[0] = len | LP_ENCODING_6BIT_STR;
memcpy(buf+1,s,len);
} else if (len < 4096) {
buf[0] = (len >> 8) | LP_ENCODING_12BIT_STR;
buf[1] = len & 0xff;
memcpy(buf+2,s,len);
} else {
buf[0] = LP_ENCODING_32BIT_STR;
buf[1] = len & 0xff;
buf[2] = (len >> 8) & 0xff;
buf[3] = (len >> 16) & 0xff;
buf[4] = (len >> 24) & 0xff;
memcpy(buf+5,s,len);
}
}
/* Return the encoded length of the listpack element pointed by 'p'.
* This includes the encoding byte, length bytes, and the element data itself.
* If the element encoding is wrong then 0 is returned.
* Note that this method may access additional bytes (in case of 12 and 32 bit
* str), so should only be called when we know 'p' was already validated by
* lpCurrentEncodedSizeBytes or ASSERT_INTEGRITY_LEN (possibly since 'p' is
* a return value of another function that validated its return. */
static inline uint32_t lpCurrentEncodedSizeUnsafe(unsigned char *p) {
if (LP_ENCODING_IS_7BIT_UINT(p[0])) return 1;
if (LP_ENCODING_IS_6BIT_STR(p[0])) return 1+LP_ENCODING_6BIT_STR_LEN(p);
if (LP_ENCODING_IS_13BIT_INT(p[0])) return 2;
if (LP_ENCODING_IS_16BIT_INT(p[0])) return 3;
if (LP_ENCODING_IS_24BIT_INT(p[0])) return 4;
if (LP_ENCODING_IS_32BIT_INT(p[0])) return 5;
if (LP_ENCODING_IS_64BIT_INT(p[0])) return 9;
if (LP_ENCODING_IS_12BIT_STR(p[0])) return 2+LP_ENCODING_12BIT_STR_LEN(p);
if (LP_ENCODING_IS_32BIT_STR(p[0])) return 5+LP_ENCODING_32BIT_STR_LEN(p);
if (p[0] == LP_EOF) return 1;
return 0;
}
/* Return bytes needed to encode the length of the listpack element pointed by 'p'.
* This includes just the encoding byte, and the bytes needed to encode the length
* of the element (excluding the element data itself)
* If the element encoding is wrong then 0 is returned. */
static inline uint32_t lpCurrentEncodedSizeBytes(unsigned char *p) {
if (LP_ENCODING_IS_7BIT_UINT(p[0])) return 1;
if (LP_ENCODING_IS_6BIT_STR(p[0])) return 1;
if (LP_ENCODING_IS_13BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_16BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_24BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_32BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_64BIT_INT(p[0])) return 1;
if (LP_ENCODING_IS_12BIT_STR(p[0])) return 2;
if (LP_ENCODING_IS_32BIT_STR(p[0])) return 5;
if (p[0] == LP_EOF) return 1;
return 0;
}
/* Skip the current entry returning the next. It is invalid to call this
* function if the current element is the EOF element at the end of the
* listpack, however, while this function is used to implement lpNext(),
* it does not return NULL when the EOF element is encountered. */
unsigned char *lpSkip(unsigned char *p) {
unsigned long entrylen = lpCurrentEncodedSizeUnsafe(p);
entrylen += lpEncodeBacklen(NULL,entrylen);
p += entrylen;
return p;
}
/* If 'p' points to an element of the listpack, calling lpNext() will return
* the pointer to the next element (the one on the right), or NULL if 'p'
* already pointed to the last element of the listpack. */
unsigned char *lpNext(unsigned char *lp, unsigned char *p) {
assert(p);
p = lpSkip(p);
if (p[0] == LP_EOF) return NULL;
lpAssertValidEntry(lp, lpBytes(lp), p);
return p;
}
/* If 'p' points to an element of the listpack, calling lpPrev() will return
* the pointer to the previous element (the one on the left), or NULL if 'p'
* already pointed to the first element of the listpack. */
unsigned char *lpPrev(unsigned char *lp, unsigned char *p) {
assert(p);
if (p-lp == LP_HDR_SIZE) return NULL;
p--; /* Seek the first backlen byte of the last element. */
uint64_t prevlen = lpDecodeBacklen(p);
prevlen += lpEncodeBacklen(NULL,prevlen);
p -= prevlen-1; /* Seek the first byte of the previous entry. */
lpAssertValidEntry(lp, lpBytes(lp), p);
return p;
}
/* Return a pointer to the first element of the listpack, or NULL if the
* listpack has no elements. */
unsigned char *lpFirst(unsigned char *lp) {
unsigned char *p = lp + LP_HDR_SIZE; /* Skip the header. */
if (p[0] == LP_EOF) return NULL;
lpAssertValidEntry(lp, lpBytes(lp), p);
return p;
}
/* Return a pointer to the last element of the listpack, or NULL if the
* listpack has no elements. */
unsigned char *lpLast(unsigned char *lp) {
unsigned char *p = lp+lpGetTotalBytes(lp)-1; /* Seek EOF element. */
return lpPrev(lp,p); /* Will return NULL if EOF is the only element. */
}
/* Return the number of elements inside the listpack. This function attempts
* to use the cached value when within range, otherwise a full scan is
* needed. As a side effect of calling this function, the listpack header
* could be modified, because if the count is found to be already within
* the 'numele' header field range, the new value is set. */
unsigned long lpLength(unsigned char *lp) {
uint32_t numele = lpGetNumElements(lp);
if (numele != LP_HDR_NUMELE_UNKNOWN) return numele;
/* Too many elements inside the listpack. We need to scan in order
* to get the total number. */
uint32_t count = 0;
unsigned char *p = lpFirst(lp);
while(p) {
count++;
p = lpNext(lp,p);
}
/* If the count is again within range of the header numele field,
* set it. */
if (count < LP_HDR_NUMELE_UNKNOWN) lpSetNumElements(lp,count);
return count;
}
/* Return the listpack element pointed by 'p'.
*
* The function changes behavior depending on the passed 'intbuf' value.
* Specifically, if 'intbuf' is NULL:
*
* If the element is internally encoded as an integer, the function returns
* NULL and populates the integer value by reference in 'count'. Otherwise if
* the element is encoded as a string a pointer to the string (pointing inside
* the listpack itself) is returned, and 'count' is set to the length of the
* string.
*
* If instead 'intbuf' points to a buffer passed by the caller, that must be
* at least LP_INTBUF_SIZE bytes, the function always returns the element as
* it was a string (returning the pointer to the string and setting the
* 'count' argument to the string length by reference). However if the element
* is encoded as an integer, the 'intbuf' buffer is used in order to store
* the string representation.
*
* The user should use one or the other form depending on what the value will
* be used for. If there is immediate usage for an integer value returned
* by the function, than to pass a buffer (and convert it back to a number)
* is of course useless.
*
* If 'entry_size' is not NULL, *entry_size is set to the entry length of the
* listpack element pointed by 'p'. This includes the encoding bytes, length
* bytes, the element data itself, and the backlen bytes.
*
* If the function is called against a badly encoded ziplist, so that there
* is no valid way to parse it, the function returns like if there was an
* integer encoded with value 12345678900000000 + <unrecognized byte>, this may
* be an hint to understand that something is wrong. To crash in this case is
* not sensible because of the different requirements of the application using
* this lib.
*
* Similarly, there is no error returned since the listpack normally can be
* assumed to be valid, so that would be a very high API cost. */
static inline unsigned char *lpGetWithSize(unsigned char *p, int64_t *count, unsigned char *intbuf, uint64_t *entry_size) {
int64_t val;
uint64_t uval, negstart, negmax;
assert(p); /* assertion for valgrind (avoid NPD) */
if (LP_ENCODING_IS_7BIT_UINT(p[0])) {
negstart = UINT64_MAX; /* 7 bit ints are always positive. */
negmax = 0;
uval = p[0] & 0x7f;
if (entry_size) *entry_size = LP_ENCODING_7BIT_UINT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_6BIT_STR(p[0])) {
*count = LP_ENCODING_6BIT_STR_LEN(p);
if (entry_size) *entry_size = 1 + *count + lpEncodeBacklen(NULL, *count + 1);
return p+1;
} else if (LP_ENCODING_IS_13BIT_INT(p[0])) {
uval = ((p[0]&0x1f)<<8) | p[1];
negstart = (uint64_t)1<<12;
negmax = 8191;
if (entry_size) *entry_size = LP_ENCODING_13BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_16BIT_INT(p[0])) {
uval = (uint64_t)p[1] |
(uint64_t)p[2]<<8;
negstart = (uint64_t)1<<15;
negmax = UINT16_MAX;
if (entry_size) *entry_size = LP_ENCODING_16BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_24BIT_INT(p[0])) {
uval = (uint64_t)p[1] |
(uint64_t)p[2]<<8 |
(uint64_t)p[3]<<16;
negstart = (uint64_t)1<<23;
negmax = UINT32_MAX>>8;
if (entry_size) *entry_size = LP_ENCODING_24BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_32BIT_INT(p[0])) {
uval = (uint64_t)p[1] |
(uint64_t)p[2]<<8 |
(uint64_t)p[3]<<16 |
(uint64_t)p[4]<<24;
negstart = (uint64_t)1<<31;
negmax = UINT32_MAX;
if (entry_size) *entry_size = LP_ENCODING_32BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_64BIT_INT(p[0])) {
uval = (uint64_t)p[1] |
(uint64_t)p[2]<<8 |
(uint64_t)p[3]<<16 |
(uint64_t)p[4]<<24 |
(uint64_t)p[5]<<32 |
(uint64_t)p[6]<<40 |
(uint64_t)p[7]<<48 |
(uint64_t)p[8]<<56;
negstart = (uint64_t)1<<63;
negmax = UINT64_MAX;
if (entry_size) *entry_size = LP_ENCODING_64BIT_INT_ENTRY_SIZE;
} else if (LP_ENCODING_IS_12BIT_STR(p[0])) {
*count = LP_ENCODING_12BIT_STR_LEN(p);
if (entry_size) *entry_size = 2 + *count + lpEncodeBacklen(NULL, *count + 2);
return p+2;
} else if (LP_ENCODING_IS_32BIT_STR(p[0])) {
*count = LP_ENCODING_32BIT_STR_LEN(p);
if (entry_size) *entry_size = 5 + *count + lpEncodeBacklen(NULL, *count + 5);
return p+5;
} else {
uval = 12345678900000000ULL + p[0];
negstart = UINT64_MAX;
negmax = 0;
}
/* We reach this code path only for integer encodings.
* Convert the unsigned value to the signed one using two's complement
* rule. */
if (uval >= negstart) {
/* This three steps conversion should avoid undefined behaviors
* in the unsigned -> signed conversion. */
uval = negmax-uval;
val = uval;
val = -val-1;
} else {
val = uval;
}
/* Return the string representation of the integer or the value itself
* depending on intbuf being NULL or not. */
if (intbuf) {
*count = ll2string((char*)intbuf,LP_INTBUF_SIZE,(long long)val);
return intbuf;
} else {
*count = val;
return NULL;
}
}
unsigned char *lpGet(unsigned char *p, int64_t *count, unsigned char *intbuf) {
return lpGetWithSize(p, count, intbuf, NULL);
}
/* This is just a wrapper to lpGet() that is able to get entry value directly.
* When the function returns NULL, it populates the integer value by reference in 'lval'.
* Otherwise if the element is encoded as a string a pointer to the string (pointing
* inside the listpack itself) is returned, and 'slen' is set to the length of the
* string. */
unsigned char *lpGetValue(unsigned char *p, unsigned int *slen, long long *lval) {
unsigned char *vstr;
int64_t ele_len;
vstr = lpGet(p, &ele_len, NULL);
if (vstr) {
*slen = ele_len;
} else {
*lval = ele_len;
}
return vstr;
}
/* Find pointer to the entry equal to the specified entry. Skip 'skip' entries
* between every comparison. Returns NULL when the field could not be found. */
unsigned char *lpFind(unsigned char *lp, unsigned char *p, unsigned char *s,
uint32_t slen, unsigned int skip) {
int skipcnt = 0;
unsigned char vencoding = 0;
unsigned char *value;
int64_t ll, vll;
uint64_t entry_size = 123456789; /* initialized to avoid warning. */
uint32_t lp_bytes = lpBytes(lp);
assert(p);
while (p) {
if (skipcnt == 0) {
value = lpGetWithSize(p, &ll, NULL, &entry_size);
if (value) {
/* check the value doesn't reach outside the listpack before accessing it */
assert(p >= lp + LP_HDR_SIZE && p + entry_size < lp + lp_bytes);
if (slen == ll && memcmp(value, s, slen) == 0) {
return p;
}
} else {
/* Find out if the searched field can be encoded. Note that
* we do it only the first time, once done vencoding is set
* to non-zero and vll is set to the integer value. */
if (vencoding == 0) {
/* If the entry can be encoded as integer we set it to
* 1, else set it to UCHAR_MAX, so that we don't retry
* again the next time. */
if (slen >= 32 || slen == 0 || !lpStringToInt64((const char*)s, slen, &vll)) {
vencoding = UCHAR_MAX;
} else {
vencoding = 1;
}
}
/* Compare current entry with specified entry, do it only
* if vencoding != UCHAR_MAX because if there is no encoding
* possible for the field it can't be a valid integer. */
if (vencoding != UCHAR_MAX && ll == vll) {
return p;
}
}
/* Reset skip count */
skipcnt = skip;
p += entry_size;
} else {
/* Skip entry */
skipcnt--;
/* Move to next entry, avoid use `lpNext` due to `lpAssertValidEntry` in
* `lpNext` will call `lpBytes`, will cause performance degradation */
p = lpSkip(p);
}
/* The next call to lpGetWithSize could read at most 8 bytes past `p`
* We use the slower validation call only when necessary. */
if (p + 8 >= lp + lp_bytes)
lpAssertValidEntry(lp, lp_bytes, p);
else
assert(p >= lp + LP_HDR_SIZE && p < lp + lp_bytes);
if (p[0] == LP_EOF) break;
}
return NULL;
}
/* Insert, delete or replace the specified string element 'elestr' of length
* 'size' or integer element 'eleint' at the specified position 'p', with 'p'
* being a listpack element pointer obtained with lpFirst(), lpLast(), lpNext(),
* lpPrev() or lpSeek().
*
* The element is inserted before, after, or replaces the element pointed
* by 'p' depending on the 'where' argument, that can be LP_BEFORE, LP_AFTER
* or LP_REPLACE.
*
* If both 'elestr' and `eleint` are NULL, the function removes the element
* pointed by 'p' instead of inserting one.
* If `eleint` is non-NULL, 'size' is the length of 'eleint', the function insert
* or replace with a 64 bit integer, which is stored in the 'eleint' buffer.
* If 'elestr` is non-NULL, 'size' is the length of 'elestr', the function insert
* or replace with a string, which is stored in the 'elestr' buffer.
*
* Returns NULL on out of memory or when the listpack total length would exceed
* the max allowed size of 2^32-1, otherwise the new pointer to the listpack
* holding the new element is returned (and the old pointer passed is no longer
* considered valid)
*
* If 'newp' is not NULL, at the end of a successful call '*newp' will be set
* to the address of the element just added, so that it will be possible to
* continue an interaction with lpNext() and lpPrev().
*
* For deletion operations (both 'elestr' and 'eleint' set to NULL) 'newp' is
* set to the next element, on the right of the deleted one, or to NULL if the
* deleted element was the last one. */
unsigned char *lpInsert(unsigned char *lp, unsigned char *elestr, unsigned char *eleint,
uint32_t size, unsigned char *p, int where, unsigned char **newp)
{
unsigned char intenc[LP_MAX_INT_ENCODING_LEN];
unsigned char backlen[LP_MAX_BACKLEN_SIZE];
uint64_t enclen; /* The length of the encoded element. */
int delete = (elestr == NULL && eleint == NULL);
/* when deletion, it is conceptually replacing the element with a
* zero-length element. So whatever we get passed as 'where', set
* it to LP_REPLACE. */
if (delete) where = LP_REPLACE;
/* If we need to insert after the current element, we just jump to the
* next element (that could be the EOF one) and handle the case of
* inserting before. So the function will actually deal with just two
* cases: LP_BEFORE and LP_REPLACE. */
if (where == LP_AFTER) {
p = lpSkip(p);
where = LP_BEFORE;
ASSERT_INTEGRITY(lp, p);
}
/* Store the offset of the element 'p', so that we can obtain its
* address again after a reallocation. */
unsigned long poff = p-lp;
int enctype;
if (elestr) {
/* Calling lpEncodeGetType() results into the encoded version of the
* element to be stored into 'intenc' in case it is representable as
* an integer: in that case, the function returns LP_ENCODING_INT.
* Otherwise if LP_ENCODING_STR is returned, we'll have to call
* lpEncodeString() to actually write the encoded string on place later.
*
* Whatever the returned encoding is, 'enclen' is populated with the
* length of the encoded element. */
enctype = lpEncodeGetType(elestr,size,intenc,&enclen);
if (enctype == LP_ENCODING_INT) eleint = intenc;
} else if (eleint) {
enctype = LP_ENCODING_INT;
enclen = size; /* 'size' is the length of the encoded integer element. */
} else {
enctype = -1;
enclen = 0;
}
/* We need to also encode the backward-parsable length of the element
* and append it to the end: this allows to traverse the listpack from
* the end to the start. */
unsigned long backlen_size = (!delete) ? lpEncodeBacklen(backlen,enclen) : 0;
uint64_t old_listpack_bytes = lpGetTotalBytes(lp);
uint32_t replaced_len = 0;
if (where == LP_REPLACE) {
replaced_len = lpCurrentEncodedSizeUnsafe(p);
replaced_len += lpEncodeBacklen(NULL,replaced_len);
ASSERT_INTEGRITY_LEN(lp, p, replaced_len);
}
uint64_t new_listpack_bytes = old_listpack_bytes + enclen + backlen_size
- replaced_len;
if (new_listpack_bytes > UINT32_MAX) return NULL;
/* We now need to reallocate in order to make space or shrink the
* allocation (in case 'when' value is LP_REPLACE and the new element is
* smaller). However we do that before memmoving the memory to
* make room for the new element if the final allocation will get
* larger, or we do it after if the final allocation will get smaller. */
unsigned char *dst = lp + poff; /* May be updated after reallocation. */
/* Realloc before: we need more room. */
if (new_listpack_bytes > old_listpack_bytes &&
new_listpack_bytes > lp_malloc_size(lp)) {
if ((lp = lp_realloc(lp,new_listpack_bytes)) == NULL) return NULL;
dst = lp + poff;
}
/* Setup the listpack relocating the elements to make the exact room
* we need to store the new one. */
if (where == LP_BEFORE) {
memmove(dst+enclen+backlen_size,dst,old_listpack_bytes-poff);
} else { /* LP_REPLACE. */
memmove(dst+enclen+backlen_size,
dst+replaced_len,
old_listpack_bytes-poff-replaced_len);
}
/* Realloc after: we need to free space. */
if (new_listpack_bytes < old_listpack_bytes) {
if ((lp = lp_realloc(lp,new_listpack_bytes)) == NULL) return NULL;
dst = lp + poff;
}
/* Store the entry. */
if (newp) {
*newp = dst;
/* In case of deletion, set 'newp' to NULL if the next element is
* the EOF element. */
if (delete && dst[0] == LP_EOF) *newp = NULL;
}
if (!delete) {
if (enctype == LP_ENCODING_INT) {
memcpy(dst,eleint,enclen);
} else if (elestr) {
lpEncodeString(dst,elestr,size);
} else {
redis_unreachable();
}
dst += enclen;
memcpy(dst,backlen,backlen_size);
dst += backlen_size;
}
/* Update header. */
if (where != LP_REPLACE || delete) {
uint32_t num_elements = lpGetNumElements(lp);
if (num_elements != LP_HDR_NUMELE_UNKNOWN) {
if (!delete)
lpSetNumElements(lp,num_elements+1);
else
lpSetNumElements(lp,num_elements-1);
}
}
lpSetTotalBytes(lp,new_listpack_bytes);
#if 0
/* This code path is normally disabled: what it does is to force listpack
* to return *always* a new pointer after performing some modification to
* the listpack, even if the previous allocation was enough. This is useful
* in order to spot bugs in code using listpacks: by doing so we can find
* if the caller forgets to set the new pointer where the listpack reference
* is stored, after an update. */
unsigned char *oldlp = lp;
lp = lp_malloc(new_listpack_bytes);
memcpy(lp,oldlp,new_listpack_bytes);
if (newp) {
unsigned long offset = (*newp)-oldlp;
*newp = lp + offset;
}
/* Make sure the old allocation contains garbage. */
memset(oldlp,'A',new_listpack_bytes);
lp_free(oldlp);
#endif
return lp;
}
/* This is just a wrapper for lpInsert() to directly use a string. */
unsigned char *lpInsertString(unsigned char *lp, unsigned char *s, uint32_t slen,
unsigned char *p, int where, unsigned char **newp)
{
return lpInsert(lp, s, NULL, slen, p, where, newp);
}
/* This is just a wrapper for lpInsert() to directly use a 64 bit integer
* instead of a string. */
unsigned char *lpInsertInteger(unsigned char *lp, long long lval, unsigned char *p, int where, unsigned char **newp) {
uint64_t enclen; /* The length of the encoded element. */
unsigned char intenc[LP_MAX_INT_ENCODING_LEN];
lpEncodeIntegerGetType(lval, intenc, &enclen);
return lpInsert(lp, NULL, intenc, enclen, p, where, newp);
}
/* Append the specified element 's' of length 'slen' at the head of the listpack. */
unsigned char *lpPrepend(unsigned char *lp, unsigned char *s, uint32_t slen) {
unsigned char *p = lpFirst(lp);
if (!p) return lpAppend(lp, s, slen);
return lpInsert(lp, s, NULL, slen, p, LP_BEFORE, NULL);
}
/* Append the specified integer element 'lval' at the head of the listpack. */
unsigned char *lpPrependInteger(unsigned char *lp, long long lval) {
unsigned char *p = lpFirst(lp);
if (!p) return lpAppendInteger(lp, lval);
return lpInsertInteger(lp, lval, p, LP_BEFORE, NULL);
}
/* Append the specified element 'ele' of length 'size' at the end of the
* listpack. It is implemented in terms of lpInsert(), so the return value is
* the same as lpInsert(). */
unsigned char *lpAppend(unsigned char *lp, unsigned char *ele, uint32_t size) {
uint64_t listpack_bytes = lpGetTotalBytes(lp);
unsigned char *eofptr = lp + listpack_bytes - 1;
return lpInsert(lp,ele,NULL,size,eofptr,LP_BEFORE,NULL);
}
/* Append the specified integer element 'lval' at the end of the listpack. */
unsigned char *lpAppendInteger(unsigned char *lp, long long lval) {
uint64_t listpack_bytes = lpGetTotalBytes(lp);
unsigned char *eofptr = lp + listpack_bytes - 1;
return lpInsertInteger(lp, lval, eofptr, LP_BEFORE, NULL);
}
/* This is just a wrapper for lpInsert() to directly use a string to replace
* the current element. The function returns the new listpack as return
* value, and also updates the current cursor by updating '*p'. */
unsigned char *lpReplace(unsigned char *lp, unsigned char **p, unsigned char *s, uint32_t slen) {
return lpInsert(lp, s, NULL, slen, *p, LP_REPLACE, p);
}
/* This is just a wrapper for lpInsertInteger() to directly use a 64 bit integer
* instead of a string to replace the current element. The function returns
* the new listpack as return value, and also updates the current cursor
* by updating '*p'. */
unsigned char *lpReplaceInteger(unsigned char *lp, unsigned char **p, long long lval) {
return lpInsertInteger(lp, lval, *p, LP_REPLACE, p);
}
/* Remove the element pointed by 'p', and return the resulting listpack.
* If 'newp' is not NULL, the next element pointer (to the right of the
* deleted one) is returned by reference. If the deleted element was the
* last one, '*newp' is set to NULL. */
unsigned char *lpDelete(unsigned char *lp, unsigned char *p, unsigned char **newp) {
return lpInsert(lp,NULL,NULL,0,p,LP_REPLACE,newp);
}
/* Delete a range of entries from the listpack start with the element pointed by 'p'. */
unsigned char *lpDeleteRangeWithEntry(unsigned char *lp, unsigned char **p, unsigned long num) {
size_t bytes = lpBytes(lp);
unsigned long deleted = 0;
unsigned char *eofptr = lp + bytes - 1;
unsigned char *first, *tail;
first = tail = *p;
if (num == 0) return lp; /* Nothing to delete, return ASAP. */
/* Find the next entry to the last entry that needs to be deleted.
* lpLength may be unreliable due to corrupt data, so we cannot
* treat 'num' as the number of elements to be deleted. */
while (num--) {
deleted++;
tail = lpSkip(tail);
if (tail[0] == LP_EOF) break;
lpAssertValidEntry(lp, bytes, tail);
}
/* Store the offset of the element 'first', so that we can obtain its
* address again after a reallocation. */
unsigned long poff = first-lp;
/* Move tail to the front of the listpack */
memmove(first, tail, eofptr - tail + 1);
lpSetTotalBytes(lp, bytes - (tail - first));
uint32_t numele = lpGetNumElements(lp);
if (numele != LP_HDR_NUMELE_UNKNOWN)
lpSetNumElements(lp, numele-deleted);
lp = lpShrinkToFit(lp);
/* Store the entry. */
*p = lp+poff;
if ((*p)[0] == LP_EOF) *p = NULL;
return lp;
}
/* Delete a range of entries from the listpack. */
unsigned char *lpDeleteRange(unsigned char *lp, long index, unsigned long num) {
unsigned char *p;
uint32_t numele = lpGetNumElements(lp);
if (num == 0) return lp; /* Nothing to delete, return ASAP. */
if ((p = lpSeek(lp, index)) == NULL) return lp;
/* If we know we're gonna delete beyond the end of the listpack, we can just move
* the EOF marker, and there's no need to iterate through the entries,
* but if we can't be sure how many entries there are, we rather avoid calling lpLength
* since that means an additional iteration on all elements.
*
* Note that index could overflow, but we use the value after seek, so when we
* use it no overflow happens. */
if (numele != LP_HDR_NUMELE_UNKNOWN && index < 0) index = (long)numele + index;
if (numele != LP_HDR_NUMELE_UNKNOWN && (numele - (unsigned long)index) <= num) {
p[0] = LP_EOF;
lpSetTotalBytes(lp, p - lp + 1);
lpSetNumElements(lp, index);
lp = lpShrinkToFit(lp);
} else {
lp = lpDeleteRangeWithEntry(lp, &p, num);
}
return lp;
}
/* Delete the elements 'ps' passed as an array of 'count' element pointers and
* return the resulting listpack. The elements must be given in the same order
* as they apper in the listpack. */
unsigned char *lpBatchDelete(unsigned char *lp, unsigned char **ps, unsigned long count) {
if (count == 0) return lp;
unsigned char *dst = ps[0];
size_t total_bytes = lpGetTotalBytes(lp);
unsigned char *lp_end = lp + total_bytes; /* After the EOF element. */
assert(lp_end[-1] == LP_EOF);
/*
* ----+--------+-----------+--------+---------+-----+---+
* ... | Delete | Keep | Delete | Keep | ... |EOF|
* ... |xxxxxxxx| |xxxxxxxx| | ... | |
* ----+--------+-----------+--------+---------+-----+---+
* ^ ^ ^ ^
* | | | |
* ps[i] | ps[i+1] |
* skip keep_start keep_end lp_end
*
* The loop memmoves the bytes between keep_start and keep_end to dst.
*/
for (unsigned long i = 0; i < count; i++) {
unsigned char *skip = ps[i];
assert(skip != NULL && skip[0] != LP_EOF);
unsigned char *keep_start = lpSkip(skip);
unsigned char *keep_end;
if (i + 1 < count) {
keep_end = ps[i + 1];
/* Deleting consecutive elements. Nothing to keep between them. */
if (keep_start == keep_end) continue;
} else {
/* Keep the rest of the listpack including the EOF marker. */
keep_end = lp_end;
}
assert(keep_end > keep_start);
size_t bytes_to_keep = keep_end - keep_start;
memmove(dst, keep_start, bytes_to_keep);
dst += bytes_to_keep;
}
/* Update total size and num elements. */
size_t deleted_bytes = lp_end - dst;
total_bytes -= deleted_bytes;
assert(lp[total_bytes - 1] == LP_EOF);
lpSetTotalBytes(lp, total_bytes);
uint32_t numele = lpGetNumElements(lp);
if (numele != LP_HDR_NUMELE_UNKNOWN) lpSetNumElements(lp, numele - count);
return lpShrinkToFit(lp);
}
/* Merge listpacks 'first' and 'second' by appending 'second' to 'first'.
*
* NOTE: The larger listpack is reallocated to contain the new merged listpack.
* Either 'first' or 'second' can be used for the result. The parameter not
* used will be free'd and set to NULL.
*
* After calling this function, the input parameters are no longer valid since
* they are changed and free'd in-place.
*
* The result listpack is the contents of 'first' followed by 'second'.
*
* On failure: returns NULL if the merge is impossible.
* On success: returns the merged listpack (which is expanded version of either
* 'first' or 'second', also frees the other unused input listpack, and sets the
* input listpack argument equal to newly reallocated listpack return value. */
unsigned char *lpMerge(unsigned char **first, unsigned char **second) {
/* If any params are null, we can't merge, so NULL. */
if (first == NULL || *first == NULL || second == NULL || *second == NULL)
return NULL;
/* Can't merge same list into itself. */
if (*first == *second)
return NULL;
size_t first_bytes = lpBytes(*first);
unsigned long first_len = lpLength(*first);
size_t second_bytes = lpBytes(*second);
unsigned long second_len = lpLength(*second);
int append;
unsigned char *source, *target;
size_t target_bytes, source_bytes;
/* Pick the largest listpack so we can resize easily in-place.
* We must also track if we are now appending or prepending to
* the target listpack. */
if (first_bytes >= second_bytes) {
/* retain first, append second to first. */
target = *first;
target_bytes = first_bytes;
source = *second;
source_bytes = second_bytes;
append = 1;
} else {
/* else, retain second, prepend first to second. */
target = *second;
target_bytes = second_bytes;
source = *first;
source_bytes = first_bytes;
append = 0;
}
/* Calculate final bytes (subtract one pair of metadata) */
unsigned long long lpbytes = (unsigned long long)first_bytes + second_bytes - LP_HDR_SIZE - 1;
assert(lpbytes < UINT32_MAX); /* larger values can't be stored */
unsigned long lplength = first_len + second_len;
/* Combined lp length should be limited within UINT16_MAX */
lplength = lplength < UINT16_MAX ? lplength : UINT16_MAX;
/* Extend target to new lpbytes then append or prepend source. */
target = lp_realloc(target, lpbytes);
if (append) {
/* append == appending to target */
/* Copy source after target (copying over original [END]):
* [TARGET - END, SOURCE - HEADER] */
memcpy(target + target_bytes - 1,
source + LP_HDR_SIZE,
source_bytes - LP_HDR_SIZE);
} else {
/* !append == prepending to target */
/* Move target *contents* exactly size of (source - [END]),
* then copy source into vacated space (source - [END]):
* [SOURCE - END, TARGET - HEADER] */
memmove(target + source_bytes - 1,
target + LP_HDR_SIZE,
target_bytes - LP_HDR_SIZE);
memcpy(target, source, source_bytes - 1);
}
lpSetNumElements(target, lplength);
lpSetTotalBytes(target, lpbytes);
/* Now free and NULL out what we didn't realloc */
if (append) {
lp_free(*second);
*second = NULL;
*first = target;
} else {
lp_free(*first);
*first = NULL;
*second = target;
}
return target;
}
unsigned char *lpDup(unsigned char *lp) {
size_t lpbytes = lpBytes(lp);
unsigned char *newlp = lp_malloc(lpbytes);
memcpy(newlp, lp, lpbytes);
return newlp;
}
/* Return the total number of bytes the listpack is composed of. */
size_t lpBytes(unsigned char *lp) {
return lpGetTotalBytes(lp);
}
/* Returns the size of a listpack consisting of an integer repeated 'rep' times. */
size_t lpEstimateBytesRepeatedInteger(long long lval, unsigned long rep) {
uint64_t enclen;
unsigned char intenc[LP_MAX_INT_ENCODING_LEN];
lpEncodeIntegerGetType(lval, intenc, &enclen);
unsigned long backlen = lpEncodeBacklen(NULL, enclen);
return LP_HDR_SIZE + (enclen + backlen) * rep + 1;
}
/* Seek the specified element and returns the pointer to the seeked element.
* Positive indexes specify the zero-based element to seek from the head to
* the tail, negative indexes specify elements starting from the tail, where
* -1 means the last element, -2 the penultimate and so forth. If the index
* is out of range, NULL is returned. */
unsigned char *lpSeek(unsigned char *lp, long index) {
int forward = 1; /* Seek forward by default. */
/* We want to seek from left to right or the other way around
* depending on the listpack length and the element position.
* However if the listpack length cannot be obtained in constant time,
* we always seek from left to right. */
uint32_t numele = lpGetNumElements(lp);
if (numele != LP_HDR_NUMELE_UNKNOWN) {
if (index < 0) index = (long)numele+index;
if (index < 0) return NULL; /* Index still < 0 means out of range. */
if (index >= (long)numele) return NULL; /* Out of range the other side. */
/* We want to scan right-to-left if the element we are looking for
* is past the half of the listpack. */
if (index > (long)numele/2) {
forward = 0;
/* Right to left scanning always expects a negative index. Convert
* our index to negative form. */
index -= numele;
}
} else {
/* If the listpack length is unspecified, for negative indexes we
* want to always scan right-to-left. */
if (index < 0) forward = 0;
}
/* Forward and backward scanning is trivially based on lpNext()/lpPrev(). */
if (forward) {
unsigned char *ele = lpFirst(lp);
while (index > 0 && ele) {
ele = lpNext(lp,ele);
index--;
}
return ele;
} else {
unsigned char *ele = lpLast(lp);
while (index < -1 && ele) {
ele = lpPrev(lp,ele);
index++;
}
return ele;
}
}
/* Same as lpFirst but without validation assert, to be used right before lpValidateNext. */
unsigned char *lpValidateFirst(unsigned char *lp) {
unsigned char *p = lp + LP_HDR_SIZE; /* Skip the header. */
if (p[0] == LP_EOF) return NULL;
return p;
}
/* Validate the integrity of a single listpack entry and move to the next one.
* The input argument 'pp' is a reference to the current record and is advanced on exit.
* Returns 1 if valid, 0 if invalid. */
int lpValidateNext(unsigned char *lp, unsigned char **pp, size_t lpbytes) {
#define OUT_OF_RANGE(p) ( \
(p) < lp + LP_HDR_SIZE || \
(p) > lp + lpbytes - 1)
unsigned char *p = *pp;
if (!p)
return 0;
/* Before accessing p, make sure it's valid. */
if (OUT_OF_RANGE(p))
return 0;
if (*p == LP_EOF) {
*pp = NULL;
return 1;
}
/* check that we can read the encoded size */
uint32_t lenbytes = lpCurrentEncodedSizeBytes(p);
if (!lenbytes)
return 0;
/* make sure the encoded entry length doesn't reach outside the edge of the listpack */
if (OUT_OF_RANGE(p + lenbytes))
return 0;
/* get the entry length and encoded backlen. */
unsigned long entrylen = lpCurrentEncodedSizeUnsafe(p);
unsigned long encodedBacklen = lpEncodeBacklen(NULL,entrylen);
entrylen += encodedBacklen;
/* make sure the entry doesn't reach outside the edge of the listpack */
if (OUT_OF_RANGE(p + entrylen))
return 0;
/* move to the next entry */
p += entrylen;
/* make sure the encoded length at the end patches the one at the beginning. */
uint64_t prevlen = lpDecodeBacklen(p-1);
if (prevlen + encodedBacklen != entrylen)
return 0;
*pp = p;
return 1;
#undef OUT_OF_RANGE
}
/* Validate that the entry doesn't reach outside the listpack allocation. */
static inline void lpAssertValidEntry(unsigned char* lp, size_t lpbytes, unsigned char *p) {
assert(lpValidateNext(lp, &p, lpbytes));
}
/* Validate the integrity of the data structure.
* when `deep` is 0, only the integrity of the header is validated.
* when `deep` is 1, we scan all the entries one by one. */
int lpValidateIntegrity(unsigned char *lp, size_t size, int deep,
listpackValidateEntryCB entry_cb, void *cb_userdata) {
/* Check that we can actually read the header. (and EOF) */
if (size < LP_HDR_SIZE + 1)
return 0;
/* Check that the encoded size in the header must match the allocated size. */
size_t bytes = lpGetTotalBytes(lp);
if (bytes != size)
return 0;
/* The last byte must be the terminator. */
if (lp[size-1] != LP_EOF)
return 0;
if (!deep)
return 1;
/* Validate the individual entries. */
uint32_t count = 0;
uint32_t numele = lpGetNumElements(lp);
unsigned char *p = lp + LP_HDR_SIZE;
while(p && p[0] != LP_EOF) {
unsigned char *prev = p;
/* Validate this entry and move to the next entry in advance
* to avoid callback crash due to corrupt listpack. */
if (!lpValidateNext(lp, &p, bytes))
return 0;
/* Optionally let the caller validate the entry too. */
if (entry_cb && !entry_cb(prev, numele, cb_userdata))
return 0;
count++;
}
/* Make sure 'p' really does point to the end of the listpack. */
if (p != lp + size - 1)
return 0;
/* Check that the count in the header is correct */
if (numele != LP_HDR_NUMELE_UNKNOWN && numele != count)
return 0;
return 1;
}
/* Compare entry pointer to by 'p' with string 's' of length 'slen'.
* Return 1 if equal. */
unsigned int lpCompare(unsigned char *p, unsigned char *s, uint32_t slen) {
unsigned char *value;
int64_t sz;
if (p[0] == LP_EOF) return 0;
value = lpGet(p, &sz, NULL);
if (value) {
return (slen == sz) && memcmp(value,s,slen) == 0;
} else {
/* We use lpStringToInt64() to get an integer representation of the
* string 's' and compare it to 'sval', it's much faster than convert
* integer to string and comparing. */
int64_t sval;
if (lpStringToInt64((const char*)s, slen, &sval))
return sz == sval;
}
return 0;
}
/* uint compare for qsort */
static int uintCompare(const void *a, const void *b) {
return (*(unsigned int *) a - *(unsigned int *) b);
}
/* Helper method to store a string into from val or lval into dest */
static inline void lpSaveValue(unsigned char *val, unsigned int len, int64_t lval, listpackEntry *dest) {
dest->sval = val;
dest->slen = len;
dest->lval = lval;
}
/* Randomly select a pair of key and value.
* total_count is a pre-computed length/2 of the listpack (to avoid calls to lpLength)
* 'key' and 'val' are used to store the result key value pair.
* 'val' can be NULL if the value is not needed. */
void lpRandomPair(unsigned char *lp, unsigned long total_count, listpackEntry *key, listpackEntry *val) {
unsigned char *p;
/* Avoid div by zero on corrupt listpack */
assert(total_count);
/* Generate even numbers, because listpack saved K-V pair */
int r = (rand() % total_count) * 2;
assert((p = lpSeek(lp, r)));
key->sval = lpGetValue(p, &(key->slen), &(key->lval));
if (!val)
return;
assert((p = lpNext(lp, p)));
val->sval = lpGetValue(p, &(val->slen), &(val->lval));
}
/* Randomly select 'count' entries and store them in the 'entries' array, which
* needs to have space for 'count' listpackEntry structs. The order is random
* and duplicates are possible. */
void lpRandomEntries(unsigned char *lp, unsigned int count, listpackEntry *entries) {
struct pick {
unsigned int index;
unsigned int order;
} *picks = lp_malloc(count * sizeof(struct pick));
unsigned int total_size = lpLength(lp);
assert(total_size);
for (unsigned int i = 0; i < count; i++) {
picks[i].index = rand() % total_size;
picks[i].order = i;
}
/* Sort by index. */
qsort(picks, count, sizeof(struct pick), uintCompare);
/* Iterate over listpack in index order and store the values in the entries
* array respecting the original order. */
unsigned char *p = lpFirst(lp);
unsigned int j = 0; /* index in listpack */
for (unsigned int i = 0; i < count; i++) {
/* Advance listpack pointer to until we reach 'index' listpack. */
while (j < picks[i].index) {
p = lpNext(lp, p);
j++;
}
int storeorder = picks[i].order;
unsigned int len = 0;
long long llval = 0;
unsigned char *str = lpGetValue(p, &len, &llval);
lpSaveValue(str, len, llval, &entries[storeorder]);
}
lp_free(picks);
}
/* Randomly select count of key value pairs and store into 'keys' and
* 'vals' args. The order of the picked entries is random, and the selections
* are non-unique (repetitions are possible).
* The 'vals' arg can be NULL in which case we skip these. */
void lpRandomPairs(unsigned char *lp, unsigned int count, listpackEntry *keys, listpackEntry *vals) {
unsigned char *p, *key, *value;
unsigned int klen = 0, vlen = 0;
long long klval = 0, vlval = 0;
/* Notice: the index member must be first due to the use in uintCompare */
typedef struct {
unsigned int index;
unsigned int order;
} rand_pick;
rand_pick *picks = lp_malloc(sizeof(rand_pick)*count);
unsigned int total_size = lpLength(lp)/2;
/* Avoid div by zero on corrupt listpack */
assert(total_size);
/* create a pool of random indexes (some may be duplicate). */
for (unsigned int i = 0; i < count; i++) {
picks[i].index = (rand() % total_size) * 2; /* Generate even indexes */
/* keep track of the order we picked them */
picks[i].order = i;
}
/* sort by indexes. */
qsort(picks, count, sizeof(rand_pick), uintCompare);
/* fetch the elements form the listpack into a output array respecting the original order. */
unsigned int lpindex = picks[0].index, pickindex = 0;
p = lpSeek(lp, lpindex);
while (p && pickindex < count) {
key = lpGetValue(p, &klen, &klval);
assert((p = lpNext(lp, p)));
value = lpGetValue(p, &vlen, &vlval);
while (pickindex < count && lpindex == picks[pickindex].index) {
int storeorder = picks[pickindex].order;
lpSaveValue(key, klen, klval, &keys[storeorder]);
if (vals)
lpSaveValue(value, vlen, vlval, &vals[storeorder]);
pickindex++;
}
lpindex += 2;
p = lpNext(lp, p);
}
lp_free(picks);
}
/* Randomly select count of key value pairs and store into 'keys' and
* 'vals' args. The selections are unique (no repetitions), and the order of
* the picked entries is NOT-random.
* The 'vals' arg can be NULL in which case we skip these.
* The return value is the number of items picked which can be lower than the
* requested count if the listpack doesn't hold enough pairs. */
unsigned int lpRandomPairsUnique(unsigned char *lp, unsigned int count, listpackEntry *keys, listpackEntry *vals) {
unsigned char *p, *key;
unsigned int klen = 0;
long long klval = 0;
unsigned int total_size = lpLength(lp)/2;
unsigned int index = 0;
if (count > total_size)
count = total_size;
p = lpFirst(lp);
unsigned int picked = 0, remaining = count;
while (picked < count && p) {
assert((p = lpNextRandom(lp, p, &index, remaining, 1)));
key = lpGetValue(p, &klen, &klval);
lpSaveValue(key, klen, klval, &keys[picked]);
assert((p = lpNext(lp, p)));
index++;
if (vals) {
key = lpGetValue(p, &klen, &klval);
lpSaveValue(key, klen, klval, &vals[picked]);
}
p = lpNext(lp, p);
remaining--;
picked++;
index++;
}
return picked;
}
/* Iterates forward to the "next random" element, given we are yet to pick
* 'remaining' unique elements between the starting element 'p' (inclusive) and
* the end of the list. The 'index' needs to be initialized according to the
* current zero-based index matching the position of the starting element 'p'
* and is updated to match the returned element's zero-based index. If
* 'even_only' is nonzero, an element with an even index is picked, which is
* useful if the listpack represents a key-value pair sequence.
*
* Note that this function can return p. In order to skip the previously
* returned element, you need to call lpNext() or lpDelete() after each call to
* lpNextRandom(). Idea:
*
* assert(remaining <= lpLength(lp));
* p = lpFirst(lp);
* i = 0;
* while (remaining > 0) {
* p = lpNextRandom(lp, p, &i, remaining--, 0);
*
* // ... Do stuff with p ...
*
* p = lpNext(lp, p);
* i++;
* }
*/
unsigned char *lpNextRandom(unsigned char *lp, unsigned char *p, unsigned int *index,
unsigned int remaining, int even_only)
{
/* To only iterate once, every time we try to pick a member, the probability
* we pick it is the quotient of the count left we want to pick and the
* count still we haven't visited. This way, we could make every member be
* equally likely to be picked. */
unsigned int i = *index;
unsigned int total_size = lpLength(lp);
while (i < total_size && p != NULL) {
if (even_only && i % 2 != 0) {
p = lpNext(lp, p);
i++;
continue;
}
/* Do we pick this element? */
unsigned int available = total_size - i;
if (even_only) available /= 2;
double randomDouble = ((double)rand()) / RAND_MAX;
double threshold = ((double)remaining) / available;
if (randomDouble <= threshold) {
*index = i;
return p;
}
p = lpNext(lp, p);
i++;
}
return NULL;
}
/* Print info of listpack which is used in debugCommand */
void lpRepr(unsigned char *lp) {
unsigned char *p, *vstr;
int64_t vlen;
unsigned char intbuf[LP_INTBUF_SIZE];
int index = 0;
printf("{total bytes %zu} {num entries %lu}\n", lpBytes(lp), lpLength(lp));
p = lpFirst(lp);
while(p) {
uint32_t encoded_size_bytes = lpCurrentEncodedSizeBytes(p);
uint32_t encoded_size = lpCurrentEncodedSizeUnsafe(p);
unsigned long back_len = lpEncodeBacklen(NULL, encoded_size);
printf(
"{\n"
"\taddr: 0x%08lx,\n"
"\tindex: %2d,\n"
"\toffset: %1lu,\n"
"\thdr+entrylen+backlen: %2lu,\n"
"\thdrlen: %3u,\n"
"\tbacklen: %2lu,\n"
"\tpayload: %1u\n",
(long unsigned)p,
index,
(unsigned long) (p-lp),
encoded_size + back_len,
encoded_size_bytes,
back_len,
encoded_size - encoded_size_bytes);
printf("\tbytes: ");
for (unsigned int i = 0; i < (encoded_size + back_len); i++) {
printf("%02x|",p[i]);
}
printf("\n");
vstr = lpGet(p, &vlen, intbuf);
printf("\t[str]");
if (vlen > 40) {
if (fwrite(vstr, 40, 1, stdout) == 0) perror("fwrite");
printf("...");
} else {
if (fwrite(vstr, vlen, 1, stdout) == 0) perror("fwrite");
}
printf("\n}\n");
index++;
p = lpNext(lp, p);
}
printf("{end}\n\n");
}
#ifdef REDIS_TEST
#include <sys/time.h>
#include "adlist.h"
#include "sds.h"
#include "testhelp.h"
#define UNUSED(x) (void)(x)
#define TEST(name) printf("test — %s\n", name);
char *mixlist[] = {"hello", "foo", "quux", "1024"};
char *intlist[] = {"4294967296", "-100", "100", "128000",
"non integer", "much much longer non integer"};
static unsigned char *createList(void) {
unsigned char *lp = lpNew(0);
lp = lpAppend(lp, (unsigned char*)mixlist[1], strlen(mixlist[1]));
lp = lpAppend(lp, (unsigned char*)mixlist[2], strlen(mixlist[2]));
lp = lpPrepend(lp, (unsigned char*)mixlist[0], strlen(mixlist[0]));
lp = lpAppend(lp, (unsigned char*)mixlist[3], strlen(mixlist[3]));
return lp;
}
static unsigned char *createIntList(void) {
unsigned char *lp = lpNew(0);
lp = lpAppend(lp, (unsigned char*)intlist[2], strlen(intlist[2]));
lp = lpAppend(lp, (unsigned char*)intlist[3], strlen(intlist[3]));
lp = lpPrepend(lp, (unsigned char*)intlist[1], strlen(intlist[1]));
lp = lpPrepend(lp, (unsigned char*)intlist[0], strlen(intlist[0]));
lp = lpAppend(lp, (unsigned char*)intlist[4], strlen(intlist[4]));
lp = lpAppend(lp, (unsigned char*)intlist[5], strlen(intlist[5]));
return lp;
}
static long long usec(void) {
struct timeval tv;
gettimeofday(&tv, NULL);
return (((long long)tv.tv_sec)*1000000)+tv.tv_usec;
}
static void stress(int pos, int num, int maxsize, int dnum) {
int i, j, k;
unsigned char *lp;
char posstr[2][5] = { "HEAD", "TAIL" };
long long start;
for (i = 0; i < maxsize; i+=dnum) {
lp = lpNew(0);
for (j = 0; j < i; j++) {
lp = lpAppend(lp, (unsigned char*)"quux", 4);
}
/* Do num times a push+pop from pos */
start = usec();
for (k = 0; k < num; k++) {
if (pos == 0) {
lp = lpPrepend(lp, (unsigned char*)"quux", 4);
} else {
lp = lpAppend(lp, (unsigned char*)"quux", 4);
}
lp = lpDelete(lp, lpFirst(lp), NULL);
}
printf("List size: %8d, bytes: %8zu, %dx push+pop (%s): %6lld usec\n",
i, lpBytes(lp), num, posstr[pos], usec()-start);
lpFree(lp);
}
}
static unsigned char *pop(unsigned char *lp, int where) {
unsigned char *p, *vstr;
int64_t vlen;
p = lpSeek(lp, where == 0 ? 0 : -1);
vstr = lpGet(p, &vlen, NULL);
if (where == 0)
printf("Pop head: ");
else
printf("Pop tail: ");
if (vstr) {
if (vlen && fwrite(vstr, vlen, 1, stdout) == 0) perror("fwrite");
} else {
printf("%lld", (long long)vlen);
}
printf("\n");
return lpDelete(lp, p, &p);
}
static int randstring(char *target, unsigned int min, unsigned int max) {
int p = 0;
int len = min+rand()%(max-min+1);
int minval, maxval;
switch(rand() % 3) {
case 0:
minval = 0;
maxval = 255;
break;
case 1:
minval = 48;
maxval = 122;
break;
case 2:
minval = 48;
maxval = 52;
break;
default:
assert(NULL);
}
while(p < len)
target[p++] = minval+rand()%(maxval-minval+1);
return len;
}
static void verifyEntry(unsigned char *p, unsigned char *s, size_t slen) {
assert(lpCompare(p, s, slen));
}
static int lpValidation(unsigned char *p, unsigned int head_count, void *userdata) {
UNUSED(p);
UNUSED(head_count);
int ret;
long *count = userdata;
ret = lpCompare(p, (unsigned char *)mixlist[*count], strlen(mixlist[*count]));
(*count)++;
return ret;
}
int listpackTest(int argc, char *argv[], int flags) {
UNUSED(argc);
UNUSED(argv);
int i;
unsigned char *lp, *p, *vstr;
int64_t vlen;
unsigned char intbuf[LP_INTBUF_SIZE];
int accurate = (flags & REDIS_TEST_ACCURATE);
TEST("Create int list") {
lp = createIntList();
assert(lpLength(lp) == 6);
lpFree(lp);
}
TEST("Create list") {
lp = createList();
assert(lpLength(lp) == 4);
lpFree(lp);
}
TEST("Test lpPrepend") {
lp = lpNew(0);
lp = lpPrepend(lp, (unsigned char*)"abc", 3);
lp = lpPrepend(lp, (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp, 0), (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp, 1), (unsigned char*)"abc", 3);
lpFree(lp);
}
TEST("Test lpPrependInteger") {
lp = lpNew(0);
lp = lpPrependInteger(lp, 127);
lp = lpPrependInteger(lp, 4095);
lp = lpPrependInteger(lp, 32767);
lp = lpPrependInteger(lp, 8388607);
lp = lpPrependInteger(lp, 2147483647);
lp = lpPrependInteger(lp, 9223372036854775807);
verifyEntry(lpSeek(lp, 0), (unsigned char*)"9223372036854775807", 19);
verifyEntry(lpSeek(lp, -1), (unsigned char*)"127", 3);
lpFree(lp);
}
TEST("Get element at index") {
lp = createList();
verifyEntry(lpSeek(lp, 0), (unsigned char*)"hello", 5);
verifyEntry(lpSeek(lp, 3), (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp, -1), (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp, -4), (unsigned char*)"hello", 5);
assert(lpSeek(lp, 4) == NULL);
assert(lpSeek(lp, -5) == NULL);
lpFree(lp);
}
TEST("Pop list") {
lp = createList();
lp = pop(lp, 1);
lp = pop(lp, 0);
lp = pop(lp, 1);
lp = pop(lp, 1);
lpFree(lp);
}
TEST("Get element at index") {
lp = createList();
verifyEntry(lpSeek(lp, 0), (unsigned char*)"hello", 5);
verifyEntry(lpSeek(lp, 3), (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp, -1), (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp, -4), (unsigned char*)"hello", 5);
assert(lpSeek(lp, 4) == NULL);
assert(lpSeek(lp, -5) == NULL);
lpFree(lp);
}
TEST("Iterate list from 0 to end") {
lp = createList();
p = lpFirst(lp);
i = 0;
while (p) {
verifyEntry(p, (unsigned char*)mixlist[i], strlen(mixlist[i]));
p = lpNext(lp, p);
i++;
}
lpFree(lp);
}
TEST("Iterate list from 1 to end") {
lp = createList();
i = 1;
p = lpSeek(lp, i);
while (p) {
verifyEntry(p, (unsigned char*)mixlist[i], strlen(mixlist[i]));
p = lpNext(lp, p);
i++;
}
lpFree(lp);
}
TEST("Iterate list from 2 to end") {
lp = createList();
i = 2;
p = lpSeek(lp, i);
while (p) {
verifyEntry(p, (unsigned char*)mixlist[i], strlen(mixlist[i]));
p = lpNext(lp, p);
i++;
}
lpFree(lp);
}
TEST("Iterate from back to front") {
lp = createList();
p = lpLast(lp);
i = 3;
while (p) {
verifyEntry(p, (unsigned char*)mixlist[i], strlen(mixlist[i]));
p = lpPrev(lp, p);
i--;
}
lpFree(lp);
}
TEST("Iterate from back to front, deleting all items") {
lp = createList();
p = lpLast(lp);
i = 3;
while ((p = lpLast(lp))) {
verifyEntry(p, (unsigned char*)mixlist[i], strlen(mixlist[i]));
lp = lpDelete(lp, p, &p);
assert(p == NULL);
i--;
}
lpFree(lp);
}
TEST("Delete whole listpack when num == -1");
{
lp = createList();
lp = lpDeleteRange(lp, 0, -1);
assert(lpLength(lp) == 0);
assert(lp[LP_HDR_SIZE] == LP_EOF);
assert(lpBytes(lp) == (LP_HDR_SIZE + 1));
zfree(lp);
lp = createList();
unsigned char *ptr = lpFirst(lp);
lp = lpDeleteRangeWithEntry(lp, &ptr, -1);
assert(lpLength(lp) == 0);
assert(lp[LP_HDR_SIZE] == LP_EOF);
assert(lpBytes(lp) == (LP_HDR_SIZE + 1));
zfree(lp);
}
TEST("Delete whole listpack with negative index");
{
lp = createList();
lp = lpDeleteRange(lp, -4, 4);
assert(lpLength(lp) == 0);
assert(lp[LP_HDR_SIZE] == LP_EOF);
assert(lpBytes(lp) == (LP_HDR_SIZE + 1));
zfree(lp);
lp = createList();
unsigned char *ptr = lpSeek(lp, -4);
lp = lpDeleteRangeWithEntry(lp, &ptr, 4);
assert(lpLength(lp) == 0);
assert(lp[LP_HDR_SIZE] == LP_EOF);
assert(lpBytes(lp) == (LP_HDR_SIZE + 1));
zfree(lp);
}
TEST("Delete inclusive range 0,0");
{
lp = createList();
lp = lpDeleteRange(lp, 0, 1);
assert(lpLength(lp) == 3);
assert(lpSkip(lpLast(lp))[0] == LP_EOF); /* check set LP_EOF correctly */
zfree(lp);
lp = createList();
unsigned char *ptr = lpFirst(lp);
lp = lpDeleteRangeWithEntry(lp, &ptr, 1);
assert(lpLength(lp) == 3);
assert(lpSkip(lpLast(lp))[0] == LP_EOF); /* check set LP_EOF correctly */
zfree(lp);
}
TEST("Delete inclusive range 0,1");
{
lp = createList();
lp = lpDeleteRange(lp, 0, 2);
assert(lpLength(lp) == 2);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[2], strlen(mixlist[2]));
zfree(lp);
lp = createList();
unsigned char *ptr = lpFirst(lp);
lp = lpDeleteRangeWithEntry(lp, &ptr, 2);
assert(lpLength(lp) == 2);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[2], strlen(mixlist[2]));
zfree(lp);
}
TEST("Delete inclusive range 1,2");
{
lp = createList();
lp = lpDeleteRange(lp, 1, 2);
assert(lpLength(lp) == 2);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[0], strlen(mixlist[0]));
zfree(lp);
lp = createList();
unsigned char *ptr = lpSeek(lp, 1);
lp = lpDeleteRangeWithEntry(lp, &ptr, 2);
assert(lpLength(lp) == 2);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[0], strlen(mixlist[0]));
zfree(lp);
}
TEST("Delete with start index out of range");
{
lp = createList();
lp = lpDeleteRange(lp, 5, 1);
assert(lpLength(lp) == 4);
zfree(lp);
}
TEST("Delete with num overflow");
{
lp = createList();
lp = lpDeleteRange(lp, 1, 5);
assert(lpLength(lp) == 1);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[0], strlen(mixlist[0]));
zfree(lp);
lp = createList();
unsigned char *ptr = lpSeek(lp, 1);
lp = lpDeleteRangeWithEntry(lp, &ptr, 5);
assert(lpLength(lp) == 1);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[0], strlen(mixlist[0]));
zfree(lp);
}
TEST("Batch delete") {
unsigned char *lp = createList(); /* char *mixlist[] = {"hello", "foo", "quux", "1024"} */
assert(lpLength(lp) == 4); /* Pre-condition */
unsigned char *p0 = lpFirst(lp),
*p1 = lpNext(lp, p0),
*p2 = lpNext(lp, p1),
*p3 = lpNext(lp, p2);
unsigned char *ps[] = {p0, p1, p3};
lp = lpBatchDelete(lp, ps, 3);
assert(lpLength(lp) == 1);
verifyEntry(lpFirst(lp), (unsigned char*)mixlist[2], strlen(mixlist[2]));
assert(lpValidateIntegrity(lp, lpBytes(lp), 1, NULL, NULL) == 1);
lpFree(lp);
}
TEST("Delete foo while iterating") {
lp = createList();
p = lpFirst(lp);
while (p) {
if (lpCompare(p, (unsigned char*)"foo", 3)) {
lp = lpDelete(lp, p, &p);
} else {
p = lpNext(lp, p);
}
}
lpFree(lp);
}
TEST("Replace with same size") {
lp = createList(); /* "hello", "foo", "quux", "1024" */
unsigned char *orig_lp = lp;
p = lpSeek(lp, 0);
lp = lpReplace(lp, &p, (unsigned char*)"zoink", 5);
p = lpSeek(lp, 3);
lp = lpReplace(lp, &p, (unsigned char*)"y", 1);
p = lpSeek(lp, 1);
lp = lpReplace(lp, &p, (unsigned char*)"65536", 5);
p = lpSeek(lp, 0);
assert(!memcmp((char*)p,
"\x85zoink\x06"
"\xf2\x00\x00\x01\x04" /* 65536 as int24 */
"\x84quux\05" "\x81y\x02" "\xff",
22));
assert(lp == orig_lp); /* no reallocations have happened */
lpFree(lp);
}
TEST("Replace with different size") {
lp = createList(); /* "hello", "foo", "quux", "1024" */
p = lpSeek(lp, 1);
lp = lpReplace(lp, &p, (unsigned char*)"squirrel", 8);
p = lpSeek(lp, 0);
assert(!strncmp((char*)p,
"\x85hello\x06" "\x88squirrel\x09" "\x84quux\x05"
"\xc4\x00\x02" "\xff",
27));
lpFree(lp);
}
TEST("Regression test for >255 byte strings") {
char v1[257] = {0}, v2[257] = {0};
memset(v1,'x',256);
memset(v2,'y',256);
lp = lpNew(0);
lp = lpAppend(lp, (unsigned char*)v1 ,strlen(v1));
lp = lpAppend(lp, (unsigned char*)v2 ,strlen(v2));
/* Pop values again and compare their value. */
p = lpFirst(lp);
vstr = lpGet(p, &vlen, NULL);
assert(strncmp(v1, (char*)vstr, vlen) == 0);
p = lpSeek(lp, 1);
vstr = lpGet(p, &vlen, NULL);
assert(strncmp(v2, (char*)vstr, vlen) == 0);
lpFree(lp);
}
TEST("Create long list and check indices") {
lp = lpNew(0);
char buf[32];
int i,len;
for (i = 0; i < 1000; i++) {
len = snprintf(buf, sizeof(buf), "%d", i);
lp = lpAppend(lp, (unsigned char*)buf, len);
}
for (i = 0; i < 1000; i++) {
p = lpSeek(lp, i);
vstr = lpGet(p, &vlen, NULL);
assert(i == vlen);
p = lpSeek(lp, -i-1);
vstr = lpGet(p, &vlen, NULL);
assert(999-i == vlen);
}
lpFree(lp);
}
TEST("Compare strings with listpack entries") {
lp = createList();
p = lpSeek(lp,0);
assert(lpCompare(p,(unsigned char*)"hello",5));
assert(!lpCompare(p,(unsigned char*)"hella",5));
p = lpSeek(lp,3);
assert(lpCompare(p,(unsigned char*)"1024",4));
assert(!lpCompare(p,(unsigned char*)"1025",4));
lpFree(lp);
}
TEST("lpMerge two empty listpacks") {
unsigned char *lp1 = lpNew(0);
unsigned char *lp2 = lpNew(0);
/* Merge two empty listpacks, get empty result back. */
lp1 = lpMerge(&lp1, &lp2);
assert(lpLength(lp1) == 0);
zfree(lp1);
}
TEST("lpMerge two listpacks - first larger than second") {
unsigned char *lp1 = createIntList();
unsigned char *lp2 = createList();
size_t lp1_bytes = lpBytes(lp1);
size_t lp2_bytes = lpBytes(lp2);
unsigned long lp1_len = lpLength(lp1);
unsigned long lp2_len = lpLength(lp2);
unsigned char *lp3 = lpMerge(&lp1, &lp2);
assert(lp3 == lp1);
assert(lp2 == NULL);
assert(lpLength(lp3) == (lp1_len + lp2_len));
assert(lpBytes(lp3) == (lp1_bytes + lp2_bytes - LP_HDR_SIZE - 1));
verifyEntry(lpSeek(lp3, 0), (unsigned char*)"4294967296", 10);
verifyEntry(lpSeek(lp3, 5), (unsigned char*)"much much longer non integer", 28);
verifyEntry(lpSeek(lp3, 6), (unsigned char*)"hello", 5);
verifyEntry(lpSeek(lp3, -1), (unsigned char*)"1024", 4);
zfree(lp3);
}
TEST("lpMerge two listpacks - second larger than first") {
unsigned char *lp1 = createList();
unsigned char *lp2 = createIntList();
size_t lp1_bytes = lpBytes(lp1);
size_t lp2_bytes = lpBytes(lp2);
unsigned long lp1_len = lpLength(lp1);
unsigned long lp2_len = lpLength(lp2);
unsigned char *lp3 = lpMerge(&lp1, &lp2);
assert(lp3 == lp2);
assert(lp1 == NULL);
assert(lpLength(lp3) == (lp1_len + lp2_len));
assert(lpBytes(lp3) == (lp1_bytes + lp2_bytes - LP_HDR_SIZE - 1));
verifyEntry(lpSeek(lp3, 0), (unsigned char*)"hello", 5);
verifyEntry(lpSeek(lp3, 3), (unsigned char*)"1024", 4);
verifyEntry(lpSeek(lp3, 4), (unsigned char*)"4294967296", 10);
verifyEntry(lpSeek(lp3, -1), (unsigned char*)"much much longer non integer", 28);
zfree(lp3);
}
TEST("lpNextRandom normal usage") {
/* Create some data */
unsigned char *lp = lpNew(0);
unsigned char buf[100] = "asdf";
unsigned int size = 100;
for (size_t i = 0; i < size; i++) {
lp = lpAppend(lp, buf, i);
}
assert(lpLength(lp) == size);
/* Pick a subset of the elements of every possible subset size */
for (unsigned int count = 0; count <= size; count++) {
unsigned int remaining = count;
unsigned char *p = lpFirst(lp);
unsigned char *prev = NULL;
unsigned index = 0;
while (remaining > 0) {
assert(p != NULL);
p = lpNextRandom(lp, p, &index, remaining--, 0);
assert(p != NULL);
assert(p != prev);
prev = p;
p = lpNext(lp, p);
index++;
}
}
lpFree(lp);
}
TEST("lpNextRandom corner cases") {
unsigned char *lp = lpNew(0);
unsigned i = 0;
/* Pick from empty listpack returns NULL. */
assert(lpNextRandom(lp, NULL, &i, 2, 0) == NULL);
/* Add some elements and find their pointers within the listpack. */
lp = lpAppend(lp, (unsigned char *)"abc", 3);
lp = lpAppend(lp, (unsigned char *)"def", 3);
lp = lpAppend(lp, (unsigned char *)"ghi", 3);
assert(lpLength(lp) == 3);
unsigned char *p0 = lpFirst(lp);
unsigned char *p1 = lpNext(lp, p0);
unsigned char *p2 = lpNext(lp, p1);
assert(lpNext(lp, p2) == NULL);
/* Pick zero elements returns NULL. */
i = 0; assert(lpNextRandom(lp, lpFirst(lp), &i, 0, 0) == NULL);
/* Pick all returns all. */
i = 0; assert(lpNextRandom(lp, p0, &i, 3, 0) == p0 && i == 0);
i = 1; assert(lpNextRandom(lp, p1, &i, 2, 0) == p1 && i == 1);
i = 2; assert(lpNextRandom(lp, p2, &i, 1, 0) == p2 && i == 2);
/* Pick more than one when there's only one left returns the last one. */
i = 2; assert(lpNextRandom(lp, p2, &i, 42, 0) == p2 && i == 2);
/* Pick all even elements returns p0 and p2. */
i = 0; assert(lpNextRandom(lp, p0, &i, 10, 1) == p0 && i == 0);
i = 1; assert(lpNextRandom(lp, p1, &i, 10, 1) == p2 && i == 2);
/* Don't crash even for bad index. */
for (int j = 0; j < 100; j++) {
unsigned char *p;
switch (j % 4) {
case 0: p = p0; break;
case 1: p = p1; break;
case 2: p = p2; break;
case 3: p = NULL; break;
}
i = j % 7;
unsigned int remaining = j % 5;
p = lpNextRandom(lp, p, &i, remaining, 0);
assert(p == p0 || p == p1 || p == p2 || p == NULL);
}
lpFree(lp);
}
TEST("Random pair with one element") {
listpackEntry key, val;
unsigned char *lp = lpNew(0);
lp = lpAppend(lp, (unsigned char*)"abc", 3);
lp = lpAppend(lp, (unsigned char*)"123", 3);
lpRandomPair(lp, 1, &key, &val);
assert(memcmp(key.sval, "abc", key.slen) == 0);
assert(val.lval == 123);
lpFree(lp);
}
TEST("Random pair with many elements") {
listpackEntry key, val;
unsigned char *lp = lpNew(0);
lp = lpAppend(lp, (unsigned char*)"abc", 3);
lp = lpAppend(lp, (unsigned char*)"123", 3);
lp = lpAppend(lp, (unsigned char*)"456", 3);
lp = lpAppend(lp, (unsigned char*)"def", 3);
lpRandomPair(lp, 2, &key, &val);
if (key.sval) {
assert(!memcmp(key.sval, "abc", key.slen));
assert(key.slen == 3);
assert(val.lval == 123);
}
if (!key.sval) {
assert(key.lval == 456);
assert(!memcmp(val.sval, "def", val.slen));
}
lpFree(lp);
}
TEST("Random pairs with one element") {
int count = 5;
unsigned char *lp = lpNew(0);
listpackEntry *keys = zmalloc(sizeof(listpackEntry) * count);
listpackEntry *vals = zmalloc(sizeof(listpackEntry) * count);
lp = lpAppend(lp, (unsigned char*)"abc", 3);
lp = lpAppend(lp, (unsigned char*)"123", 3);
lpRandomPairs(lp, count, keys, vals);
assert(memcmp(keys[4].sval, "abc", keys[4].slen) == 0);
assert(vals[4].lval == 123);
zfree(keys);
zfree(vals);
lpFree(lp);
}
TEST("Random pairs with many elements") {
int count = 5;
lp = lpNew(0);
listpackEntry *keys = zmalloc(sizeof(listpackEntry) * count);
listpackEntry *vals = zmalloc(sizeof(listpackEntry) * count);
lp = lpAppend(lp, (unsigned char*)"abc", 3);
lp = lpAppend(lp, (unsigned char*)"123", 3);
lp = lpAppend(lp, (unsigned char*)"456", 3);
lp = lpAppend(lp, (unsigned char*)"def", 3);
lpRandomPairs(lp, count, keys, vals);
for (int i = 0; i < count; i++) {
if (keys[i].sval) {
assert(!memcmp(keys[i].sval, "abc", keys[i].slen));
assert(keys[i].slen == 3);
assert(vals[i].lval == 123);
}
if (!keys[i].sval) {
assert(keys[i].lval == 456);
assert(!memcmp(vals[i].sval, "def", vals[i].slen));
}
}
zfree(keys);
zfree(vals);
lpFree(lp);
}
TEST("Random pairs unique with one element") {
unsigned picked;
int count = 5;
lp = lpNew(0);
listpackEntry *keys = zmalloc(sizeof(listpackEntry) * count);
listpackEntry *vals = zmalloc(sizeof(listpackEntry) * count);
lp = lpAppend(lp, (unsigned char*)"abc", 3);
lp = lpAppend(lp, (unsigned char*)"123", 3);
picked = lpRandomPairsUnique(lp, count, keys, vals);
assert(picked == 1);
assert(memcmp(keys[0].sval, "abc", keys[0].slen) == 0);
assert(vals[0].lval == 123);
zfree(keys);
zfree(vals);
lpFree(lp);
}
TEST("Random pairs unique with many elements") {
unsigned picked;
int count = 5;
lp = lpNew(0);
listpackEntry *keys = zmalloc(sizeof(listpackEntry) * count);
listpackEntry *vals = zmalloc(sizeof(listpackEntry) * count);
lp = lpAppend(lp, (unsigned char*)"abc", 3);
lp = lpAppend(lp, (unsigned char*)"123", 3);
lp = lpAppend(lp, (unsigned char*)"456", 3);
lp = lpAppend(lp, (unsigned char*)"def", 3);
picked = lpRandomPairsUnique(lp, count, keys, vals);
assert(picked == 2);
for (int i = 0; i < 2; i++) {
if (keys[i].sval) {
assert(!memcmp(keys[i].sval, "abc", keys[i].slen));
assert(keys[i].slen == 3);
assert(vals[i].lval == 123);
}
if (!keys[i].sval) {
assert(keys[i].lval == 456);
assert(!memcmp(vals[i].sval, "def", vals[i].slen));
}
}
zfree(keys);
zfree(vals);
lpFree(lp);
}
TEST("push various encodings") {
lp = lpNew(0);
/* Push integer encode element using lpAppend */
lp = lpAppend(lp, (unsigned char*)"127", 3);
assert(LP_ENCODING_IS_7BIT_UINT(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)"4095", 4);
assert(LP_ENCODING_IS_13BIT_INT(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)"32767", 5);
assert(LP_ENCODING_IS_16BIT_INT(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)"8388607", 7);
assert(LP_ENCODING_IS_24BIT_INT(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)"2147483647", 10);
assert(LP_ENCODING_IS_32BIT_INT(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)"9223372036854775807", 19);
assert(LP_ENCODING_IS_64BIT_INT(lpLast(lp)[0]));
/* Push integer encode element using lpAppendInteger */
lp = lpAppendInteger(lp, 127);
assert(LP_ENCODING_IS_7BIT_UINT(lpLast(lp)[0]));
verifyEntry(lpLast(lp), (unsigned char*)"127", 3);
lp = lpAppendInteger(lp, 4095);
verifyEntry(lpLast(lp), (unsigned char*)"4095", 4);
assert(LP_ENCODING_IS_13BIT_INT(lpLast(lp)[0]));
lp = lpAppendInteger(lp, 32767);
verifyEntry(lpLast(lp), (unsigned char*)"32767", 5);
assert(LP_ENCODING_IS_16BIT_INT(lpLast(lp)[0]));
lp = lpAppendInteger(lp, 8388607);
verifyEntry(lpLast(lp), (unsigned char*)"8388607", 7);
assert(LP_ENCODING_IS_24BIT_INT(lpLast(lp)[0]));
lp = lpAppendInteger(lp, 2147483647);
verifyEntry(lpLast(lp), (unsigned char*)"2147483647", 10);
assert(LP_ENCODING_IS_32BIT_INT(lpLast(lp)[0]));
lp = lpAppendInteger(lp, 9223372036854775807);
verifyEntry(lpLast(lp), (unsigned char*)"9223372036854775807", 19);
assert(LP_ENCODING_IS_64BIT_INT(lpLast(lp)[0]));
/* string encode */
unsigned char *str = zmalloc(65535);
memset(str, 0, 65535);
lp = lpAppend(lp, (unsigned char*)str, 63);
assert(LP_ENCODING_IS_6BIT_STR(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)str, 4095);
assert(LP_ENCODING_IS_12BIT_STR(lpLast(lp)[0]));
lp = lpAppend(lp, (unsigned char*)str, 65535);
assert(LP_ENCODING_IS_32BIT_STR(lpLast(lp)[0]));
zfree(str);
lpFree(lp);
}
TEST("Test lpFind") {
lp = createList();
assert(lpFind(lp, lpFirst(lp), (unsigned char*)"abc", 3, 0) == NULL);
verifyEntry(lpFind(lp, lpFirst(lp), (unsigned char*)"hello", 5, 0), (unsigned char*)"hello", 5);
verifyEntry(lpFind(lp, lpFirst(lp), (unsigned char*)"1024", 4, 0), (unsigned char*)"1024", 4);
lpFree(lp);
}
TEST("Test lpValidateIntegrity") {
lp = createList();
long count = 0;
assert(lpValidateIntegrity(lp, lpBytes(lp), 1, lpValidation, &count) == 1);
lpFree(lp);
}
TEST("Test number of elements exceeds LP_HDR_NUMELE_UNKNOWN") {
lp = lpNew(0);
for (int i = 0; i < LP_HDR_NUMELE_UNKNOWN + 1; i++)
lp = lpAppend(lp, (unsigned char*)"1", 1);
assert(lpGetNumElements(lp) == LP_HDR_NUMELE_UNKNOWN);
assert(lpLength(lp) == LP_HDR_NUMELE_UNKNOWN+1);
lp = lpDeleteRange(lp, -2, 2);
assert(lpGetNumElements(lp) == LP_HDR_NUMELE_UNKNOWN);
assert(lpLength(lp) == LP_HDR_NUMELE_UNKNOWN-1);
assert(lpGetNumElements(lp) == LP_HDR_NUMELE_UNKNOWN-1); /* update length after lpLength */
lpFree(lp);
}
TEST("Stress with random payloads of different encoding") {
unsigned long long start = usec();
int i,j,len,where;
unsigned char *p;
char buf[1024];
int buflen;
list *ref;
listNode *refnode;
int iteration = accurate ? 20000 : 20;
for (i = 0; i < iteration; i++) {
lp = lpNew(0);
ref = listCreate();
listSetFreeMethod(ref,(void (*)(void*))sdsfree);
len = rand() % 256;
/* Create lists */
for (j = 0; j < len; j++) {
where = (rand() & 1) ? 0 : 1;
if (rand() % 2) {
buflen = randstring(buf,1,sizeof(buf)-1);
} else {
switch(rand() % 3) {
case 0:
buflen = snprintf(buf,sizeof(buf),"%lld",(0LL + rand()) >> 20);
break;
case 1:
buflen = snprintf(buf,sizeof(buf),"%lld",(0LL + rand()));
break;
case 2:
buflen = snprintf(buf,sizeof(buf),"%lld",(0LL + rand()) << 20);
break;
default:
assert(NULL);
}
}
/* Add to listpack */
if (where == 0) {
lp = lpPrepend(lp, (unsigned char*)buf, buflen);
} else {
lp = lpAppend(lp, (unsigned char*)buf, buflen);
}
/* Add to reference list */
if (where == 0) {
listAddNodeHead(ref,sdsnewlen(buf, buflen));
} else if (where == 1) {
listAddNodeTail(ref,sdsnewlen(buf, buflen));
} else {
assert(NULL);
}
}
assert(listLength(ref) == lpLength(lp));
for (j = 0; j < len; j++) {
/* Naive way to get elements, but similar to the stresser
* executed from the Tcl test suite. */
p = lpSeek(lp,j);
refnode = listIndex(ref,j);
vstr = lpGet(p, &vlen, intbuf);
assert(memcmp(vstr,listNodeValue(refnode),vlen) == 0);
}
lpFree(lp);
listRelease(ref);
}
printf("Done. usec=%lld\n\n", usec()-start);
}
TEST("Stress with variable listpack size") {
unsigned long long start = usec();
int maxsize = accurate ? 16384 : 16;
stress(0,100000,maxsize,256);
stress(1,100000,maxsize,256);
printf("Done. usec=%lld\n\n", usec()-start);
}
/* Benchmarks */
{
int iteration = accurate ? 100000 : 100;
lp = lpNew(0);
TEST("Benchmark lpAppend") {
unsigned long long start = usec();
for (int i=0; i<iteration; i++) {
char buf[4096] = "asdf";
lp = lpAppend(lp, (unsigned char*)buf, 4);
lp = lpAppend(lp, (unsigned char*)buf, 40);
lp = lpAppend(lp, (unsigned char*)buf, 400);
lp = lpAppend(lp, (unsigned char*)buf, 4000);
lp = lpAppend(lp, (unsigned char*)"1", 1);
lp = lpAppend(lp, (unsigned char*)"10", 2);
lp = lpAppend(lp, (unsigned char*)"100", 3);
lp = lpAppend(lp, (unsigned char*)"1000", 4);
lp = lpAppend(lp, (unsigned char*)"10000", 5);
lp = lpAppend(lp, (unsigned char*)"100000", 6);
}
printf("Done. usec=%lld\n", usec()-start);
}
TEST("Benchmark lpFind string") {
unsigned long long start = usec();
for (int i = 0; i < 2000; i++) {
unsigned char *fptr = lpFirst(lp);
fptr = lpFind(lp, fptr, (unsigned char*)"nothing", 7, 1);
}
printf("Done. usec=%lld\n", usec()-start);
}
TEST("Benchmark lpFind number") {
unsigned long long start = usec();
for (int i = 0; i < 2000; i++) {
unsigned char *fptr = lpFirst(lp);
fptr = lpFind(lp, fptr, (unsigned char*)"99999", 5, 1);
}
printf("Done. usec=%lld\n", usec()-start);
}
TEST("Benchmark lpSeek") {
unsigned long long start = usec();
for (int i = 0; i < 2000; i++) {
lpSeek(lp, 99999);
}
printf("Done. usec=%lld\n", usec()-start);
}
TEST("Benchmark lpValidateIntegrity") {
unsigned long long start = usec();
for (int i = 0; i < 2000; i++) {
lpValidateIntegrity(lp, lpBytes(lp), 1, NULL, NULL);
}
printf("Done. usec=%lld\n", usec()-start);
}
TEST("Benchmark lpCompare with string") {
unsigned long long start = usec();
for (int i = 0; i < 2000; i++) {
unsigned char *eptr = lpSeek(lp,0);
while (eptr != NULL) {
lpCompare(eptr,(unsigned char*)"nothing",7);
eptr = lpNext(lp,eptr);
}
}
printf("Done. usec=%lld\n", usec()-start);
}
TEST("Benchmark lpCompare with number") {
unsigned long long start = usec();
for (int i = 0; i < 2000; i++) {
unsigned char *eptr = lpSeek(lp,0);
while (eptr != NULL) {
lpCompare(lp, (unsigned char*)"99999", 5);
eptr = lpNext(lp,eptr);
}
}
printf("Done. usec=%lld\n", usec()-start);
}
lpFree(lp);
}
return 0;
}
#endif
|