summaryrefslogtreecommitdiffstats
path: root/tests/unit/type/set.tcl
blob: 29275622d13bc56c3fd25709f3e572ababc73eda (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
start_server {
    tags {"set"}
    overrides {
        "set-max-intset-entries" 512
        "set-max-listpack-entries" 128
        "set-max-listpack-value" 32
    }
} {
    proc create_set {key entries} {
        r del $key
        foreach entry $entries { r sadd $key $entry }
    }

    # Values for initialing sets, per encoding.
    array set initelems {listpack {foo} hashtable {foo}}
    for {set i 0} {$i < 130} {incr i} {
        lappend initelems(hashtable) [format "i%03d" $i]
    }

    foreach type {listpack hashtable} {
    test "SADD, SCARD, SISMEMBER, SMISMEMBER, SMEMBERS basics - $type" {
        create_set myset $initelems($type)
        assert_encoding $type myset
        assert_equal 1 [r sadd myset bar]
        assert_equal 0 [r sadd myset bar]
        assert_equal [expr [llength $initelems($type)] + 1] [r scard myset]
        assert_equal 1 [r sismember myset foo]
        assert_equal 1 [r sismember myset bar]
        assert_equal 0 [r sismember myset bla]
        assert_equal {1} [r smismember myset foo]
        assert_equal {1 1} [r smismember myset foo bar]
        assert_equal {1 0} [r smismember myset foo bla]
        assert_equal {0 1} [r smismember myset bla foo]
        assert_equal {0} [r smismember myset bla]
        assert_equal "bar $initelems($type)" [lsort [r smembers myset]]
    }
    }

    test {SADD, SCARD, SISMEMBER, SMISMEMBER, SMEMBERS basics - intset} {
        create_set myset {17}
        assert_encoding intset myset
        assert_equal 1 [r sadd myset 16]
        assert_equal 0 [r sadd myset 16]
        assert_equal 2 [r scard myset]
        assert_equal 1 [r sismember myset 16]
        assert_equal 1 [r sismember myset 17]
        assert_equal 0 [r sismember myset 18]
        assert_equal {1} [r smismember myset 16]
        assert_equal {1 1} [r smismember myset 16 17]
        assert_equal {1 0} [r smismember myset 16 18]
        assert_equal {0 1} [r smismember myset 18 16]
        assert_equal {0} [r smismember myset 18]
        assert_equal {16 17} [lsort [r smembers myset]]
    }

    test {SMISMEMBER SMEMBERS SCARD against non set} {
        r lpush mylist foo
        assert_error WRONGTYPE* {r smismember mylist bar}
        assert_error WRONGTYPE* {r smembers mylist}
        assert_error WRONGTYPE* {r scard mylist}
    }

    test {SMISMEMBER SMEMBERS SCARD against non existing key} {
        assert_equal {0} [r smismember myset1 foo]
        assert_equal {0 0} [r smismember myset1 foo bar]
        assert_equal {} [r smembers myset1]
        assert_equal {0} [r scard myset1]
    }

    test {SMISMEMBER requires one or more members} {
        r del zmscoretest
        r zadd zmscoretest 10 x
        r zadd zmscoretest 20 y
        
        catch {r smismember zmscoretest} e
        assert_match {*ERR*wrong*number*arg*} $e
    }

    test {SADD against non set} {
        r lpush mylist foo
        assert_error WRONGTYPE* {r sadd mylist bar}
    }

    test "SADD a non-integer against a small intset" {
        create_set myset {1 2 3}
        assert_encoding intset myset
        assert_equal 1 [r sadd myset a]
        assert_encoding listpack myset
    }

    test "SADD a non-integer against a large intset" {
        create_set myset {0}
        for {set i 1} {$i < 130} {incr i} {r sadd myset $i}
        assert_encoding intset myset
        assert_equal 1 [r sadd myset a]
        assert_encoding hashtable myset
    }

    test "SADD an integer larger than 64 bits" {
        create_set myset {213244124402402314402033402}
        assert_encoding listpack myset
        assert_equal 1 [r sismember myset 213244124402402314402033402]
        assert_equal {1} [r smismember myset 213244124402402314402033402]
    }

    test "SADD an integer larger than 64 bits to a large intset" {
        create_set myset {0}
        for {set i 1} {$i < 130} {incr i} {r sadd myset $i}
        assert_encoding intset myset
        r sadd myset 213244124402402314402033402
        assert_encoding hashtable myset
        assert_equal 1 [r sismember myset 213244124402402314402033402]
        assert_equal {1} [r smismember myset 213244124402402314402033402]
    }

foreach type {single multiple single_multiple} {
    test "SADD overflows the maximum allowed integers in an intset - $type" {
        r del myset

        if {$type == "single"} {
            # All are single sadd commands.
            for {set i 0} {$i < 512} {incr i} { r sadd myset $i }
        } elseif {$type == "multiple"} {
            # One sadd command to add all elements.
            set args {}
            for {set i 0} {$i < 512} {incr i} { lappend args $i }
            r sadd myset {*}$args
        } elseif {$type == "single_multiple"} {
            # First one sadd adds an element (creates a key) and then one sadd adds all elements.
            r sadd myset 1
            set args {}
            for {set i 0} {$i < 512} {incr i} { lappend args $i }
            r sadd myset {*}$args
        }

        assert_encoding intset myset
        assert_equal 512 [r scard myset]
        assert_equal 1 [r sadd myset 512]
        assert_encoding hashtable myset
    }

    test "SADD overflows the maximum allowed elements in a listpack - $type" {
        r del myset

        if {$type == "single"} {
            # All are single sadd commands.
            r sadd myset a
            for {set i 0} {$i < 127} {incr i} { r sadd myset $i }
        } elseif {$type == "multiple"} {
            # One sadd command to add all elements.
            set args {}
            lappend args a
            for {set i 0} {$i < 127} {incr i} { lappend args $i }
            r sadd myset {*}$args
        } elseif {$type == "single_multiple"} {
            # First one sadd adds an element (creates a key) and then one sadd adds all elements.
            r sadd myset a
            set args {}
            lappend args a
            for {set i 0} {$i < 127} {incr i} { lappend args $i }
            r sadd myset {*}$args
        }

        assert_encoding listpack myset
        assert_equal 128 [r scard myset]
        assert_equal 1 [r sadd myset b]
        assert_encoding hashtable myset
    }
}

    test {Variadic SADD} {
        r del myset
        assert_equal 3 [r sadd myset a b c]
        assert_equal 2 [r sadd myset A a b c B]
        assert_equal [lsort {A a b c B}] [lsort [r smembers myset]]
    }

    test "Set encoding after DEBUG RELOAD" {
        r del myintset
        r del myhashset
        r del mylargeintset
        r del mysmallset
        for {set i 0} {$i <  100} {incr i} { r sadd myintset $i }
        for {set i 0} {$i < 1280} {incr i} { r sadd mylargeintset $i }
        for {set i 0} {$i <   50} {incr i} { r sadd mysmallset [format "i%03d" $i] }
        for {set i 0} {$i <  256} {incr i} { r sadd myhashset [format "i%03d" $i] }
        assert_encoding intset myintset
        assert_encoding hashtable mylargeintset
        assert_encoding listpack mysmallset
        assert_encoding hashtable myhashset

        r debug reload
        assert_encoding intset myintset
        assert_encoding hashtable mylargeintset
        assert_encoding listpack mysmallset
        assert_encoding hashtable myhashset
    } {} {needs:debug}

    foreach type {listpack hashtable} {
        test {SREM basics - $type} {
            create_set myset $initelems($type)
            r sadd myset ciao
            assert_encoding $type myset
            assert_equal 0 [r srem myset qux]
            assert_equal 1 [r srem myset ciao]
            assert_equal $initelems($type) [lsort [r smembers myset]]
        }
    }

    test {SREM basics - intset} {
        create_set myset {3 4 5}
        assert_encoding intset myset
        assert_equal 0 [r srem myset 6]
        assert_equal 1 [r srem myset 4]
        assert_equal {3 5} [lsort [r smembers myset]]
    }

    test {SREM with multiple arguments} {
        r del myset
        r sadd myset a b c d
        assert_equal 0 [r srem myset k k k]
        assert_equal 2 [r srem myset b d x y]
        lsort [r smembers myset]
    } {a c}

    test {SREM variadic version with more args needed to destroy the key} {
        r del myset
        r sadd myset 1 2 3
        r srem myset 1 2 3 4 5 6 7 8
    } {3}

    test "SINTERCARD with illegal arguments" {
        assert_error "ERR wrong number of arguments for 'sintercard' command" {r sintercard}
        assert_error "ERR wrong number of arguments for 'sintercard' command" {r sintercard 1}

        assert_error "ERR numkeys*" {r sintercard 0 myset{t}}
        assert_error "ERR numkeys*" {r sintercard a myset{t}}

        assert_error "ERR Number of keys*" {r sintercard 2 myset{t}}
        assert_error "ERR Number of keys*" {r sintercard 3 myset{t} myset2{t}}

        assert_error "ERR syntax error*" {r sintercard 1 myset{t} myset2{t}}
        assert_error "ERR syntax error*" {r sintercard 1 myset{t} bar_arg}
        assert_error "ERR syntax error*" {r sintercard 1 myset{t} LIMIT}

        assert_error "ERR LIMIT*" {r sintercard 1 myset{t} LIMIT -1}
        assert_error "ERR LIMIT*" {r sintercard 1 myset{t} LIMIT a}
    }

    test "SINTERCARD against non-set should throw error" {
        r del set{t}
        r sadd set{t} a b c
        r set key1{t} x

        assert_error "WRONGTYPE*" {r sintercard 1 key1{t}}
        assert_error "WRONGTYPE*" {r sintercard 2 set{t} key1{t}}
        assert_error "WRONGTYPE*" {r sintercard 2 key1{t} noset{t}}
    }

    test "SINTERCARD against non-existing key" {
        assert_equal 0 [r sintercard 1 non-existing-key]
        assert_equal 0 [r sintercard 1 non-existing-key limit 0]
        assert_equal 0 [r sintercard 1 non-existing-key limit 10]
    }

    foreach {type} {regular intset} {
        # Create sets setN{t} where N = 1..5
        if {$type eq "regular"} {
            set smallenc listpack
            set bigenc hashtable
        } else {
            set smallenc intset
            set bigenc intset
        }
        # Sets 1, 2 and 4 are big; sets 3 and 5 are small.
        array set encoding "1 $bigenc 2 $bigenc 3 $smallenc 4 $bigenc 5 $smallenc"

        for {set i 1} {$i <= 5} {incr i} {
            r del [format "set%d{t}" $i]
        }
        for {set i 0} {$i < 200} {incr i} {
            r sadd set1{t} $i
            r sadd set2{t} [expr $i+195]
        }
        foreach i {199 195 1000 2000} {
            r sadd set3{t} $i
        }
        for {set i 5} {$i < 200} {incr i} {
            r sadd set4{t} $i
        }
        r sadd set5{t} 0

        # To make sure the sets are encoded as the type we are testing -- also
        # when the VM is enabled and the values may be swapped in and out
        # while the tests are running -- an extra element is added to every
        # set that determines its encoding.
        set large 200
        if {$type eq "regular"} {
            set large foo
        }

        for {set i 1} {$i <= 5} {incr i} {
            r sadd [format "set%d{t}" $i] $large
        }

        test "Generated sets must be encoded correctly - $type" {
            for {set i 1} {$i <= 5} {incr i} {
                assert_encoding $encoding($i) [format "set%d{t}" $i]
            }
        }

        test "SINTER with two sets - $type" {
            assert_equal [list 195 196 197 198 199 $large] [lsort [r sinter set1{t} set2{t}]]
        }

        test "SINTERCARD with two sets - $type" {
            assert_equal 6 [r sintercard 2 set1{t} set2{t}]
            assert_equal 6 [r sintercard 2 set1{t} set2{t} limit 0]
            assert_equal 3 [r sintercard 2 set1{t} set2{t} limit 3]
            assert_equal 6 [r sintercard 2 set1{t} set2{t} limit 10]
        }

        test "SINTERSTORE with two sets - $type" {
            r sinterstore setres{t} set1{t} set2{t}
            assert_encoding $smallenc setres{t}
            assert_equal [list 195 196 197 198 199 $large] [lsort [r smembers setres{t}]]
        }

        test "SINTERSTORE with two sets, after a DEBUG RELOAD - $type" {
            r debug reload
            r sinterstore setres{t} set1{t} set2{t}
            assert_encoding $smallenc setres{t}
            assert_equal [list 195 196 197 198 199 $large] [lsort [r smembers setres{t}]]
        } {} {needs:debug}

        test "SUNION with two sets - $type" {
            set expected [lsort -uniq "[r smembers set1{t}] [r smembers set2{t}]"]
            assert_equal $expected [lsort [r sunion set1{t} set2{t}]]
        }

        test "SUNIONSTORE with two sets - $type" {
            r sunionstore setres{t} set1{t} set2{t}
            assert_encoding $bigenc setres{t}
            set expected [lsort -uniq "[r smembers set1{t}] [r smembers set2{t}]"]
            assert_equal $expected [lsort [r smembers setres{t}]]
        }

        test "SINTER against three sets - $type" {
            assert_equal [list 195 199 $large] [lsort [r sinter set1{t} set2{t} set3{t}]]
        }

        test "SINTERCARD against three sets - $type" {
            assert_equal 3 [r sintercard 3 set1{t} set2{t} set3{t}]
            assert_equal 3 [r sintercard 3 set1{t} set2{t} set3{t} limit 0]
            assert_equal 2 [r sintercard 3 set1{t} set2{t} set3{t} limit 2]
            assert_equal 3 [r sintercard 3 set1{t} set2{t} set3{t} limit 10]
        }

        test "SINTERSTORE with three sets - $type" {
            r sinterstore setres{t} set1{t} set2{t} set3{t}
            assert_equal [list 195 199 $large] [lsort [r smembers setres{t}]]
        }

        test "SUNION with non existing keys - $type" {
            set expected [lsort -uniq "[r smembers set1{t}] [r smembers set2{t}]"]
            assert_equal $expected [lsort [r sunion nokey1{t} set1{t} set2{t} nokey2{t}]]
        }

        test "SDIFF with two sets - $type" {
            assert_equal {0 1 2 3 4} [lsort [r sdiff set1{t} set4{t}]]
        }

        test "SDIFF with three sets - $type" {
            assert_equal {1 2 3 4} [lsort [r sdiff set1{t} set4{t} set5{t}]]
        }

        test "SDIFFSTORE with three sets - $type" {
            r sdiffstore setres{t} set1{t} set4{t} set5{t}
            # When we start with intsets, we should always end with intsets.
            if {$type eq {intset}} {
                assert_encoding intset setres{t}
            }
            assert_equal {1 2 3 4} [lsort [r smembers setres{t}]]
        }

        test "SINTER/SUNION/SDIFF with three same sets - $type" {
            set expected [lsort "[r smembers set1{t}]"]
            assert_equal $expected [lsort [r sinter set1{t} set1{t} set1{t}]]
            assert_equal $expected [lsort [r sunion set1{t} set1{t} set1{t}]]
            assert_equal {} [lsort [r sdiff set1{t} set1{t} set1{t}]]
        }
    }

    test "SINTERSTORE with two listpack sets where result is intset" {
        r del setres{t} set1{t} set2{t}
        r sadd set1{t} a b c 1 3 6 x y z
        r sadd set2{t} e f g 1 2 3 u v w
        assert_encoding listpack set1{t}
        assert_encoding listpack set2{t}
        r sinterstore setres{t} set1{t} set2{t}
        assert_equal [list 1 3] [lsort [r smembers setres{t}]]
        assert_encoding intset setres{t}
    }

    test "SINTERSTORE with two hashtable sets where result is intset" {
        r del setres{t} set1{t} set2{t}
        r sadd set1{t} a b c 444 555 666
        r sadd set2{t} e f g 111 222 333
        set expected {}
        for {set i 1} {$i < 130} {incr i} {
            r sadd set1{t} $i
            r sadd set2{t} $i
            lappend expected $i
        }
        assert_encoding hashtable set1{t}
        assert_encoding hashtable set2{t}
        r sinterstore setres{t} set1{t} set2{t}
        assert_equal [lsort $expected] [lsort [r smembers setres{t}]]
        assert_encoding intset setres{t}
    }

    test "SUNION hashtable and listpack" {
        # This adds code coverage for adding a non-sds string to a hashtable set
        # which already contains the string.
        r del set1{t} set2{t}
        set union {abcdefghijklmnopqrstuvwxyz1234567890 a b c 1 2 3}
        create_set set1{t} $union
        create_set set2{t} {a b c}
        assert_encoding hashtable set1{t}
        assert_encoding listpack set2{t}
        assert_equal [lsort $union] [lsort [r sunion set1{t} set2{t}]]
    }

    test "SDIFF with first set empty" {
        r del set1{t} set2{t} set3{t}
        r sadd set2{t} 1 2 3 4
        r sadd set3{t} a b c d
        r sdiff set1{t} set2{t} set3{t}
    } {}

    test "SDIFF with same set two times" {
        r del set1
        r sadd set1 a b c 1 2 3 4 5 6
        r sdiff set1 set1
    } {}

    test "SDIFF fuzzing" {
        for {set j 0} {$j < 100} {incr j} {
            unset -nocomplain s
            array set s {}
            set args {}
            set num_sets [expr {[randomInt 10]+1}]
            for {set i 0} {$i < $num_sets} {incr i} {
                set num_elements [randomInt 100]
                r del set_$i{t}
                lappend args set_$i{t}
                while {$num_elements} {
                    set ele [randomValue]
                    r sadd set_$i{t} $ele
                    if {$i == 0} {
                        set s($ele) x
                    } else {
                        unset -nocomplain s($ele)
                    }
                    incr num_elements -1
                }
            }
            set result [lsort [r sdiff {*}$args]]
            assert_equal $result [lsort [array names s]]
        }
    }

    test "SDIFF against non-set should throw error" {
        # with an empty set
        r set key1{t} x
        assert_error "WRONGTYPE*" {r sdiff key1{t} noset{t}}
        # different order
        assert_error "WRONGTYPE*" {r sdiff noset{t} key1{t}}

        # with a legal set
        r del set1{t}
        r sadd set1{t} a b c
        assert_error "WRONGTYPE*" {r sdiff key1{t} set1{t}}
        # different order
        assert_error "WRONGTYPE*" {r sdiff set1{t} key1{t}}
    }

    test "SDIFF should handle non existing key as empty" {
        r del set1{t} set2{t} set3{t}

        r sadd set1{t} a b c
        r sadd set2{t} b c d
        assert_equal {a} [lsort [r sdiff set1{t} set2{t} set3{t}]]
        assert_equal {} [lsort [r sdiff set3{t} set2{t} set1{t}]]
    }

    test "SDIFFSTORE against non-set should throw error" {
        r del set1{t} set2{t} set3{t} key1{t}
        r set key1{t} x

        # with en empty dstkey
        assert_error "WRONGTYPE*" {r SDIFFSTORE set3{t} key1{t} noset{t}}
        assert_equal 0 [r exists set3{t}]
        assert_error "WRONGTYPE*" {r SDIFFSTORE set3{t} noset{t} key1{t}}
        assert_equal 0 [r exists set3{t}]

        # with a legal dstkey
        r sadd set1{t} a b c
        r sadd set2{t} b c d
        r sadd set3{t} e
        assert_error "WRONGTYPE*" {r SDIFFSTORE set3{t} key1{t} set1{t} noset{t}}
        assert_equal 1 [r exists set3{t}]
        assert_equal {e} [lsort [r smembers set3{t}]]

        assert_error "WRONGTYPE*" {r SDIFFSTORE set3{t} set1{t} key1{t} set2{t}}
        assert_equal 1 [r exists set3{t}]
        assert_equal {e} [lsort [r smembers set3{t}]]
    }

    test "SDIFFSTORE should handle non existing key as empty" {
        r del set1{t} set2{t} set3{t}

        r set setres{t} xxx
        assert_equal 0 [r sdiffstore setres{t} foo111{t} bar222{t}]
        assert_equal 0 [r exists setres{t}]

        # with a legal dstkey, should delete dstkey
        r sadd set3{t} a b c
        assert_equal 0 [r sdiffstore set3{t} set1{t} set2{t}]
        assert_equal 0 [r exists set3{t}]

        r sadd set1{t} a b c
        assert_equal 3 [r sdiffstore set3{t} set1{t} set2{t}]
        assert_equal 1 [r exists set3{t}]
        assert_equal {a b c} [lsort [r smembers set3{t}]]

        # with a legal dstkey and empty set2, should delete the dstkey
        r sadd set3{t} a b c
        assert_equal 0 [r sdiffstore set3{t} set2{t} set1{t}]
        assert_equal 0 [r exists set3{t}]
    }

    test "SINTER against non-set should throw error" {
        r set key1{t} x
        assert_error "WRONGTYPE*" {r sinter key1{t} noset{t}}
        # different order
        assert_error "WRONGTYPE*" {r sinter noset{t} key1{t}}

        r sadd set1{t} a b c
        assert_error "WRONGTYPE*" {r sinter key1{t} set1{t}}
        # different order
        assert_error "WRONGTYPE*" {r sinter set1{t} key1{t}}
    }

    test "SINTER should handle non existing key as empty" {
        r del set1{t} set2{t} set3{t}
        r sadd set1{t} a b c
        r sadd set2{t} b c d
        r sinter set1{t} set2{t} set3{t}
    } {}

    test "SINTER with same integer elements but different encoding" {
        r del set1{t} set2{t}
        r sadd set1{t} 1 2 3
        r sadd set2{t} 1 2 3 a
        r srem set2{t} a
        assert_encoding intset set1{t}
        assert_encoding listpack set2{t}
        lsort [r sinter set1{t} set2{t}]
    } {1 2 3}

    test "SINTERSTORE against non-set should throw error" {
        r del set1{t} set2{t} set3{t} key1{t}
        r set key1{t} x

        # with en empty dstkey
        assert_error "WRONGTYPE*" {r sinterstore set3{t} key1{t} noset{t}}
        assert_equal 0 [r exists set3{t}]
        assert_error "WRONGTYPE*" {r sinterstore set3{t} noset{t} key1{t}}
        assert_equal 0 [r exists set3{t}]

        # with a legal dstkey
        r sadd set1{t} a b c
        r sadd set2{t} b c d
        r sadd set3{t} e
        assert_error "WRONGTYPE*" {r sinterstore set3{t} key1{t} set2{t} noset{t}}
        assert_equal 1 [r exists set3{t}]
        assert_equal {e} [lsort [r smembers set3{t}]]

        assert_error "WRONGTYPE*" {r sinterstore set3{t} noset{t} key1{t} set2{t}}
        assert_equal 1 [r exists set3{t}]
        assert_equal {e} [lsort [r smembers set3{t}]]
    }

    test "SINTERSTORE against non existing keys should delete dstkey" {
        r del set1{t} set2{t} set3{t}

        r set setres{t} xxx
        assert_equal 0 [r sinterstore setres{t} foo111{t} bar222{t}]
        assert_equal 0 [r exists setres{t}]

        # with a legal dstkey
        r sadd set3{t} a b c
        assert_equal 0 [r sinterstore set3{t} set1{t} set2{t}]
        assert_equal 0 [r exists set3{t}]

        r sadd set1{t} a b c
        assert_equal 0 [r sinterstore set3{t} set1{t} set2{t}]
        assert_equal 0 [r exists set3{t}]

        assert_equal 0 [r sinterstore set3{t} set2{t} set1{t}]
        assert_equal 0 [r exists set3{t}]
    }

    test "SUNION against non-set should throw error" {
        r set key1{t} x
        assert_error "WRONGTYPE*" {r sunion key1{t} noset{t}}
        # different order
        assert_error "WRONGTYPE*" {r sunion noset{t} key1{t}}

        r del set1{t}
        r sadd set1{t} a b c
        assert_error "WRONGTYPE*" {r sunion key1{t} set1{t}}
        # different order
        assert_error "WRONGTYPE*" {r sunion set1{t} key1{t}}
    }

    test "SUNION should handle non existing key as empty" {
        r del set1{t} set2{t} set3{t}

        r sadd set1{t} a b c
        r sadd set2{t} b c d
        assert_equal {a b c d} [lsort [r sunion set1{t} set2{t} set3{t}]]
    }

    test "SUNIONSTORE against non-set should throw error" {
        r del set1{t} set2{t} set3{t} key1{t}
        r set key1{t} x

        # with en empty dstkey
        assert_error "WRONGTYPE*" {r sunionstore set3{t} key1{t} noset{t}}
        assert_equal 0 [r exists set3{t}]
        assert_error "WRONGTYPE*" {r sunionstore set3{t} noset{t} key1{t}}
        assert_equal 0 [r exists set3{t}]

        # with a legal dstkey
        r sadd set1{t} a b c
        r sadd set2{t} b c d
        r sadd set3{t} e
        assert_error "WRONGTYPE*" {r sunionstore set3{t} key1{t} key2{t} noset{t}}
        assert_equal 1 [r exists set3{t}]
        assert_equal {e} [lsort [r smembers set3{t}]]

        assert_error "WRONGTYPE*" {r sunionstore set3{t} noset{t} key1{t} key2{t}}
        assert_equal 1 [r exists set3{t}]
        assert_equal {e} [lsort [r smembers set3{t}]]
    }

    test "SUNIONSTORE should handle non existing key as empty" {
        r del set1{t} set2{t} set3{t}

        r set setres{t} xxx
        assert_equal 0 [r sunionstore setres{t} foo111{t} bar222{t}]
        assert_equal 0 [r exists setres{t}]

        # set1 set2 both empty, should delete the dstkey
        r sadd set3{t} a b c
        assert_equal 0 [r sunionstore set3{t} set1{t} set2{t}]
        assert_equal 0 [r exists set3{t}]

        r sadd set1{t} a b c
        r sadd set3{t} e f
        assert_equal 3 [r sunionstore set3{t} set1{t} set2{t}]
        assert_equal 1 [r exists set3{t}]
        assert_equal {a b c} [lsort [r smembers set3{t}]]

        r sadd set3{t} d
        assert_equal 3 [r sunionstore set3{t} set2{t} set1{t}]
        assert_equal 1 [r exists set3{t}]
        assert_equal {a b c} [lsort [r smembers set3{t}]]
    }

    test "SUNIONSTORE against non existing keys should delete dstkey" {
        r set setres{t} xxx
        assert_equal 0 [r sunionstore setres{t} foo111{t} bar222{t}]
        assert_equal 0 [r exists setres{t}]
    }

    foreach {type contents} {listpack {a b c} intset {1 2 3}} {
        test "SPOP basics - $type" {
            create_set myset $contents
            assert_encoding $type myset
            assert_equal $contents [lsort [list [r spop myset] [r spop myset] [r spop myset]]]
            assert_equal 0 [r scard myset]
        }

        test "SPOP with <count>=1 - $type" {
            create_set myset $contents
            assert_encoding $type myset
            assert_equal $contents [lsort [list [r spop myset 1] [r spop myset 1] [r spop myset 1]]]
            assert_equal 0 [r scard myset]
        }

        test "SRANDMEMBER - $type" {
            create_set myset $contents
            unset -nocomplain myset
            array set myset {}
            for {set i 0} {$i < 100} {incr i} {
                set myset([r srandmember myset]) 1
            }
            assert_equal $contents [lsort [array names myset]]
        }
    }

    test "SPOP integer from listpack set" {
        create_set myset {a 1 2 3 4 5 6 7}
        assert_encoding listpack myset
        set a [r spop myset]
        set b [r spop myset]
        assert {[string is digit $a] || [string is digit $b]}
    }

    foreach {type contents} {
        listpack {a b c d e f g h i j k l m n o p q r s t u v w x y z}
        intset {1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 3 4 5 6 7 8 9}
        hashtable {ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 b c d e f g h i j k l m n o p q r s t u v w x y z}
    } {
        test "SPOP with <count> - $type" {
            create_set myset $contents
            assert_encoding $type myset
            assert_equal $contents [lsort [concat [r spop myset 11] [r spop myset 9] [r spop myset 0] [r spop myset 4] [r spop myset 1] [r spop myset 0] [r spop myset 1] [r spop myset 0]]]
            assert_equal 0 [r scard myset]
        }
    }

    # As seen in intsetRandomMembers
    test "SPOP using integers, testing Knuth's and Floyd's algorithm" {
        create_set myset {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
        assert_encoding intset myset
        assert_equal 20 [r scard myset]
        r spop myset 1
        assert_equal 19 [r scard myset]
        r spop myset 2
        assert_equal 17 [r scard myset]
        r spop myset 3
        assert_equal 14 [r scard myset]
        r spop myset 10
        assert_equal 4 [r scard myset]
        r spop myset 10
        assert_equal 0 [r scard myset]
        r spop myset 1
        assert_equal 0 [r scard myset]
    } {}

    test "SPOP using integers with Knuth's algorithm" {
        r spop nonexisting_key 100
    } {}

    foreach {type content} {
        intset   {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
        listpack {a 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
    } {
    test "SPOP new implementation: code path #1 $type" {
        create_set myset $content
        assert_encoding $type myset
        set res [r spop myset 30]
        assert {[lsort $content] eq [lsort $res]}
        assert_equal {0} [r exists myset]
    }

    test "SPOP new implementation: code path #2 $type" {
        create_set myset $content
        assert_encoding $type myset
        set res [r spop myset 2]
        assert {[llength $res] == 2}
        assert {[r scard myset] == 18}
        set union [concat [r smembers myset] $res]
        assert {[lsort $union] eq [lsort $content]}
    }

    test "SPOP new implementation: code path #3 $type" {
        create_set myset $content
        assert_encoding $type myset
        set res [r spop myset 18]
        assert {[llength $res] == 18}
        assert {[r scard myset] == 2}
        set union [concat [r smembers myset] $res]
        assert {[lsort $union] eq [lsort $content]}
    }
    }

    test "SPOP new implementation: code path #1 propagate as DEL or UNLINK" {
        r del myset1{t} myset2{t}
        r sadd myset1{t} 1 2 3 4 5
        r sadd myset2{t} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

        set repl [attach_to_replication_stream]

        r config set lazyfree-lazy-server-del no
        r spop myset1{t} [r scard myset1{t}]
        r config set lazyfree-lazy-server-del yes
        r spop myset2{t} [r scard myset2{t}]
        assert_equal {0} [r exists myset1{t} myset2{t}]

        # Verify the propagate of DEL and UNLINK.
        assert_replication_stream $repl {
            {select *}
            {del myset1{t}}
            {unlink myset2{t}}
        }

        close_replication_stream $repl
    } {} {needs:repl}

    test "SRANDMEMBER count of 0 is handled correctly" {
        r srandmember myset 0
    } {}

    test "SRANDMEMBER with <count> against non existing key" {
        r srandmember nonexisting_key 100
    } {}

    test "SRANDMEMBER count overflow" {
        r sadd myset a
        assert_error {*value is out of range*} {r srandmember myset -9223372036854775808}
    } {}

    # Make sure we can distinguish between an empty array and a null response
    r readraw 1

    test "SRANDMEMBER count of 0 is handled correctly - emptyarray" {
        r srandmember myset 0
    } {*0}

    test "SRANDMEMBER with <count> against non existing key - emptyarray" {
        r srandmember nonexisting_key 100
    } {*0}

    r readraw 0

    foreach {type contents} {
        listpack {
            1 5 10 50 125 50000 33959417 4775547 65434162
            12098459 427716 483706 2726473884 72615637475
            MARY PATRICIA LINDA BARBARA ELIZABETH JENNIFER MARIA
            SUSAN MARGARET DOROTHY LISA NANCY KAREN BETTY HELEN
            SANDRA DONNA CAROL RUTH SHARON MICHELLE LAURA SARAH
            KIMBERLY DEBORAH JESSICA SHIRLEY CYNTHIA ANGELA MELISSA
            BRENDA AMY ANNA REBECCA VIRGINIA KATHLEEN
        }
        intset {
            0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
            20 21 22 23 24 25 26 27 28 29
            30 31 32 33 34 35 36 37 38 39
            40 41 42 43 44 45 46 47 48 49
        }
        hashtable {
            ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
            1 5 10 50 125 50000 33959417 4775547 65434162
            12098459 427716 483706 2726473884 72615637475
            MARY PATRICIA LINDA BARBARA ELIZABETH JENNIFER MARIA
            SUSAN MARGARET DOROTHY LISA NANCY KAREN BETTY HELEN
            SANDRA DONNA CAROL RUTH SHARON MICHELLE LAURA SARAH
            KIMBERLY DEBORAH JESSICA SHIRLEY CYNTHIA ANGELA MELISSA
            BRENDA AMY ANNA REBECCA VIRGINIA
        }
    } {
        test "SRANDMEMBER with <count> - $type" {
            create_set myset $contents
            assert_encoding $type myset
            unset -nocomplain myset
            array set myset {}
            foreach ele [r smembers myset] {
                set myset($ele) 1
            }
            assert_equal [lsort $contents] [lsort [array names myset]]

            # Make sure that a count of 0 is handled correctly.
            assert_equal [r srandmember myset 0] {}

            # We'll stress different parts of the code, see the implementation
            # of SRANDMEMBER for more information, but basically there are
            # four different code paths.
            #
            # PATH 1: Use negative count.
            #
            # 1) Check that it returns repeated elements.
            set res [r srandmember myset -100]
            assert_equal [llength $res] 100

            # 2) Check that all the elements actually belong to the
            # original set.
            foreach ele $res {
                assert {[info exists myset($ele)]}
            }

            # 3) Check that eventually all the elements are returned.
            unset -nocomplain auxset
            set iterations 1000
            while {$iterations != 0} {
                incr iterations -1
                set res [r srandmember myset -10]
                foreach ele $res {
                    set auxset($ele) 1
                }
                if {[lsort [array names myset]] eq
                    [lsort [array names auxset]]} {
                    break;
                }
            }
            assert {$iterations != 0}

            # PATH 2: positive count (unique behavior) with requested size
            # equal or greater than set size.
            foreach size {50 100} {
                set res [r srandmember myset $size]
                assert_equal [llength $res] 50
                assert_equal [lsort $res] [lsort [array names myset]]
            }

            # PATH 3: Ask almost as elements as there are in the set.
            # In this case the implementation will duplicate the original
            # set and will remove random elements up to the requested size.
            #
            # PATH 4: Ask a number of elements definitely smaller than
            # the set size.
            #
            # We can test both the code paths just changing the size but
            # using the same code.

            foreach size {45 5} {
                set res [r srandmember myset $size]
                assert_equal [llength $res] $size

                # 1) Check that all the elements actually belong to the
                # original set.
                foreach ele $res {
                    assert {[info exists myset($ele)]}
                }

                # 2) Check that eventually all the elements are returned.
                unset -nocomplain auxset
                set iterations 1000
                while {$iterations != 0} {
                    incr iterations -1
                    set res [r srandmember myset $size]
                    foreach ele $res {
                        set auxset($ele) 1
                    }
                    if {[lsort [array names myset]] eq
                        [lsort [array names auxset]]} {
                        break;
                    }
                }
                assert {$iterations != 0}
            }
        }
    }

    foreach {type contents} {
        listpack {
            1 5 10 50 125
            MARY PATRICIA LINDA BARBARA ELIZABETH
        }
        intset {
            0 1 2 3 4 5 6 7 8 9
        }
        hashtable {
            ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
            1 5 10 50 125
            MARY PATRICIA LINDA BARBARA
        }
    } {
        test "SRANDMEMBER histogram distribution - $type" {
            create_set myset $contents
            assert_encoding $type myset
            unset -nocomplain myset
            array set myset {}
            foreach ele [r smembers myset] {
                set myset($ele) 1
            }

            # Use negative count (PATH 1).
            # df = 9, 40 means 0.00001 probability
            set res [r srandmember myset -1000]
            assert_lessthan [chi_square_value $res] 40

            # Use positive count (both PATH 3 and PATH 4).
            foreach size {8 2} {
                unset -nocomplain allkey
                set iterations [expr {1000 / $size}]
                while {$iterations != 0} {
                    incr iterations -1
                    set res [r srandmember myset $size]
                    foreach ele $res {
                        lappend allkey $ele
                    }
                }
                # df = 9, 40 means 0.00001 probability
                assert_lessthan [chi_square_value $allkey] 40
            }
        }
    }

    proc is_rehashing {myset} {
        set htstats [r debug HTSTATS-KEY $myset]
        return [string match {*rehashing target*} $htstats]
    }

    proc rem_hash_set_top_N {myset n} {
        set cursor 0
        set members {}
        set enough 0
        while 1 {
            set res [r sscan $myset $cursor]
            set cursor [lindex $res 0]
            set k [lindex $res 1]
            foreach m $k {
                lappend members $m
                if {[llength $members] >= $n} {
                    set enough 1
                    break
                }
            }
            if {$enough || $cursor == 0} {
                break
            }
        }
        r srem $myset {*}$members
    }

    test "SRANDMEMBER with a dict containing long chain" {
        set origin_save [config_get_set save ""]
        set origin_max_lp [config_get_set set-max-listpack-entries 0]
        set origin_save_delay [config_get_set rdb-key-save-delay 2147483647]

        # 1) Create a hash set with 100000 members.
        set members {}
        for {set i 0} {$i < 100000} {incr i} {
            lappend members [format "m:%d" $i]
        }
        create_set myset $members

        # 2) Wait for the hash set rehashing to finish.
        while {[is_rehashing myset]} {
            r srandmember myset 100
        }

        # 3) Turn off the rehashing of this set, and remove the members to 500.
        r bgsave
        rem_hash_set_top_N myset [expr {[r scard myset] - 500}]
        assert_equal [r scard myset] 500

        # 4) Kill RDB child process to restart rehashing.
        set pid1 [get_child_pid 0]
        catch {exec kill -9 $pid1}
        waitForBgsave r

        # 5) Let the set hash to start rehashing
        r spop myset 1
        assert [is_rehashing myset]

        # 6) Verify that when rdb saving is in progress, rehashing will still be performed (because
        # the ratio is extreme) by waiting for it to finish during an active bgsave.
        r bgsave

        while {[is_rehashing myset]} {
            r srandmember myset 1
        }
        if {$::verbose} {
            puts [r debug HTSTATS-KEY myset full]
        }

        set pid1 [get_child_pid 0]
        catch {exec kill -9 $pid1}
        waitForBgsave r

        # 7) Check that eventually, SRANDMEMBER returns all elements.
        array set allmyset {}
        foreach ele [r smembers myset] {
            set allmyset($ele) 1
        }
        unset -nocomplain auxset
        set iterations 1000
        while {$iterations != 0} {
            incr iterations -1
            set res [r srandmember myset -10]
            foreach ele $res {
                set auxset($ele) 1
            }
            if {[lsort [array names allmyset]] eq
                [lsort [array names auxset]]} {
                break;
            }
        }
        assert {$iterations != 0}

        # 8) Remove the members to 30 in order to calculate the value of Chi-Square Distribution,
        #    otherwise we would need more iterations.
        rem_hash_set_top_N myset [expr {[r scard myset] - 30}]
        assert_equal [r scard myset] 30
        assert {[is_rehashing myset]}

        # Now that we have a hash set with only one long chain bucket.
        set htstats [r debug HTSTATS-KEY myset full]
        assert {[regexp {different slots: ([0-9]+)} $htstats - different_slots]}
        assert {[regexp {max chain length: ([0-9]+)} $htstats - max_chain_length]}
        assert {$different_slots == 1 && $max_chain_length == 30}

        # 9) Use positive count (PATH 4) to get 10 elements (out of 30) each time.
        unset -nocomplain allkey
        set iterations 1000
        while {$iterations != 0} {
            incr iterations -1
            set res [r srandmember myset 10]
            foreach ele $res {
                lappend allkey $ele
            }
        }
        # validate even distribution of random sampling (df = 29, 73 means 0.00001 probability)
        assert_lessthan [chi_square_value $allkey] 73

        r config set save $origin_save
        r config set set-max-listpack-entries $origin_max_lp
        r config set rdb-key-save-delay $origin_save_delay
    } {OK} {needs:debug slow}

    proc setup_move {} {
        r del myset3{t} myset4{t}
        create_set myset1{t} {1 a b}
        create_set myset2{t} {2 3 4}
        assert_encoding listpack myset1{t}
        assert_encoding intset myset2{t}
    }

    test "SMOVE basics - from regular set to intset" {
        # move a non-integer element to an intset should convert encoding
        setup_move
        assert_equal 1 [r smove myset1{t} myset2{t} a]
        assert_equal {1 b} [lsort [r smembers myset1{t}]]
        assert_equal {2 3 4 a} [lsort [r smembers myset2{t}]]
        assert_encoding listpack myset2{t}

        # move an integer element should not convert the encoding
        setup_move
        assert_equal 1 [r smove myset1{t} myset2{t} 1]
        assert_equal {a b} [lsort [r smembers myset1{t}]]
        assert_equal {1 2 3 4} [lsort [r smembers myset2{t}]]
        assert_encoding intset myset2{t}
    }

    test "SMOVE basics - from intset to regular set" {
        setup_move
        assert_equal 1 [r smove myset2{t} myset1{t} 2]
        assert_equal {1 2 a b} [lsort [r smembers myset1{t}]]
        assert_equal {3 4} [lsort [r smembers myset2{t}]]
    }

    test "SMOVE non existing key" {
        setup_move
        assert_equal 0 [r smove myset1{t} myset2{t} foo]
        assert_equal 0 [r smove myset1{t} myset1{t} foo]
        assert_equal {1 a b} [lsort [r smembers myset1{t}]]
        assert_equal {2 3 4} [lsort [r smembers myset2{t}]]
    }

    test "SMOVE non existing src set" {
        setup_move
        assert_equal 0 [r smove noset{t} myset2{t} foo]
        assert_equal {2 3 4} [lsort [r smembers myset2{t}]]
    }

    test "SMOVE from regular set to non existing destination set" {
        setup_move
        assert_equal 1 [r smove myset1{t} myset3{t} a]
        assert_equal {1 b} [lsort [r smembers myset1{t}]]
        assert_equal {a} [lsort [r smembers myset3{t}]]
        assert_encoding listpack myset3{t}
    }

    test "SMOVE from intset to non existing destination set" {
        setup_move
        assert_equal 1 [r smove myset2{t} myset3{t} 2]
        assert_equal {3 4} [lsort [r smembers myset2{t}]]
        assert_equal {2} [lsort [r smembers myset3{t}]]
        assert_encoding intset myset3{t}
    }

    test "SMOVE wrong src key type" {
        r set x{t} 10
        assert_error "WRONGTYPE*" {r smove x{t} myset2{t} foo}
    }

    test "SMOVE wrong dst key type" {
        r set x{t} 10
        assert_error "WRONGTYPE*" {r smove myset2{t} x{t} foo}
    }

    test "SMOVE with identical source and destination" {
        r del set{t}
        r sadd set{t} a b c
        r smove set{t} set{t} b
        lsort [r smembers set{t}]
    } {a b c}

    test "SMOVE only notify dstset when the addition is successful" {
        r del srcset{t}
        r del dstset{t}

        r sadd srcset{t} a b
        r sadd dstset{t} a

        r watch dstset{t}

        r multi
        r sadd dstset{t} c

        set r2 [redis_client]
        $r2 smove srcset{t} dstset{t} a

        # The dstset is actually unchanged, multi should success
        r exec
        set res [r scard dstset{t}]
        assert_equal $res 2
        $r2 close
    }

    tags {slow} {
        test {intsets implementation stress testing} {
            for {set j 0} {$j < 20} {incr j} {
                unset -nocomplain s
                array set s {}
                r del s
                set len [randomInt 1024]
                for {set i 0} {$i < $len} {incr i} {
                    randpath {
                        set data [randomInt 65536]
                    } {
                        set data [randomInt 4294967296]
                    } {
                        set data [randomInt 18446744073709551616]
                    }
                    set s($data) {}
                    r sadd s $data
                }
                assert_equal [lsort [r smembers s]] [lsort [array names s]]
                set len [array size s]
                for {set i 0} {$i < $len} {incr i} {
                    set e [r spop s]
                    if {![info exists s($e)]} {
                        puts "Can't find '$e' on local array"
                        puts "Local array: [lsort [r smembers s]]"
                        puts "Remote array: [lsort [array names s]]"
                        error "exception"
                    }
                    array unset s $e
                }
                assert_equal [r scard s] 0
                assert_equal [array size s] 0
            }
        }
    }
}

run_solo {set-large-memory} {
start_server [list overrides [list save ""] ] {

# test if the server supports such large configs (avoid 32 bit builds)
catch {
    r config set proto-max-bulk-len 10000000000 ;#10gb
    r config set client-query-buffer-limit 10000000000 ;#10gb
}
if {[lindex [r config get proto-max-bulk-len] 1] == 10000000000} {

    set str_length 4400000000 ;#~4.4GB

    test {SADD, SCARD, SISMEMBER - large data} {
        r flushdb
        r write "*3\r\n\$4\r\nSADD\r\n\$5\r\nmyset\r\n"
        assert_equal 1 [write_big_bulk $str_length "aaa"]
        r write "*3\r\n\$4\r\nSADD\r\n\$5\r\nmyset\r\n"
        assert_equal 1 [write_big_bulk $str_length "bbb"]
        r write "*3\r\n\$4\r\nSADD\r\n\$5\r\nmyset\r\n"
        assert_equal 0 [write_big_bulk $str_length "aaa"]
        assert_encoding hashtable myset
        set s0 [s used_memory]
        assert {$s0 > [expr $str_length * 2]}
        assert_equal 2 [r scard myset]

        r write "*3\r\n\$9\r\nSISMEMBER\r\n\$5\r\nmyset\r\n"
        assert_equal 1 [write_big_bulk $str_length "aaa"]
        r write "*3\r\n\$9\r\nSISMEMBER\r\n\$5\r\nmyset\r\n"
        assert_equal 0 [write_big_bulk $str_length "ccc"]
        r write "*3\r\n\$4\r\nSREM\r\n\$5\r\nmyset\r\n"
        assert_equal 1 [write_big_bulk $str_length "bbb"]
        assert_equal [read_big_bulk {r spop myset} yes "aaa"] $str_length
    } {} {large-memory}

    # restore defaults
    r config set proto-max-bulk-len 536870912
    r config set client-query-buffer-limit 1073741824

} ;# skip 32bit builds
}
} ;# run_solo