1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
|
/*-
* Copyright (c) 2021 Ribose Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "crypto.h"
#include "config.h"
#include "defaults.h"
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include "mem.h"
#include "utils.h"
static const char *
pgp_sa_to_openssl_string(int alg, bool silent = false)
{
switch (alg) {
#if defined(ENABLE_IDEA)
case PGP_SA_IDEA:
return "idea-ecb";
#endif
case PGP_SA_TRIPLEDES:
return "des-ede3";
#if defined(ENABLE_CAST5)
case PGP_SA_CAST5:
return "cast5-ecb";
#endif
#if defined(ENABLE_BLOWFISH)
case PGP_SA_BLOWFISH:
return "bf-ecb";
#endif
case PGP_SA_AES_128:
return "aes-128-ecb";
case PGP_SA_AES_192:
return "aes-192-ecb";
case PGP_SA_AES_256:
return "aes-256-ecb";
#if defined(ENABLE_SM2)
case PGP_SA_SM4:
return "sm4-ecb";
#endif
case PGP_SA_CAMELLIA_128:
return "camellia-128-ecb";
case PGP_SA_CAMELLIA_192:
return "camellia-192-ecb";
case PGP_SA_CAMELLIA_256:
return "camellia-256-ecb";
default:
if (!silent) {
RNP_LOG("Unsupported symmetric algorithm %d", alg);
}
return NULL;
}
}
bool
pgp_cipher_cfb_start(pgp_crypt_t * crypt,
pgp_symm_alg_t alg,
const uint8_t *key,
const uint8_t *iv)
{
memset(crypt, 0x0, sizeof(*crypt));
const char *cipher_name = pgp_sa_to_openssl_string(alg);
if (!cipher_name) {
RNP_LOG("Unsupported algorithm: %d", alg);
return false;
}
const EVP_CIPHER *cipher = EVP_get_cipherbyname(cipher_name);
if (!cipher) {
RNP_LOG("Cipher %s is not supported by OpenSSL.", cipher_name);
return false;
}
crypt->alg = alg;
crypt->blocksize = pgp_block_size(alg);
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
int res = EVP_EncryptInit_ex(ctx, cipher, NULL, key, iv);
if (res != 1) {
RNP_LOG("Failed to initialize cipher.");
EVP_CIPHER_CTX_free(ctx);
return false;
}
crypt->cfb.obj = ctx;
if (iv) {
// Otherwise left as all zeros via memset at start of function
memcpy(crypt->cfb.iv, iv, crypt->blocksize);
}
crypt->cfb.remaining = 0;
return true;
}
void
pgp_cipher_cfb_resync(pgp_crypt_t *crypt, const uint8_t *buf)
{
/* iv will be encrypted in the upcoming call to encrypt/decrypt */
memcpy(crypt->cfb.iv, buf, crypt->blocksize);
crypt->cfb.remaining = 0;
}
int
pgp_cipher_cfb_finish(pgp_crypt_t *crypt)
{
if (!crypt) {
return 0;
}
if (crypt->cfb.obj) {
EVP_CIPHER_CTX_free(crypt->cfb.obj);
crypt->cfb.obj = NULL;
}
OPENSSL_cleanse((uint8_t *) crypt, sizeof(*crypt));
return 0;
}
/* we rely on fact that in and out could be the same */
int
pgp_cipher_cfb_encrypt(pgp_crypt_t *crypt, uint8_t *out, const uint8_t *in, size_t bytes)
{
uint64_t *in64;
uint64_t buf64[512]; // 4KB - page size
uint64_t iv64[2];
size_t blocks, blockb;
unsigned blsize = crypt->blocksize;
/* encrypting till the block boundary */
while (bytes && crypt->cfb.remaining) {
*out = *in++ ^ crypt->cfb.iv[blsize - crypt->cfb.remaining];
crypt->cfb.iv[blsize - crypt->cfb.remaining] = *out++;
crypt->cfb.remaining--;
bytes--;
}
if (!bytes) {
return 0;
}
/* encrypting full blocks */
if (bytes > blsize) {
memcpy(iv64, crypt->cfb.iv, blsize);
while ((blocks = bytes & ~(blsize - 1)) > 0) {
if (blocks > sizeof(buf64)) {
blocks = sizeof(buf64);
}
bytes -= blocks;
blockb = blocks;
memcpy(buf64, in, blockb);
in64 = buf64;
if (blsize == 16) {
blocks >>= 4;
while (blocks--) {
int outlen = 16;
EVP_EncryptUpdate(
crypt->cfb.obj, (uint8_t *) iv64, &outlen, (uint8_t *) iv64, 16);
if (outlen != 16) {
RNP_LOG("Bad outlen: must be 16");
}
*in64 ^= iv64[0];
iv64[0] = *in64++;
*in64 ^= iv64[1];
iv64[1] = *in64++;
}
} else {
blocks >>= 3;
while (blocks--) {
int outlen = 8;
EVP_EncryptUpdate(
crypt->cfb.obj, (uint8_t *) iv64, &outlen, (uint8_t *) iv64, 8);
if (outlen != 8) {
RNP_LOG("Bad outlen: must be 8");
}
*in64 ^= iv64[0];
iv64[0] = *in64++;
}
}
memcpy(out, buf64, blockb);
out += blockb;
in += blockb;
}
memcpy(crypt->cfb.iv, iv64, blsize);
}
if (!bytes) {
return 0;
}
int outlen = blsize;
EVP_EncryptUpdate(crypt->cfb.obj, crypt->cfb.iv, &outlen, crypt->cfb.iv, (int) blsize);
if (outlen != (int) blsize) {
RNP_LOG("Bad outlen: must be %u", blsize);
}
crypt->cfb.remaining = blsize;
/* encrypting tail */
while (bytes) {
*out = *in++ ^ crypt->cfb.iv[blsize - crypt->cfb.remaining];
crypt->cfb.iv[blsize - crypt->cfb.remaining] = *out++;
crypt->cfb.remaining--;
bytes--;
}
return 0;
}
/* we rely on fact that in and out could be the same */
int
pgp_cipher_cfb_decrypt(pgp_crypt_t *crypt, uint8_t *out, const uint8_t *in, size_t bytes)
{
/* for better code readability */
uint64_t *out64, *in64;
uint64_t inbuf64[512]; // 4KB - page size
uint64_t outbuf64[512];
uint64_t iv64[2];
size_t blocks, blockb;
unsigned blsize = crypt->blocksize;
/* decrypting till the block boundary */
while (bytes && crypt->cfb.remaining) {
uint8_t c = *in++;
*out++ = c ^ crypt->cfb.iv[blsize - crypt->cfb.remaining];
crypt->cfb.iv[blsize - crypt->cfb.remaining] = c;
crypt->cfb.remaining--;
bytes--;
}
if (!bytes) {
return 0;
}
/* decrypting full blocks */
if (bytes > blsize) {
memcpy(iv64, crypt->cfb.iv, blsize);
while ((blocks = bytes & ~(blsize - 1)) > 0) {
if (blocks > sizeof(inbuf64)) {
blocks = sizeof(inbuf64);
}
bytes -= blocks;
blockb = blocks;
memcpy(inbuf64, in, blockb);
out64 = outbuf64;
in64 = inbuf64;
if (blsize == 16) {
blocks >>= 4;
while (blocks--) {
int outlen = 16;
EVP_EncryptUpdate(
crypt->cfb.obj, (uint8_t *) iv64, &outlen, (uint8_t *) iv64, 16);
if (outlen != 16) {
RNP_LOG("Bad outlen: must be 16");
}
*out64++ = *in64 ^ iv64[0];
iv64[0] = *in64++;
*out64++ = *in64 ^ iv64[1];
iv64[1] = *in64++;
}
} else {
blocks >>= 3;
while (blocks--) {
int outlen = 8;
EVP_EncryptUpdate(
crypt->cfb.obj, (uint8_t *) iv64, &outlen, (uint8_t *) iv64, 8);
if (outlen != 8) {
RNP_LOG("Bad outlen: must be 8");
}
*out64++ = *in64 ^ iv64[0];
iv64[0] = *in64++;
}
}
memcpy(out, outbuf64, blockb);
out += blockb;
in += blockb;
}
memcpy(crypt->cfb.iv, iv64, blsize);
}
if (!bytes) {
return 0;
}
int outlen = blsize;
EVP_EncryptUpdate(crypt->cfb.obj, crypt->cfb.iv, &outlen, crypt->cfb.iv, (int) blsize);
if (outlen != (int) blsize) {
RNP_LOG("Bad outlen: must be %u", blsize);
}
crypt->cfb.remaining = blsize;
/* decrypting tail */
while (bytes) {
uint8_t c = *in++;
*out++ = c ^ crypt->cfb.iv[blsize - crypt->cfb.remaining];
crypt->cfb.iv[blsize - crypt->cfb.remaining] = c;
crypt->cfb.remaining--;
bytes--;
}
return 0;
}
size_t
pgp_cipher_block_size(pgp_crypt_t *crypt)
{
return crypt->blocksize;
}
unsigned
pgp_block_size(pgp_symm_alg_t alg)
{
switch (alg) {
case PGP_SA_IDEA:
case PGP_SA_TRIPLEDES:
case PGP_SA_CAST5:
case PGP_SA_BLOWFISH:
return 8;
case PGP_SA_AES_128:
case PGP_SA_AES_192:
case PGP_SA_AES_256:
case PGP_SA_TWOFISH:
case PGP_SA_CAMELLIA_128:
case PGP_SA_CAMELLIA_192:
case PGP_SA_CAMELLIA_256:
case PGP_SA_SM4:
return 16;
default:
return 0;
}
}
unsigned
pgp_key_size(pgp_symm_alg_t alg)
{
/* Update MAX_SYMM_KEY_SIZE after adding algorithm
* with bigger key size.
*/
static_assert(32 == MAX_SYMM_KEY_SIZE, "MAX_SYMM_KEY_SIZE must be updated");
switch (alg) {
case PGP_SA_IDEA:
case PGP_SA_CAST5:
case PGP_SA_BLOWFISH:
case PGP_SA_AES_128:
case PGP_SA_CAMELLIA_128:
case PGP_SA_SM4:
return 16;
case PGP_SA_TRIPLEDES:
case PGP_SA_AES_192:
case PGP_SA_CAMELLIA_192:
return 24;
case PGP_SA_TWOFISH:
case PGP_SA_AES_256:
case PGP_SA_CAMELLIA_256:
return 32;
default:
return 0;
}
}
bool
pgp_is_sa_supported(int alg, bool silent)
{
return pgp_sa_to_openssl_string(alg, silent);
}
#if defined(ENABLE_AEAD)
static const char *
openssl_aead_name(pgp_symm_alg_t ealg, pgp_aead_alg_t aalg)
{
switch (aalg) {
case PGP_AEAD_OCB:
break;
default:
RNP_LOG("Only OCB mode is supported by the OpenSSL backend.");
return NULL;
}
switch (ealg) {
case PGP_SA_AES_128:
return "AES-128-OCB";
case PGP_SA_AES_192:
return "AES-192-OCB";
case PGP_SA_AES_256:
return "AES-256-OCB";
default:
RNP_LOG("Only AES-OCB is supported by the OpenSSL backend.");
return NULL;
}
}
bool
pgp_cipher_aead_init(pgp_crypt_t * crypt,
pgp_symm_alg_t ealg,
pgp_aead_alg_t aalg,
const uint8_t *key,
bool decrypt)
{
memset(crypt, 0x0, sizeof(*crypt));
/* OpenSSL backend currently supports only AES-OCB */
const char *algname = openssl_aead_name(ealg, aalg);
if (!algname) {
return false;
}
auto cipher = EVP_get_cipherbyname(algname);
if (!cipher) {
RNP_LOG("Cipher %s is not supported.", algname);
return false;
}
/* Create and setup context */
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
if (!ctx) {
RNP_LOG("Failed to create cipher context: %lu", ERR_peek_last_error());
return false;
}
crypt->aead.key = new rnp::secure_vector<uint8_t>(key, key + pgp_key_size(ealg));
crypt->alg = ealg;
crypt->blocksize = pgp_block_size(ealg);
crypt->aead.cipher = cipher;
crypt->aead.obj = ctx;
crypt->aead.alg = aalg;
crypt->aead.decrypt = decrypt;
crypt->aead.granularity = crypt->blocksize;
crypt->aead.taglen = PGP_AEAD_EAX_OCB_TAG_LEN;
crypt->aead.ad_len = 0;
crypt->aead.n_len = pgp_cipher_aead_nonce_len(aalg);
return true;
}
size_t
pgp_cipher_aead_granularity(pgp_crypt_t *crypt)
{
return crypt->aead.granularity;
}
#endif
size_t
pgp_cipher_aead_nonce_len(pgp_aead_alg_t aalg)
{
switch (aalg) {
case PGP_AEAD_EAX:
return PGP_AEAD_EAX_NONCE_LEN;
case PGP_AEAD_OCB:
return PGP_AEAD_OCB_NONCE_LEN;
default:
return 0;
}
}
size_t
pgp_cipher_aead_tag_len(pgp_aead_alg_t aalg)
{
switch (aalg) {
case PGP_AEAD_EAX:
case PGP_AEAD_OCB:
return PGP_AEAD_EAX_OCB_TAG_LEN;
default:
return 0;
}
}
#if defined(ENABLE_AEAD)
bool
pgp_cipher_aead_set_ad(pgp_crypt_t *crypt, const uint8_t *ad, size_t len)
{
assert(len <= sizeof(crypt->aead.ad));
memcpy(crypt->aead.ad, ad, len);
crypt->aead.ad_len = len;
return true;
}
bool
pgp_cipher_aead_start(pgp_crypt_t *crypt, const uint8_t *nonce, size_t len)
{
auto &aead = crypt->aead;
auto ctx = aead.obj;
int enc = aead.decrypt ? 0 : 1;
assert(len == aead.n_len);
EVP_CIPHER_CTX_reset(ctx);
if (EVP_CipherInit_ex(ctx, aead.cipher, NULL, NULL, NULL, enc) != 1) {
RNP_LOG("Failed to initialize cipher: %lu", ERR_peek_last_error());
return false;
}
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, aead.n_len, NULL) != 1) {
RNP_LOG("Failed to set nonce length: %lu", ERR_peek_last_error());
return false;
}
if (EVP_CipherInit_ex(ctx, NULL, NULL, aead.key->data(), nonce, enc) != 1) {
RNP_LOG("Failed to start cipher: %lu", ERR_peek_last_error());
return false;
}
int adlen = 0;
if (EVP_CipherUpdate(ctx, NULL, &adlen, aead.ad, aead.ad_len) != 1) {
RNP_LOG("Failed to set AD: %lu", ERR_peek_last_error());
return false;
}
return true;
}
bool
pgp_cipher_aead_update(pgp_crypt_t *crypt, uint8_t *out, const uint8_t *in, size_t len)
{
if (!len) {
return true;
}
int out_len = 0;
bool res = EVP_CipherUpdate(crypt->aead.obj, out, &out_len, in, len) == 1;
if (!res) {
RNP_LOG("Failed to update cipher: %lu", ERR_peek_last_error());
}
assert(out_len == (int) len);
return res;
}
void
pgp_cipher_aead_reset(pgp_crypt_t *crypt)
{
/* Do nothing as subsequent pgp_cipher_aead_start() call will reset context */
}
bool
pgp_cipher_aead_finish(pgp_crypt_t *crypt, uint8_t *out, const uint8_t *in, size_t len)
{
auto &aead = crypt->aead;
auto ctx = aead.obj;
if (aead.decrypt) {
assert(len >= aead.taglen);
if (len < aead.taglen) {
RNP_LOG("Invalid state: too few input bytes.");
return false;
}
size_t data_len = len - aead.taglen;
int out_len = 0;
if (EVP_CipherUpdate(ctx, out, &out_len, in, data_len) != 1) {
RNP_LOG("Failed to update cipher: %lu", ERR_peek_last_error());
return false;
}
uint8_t tag[PGP_AEAD_MAX_TAG_LEN] = {0};
memcpy(tag, in + data_len, aead.taglen);
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, aead.taglen, tag) != 1) {
RNP_LOG("Failed to set tag: %lu", ERR_peek_last_error());
return false;
}
int out_len2 = 0;
if (EVP_CipherFinal_ex(ctx, out + out_len, &out_len2) != 1) {
/* Zero value if auth tag is incorrect */
if (ERR_peek_last_error()) {
RNP_LOG("Failed to finish AEAD decryption: %lu", ERR_peek_last_error());
}
return false;
}
assert(out_len + out_len2 == (int) (len - aead.taglen));
} else {
int out_len = 0;
if (EVP_CipherUpdate(ctx, out, &out_len, in, len) != 1) {
RNP_LOG("Failed to update cipher: %lu", ERR_peek_last_error());
return false;
}
int out_len2 = 0;
if (EVP_CipherFinal_ex(ctx, out + out_len, &out_len2) != 1) {
RNP_LOG("Failed to finish AEAD encryption: %lu", ERR_peek_last_error());
return false;
}
assert(out_len + out_len2 == (int) len);
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, aead.taglen, out + len) != 1) {
RNP_LOG("Failed to get tag: %lu", ERR_peek_last_error());
return false;
}
}
return true;
}
void
pgp_cipher_aead_destroy(pgp_crypt_t *crypt)
{
if (crypt->aead.obj) {
EVP_CIPHER_CTX_free(crypt->aead.obj);
}
delete crypt->aead.key;
memset(crypt, 0x0, sizeof(*crypt));
}
size_t
pgp_cipher_aead_nonce(pgp_aead_alg_t aalg, const uint8_t *iv, uint8_t *nonce, size_t index)
{
switch (aalg) {
case PGP_AEAD_EAX:
/* The nonce for EAX mode is computed by treating the starting
initialization vector as a 16-octet, big-endian value and
exclusive-oring the low eight octets of it with the chunk index.
*/
memcpy(nonce, iv, PGP_AEAD_EAX_NONCE_LEN);
for (int i = 15; (i > 7) && index; i--) {
nonce[i] ^= index & 0xff;
index = index >> 8;
}
return PGP_AEAD_EAX_NONCE_LEN;
case PGP_AEAD_OCB:
/* The nonce for a chunk of chunk index "i" in OCB processing is defined as:
OCB-Nonce_{i} = IV[1..120] xor i
*/
memcpy(nonce, iv, PGP_AEAD_OCB_NONCE_LEN);
for (int i = 14; (i >= 0) && index; i--) {
nonce[i] ^= index & 0xff;
index = index >> 8;
}
return PGP_AEAD_OCB_NONCE_LEN;
default:
return 0;
}
}
#endif
|