diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-10 21:30:40 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-10 21:30:40 +0000 |
commit | 133a45c109da5310add55824db21af5239951f93 (patch) | |
tree | ba6ac4c0a950a0dda56451944315d66409923918 /utils/fann_train.pl | |
parent | Initial commit. (diff) | |
download | rspamd-133a45c109da5310add55824db21af5239951f93.tar.xz rspamd-133a45c109da5310add55824db21af5239951f93.zip |
Adding upstream version 3.8.1.upstream/3.8.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'utils/fann_train.pl')
-rwxr-xr-x | utils/fann_train.pl | 247 |
1 files changed, 247 insertions, 0 deletions
diff --git a/utils/fann_train.pl b/utils/fann_train.pl new file mode 100755 index 0000000..2ce422e --- /dev/null +++ b/utils/fann_train.pl @@ -0,0 +1,247 @@ +#!/usr/bin/env perl + +# This script is a very simple prototype to learn fann from rspamd logs +# For now, it is intended for internal use only + +use strict; +use warnings FATAL => 'all'; +use AI::FANN qw(:all); +use Getopt::Std; + +my %sym_idx; # Symbols by index +my %sym_names; # Symbols by name +my $num = 1; # Number of symbols +my @spam; +my @ham; +my $max_samples = -1; +my $split = 1; +my $preprocessed = 0; # output is in format <score>:<0|1>:<SYM1,...SYMN> +my $score_spam = 12; +my $score_ham = -6; + +sub process { + my ( $input, $spam, $ham ) = @_; + my $samples = 0; + + while (<$input>) { + if ( !$preprocessed ) { + if (/^.*rspamd_task_write_log.*: \[(-?\d+\.?\d*)\/(\d+\.?\d*)\]\s*\[(.+)\].*$/) { + if ( $1 > $score_spam ) { + $_ = "$1:1: $3"; + } + elsif ( $1 < $score_ham ) { + $_ = "$1:0: $3\n"; + } + else { + # Out of boundary + next; + } + } + else { + # Not our log message + next; + } + } + + $_ =~ /^(-?\d+\.?\d*):([01]):\s*(\S.*)$/; + + my $is_spam = 0; + + if ( $2 == 1 ) { + $is_spam = 1; + } + + my @ar = split /,/, $3; + my %sample; + + foreach my $sym (@ar) { + chomp $sym; + if ( !$sym_idx{$sym} ) { + $sym_idx{$sym} = $num; + $sym_names{$num} = $sym; + $num++; + } + + $sample{ $sym_idx{$sym} } = 1; + } + + if ($is_spam) { + push @{$spam}, \%sample; + } + else { + push @{$ham}, \%sample; + } + + $samples++; + if ( $max_samples > 0 && $samples > $max_samples ) { + return; + } + } +} + +# Shuffle array +sub fisher_yates_shuffle { + my $array = shift; + my $i = @$array; + + while ( --$i ) { + my $j = int rand( $i + 1 ); + @$array[ $i, $j ] = @$array[ $j, $i ]; + } +} + +# Train network +sub train { + my ( $ann, $sample, $result ) = @_; + + my @row; + + for ( my $i = 1 ; $i < $num ; $i++ ) { + if ( $sample->{$i} ) { + push @row, 1; + } + else { + push @row, 0; + } + } + + #print "@row -> @{$result}\n"; + + $ann->train( \@row, \@{$result} ); +} + +sub test { + my ( $ann, $sample ) = @_; + + my @row; + + for ( my $i = 1 ; $i < $num ; $i++ ) { + if ( $sample->{$i} ) { + push @row, 1; + } + else { + push @row, 0; + } + } + + my $ret = $ann->run( \@row ); + + return $ret; +} + +my %opts; +getopts( 'o:i:s:n:t:hpS:H:', \%opts ); + +if ( $opts{'h'} ) { + print "$0 [-i input] [-o output] [-s scores] [-n max_samples] [-S spam_score] [-H ham_score] [-ph]\n"; + exit; +} + +my $input = *STDIN; + +if ( $opts{'i'} ) { + open( $input, '<', $opts{'i'} ) or die "cannot open $opts{i}"; +} + +if ( $opts{'n'} ) { + $max_samples = $opts{'n'}; +} + +if ( $opts{'t'} ) { + + # Test split + $split = $opts{'t'}; +} +if ( $opts{'p'} ) { + $preprocessed = 1; +} + +if ( $opts{'H'} ) { + $score_ham = $opts{'H'}; +} + +if ( $opts{'S'} ) { + $score_spam = $opts{'S'}; +} + +# ham_prob, spam_prob +my @spam_out = (1); +my @ham_out = (0); + +process( $input, \@spam, \@ham ); +fisher_yates_shuffle( \@spam ); +fisher_yates_shuffle( \@ham ); + +my $nspam = int( scalar(@spam) / $split ); +my $nham = int( scalar(@ham) / $split ); + +my $ann = AI::FANN->new_standard( $num - 1, ( $num + 2 ) / 2, 1 ); + +my @train_data; + +# Train ANN +for ( my $i = 0 ; $i < $nham ; $i++ ) { + push @train_data, [ $ham[$i], \@ham_out ]; +} + +for ( my $i = 0 ; $i < $nspam ; $i++ ) { + push @train_data, [ $spam[$i], \@spam_out ]; +} + +fisher_yates_shuffle( \@train_data ); + +foreach my $train_row (@train_data) { + train( $ann, @{$train_row}[0], @{$train_row}[1] ); +} + +print "Trained $nspam SPAM and $nham HAM samples\n"; + +# Now run fann +if ( $split > 1 ) { + my $sample = 0.0; + my $correct = 0.0; + for ( my $i = $nham ; $i < $nham * $split ; $i++ ) { + my $ret = test( $ann, $ham[$i] ); + + #print "@{$ret}\n"; + if ( @{$ret}[0] < 0.5 ) { + $correct++; + } + $sample++; + } + + print "Tested $sample HAM samples, correct matched: $correct, rate: " . ( $correct / $sample ) . "\n"; + + $sample = 0.0; + $correct = 0.0; + + for ( my $i = $nspam ; $i < $nspam * $split ; $i++ ) { + my $ret = test( $ann, $spam[$i] ); + + #print "@{$ret}\n"; + if ( @{$ret}[0] > 0.5 ) { + $correct++; + } + $sample++; + } + + print "Tested $sample SPAM samples, correct matched: $correct, rate: " . ( $correct / $sample ) . "\n"; +} + +if ( $opts{'o'} ) { + $ann->save( $opts{'o'} ) or die "cannot save ann into $opts{o}"; +} + +if ( $opts{'s'} ) { + open( my $scores, '>', $opts{'s'} ) or die "cannot open score file $opts{'s'}"; + print $scores "{"; + for ( my $i = 1 ; $i < $num ; $i++ ) { + my $n = $i - 1; + if ( $i != $num - 1 ) { + print $scores "\"$sym_names{$i}\":$n,"; + } + else { + print $scores "\"$sym_names{$i}\":$n}\n"; + } + } +} |