summaryrefslogtreecommitdiffstats
path: root/contrib/kann/kann.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--contrib/kann/kann.c992
1 files changed, 992 insertions, 0 deletions
diff --git a/contrib/kann/kann.c b/contrib/kann/kann.c
new file mode 100644
index 0000000..70d1f02
--- /dev/null
+++ b/contrib/kann/kann.c
@@ -0,0 +1,992 @@
+#include "config.h"
+
+#include <math.h>
+#include <float.h>
+#include <string.h>
+#include <stdlib.h>
+#include <assert.h>
+#include <stdarg.h>
+#include "kann.h"
+
+int kann_verbose = 3;
+
+/******************************************
+ *** @@BASIC: fundamental KANN routines ***
+ ******************************************/
+
+static void kad_ext_collate(int n, kad_node_t **a, float **_x, float **_g, float **_c)
+{
+ int i, j, k, l, n_var;
+ float *x, *g, *c;
+ n_var = kad_size_var(n, a);
+ x = *_x = (float*)realloc(*_x, n_var * sizeof(float));
+ g = *_g = (float*)realloc(*_g, n_var * sizeof(float));
+ c = *_c = (float*)realloc(*_c, kad_size_const(n, a) * sizeof(float));
+ memset(g, 0, n_var * sizeof(float));
+ for (i = j = k = 0; i < n; ++i) {
+ kad_node_t *v = a[i];
+ if (kad_is_var(v)) {
+ l = kad_len(v);
+ memcpy(&x[j], v->x, l * sizeof(float));
+ free(v->x);
+ v->x = &x[j];
+ v->g = &g[j];
+ j += l;
+ } else if (kad_is_const(v)) {
+ l = kad_len(v);
+ memcpy(&c[k], v->x, l * sizeof(float));
+ free(v->x);
+ v->x = &c[k];
+ k += l;
+ }
+ }
+}
+
+static void kad_ext_sync(int n, kad_node_t **a, float *x, float *g, float *c)
+{
+ int i, j, k;
+ for (i = j = k = 0; i < n; ++i) {
+ kad_node_t *v = a[i];
+ if (kad_is_var(v)) {
+ v->x = &x[j];
+ v->g = &g[j];
+ j += kad_len(v);
+ } else if (kad_is_const(v)) {
+ v->x = &c[k];
+ k += kad_len(v);
+ }
+ }
+}
+
+kann_t *kann_new(kad_node_t *cost, int n_rest, ...)
+{
+ kann_t *a;
+ int i, n_roots = 1 + n_rest, has_pivot = 0, has_recur = 0;
+ kad_node_t **roots;
+ va_list ap;
+
+ if (cost->n_d != 0) return 0;
+
+ va_start(ap, n_rest);
+ roots = (kad_node_t**)malloc((n_roots + 1) * sizeof(kad_node_t*));
+ for (i = 0; i < n_rest; ++i)
+ roots[i] = va_arg(ap, kad_node_t*);
+ roots[i++] = cost;
+ va_end(ap);
+
+ cost->ext_flag |= KANN_F_COST;
+ a = (kann_t*)calloc(1, sizeof(kann_t));
+ a->v = kad_compile_array(&a->n, n_roots, roots);
+
+ for (i = 0; i < a->n; ++i) {
+ if (a->v[i]->pre) has_recur = 1;
+ if (kad_is_pivot(a->v[i])) has_pivot = 1;
+ }
+ if (has_recur && !has_pivot) { /* an RNN that doesn't have a pivot; then add a pivot on top of cost and recompile */
+ cost->ext_flag &= ~KANN_F_COST;
+ roots[n_roots-1] = cost = kad_avg(1, &cost), cost->ext_flag |= KANN_F_COST;
+ free(a->v);
+ a->v = kad_compile_array(&a->n, n_roots, roots);
+ }
+ kad_ext_collate(a->n, a->v, &a->x, &a->g, &a->c);
+ free(roots);
+ return a;
+}
+
+kann_t *kann_clone(kann_t *a, int batch_size)
+{
+ kann_t *b;
+ b = (kann_t*)calloc(1, sizeof(kann_t));
+ b->n = a->n;
+ b->v = kad_clone(a->n, a->v, batch_size);
+ kad_ext_collate(b->n, b->v, &b->x, &b->g, &b->c);
+ return b;
+}
+
+kann_t *kann_unroll_array(kann_t *a, int *len)
+{
+ kann_t *b;
+ b = (kann_t*)calloc(1, sizeof(kann_t));
+ b->x = a->x, b->g = a->g, b->c = a->c; /* these arrays are shared */
+ b->v = kad_unroll(a->n, a->v, &b->n, len);
+ return b;
+}
+
+kann_t *kann_unroll(kann_t *a, ...)
+{
+ kann_t *b;
+ va_list ap;
+ int i, n_pivots, *len;
+ n_pivots = kad_n_pivots(a->n, a->v);
+ len = (int*)calloc(n_pivots, sizeof(int));
+ va_start(ap, a);
+ for (i = 0; i < n_pivots; ++i) len[i] = va_arg(ap, int);
+ va_end(ap);
+ b = kann_unroll_array(a, len);
+ free(len);
+ return b;
+}
+
+void kann_delete_unrolled(kann_t *a)
+{
+ if (a && a->mt) kann_mt(a, 0, 0);
+ if (a && a->v) kad_delete(a->n, a->v);
+ free(a);
+}
+
+void kann_delete(kann_t *a)
+{
+ if (a == 0) return;
+ free(a->x); free(a->g); free(a->c);
+ kann_delete_unrolled(a);
+}
+
+static void kann_switch_core(kann_t *a, int is_train)
+{
+ int i;
+ for (i = 0; i < a->n; ++i)
+ if (a->v[i]->op == 12 && a->v[i]->n_child == 2)
+ *(int32_t*)a->v[i]->ptr = !!is_train;
+}
+
+#define chk_flg(flag, mask) ((mask) == 0 || ((flag) & (mask)))
+#define chk_lbl(label, query) ((query) == 0 || (label) == (query))
+
+int kann_find(const kann_t *a, uint32_t ext_flag, int32_t ext_label)
+{
+ int i, k, r = -1;
+ for (i = k = 0; i < a->n; ++i)
+ if (chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label))
+ ++k, r = i;
+ return k == 1? r : k == 0? -1 : -2;
+}
+
+int kann_feed_bind(kann_t *a, uint32_t ext_flag, int32_t ext_label, float **x)
+{
+ int i, k;
+ if (x == 0) return 0;
+ for (i = k = 0; i < a->n; ++i)
+ if (kad_is_feed(a->v[i]) && chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label))
+ a->v[i]->x = x[k++];
+ return k;
+}
+
+int kann_feed_dim(const kann_t *a, uint32_t ext_flag, int32_t ext_label)
+{
+ int i, k, n = 0;
+ for (i = k = 0; i < a->n; ++i)
+ if (kad_is_feed(a->v[i]) && chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label))
+ ++k, n = a->v[i]->n_d > 1? kad_len(a->v[i]) / a->v[i]->d[0] : a->v[i]->n_d == 1? a->v[i]->d[0] : 1;
+ return k == 1? n : k == 0? -1 : -2;
+}
+
+static float kann_cost_core(kann_t *a, int cost_label, int cal_grad)
+{
+ int i_cost;
+ float cost;
+ i_cost = kann_find(a, KANN_F_COST, cost_label);
+ assert(i_cost >= 0);
+ cost = *kad_eval_at(a->n, a->v, i_cost);
+ if (cal_grad) kad_grad(a->n, a->v, i_cost);
+ return cost;
+}
+
+int kann_eval(kann_t *a, uint32_t ext_flag, int ext_label)
+{
+ int i, k;
+ for (i = k = 0; i < a->n; ++i)
+ if (chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label))
+ ++k, a->v[i]->tmp = 1;
+ kad_eval_marked(a->n, a->v);
+ return k;
+}
+
+void kann_rnn_start(kann_t *a)
+{
+ int i;
+ kann_set_batch_size(a, 1);
+ for (i = 0; i < a->n; ++i) {
+ kad_node_t *p = a->v[i];
+ if (p->pre) { /* NB: BE CAREFUL of the interaction between kann_rnn_start() and kann_set_batch_size() */
+ kad_node_t *q = p->pre;
+ if (q->x) memcpy(p->x, q->x, kad_len(p) * sizeof(float));
+ else memset(p->x, 0, kad_len(p) * sizeof(float));
+ if (q->n_child > 0) free(q->x);
+ q->x = p->x;
+ }
+ }
+}
+
+void kann_rnn_end(kann_t *a)
+{
+ int i;
+ kad_ext_sync(a->n, a->v, a->x, a->g, a->c);
+ for (i = 0; i < a->n; ++i)
+ if (a->v[i]->pre && a->v[i]->pre->n_child > 0)
+ a->v[i]->pre->x = (float*)calloc(kad_len(a->v[i]->pre), sizeof(float));
+}
+
+static int kann_class_error_core(const kann_t *ann, int *base)
+{
+ int i, j, k, m, n, off, n_err = 0;
+ for (i = 0, *base = 0; i < ann->n; ++i) {
+ kad_node_t *p = ann->v[i];
+ if (((p->op == 13 && (p->n_child == 2 || p->n_child == 3)) || (p->op == 22 && p->n_child == 2)) && p->n_d == 0) { /* ce_bin or ce_multi */
+ kad_node_t *x = p->child[0], *t = p->child[1];
+ n = t->d[t->n_d - 1], m = kad_len(t) / n;
+ for (j = off = 0; j < m; ++j, off += n) {
+ float t_sum = 0.0f, t_min = 1.0f, t_max = 0.0f, x_max = 0.0f, x_min = 1.0f;
+ int x_max_k = -1, t_max_k = -1;
+ for (k = 0; k < n; ++k) {
+ float xk = x->x[off+k], tk = t->x[off+k];
+ t_sum += tk;
+ t_min = t_min < tk? t_min : tk;
+ x_min = x_min < xk? x_min : xk;
+ if (t_max < tk) t_max = tk, t_max_k = k;
+ if (x_max < xk) x_max = xk, x_max_k = k;
+ }
+ if (t_sum - 1.0f == 0 && t_min >= 0.0f && x_min >= 0.0f && x_max <= 1.0f) {
+ ++(*base);
+ n_err += (x_max_k != t_max_k);
+ }
+ }
+ }
+ }
+ return n_err;
+}
+
+/*************************
+ * @@MT: multi-threading *
+ *************************/
+
+#ifdef HAVE_PTHREAD
+#include <pthread.h>
+
+struct mtaux_t;
+
+typedef struct { /* per-worker data */
+ kann_t *a;
+ float cost;
+ int action;
+ pthread_t tid;
+ struct mtaux_t *g;
+} mtaux1_t;
+
+typedef struct mtaux_t { /* cross-worker data */
+ int n_threads, max_batch_size;
+ int cal_grad, cost_label, eval_out;
+ volatile int n_idle; /* we will be busy waiting on this, so volatile necessary */
+ pthread_mutex_t mtx;
+ pthread_cond_t cv;
+ mtaux1_t *mt;
+} mtaux_t;
+
+static void *mt_worker(void *data) /* pthread worker */
+{
+ mtaux1_t *mt1 = (mtaux1_t*)data;
+ mtaux_t *mt = mt1->g;
+ for (;;) {
+ int action;
+ pthread_mutex_lock(&mt->mtx);
+ mt1->action = 0;
+ ++mt->n_idle;
+ while (mt1->action == 0)
+ pthread_cond_wait(&mt->cv, &mt->mtx);
+ action = mt1->action;
+ pthread_mutex_unlock(&mt->mtx);
+ if (action == -1) break;
+
+ if (mt->eval_out) kann_eval(mt1->a, KANN_F_OUT, 0);
+ else mt1->cost = kann_cost_core(mt1->a, mt->cost_label, mt->cal_grad);
+ }
+ pthread_exit(0);
+}
+
+static void mt_destroy(mtaux_t *mt) /* de-allocate an entire mtaux_t struct */
+{
+ int i;
+ pthread_mutex_lock(&mt->mtx);
+ mt->n_idle = 0;
+ for (i = 1; i < mt->n_threads; ++i) mt->mt[i].action = -1;
+ pthread_cond_broadcast(&mt->cv);
+ pthread_mutex_unlock(&mt->mtx);
+ for (i = 1; i < mt->n_threads; ++i) pthread_join(mt->mt[i].tid, 0);
+ for (i = 0; i < mt->n_threads; ++i) kann_delete(mt->mt[i].a);
+ free(mt->mt);
+ pthread_cond_destroy(&mt->cv);
+ pthread_mutex_destroy(&mt->mtx);
+ free(mt);
+}
+
+void kann_mt(kann_t *ann, int n_threads, int max_batch_size)
+{
+ mtaux_t *mt;
+ int i, k;
+
+ if (n_threads <= 1) {
+ if (ann->mt) mt_destroy((mtaux_t*)ann->mt);
+ ann->mt = 0;
+ return;
+ }
+ if (n_threads > max_batch_size) n_threads = max_batch_size;
+ if (n_threads <= 1) return;
+
+ mt = (mtaux_t*)calloc(1, sizeof(mtaux_t));
+ mt->n_threads = n_threads, mt->max_batch_size = max_batch_size;
+ pthread_mutex_init(&mt->mtx, 0);
+ pthread_cond_init(&mt->cv, 0);
+ mt->mt = (mtaux1_t*)calloc(n_threads, sizeof(mtaux1_t));
+ for (i = k = 0; i < n_threads; ++i) {
+ int size = (max_batch_size - k) / (n_threads - i);
+ mt->mt[i].a = kann_clone(ann, size);
+ mt->mt[i].g = mt;
+ k += size;
+ }
+ for (i = 1; i < n_threads; ++i)
+ pthread_create(&mt->mt[i].tid, 0, mt_worker, &mt->mt[i]);
+ while (mt->n_idle < n_threads - 1); /* busy waiting until all threads in sync */
+ ann->mt = mt;
+}
+
+static void mt_kickoff(kann_t *a, int cost_label, int cal_grad, int eval_out)
+{
+ mtaux_t *mt = (mtaux_t*)a->mt;
+ int i, j, k, B, n_var;
+
+ B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */
+ assert(B <= mt->max_batch_size); /* TODO: can be relaxed */
+ n_var = kann_size_var(a);
+
+ pthread_mutex_lock(&mt->mtx);
+ mt->cost_label = cost_label, mt->cal_grad = cal_grad, mt->eval_out = eval_out;
+ for (i = k = 0; i < mt->n_threads; ++i) {
+ int size = (B - k) / (mt->n_threads - i);
+ for (j = 0; j < a->n; ++j)
+ if (kad_is_feed(a->v[j]))
+ mt->mt[i].a->v[j]->x = &a->v[j]->x[k * kad_len(a->v[j]) / a->v[j]->d[0]];
+ kad_sync_dim(mt->mt[i].a->n, mt->mt[i].a->v, size); /* TODO: we can point ->x to internal nodes, too */
+ k += size;
+ memcpy(mt->mt[i].a->x, a->x, n_var * sizeof(float));
+ mt->mt[i].action = 1;
+ }
+ mt->n_idle = 0;
+ pthread_cond_broadcast(&mt->cv);
+ pthread_mutex_unlock(&mt->mtx);
+}
+
+float kann_cost(kann_t *a, int cost_label, int cal_grad)
+{
+ mtaux_t *mt = (mtaux_t*)a->mt;
+ int i, j, B, k, n_var;
+ float cost;
+
+ if (mt == 0) return kann_cost_core(a, cost_label, cal_grad);
+ B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */
+ n_var = kann_size_var(a);
+
+ mt_kickoff(a, cost_label, cal_grad, 0);
+ mt->mt[0].cost = kann_cost_core(mt->mt[0].a, cost_label, cal_grad);
+ while (mt->n_idle < mt->n_threads - 1); /* busy waiting until all threads in sync */
+
+ memset(a->g, 0, n_var * sizeof(float)); /* TODO: check if this is necessary when cal_grad is false */
+ for (i = k = 0, cost = 0.0f; i < mt->n_threads; ++i) {
+ int size = (B - k) / (mt->n_threads - i);
+ cost += mt->mt[i].cost * size / B;
+ kad_saxpy(n_var, (float)size / B, mt->mt[i].a->g, a->g);
+ k += size;
+ }
+ for (j = 0; j < a->n; ++j) { /* copy values back at recurrent nodes (needed by textgen; TODO: temporary solution) */
+ kad_node_t *p = a->v[j];
+ if (p->pre && p->n_d >= 2 && p->d[0] == B) {
+ for (i = k = 0; i < mt->n_threads; ++i) {
+ kad_node_t *q = mt->mt[i].a->v[j];
+ memcpy(&p->x[k], q->x, kad_len(q) * sizeof(float));
+ k += kad_len(q);
+ }
+ }
+ }
+ return cost;
+}
+
+int kann_eval_out(kann_t *a)
+{
+ mtaux_t *mt = (mtaux_t*)a->mt;
+ int j, B, n_eval;
+ if (mt == 0) return kann_eval(a, KANN_F_OUT, 0);
+ B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */
+ mt_kickoff(a, 0, 0, 1);
+ n_eval = kann_eval(mt->mt[0].a, KANN_F_OUT, 0);
+ while (mt->n_idle < mt->n_threads - 1); /* busy waiting until all threads in sync */
+ for (j = 0; j < a->n; ++j) { /* copy output values back */
+ kad_node_t *p = a->v[j];
+ if (p->ext_flag & KANN_F_OUT) {
+ int i, t, k, d0 = p->d[0] / B, d1 = 1; /* for RNN, p->d[0] may equal unroll_len * batch_size */
+ assert(p->d[0] % B == 0);
+ for (i = 1; i < p->n_d; ++i) d1 *= p->d[i];
+ for (i = 0; i < d0; ++i) {
+ for (t = k = 0; t < mt->n_threads; ++t) { /* similar to the forward pass of kad_op_concat() */
+ kad_node_t *q = mt->mt[t].a->v[j];
+ int size = q->d[0] / d0;
+ memcpy(&p->x[(i * B + k) * d1], &q->x[i * size * d1], size * d1 * sizeof(float));
+ k += size;
+ }
+ }
+ }
+ }
+ return n_eval;
+}
+
+int kann_class_error(const kann_t *ann, int *base)
+{
+ mtaux_t *mt = (mtaux_t*)ann->mt;
+ int i, n_err = 0, b = 0;
+ if (mt == 0) return kann_class_error_core(ann, base);
+ for (i = 0; i < mt->n_threads; ++i) {
+ n_err += kann_class_error_core(mt->mt[i].a, &b);
+ *base += b;
+ }
+ return n_err;
+}
+
+void kann_switch(kann_t *ann, int is_train)
+{
+ mtaux_t *mt = (mtaux_t*)ann->mt;
+ int i;
+ if (mt == 0) {
+ kann_switch_core(ann, is_train);
+ return;
+ }
+ for (i = 0; i < mt->n_threads; ++i)
+ kann_switch_core(mt->mt[i].a, is_train);
+}
+#else
+void kann_mt(kann_t *ann, int n_threads, int max_batch_size) {}
+float kann_cost(kann_t *a, int cost_label, int cal_grad) { return kann_cost_core(a, cost_label, cal_grad); }
+int kann_eval_out(kann_t *a) { return kann_eval(a, KANN_F_OUT, 0); }
+int kann_class_error(const kann_t *a, int *base) { return kann_class_error_core(a, base); }
+void kann_switch(kann_t *ann, int is_train) { return kann_switch_core(ann, is_train); }
+#endif
+
+/***********************
+ *** @@IO: model I/O ***
+ ***********************/
+
+#define KANN_MAGIC "KAN\1"
+
+void kann_save_fp(FILE *fp, kann_t *ann)
+{
+ kann_set_batch_size(ann, 1);
+ fwrite(KANN_MAGIC, 1, 4, fp);
+ kad_save(fp, ann->n, ann->v);
+ fwrite(ann->x, sizeof(float), kann_size_var(ann), fp);
+ fwrite(ann->c, sizeof(float), kann_size_const(ann), fp);
+}
+
+void kann_save(const char *fn, kann_t *ann)
+{
+ FILE *fp;
+ fp = fn && strcmp(fn, "-")? fopen(fn, "wb") : stdout;
+ kann_save_fp(fp, ann);
+ fclose(fp);
+}
+
+kann_t *kann_load_fp(FILE *fp)
+{
+ char magic[4];
+ kann_t *ann;
+ int n_var, n_const;
+
+ (void) !fread(magic, 1, 4, fp);
+ if (strncmp(magic, KANN_MAGIC, 4) != 0) {
+ return 0;
+ }
+ ann = (kann_t*)calloc(1, sizeof(kann_t));
+ ann->v = kad_load(fp, &ann->n);
+ n_var = kad_size_var(ann->n, ann->v);
+ n_const = kad_size_const(ann->n, ann->v);
+ ann->x = (float*)malloc(n_var * sizeof(float));
+ ann->g = (float*)calloc(n_var, sizeof(float));
+ ann->c = (float*)malloc(n_const * sizeof(float));
+ (void) !fread(ann->x, sizeof(float), n_var, fp);
+ (void) !fread(ann->c, sizeof(float), n_const, fp);
+ kad_ext_sync(ann->n, ann->v, ann->x, ann->g, ann->c);
+ return ann;
+}
+
+kann_t *kann_load(const char *fn)
+{
+ FILE *fp;
+ kann_t *ann;
+ fp = fn && strcmp(fn, "-")? fopen(fn, "rb") : stdin;
+ ann = kann_load_fp(fp);
+ fclose(fp);
+ return ann;
+}
+
+/**********************************************
+ *** @@LAYER: layers and model generation ***
+ **********************************************/
+
+/********** General but more complex APIs **********/
+
+kad_node_t *kann_new_leaf_array(int *offset, kad_node_p *par, uint8_t flag, float x0_01, int n_d, int32_t d[KAD_MAX_DIM])
+{
+ int i, len, off = offset && par? *offset : -1;
+ kad_node_t *p;
+
+ if (off >= 0 && par[off]) return par[(*offset)++];
+ p = (kad_node_t*)calloc(1, sizeof(kad_node_t));
+ p->n_d = n_d, p->flag = flag;
+ memcpy(p->d, d, n_d * sizeof(int32_t));
+ len = kad_len(p);
+ p->x = (float*)calloc(len, sizeof(float));
+ if (p->n_d <= 1) {
+ for (i = 0; i < len; ++i)
+ p->x[i] = x0_01;
+ } else {
+ double sdev_inv;
+ sdev_inv = 1.0 / sqrt((double)len / p->d[0]);
+ for (i = 0; i < len; ++i)
+ p->x[i] = (float)(kad_drand_normal(0) * sdev_inv);
+ }
+ if (off >= 0) par[off] = p, ++(*offset);
+ return p;
+}
+
+kad_node_t *kann_new_leaf2(int *offset, kad_node_p *par, uint8_t flag, float x0_01, int n_d, ...)
+{
+ int32_t i, d[KAD_MAX_DIM];
+ va_list ap;
+ va_start(ap, n_d); for (i = 0; i < n_d; ++i) d[i] = va_arg(ap, int); va_end(ap);
+ return kann_new_leaf_array(offset, par, flag, x0_01, n_d, d);
+}
+
+kad_node_t *kann_layer_dense2(int *offset, kad_node_p *par, kad_node_t *in, int n1)
+{
+ int n0;
+ kad_node_t *w, *b;
+ n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in);
+ w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0);
+ b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1);
+ return kad_add(kad_cmul(in, w), b);
+}
+
+kad_node_t *kann_layer_dropout2(int *offset, kad_node_p *par, kad_node_t *t, float r)
+{
+ kad_node_t *x[2], *cr;
+ cr = kann_new_leaf2(offset, par, KAD_CONST, r, 0);
+ x[0] = t, x[1] = kad_dropout(t, cr);
+ return kad_switch(2, x);
+}
+
+kad_node_t *kann_layer_layernorm2(int *offset, kad_node_t **par, kad_node_t *in)
+{
+ int n0;
+ kad_node_t *alpha, *beta;
+ n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in);
+ alpha = kann_new_leaf2(offset, par, KAD_VAR, 1.0f, 1, n0);
+ beta = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n0);
+ return kad_add(kad_mul(kad_stdnorm(in), alpha), beta);
+}
+
+static inline kad_node_t *cmul_norm2(int *offset, kad_node_t **par, kad_node_t *x, kad_node_t *w, int use_norm)
+{
+ return use_norm? kann_layer_layernorm2(offset, par, kad_cmul(x, w)) : kad_cmul(x, w);
+}
+
+kad_node_t *kann_layer_rnn2(int *offset, kad_node_t **par, kad_node_t *in, kad_node_t *h0, int rnn_flag)
+{
+ int n0, n1 = h0->d[h0->n_d-1], use_norm = !!(rnn_flag & KANN_RNN_NORM);
+ kad_node_t *t, *w, *u, *b, *out;
+
+ u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1);
+ b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1);
+ t = cmul_norm2(offset, par, h0, u, use_norm);
+ if (in) {
+ n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in);
+ w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0);
+ t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t);
+ }
+ out = kad_tanh(kad_add(t, b));
+ out->pre = h0;
+ return out;
+}
+
+kad_node_t *kann_layer_gru2(int *offset, kad_node_t **par, kad_node_t *in, kad_node_t *h0, int rnn_flag)
+{
+ int n0 = 0, n1 = h0->d[h0->n_d-1], use_norm = !!(rnn_flag & KANN_RNN_NORM);
+ kad_node_t *t, *r, *z, *w, *u, *b, *s, *out;
+
+ if (in) n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in);
+ /* z = sigm(x_t * W_z + h_{t-1} * U_z + b_z) */
+ u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1);
+ b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1);
+ t = cmul_norm2(offset, par, h0, u, use_norm);
+ if (in) {
+ w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0);
+ t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t);
+ }
+ z = kad_sigm(kad_add(t, b));
+ /* r = sigm(x_t * W_r + h_{t-1} * U_r + b_r) */
+ u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1);
+ b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1);
+ t = cmul_norm2(offset, par, h0, u, use_norm);
+ if (in) {
+ w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0);
+ t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t);
+ }
+ r = kad_sigm(kad_add(t, b));
+ /* s = tanh(x_t * W_s + (h_{t-1} # r) * U_s + b_s) */
+ u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1);
+ b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1);
+ t = cmul_norm2(offset, par, kad_mul(r, h0), u, use_norm);
+ if (in) {
+ w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0);
+ t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t);
+ }
+ s = kad_tanh(kad_add(t, b));
+ /* h_t = z # h_{t-1} + (1 - z) # s */
+ out = kad_add(kad_mul(kad_1minus(z), s), kad_mul(z, h0));
+ out->pre = h0;
+ return out;
+}
+
+/********** APIs without offset & par **********/
+
+kad_node_t *kann_new_leaf(uint8_t flag, float x0_01, int n_d, ...)
+{
+ int32_t i, d[KAD_MAX_DIM];
+ va_list ap;
+ va_start(ap, n_d); for (i = 0; i < n_d; ++i) d[i] = va_arg(ap, int); va_end(ap);
+ return kann_new_leaf_array(0, 0, flag, x0_01, n_d, d);
+}
+
+kad_node_t *kann_new_scalar(uint8_t flag, float x) { return kann_new_leaf(flag, x, 0); }
+kad_node_t *kann_new_weight(int n_row, int n_col) { return kann_new_leaf(KAD_VAR, 0.0f, 2, n_row, n_col); }
+kad_node_t *kann_new_vec(int n, float x) { return kann_new_leaf(KAD_VAR, x, 1, n); }
+kad_node_t *kann_new_bias(int n) { return kann_new_vec(n, 0.0f); }
+kad_node_t *kann_new_weight_conv2d(int n_out, int n_in, int k_row, int k_col) { return kann_new_leaf(KAD_VAR, 0.0f, 4, n_out, n_in, k_row, k_col); }
+kad_node_t *kann_new_weight_conv1d(int n_out, int n_in, int kernel_len) { return kann_new_leaf(KAD_VAR, 0.0f, 3, n_out, n_in, kernel_len); }
+
+kad_node_t *kann_layer_input(int n1)
+{
+ kad_node_t *t;
+ t = kad_feed(2, 1, n1);
+ t->ext_flag |= KANN_F_IN;
+ return t;
+}
+
+kad_node_t *kann_layer_dense(kad_node_t *in, int n1) { return kann_layer_dense2(0, 0, in, n1); }
+kad_node_t *kann_layer_dropout(kad_node_t *t, float r) { return kann_layer_dropout2(0, 0, t, r); }
+kad_node_t *kann_layer_layernorm(kad_node_t *in) { return kann_layer_layernorm2(0, 0, in); }
+
+kad_node_t *kann_layer_rnn(kad_node_t *in, int n1, int rnn_flag)
+{
+ kad_node_t *h0;
+ h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1);
+ h0->x = (float*)calloc(n1, sizeof(float));
+ return kann_layer_rnn2(0, 0, in, h0, rnn_flag);
+}
+
+kad_node_t *kann_layer_gru(kad_node_t *in, int n1, int rnn_flag)
+{
+ kad_node_t *h0;
+ h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1);
+ h0->x = (float*)calloc(n1, sizeof(float));
+ return kann_layer_gru2(0, 0, in, h0, rnn_flag);
+}
+
+static kad_node_t *kann_cmul_norm(kad_node_t *x, kad_node_t *w)
+{
+ return kann_layer_layernorm(kad_cmul(x, w));
+}
+
+kad_node_t *kann_layer_lstm(kad_node_t *in, int n1, int rnn_flag)
+{
+ int n0;
+ kad_node_t *i, *f, *o, *g, *w, *u, *b, *h0, *c0, *c, *out;
+ kad_node_t *(*cmul)(kad_node_t*, kad_node_t*) = (rnn_flag & KANN_RNN_NORM)? kann_cmul_norm : kad_cmul;
+
+ n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in);
+ h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1);
+ h0->x = (float*)calloc(n1, sizeof(float));
+ c0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1);
+ c0->x = (float*)calloc(n1, sizeof(float));
+
+ /* i = sigm(x_t * W_i + h_{t-1} * U_i + b_i) */
+ w = kann_new_weight(n1, n0);
+ u = kann_new_weight(n1, n1);
+ b = kann_new_bias(n1);
+ i = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b));
+ /* f = sigm(x_t * W_f + h_{t-1} * U_f + b_f) */
+ w = kann_new_weight(n1, n0);
+ u = kann_new_weight(n1, n1);
+ b = kann_new_vec(n1, 1.0f); /* see Jozefowicz et al on using a large bias */
+ f = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b));
+ /* o = sigm(x_t * W_o + h_{t-1} * U_o + b_o) */
+ w = kann_new_weight(n1, n0);
+ u = kann_new_weight(n1, n1);
+ b = kann_new_bias(n1);
+ o = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b));
+ /* g = tanh(x_t * W_g + h_{t-1} * U_g + b_g) */
+ w = kann_new_weight(n1, n0);
+ u = kann_new_weight(n1, n1);
+ b = kann_new_bias(n1);
+ g = kad_tanh(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b));
+ /* c_t = c_{t-1} # f + g # i */
+ c = kad_add(kad_mul(f, c0), kad_mul(g, i)); /* can't be kad_mul(c0, f)!!! */
+ c->pre = c0;
+ /* h_t = tanh(c_t) # o */
+ if (rnn_flag & KANN_RNN_NORM) c = kann_layer_layernorm(c); /* see Ba et al (2016) about how to apply layer normalization to LSTM */
+ out = kad_mul(kad_tanh(c), o);
+ out->pre = h0;
+ return out;
+}
+
+kad_node_t *kann_layer_conv2d(kad_node_t *in, int n_flt, int k_rows, int k_cols, int stride_r, int stride_c, int pad_r, int pad_c)
+{
+ kad_node_t *w;
+ w = kann_new_weight_conv2d(n_flt, in->d[1], k_rows, k_cols);
+ return kad_conv2d(in, w, stride_r, stride_c, pad_r, pad_c);
+}
+
+kad_node_t *kann_layer_conv1d(kad_node_t *in, int n_flt, int k_size, int stride, int pad)
+{
+ kad_node_t *w;
+ w = kann_new_weight_conv1d(n_flt, in->d[1], k_size);
+ return kad_conv1d(in, w, stride, pad);
+}
+
+kad_node_t *kann_layer_cost(kad_node_t *t, int n_out, int cost_type)
+{
+ kad_node_t *cost = 0, *truth = 0;
+ assert(cost_type == KANN_C_CEB || cost_type == KANN_C_CEM || cost_type == KANN_C_CEB_NEG || cost_type == KANN_C_MSE);
+ t = kann_layer_dense(t, n_out);
+ truth = kad_feed(2, 1, n_out), truth->ext_flag |= KANN_F_TRUTH;
+
+ if (cost_type == KANN_C_MSE) {
+ cost = kad_mse(t, truth);
+ } else if (cost_type == KANN_C_CEB) {
+ t = kad_sigm(t);
+ cost = kad_ce_bin(t, truth);
+ } else if (cost_type == KANN_C_CEB_NEG) {
+ t = kad_tanh(t);
+ cost = kad_ce_bin_neg(t, truth);
+ } else if (cost_type == KANN_C_CEM) {
+ t = kad_softmax(t);
+ cost = kad_ce_multi(t, truth);
+ }
+ else {
+ assert (0);
+ }
+
+ t->ext_flag |= KANN_F_OUT;
+ cost->ext_flag |= KANN_F_COST;
+
+ return cost;
+}
+
+void kann_shuffle(int n, int *s)
+{
+ int i, j, t;
+ for (i = 0; i < n; ++i) s[i] = i;
+ for (i = n; i > 0; --i) {
+ j = (int)(i * kad_drand(0));
+ t = s[j], s[j] = s[i-1], s[i-1] = t;
+ }
+}
+
+/***************************
+ *** @@MIN: minimization ***
+ ***************************/
+
+#ifdef __SSE__
+#include <xmmintrin.h>
+
+void kann_RMSprop(int n, float h0, const float *h, float decay, const float *g, float *t, float *r)
+{
+ int i, n4 = n>>2<<2;
+ __m128 vh, vg, vr, vt, vd, vd1, tmp, vtiny;
+ vh = _mm_set1_ps(h0);
+ vd = _mm_set1_ps(decay);
+ vd1 = _mm_set1_ps(1.0f - decay);
+ vtiny = _mm_set1_ps(1e-6f);
+ for (i = 0; i < n4; i += 4) {
+ vt = _mm_loadu_ps(&t[i]);
+ vr = _mm_loadu_ps(&r[i]);
+ vg = _mm_loadu_ps(&g[i]);
+ if (h) vh = _mm_loadu_ps(&h[i]);
+ vr = _mm_add_ps(_mm_mul_ps(vd1, _mm_mul_ps(vg, vg)), _mm_mul_ps(vd, vr));
+ _mm_storeu_ps(&r[i], vr);
+ tmp = _mm_sub_ps(vt, _mm_mul_ps(_mm_mul_ps(vh, _mm_rsqrt_ps(_mm_add_ps(vtiny, vr))), vg));
+ _mm_storeu_ps(&t[i], tmp);
+ }
+ for (; i < n; ++i) {
+ r[i] = (1. - decay) * g[i] * g[i] + decay * r[i];
+ t[i] -= (h? h[i] : h0) / sqrtf(1e-6f + r[i]) * g[i];
+ }
+}
+#else
+void kann_RMSprop(int n, float h0, const float *h, float decay, const float *g, float *t, float *r)
+{
+ int i;
+ for (i = 0; i < n; ++i) {
+ float lr = h? h[i] : h0;
+ r[i] = (1.0f - decay) * g[i] * g[i] + decay * r[i];
+ t[i] -= lr / sqrtf(1e-6f + r[i]) * g[i];
+ }
+}
+#endif
+
+float kann_grad_clip(float thres, int n, float *g)
+{
+ int i;
+ double s2 = 0.0;
+ for (i = 0; i < n; ++i)
+ s2 += g[i] * g[i];
+ s2 = sqrt(s2);
+ if (s2 > thres)
+ for (i = 0, s2 = 1.0 / s2; i < n; ++i)
+ g[i] *= (float)s2;
+ return (float)s2 / thres;
+}
+
+/****************************************************************
+ *** @@XY: simpler API for network with a single input/output ***
+ ****************************************************************/
+
+int kann_train_fnn1(kann_t *ann, float lr, int mini_size, int max_epoch,
+ int max_drop_streak, float frac_val, int n,
+ float **_x, float **_y,
+ kann_train_cb cb, void *ud)
+{
+ int i, j, *shuf, n_train, n_val, n_in, n_out, n_var, n_const, drop_streak = 0, min_set = 0;
+ float **x, **y, *x1, *y1, *r, min_val_cost = FLT_MAX, *min_x, *min_c;
+
+ n_in = kann_dim_in(ann);
+ n_out = kann_dim_out(ann);
+ if (n_in < 0 || n_out < 0) return -1;
+ n_var = kann_size_var(ann);
+ n_const = kann_size_const(ann);
+ r = (float*)calloc(n_var, sizeof(float));
+ shuf = (int*)malloc(n * sizeof(int));
+ x = (float**)malloc(n * sizeof(float*));
+ y = (float**)malloc(n * sizeof(float*));
+ kann_shuffle(n, shuf);
+ for (j = 0; j < n; ++j)
+ x[j] = _x[shuf[j]], y[j] = _y[shuf[j]];
+ n_val = (int)(n * frac_val);
+ n_train = n - n_val;
+ min_x = (float*)malloc(n_var * sizeof(float));
+ min_c = (float*)malloc(n_const * sizeof(float));
+
+ x1 = (float*)malloc(n_in * mini_size * sizeof(float));
+ y1 = (float*)malloc(n_out * mini_size * sizeof(float));
+ kann_feed_bind(ann, KANN_F_IN, 0, &x1);
+ kann_feed_bind(ann, KANN_F_TRUTH, 0, &y1);
+
+ for (i = 0; i < max_epoch; ++i) {
+ int n_proc = 0, n_train_err = 0, n_val_err = 0, n_train_base = 0, n_val_base = 0;
+ double train_cost = 0.0, val_cost = 0.0;
+ kann_shuffle(n_train, shuf);
+ kann_switch(ann, 1);
+ while (n_proc < n_train) {
+ int b, c, ms = n_train - n_proc < mini_size? n_train - n_proc : mini_size;
+ for (b = 0; b < ms; ++b) {
+ memcpy(&x1[b*n_in], x[shuf[n_proc+b]], n_in * sizeof(float));
+ memcpy(&y1[b*n_out], y[shuf[n_proc+b]], n_out * sizeof(float));
+ }
+ kann_set_batch_size(ann, ms);
+ train_cost += kann_cost(ann, 0, 1) * ms;
+ c = kann_class_error(ann, &b);
+ n_train_err += c, n_train_base += b;
+ kann_RMSprop(n_var, lr, 0, 0.9f, ann->g, ann->x, r);
+ n_proc += ms;
+ }
+ train_cost /= n_train;
+ kann_switch(ann, 0);
+ n_proc = 0;
+ while (n_proc < n_val) {
+ int b, c, ms = n_val - n_proc < mini_size? n_val - n_proc : mini_size;
+ for (b = 0; b < ms; ++b) {
+ memcpy(&x1[b*n_in], x[n_train+n_proc+b], n_in * sizeof(float));
+ memcpy(&y1[b*n_out], y[n_train+n_proc+b], n_out * sizeof(float));
+ }
+ kann_set_batch_size(ann, ms);
+ val_cost += kann_cost(ann, 0, 0) * ms;
+ c = kann_class_error(ann, &b);
+ n_val_err += c, n_val_base += b;
+ n_proc += ms;
+ }
+ if (n_val > 0) val_cost /= n_val;
+ if (cb) {
+ cb(i + 1, train_cost, val_cost, ud);
+#if 0
+ fprintf(stderr, "epoch: %d; training cost: %g", i+1, train_cost);
+ if (n_train_base) fprintf(stderr, " (class error: %.2f%%)", 100.0f * n_train_err / n_train);
+ if (n_val > 0) {
+ fprintf(stderr, "; validation cost: %g", val_cost);
+ if (n_val_base) fprintf(stderr, " (class error: %.2f%%)", 100.0f * n_val_err / n_val);
+ }
+ fputc('\n', stderr);
+#endif
+ }
+ if (i >= max_drop_streak && n_val > 0) {
+ if (val_cost < min_val_cost) {
+ min_set = 1;
+ memcpy(min_x, ann->x, n_var * sizeof(float));
+ memcpy(min_c, ann->c, n_const * sizeof(float));
+ drop_streak = 0;
+ min_val_cost = (float)val_cost;
+ } else if (++drop_streak >= max_drop_streak)
+ break;
+ }
+ }
+ if (min_set) {
+ memcpy(ann->x, min_x, n_var * sizeof(float));
+ memcpy(ann->c, min_c, n_const * sizeof(float));
+ }
+
+ free(min_c); free(min_x); free(y1); free(x1); free(y); free(x); free(shuf); free(r);
+ return i;
+}
+
+float kann_cost_fnn1(kann_t *ann, int n, float **x, float **y)
+{
+ int n_in, n_out, n_proc = 0, mini_size = 64 < n? 64 : n;
+ float *x1, *y1;
+ double cost = 0.0;
+
+ n_in = kann_dim_in(ann);
+ n_out = kann_dim_out(ann);
+ if (n <= 0 || n_in < 0 || n_out < 0) return 0.0;
+
+ x1 = (float*)malloc(n_in * mini_size * sizeof(float));
+ y1 = (float*)malloc(n_out * mini_size * sizeof(float));
+ kann_feed_bind(ann, KANN_F_IN, 0, &x1);
+ kann_feed_bind(ann, KANN_F_TRUTH, 0, &y1);
+ kann_switch(ann, 0);
+ while (n_proc < n) {
+ int b, ms = n - n_proc < mini_size? n - n_proc : mini_size;
+ for (b = 0; b < ms; ++b) {
+ memcpy(&x1[b*n_in], x[n_proc+b], n_in * sizeof(float));
+ memcpy(&y1[b*n_out], y[n_proc+b], n_out * sizeof(float));
+ }
+ kann_set_batch_size(ann, ms);
+ cost += kann_cost(ann, 0, 0) * ms;
+ n_proc += ms;
+ }
+ free(y1); free(x1);
+ return (float)(cost / n);
+}
+
+const float *kann_apply1(kann_t *a, float *x)
+{
+ int i_out;
+ i_out = kann_find(a, KANN_F_OUT, 0);
+ if (i_out < 0) return 0;
+ kann_set_batch_size(a, 1);
+ kann_feed_bind(a, KANN_F_IN, 0, &x);
+ kad_eval_at(a->n, a->v, i_out);
+ return a->v[i_out]->x;
+}