diff options
Diffstat (limited to '')
-rw-r--r-- | contrib/kann/kann.c | 992 |
1 files changed, 992 insertions, 0 deletions
diff --git a/contrib/kann/kann.c b/contrib/kann/kann.c new file mode 100644 index 0000000..70d1f02 --- /dev/null +++ b/contrib/kann/kann.c @@ -0,0 +1,992 @@ +#include "config.h" + +#include <math.h> +#include <float.h> +#include <string.h> +#include <stdlib.h> +#include <assert.h> +#include <stdarg.h> +#include "kann.h" + +int kann_verbose = 3; + +/****************************************** + *** @@BASIC: fundamental KANN routines *** + ******************************************/ + +static void kad_ext_collate(int n, kad_node_t **a, float **_x, float **_g, float **_c) +{ + int i, j, k, l, n_var; + float *x, *g, *c; + n_var = kad_size_var(n, a); + x = *_x = (float*)realloc(*_x, n_var * sizeof(float)); + g = *_g = (float*)realloc(*_g, n_var * sizeof(float)); + c = *_c = (float*)realloc(*_c, kad_size_const(n, a) * sizeof(float)); + memset(g, 0, n_var * sizeof(float)); + for (i = j = k = 0; i < n; ++i) { + kad_node_t *v = a[i]; + if (kad_is_var(v)) { + l = kad_len(v); + memcpy(&x[j], v->x, l * sizeof(float)); + free(v->x); + v->x = &x[j]; + v->g = &g[j]; + j += l; + } else if (kad_is_const(v)) { + l = kad_len(v); + memcpy(&c[k], v->x, l * sizeof(float)); + free(v->x); + v->x = &c[k]; + k += l; + } + } +} + +static void kad_ext_sync(int n, kad_node_t **a, float *x, float *g, float *c) +{ + int i, j, k; + for (i = j = k = 0; i < n; ++i) { + kad_node_t *v = a[i]; + if (kad_is_var(v)) { + v->x = &x[j]; + v->g = &g[j]; + j += kad_len(v); + } else if (kad_is_const(v)) { + v->x = &c[k]; + k += kad_len(v); + } + } +} + +kann_t *kann_new(kad_node_t *cost, int n_rest, ...) +{ + kann_t *a; + int i, n_roots = 1 + n_rest, has_pivot = 0, has_recur = 0; + kad_node_t **roots; + va_list ap; + + if (cost->n_d != 0) return 0; + + va_start(ap, n_rest); + roots = (kad_node_t**)malloc((n_roots + 1) * sizeof(kad_node_t*)); + for (i = 0; i < n_rest; ++i) + roots[i] = va_arg(ap, kad_node_t*); + roots[i++] = cost; + va_end(ap); + + cost->ext_flag |= KANN_F_COST; + a = (kann_t*)calloc(1, sizeof(kann_t)); + a->v = kad_compile_array(&a->n, n_roots, roots); + + for (i = 0; i < a->n; ++i) { + if (a->v[i]->pre) has_recur = 1; + if (kad_is_pivot(a->v[i])) has_pivot = 1; + } + if (has_recur && !has_pivot) { /* an RNN that doesn't have a pivot; then add a pivot on top of cost and recompile */ + cost->ext_flag &= ~KANN_F_COST; + roots[n_roots-1] = cost = kad_avg(1, &cost), cost->ext_flag |= KANN_F_COST; + free(a->v); + a->v = kad_compile_array(&a->n, n_roots, roots); + } + kad_ext_collate(a->n, a->v, &a->x, &a->g, &a->c); + free(roots); + return a; +} + +kann_t *kann_clone(kann_t *a, int batch_size) +{ + kann_t *b; + b = (kann_t*)calloc(1, sizeof(kann_t)); + b->n = a->n; + b->v = kad_clone(a->n, a->v, batch_size); + kad_ext_collate(b->n, b->v, &b->x, &b->g, &b->c); + return b; +} + +kann_t *kann_unroll_array(kann_t *a, int *len) +{ + kann_t *b; + b = (kann_t*)calloc(1, sizeof(kann_t)); + b->x = a->x, b->g = a->g, b->c = a->c; /* these arrays are shared */ + b->v = kad_unroll(a->n, a->v, &b->n, len); + return b; +} + +kann_t *kann_unroll(kann_t *a, ...) +{ + kann_t *b; + va_list ap; + int i, n_pivots, *len; + n_pivots = kad_n_pivots(a->n, a->v); + len = (int*)calloc(n_pivots, sizeof(int)); + va_start(ap, a); + for (i = 0; i < n_pivots; ++i) len[i] = va_arg(ap, int); + va_end(ap); + b = kann_unroll_array(a, len); + free(len); + return b; +} + +void kann_delete_unrolled(kann_t *a) +{ + if (a && a->mt) kann_mt(a, 0, 0); + if (a && a->v) kad_delete(a->n, a->v); + free(a); +} + +void kann_delete(kann_t *a) +{ + if (a == 0) return; + free(a->x); free(a->g); free(a->c); + kann_delete_unrolled(a); +} + +static void kann_switch_core(kann_t *a, int is_train) +{ + int i; + for (i = 0; i < a->n; ++i) + if (a->v[i]->op == 12 && a->v[i]->n_child == 2) + *(int32_t*)a->v[i]->ptr = !!is_train; +} + +#define chk_flg(flag, mask) ((mask) == 0 || ((flag) & (mask))) +#define chk_lbl(label, query) ((query) == 0 || (label) == (query)) + +int kann_find(const kann_t *a, uint32_t ext_flag, int32_t ext_label) +{ + int i, k, r = -1; + for (i = k = 0; i < a->n; ++i) + if (chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label)) + ++k, r = i; + return k == 1? r : k == 0? -1 : -2; +} + +int kann_feed_bind(kann_t *a, uint32_t ext_flag, int32_t ext_label, float **x) +{ + int i, k; + if (x == 0) return 0; + for (i = k = 0; i < a->n; ++i) + if (kad_is_feed(a->v[i]) && chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label)) + a->v[i]->x = x[k++]; + return k; +} + +int kann_feed_dim(const kann_t *a, uint32_t ext_flag, int32_t ext_label) +{ + int i, k, n = 0; + for (i = k = 0; i < a->n; ++i) + if (kad_is_feed(a->v[i]) && chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label)) + ++k, n = a->v[i]->n_d > 1? kad_len(a->v[i]) / a->v[i]->d[0] : a->v[i]->n_d == 1? a->v[i]->d[0] : 1; + return k == 1? n : k == 0? -1 : -2; +} + +static float kann_cost_core(kann_t *a, int cost_label, int cal_grad) +{ + int i_cost; + float cost; + i_cost = kann_find(a, KANN_F_COST, cost_label); + assert(i_cost >= 0); + cost = *kad_eval_at(a->n, a->v, i_cost); + if (cal_grad) kad_grad(a->n, a->v, i_cost); + return cost; +} + +int kann_eval(kann_t *a, uint32_t ext_flag, int ext_label) +{ + int i, k; + for (i = k = 0; i < a->n; ++i) + if (chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label)) + ++k, a->v[i]->tmp = 1; + kad_eval_marked(a->n, a->v); + return k; +} + +void kann_rnn_start(kann_t *a) +{ + int i; + kann_set_batch_size(a, 1); + for (i = 0; i < a->n; ++i) { + kad_node_t *p = a->v[i]; + if (p->pre) { /* NB: BE CAREFUL of the interaction between kann_rnn_start() and kann_set_batch_size() */ + kad_node_t *q = p->pre; + if (q->x) memcpy(p->x, q->x, kad_len(p) * sizeof(float)); + else memset(p->x, 0, kad_len(p) * sizeof(float)); + if (q->n_child > 0) free(q->x); + q->x = p->x; + } + } +} + +void kann_rnn_end(kann_t *a) +{ + int i; + kad_ext_sync(a->n, a->v, a->x, a->g, a->c); + for (i = 0; i < a->n; ++i) + if (a->v[i]->pre && a->v[i]->pre->n_child > 0) + a->v[i]->pre->x = (float*)calloc(kad_len(a->v[i]->pre), sizeof(float)); +} + +static int kann_class_error_core(const kann_t *ann, int *base) +{ + int i, j, k, m, n, off, n_err = 0; + for (i = 0, *base = 0; i < ann->n; ++i) { + kad_node_t *p = ann->v[i]; + if (((p->op == 13 && (p->n_child == 2 || p->n_child == 3)) || (p->op == 22 && p->n_child == 2)) && p->n_d == 0) { /* ce_bin or ce_multi */ + kad_node_t *x = p->child[0], *t = p->child[1]; + n = t->d[t->n_d - 1], m = kad_len(t) / n; + for (j = off = 0; j < m; ++j, off += n) { + float t_sum = 0.0f, t_min = 1.0f, t_max = 0.0f, x_max = 0.0f, x_min = 1.0f; + int x_max_k = -1, t_max_k = -1; + for (k = 0; k < n; ++k) { + float xk = x->x[off+k], tk = t->x[off+k]; + t_sum += tk; + t_min = t_min < tk? t_min : tk; + x_min = x_min < xk? x_min : xk; + if (t_max < tk) t_max = tk, t_max_k = k; + if (x_max < xk) x_max = xk, x_max_k = k; + } + if (t_sum - 1.0f == 0 && t_min >= 0.0f && x_min >= 0.0f && x_max <= 1.0f) { + ++(*base); + n_err += (x_max_k != t_max_k); + } + } + } + } + return n_err; +} + +/************************* + * @@MT: multi-threading * + *************************/ + +#ifdef HAVE_PTHREAD +#include <pthread.h> + +struct mtaux_t; + +typedef struct { /* per-worker data */ + kann_t *a; + float cost; + int action; + pthread_t tid; + struct mtaux_t *g; +} mtaux1_t; + +typedef struct mtaux_t { /* cross-worker data */ + int n_threads, max_batch_size; + int cal_grad, cost_label, eval_out; + volatile int n_idle; /* we will be busy waiting on this, so volatile necessary */ + pthread_mutex_t mtx; + pthread_cond_t cv; + mtaux1_t *mt; +} mtaux_t; + +static void *mt_worker(void *data) /* pthread worker */ +{ + mtaux1_t *mt1 = (mtaux1_t*)data; + mtaux_t *mt = mt1->g; + for (;;) { + int action; + pthread_mutex_lock(&mt->mtx); + mt1->action = 0; + ++mt->n_idle; + while (mt1->action == 0) + pthread_cond_wait(&mt->cv, &mt->mtx); + action = mt1->action; + pthread_mutex_unlock(&mt->mtx); + if (action == -1) break; + + if (mt->eval_out) kann_eval(mt1->a, KANN_F_OUT, 0); + else mt1->cost = kann_cost_core(mt1->a, mt->cost_label, mt->cal_grad); + } + pthread_exit(0); +} + +static void mt_destroy(mtaux_t *mt) /* de-allocate an entire mtaux_t struct */ +{ + int i; + pthread_mutex_lock(&mt->mtx); + mt->n_idle = 0; + for (i = 1; i < mt->n_threads; ++i) mt->mt[i].action = -1; + pthread_cond_broadcast(&mt->cv); + pthread_mutex_unlock(&mt->mtx); + for (i = 1; i < mt->n_threads; ++i) pthread_join(mt->mt[i].tid, 0); + for (i = 0; i < mt->n_threads; ++i) kann_delete(mt->mt[i].a); + free(mt->mt); + pthread_cond_destroy(&mt->cv); + pthread_mutex_destroy(&mt->mtx); + free(mt); +} + +void kann_mt(kann_t *ann, int n_threads, int max_batch_size) +{ + mtaux_t *mt; + int i, k; + + if (n_threads <= 1) { + if (ann->mt) mt_destroy((mtaux_t*)ann->mt); + ann->mt = 0; + return; + } + if (n_threads > max_batch_size) n_threads = max_batch_size; + if (n_threads <= 1) return; + + mt = (mtaux_t*)calloc(1, sizeof(mtaux_t)); + mt->n_threads = n_threads, mt->max_batch_size = max_batch_size; + pthread_mutex_init(&mt->mtx, 0); + pthread_cond_init(&mt->cv, 0); + mt->mt = (mtaux1_t*)calloc(n_threads, sizeof(mtaux1_t)); + for (i = k = 0; i < n_threads; ++i) { + int size = (max_batch_size - k) / (n_threads - i); + mt->mt[i].a = kann_clone(ann, size); + mt->mt[i].g = mt; + k += size; + } + for (i = 1; i < n_threads; ++i) + pthread_create(&mt->mt[i].tid, 0, mt_worker, &mt->mt[i]); + while (mt->n_idle < n_threads - 1); /* busy waiting until all threads in sync */ + ann->mt = mt; +} + +static void mt_kickoff(kann_t *a, int cost_label, int cal_grad, int eval_out) +{ + mtaux_t *mt = (mtaux_t*)a->mt; + int i, j, k, B, n_var; + + B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */ + assert(B <= mt->max_batch_size); /* TODO: can be relaxed */ + n_var = kann_size_var(a); + + pthread_mutex_lock(&mt->mtx); + mt->cost_label = cost_label, mt->cal_grad = cal_grad, mt->eval_out = eval_out; + for (i = k = 0; i < mt->n_threads; ++i) { + int size = (B - k) / (mt->n_threads - i); + for (j = 0; j < a->n; ++j) + if (kad_is_feed(a->v[j])) + mt->mt[i].a->v[j]->x = &a->v[j]->x[k * kad_len(a->v[j]) / a->v[j]->d[0]]; + kad_sync_dim(mt->mt[i].a->n, mt->mt[i].a->v, size); /* TODO: we can point ->x to internal nodes, too */ + k += size; + memcpy(mt->mt[i].a->x, a->x, n_var * sizeof(float)); + mt->mt[i].action = 1; + } + mt->n_idle = 0; + pthread_cond_broadcast(&mt->cv); + pthread_mutex_unlock(&mt->mtx); +} + +float kann_cost(kann_t *a, int cost_label, int cal_grad) +{ + mtaux_t *mt = (mtaux_t*)a->mt; + int i, j, B, k, n_var; + float cost; + + if (mt == 0) return kann_cost_core(a, cost_label, cal_grad); + B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */ + n_var = kann_size_var(a); + + mt_kickoff(a, cost_label, cal_grad, 0); + mt->mt[0].cost = kann_cost_core(mt->mt[0].a, cost_label, cal_grad); + while (mt->n_idle < mt->n_threads - 1); /* busy waiting until all threads in sync */ + + memset(a->g, 0, n_var * sizeof(float)); /* TODO: check if this is necessary when cal_grad is false */ + for (i = k = 0, cost = 0.0f; i < mt->n_threads; ++i) { + int size = (B - k) / (mt->n_threads - i); + cost += mt->mt[i].cost * size / B; + kad_saxpy(n_var, (float)size / B, mt->mt[i].a->g, a->g); + k += size; + } + for (j = 0; j < a->n; ++j) { /* copy values back at recurrent nodes (needed by textgen; TODO: temporary solution) */ + kad_node_t *p = a->v[j]; + if (p->pre && p->n_d >= 2 && p->d[0] == B) { + for (i = k = 0; i < mt->n_threads; ++i) { + kad_node_t *q = mt->mt[i].a->v[j]; + memcpy(&p->x[k], q->x, kad_len(q) * sizeof(float)); + k += kad_len(q); + } + } + } + return cost; +} + +int kann_eval_out(kann_t *a) +{ + mtaux_t *mt = (mtaux_t*)a->mt; + int j, B, n_eval; + if (mt == 0) return kann_eval(a, KANN_F_OUT, 0); + B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */ + mt_kickoff(a, 0, 0, 1); + n_eval = kann_eval(mt->mt[0].a, KANN_F_OUT, 0); + while (mt->n_idle < mt->n_threads - 1); /* busy waiting until all threads in sync */ + for (j = 0; j < a->n; ++j) { /* copy output values back */ + kad_node_t *p = a->v[j]; + if (p->ext_flag & KANN_F_OUT) { + int i, t, k, d0 = p->d[0] / B, d1 = 1; /* for RNN, p->d[0] may equal unroll_len * batch_size */ + assert(p->d[0] % B == 0); + for (i = 1; i < p->n_d; ++i) d1 *= p->d[i]; + for (i = 0; i < d0; ++i) { + for (t = k = 0; t < mt->n_threads; ++t) { /* similar to the forward pass of kad_op_concat() */ + kad_node_t *q = mt->mt[t].a->v[j]; + int size = q->d[0] / d0; + memcpy(&p->x[(i * B + k) * d1], &q->x[i * size * d1], size * d1 * sizeof(float)); + k += size; + } + } + } + } + return n_eval; +} + +int kann_class_error(const kann_t *ann, int *base) +{ + mtaux_t *mt = (mtaux_t*)ann->mt; + int i, n_err = 0, b = 0; + if (mt == 0) return kann_class_error_core(ann, base); + for (i = 0; i < mt->n_threads; ++i) { + n_err += kann_class_error_core(mt->mt[i].a, &b); + *base += b; + } + return n_err; +} + +void kann_switch(kann_t *ann, int is_train) +{ + mtaux_t *mt = (mtaux_t*)ann->mt; + int i; + if (mt == 0) { + kann_switch_core(ann, is_train); + return; + } + for (i = 0; i < mt->n_threads; ++i) + kann_switch_core(mt->mt[i].a, is_train); +} +#else +void kann_mt(kann_t *ann, int n_threads, int max_batch_size) {} +float kann_cost(kann_t *a, int cost_label, int cal_grad) { return kann_cost_core(a, cost_label, cal_grad); } +int kann_eval_out(kann_t *a) { return kann_eval(a, KANN_F_OUT, 0); } +int kann_class_error(const kann_t *a, int *base) { return kann_class_error_core(a, base); } +void kann_switch(kann_t *ann, int is_train) { return kann_switch_core(ann, is_train); } +#endif + +/*********************** + *** @@IO: model I/O *** + ***********************/ + +#define KANN_MAGIC "KAN\1" + +void kann_save_fp(FILE *fp, kann_t *ann) +{ + kann_set_batch_size(ann, 1); + fwrite(KANN_MAGIC, 1, 4, fp); + kad_save(fp, ann->n, ann->v); + fwrite(ann->x, sizeof(float), kann_size_var(ann), fp); + fwrite(ann->c, sizeof(float), kann_size_const(ann), fp); +} + +void kann_save(const char *fn, kann_t *ann) +{ + FILE *fp; + fp = fn && strcmp(fn, "-")? fopen(fn, "wb") : stdout; + kann_save_fp(fp, ann); + fclose(fp); +} + +kann_t *kann_load_fp(FILE *fp) +{ + char magic[4]; + kann_t *ann; + int n_var, n_const; + + (void) !fread(magic, 1, 4, fp); + if (strncmp(magic, KANN_MAGIC, 4) != 0) { + return 0; + } + ann = (kann_t*)calloc(1, sizeof(kann_t)); + ann->v = kad_load(fp, &ann->n); + n_var = kad_size_var(ann->n, ann->v); + n_const = kad_size_const(ann->n, ann->v); + ann->x = (float*)malloc(n_var * sizeof(float)); + ann->g = (float*)calloc(n_var, sizeof(float)); + ann->c = (float*)malloc(n_const * sizeof(float)); + (void) !fread(ann->x, sizeof(float), n_var, fp); + (void) !fread(ann->c, sizeof(float), n_const, fp); + kad_ext_sync(ann->n, ann->v, ann->x, ann->g, ann->c); + return ann; +} + +kann_t *kann_load(const char *fn) +{ + FILE *fp; + kann_t *ann; + fp = fn && strcmp(fn, "-")? fopen(fn, "rb") : stdin; + ann = kann_load_fp(fp); + fclose(fp); + return ann; +} + +/********************************************** + *** @@LAYER: layers and model generation *** + **********************************************/ + +/********** General but more complex APIs **********/ + +kad_node_t *kann_new_leaf_array(int *offset, kad_node_p *par, uint8_t flag, float x0_01, int n_d, int32_t d[KAD_MAX_DIM]) +{ + int i, len, off = offset && par? *offset : -1; + kad_node_t *p; + + if (off >= 0 && par[off]) return par[(*offset)++]; + p = (kad_node_t*)calloc(1, sizeof(kad_node_t)); + p->n_d = n_d, p->flag = flag; + memcpy(p->d, d, n_d * sizeof(int32_t)); + len = kad_len(p); + p->x = (float*)calloc(len, sizeof(float)); + if (p->n_d <= 1) { + for (i = 0; i < len; ++i) + p->x[i] = x0_01; + } else { + double sdev_inv; + sdev_inv = 1.0 / sqrt((double)len / p->d[0]); + for (i = 0; i < len; ++i) + p->x[i] = (float)(kad_drand_normal(0) * sdev_inv); + } + if (off >= 0) par[off] = p, ++(*offset); + return p; +} + +kad_node_t *kann_new_leaf2(int *offset, kad_node_p *par, uint8_t flag, float x0_01, int n_d, ...) +{ + int32_t i, d[KAD_MAX_DIM]; + va_list ap; + va_start(ap, n_d); for (i = 0; i < n_d; ++i) d[i] = va_arg(ap, int); va_end(ap); + return kann_new_leaf_array(offset, par, flag, x0_01, n_d, d); +} + +kad_node_t *kann_layer_dense2(int *offset, kad_node_p *par, kad_node_t *in, int n1) +{ + int n0; + kad_node_t *w, *b; + n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); + w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); + b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); + return kad_add(kad_cmul(in, w), b); +} + +kad_node_t *kann_layer_dropout2(int *offset, kad_node_p *par, kad_node_t *t, float r) +{ + kad_node_t *x[2], *cr; + cr = kann_new_leaf2(offset, par, KAD_CONST, r, 0); + x[0] = t, x[1] = kad_dropout(t, cr); + return kad_switch(2, x); +} + +kad_node_t *kann_layer_layernorm2(int *offset, kad_node_t **par, kad_node_t *in) +{ + int n0; + kad_node_t *alpha, *beta; + n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); + alpha = kann_new_leaf2(offset, par, KAD_VAR, 1.0f, 1, n0); + beta = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n0); + return kad_add(kad_mul(kad_stdnorm(in), alpha), beta); +} + +static inline kad_node_t *cmul_norm2(int *offset, kad_node_t **par, kad_node_t *x, kad_node_t *w, int use_norm) +{ + return use_norm? kann_layer_layernorm2(offset, par, kad_cmul(x, w)) : kad_cmul(x, w); +} + +kad_node_t *kann_layer_rnn2(int *offset, kad_node_t **par, kad_node_t *in, kad_node_t *h0, int rnn_flag) +{ + int n0, n1 = h0->d[h0->n_d-1], use_norm = !!(rnn_flag & KANN_RNN_NORM); + kad_node_t *t, *w, *u, *b, *out; + + u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1); + b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); + t = cmul_norm2(offset, par, h0, u, use_norm); + if (in) { + n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); + w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); + t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t); + } + out = kad_tanh(kad_add(t, b)); + out->pre = h0; + return out; +} + +kad_node_t *kann_layer_gru2(int *offset, kad_node_t **par, kad_node_t *in, kad_node_t *h0, int rnn_flag) +{ + int n0 = 0, n1 = h0->d[h0->n_d-1], use_norm = !!(rnn_flag & KANN_RNN_NORM); + kad_node_t *t, *r, *z, *w, *u, *b, *s, *out; + + if (in) n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); + /* z = sigm(x_t * W_z + h_{t-1} * U_z + b_z) */ + u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1); + b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); + t = cmul_norm2(offset, par, h0, u, use_norm); + if (in) { + w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); + t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t); + } + z = kad_sigm(kad_add(t, b)); + /* r = sigm(x_t * W_r + h_{t-1} * U_r + b_r) */ + u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1); + b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); + t = cmul_norm2(offset, par, h0, u, use_norm); + if (in) { + w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); + t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t); + } + r = kad_sigm(kad_add(t, b)); + /* s = tanh(x_t * W_s + (h_{t-1} # r) * U_s + b_s) */ + u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1); + b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); + t = cmul_norm2(offset, par, kad_mul(r, h0), u, use_norm); + if (in) { + w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); + t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t); + } + s = kad_tanh(kad_add(t, b)); + /* h_t = z # h_{t-1} + (1 - z) # s */ + out = kad_add(kad_mul(kad_1minus(z), s), kad_mul(z, h0)); + out->pre = h0; + return out; +} + +/********** APIs without offset & par **********/ + +kad_node_t *kann_new_leaf(uint8_t flag, float x0_01, int n_d, ...) +{ + int32_t i, d[KAD_MAX_DIM]; + va_list ap; + va_start(ap, n_d); for (i = 0; i < n_d; ++i) d[i] = va_arg(ap, int); va_end(ap); + return kann_new_leaf_array(0, 0, flag, x0_01, n_d, d); +} + +kad_node_t *kann_new_scalar(uint8_t flag, float x) { return kann_new_leaf(flag, x, 0); } +kad_node_t *kann_new_weight(int n_row, int n_col) { return kann_new_leaf(KAD_VAR, 0.0f, 2, n_row, n_col); } +kad_node_t *kann_new_vec(int n, float x) { return kann_new_leaf(KAD_VAR, x, 1, n); } +kad_node_t *kann_new_bias(int n) { return kann_new_vec(n, 0.0f); } +kad_node_t *kann_new_weight_conv2d(int n_out, int n_in, int k_row, int k_col) { return kann_new_leaf(KAD_VAR, 0.0f, 4, n_out, n_in, k_row, k_col); } +kad_node_t *kann_new_weight_conv1d(int n_out, int n_in, int kernel_len) { return kann_new_leaf(KAD_VAR, 0.0f, 3, n_out, n_in, kernel_len); } + +kad_node_t *kann_layer_input(int n1) +{ + kad_node_t *t; + t = kad_feed(2, 1, n1); + t->ext_flag |= KANN_F_IN; + return t; +} + +kad_node_t *kann_layer_dense(kad_node_t *in, int n1) { return kann_layer_dense2(0, 0, in, n1); } +kad_node_t *kann_layer_dropout(kad_node_t *t, float r) { return kann_layer_dropout2(0, 0, t, r); } +kad_node_t *kann_layer_layernorm(kad_node_t *in) { return kann_layer_layernorm2(0, 0, in); } + +kad_node_t *kann_layer_rnn(kad_node_t *in, int n1, int rnn_flag) +{ + kad_node_t *h0; + h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1); + h0->x = (float*)calloc(n1, sizeof(float)); + return kann_layer_rnn2(0, 0, in, h0, rnn_flag); +} + +kad_node_t *kann_layer_gru(kad_node_t *in, int n1, int rnn_flag) +{ + kad_node_t *h0; + h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1); + h0->x = (float*)calloc(n1, sizeof(float)); + return kann_layer_gru2(0, 0, in, h0, rnn_flag); +} + +static kad_node_t *kann_cmul_norm(kad_node_t *x, kad_node_t *w) +{ + return kann_layer_layernorm(kad_cmul(x, w)); +} + +kad_node_t *kann_layer_lstm(kad_node_t *in, int n1, int rnn_flag) +{ + int n0; + kad_node_t *i, *f, *o, *g, *w, *u, *b, *h0, *c0, *c, *out; + kad_node_t *(*cmul)(kad_node_t*, kad_node_t*) = (rnn_flag & KANN_RNN_NORM)? kann_cmul_norm : kad_cmul; + + n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); + h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1); + h0->x = (float*)calloc(n1, sizeof(float)); + c0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1); + c0->x = (float*)calloc(n1, sizeof(float)); + + /* i = sigm(x_t * W_i + h_{t-1} * U_i + b_i) */ + w = kann_new_weight(n1, n0); + u = kann_new_weight(n1, n1); + b = kann_new_bias(n1); + i = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b)); + /* f = sigm(x_t * W_f + h_{t-1} * U_f + b_f) */ + w = kann_new_weight(n1, n0); + u = kann_new_weight(n1, n1); + b = kann_new_vec(n1, 1.0f); /* see Jozefowicz et al on using a large bias */ + f = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b)); + /* o = sigm(x_t * W_o + h_{t-1} * U_o + b_o) */ + w = kann_new_weight(n1, n0); + u = kann_new_weight(n1, n1); + b = kann_new_bias(n1); + o = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b)); + /* g = tanh(x_t * W_g + h_{t-1} * U_g + b_g) */ + w = kann_new_weight(n1, n0); + u = kann_new_weight(n1, n1); + b = kann_new_bias(n1); + g = kad_tanh(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b)); + /* c_t = c_{t-1} # f + g # i */ + c = kad_add(kad_mul(f, c0), kad_mul(g, i)); /* can't be kad_mul(c0, f)!!! */ + c->pre = c0; + /* h_t = tanh(c_t) # o */ + if (rnn_flag & KANN_RNN_NORM) c = kann_layer_layernorm(c); /* see Ba et al (2016) about how to apply layer normalization to LSTM */ + out = kad_mul(kad_tanh(c), o); + out->pre = h0; + return out; +} + +kad_node_t *kann_layer_conv2d(kad_node_t *in, int n_flt, int k_rows, int k_cols, int stride_r, int stride_c, int pad_r, int pad_c) +{ + kad_node_t *w; + w = kann_new_weight_conv2d(n_flt, in->d[1], k_rows, k_cols); + return kad_conv2d(in, w, stride_r, stride_c, pad_r, pad_c); +} + +kad_node_t *kann_layer_conv1d(kad_node_t *in, int n_flt, int k_size, int stride, int pad) +{ + kad_node_t *w; + w = kann_new_weight_conv1d(n_flt, in->d[1], k_size); + return kad_conv1d(in, w, stride, pad); +} + +kad_node_t *kann_layer_cost(kad_node_t *t, int n_out, int cost_type) +{ + kad_node_t *cost = 0, *truth = 0; + assert(cost_type == KANN_C_CEB || cost_type == KANN_C_CEM || cost_type == KANN_C_CEB_NEG || cost_type == KANN_C_MSE); + t = kann_layer_dense(t, n_out); + truth = kad_feed(2, 1, n_out), truth->ext_flag |= KANN_F_TRUTH; + + if (cost_type == KANN_C_MSE) { + cost = kad_mse(t, truth); + } else if (cost_type == KANN_C_CEB) { + t = kad_sigm(t); + cost = kad_ce_bin(t, truth); + } else if (cost_type == KANN_C_CEB_NEG) { + t = kad_tanh(t); + cost = kad_ce_bin_neg(t, truth); + } else if (cost_type == KANN_C_CEM) { + t = kad_softmax(t); + cost = kad_ce_multi(t, truth); + } + else { + assert (0); + } + + t->ext_flag |= KANN_F_OUT; + cost->ext_flag |= KANN_F_COST; + + return cost; +} + +void kann_shuffle(int n, int *s) +{ + int i, j, t; + for (i = 0; i < n; ++i) s[i] = i; + for (i = n; i > 0; --i) { + j = (int)(i * kad_drand(0)); + t = s[j], s[j] = s[i-1], s[i-1] = t; + } +} + +/*************************** + *** @@MIN: minimization *** + ***************************/ + +#ifdef __SSE__ +#include <xmmintrin.h> + +void kann_RMSprop(int n, float h0, const float *h, float decay, const float *g, float *t, float *r) +{ + int i, n4 = n>>2<<2; + __m128 vh, vg, vr, vt, vd, vd1, tmp, vtiny; + vh = _mm_set1_ps(h0); + vd = _mm_set1_ps(decay); + vd1 = _mm_set1_ps(1.0f - decay); + vtiny = _mm_set1_ps(1e-6f); + for (i = 0; i < n4; i += 4) { + vt = _mm_loadu_ps(&t[i]); + vr = _mm_loadu_ps(&r[i]); + vg = _mm_loadu_ps(&g[i]); + if (h) vh = _mm_loadu_ps(&h[i]); + vr = _mm_add_ps(_mm_mul_ps(vd1, _mm_mul_ps(vg, vg)), _mm_mul_ps(vd, vr)); + _mm_storeu_ps(&r[i], vr); + tmp = _mm_sub_ps(vt, _mm_mul_ps(_mm_mul_ps(vh, _mm_rsqrt_ps(_mm_add_ps(vtiny, vr))), vg)); + _mm_storeu_ps(&t[i], tmp); + } + for (; i < n; ++i) { + r[i] = (1. - decay) * g[i] * g[i] + decay * r[i]; + t[i] -= (h? h[i] : h0) / sqrtf(1e-6f + r[i]) * g[i]; + } +} +#else +void kann_RMSprop(int n, float h0, const float *h, float decay, const float *g, float *t, float *r) +{ + int i; + for (i = 0; i < n; ++i) { + float lr = h? h[i] : h0; + r[i] = (1.0f - decay) * g[i] * g[i] + decay * r[i]; + t[i] -= lr / sqrtf(1e-6f + r[i]) * g[i]; + } +} +#endif + +float kann_grad_clip(float thres, int n, float *g) +{ + int i; + double s2 = 0.0; + for (i = 0; i < n; ++i) + s2 += g[i] * g[i]; + s2 = sqrt(s2); + if (s2 > thres) + for (i = 0, s2 = 1.0 / s2; i < n; ++i) + g[i] *= (float)s2; + return (float)s2 / thres; +} + +/**************************************************************** + *** @@XY: simpler API for network with a single input/output *** + ****************************************************************/ + +int kann_train_fnn1(kann_t *ann, float lr, int mini_size, int max_epoch, + int max_drop_streak, float frac_val, int n, + float **_x, float **_y, + kann_train_cb cb, void *ud) +{ + int i, j, *shuf, n_train, n_val, n_in, n_out, n_var, n_const, drop_streak = 0, min_set = 0; + float **x, **y, *x1, *y1, *r, min_val_cost = FLT_MAX, *min_x, *min_c; + + n_in = kann_dim_in(ann); + n_out = kann_dim_out(ann); + if (n_in < 0 || n_out < 0) return -1; + n_var = kann_size_var(ann); + n_const = kann_size_const(ann); + r = (float*)calloc(n_var, sizeof(float)); + shuf = (int*)malloc(n * sizeof(int)); + x = (float**)malloc(n * sizeof(float*)); + y = (float**)malloc(n * sizeof(float*)); + kann_shuffle(n, shuf); + for (j = 0; j < n; ++j) + x[j] = _x[shuf[j]], y[j] = _y[shuf[j]]; + n_val = (int)(n * frac_val); + n_train = n - n_val; + min_x = (float*)malloc(n_var * sizeof(float)); + min_c = (float*)malloc(n_const * sizeof(float)); + + x1 = (float*)malloc(n_in * mini_size * sizeof(float)); + y1 = (float*)malloc(n_out * mini_size * sizeof(float)); + kann_feed_bind(ann, KANN_F_IN, 0, &x1); + kann_feed_bind(ann, KANN_F_TRUTH, 0, &y1); + + for (i = 0; i < max_epoch; ++i) { + int n_proc = 0, n_train_err = 0, n_val_err = 0, n_train_base = 0, n_val_base = 0; + double train_cost = 0.0, val_cost = 0.0; + kann_shuffle(n_train, shuf); + kann_switch(ann, 1); + while (n_proc < n_train) { + int b, c, ms = n_train - n_proc < mini_size? n_train - n_proc : mini_size; + for (b = 0; b < ms; ++b) { + memcpy(&x1[b*n_in], x[shuf[n_proc+b]], n_in * sizeof(float)); + memcpy(&y1[b*n_out], y[shuf[n_proc+b]], n_out * sizeof(float)); + } + kann_set_batch_size(ann, ms); + train_cost += kann_cost(ann, 0, 1) * ms; + c = kann_class_error(ann, &b); + n_train_err += c, n_train_base += b; + kann_RMSprop(n_var, lr, 0, 0.9f, ann->g, ann->x, r); + n_proc += ms; + } + train_cost /= n_train; + kann_switch(ann, 0); + n_proc = 0; + while (n_proc < n_val) { + int b, c, ms = n_val - n_proc < mini_size? n_val - n_proc : mini_size; + for (b = 0; b < ms; ++b) { + memcpy(&x1[b*n_in], x[n_train+n_proc+b], n_in * sizeof(float)); + memcpy(&y1[b*n_out], y[n_train+n_proc+b], n_out * sizeof(float)); + } + kann_set_batch_size(ann, ms); + val_cost += kann_cost(ann, 0, 0) * ms; + c = kann_class_error(ann, &b); + n_val_err += c, n_val_base += b; + n_proc += ms; + } + if (n_val > 0) val_cost /= n_val; + if (cb) { + cb(i + 1, train_cost, val_cost, ud); +#if 0 + fprintf(stderr, "epoch: %d; training cost: %g", i+1, train_cost); + if (n_train_base) fprintf(stderr, " (class error: %.2f%%)", 100.0f * n_train_err / n_train); + if (n_val > 0) { + fprintf(stderr, "; validation cost: %g", val_cost); + if (n_val_base) fprintf(stderr, " (class error: %.2f%%)", 100.0f * n_val_err / n_val); + } + fputc('\n', stderr); +#endif + } + if (i >= max_drop_streak && n_val > 0) { + if (val_cost < min_val_cost) { + min_set = 1; + memcpy(min_x, ann->x, n_var * sizeof(float)); + memcpy(min_c, ann->c, n_const * sizeof(float)); + drop_streak = 0; + min_val_cost = (float)val_cost; + } else if (++drop_streak >= max_drop_streak) + break; + } + } + if (min_set) { + memcpy(ann->x, min_x, n_var * sizeof(float)); + memcpy(ann->c, min_c, n_const * sizeof(float)); + } + + free(min_c); free(min_x); free(y1); free(x1); free(y); free(x); free(shuf); free(r); + return i; +} + +float kann_cost_fnn1(kann_t *ann, int n, float **x, float **y) +{ + int n_in, n_out, n_proc = 0, mini_size = 64 < n? 64 : n; + float *x1, *y1; + double cost = 0.0; + + n_in = kann_dim_in(ann); + n_out = kann_dim_out(ann); + if (n <= 0 || n_in < 0 || n_out < 0) return 0.0; + + x1 = (float*)malloc(n_in * mini_size * sizeof(float)); + y1 = (float*)malloc(n_out * mini_size * sizeof(float)); + kann_feed_bind(ann, KANN_F_IN, 0, &x1); + kann_feed_bind(ann, KANN_F_TRUTH, 0, &y1); + kann_switch(ann, 0); + while (n_proc < n) { + int b, ms = n - n_proc < mini_size? n - n_proc : mini_size; + for (b = 0; b < ms; ++b) { + memcpy(&x1[b*n_in], x[n_proc+b], n_in * sizeof(float)); + memcpy(&y1[b*n_out], y[n_proc+b], n_out * sizeof(float)); + } + kann_set_batch_size(ann, ms); + cost += kann_cost(ann, 0, 0) * ms; + n_proc += ms; + } + free(y1); free(x1); + return (float)(cost / n); +} + +const float *kann_apply1(kann_t *a, float *x) +{ + int i_out; + i_out = kann_find(a, KANN_F_OUT, 0); + if (i_out < 0) return 0; + kann_set_batch_size(a, 1); + kann_feed_bind(a, KANN_F_IN, 0, &x); + kad_eval_at(a->n, a->v, i_out); + return a->v[i_out]->x; +} |