summaryrefslogtreecommitdiffstats
path: root/contrib/lua-lpeg/lpcode.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/lua-lpeg/lpcode.c')
-rw-r--r--contrib/lua-lpeg/lpcode.c1014
1 files changed, 1014 insertions, 0 deletions
diff --git a/contrib/lua-lpeg/lpcode.c b/contrib/lua-lpeg/lpcode.c
new file mode 100644
index 0000000..3923459
--- /dev/null
+++ b/contrib/lua-lpeg/lpcode.c
@@ -0,0 +1,1014 @@
+/*
+** $Id: lpcode.c $
+** Copyright 2007, Lua.org & PUC-Rio (see 'lpeg.html' for license)
+*/
+
+#include <limits.h>
+
+
+#include "lua.h"
+#include "lauxlib.h"
+
+#include "lptypes.h"
+#include "lpcode.h"
+
+
+/* signals a "no-instruction */
+#define NOINST -1
+
+
+
+static const Charset fullset_ =
+ {{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}};
+
+static const Charset *fullset = &fullset_;
+
+/*
+** {======================================================
+** Analysis and some optimizations
+** =======================================================
+*/
+
+/*
+** Check whether a charset is empty (returns IFail), singleton (IChar),
+** full (IAny), or none of those (ISet). When singleton, '*c' returns
+** which character it is. (When generic set, the set was the input,
+** so there is no need to return it.)
+*/
+static Opcode charsettype (const byte *cs, int *c) {
+ int count = 0; /* number of characters in the set */
+ int i;
+ int candidate = -1; /* candidate position for the singleton char */
+ for (i = 0; i < CHARSETSIZE; i++) { /* for each byte */
+ int b = cs[i];
+ if (b == 0) { /* is byte empty? */
+ if (count > 1) /* was set neither empty nor singleton? */
+ return ISet; /* neither full nor empty nor singleton */
+ /* else set is still empty or singleton */
+ }
+ else if (b == 0xFF) { /* is byte full? */
+ if (count < (i * BITSPERCHAR)) /* was set not full? */
+ return ISet; /* neither full nor empty nor singleton */
+ else count += BITSPERCHAR; /* set is still full */
+ }
+ else if ((b & (b - 1)) == 0) { /* has byte only one bit? */
+ if (count > 0) /* was set not empty? */
+ return ISet; /* neither full nor empty nor singleton */
+ else { /* set has only one char till now; track it */
+ count++;
+ candidate = i;
+ }
+ }
+ else return ISet; /* byte is neither empty, full, nor singleton */
+ }
+ switch (count) {
+ case 0: return IFail; /* empty set */
+ case 1: { /* singleton; find character bit inside byte */
+ int b = cs[candidate];
+ *c = candidate * BITSPERCHAR;
+ if ((b & 0xF0) != 0) { *c += 4; b >>= 4; }
+ if ((b & 0x0C) != 0) { *c += 2; b >>= 2; }
+ if ((b & 0x02) != 0) { *c += 1; }
+ return IChar;
+ }
+ default: {
+ assert(count == CHARSETSIZE * BITSPERCHAR); /* full set */
+ return IAny;
+ }
+ }
+}
+
+
+/*
+** A few basic operations on Charsets
+*/
+static void cs_complement (Charset *cs) {
+ loopset(i, cs->cs[i] = ~cs->cs[i]);
+}
+
+static int cs_equal (const byte *cs1, const byte *cs2) {
+ loopset(i, if (cs1[i] != cs2[i]) return 0);
+ return 1;
+}
+
+static int cs_disjoint (const Charset *cs1, const Charset *cs2) {
+ loopset(i, if ((cs1->cs[i] & cs2->cs[i]) != 0) return 0;)
+ return 1;
+}
+
+
+/*
+** If 'tree' is a 'char' pattern (TSet, TChar, TAny), convert it into a
+** charset and return 1; else return 0.
+*/
+int tocharset (TTree *tree, Charset *cs) {
+ switch (tree->tag) {
+ case TSet: { /* copy set */
+ loopset(i, cs->cs[i] = treebuffer(tree)[i]);
+ return 1;
+ }
+ case TChar: { /* only one char */
+ assert(0 <= tree->u.n && tree->u.n <= UCHAR_MAX);
+ loopset(i, cs->cs[i] = 0); /* erase all chars */
+ setchar(cs->cs, tree->u.n); /* add that one */
+ return 1;
+ }
+ case TAny: {
+ loopset(i, cs->cs[i] = 0xFF); /* add all characters to the set */
+ return 1;
+ }
+ default: return 0;
+ }
+}
+
+
+/*
+** Visit a TCall node taking care to stop recursion. If node not yet
+** visited, return 'f(sib2(tree))', otherwise return 'def' (default
+** value)
+*/
+static int callrecursive (TTree *tree, int f (TTree *t), int def) {
+ int key = tree->key;
+ assert(tree->tag == TCall);
+ assert(sib2(tree)->tag == TRule);
+ if (key == 0) /* node already visited? */
+ return def; /* return default value */
+ else { /* first visit */
+ int result;
+ tree->key = 0; /* mark call as already visited */
+ result = f(sib2(tree)); /* go to called rule */
+ tree->key = key; /* restore tree */
+ return result;
+ }
+}
+
+
+/*
+** Check whether a pattern tree has captures
+*/
+int hascaptures (TTree *tree) {
+ tailcall:
+ switch (tree->tag) {
+ case TCapture: case TRunTime:
+ return 1;
+ case TCall:
+ return callrecursive(tree, hascaptures, 0);
+ case TRule: /* do not follow siblings */
+ tree = sib1(tree); goto tailcall;
+ case TOpenCall: assert(0);
+ default: {
+ switch (numsiblings[tree->tag]) {
+ case 1: /* return hascaptures(sib1(tree)); */
+ tree = sib1(tree); goto tailcall;
+ case 2:
+ if (hascaptures(sib1(tree)))
+ return 1;
+ /* else return hascaptures(sib2(tree)); */
+ tree = sib2(tree); goto tailcall;
+ default: assert(numsiblings[tree->tag] == 0); return 0;
+ }
+ }
+ }
+}
+
+
+/*
+** Checks how a pattern behaves regarding the empty string,
+** in one of two different ways:
+** A pattern is *nullable* if it can match without consuming any character;
+** A pattern is *nofail* if it never fails for any string
+** (including the empty string).
+** The difference is only for predicates and run-time captures;
+** for other patterns, the two properties are equivalent.
+** (With predicates, &'a' is nullable but not nofail. Of course,
+** nofail => nullable.)
+** These functions are all convervative in the following way:
+** p is nullable => nullable(p)
+** nofail(p) => p cannot fail
+** The function assumes that TOpenCall is not nullable;
+** this will be checked again when the grammar is fixed.
+** Run-time captures can do whatever they want, so the result
+** is conservative.
+*/
+int checkaux (TTree *tree, int pred) {
+ tailcall:
+ switch (tree->tag) {
+ case TChar: case TSet: case TAny:
+ case TFalse: case TOpenCall:
+ return 0; /* not nullable */
+ case TRep: case TTrue:
+ return 1; /* no fail */
+ case TNot: case TBehind: /* can match empty, but can fail */
+ if (pred == PEnofail) return 0;
+ else return 1; /* PEnullable */
+ case TAnd: /* can match empty; fail iff body does */
+ if (pred == PEnullable) return 1;
+ /* else return checkaux(sib1(tree), pred); */
+ tree = sib1(tree); goto tailcall;
+ case TRunTime: /* can fail; match empty iff body does */
+ if (pred == PEnofail) return 0;
+ /* else return checkaux(sib1(tree), pred); */
+ tree = sib1(tree); goto tailcall;
+ case TSeq:
+ if (!checkaux(sib1(tree), pred)) return 0;
+ /* else return checkaux(sib2(tree), pred); */
+ tree = sib2(tree); goto tailcall;
+ case TChoice:
+ if (checkaux(sib2(tree), pred)) return 1;
+ /* else return checkaux(sib1(tree), pred); */
+ tree = sib1(tree); goto tailcall;
+ case TCapture: case TGrammar: case TRule:
+ /* return checkaux(sib1(tree), pred); */
+ tree = sib1(tree); goto tailcall;
+ case TCall: /* return checkaux(sib2(tree), pred); */
+ tree = sib2(tree); goto tailcall;
+ default: assert(0); return 0;
+ }
+}
+
+
+/*
+** number of characters to match a pattern (or -1 if variable)
+*/
+int fixedlen (TTree *tree) {
+ int len = 0; /* to accumulate in tail calls */
+ tailcall:
+ switch (tree->tag) {
+ case TChar: case TSet: case TAny:
+ return len + 1;
+ case TFalse: case TTrue: case TNot: case TAnd: case TBehind:
+ return len;
+ case TRep: case TRunTime: case TOpenCall:
+ return -1;
+ case TCapture: case TRule: case TGrammar:
+ /* return fixedlen(sib1(tree)); */
+ tree = sib1(tree); goto tailcall;
+ case TCall: {
+ int n1 = callrecursive(tree, fixedlen, -1);
+ if (n1 < 0)
+ return -1;
+ else
+ return len + n1;
+ }
+ case TSeq: {
+ int n1 = fixedlen(sib1(tree));
+ if (n1 < 0)
+ return -1;
+ /* else return fixedlen(sib2(tree)) + len; */
+ len += n1; tree = sib2(tree); goto tailcall;
+ }
+ case TChoice: {
+ int n1 = fixedlen(sib1(tree));
+ int n2 = fixedlen(sib2(tree));
+ if (n1 != n2 || n1 < 0)
+ return -1;
+ else
+ return len + n1;
+ }
+ default: assert(0); return 0;
+ };
+}
+
+
+/*
+** Computes the 'first set' of a pattern.
+** The result is a conservative aproximation:
+** match p ax -> x (for some x) ==> a belongs to first(p)
+** or
+** a not in first(p) ==> match p ax -> fail (for all x)
+**
+** The set 'follow' is the first set of what follows the
+** pattern (full set if nothing follows it).
+**
+** The function returns 0 when this resulting set can be used for
+** test instructions that avoid the pattern altogether.
+** A non-zero return can happen for two reasons:
+** 1) match p '' -> '' ==> return has bit 1 set
+** (tests cannot be used because they would always fail for an empty input);
+** 2) there is a match-time capture ==> return has bit 2 set
+** (optimizations should not bypass match-time captures).
+*/
+static int getfirst (TTree *tree, const Charset *follow, Charset *firstset) {
+ tailcall:
+ switch (tree->tag) {
+ case TChar: case TSet: case TAny: {
+ tocharset(tree, firstset);
+ return 0;
+ }
+ case TTrue: {
+ loopset(i, firstset->cs[i] = follow->cs[i]);
+ return 1; /* accepts the empty string */
+ }
+ case TFalse: {
+ loopset(i, firstset->cs[i] = 0);
+ return 0;
+ }
+ case TChoice: {
+ Charset csaux;
+ int e1 = getfirst(sib1(tree), follow, firstset);
+ int e2 = getfirst(sib2(tree), follow, &csaux);
+ loopset(i, firstset->cs[i] |= csaux.cs[i]);
+ return e1 | e2;
+ }
+ case TSeq: {
+ if (!nullable(sib1(tree))) {
+ /* when p1 is not nullable, p2 has nothing to contribute;
+ return getfirst(sib1(tree), fullset, firstset); */
+ tree = sib1(tree); follow = fullset; goto tailcall;
+ }
+ else { /* FIRST(p1 p2, fl) = FIRST(p1, FIRST(p2, fl)) */
+ Charset csaux;
+ int e2 = getfirst(sib2(tree), follow, &csaux);
+ int e1 = getfirst(sib1(tree), &csaux, firstset);
+ if (e1 == 0) return 0; /* 'e1' ensures that first can be used */
+ else if ((e1 | e2) & 2) /* one of the children has a matchtime? */
+ return 2; /* pattern has a matchtime capture */
+ else return e2; /* else depends on 'e2' */
+ }
+ }
+ case TRep: {
+ getfirst(sib1(tree), follow, firstset);
+ loopset(i, firstset->cs[i] |= follow->cs[i]);
+ return 1; /* accept the empty string */
+ }
+ case TCapture: case TGrammar: case TRule: {
+ /* return getfirst(sib1(tree), follow, firstset); */
+ tree = sib1(tree); goto tailcall;
+ }
+ case TRunTime: { /* function invalidates any follow info. */
+ int e = getfirst(sib1(tree), fullset, firstset);
+ if (e) return 2; /* function is not "protected"? */
+ else return 0; /* pattern inside capture ensures first can be used */
+ }
+ case TCall: {
+ /* return getfirst(sib2(tree), follow, firstset); */
+ tree = sib2(tree); goto tailcall;
+ }
+ case TAnd: {
+ int e = getfirst(sib1(tree), follow, firstset);
+ loopset(i, firstset->cs[i] &= follow->cs[i]);
+ return e;
+ }
+ case TNot: {
+ if (tocharset(sib1(tree), firstset)) {
+ cs_complement(firstset);
+ return 1;
+ }
+ /* else go through */
+ }
+ case TBehind: { /* instruction gives no new information */
+ /* call 'getfirst' only to check for math-time captures */
+ int e = getfirst(sib1(tree), follow, firstset);
+ loopset(i, firstset->cs[i] = follow->cs[i]); /* uses follow */
+ return e | 1; /* always can accept the empty string */
+ }
+ default: assert(0); return 0;
+ }
+}
+
+
+/*
+** If 'headfail(tree)' true, then 'tree' can fail only depending on the
+** next character of the subject.
+*/
+static int headfail (TTree *tree) {
+ tailcall:
+ switch (tree->tag) {
+ case TChar: case TSet: case TAny: case TFalse:
+ return 1;
+ case TTrue: case TRep: case TRunTime: case TNot:
+ case TBehind:
+ return 0;
+ case TCapture: case TGrammar: case TRule: case TAnd:
+ tree = sib1(tree); goto tailcall; /* return headfail(sib1(tree)); */
+ case TCall:
+ tree = sib2(tree); goto tailcall; /* return headfail(sib2(tree)); */
+ case TSeq:
+ if (!nofail(sib2(tree))) return 0;
+ /* else return headfail(sib1(tree)); */
+ tree = sib1(tree); goto tailcall;
+ case TChoice:
+ if (!headfail(sib1(tree))) return 0;
+ /* else return headfail(sib2(tree)); */
+ tree = sib2(tree); goto tailcall;
+ default: assert(0); return 0;
+ }
+}
+
+
+/*
+** Check whether the code generation for the given tree can benefit
+** from a follow set (to avoid computing the follow set when it is
+** not needed)
+*/
+static int needfollow (TTree *tree) {
+ tailcall:
+ switch (tree->tag) {
+ case TChar: case TSet: case TAny:
+ case TFalse: case TTrue: case TAnd: case TNot:
+ case TRunTime: case TGrammar: case TCall: case TBehind:
+ return 0;
+ case TChoice: case TRep:
+ return 1;
+ case TCapture:
+ tree = sib1(tree); goto tailcall;
+ case TSeq:
+ tree = sib2(tree); goto tailcall;
+ default: assert(0); return 0;
+ }
+}
+
+/* }====================================================== */
+
+
+
+/*
+** {======================================================
+** Code generation
+** =======================================================
+*/
+
+
+/*
+** size of an instruction
+*/
+int sizei (const Instruction *i) {
+ switch((Opcode)i->i.code) {
+ case ISet: case ISpan: return CHARSETINSTSIZE;
+ case ITestSet: return CHARSETINSTSIZE + 1;
+ case ITestChar: case ITestAny: case IChoice: case IJmp: case ICall:
+ case IOpenCall: case ICommit: case IPartialCommit: case IBackCommit:
+ return 2;
+ default: return 1;
+ }
+}
+
+
+/*
+** state for the compiler
+*/
+typedef struct CompileState {
+ Pattern *p; /* pattern being compiled */
+ int ncode; /* next position in p->code to be filled */
+ lua_State *L;
+} CompileState;
+
+
+/*
+** code generation is recursive; 'opt' indicates that the code is being
+** generated as the last thing inside an optional pattern (so, if that
+** code is optional too, it can reuse the 'IChoice' already in place for
+** the outer pattern). 'tt' points to a previous test protecting this
+** code (or NOINST). 'fl' is the follow set of the pattern.
+*/
+static void codegen (CompileState *compst, TTree *tree, int opt, int tt,
+ const Charset *fl);
+
+
+void realloccode (lua_State *L, Pattern *p, int nsize) {
+ void *ud;
+ lua_Alloc f = lua_getallocf(L, &ud);
+ void *newblock = f(ud, p->code, p->codesize * sizeof(Instruction),
+ nsize * sizeof(Instruction));
+ if (newblock == NULL && nsize > 0)
+ luaL_error(L, "not enough memory");
+ p->code = (Instruction *)newblock;
+ p->codesize = nsize;
+}
+
+
+static int nextinstruction (CompileState *compst) {
+ int size = compst->p->codesize;
+ if (compst->ncode >= size)
+ realloccode(compst->L, compst->p, size * 2);
+ return compst->ncode++;
+}
+
+
+#define getinstr(cs,i) ((cs)->p->code[i])
+
+
+static int addinstruction (CompileState *compst, Opcode op, int aux) {
+ int i = nextinstruction(compst);
+ getinstr(compst, i).i.code = op;
+ getinstr(compst, i).i.aux = aux;
+ return i;
+}
+
+
+/*
+** Add an instruction followed by space for an offset (to be set later)
+*/
+static int addoffsetinst (CompileState *compst, Opcode op) {
+ int i = addinstruction(compst, op, 0); /* instruction */
+ addinstruction(compst, (Opcode)0, 0); /* open space for offset */
+ assert(op == ITestSet || sizei(&getinstr(compst, i)) == 2);
+ return i;
+}
+
+
+/*
+** Set the offset of an instruction
+*/
+static void setoffset (CompileState *compst, int instruction, int offset) {
+ getinstr(compst, instruction + 1).offset = offset;
+}
+
+
+/*
+** Add a capture instruction:
+** 'op' is the capture instruction; 'cap' the capture kind;
+** 'key' the key into ktable; 'aux' is the optional capture offset
+**
+*/
+static int addinstcap (CompileState *compst, Opcode op, int cap, int key,
+ int aux) {
+ int i = addinstruction(compst, op, joinkindoff(cap, aux));
+ getinstr(compst, i).i.key = key;
+ return i;
+}
+
+
+#define gethere(compst) ((compst)->ncode)
+
+#define target(code,i) ((i) + code[i + 1].offset)
+
+
+/*
+** Patch 'instruction' to jump to 'target'
+*/
+static void jumptothere (CompileState *compst, int instruction, int target) {
+ if (instruction >= 0)
+ setoffset(compst, instruction, target - instruction);
+}
+
+
+/*
+** Patch 'instruction' to jump to current position
+*/
+static void jumptohere (CompileState *compst, int instruction) {
+ jumptothere(compst, instruction, gethere(compst));
+}
+
+
+/*
+** Code an IChar instruction, or IAny if there is an equivalent
+** test dominating it
+*/
+static void codechar (CompileState *compst, int c, int tt) {
+ if (tt >= 0 && getinstr(compst, tt).i.code == ITestChar &&
+ getinstr(compst, tt).i.aux == c)
+ addinstruction(compst, IAny, 0);
+ else
+ addinstruction(compst, IChar, c);
+}
+
+
+/*
+** Add a charset posfix to an instruction
+*/
+static void addcharset (CompileState *compst, const byte *cs) {
+ int p = gethere(compst);
+ int i;
+ for (i = 0; i < (int)CHARSETINSTSIZE - 1; i++)
+ nextinstruction(compst); /* space for buffer */
+ /* fill buffer with charset */
+ loopset(j, getinstr(compst, p).buff[j] = cs[j]);
+}
+
+
+/*
+** code a char set, optimizing unit sets for IChar, "complete"
+** sets for IAny, and empty sets for IFail; also use an IAny
+** when instruction is dominated by an equivalent test.
+*/
+static void codecharset (CompileState *compst, const byte *cs, int tt) {
+ int c = 0; /* (=) to avoid warnings */
+ Opcode op = charsettype(cs, &c);
+ switch (op) {
+ case IChar: codechar(compst, c, tt); break;
+ case ISet: { /* non-trivial set? */
+ if (tt >= 0 && getinstr(compst, tt).i.code == ITestSet &&
+ cs_equal(cs, getinstr(compst, tt + 2).buff))
+ addinstruction(compst, IAny, 0);
+ else {
+ addinstruction(compst, ISet, 0);
+ addcharset(compst, cs);
+ }
+ break;
+ }
+ default: addinstruction(compst, op, c); break;
+ }
+}
+
+
+/*
+** code a test set, optimizing unit sets for ITestChar, "complete"
+** sets for ITestAny, and empty sets for IJmp (always fails).
+** 'e' is true iff test should accept the empty string. (Test
+** instructions in the current VM never accept the empty string.)
+*/
+static int codetestset (CompileState *compst, Charset *cs, int e) {
+ if (e) return NOINST; /* no test */
+ else {
+ int c = 0;
+ Opcode op = charsettype(cs->cs, &c);
+ switch (op) {
+ case IFail: return addoffsetinst(compst, IJmp); /* always jump */
+ case IAny: return addoffsetinst(compst, ITestAny);
+ case IChar: {
+ int i = addoffsetinst(compst, ITestChar);
+ getinstr(compst, i).i.aux = c;
+ return i;
+ }
+ case ISet: {
+ int i = addoffsetinst(compst, ITestSet);
+ addcharset(compst, cs->cs);
+ return i;
+ }
+ default: assert(0); return 0;
+ }
+ }
+}
+
+
+/*
+** Find the final destination of a sequence of jumps
+*/
+static int finaltarget (Instruction *code, int i) {
+ while (code[i].i.code == IJmp)
+ i = target(code, i);
+ return i;
+}
+
+
+/*
+** final label (after traversing any jumps)
+*/
+static int finallabel (Instruction *code, int i) {
+ return finaltarget(code, target(code, i));
+}
+
+
+/*
+** <behind(p)> == behind n; <p> (where n = fixedlen(p))
+*/
+static void codebehind (CompileState *compst, TTree *tree) {
+ if (tree->u.n > 0)
+ addinstruction(compst, IBehind, tree->u.n);
+ codegen(compst, sib1(tree), 0, NOINST, fullset);
+}
+
+
+/*
+** Choice; optimizations:
+** - when p1 is headfail or
+** when first(p1) and first(p2) are disjoint, than
+** a character not in first(p1) cannot go to p1, and a character
+** in first(p1) cannot go to p2 (at it is not in first(p2)).
+** (The optimization is not valid if p1 accepts the empty string,
+** as then there is no character at all...)
+** - when p2 is empty and opt is true; a IPartialCommit can reuse
+** the Choice already active in the stack.
+*/
+static void codechoice (CompileState *compst, TTree *p1, TTree *p2, int opt,
+ const Charset *fl) {
+ int emptyp2 = (p2->tag == TTrue);
+ Charset cs1, cs2;
+ int e1 = getfirst(p1, fullset, &cs1);
+ if (headfail(p1) ||
+ (!e1 && (getfirst(p2, fl, &cs2), cs_disjoint(&cs1, &cs2)))) {
+ /* <p1 / p2> == test (fail(p1)) -> L1 ; p1 ; jmp L2; L1: p2; L2: */
+ int test = codetestset(compst, &cs1, 0);
+ int jmp = NOINST;
+ codegen(compst, p1, 0, test, fl);
+ if (!emptyp2)
+ jmp = addoffsetinst(compst, IJmp);
+ jumptohere(compst, test);
+ codegen(compst, p2, opt, NOINST, fl);
+ jumptohere(compst, jmp);
+ }
+ else if (opt && emptyp2) {
+ /* p1? == IPartialCommit; p1 */
+ jumptohere(compst, addoffsetinst(compst, IPartialCommit));
+ codegen(compst, p1, 1, NOINST, fullset);
+ }
+ else {
+ /* <p1 / p2> ==
+ test(first(p1)) -> L1; choice L1; <p1>; commit L2; L1: <p2>; L2: */
+ int pcommit;
+ int test = codetestset(compst, &cs1, e1);
+ int pchoice = addoffsetinst(compst, IChoice);
+ codegen(compst, p1, emptyp2, test, fullset);
+ pcommit = addoffsetinst(compst, ICommit);
+ jumptohere(compst, pchoice);
+ jumptohere(compst, test);
+ codegen(compst, p2, opt, NOINST, fl);
+ jumptohere(compst, pcommit);
+ }
+}
+
+
+/*
+** And predicate
+** optimization: fixedlen(p) = n ==> <&p> == <p>; behind n
+** (valid only when 'p' has no captures)
+*/
+static void codeand (CompileState *compst, TTree *tree, int tt) {
+ int n = fixedlen(tree);
+ if (n >= 0 && n <= MAXBEHIND && !hascaptures(tree)) {
+ codegen(compst, tree, 0, tt, fullset);
+ if (n > 0)
+ addinstruction(compst, IBehind, n);
+ }
+ else { /* default: Choice L1; p1; BackCommit L2; L1: Fail; L2: */
+ int pcommit;
+ int pchoice = addoffsetinst(compst, IChoice);
+ codegen(compst, tree, 0, tt, fullset);
+ pcommit = addoffsetinst(compst, IBackCommit);
+ jumptohere(compst, pchoice);
+ addinstruction(compst, IFail, 0);
+ jumptohere(compst, pcommit);
+ }
+}
+
+
+/*
+** Captures: if pattern has fixed (and not too big) length, and it
+** has no nested captures, use a single IFullCapture instruction
+** after the match; otherwise, enclose the pattern with OpenCapture -
+** CloseCapture.
+*/
+static void codecapture (CompileState *compst, TTree *tree, int tt,
+ const Charset *fl) {
+ int len = fixedlen(sib1(tree));
+ if (len >= 0 && len <= MAXOFF && !hascaptures(sib1(tree))) {
+ codegen(compst, sib1(tree), 0, tt, fl);
+ addinstcap(compst, IFullCapture, tree->cap, tree->key, len);
+ }
+ else {
+ addinstcap(compst, IOpenCapture, tree->cap, tree->key, 0);
+ codegen(compst, sib1(tree), 0, tt, fl);
+ addinstcap(compst, ICloseCapture, Cclose, 0, 0);
+ }
+}
+
+
+static void coderuntime (CompileState *compst, TTree *tree, int tt) {
+ addinstcap(compst, IOpenCapture, Cgroup, tree->key, 0);
+ codegen(compst, sib1(tree), 0, tt, fullset);
+ addinstcap(compst, ICloseRunTime, Cclose, 0, 0);
+}
+
+
+/*
+** Repetion; optimizations:
+** When pattern is a charset, can use special instruction ISpan.
+** When pattern is head fail, or if it starts with characters that
+** are disjoint from what follows the repetions, a simple test
+** is enough (a fail inside the repetition would backtrack to fail
+** again in the following pattern, so there is no need for a choice).
+** When 'opt' is true, the repetion can reuse the Choice already
+** active in the stack.
+*/
+static void coderep (CompileState *compst, TTree *tree, int opt,
+ const Charset *fl) {
+ Charset st;
+ if (tocharset(tree, &st)) {
+ addinstruction(compst, ISpan, 0);
+ addcharset(compst, st.cs);
+ }
+ else {
+ int e1 = getfirst(tree, fullset, &st);
+ if (headfail(tree) || (!e1 && cs_disjoint(&st, fl))) {
+ /* L1: test (fail(p1)) -> L2; <p>; jmp L1; L2: */
+ int jmp;
+ int test = codetestset(compst, &st, 0);
+ codegen(compst, tree, 0, test, fullset);
+ jmp = addoffsetinst(compst, IJmp);
+ jumptohere(compst, test);
+ jumptothere(compst, jmp, test);
+ }
+ else {
+ /* test(fail(p1)) -> L2; choice L2; L1: <p>; partialcommit L1; L2: */
+ /* or (if 'opt'): partialcommit L1; L1: <p>; partialcommit L1; */
+ int commit, l2;
+ int test = codetestset(compst, &st, e1);
+ int pchoice = NOINST;
+ if (opt)
+ jumptohere(compst, addoffsetinst(compst, IPartialCommit));
+ else
+ pchoice = addoffsetinst(compst, IChoice);
+ l2 = gethere(compst);
+ codegen(compst, tree, 0, NOINST, fullset);
+ commit = addoffsetinst(compst, IPartialCommit);
+ jumptothere(compst, commit, l2);
+ jumptohere(compst, pchoice);
+ jumptohere(compst, test);
+ }
+ }
+}
+
+
+/*
+** Not predicate; optimizations:
+** In any case, if first test fails, 'not' succeeds, so it can jump to
+** the end. If pattern is headfail, that is all (it cannot fail
+** in other parts); this case includes 'not' of simple sets. Otherwise,
+** use the default code (a choice plus a failtwice).
+*/
+static void codenot (CompileState *compst, TTree *tree) {
+ Charset st;
+ int e = getfirst(tree, fullset, &st);
+ int test = codetestset(compst, &st, e);
+ if (headfail(tree)) /* test (fail(p1)) -> L1; fail; L1: */
+ addinstruction(compst, IFail, 0);
+ else {
+ /* test(fail(p))-> L1; choice L1; <p>; failtwice; L1: */
+ int pchoice = addoffsetinst(compst, IChoice);
+ codegen(compst, tree, 0, NOINST, fullset);
+ addinstruction(compst, IFailTwice, 0);
+ jumptohere(compst, pchoice);
+ }
+ jumptohere(compst, test);
+}
+
+
+/*
+** change open calls to calls, using list 'positions' to find
+** correct offsets; also optimize tail calls
+*/
+static void correctcalls (CompileState *compst, int *positions,
+ int from, int to) {
+ int i;
+ Instruction *code = compst->p->code;
+ for (i = from; i < to; i += sizei(&code[i])) {
+ if (code[i].i.code == IOpenCall) {
+ int n = code[i].i.key; /* rule number */
+ int rule = positions[n]; /* rule position */
+ assert(rule == from || code[rule - 1].i.code == IRet);
+ if (code[finaltarget(code, i + 2)].i.code == IRet) /* call; ret ? */
+ code[i].i.code = IJmp; /* tail call */
+ else
+ code[i].i.code = ICall;
+ jumptothere(compst, i, rule); /* call jumps to respective rule */
+ }
+ }
+ assert(i == to);
+}
+
+
+/*
+** Code for a grammar:
+** call L1; jmp L2; L1: rule 1; ret; rule 2; ret; ...; L2:
+*/
+static void codegrammar (CompileState *compst, TTree *grammar) {
+ int positions[MAXRULES];
+ int rulenumber = 0;
+ TTree *rule;
+ int firstcall = addoffsetinst(compst, ICall); /* call initial rule */
+ int jumptoend = addoffsetinst(compst, IJmp); /* jump to the end */
+ int start = gethere(compst); /* here starts the initial rule */
+ jumptohere(compst, firstcall);
+ for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) {
+ positions[rulenumber++] = gethere(compst); /* save rule position */
+ codegen(compst, sib1(rule), 0, NOINST, fullset); /* code rule */
+ addinstruction(compst, IRet, 0);
+ }
+ assert(rule->tag == TTrue);
+ jumptohere(compst, jumptoend);
+ correctcalls(compst, positions, start, gethere(compst));
+}
+
+
+static void codecall (CompileState *compst, TTree *call) {
+ int c = addoffsetinst(compst, IOpenCall); /* to be corrected later */
+ getinstr(compst, c).i.key = sib2(call)->cap; /* rule number */
+ assert(sib2(call)->tag == TRule);
+}
+
+
+/*
+** Code first child of a sequence
+** (second child is called in-place to allow tail call)
+** Return 'tt' for second child
+*/
+static int codeseq1 (CompileState *compst, TTree *p1, TTree *p2,
+ int tt, const Charset *fl) {
+ if (needfollow(p1)) {
+ Charset fl1;
+ getfirst(p2, fl, &fl1); /* p1 follow is p2 first */
+ codegen(compst, p1, 0, tt, &fl1);
+ }
+ else /* use 'fullset' as follow */
+ codegen(compst, p1, 0, tt, fullset);
+ if (fixedlen(p1) != 0) /* can 'p1' consume anything? */
+ return NOINST; /* invalidate test */
+ else return tt; /* else 'tt' still protects sib2 */
+}
+
+
+/*
+** Main code-generation function: dispatch to auxiliar functions
+** according to kind of tree. ('needfollow' should return true
+** only for consructions that use 'fl'.)
+*/
+static void codegen (CompileState *compst, TTree *tree, int opt, int tt,
+ const Charset *fl) {
+ tailcall:
+ switch (tree->tag) {
+ case TChar: codechar(compst, tree->u.n, tt); break;
+ case TAny: addinstruction(compst, IAny, 0); break;
+ case TSet: codecharset(compst, treebuffer(tree), tt); break;
+ case TTrue: break;
+ case TFalse: addinstruction(compst, IFail, 0); break;
+ case TChoice: codechoice(compst, sib1(tree), sib2(tree), opt, fl); break;
+ case TRep: coderep(compst, sib1(tree), opt, fl); break;
+ case TBehind: codebehind(compst, tree); break;
+ case TNot: codenot(compst, sib1(tree)); break;
+ case TAnd: codeand(compst, sib1(tree), tt); break;
+ case TCapture: codecapture(compst, tree, tt, fl); break;
+ case TRunTime: coderuntime(compst, tree, tt); break;
+ case TGrammar: codegrammar(compst, tree); break;
+ case TCall: codecall(compst, tree); break;
+ case TSeq: {
+ tt = codeseq1(compst, sib1(tree), sib2(tree), tt, fl); /* code 'p1' */
+ /* codegen(compst, p2, opt, tt, fl); */
+ tree = sib2(tree); goto tailcall;
+ }
+ default: assert(0);
+ }
+}
+
+
+/*
+** Optimize jumps and other jump-like instructions.
+** * Update labels of instructions with labels to their final
+** destinations (e.g., choice L1; ... L1: jmp L2: becomes
+** choice L2)
+** * Jumps to other instructions that do jumps become those
+** instructions (e.g., jump to return becomes a return; jump
+** to commit becomes a commit)
+*/
+static void peephole (CompileState *compst) {
+ Instruction *code = compst->p->code;
+ int i;
+ for (i = 0; i < compst->ncode; i += sizei(&code[i])) {
+ redo:
+ switch (code[i].i.code) {
+ case IChoice: case ICall: case ICommit: case IPartialCommit:
+ case IBackCommit: case ITestChar: case ITestSet:
+ case ITestAny: { /* instructions with labels */
+ jumptothere(compst, i, finallabel(code, i)); /* optimize label */
+ break;
+ }
+ case IJmp: {
+ int ft = finaltarget(code, i);
+ switch (code[ft].i.code) { /* jumping to what? */
+ case IRet: case IFail: case IFailTwice:
+ case IEnd: { /* instructions with unconditional implicit jumps */
+ code[i] = code[ft]; /* jump becomes that instruction */
+ code[i + 1].i.code = IAny; /* 'no-op' for target position */
+ break;
+ }
+ case ICommit: case IPartialCommit:
+ case IBackCommit: { /* inst. with unconditional explicit jumps */
+ int fft = finallabel(code, ft);
+ code[i] = code[ft]; /* jump becomes that instruction... */
+ jumptothere(compst, i, fft); /* but must correct its offset */
+ goto redo; /* reoptimize its label */
+ }
+ default: {
+ jumptothere(compst, i, ft); /* optimize label */
+ break;
+ }
+ }
+ break;
+ }
+ default: break;
+ }
+ }
+ assert(code[i - 1].i.code == IEnd);
+}
+
+
+/*
+** Compile a pattern
+*/
+Instruction *compile (lua_State *L, Pattern *p) {
+ CompileState compst;
+ compst.p = p; compst.ncode = 0; compst.L = L;
+ realloccode(L, p, 2); /* minimum initial size */
+ codegen(&compst, p->tree, 0, NOINST, fullset);
+ addinstruction(&compst, IEnd, 0);
+ realloccode(L, p, compst.ncode); /* set final size */
+ peephole(&compst);
+ return p->code;
+}
+
+
+/* }====================================================== */
+