diff options
Diffstat (limited to '')
-rw-r--r-- | contrib/lua-lpeg/lptree.c | 1319 |
1 files changed, 1319 insertions, 0 deletions
diff --git a/contrib/lua-lpeg/lptree.c b/contrib/lua-lpeg/lptree.c new file mode 100644 index 0000000..df24e3c --- /dev/null +++ b/contrib/lua-lpeg/lptree.c @@ -0,0 +1,1319 @@ +/* +** $Id: lptree.c,v 1.21 2015/09/28 17:01:25 roberto Exp $ +** Copyright 2013, Lua.org & PUC-Rio (see 'lpeg.html' for license) +*/ + +#include <ctype.h> +#include <limits.h> +#include <string.h> +#include <src/lua/lua_common.h> + + +#include "lua.h" +#include "lauxlib.h" + +#include "lptypes.h" +#include "lpcap.h" +#include "lpcode.h" +#include "lpprint.h" +#include "lptree.h" + + +/* number of siblings for each tree */ +const byte numsiblings[] = { + 0, 0, 0, /* char, set, any */ + 0, 0, /* true, false */ + 1, /* rep */ + 2, 2, /* seq, choice */ + 1, 1, /* not, and */ + 0, 0, 2, 1, /* call, opencall, rule, grammar */ + 1, /* behind */ + 1, 1 /* capture, runtime capture */ +}; + + +static TTree *newgrammar (lua_State *L, int arg); + + +/* +** returns a reasonable name for value at index 'idx' on the stack +*/ +static const char *val2str (lua_State *L, int idx) { + const char *k = lua_tostring(L, idx); + if (k != NULL) + return lua_pushfstring(L, "%s", k); + else + return lua_pushfstring(L, "(a %s)", luaL_typename(L, idx)); +} + + +/* +** Fix a TOpenCall into a TCall node, using table 'postable' to +** translate a key to its rule address in the tree. Raises an +** error if key does not exist. +*/ +static void fixonecall (lua_State *L, int postable, TTree *g, TTree *t) { + int n; + lua_rawgeti(L, -1, t->key); /* get rule's name */ + lua_gettable(L, postable); /* query name in position table */ + n = lua_tonumber(L, -1); /* get (absolute) position */ + lua_pop(L, 1); /* remove position */ + if (n == 0) { /* no position? */ + lua_rawgeti(L, -1, t->key); /* get rule's name again */ + luaL_error(L, "rule '%s' undefined in given grammar", val2str(L, -1)); + } + t->tag = TCall; + t->u.ps = n - (t - g); /* position relative to node */ + assert(sib2(t)->tag == TRule); + sib2(t)->key = t->key; +} + + +/* +** Transform left associative constructions into right +** associative ones, for sequence and choice; that is: +** (t11 + t12) + t2 => t11 + (t12 + t2) +** (t11 * t12) * t2 => t11 * (t12 * t2) +** (that is, Op (Op t11 t12) t2 => Op t11 (Op t12 t2)) +*/ +static void correctassociativity (TTree *tree) { + TTree *t1 = sib1(tree); + assert(tree->tag == TChoice || tree->tag == TSeq); + while (t1->tag == tree->tag) { + int n1size = tree->u.ps - 1; /* t1 == Op t11 t12 */ + int n11size = t1->u.ps - 1; + int n12size = n1size - n11size - 1; + memmove(sib1(tree), sib1(t1), n11size * sizeof(TTree)); /* move t11 */ + tree->u.ps = n11size + 1; + sib2(tree)->tag = tree->tag; + sib2(tree)->u.ps = n12size + 1; + } +} + + +/* +** Make final adjustments in a tree. Fix open calls in tree 't', +** making them refer to their respective rules or raising appropriate +** errors (if not inside a grammar). Correct associativity of associative +** constructions (making them right associative). Assume that tree's +** ktable is at the top of the stack (for error messages). +*/ +static void finalfix (lua_State *L, int postable, TTree *g, TTree *t) { + tailcall: + switch (t->tag) { + case TGrammar: /* subgrammars were already fixed */ + return; + case TOpenCall: { + if (g != NULL) /* inside a grammar? */ + fixonecall(L, postable, g, t); + else { /* open call outside grammar */ + lua_rawgeti(L, -1, t->key); + luaL_error(L, "rule '%s' used outside a grammar", val2str(L, -1)); + } + break; + } + case TSeq: case TChoice: + correctassociativity(t); + break; + } + switch (numsiblings[t->tag]) { + case 1: /* finalfix(L, postable, g, sib1(t)); */ + t = sib1(t); goto tailcall; + case 2: + finalfix(L, postable, g, sib1(t)); + t = sib2(t); goto tailcall; /* finalfix(L, postable, g, sib2(t)); */ + default: assert(numsiblings[t->tag] == 0); break; + } +} + + + +/* +** {=================================================================== +** KTable manipulation +** +** - The ktable of a pattern 'p' can be shared by other patterns that +** contain 'p' and no other constants. Because of this sharing, we +** should not add elements to a 'ktable' unless it was freshly created +** for the new pattern. +** +** - The maximum index in a ktable is USHRT_MAX, because trees and +** patterns use unsigned shorts to store those indices. +** ==================================================================== +*/ + +/* +** Create a new 'ktable' to the pattern at the top of the stack. +*/ +static void newktable (lua_State *L, int n) { + lua_createtable(L, n, 0); /* create a fresh table */ + lua_setuservalue(L, -2); /* set it as 'ktable' for pattern */ +} + + +/* +** Add element 'idx' to 'ktable' of pattern at the top of the stack; +** Return index of new element. +** If new element is nil, does not add it to table (as it would be +** useless) and returns 0, as ktable[0] is always nil. +*/ +static int addtoktable (lua_State *L, int idx) { + if (lua_isnil(L, idx)) /* nil value? */ + return 0; + else { + int n; + lua_getuservalue(L, -1); /* get ktable from pattern */ + n = lua_rawlen(L, -1); + if (n >= USHRT_MAX) + luaL_error(L, "too many Lua values in pattern"); + lua_pushvalue(L, idx); /* element to be added */ + lua_rawseti(L, -2, ++n); + lua_pop(L, 1); /* remove 'ktable' */ + return n; + } +} + + +/* +** Return the number of elements in the ktable at 'idx'. +** In Lua 5.2/5.3, default "environment" for patterns is nil, not +** a table. Treat it as an empty table. In Lua 5.1, assumes that +** the environment has no numeric indices (len == 0) +*/ +static int ktablelen (lua_State *L, int idx) { + if (!lua_istable(L, idx)) return 0; + else return lua_rawlen(L, idx); +} + + +/* +** Concatenate the contents of table 'idx1' into table 'idx2'. +** (Assume that both indices are negative.) +** Return the original length of table 'idx2' (or 0, if no +** element was added, as there is no need to correct any index). +*/ +static int concattable (lua_State *L, int idx1, int idx2) { + int i; + int n1 = ktablelen(L, idx1); + int n2 = ktablelen(L, idx2); + if (n1 + n2 > USHRT_MAX) + luaL_error(L, "too many Lua values in pattern"); + if (n1 == 0) return 0; /* nothing to correct */ + for (i = 1; i <= n1; i++) { + lua_rawgeti(L, idx1, i); + lua_rawseti(L, idx2 - 1, n2 + i); /* correct 'idx2' */ + } + return n2; +} + + +/* +** When joining 'ktables', constants from one of the subpatterns must +** be renumbered; 'correctkeys' corrects their indices (adding 'n' +** to each of them) +*/ +static void correctkeys (TTree *tree, int n) { + if (n == 0) return; /* no correction? */ + tailcall: + switch (tree->tag) { + case TOpenCall: case TCall: case TRunTime: case TRule: { + if (tree->key > 0) + tree->key += n; + break; + } + case TCapture: { + if (tree->key > 0 && tree->cap != Carg && tree->cap != Cnum) + tree->key += n; + break; + } + default: break; + } + switch (numsiblings[tree->tag]) { + case 1: /* correctkeys(sib1(tree), n); */ + tree = sib1(tree); goto tailcall; + case 2: + correctkeys(sib1(tree), n); + tree = sib2(tree); goto tailcall; /* correctkeys(sib2(tree), n); */ + default: assert(numsiblings[tree->tag] == 0); break; + } +} + + +/* +** Join the ktables from p1 and p2 the ktable for the new pattern at the +** top of the stack, reusing them when possible. +*/ +static void joinktables (lua_State *L, int p1, TTree *t2, int p2) { + int n1, n2; + lua_getuservalue(L, p1); /* get ktables */ + lua_getuservalue(L, p2); + n1 = ktablelen(L, -2); + n2 = ktablelen(L, -1); + if (n1 == 0 && n2 == 0) /* are both tables empty? */ + lua_pop(L, 2); /* nothing to be done; pop tables */ + else if (n2 == 0 || lp_equal(L, -2, -1)) { /* 2nd table empty or equal? */ + lua_pop(L, 1); /* pop 2nd table */ + lua_setuservalue(L, -2); /* set 1st ktable into new pattern */ + } + else if (n1 == 0) { /* first table is empty? */ + lua_setuservalue(L, -3); /* set 2nd table into new pattern */ + lua_pop(L, 1); /* pop 1st table */ + } + else { + lua_createtable(L, n1 + n2, 0); /* create ktable for new pattern */ + /* stack: new p; ktable p1; ktable p2; new ktable */ + concattable(L, -3, -1); /* from p1 into new ktable */ + concattable(L, -2, -1); /* from p2 into new ktable */ + lua_setuservalue(L, -4); /* new ktable becomes 'p' environment */ + lua_pop(L, 2); /* pop other ktables */ + correctkeys(t2, n1); /* correction for indices from p2 */ + } +} + + +/* +** copy 'ktable' of element 'idx' to new tree (on top of stack) +*/ +static void copyktable (lua_State *L, int idx) { + lua_getuservalue(L, idx); + lua_setuservalue(L, -2); +} + + +/* +** merge 'ktable' from 'stree' at stack index 'idx' into 'ktable' +** from tree at the top of the stack, and correct corresponding +** tree. +*/ +static void mergektable (lua_State *L, int idx, TTree *stree) { + int n; + lua_getuservalue(L, -1); /* get ktables */ + lua_getuservalue(L, idx); + n = concattable(L, -1, -2); + lua_pop(L, 2); /* remove both ktables */ + correctkeys(stree, n); +} + + +/* +** Create a new 'ktable' to the pattern at the top of the stack, adding +** all elements from pattern 'p' (if not 0) plus element 'idx' to it. +** Return index of new element. +*/ +static int addtonewktable (lua_State *L, int p, int idx) { + newktable(L, 1); + if (p) + mergektable(L, p, NULL); + return addtoktable(L, idx); +} + +/* }====================================================== */ + + +/* +** {====================================================== +** Tree generation +** ======================================================= +*/ + +/* +** In 5.2, could use 'luaL_testudata'... +*/ +static int testpattern (lua_State *L, int idx) { + if (lua_touserdata(L, idx)) { /* value is a userdata? */ + if (lua_getmetatable(L, idx)) { /* does it have a metatable? */ + luaL_getmetatable(L, PATTERN_T); + if (lua_rawequal(L, -1, -2)) { /* does it have the correct mt? */ + lua_pop(L, 2); /* remove both metatables */ + return 1; + } + } + } + return 0; +} + + +static Pattern *getpattern (lua_State *L, int idx) { + return (Pattern *)luaL_checkudata(L, idx, PATTERN_T); +} + + +static int getsize (lua_State *L, int idx) { + return (lua_rawlen(L, idx) - sizeof(Pattern)) / sizeof(TTree) + 1; +} + + +static TTree *gettree (lua_State *L, int idx, int *len) { + Pattern *p = getpattern(L, idx); + if (len) + *len = getsize(L, idx); + return p->tree; +} + + +/* +** create a pattern. Set its uservalue (the 'ktable') equal to its +** metatable. (It could be any empty sequence; the metatable is at +** hand here, so we use it.) +*/ +static TTree *newtree (lua_State *L, int len) { + size_t size = (len - 1) * sizeof(TTree) + sizeof(Pattern); + Pattern *p = (Pattern *)lua_newuserdata(L, size); + memset(p, 0, size); + luaL_getmetatable(L, PATTERN_T); + lua_pushvalue(L, -1); + lua_setuservalue(L, -3); + lua_setmetatable(L, -2); + p->code = NULL; p->codesize = 0; + return p->tree; +} + + +static TTree *newleaf (lua_State *L, int tag) { + TTree *tree = newtree(L, 1); + tree->tag = tag; + return tree; +} + + +static TTree *newcharset (lua_State *L) { + TTree *tree = newtree(L, bytes2slots(CHARSETSIZE) + 1); + tree->tag = TSet; + loopset(i, treebuffer(tree)[i] = 0); + return tree; +} + + +/* +** add to tree a sequence where first sibling is 'sib' (with size +** 'sibsize'); returns position for second sibling +*/ +static TTree *seqaux (TTree *tree, TTree *sib, int sibsize) { + tree->tag = TSeq; tree->u.ps = sibsize + 1; + memcpy(sib1(tree), sib, sibsize * sizeof(TTree)); + return sib2(tree); +} + + +/* +** Build a sequence of 'n' nodes, each with tag 'tag' and 'u.n' got +** from the array 's' (or 0 if array is NULL). (TSeq is binary, so it +** must build a sequence of sequence of sequence...) +*/ +static void fillseq (TTree *tree, int tag, int n, const char *s) { + int i; + for (i = 0; i < n - 1; i++) { /* initial n-1 copies of Seq tag; Seq ... */ + tree->tag = TSeq; tree->u.ps = 2; + sib1(tree)->tag = tag; + sib1(tree)->u.n = s ? (byte)s[i] : 0; + tree = sib2(tree); + } + tree->tag = tag; /* last one does not need TSeq */ + tree->u.n = s ? (byte)s[i] : 0; +} + + +/* +** Numbers as patterns: +** 0 == true (always match); n == TAny repeated 'n' times; +** -n == not (TAny repeated 'n' times) +*/ +static TTree *numtree (lua_State *L, int n) { + if (n == 0) + return newleaf(L, TTrue); + else { + TTree *tree, *nd; + if (n > 0) + tree = nd = newtree(L, 2 * n - 1); + else { /* negative: code it as !(-n) */ + n = -n; + tree = newtree(L, 2 * n); + tree->tag = TNot; + nd = sib1(tree); + } + fillseq(nd, TAny, n, NULL); /* sequence of 'n' any's */ + return tree; + } +} + + +/* +** Convert value at index 'idx' to a pattern +*/ +static TTree *getpatt (lua_State *L, int idx, int *len) { + TTree *tree; + switch (lua_type(L, idx)) { + case LUA_TSTRING: { + size_t slen; + const char *s = lua_tolstring(L, idx, &slen); /* get string */ + if (slen == 0) /* empty? */ + tree = newleaf(L, TTrue); /* always match */ + else { + tree = newtree(L, 2 * (slen - 1) + 1); + fillseq(tree, TChar, slen, s); /* sequence of 'slen' chars */ + } + break; + } + case LUA_TNUMBER: { + int n = lua_tointeger(L, idx); + tree = numtree(L, n); + break; + } + case LUA_TBOOLEAN: { + tree = (lua_toboolean(L, idx) ? newleaf(L, TTrue) : newleaf(L, TFalse)); + break; + } + case LUA_TTABLE: { + tree = newgrammar(L, idx); + break; + } + case LUA_TFUNCTION: { + tree = newtree(L, 2); + tree->tag = TRunTime; + tree->key = addtonewktable(L, 0, idx); + sib1(tree)->tag = TTrue; + break; + } + default: { + return gettree(L, idx, len); + } + } + lua_replace(L, idx); /* put new tree into 'idx' slot */ + if (len) + *len = getsize(L, idx); + return tree; +} + + +/* +** create a new tree, with a new root and one sibling. +** Sibling must be on the Lua stack, at index 1. +*/ +static TTree *newroot1sib (lua_State *L, int tag) { + int s1; + TTree *tree1 = getpatt(L, 1, &s1); + TTree *tree = newtree(L, 1 + s1); /* create new tree */ + tree->tag = tag; + memcpy(sib1(tree), tree1, s1 * sizeof(TTree)); + copyktable(L, 1); + return tree; +} + + +/* +** create a new tree, with a new root and 2 siblings. +** Siblings must be on the Lua stack, first one at index 1. +*/ +static TTree *newroot2sib (lua_State *L, int tag) { + int s1, s2; + TTree *tree1 = getpatt(L, 1, &s1); + TTree *tree2 = getpatt(L, 2, &s2); + TTree *tree = newtree(L, 1 + s1 + s2); /* create new tree */ + tree->tag = tag; + tree->u.ps = 1 + s1; + memcpy(sib1(tree), tree1, s1 * sizeof(TTree)); + memcpy(sib2(tree), tree2, s2 * sizeof(TTree)); + joinktables(L, 1, sib2(tree), 2); + return tree; +} + + +static int lp_P (lua_State *L) { + luaL_checkany(L, 1); + getpatt(L, 1, NULL); + lua_settop(L, 1); + return 1; +} + + +/* +** sequence operator; optimizations: +** false x => false, x true => x, true x => x +** (cannot do x . false => false because x may have runtime captures) +*/ +static int lp_seq (lua_State *L) { + TTree *tree1 = getpatt(L, 1, NULL); + TTree *tree2 = getpatt(L, 2, NULL); + if (tree1->tag == TFalse || tree2->tag == TTrue) + lua_pushvalue(L, 1); /* false . x == false, x . true = x */ + else if (tree1->tag == TTrue) + lua_pushvalue(L, 2); /* true . x = x */ + else + newroot2sib(L, TSeq); + return 1; +} + + +/* +** choice operator; optimizations: +** charset / charset => charset +** true / x => true, x / false => x, false / x => x +** (x / true is not equivalent to true) +*/ +static int lp_choice (lua_State *L) { + Charset st1, st2; + TTree *t1 = getpatt(L, 1, NULL); + TTree *t2 = getpatt(L, 2, NULL); + if (tocharset(t1, &st1) && tocharset(t2, &st2)) { + TTree *t = newcharset(L); + loopset(i, treebuffer(t)[i] = st1.cs[i] | st2.cs[i]); + } + else if (nofail(t1) || t2->tag == TFalse) + lua_pushvalue(L, 1); /* true / x => true, x / false => x */ + else if (t1->tag == TFalse) + lua_pushvalue(L, 2); /* false / x => x */ + else + newroot2sib(L, TChoice); + return 1; +} + + +/* +** p^n +*/ +static int lp_star (lua_State *L) { + int size1; + int n = (int)luaL_checkinteger(L, 2); + TTree *tree1 = getpatt(L, 1, &size1); + if (n >= 0) { /* seq tree1 (seq tree1 ... (seq tree1 (rep tree1))) */ + TTree *tree = newtree(L, (n + 1) * (size1 + 1)); + if (nullable(tree1)) + luaL_error(L, "loop body may accept empty string"); + while (n--) /* repeat 'n' times */ + tree = seqaux(tree, tree1, size1); + tree->tag = TRep; + memcpy(sib1(tree), tree1, size1 * sizeof(TTree)); + } + else { /* choice (seq tree1 ... choice tree1 true ...) true */ + TTree *tree; + n = -n; + /* size = (choice + seq + tree1 + true) * n, but the last has no seq */ + tree = newtree(L, n * (size1 + 3) - 1); + for (; n > 1; n--) { /* repeat (n - 1) times */ + tree->tag = TChoice; tree->u.ps = n * (size1 + 3) - 2; + sib2(tree)->tag = TTrue; + tree = sib1(tree); + tree = seqaux(tree, tree1, size1); + } + tree->tag = TChoice; tree->u.ps = size1 + 1; + sib2(tree)->tag = TTrue; + memcpy(sib1(tree), tree1, size1 * sizeof(TTree)); + } + copyktable(L, 1); + return 1; +} + + +/* +** #p == &p +*/ +static int lp_and (lua_State *L) { + newroot1sib(L, TAnd); + return 1; +} + + +/* +** -p == !p +*/ +static int lp_not (lua_State *L) { + newroot1sib(L, TNot); + return 1; +} + + +/* +** [t1 - t2] == Seq (Not t2) t1 +** If t1 and t2 are charsets, make their difference. +*/ +static int lp_sub (lua_State *L) { + Charset st1, st2; + int s1, s2; + TTree *t1 = getpatt(L, 1, &s1); + TTree *t2 = getpatt(L, 2, &s2); + if (tocharset(t1, &st1) && tocharset(t2, &st2)) { + TTree *t = newcharset(L); + loopset(i, treebuffer(t)[i] = st1.cs[i] & ~st2.cs[i]); + } + else { + TTree *tree = newtree(L, 2 + s1 + s2); + tree->tag = TSeq; /* sequence of... */ + tree->u.ps = 2 + s2; + sib1(tree)->tag = TNot; /* ...not... */ + memcpy(sib1(sib1(tree)), t2, s2 * sizeof(TTree)); /* ...t2 */ + memcpy(sib2(tree), t1, s1 * sizeof(TTree)); /* ... and t1 */ + joinktables(L, 1, sib1(tree), 2); + } + return 1; +} + + +static int lp_set (lua_State *L) { + size_t l; + const char *s = luaL_checklstring(L, 1, &l); + TTree *tree = newcharset(L); + while (l--) { + setchar(treebuffer(tree), (byte)(*s)); + s++; + } + return 1; +} + + +static int lp_range (lua_State *L) { + int arg; + int top = lua_gettop(L); + TTree *tree = newcharset(L); + for (arg = 1; arg <= top; arg++) { + int c; + size_t l; + const char *r = luaL_checklstring(L, arg, &l); + luaL_argcheck(L, l == 2, arg, "range must have two characters"); + for (c = (byte)r[0]; c <= (byte)r[1]; c++) + setchar(treebuffer(tree), c); + } + return 1; +} + + +/* +** Look-behind predicate +*/ +static int lp_behind (lua_State *L) { + TTree *tree; + TTree *tree1 = getpatt(L, 1, NULL); + int n = fixedlen(tree1); + luaL_argcheck(L, n >= 0, 1, "pattern may not have fixed length"); + luaL_argcheck(L, !hascaptures(tree1), 1, "pattern have captures"); + luaL_argcheck(L, n <= MAXBEHIND, 1, "pattern too long to look behind"); + tree = newroot1sib(L, TBehind); + tree->u.n = n; + return 1; +} + + +/* +** Create a non-terminal +*/ +static int lp_V (lua_State *L) { + TTree *tree = newleaf(L, TOpenCall); + luaL_argcheck(L, !lua_isnoneornil(L, 1), 1, "non-nil value expected"); + tree->key = addtonewktable(L, 0, 1); + return 1; +} + + +/* +** Create a tree for a non-empty capture, with a body and +** optionally with an associated Lua value (at index 'labelidx' in the +** stack) +*/ +static int capture_aux (lua_State *L, int cap, int labelidx) { + TTree *tree = newroot1sib(L, TCapture); + tree->cap = cap; + tree->key = (labelidx == 0) ? 0 : addtonewktable(L, 1, labelidx); + return 1; +} + + +/* +** Fill a tree with an empty capture, using an empty (TTrue) sibling. +*/ +static TTree *auxemptycap (TTree *tree, int cap) { + tree->tag = TCapture; + tree->cap = cap; + sib1(tree)->tag = TTrue; + return tree; +} + + +/* +** Create a tree for an empty capture +*/ +static TTree *newemptycap (lua_State *L, int cap) { + return auxemptycap(newtree(L, 2), cap); +} + + +/* +** Create a tree for an empty capture with an associated Lua value +*/ +static TTree *newemptycapkey (lua_State *L, int cap, int idx) { + TTree *tree = auxemptycap(newtree(L, 2), cap); + tree->key = addtonewktable(L, 0, idx); + return tree; +} + + +/* +** Captures with syntax p / v +** (function capture, query capture, string capture, or number capture) +*/ +static int lp_divcapture (lua_State *L) { + switch (lua_type(L, 2)) { + case LUA_TFUNCTION: return capture_aux(L, Cfunction, 2); + case LUA_TTABLE: return capture_aux(L, Cquery, 2); + case LUA_TSTRING: return capture_aux(L, Cstring, 2); + case LUA_TNUMBER: { + int n = lua_tointeger(L, 2); + TTree *tree = newroot1sib(L, TCapture); + luaL_argcheck(L, 0 <= n && n <= SHRT_MAX, 1, "invalid number"); + tree->cap = Cnum; + tree->key = n; + return 1; + } + default: return luaL_argerror(L, 2, "invalid replacement value"); + } +} + + +static int lp_substcapture (lua_State *L) { + return capture_aux(L, Csubst, 0); +} + + +static int lp_tablecapture (lua_State *L) { + return capture_aux(L, Ctable, 0); +} + + +static int lp_groupcapture (lua_State *L) { + if (lua_isnoneornil(L, 2)) + return capture_aux(L, Cgroup, 0); + else + return capture_aux(L, Cgroup, 2); +} + + +static int lp_foldcapture (lua_State *L) { + luaL_checktype(L, 2, LUA_TFUNCTION); + return capture_aux(L, Cfold, 2); +} + + +static int lp_simplecapture (lua_State *L) { + return capture_aux(L, Csimple, 0); +} + + +static int lp_poscapture (lua_State *L) { + newemptycap(L, Cposition); + return 1; +} + + +static int lp_argcapture (lua_State *L) { + int n = (int)luaL_checkinteger(L, 1); + TTree *tree = newemptycap(L, Carg); + tree->key = n; + luaL_argcheck(L, 0 < n && n <= SHRT_MAX, 1, "invalid argument index"); + return 1; +} + + +static int lp_backref (lua_State *L) { + luaL_checkany(L, 1); + newemptycapkey(L, Cbackref, 1); + return 1; +} + + +/* +** Constant capture +*/ +static int lp_constcapture (lua_State *L) { + int i; + int n = lua_gettop(L); /* number of values */ + if (n == 0) /* no values? */ + newleaf(L, TTrue); /* no capture */ + else if (n == 1) + newemptycapkey(L, Cconst, 1); /* single constant capture */ + else { /* create a group capture with all values */ + TTree *tree = newtree(L, 1 + 3 * (n - 1) + 2); + newktable(L, n); /* create a 'ktable' for new tree */ + tree->tag = TCapture; + tree->cap = Cgroup; + tree->key = 0; + tree = sib1(tree); + for (i = 1; i <= n - 1; i++) { + tree->tag = TSeq; + tree->u.ps = 3; /* skip TCapture and its sibling */ + auxemptycap(sib1(tree), Cconst); + sib1(tree)->key = addtoktable(L, i); + tree = sib2(tree); + } + auxemptycap(tree, Cconst); + tree->key = addtoktable(L, i); + } + return 1; +} + + +static int lp_matchtime (lua_State *L) { + TTree *tree; + luaL_checktype(L, 2, LUA_TFUNCTION); + tree = newroot1sib(L, TRunTime); + tree->key = addtonewktable(L, 1, 2); + return 1; +} + +/* }====================================================== */ + + +/* +** {====================================================== +** Grammar - Tree generation +** ======================================================= +*/ + +/* +** push on the stack the index and the pattern for the +** initial rule of grammar at index 'arg' in the stack; +** also add that index into position table. +*/ +static void getfirstrule (lua_State *L, int arg, int postab) { + lua_rawgeti(L, arg, 1); /* access first element */ + if (lua_isstring(L, -1)) { /* is it the name of initial rule? */ + lua_pushvalue(L, -1); /* duplicate it to use as key */ + lua_gettable(L, arg); /* get associated rule */ + } + else { + lua_pushinteger(L, 1); /* key for initial rule */ + lua_insert(L, -2); /* put it before rule */ + } + if (!testpattern(L, -1)) { /* initial rule not a pattern? */ + if (lua_isnil(L, -1)) + luaL_error(L, "grammar has no initial rule"); + else + luaL_error(L, "initial rule '%s' is not a pattern", lua_tostring(L, -2)); + } + lua_pushvalue(L, -2); /* push key */ + lua_pushinteger(L, 1); /* push rule position (after TGrammar) */ + lua_settable(L, postab); /* insert pair at position table */ +} + +/* +** traverse grammar at index 'arg', pushing all its keys and patterns +** into the stack. Create a new table (before all pairs key-pattern) to +** collect all keys and their associated positions in the final tree +** (the "position table"). +** Return the number of rules and (in 'totalsize') the total size +** for the new tree. +*/ +static int collectrules (lua_State *L, int arg, int *totalsize) { + int n = 1; /* to count number of rules */ + int postab = lua_gettop(L) + 1; /* index of position table */ + int size; /* accumulator for total size */ + lua_newtable(L); /* create position table */ + getfirstrule(L, arg, postab); + size = 2 + getsize(L, postab + 2); /* TGrammar + TRule + rule */ + lua_pushnil(L); /* prepare to traverse grammar table */ + while (lua_next(L, arg) != 0) { + if (lua_tonumber(L, -2) == 1 || + lp_equal(L, -2, postab + 1)) { /* initial rule? */ + lua_pop(L, 1); /* remove value (keep key for lua_next) */ + continue; + } + if (!testpattern(L, -1)) /* value is not a pattern? */ + luaL_error(L, "rule '%s' is not a pattern", val2str(L, -2)); + luaL_checkstack(L, LUA_MINSTACK, "grammar has too many rules"); + lua_pushvalue(L, -2); /* push key (to insert into position table) */ + lua_pushinteger(L, size); + lua_settable(L, postab); + size += 1 + getsize(L, -1); /* update size */ + lua_pushvalue(L, -2); /* push key (for next lua_next) */ + n++; + } + *totalsize = size + 1; /* TTrue to finish list of rules */ + return n; +} + + +static void buildgrammar (lua_State *L, TTree *grammar, int frule, int n) { + int i; + TTree *nd = sib1(grammar); /* auxiliary pointer to traverse the tree */ + for (i = 0; i < n; i++) { /* add each rule into new tree */ + int ridx = frule + 2*i + 1; /* index of i-th rule */ + int rulesize; + TTree *rn = gettree(L, ridx, &rulesize); + nd->tag = TRule; + nd->key = 0; + nd->cap = i; /* rule number */ + nd->u.ps = rulesize + 1; /* point to next rule */ + memcpy(sib1(nd), rn, rulesize * sizeof(TTree)); /* copy rule */ + mergektable(L, ridx, sib1(nd)); /* merge its ktable into new one */ + nd = sib2(nd); /* move to next rule */ + } + nd->tag = TTrue; /* finish list of rules */ +} + + +/* +** Check whether a tree has potential infinite loops +*/ +static int checkloops (TTree *tree) { + tailcall: + if (tree->tag == TRep && nullable(sib1(tree))) + return 1; + else if (tree->tag == TGrammar) + return 0; /* sub-grammars already checked */ + else { + switch (numsiblings[tree->tag]) { + case 1: /* return checkloops(sib1(tree)); */ + tree = sib1(tree); goto tailcall; + case 2: + if (checkloops(sib1(tree))) return 1; + /* else return checkloops(sib2(tree)); */ + tree = sib2(tree); goto tailcall; + default: assert(numsiblings[tree->tag] == 0); return 0; + } + } +} + + +static int verifyerror (lua_State *L, int *passed, int npassed) { + int i, j; + for (i = npassed - 1; i >= 0; i--) { /* search for a repetition */ + for (j = i - 1; j >= 0; j--) { + if (passed[i] == passed[j]) { + lua_rawgeti(L, -1, passed[i]); /* get rule's key */ + return luaL_error(L, "rule '%s' may be left recursive", val2str(L, -1)); + } + } + } + return luaL_error(L, "too many left calls in grammar"); +} + + +/* +** Check whether a rule can be left recursive; raise an error in that +** case; otherwise return 1 iff pattern is nullable. +** The return value is used to check sequences, where the second pattern +** is only relevant if the first is nullable. +** Parameter 'nb' works as an accumulator, to allow tail calls in +** choices. ('nb' true makes function returns true.) +** Assume ktable at the top of the stack. +*/ +static int verifyrule (lua_State *L, TTree *tree, int *passed, int npassed, + int nb) { + tailcall: + switch (tree->tag) { + case TChar: case TSet: case TAny: + case TFalse: + return nb; /* cannot pass from here */ + case TTrue: + case TBehind: /* look-behind cannot have calls */ + return 1; + case TNot: case TAnd: case TRep: + /* return verifyrule(L, sib1(tree), passed, npassed, 1); */ + tree = sib1(tree); nb = 1; goto tailcall; + case TCapture: case TRunTime: + /* return verifyrule(L, sib1(tree), passed, npassed, nb); */ + tree = sib1(tree); goto tailcall; + case TCall: + /* return verifyrule(L, sib2(tree), passed, npassed, nb); */ + tree = sib2(tree); goto tailcall; + case TSeq: /* only check 2nd child if first is nb */ + if (!verifyrule(L, sib1(tree), passed, npassed, 0)) + return nb; + /* else return verifyrule(L, sib2(tree), passed, npassed, nb); */ + tree = sib2(tree); goto tailcall; + case TChoice: /* must check both children */ + nb = verifyrule(L, sib1(tree), passed, npassed, nb); + /* return verifyrule(L, sib2(tree), passed, npassed, nb); */ + tree = sib2(tree); goto tailcall; + case TRule: + if (npassed >= MAXRULES) + return verifyerror(L, passed, npassed); + else { + passed[npassed++] = tree->key; + /* return verifyrule(L, sib1(tree), passed, npassed); */ + tree = sib1(tree); goto tailcall; + } + case TGrammar: + return nullable(tree); /* sub-grammar cannot be left recursive */ + default: assert(0); return 0; + } +} + + +static void verifygrammar (lua_State *L, TTree *grammar) { + int passed[MAXRULES]; + TTree *rule; + /* check left-recursive rules */ + for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) { + if (rule->key == 0) continue; /* unused rule */ + verifyrule(L, sib1(rule), passed, 0, 0); + } + assert(rule->tag == TTrue); + /* check infinite loops inside rules */ + for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) { + if (rule->key == 0) continue; /* unused rule */ + if (checkloops(sib1(rule))) { + lua_rawgeti(L, -1, rule->key); /* get rule's key */ + luaL_error(L, "empty loop in rule '%s'", val2str(L, -1)); + } + } + assert(rule->tag == TTrue); +} + + +/* +** Give a name for the initial rule if it is not referenced +*/ +static void initialrulename (lua_State *L, TTree *grammar, int frule) { + if (sib1(grammar)->key == 0) { /* initial rule is not referenced? */ + int n = lua_rawlen(L, -1) + 1; /* index for name */ + lua_pushvalue(L, frule); /* rule's name */ + lua_rawseti(L, -2, n); /* ktable was on the top of the stack */ + sib1(grammar)->key = n; + } +} + + +static TTree *newgrammar (lua_State *L, int arg) { + int treesize; + int frule = lua_gettop(L) + 2; /* position of first rule's key */ + int n = collectrules(L, arg, &treesize); + TTree *g = newtree(L, treesize); + luaL_argcheck(L, n <= MAXRULES, arg, "grammar has too many rules"); + g->tag = TGrammar; g->u.n = n; + lua_newtable(L); /* create 'ktable' */ + lua_setuservalue(L, -2); + buildgrammar(L, g, frule, n); + lua_getuservalue(L, -1); /* get 'ktable' for new tree */ + finalfix(L, frule - 1, g, sib1(g)); + initialrulename(L, g, frule); + verifygrammar(L, g); + lua_pop(L, 1); /* remove 'ktable' */ + lua_insert(L, -(n * 2 + 2)); /* move new table to proper position */ + lua_pop(L, n * 2 + 1); /* remove position table + rule pairs */ + return g; /* new table at the top of the stack */ +} + +/* }====================================================== */ + + +static Instruction *prepcompile (lua_State *L, Pattern *p, int idx) { + lua_getuservalue(L, idx); /* push 'ktable' (may be used by 'finalfix') */ + finalfix(L, 0, NULL, p->tree); + lua_pop(L, 1); /* remove 'ktable' */ + return compile(L, p); +} + + +static int lp_printtree (lua_State *L) { + TTree *tree = getpatt(L, 1, NULL); + int c = lua_toboolean(L, 2); + if (c) { + lua_getuservalue(L, 1); /* push 'ktable' (may be used by 'finalfix') */ + finalfix(L, 0, NULL, tree); + lua_pop(L, 1); /* remove 'ktable' */ + } + printktable(L, 1); + printtree(tree, 0); + return 0; +} + + +static int lp_printcode (lua_State *L) { + Pattern *p = getpattern(L, 1); + printktable(L, 1); + if (p->code == NULL) /* not compiled yet? */ + prepcompile(L, p, 1); + printpatt(p->code, p->codesize); + return 0; +} + + +/* +** Get the initial position for the match, interpreting negative +** values from the end of the subject +*/ +static size_t initposition (lua_State *L, size_t len) { + lua_Integer ii = luaL_optinteger(L, 3, 1); + if (ii > 0) { /* positive index? */ + if ((size_t)ii <= len) /* inside the string? */ + return (size_t)ii - 1; /* return it (corrected to 0-base) */ + else return len; /* crop at the end */ + } + else { /* negative index */ + if ((size_t)(-ii) <= len) /* inside the string? */ + return len - ((size_t)(-ii)); /* return position from the end */ + else return 0; /* crop at the beginning */ + } +} + + +/* +** Main match function +*/ +static int lp_match (lua_State *L) { + Capture capture[INITCAPSIZE]; + const char *r; + size_t l; + const char *s; + + Pattern *p = (getpatt(L, 1, NULL), getpattern(L, 1)); + Instruction *code = (p->code != NULL) ? p->code : prepcompile(L, p, 1); + + if (lua_type (L, SUBJIDX) == LUA_TSTRING) { + s = luaL_checklstring (L, SUBJIDX, &l); + } + else if (lua_type (L, SUBJIDX) == LUA_TUSERDATA) { + struct rspamd_lua_text *t = lua_check_text (L, SUBJIDX); + if (!t) { + return luaL_error (L, "invalid argument (not a text)"); + } + s = t->start; + l = t->len; + + if (s == NULL) { + lua_pushnil(L); + return 1; + } + } + else { + return luaL_error (L, "invalid argument: %s", + lua_typename (L, lua_type (L, SUBJIDX))); + } + size_t i = initposition(L, l); + int ptop = lua_gettop(L), rs; + lua_pushnil(L); /* initialize subscache */ + lua_pushlightuserdata(L, capture); /* initialize caplistidx */ + lua_getuservalue(L, 1); /* initialize penvidx */ + r = match(L, s, s + i, s + l, code, capture, ptop); + if (r == NULL) { + lua_pushnil(L); + return 1; + } + rs = getcaptures(L, s, r, ptop); + return rs; +} + + + +/* +** {====================================================== +** Library creation and functions not related to matching +** ======================================================= +*/ + +/* maximum limit for stack size */ +#define MAXLIM (INT_MAX / 100) + +static int lp_setmax (lua_State *L) { + lua_Integer lim = luaL_checkinteger(L, 1); + luaL_argcheck(L, 0 < lim && lim <= MAXLIM, 1, "out of range"); + lua_settop(L, 1); + lua_setfield(L, LUA_REGISTRYINDEX, MAXSTACKIDX); + return 0; +} + + +static int lp_version (lua_State *L) { + lua_pushstring(L, VERSION); + return 1; +} + + +static int lp_type (lua_State *L) { + if (testpattern(L, 1)) + lua_pushliteral(L, "pattern"); + else + lua_pushnil(L); + return 1; +} + + +int lp_gc (lua_State *L) { + Pattern *p = getpattern(L, 1); + realloccode(L, p, 0); /* delete code block */ + return 0; +} + + +static void createcat (lua_State *L, const char *catname, int (catf) (int)) { + TTree *t = newcharset(L); + int i; + for (i = 0; i <= UCHAR_MAX; i++) + if (catf(i)) setchar(treebuffer(t), i); + lua_setfield(L, -2, catname); +} + + +static int lp_locale (lua_State *L) { + if (lua_isnoneornil(L, 1)) { + lua_settop(L, 0); + lua_createtable(L, 0, 12); + } + else { + luaL_checktype(L, 1, LUA_TTABLE); + lua_settop(L, 1); + } + createcat(L, "alnum", isalnum); + createcat(L, "alpha", isalpha); + createcat(L, "cntrl", iscntrl); + createcat(L, "digit", isdigit); + createcat(L, "graph", isgraph); + createcat(L, "lower", islower); + createcat(L, "print", isprint); + createcat(L, "punct", ispunct); + createcat(L, "space", isspace); + createcat(L, "upper", isupper); + createcat(L, "xdigit", isxdigit); + return 1; +} + + +static struct luaL_Reg pattreg[] = { + {"ptree", lp_printtree}, + {"pcode", lp_printcode}, + {"match", lp_match}, + {"B", lp_behind}, + {"V", lp_V}, + {"C", lp_simplecapture}, + {"Cc", lp_constcapture}, + {"Cmt", lp_matchtime}, + {"Cb", lp_backref}, + {"Carg", lp_argcapture}, + {"Cp", lp_poscapture}, + {"Cs", lp_substcapture}, + {"Ct", lp_tablecapture}, + {"Cf", lp_foldcapture}, + {"Cg", lp_groupcapture}, + {"P", lp_P}, + {"S", lp_set}, + {"R", lp_range}, + {"locale", lp_locale}, + {"version", lp_version}, + {"setmaxstack", lp_setmax}, + {"type", lp_type}, + {NULL, NULL} +}; + + +static struct luaL_Reg metareg[] = { + {"__mul", lp_seq}, + {"__add", lp_choice}, + {"__pow", lp_star}, + {"__gc", lp_gc}, + {"__len", lp_and}, + {"__div", lp_divcapture}, + {"__unm", lp_not}, + {"__sub", lp_sub}, + {NULL, NULL} +}; + +int luaopen_lpeg (lua_State *L) { + luaL_newmetatable(L, PATTERN_T); + lua_pushnumber(L, MAXBACK); /* initialize maximum backtracking */ + lua_setfield(L, LUA_REGISTRYINDEX, MAXSTACKIDX); + luaL_setfuncs(L, metareg, 0); + luaL_newlib(L, pattreg); + lua_pushvalue(L, -1); + lua_setfield(L, -3, "__index"); + return 1; +} + +/* }====================================================== */ |