summaryrefslogtreecommitdiffstats
path: root/lualib/rspamadm/neural_test.lua
diff options
context:
space:
mode:
Diffstat (limited to 'lualib/rspamadm/neural_test.lua')
-rw-r--r--lualib/rspamadm/neural_test.lua228
1 files changed, 228 insertions, 0 deletions
diff --git a/lualib/rspamadm/neural_test.lua b/lualib/rspamadm/neural_test.lua
new file mode 100644
index 0000000..31d21a9
--- /dev/null
+++ b/lualib/rspamadm/neural_test.lua
@@ -0,0 +1,228 @@
+local rspamd_logger = require "rspamd_logger"
+local argparse = require "argparse"
+local lua_util = require "lua_util"
+local ucl = require "ucl"
+
+local parser = argparse()
+ :name "rspamadm neural_test"
+ :description "Test the neural network with labelled dataset"
+ :help_description_margin(32)
+
+parser:option "-c --config"
+ :description "Path to config file"
+ :argname("<cfg>")
+ :default(rspamd_paths["CONFDIR"] .. "/" .. "rspamd.conf")
+parser:option "-H --hamdir"
+ :description("Ham directory")
+ :argname("<dir>")
+parser:option "-S --spamdir"
+ :description("Spam directory")
+ :argname("<dir>")
+parser:option "-t --timeout"
+ :description("Timeout for client connections")
+ :argname("<sec>")
+ :convert(tonumber)
+ :default(60)
+parser:option "-n --conns"
+ :description("Number of parallel connections")
+ :argname("<N>")
+ :convert(tonumber)
+ :default(10)
+parser:option "-c --connect"
+ :description("Connect to specific host")
+ :argname("<host>")
+ :default('localhost:11334')
+parser:option "-r --rspamc"
+ :description("Use specific rspamc path")
+ :argname("<path>")
+ :default('rspamc')
+parser:option '--rule'
+ :description 'Rule to test'
+ :argname('<rule>')
+
+local HAM = "HAM"
+local SPAM = "SPAM"
+
+local function load_config(opts)
+ local _r, err = rspamd_config:load_ucl(opts['config'])
+
+ if not _r then
+ rspamd_logger.errx('cannot parse %s: %s', opts['config'], err)
+ os.exit(1)
+ end
+
+ _r, err = rspamd_config:parse_rcl({ 'logging', 'worker' })
+ if not _r then
+ rspamd_logger.errx('cannot process %s: %s', opts['config'], err)
+ os.exit(1)
+ end
+end
+
+local function scan_email(rspamc_path, host, n_parallel, path, timeout)
+
+ local rspamc_command = string.format("%s --connect %s -j --compact -n %s -t %.3f %s",
+ rspamc_path, host, n_parallel, timeout, path)
+ local result = assert(io.popen(rspamc_command))
+ result = result:read("*all")
+ return result
+end
+
+local function encoded_json_to_log(result)
+ -- Returns table containing score, action, list of symbols
+
+ local filtered_result = {}
+ local ucl_parser = ucl.parser()
+
+ local is_good, err = ucl_parser:parse_string(result)
+
+ if not is_good then
+ rspamd_logger.errx("Parser error: %1", err)
+ return nil
+ end
+
+ result = ucl_parser:get_object()
+
+ filtered_result.score = result.score
+ if not result.action then
+ rspamd_logger.errx("Bad JSON: %1", result)
+ return nil
+ end
+ local action = result.action:gsub("%s+", "_")
+ filtered_result.action = action
+
+ filtered_result.symbols = {}
+
+ for sym, _ in pairs(result.symbols) do
+ table.insert(filtered_result.symbols, sym)
+ end
+
+ filtered_result.filename = result.filename
+ filtered_result.scan_time = result.scan_time
+
+ return filtered_result
+end
+
+local function filter_scan_results(results, actual_email_type)
+
+ local logs = {}
+
+ results = lua_util.rspamd_str_split(results, "\n")
+
+ if results[#results] == "" then
+ results[#results] = nil
+ end
+
+ for _, result in pairs(results) do
+ result = encoded_json_to_log(result)
+ if result then
+ result['type'] = actual_email_type
+ table.insert(logs, result)
+ end
+ end
+
+ return logs
+end
+
+local function get_stats_from_scan_results(results, rules)
+
+ local rule_stats = {}
+ for rule, _ in pairs(rules) do
+ rule_stats[rule] = { tp = 0, tn = 0, fp = 0, fn = 0 }
+ end
+
+ for _, result in ipairs(results) do
+ for _, symbol in ipairs(result["symbols"]) do
+ for name, rule in pairs(rules) do
+ if rule.symbol_spam and rule.symbol_spam == symbol then
+ if result.type == HAM then
+ rule_stats[name].fp = rule_stats[name].fp + 1
+ elseif result.type == SPAM then
+ rule_stats[name].tp = rule_stats[name].tp + 1
+ end
+ elseif rule.symbol_ham and rule.symbol_ham == symbol then
+ if result.type == HAM then
+ rule_stats[name].tn = rule_stats[name].tn + 1
+ elseif result.type == SPAM then
+ rule_stats[name].fn = rule_stats[name].fn + 1
+ end
+ end
+ end
+ end
+ end
+
+ for rule, _ in pairs(rules) do
+ rule_stats[rule].fpr = rule_stats[rule].fp / (rule_stats[rule].fp + rule_stats[rule].tn)
+ rule_stats[rule].fnr = rule_stats[rule].fn / (rule_stats[rule].fn + rule_stats[rule].tp)
+ end
+
+ return rule_stats
+end
+
+local function print_neural_stats(neural_stats)
+ for rule, stats in pairs(neural_stats) do
+ rspamd_logger.messagex("\nStats for rule: %s", rule)
+ rspamd_logger.messagex("False positive rate: %s%%", stats.fpr * 100)
+ rspamd_logger.messagex("False negative rate: %s%%", stats.fnr * 100)
+ end
+end
+
+local function handler(args)
+ local opts = parser:parse(args)
+
+ local ham_directory = opts['hamdir']
+ local spam_directory = opts['spamdir']
+ local connections = opts["conns"]
+
+ load_config(opts)
+
+ local neural_opts = rspamd_config:get_all_opt('neural')
+
+ if opts["rule"] then
+ local found = false
+ for rule_name, _ in pairs(neural_opts.rules) do
+ if string.lower(rule_name) == string.lower(opts["rule"]) then
+ found = true
+ else
+ neural_opts.rules[rule_name] = nil
+ end
+ end
+
+ if not found then
+ rspamd_logger.errx("Couldn't find the rule %s", opts["rule"])
+ return
+ end
+ end
+
+ local results = {}
+
+ if ham_directory then
+ rspamd_logger.messagex("Scanning ham corpus...")
+ local ham_results = scan_email(opts.rspamc, opts.connect, connections, ham_directory, opts.timeout)
+ ham_results = filter_scan_results(ham_results, HAM)
+
+ for _, result in pairs(ham_results) do
+ table.insert(results, result)
+ end
+ end
+
+ if spam_directory then
+ rspamd_logger.messagex("Scanning spam corpus...")
+ local spam_results = scan_email(opts.rspamc, opts.connect, connections, spam_directory, opts.timeout)
+ spam_results = filter_scan_results(spam_results, SPAM)
+
+ for _, result in pairs(spam_results) do
+ table.insert(results, result)
+ end
+ end
+
+ local neural_stats = get_stats_from_scan_results(results, neural_opts.rules)
+ print_neural_stats(neural_stats)
+
+end
+
+return {
+ name = "neuraltest",
+ aliases = { "neural_test" },
+ handler = handler,
+ description = parser._description
+} \ No newline at end of file