diff options
Diffstat (limited to '')
-rw-r--r-- | src/libstat/classifiers/bayes.c | 551 |
1 files changed, 551 insertions, 0 deletions
diff --git a/src/libstat/classifiers/bayes.c b/src/libstat/classifiers/bayes.c new file mode 100644 index 0000000..513db9a --- /dev/null +++ b/src/libstat/classifiers/bayes.c @@ -0,0 +1,551 @@ +/*- + * Copyright 2016 Vsevolod Stakhov + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +/* + * Bayesian classifier + */ +#include "classifiers.h" +#include "rspamd.h" +#include "stat_internal.h" +#include "math.h" + +#define msg_err_bayes(...) rspamd_default_log_function(G_LOG_LEVEL_CRITICAL, \ + "bayes", task->task_pool->tag.uid, \ + RSPAMD_LOG_FUNC, \ + __VA_ARGS__) +#define msg_warn_bayes(...) rspamd_default_log_function(G_LOG_LEVEL_WARNING, \ + "bayes", task->task_pool->tag.uid, \ + RSPAMD_LOG_FUNC, \ + __VA_ARGS__) +#define msg_info_bayes(...) rspamd_default_log_function(G_LOG_LEVEL_INFO, \ + "bayes", task->task_pool->tag.uid, \ + RSPAMD_LOG_FUNC, \ + __VA_ARGS__) + +INIT_LOG_MODULE_PUBLIC(bayes) + +static inline GQuark +bayes_error_quark(void) +{ + return g_quark_from_static_string("bayes-error"); +} + +/** + * Returns probability of chisquare > value with specified number of freedom + * degrees + * @param value value to test + * @param freedom_deg number of degrees of freedom + * @return + */ +static gdouble +inv_chi_square(struct rspamd_task *task, gdouble value, gint freedom_deg) +{ + double prob, sum, m; + gint i; + + errno = 0; + m = -value; + prob = exp(value); + + if (errno == ERANGE) { + /* + * e^x where x is large *NEGATIVE* number is OK, so we have a very strong + * confidence that inv-chi-square is close to zero + */ + msg_debug_bayes("exp overflow"); + + if (value < 0) { + return 0; + } + else { + return 1.0; + } + } + + sum = prob; + + msg_debug_bayes("m: %f, probability: %g", m, prob); + + /* + * m is our confidence in class + * prob is e ^ x (small value since x is normally less than zero + * So we integrate over degrees of freedom and produce the total result + * from 1.0 (no confidence) to 0.0 (full confidence) + */ + for (i = 1; i < freedom_deg; i++) { + prob *= m / (gdouble) i; + sum += prob; + msg_debug_bayes("i=%d, probability: %g, sum: %g", i, prob, sum); + } + + return MIN(1.0, sum); +} + +struct bayes_task_closure { + double ham_prob; + double spam_prob; + gdouble meta_skip_prob; + guint64 processed_tokens; + guint64 total_hits; + guint64 text_tokens; + struct rspamd_task *task; +}; + +/* + * Mathematically we use pow(complexity, complexity), where complexity is the + * window index + */ +static const double feature_weight[] = {0, 3125, 256, 27, 1, 0, 0, 0}; + +#define PROB_COMBINE(prob, cnt, weight, assumed) (((weight) * (assumed) + (cnt) * (prob)) / ((weight) + (cnt))) +/* + * In this callback we calculate local probabilities for tokens + */ +static void +bayes_classify_token(struct rspamd_classifier *ctx, + rspamd_token_t *tok, struct bayes_task_closure *cl) +{ + guint i; + gint id; + guint spam_count = 0, ham_count = 0, total_count = 0; + struct rspamd_statfile *st; + struct rspamd_task *task; + const gchar *token_type = "txt"; + double spam_prob, spam_freq, ham_freq, bayes_spam_prob, bayes_ham_prob, + ham_prob, fw, w, val; + + task = cl->task; + +#if 0 + if (tok->flags & RSPAMD_STAT_TOKEN_FLAG_LUA_META) { + /* Ignore lua metatokens for now */ + return; + } +#endif + + if (tok->flags & RSPAMD_STAT_TOKEN_FLAG_META && cl->meta_skip_prob > 0) { + val = rspamd_random_double_fast(); + + if (val <= cl->meta_skip_prob) { + if (tok->t1 && tok->t2) { + msg_debug_bayes( + "token(meta) %uL <%*s:%*s> probabilistically skipped", + tok->data, + (int) tok->t1->original.len, tok->t1->original.begin, + (int) tok->t2->original.len, tok->t2->original.begin); + } + + return; + } + } + + for (i = 0; i < ctx->statfiles_ids->len; i++) { + id = g_array_index(ctx->statfiles_ids, gint, i); + st = g_ptr_array_index(ctx->ctx->statfiles, id); + g_assert(st != NULL); + val = tok->values[id]; + + if (val > 0) { + if (st->stcf->is_spam) { + spam_count += val; + } + else { + ham_count += val; + } + + total_count += val; + cl->total_hits += val; + } + } + + /* Probability for this token */ + if (total_count >= ctx->cfg->min_token_hits) { + spam_freq = ((double) spam_count / MAX(1., (double) ctx->spam_learns)); + ham_freq = ((double) ham_count / MAX(1., (double) ctx->ham_learns)); + spam_prob = spam_freq / (spam_freq + ham_freq); + ham_prob = ham_freq / (spam_freq + ham_freq); + + if (tok->flags & RSPAMD_STAT_TOKEN_FLAG_UNIGRAM) { + fw = 1.0; + } + else { + fw = feature_weight[tok->window_idx % + G_N_ELEMENTS(feature_weight)]; + } + + + w = (fw * total_count) / (1.0 + fw * total_count); + + bayes_spam_prob = PROB_COMBINE(spam_prob, total_count, w, 0.5); + + if ((bayes_spam_prob > 0.5 && bayes_spam_prob < 0.5 + ctx->cfg->min_prob_strength) || + (bayes_spam_prob < 0.5 && bayes_spam_prob > 0.5 - ctx->cfg->min_prob_strength)) { + msg_debug_bayes( + "token %uL <%*s:%*s> skipped, probability not in range: %f", + tok->data, + (int) tok->t1->stemmed.len, tok->t1->stemmed.begin, + (int) tok->t2->stemmed.len, tok->t2->stemmed.begin, + bayes_spam_prob); + + return; + } + + bayes_ham_prob = PROB_COMBINE(ham_prob, total_count, w, 0.5); + + cl->spam_prob += log(bayes_spam_prob); + cl->ham_prob += log(bayes_ham_prob); + cl->processed_tokens++; + + if (!(tok->flags & RSPAMD_STAT_TOKEN_FLAG_META)) { + cl->text_tokens++; + } + else { + token_type = "meta"; + } + + if (tok->t1 && tok->t2) { + msg_debug_bayes("token(%s) %uL <%*s:%*s>: weight: %f, cf: %f, " + "total_count: %ud, " + "spam_count: %ud, ham_count: %ud," + "spam_prob: %.3f, ham_prob: %.3f, " + "bayes_spam_prob: %.3f, bayes_ham_prob: %.3f, " + "current spam probability: %.3f, current ham probability: %.3f", + token_type, + tok->data, + (int) tok->t1->stemmed.len, tok->t1->stemmed.begin, + (int) tok->t2->stemmed.len, tok->t2->stemmed.begin, + fw, w, total_count, spam_count, ham_count, + spam_prob, ham_prob, + bayes_spam_prob, bayes_ham_prob, + cl->spam_prob, cl->ham_prob); + } + else { + msg_debug_bayes("token(%s) %uL <?:?>: weight: %f, cf: %f, " + "total_count: %ud, " + "spam_count: %ud, ham_count: %ud," + "spam_prob: %.3f, ham_prob: %.3f, " + "bayes_spam_prob: %.3f, bayes_ham_prob: %.3f, " + "current spam probability: %.3f, current ham probability: %.3f", + token_type, + tok->data, + fw, w, total_count, spam_count, ham_count, + spam_prob, ham_prob, + bayes_spam_prob, bayes_ham_prob, + cl->spam_prob, cl->ham_prob); + } + } +} + + +gboolean +bayes_init(struct rspamd_config *cfg, + struct ev_loop *ev_base, + struct rspamd_classifier *cl) +{ + cl->cfg->flags |= RSPAMD_FLAG_CLASSIFIER_INTEGER; + + return TRUE; +} + +void bayes_fin(struct rspamd_classifier *cl) +{ +} + +gboolean +bayes_classify(struct rspamd_classifier *ctx, + GPtrArray *tokens, + struct rspamd_task *task) +{ + double final_prob, h, s, *pprob; + gchar sumbuf[32]; + struct rspamd_statfile *st = NULL; + struct bayes_task_closure cl; + rspamd_token_t *tok; + guint i, text_tokens = 0; + gint id; + + g_assert(ctx != NULL); + g_assert(tokens != NULL); + + memset(&cl, 0, sizeof(cl)); + cl.task = task; + + /* Check min learns */ + if (ctx->cfg->min_learns > 0) { + if (ctx->ham_learns < ctx->cfg->min_learns) { + msg_info_task("not classified as ham. The ham class needs more " + "training samples. Currently: %ul; minimum %ud required", + ctx->ham_learns, ctx->cfg->min_learns); + + return TRUE; + } + if (ctx->spam_learns < ctx->cfg->min_learns) { + msg_info_task("not classified as spam. The spam class needs more " + "training samples. Currently: %ul; minimum %ud required", + ctx->spam_learns, ctx->cfg->min_learns); + + return TRUE; + } + } + + for (i = 0; i < tokens->len; i++) { + tok = g_ptr_array_index(tokens, i); + if (!(tok->flags & RSPAMD_STAT_TOKEN_FLAG_META)) { + text_tokens++; + } + } + + if (text_tokens == 0) { + msg_info_task("skipped classification as there are no text tokens. " + "Total tokens: %ud", + tokens->len); + + return TRUE; + } + + /* + * Skip some metatokens if we don't have enough text tokens + */ + if (text_tokens > tokens->len - text_tokens) { + cl.meta_skip_prob = 0.0; + } + else { + cl.meta_skip_prob = 1.0 - text_tokens / tokens->len; + } + + for (i = 0; i < tokens->len; i++) { + tok = g_ptr_array_index(tokens, i); + + bayes_classify_token(ctx, tok, &cl); + } + + if (cl.processed_tokens == 0) { + msg_info_bayes("no tokens found in bayes database " + "(%ud total tokens, %ud text tokens), ignore stats", + tokens->len, text_tokens); + + return TRUE; + } + + if (ctx->cfg->min_tokens > 0 && + cl.text_tokens < (gint) (ctx->cfg->min_tokens * 0.1)) { + msg_info_bayes("ignore bayes probability since we have " + "found too few text tokens: %uL (of %ud checked), " + "at least %d required", + cl.text_tokens, + text_tokens, + (gint) (ctx->cfg->min_tokens * 0.1)); + + return TRUE; + } + + if (cl.spam_prob > -300 && cl.ham_prob > -300) { + /* Fisher value is low enough to apply inv_chi_square */ + h = 1 - inv_chi_square(task, cl.spam_prob, cl.processed_tokens); + s = 1 - inv_chi_square(task, cl.ham_prob, cl.processed_tokens); + } + else { + /* Use naive method */ + if (cl.spam_prob < cl.ham_prob) { + h = (1.0 - exp(cl.spam_prob - cl.ham_prob)) / + (1.0 + exp(cl.spam_prob - cl.ham_prob)); + s = 1.0 - h; + } + else { + s = (1.0 - exp(cl.ham_prob - cl.spam_prob)) / + (1.0 + exp(cl.ham_prob - cl.spam_prob)); + h = 1.0 - s; + } + } + + if (isfinite(s) && isfinite(h)) { + final_prob = (s + 1.0 - h) / 2.; + msg_debug_bayes( + "got ham probability %.2f -> %.2f and spam probability %.2f -> %.2f," + " %L tokens processed of %ud total tokens;" + " %uL text tokens found of %ud text tokens)", + cl.ham_prob, + h, + cl.spam_prob, + s, + cl.processed_tokens, + tokens->len, + cl.text_tokens, + text_tokens); + } + else { + /* + * We have some overflow, hence we need to check which class + * is NaN + */ + if (isfinite(h)) { + final_prob = 1.0; + msg_debug_bayes("spam class is full: no" + " ham samples"); + } + else if (isfinite(s)) { + final_prob = 0.0; + msg_debug_bayes("ham class is full: no" + " spam samples"); + } + else { + final_prob = 0.5; + msg_warn_bayes("spam and ham classes are both full"); + } + } + + pprob = rspamd_mempool_alloc(task->task_pool, sizeof(*pprob)); + *pprob = final_prob; + rspamd_mempool_set_variable(task->task_pool, "bayes_prob", pprob, NULL); + + if (cl.processed_tokens > 0 && fabs(final_prob - 0.5) > 0.05) { + /* Now we can have exactly one HAM and exactly one SPAM statfiles per classifier */ + for (i = 0; i < ctx->statfiles_ids->len; i++) { + id = g_array_index(ctx->statfiles_ids, gint, i); + st = g_ptr_array_index(ctx->ctx->statfiles, id); + + if (final_prob > 0.5 && st->stcf->is_spam) { + break; + } + else if (final_prob < 0.5 && !st->stcf->is_spam) { + break; + } + } + + /* Correctly scale HAM */ + if (final_prob < 0.5) { + final_prob = 1.0 - final_prob; + } + + /* + * Bayes p is from 0.5 to 1.0, but confidence is from 0 to 1, so + * we need to rescale it to display correctly + */ + rspamd_snprintf(sumbuf, sizeof(sumbuf), "%.2f%%", + (final_prob - 0.5) * 200.); + final_prob = rspamd_normalize_probability(final_prob, 0.5); + g_assert(st != NULL); + + if (final_prob > 1 || final_prob < 0) { + msg_err_bayes("internal error: probability %f is outside of the " + "allowed range [0..1]", + final_prob); + + if (final_prob > 1) { + final_prob = 1.0; + } + else { + final_prob = 0.0; + } + } + + rspamd_task_insert_result(task, + st->stcf->symbol, + final_prob, + sumbuf); + } + + return TRUE; +} + +gboolean +bayes_learn_spam(struct rspamd_classifier *ctx, + GPtrArray *tokens, + struct rspamd_task *task, + gboolean is_spam, + gboolean unlearn, + GError **err) +{ + guint i, j, total_cnt, spam_cnt, ham_cnt; + gint id; + struct rspamd_statfile *st; + rspamd_token_t *tok; + gboolean incrementing; + + g_assert(ctx != NULL); + g_assert(tokens != NULL); + + incrementing = ctx->cfg->flags & RSPAMD_FLAG_CLASSIFIER_INCREMENTING_BACKEND; + + for (i = 0; i < tokens->len; i++) { + total_cnt = 0; + spam_cnt = 0; + ham_cnt = 0; + tok = g_ptr_array_index(tokens, i); + + for (j = 0; j < ctx->statfiles_ids->len; j++) { + id = g_array_index(ctx->statfiles_ids, gint, j); + st = g_ptr_array_index(ctx->ctx->statfiles, id); + g_assert(st != NULL); + + if (!!st->stcf->is_spam == !!is_spam) { + if (incrementing) { + tok->values[id] = 1; + } + else { + tok->values[id]++; + } + + total_cnt += tok->values[id]; + + if (st->stcf->is_spam) { + spam_cnt += tok->values[id]; + } + else { + ham_cnt += tok->values[id]; + } + } + else { + if (tok->values[id] > 0 && unlearn) { + /* Unlearning */ + if (incrementing) { + tok->values[id] = -1; + } + else { + tok->values[id]--; + } + + if (st->stcf->is_spam) { + spam_cnt += tok->values[id]; + } + else { + ham_cnt += tok->values[id]; + } + total_cnt += tok->values[id]; + } + else if (incrementing) { + tok->values[id] = 0; + } + } + } + + if (tok->t1 && tok->t2) { + msg_debug_bayes("token %uL <%*s:%*s>: window: %d, total_count: %d, " + "spam_count: %d, ham_count: %d", + tok->data, + (int) tok->t1->stemmed.len, tok->t1->stemmed.begin, + (int) tok->t2->stemmed.len, tok->t2->stemmed.begin, + tok->window_idx, total_cnt, spam_cnt, ham_cnt); + } + else { + msg_debug_bayes("token %uL <?:?>: window: %d, total_count: %d, " + "spam_count: %d, ham_count: %d", + tok->data, + tok->window_idx, total_cnt, spam_cnt, ham_cnt); + } + } + + return TRUE; +} |