1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
local rspamd_logger = require "rspamd_logger"
local argparse = require "argparse"
local lua_util = require "lua_util"
local ucl = require "ucl"
local parser = argparse()
:name "rspamadm neural_test"
:description "Test the neural network with labelled dataset"
:help_description_margin(32)
parser:option "-c --config"
:description "Path to config file"
:argname("<cfg>")
:default(rspamd_paths["CONFDIR"] .. "/" .. "rspamd.conf")
parser:option "-H --hamdir"
:description("Ham directory")
:argname("<dir>")
parser:option "-S --spamdir"
:description("Spam directory")
:argname("<dir>")
parser:option "-t --timeout"
:description("Timeout for client connections")
:argname("<sec>")
:convert(tonumber)
:default(60)
parser:option "-n --conns"
:description("Number of parallel connections")
:argname("<N>")
:convert(tonumber)
:default(10)
parser:option "-c --connect"
:description("Connect to specific host")
:argname("<host>")
:default('localhost:11334')
parser:option "-r --rspamc"
:description("Use specific rspamc path")
:argname("<path>")
:default('rspamc')
parser:option '--rule'
:description 'Rule to test'
:argname('<rule>')
local HAM = "HAM"
local SPAM = "SPAM"
local function load_config(opts)
local _r, err = rspamd_config:load_ucl(opts['config'])
if not _r then
rspamd_logger.errx('cannot parse %s: %s', opts['config'], err)
os.exit(1)
end
_r, err = rspamd_config:parse_rcl({ 'logging', 'worker' })
if not _r then
rspamd_logger.errx('cannot process %s: %s', opts['config'], err)
os.exit(1)
end
end
local function scan_email(rspamc_path, host, n_parallel, path, timeout)
local rspamc_command = string.format("%s --connect %s -j --compact -n %s -t %.3f %s",
rspamc_path, host, n_parallel, timeout, path)
local result = assert(io.popen(rspamc_command))
result = result:read("*all")
return result
end
local function encoded_json_to_log(result)
-- Returns table containing score, action, list of symbols
local filtered_result = {}
local ucl_parser = ucl.parser()
local is_good, err = ucl_parser:parse_string(result)
if not is_good then
rspamd_logger.errx("Parser error: %1", err)
return nil
end
result = ucl_parser:get_object()
filtered_result.score = result.score
if not result.action then
rspamd_logger.errx("Bad JSON: %1", result)
return nil
end
local action = result.action:gsub("%s+", "_")
filtered_result.action = action
filtered_result.symbols = {}
for sym, _ in pairs(result.symbols) do
table.insert(filtered_result.symbols, sym)
end
filtered_result.filename = result.filename
filtered_result.scan_time = result.scan_time
return filtered_result
end
local function filter_scan_results(results, actual_email_type)
local logs = {}
results = lua_util.rspamd_str_split(results, "\n")
if results[#results] == "" then
results[#results] = nil
end
for _, result in pairs(results) do
result = encoded_json_to_log(result)
if result then
result['type'] = actual_email_type
table.insert(logs, result)
end
end
return logs
end
local function get_stats_from_scan_results(results, rules)
local rule_stats = {}
for rule, _ in pairs(rules) do
rule_stats[rule] = { tp = 0, tn = 0, fp = 0, fn = 0 }
end
for _, result in ipairs(results) do
for _, symbol in ipairs(result["symbols"]) do
for name, rule in pairs(rules) do
if rule.symbol_spam and rule.symbol_spam == symbol then
if result.type == HAM then
rule_stats[name].fp = rule_stats[name].fp + 1
elseif result.type == SPAM then
rule_stats[name].tp = rule_stats[name].tp + 1
end
elseif rule.symbol_ham and rule.symbol_ham == symbol then
if result.type == HAM then
rule_stats[name].tn = rule_stats[name].tn + 1
elseif result.type == SPAM then
rule_stats[name].fn = rule_stats[name].fn + 1
end
end
end
end
end
for rule, _ in pairs(rules) do
rule_stats[rule].fpr = rule_stats[rule].fp / (rule_stats[rule].fp + rule_stats[rule].tn)
rule_stats[rule].fnr = rule_stats[rule].fn / (rule_stats[rule].fn + rule_stats[rule].tp)
end
return rule_stats
end
local function print_neural_stats(neural_stats)
for rule, stats in pairs(neural_stats) do
rspamd_logger.messagex("\nStats for rule: %s", rule)
rspamd_logger.messagex("False positive rate: %s%%", stats.fpr * 100)
rspamd_logger.messagex("False negative rate: %s%%", stats.fnr * 100)
end
end
local function handler(args)
local opts = parser:parse(args)
local ham_directory = opts['hamdir']
local spam_directory = opts['spamdir']
local connections = opts["conns"]
load_config(opts)
local neural_opts = rspamd_config:get_all_opt('neural')
if opts["rule"] then
local found = false
for rule_name, _ in pairs(neural_opts.rules) do
if string.lower(rule_name) == string.lower(opts["rule"]) then
found = true
else
neural_opts.rules[rule_name] = nil
end
end
if not found then
rspamd_logger.errx("Couldn't find the rule %s", opts["rule"])
return
end
end
local results = {}
if ham_directory then
rspamd_logger.messagex("Scanning ham corpus...")
local ham_results = scan_email(opts.rspamc, opts.connect, connections, ham_directory, opts.timeout)
ham_results = filter_scan_results(ham_results, HAM)
for _, result in pairs(ham_results) do
table.insert(results, result)
end
end
if spam_directory then
rspamd_logger.messagex("Scanning spam corpus...")
local spam_results = scan_email(opts.rspamc, opts.connect, connections, spam_directory, opts.timeout)
spam_results = filter_scan_results(spam_results, SPAM)
for _, result in pairs(spam_results) do
table.insert(results, result)
end
end
local neural_stats = get_stats_from_scan_results(results, neural_opts.rules)
print_neural_stats(neural_stats)
end
return {
name = "neuraltest",
aliases = { "neural_test" },
handler = handler,
description = parser._description
}
|