//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate) //! //! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github //! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust //! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs //! //!
//! //! A wrapper around the procedural macro API of the compiler's [`proc_macro`] //! crate. This library serves two purposes: //! //! [`proc_macro`]: https://doc.rust-lang.org/proc_macro/ //! //! - **Bring proc-macro-like functionality to other contexts like build.rs and //! main.rs.** Types from `proc_macro` are entirely specific to procedural //! macros and cannot ever exist in code outside of a procedural macro. //! Meanwhile `proc_macro2` types may exist anywhere including non-macro code. //! By developing foundational libraries like [syn] and [quote] against //! `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem //! becomes easily applicable to many other use cases and we avoid //! reimplementing non-macro equivalents of those libraries. //! //! - **Make procedural macros unit testable.** As a consequence of being //! specific to procedural macros, nothing that uses `proc_macro` can be //! executed from a unit test. In order for helper libraries or components of //! a macro to be testable in isolation, they must be implemented using //! `proc_macro2`. //! //! [syn]: https://github.com/dtolnay/syn //! [quote]: https://github.com/dtolnay/quote //! //! # Usage //! //! The skeleton of a typical procedural macro typically looks like this: //! //! ``` //! extern crate proc_macro; //! //! # const IGNORE: &str = stringify! { //! #[proc_macro_derive(MyDerive)] //! # }; //! # #[cfg(wrap_proc_macro)] //! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream { //! let input = proc_macro2::TokenStream::from(input); //! //! let output: proc_macro2::TokenStream = { //! /* transform input */ //! # input //! }; //! //! proc_macro::TokenStream::from(output) //! } //! ``` //! //! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to //! propagate parse errors correctly back to the compiler when parsing fails. //! //! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html //! //! # Unstable features //! //! The default feature set of proc-macro2 tracks the most recent stable //! compiler API. Functionality in `proc_macro` that is not yet stable is not //! exposed by proc-macro2 by default. //! //! To opt into the additional APIs available in the most recent nightly //! compiler, the `procmacro2_semver_exempt` config flag must be passed to //! rustc. We will polyfill those nightly-only APIs back to Rust 1.56.0. As //! these are unstable APIs that track the nightly compiler, minor versions of //! proc-macro2 may make breaking changes to them at any time. //! //! ```sh //! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build //! ``` //! //! Note that this must not only be done for your crate, but for any crate that //! depends on your crate. This infectious nature is intentional, as it serves //! as a reminder that you are outside of the normal semver guarantees. //! //! Semver exempt methods are marked as such in the proc-macro2 documentation. //! //! # Thread-Safety //! //! Most types in this crate are `!Sync` because the underlying compiler //! types make use of thread-local memory, meaning they cannot be accessed from //! a different thread. // Proc-macro2 types in rustdoc of other crates get linked to here. #![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.81")] #![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))] #![cfg_attr(super_unstable, feature(proc_macro_def_site))] #![cfg_attr(doc_cfg, feature(doc_cfg))] #![deny(unsafe_op_in_unsafe_fn)] #![allow( clippy::cast_lossless, clippy::cast_possible_truncation, clippy::checked_conversions, clippy::doc_markdown, clippy::incompatible_msrv, clippy::items_after_statements, clippy::iter_without_into_iter, clippy::let_underscore_untyped, clippy::manual_assert, clippy::manual_range_contains, clippy::missing_safety_doc, clippy::must_use_candidate, clippy::needless_doctest_main, clippy::new_without_default, clippy::return_self_not_must_use, clippy::shadow_unrelated, clippy::trivially_copy_pass_by_ref, clippy::unnecessary_wraps, clippy::unused_self, clippy::used_underscore_binding, clippy::vec_init_then_push )] #[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))] compile_error! {"\ Something is not right. If you've tried to turn on \ procmacro2_semver_exempt, you need to ensure that it \ is turned on for the compilation of the proc-macro2 \ build script as well. "} #[cfg(all( procmacro2_nightly_testing, feature = "proc-macro", not(proc_macro_span) ))] compile_error! {"\ Build script probe failed to compile. "} extern crate alloc; #[cfg(feature = "proc-macro")] extern crate proc_macro; mod marker; mod parse; mod rcvec; #[cfg(wrap_proc_macro)] mod detection; // Public for proc_macro2::fallback::force() and unforce(), but those are quite // a niche use case so we omit it from rustdoc. #[doc(hidden)] pub mod fallback; pub mod extra; #[cfg(not(wrap_proc_macro))] use crate::fallback as imp; #[path = "wrapper.rs"] #[cfg(wrap_proc_macro)] mod imp; #[cfg(span_locations)] mod location; use crate::extra::DelimSpan; use crate::marker::{ProcMacroAutoTraits, MARKER}; use core::cmp::Ordering; use core::fmt::{self, Debug, Display}; use core::hash::{Hash, Hasher}; #[cfg(span_locations)] use core::ops::Range; use core::ops::RangeBounds; use core::str::FromStr; use std::error::Error; use std::ffi::CStr; #[cfg(procmacro2_semver_exempt)] use std::path::PathBuf; #[cfg(span_locations)] #[cfg_attr(doc_cfg, doc(cfg(feature = "span-locations")))] pub use crate::location::LineColumn; /// An abstract stream of tokens, or more concretely a sequence of token trees. /// /// This type provides interfaces for iterating over token trees and for /// collecting token trees into one stream. /// /// Token stream is both the input and output of `#[proc_macro]`, /// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions. #[derive(Clone)] pub struct TokenStream { inner: imp::TokenStream, _marker: ProcMacroAutoTraits, } /// Error returned from `TokenStream::from_str`. pub struct LexError { inner: imp::LexError, _marker: ProcMacroAutoTraits, } impl TokenStream { fn _new(inner: imp::TokenStream) -> Self { TokenStream { inner, _marker: MARKER, } } fn _new_fallback(inner: fallback::TokenStream) -> Self { TokenStream { inner: inner.into(), _marker: MARKER, } } /// Returns an empty `TokenStream` containing no token trees. pub fn new() -> Self { TokenStream::_new(imp::TokenStream::new()) } /// Checks if this `TokenStream` is empty. pub fn is_empty(&self) -> bool { self.inner.is_empty() } } /// `TokenStream::default()` returns an empty stream, /// i.e. this is equivalent with `TokenStream::new()`. impl Default for TokenStream { fn default() -> Self { TokenStream::new() } } /// Attempts to break the string into tokens and parse those tokens into a token /// stream. /// /// May fail for a number of reasons, for example, if the string contains /// unbalanced delimiters or characters not existing in the language. /// /// NOTE: Some errors may cause panics instead of returning `LexError`. We /// reserve the right to change these errors into `LexError`s later. impl FromStr for TokenStream { type Err = LexError; fn from_str(src: &str) -> Result { let e = src.parse().map_err(|e| LexError { inner: e, _marker: MARKER, })?; Ok(TokenStream::_new(e)) } } #[cfg(feature = "proc-macro")] #[cfg_attr(doc_cfg, doc(cfg(feature = "proc-macro")))] impl From for TokenStream { fn from(inner: proc_macro::TokenStream) -> Self { TokenStream::_new(inner.into()) } } #[cfg(feature = "proc-macro")] #[cfg_attr(doc_cfg, doc(cfg(feature = "proc-macro")))] impl From for proc_macro::TokenStream { fn from(inner: TokenStream) -> Self { inner.inner.into() } } impl From for TokenStream { fn from(token: TokenTree) -> Self { TokenStream::_new(imp::TokenStream::from(token)) } } impl Extend for TokenStream { fn extend>(&mut self, streams: I) { self.inner.extend(streams); } } impl Extend for TokenStream { fn extend>(&mut self, streams: I) { self.inner .extend(streams.into_iter().map(|stream| stream.inner)); } } /// Collects a number of token trees into a single stream. impl FromIterator for TokenStream { fn from_iter>(streams: I) -> Self { TokenStream::_new(streams.into_iter().collect()) } } impl FromIterator for TokenStream { fn from_iter>(streams: I) -> Self { TokenStream::_new(streams.into_iter().map(|i| i.inner).collect()) } } /// Prints the token stream as a string that is supposed to be losslessly /// convertible back into the same token stream (modulo spans), except for /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative /// numeric literals. impl Display for TokenStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { Display::fmt(&self.inner, f) } } /// Prints token in a form convenient for debugging. impl Debug for TokenStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { Debug::fmt(&self.inner, f) } } impl LexError { pub fn span(&self) -> Span { Span::_new(self.inner.span()) } } impl Debug for LexError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { Debug::fmt(&self.inner, f) } } impl Display for LexError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { Display::fmt(&self.inner, f) } } impl Error for LexError {} /// The source file of a given `Span`. /// /// This type is semver exempt and not exposed by default. #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))] #[derive(Clone, PartialEq, Eq)] pub struct SourceFile { inner: imp::SourceFile, _marker: ProcMacroAutoTraits, } #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] impl SourceFile { fn _new(inner: imp::SourceFile) -> Self { SourceFile { inner, _marker: MARKER, } } /// Get the path to this source file. /// /// ### Note /// /// If the code span associated with this `SourceFile` was generated by an /// external macro, this may not be an actual path on the filesystem. Use /// [`is_real`] to check. /// /// Also note that even if `is_real` returns `true`, if /// `--remap-path-prefix` was passed on the command line, the path as given /// may not actually be valid. /// /// [`is_real`]: #method.is_real pub fn path(&self) -> PathBuf { self.inner.path() } /// Returns `true` if this source file is a real source file, and not /// generated by an external macro's expansion. pub fn is_real(&self) -> bool { self.inner.is_real() } } #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] impl Debug for SourceFile { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { Debug::fmt(&self.inner, f) } } /// A region of source code, along with macro expansion information. #[derive(Copy, Clone)] pub struct Span { inner: imp::Span, _marker: ProcMacroAutoTraits, } impl Span { fn _new(inner: imp::Span) -> Self { Span { inner, _marker: MARKER, } } fn _new_fallback(inner: fallback::Span) -> Self { Span { inner: inner.into(), _marker: MARKER, } } /// The span of the invocation of the current procedural macro. /// /// Identifiers created with this span will be resolved as if they were /// written directly at the macro call location (call-site hygiene) and /// other code at the macro call site will be able to refer to them as well. pub fn call_site() -> Self { Span::_new(imp::Span::call_site()) } /// The span located at the invocation of the procedural macro, but with /// local variables, labels, and `$crate` resolved at the definition site /// of the macro. This is the same hygiene behavior as `macro_rules`. pub fn mixed_site() -> Self { Span::_new(imp::Span::mixed_site()) } /// A span that resolves at the macro definition site. /// /// This method is semver exempt and not exposed by default. #[cfg(procmacro2_semver_exempt)] #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))] pub fn def_site() -> Self { Span::_new(imp::Span::def_site()) } /// Creates a new span with the same line/column information as `self` but /// that resolves symbols as though it were at `other`. pub fn resolved_at(&self, other: Span) -> Span { Span::_new(self.inner.resolved_at(other.inner)) } /// Creates a new span with the same name resolution behavior as `self` but /// with the line/column information of `other`. pub fn located_at(&self, other: Span) -> Span { Span::_new(self.inner.located_at(other.inner)) } /// Convert `proc_macro2::Span` to `proc_macro::Span`. /// /// This method is available when building with a nightly compiler, or when /// building with rustc 1.29+ *without* semver exempt features. /// /// # Panics /// /// Panics if called from outside of a procedural macro. Unlike /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within /// the context of a procedural macro invocation. #[cfg(wrap_proc_macro)] pub fn unwrap(self) -> proc_macro::Span { self.inner.unwrap() } // Soft deprecated. Please use Span::unwrap. #[cfg(wrap_proc_macro)] #[doc(hidden)] pub fn unstable(self) -> proc_macro::Span { self.unwrap() } /// The original source file into which this span points. /// /// This method is semver exempt and not exposed by default. #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))] pub fn source_file(&self) -> SourceFile { SourceFile::_new(self.inner.source_file()) } /// Returns the span's byte position range in the source file. /// /// This method requires the `"span-locations"` feature to be enabled. /// /// When executing in a procedural macro context, the returned range is only /// accurate if compiled with a nightly toolchain. The stable toolchain does /// not have this information available. When executing outside of a /// procedural macro, such as main.rs or build.rs, the byte range is always /// accurate regardless of toolchain. #[cfg(span_locations)] #[cfg_attr(doc_cfg, doc(cfg(feature = "span-locations")))] pub fn byte_range(&self) -> Range { self.inner.byte_range() } /// Get the starting line/column in the source file for this span. /// /// This method requires the `"span-locations"` feature to be enabled. /// /// When executing in a procedural macro context, the returned line/column /// are only meaningful if compiled with a nightly toolchain. The stable /// toolchain does not have this information available. When executing /// outside of a procedural macro, such as main.rs or build.rs, the /// line/column are always meaningful regardless of toolchain. #[cfg(span_locations)] #[cfg_attr(doc_cfg, doc(cfg(feature = "span-locations")))] pub fn start(&self) -> LineColumn { self.inner.start() } /// Get the ending line/column in the source file for this span. /// /// This method requires the `"span-locations"` feature to be enabled. /// /// When executing in a procedural macro context, the returned line/column /// are only meaningful if compiled with a nightly toolchain. The stable /// toolchain does not have this information available. When executing /// outside of a procedural macro, such as main.rs or build.rs, the /// line/column are always meaningful regardless of toolchain. #[cfg(span_locations)] #[cfg_attr(doc_cfg, doc(cfg(feature = "span-locations")))] pub fn end(&self) -> LineColumn { self.inner.end() } /// Create a new span encompassing `self` and `other`. /// /// Returns `None` if `self` and `other` are from different files. /// /// Warning: the underlying [`proc_macro::Span::join`] method is /// nightly-only. When called from within a procedural macro not using a /// nightly compiler, this method will always return `None`. /// /// [`proc_macro::Span::join`]: https://doc.rust-lang.org/proc_macro/struct.Span.html#method.join pub fn join(&self, other: Span) -> Option { self.inner.join(other.inner).map(Span::_new) } /// Compares two spans to see if they're equal. /// /// This method is semver exempt and not exposed by default. #[cfg(procmacro2_semver_exempt)] #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))] pub fn eq(&self, other: &Span) -> bool { self.inner.eq(&other.inner) } /// Returns the source text behind a span. This preserves the original /// source code, including spaces and comments. It only returns a result if /// the span corresponds to real source code. /// /// Note: The observable result of a macro should only rely on the tokens /// and not on this source text. The result of this function is a best /// effort to be used for diagnostics only. pub fn source_text(&self) -> Option { self.inner.source_text() } } /// Prints a span in a form convenient for debugging. impl Debug for Span { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { Debug::fmt(&self.inner, f) } } /// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`). #[derive(Clone)] pub enum TokenTree { /// A token stream surrounded by bracket delimiters. Group(Group), /// An identifier. Ident(Ident), /// A single punctuation character (`+`, `,`, `$`, etc.). Punct(Punct), /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc. Literal(Literal), } impl TokenTree { /// Returns the span of this tree, delegating to the `span` method of /// the contained token or a delimited stream. pub fn span(&self) -> Span { match self { TokenTree::Group(t) => t.span(), TokenTree::Ident(t) => t.span(), TokenTree::Punct(t) => t.span(), TokenTree::Literal(t) => t.span(), } } /// Configures the span for *only this token*. /// /// Note that if this token is a `Group` then this method will not configure /// the span of each of the internal tokens, this will simply delegate to /// the `set_span` method of each variant. pub fn set_span(&mut self, span: Span) { match self { TokenTree::Group(t) => t.set_span(span), TokenTree::Ident(t) => t.set_span(span), TokenTree::Punct(t) => t.set_span(span), TokenTree::Literal(t) => t.set_span(span), } } } impl From for TokenTree { fn from(g: Group) -> Self { TokenTree::Group(g) } } impl From for TokenTree { fn from(g: Ident) -> Self { TokenTree::Ident(g) } } impl From for TokenTree { fn from(g: Punct) -> Self { TokenTree::Punct(g) } } impl From for TokenTree { fn from(g: Literal) -> Self { TokenTree::Literal(g) } } /// Prints the token tree as a string that is supposed to be losslessly /// convertible back into the same token tree (modulo spans), except for /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative /// numeric literals. impl Display for TokenTree { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self { TokenTree::Group(t) => Display::fmt(t, f), TokenTree::Ident(t) => Display::fmt(t, f), TokenTree::Punct(t) => Display::fmt(t, f), TokenTree::Literal(t) => Display::fmt(t, f), } } } /// Prints token tree in a form convenient for debugging. impl Debug for TokenTree { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { // Each of these has the name in the struct type in the derived debug, // so don't bother with an extra layer of indirection match self { TokenTree::Group(t) => Debug::fmt(t, f), TokenTree::Ident(t) => { let mut debug = f.debug_struct("Ident"); debug.field("sym", &format_args!("{}", t)); imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner); debug.finish() } TokenTree::Punct(t) => Debug::fmt(t, f), TokenTree::Literal(t) => Debug::fmt(t, f), } } } /// A delimited token stream. /// /// A `Group` internally contains a `TokenStream` which is surrounded by /// `Delimiter`s. #[derive(Clone)] pub struct Group { inner: imp::Group, } /// Describes how a sequence of token trees is delimited. #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub enum Delimiter { /// `( ... )` Parenthesis, /// `{ ... }` Brace, /// `[ ... ]` Bracket, /// `∅ ... ∅` /// /// An invisible delimiter, that may, for example, appear around tokens /// coming from a "macro variable" `$var`. It is important to preserve /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`. /// Invisible delimiters may not survive roundtrip of a token stream through /// a string. None, } impl Group { fn _new(inner: imp::Group) -> Self { Group { inner } } fn _new_fallback(inner: fallback::Group) -> Self { Group { inner: inner.into(), } } /// Creates a new `Group` with the given delimiter and token stream. /// /// This constructor will set the span for this group to /// `Span::call_site()`. To change the span you can use the `set_span` /// method below. pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self { Group { inner: imp::Group::new(delimiter, stream.inner), } } /// Returns the punctuation used as the delimiter for this group: a set of /// parentheses, square brackets, or curly braces. pub fn delimiter(&self) -> Delimiter { self.inner.delimiter() } /// Returns the `TokenStream` of tokens that are delimited in this `Group`. /// /// Note that the returned token stream does not include the delimiter /// returned above. pub fn stream(&self) -> TokenStream { TokenStream::_new(self.inner.stream()) } /// Returns the span for the delimiters of this token stream, spanning the /// entire `Group`. /// /// ```text /// pub fn span(&self) -> Span { /// ^^^^^^^ /// ``` pub fn span(&self) -> Span { Span::_new(self.inner.span()) } /// Returns the span pointing to the opening delimiter of this group. /// /// ```text /// pub fn span_open(&self) -> Span { /// ^ /// ``` pub fn span_open(&self) -> Span { Span::_new(self.inner.span_open()) } /// Returns the span pointing to the closing delimiter of this group. /// /// ```text /// pub fn span_close(&self) -> Span { /// ^ /// ``` pub fn span_close(&self) -> Span { Span::_new(self.inner.span_close()) } /// Returns an object that holds this group's `span_open()` and /// `span_close()` together (in a more compact representation than holding /// those 2 spans individually). pub fn delim_span(&self) -> DelimSpan { DelimSpan::new(&self.inner) } /// Configures the span for this `Group`'s delimiters, but not its internal /// tokens. /// /// This method will **not** set the span of all the internal tokens spanned /// by this group, but rather it will only set the span of the delimiter /// tokens at the level of the `Group`. pub fn set_span(&mut self, span: Span) { self.inner.set_span(span.inner); } } /// Prints the group as a string that should be losslessly convertible back /// into the same group (modulo spans), except for possibly `TokenTree::Group`s /// with `Delimiter::None` delimiters. impl Display for Group { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { Display::fmt(&self.inner, formatter) } } impl Debug for Group { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { Debug::fmt(&self.inner, formatter) } } /// A `Punct` is a single punctuation character like `+`, `-` or `#`. /// /// Multicharacter operators like `+=` are represented as two instances of /// `Punct` with different forms of `Spacing` returned. #[derive(Clone)] pub struct Punct { ch: char, spacing: Spacing, span: Span, } /// Whether a `Punct` is followed immediately by another `Punct` or followed by /// another token or whitespace. #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub enum Spacing { /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`. Alone, /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`. /// /// Additionally, single quote `'` can join with identifiers to form /// lifetimes `'ident`. Joint, } impl Punct { /// Creates a new `Punct` from the given character and spacing. /// /// The `ch` argument must be a valid punctuation character permitted by the /// language, otherwise the function will panic. /// /// The returned `Punct` will have the default span of `Span::call_site()` /// which can be further configured with the `set_span` method below. pub fn new(ch: char, spacing: Spacing) -> Self { Punct { ch, spacing, span: Span::call_site(), } } /// Returns the value of this punctuation character as `char`. pub fn as_char(&self) -> char { self.ch } /// Returns the spacing of this punctuation character, indicating whether /// it's immediately followed by another `Punct` in the token stream, so /// they can potentially be combined into a multicharacter operator /// (`Joint`), or it's followed by some other token or whitespace (`Alone`) /// so the operator has certainly ended. pub fn spacing(&self) -> Spacing { self.spacing } /// Returns the span for this punctuation character. pub fn span(&self) -> Span { self.span } /// Configure the span for this punctuation character. pub fn set_span(&mut self, span: Span) { self.span = span; } } /// Prints the punctuation character as a string that should be losslessly /// convertible back into the same character. impl Display for Punct { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { Display::fmt(&self.ch, f) } } impl Debug for Punct { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { let mut debug = fmt.debug_struct("Punct"); debug.field("char", &self.ch); debug.field("spacing", &self.spacing); imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner); debug.finish() } } /// A word of Rust code, which may be a keyword or legal variable name. /// /// An identifier consists of at least one Unicode code point, the first of /// which has the XID_Start property and the rest of which have the XID_Continue /// property. /// /// - The empty string is not an identifier. Use `Option`. /// - A lifetime is not an identifier. Use `syn::Lifetime` instead. /// /// An identifier constructed with `Ident::new` is permitted to be a Rust /// keyword, though parsing one through its [`Parse`] implementation rejects /// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the /// behaviour of `Ident::new`. /// /// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html /// /// # Examples /// /// A new ident can be created from a string using the `Ident::new` function. /// A span must be provided explicitly which governs the name resolution /// behavior of the resulting identifier. /// /// ``` /// use proc_macro2::{Ident, Span}; /// /// fn main() { /// let call_ident = Ident::new("calligraphy", Span::call_site()); /// /// println!("{}", call_ident); /// } /// ``` /// /// An ident can be interpolated into a token stream using the `quote!` macro. /// /// ``` /// use proc_macro2::{Ident, Span}; /// use quote::quote; /// /// fn main() { /// let ident = Ident::new("demo", Span::call_site()); /// /// // Create a variable binding whose name is this ident. /// let expanded = quote! { let #ident = 10; }; /// /// // Create a variable binding with a slightly different name. /// let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site()); /// let expanded = quote! { let #temp_ident = 10; }; /// } /// ``` /// /// A string representation of the ident is available through the `to_string()` /// method. /// /// ``` /// # use proc_macro2::{Ident, Span}; /// # /// # let ident = Ident::new("another_identifier", Span::call_site()); /// # /// // Examine the ident as a string. /// let ident_string = ident.to_string(); /// if ident_string.len() > 60 { /// println!("Very long identifier: {}", ident_string) /// } /// ``` #[derive(Clone)] pub struct Ident { inner: imp::Ident, _marker: ProcMacroAutoTraits, } impl Ident { fn _new(inner: imp::Ident) -> Self { Ident { inner, _marker: MARKER, } } /// Creates a new `Ident` with the given `string` as well as the specified /// `span`. /// /// The `string` argument must be a valid identifier permitted by the /// language, otherwise the function will panic. /// /// Note that `span`, currently in rustc, configures the hygiene information /// for this identifier. /// /// As of this time `Span::call_site()` explicitly opts-in to "call-site" /// hygiene meaning that identifiers created with this span will be resolved /// as if they were written directly at the location of the macro call, and /// other code at the macro call site will be able to refer to them as well. /// /// Later spans like `Span::def_site()` will allow to opt-in to /// "definition-site" hygiene meaning that identifiers created with this /// span will be resolved at the location of the macro definition and other /// code at the macro call site will not be able to refer to them. /// /// Due to the current importance of hygiene this constructor, unlike other /// tokens, requires a `Span` to be specified at construction. /// /// # Panics /// /// Panics if the input string is neither a keyword nor a legal variable /// name. If you are not sure whether the string contains an identifier and /// need to handle an error case, use /// syn::parse_str::<Ident> /// rather than `Ident::new`. #[track_caller] pub fn new(string: &str, span: Span) -> Self { Ident::_new(imp::Ident::new_checked(string, span.inner)) } /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The /// `string` argument must be a valid identifier permitted by the language /// (including keywords, e.g. `fn`). Keywords which are usable in path /// segments (e.g. `self`, `super`) are not supported, and will cause a /// panic. #[track_caller] pub fn new_raw(string: &str, span: Span) -> Self { Ident::_new(imp::Ident::new_raw_checked(string, span.inner)) } /// Returns the span of this `Ident`. pub fn span(&self) -> Span { Span::_new(self.inner.span()) } /// Configures the span of this `Ident`, possibly changing its hygiene /// context. pub fn set_span(&mut self, span: Span) { self.inner.set_span(span.inner); } } impl PartialEq for Ident { fn eq(&self, other: &Ident) -> bool { self.inner == other.inner } } impl PartialEq for Ident where T: ?Sized + AsRef, { fn eq(&self, other: &T) -> bool { self.inner == other } } impl Eq for Ident {} impl PartialOrd for Ident { fn partial_cmp(&self, other: &Ident) -> Option { Some(self.cmp(other)) } } impl Ord for Ident { fn cmp(&self, other: &Ident) -> Ordering { self.to_string().cmp(&other.to_string()) } } impl Hash for Ident { fn hash(&self, hasher: &mut H) { self.to_string().hash(hasher); } } /// Prints the identifier as a string that should be losslessly convertible back /// into the same identifier. impl Display for Ident { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { Display::fmt(&self.inner, f) } } impl Debug for Ident { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { Debug::fmt(&self.inner, f) } } /// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`), /// byte character (`b'a'`), an integer or floating point number with or without /// a suffix (`1`, `1u8`, `2.3`, `2.3f32`). /// /// Boolean literals like `true` and `false` do not belong here, they are /// `Ident`s. #[derive(Clone)] pub struct Literal { inner: imp::Literal, _marker: ProcMacroAutoTraits, } macro_rules! suffixed_int_literals { ($($name:ident => $kind:ident,)*) => ($( /// Creates a new suffixed integer literal with the specified value. /// /// This function will create an integer like `1u32` where the integer /// value specified is the first part of the token and the integral is /// also suffixed at the end. Literals created from negative numbers may /// not survive roundtrips through `TokenStream` or strings and may be /// broken into two tokens (`-` and positive literal). /// /// Literals created through this method have the `Span::call_site()` /// span by default, which can be configured with the `set_span` method /// below. pub fn $name(n: $kind) -> Literal { Literal::_new(imp::Literal::$name(n)) } )*) } macro_rules! unsuffixed_int_literals { ($($name:ident => $kind:ident,)*) => ($( /// Creates a new unsuffixed integer literal with the specified value. /// /// This function will create an integer like `1` where the integer /// value specified is the first part of the token. No suffix is /// specified on this token, meaning that invocations like /// `Literal::i8_unsuffixed(1)` are equivalent to /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers /// may not survive roundtrips through `TokenStream` or strings and may /// be broken into two tokens (`-` and positive literal). /// /// Literals created through this method have the `Span::call_site()` /// span by default, which can be configured with the `set_span` method /// below. pub fn $name(n: $kind) -> Literal { Literal::_new(imp::Literal::$name(n)) } )*) } impl Literal { fn _new(inner: imp::Literal) -> Self { Literal { inner, _marker: MARKER, } } fn _new_fallback(inner: fallback::Literal) -> Self { Literal { inner: inner.into(), _marker: MARKER, } } suffixed_int_literals! { u8_suffixed => u8, u16_suffixed => u16, u32_suffixed => u32, u64_suffixed => u64, u128_suffixed => u128, usize_suffixed => usize, i8_suffixed => i8, i16_suffixed => i16, i32_suffixed => i32, i64_suffixed => i64, i128_suffixed => i128, isize_suffixed => isize, } unsuffixed_int_literals! { u8_unsuffixed => u8, u16_unsuffixed => u16, u32_unsuffixed => u32, u64_unsuffixed => u64, u128_unsuffixed => u128, usize_unsuffixed => usize, i8_unsuffixed => i8, i16_unsuffixed => i16, i32_unsuffixed => i32, i64_unsuffixed => i64, i128_unsuffixed => i128, isize_unsuffixed => isize, } /// Creates a new unsuffixed floating-point literal. /// /// This constructor is similar to those like `Literal::i8_unsuffixed` where /// the float's value is emitted directly into the token but no suffix is /// used, so it may be inferred to be a `f64` later in the compiler. /// Literals created from negative numbers may not survive round-trips /// through `TokenStream` or strings and may be broken into two tokens (`-` /// and positive literal). /// /// # Panics /// /// This function requires that the specified float is finite, for example /// if it is infinity or NaN this function will panic. pub fn f64_unsuffixed(f: f64) -> Literal { assert!(f.is_finite()); Literal::_new(imp::Literal::f64_unsuffixed(f)) } /// Creates a new suffixed floating-point literal. /// /// This constructor will create a literal like `1.0f64` where the value /// specified is the preceding part of the token and `f64` is the suffix of /// the token. This token will always be inferred to be an `f64` in the /// compiler. Literals created from negative numbers may not survive /// round-trips through `TokenStream` or strings and may be broken into two /// tokens (`-` and positive literal). /// /// # Panics /// /// This function requires that the specified float is finite, for example /// if it is infinity or NaN this function will panic. pub fn f64_suffixed(f: f64) -> Literal { assert!(f.is_finite()); Literal::_new(imp::Literal::f64_suffixed(f)) } /// Creates a new unsuffixed floating-point literal. /// /// This constructor is similar to those like `Literal::i8_unsuffixed` where /// the float's value is emitted directly into the token but no suffix is /// used, so it may be inferred to be a `f64` later in the compiler. /// Literals created from negative numbers may not survive round-trips /// through `TokenStream` or strings and may be broken into two tokens (`-` /// and positive literal). /// /// # Panics /// /// This function requires that the specified float is finite, for example /// if it is infinity or NaN this function will panic. pub fn f32_unsuffixed(f: f32) -> Literal { assert!(f.is_finite()); Literal::_new(imp::Literal::f32_unsuffixed(f)) } /// Creates a new suffixed floating-point literal. /// /// This constructor will create a literal like `1.0f32` where the value /// specified is the preceding part of the token and `f32` is the suffix of /// the token. This token will always be inferred to be an `f32` in the /// compiler. Literals created from negative numbers may not survive /// round-trips through `TokenStream` or strings and may be broken into two /// tokens (`-` and positive literal). /// /// # Panics /// /// This function requires that the specified float is finite, for example /// if it is infinity or NaN this function will panic. pub fn f32_suffixed(f: f32) -> Literal { assert!(f.is_finite()); Literal::_new(imp::Literal::f32_suffixed(f)) } /// String literal. pub fn string(string: &str) -> Literal { Literal::_new(imp::Literal::string(string)) } /// Character literal. pub fn character(ch: char) -> Literal { Literal::_new(imp::Literal::character(ch)) } /// Byte character literal. pub fn byte_character(byte: u8) -> Literal { Literal::_new(imp::Literal::byte_character(byte)) } /// Byte string literal. pub fn byte_string(bytes: &[u8]) -> Literal { Literal::_new(imp::Literal::byte_string(bytes)) } /// C string literal. pub fn c_string(string: &CStr) -> Literal { Literal::_new(imp::Literal::c_string(string)) } /// Returns the span encompassing this literal. pub fn span(&self) -> Span { Span::_new(self.inner.span()) } /// Configures the span associated for this literal. pub fn set_span(&mut self, span: Span) { self.inner.set_span(span.inner); } /// Returns a `Span` that is a subset of `self.span()` containing only /// the source bytes in range `range`. Returns `None` if the would-be /// trimmed span is outside the bounds of `self`. /// /// Warning: the underlying [`proc_macro::Literal::subspan`] method is /// nightly-only. When called from within a procedural macro not using a /// nightly compiler, this method will always return `None`. /// /// [`proc_macro::Literal::subspan`]: https://doc.rust-lang.org/proc_macro/struct.Literal.html#method.subspan pub fn subspan>(&self, range: R) -> Option { self.inner.subspan(range).map(Span::_new) } // Intended for the `quote!` macro to use when constructing a proc-macro2 // token out of a macro_rules $:literal token, which is already known to be // a valid literal. This avoids reparsing/validating the literal's string // representation. This is not public API other than for quote. #[doc(hidden)] pub unsafe fn from_str_unchecked(repr: &str) -> Self { Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) }) } } impl FromStr for Literal { type Err = LexError; fn from_str(repr: &str) -> Result { repr.parse().map(Literal::_new).map_err(|inner| LexError { inner, _marker: MARKER, }) } } impl Debug for Literal { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { Debug::fmt(&self.inner, f) } } impl Display for Literal { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { Display::fmt(&self.inner, f) } } /// Public implementation details for the `TokenStream` type, such as iterators. pub mod token_stream { use crate::marker::{ProcMacroAutoTraits, MARKER}; use crate::{imp, TokenTree}; use core::fmt::{self, Debug}; pub use crate::TokenStream; /// An iterator over `TokenStream`'s `TokenTree`s. /// /// The iteration is "shallow", e.g. the iterator doesn't recurse into /// delimited groups, and returns whole groups as token trees. #[derive(Clone)] pub struct IntoIter { inner: imp::TokenTreeIter, _marker: ProcMacroAutoTraits, } impl Iterator for IntoIter { type Item = TokenTree; fn next(&mut self) -> Option { self.inner.next() } fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } impl Debug for IntoIter { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.write_str("TokenStream ")?; f.debug_list().entries(self.clone()).finish() } } impl IntoIterator for TokenStream { type Item = TokenTree; type IntoIter = IntoIter; fn into_iter(self) -> IntoIter { IntoIter { inner: self.inner.into_iter(), _marker: MARKER, } } } }