summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_hir_analysis/src/check/compare_method.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:18:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:18:58 +0000
commita4b7ed7a42c716ab9f05e351f003d589124fd55d (patch)
treeb620cd3f223850b28716e474e80c58059dca5dd4 /compiler/rustc_hir_analysis/src/check/compare_method.rs
parentAdding upstream version 1.67.1+dfsg1. (diff)
downloadrustc-a4b7ed7a42c716ab9f05e351f003d589124fd55d.tar.xz
rustc-a4b7ed7a42c716ab9f05e351f003d589124fd55d.zip
Adding upstream version 1.68.2+dfsg1.upstream/1.68.2+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'compiler/rustc_hir_analysis/src/check/compare_method.rs')
-rw-r--r--compiler/rustc_hir_analysis/src/check/compare_method.rs1943
1 files changed, 0 insertions, 1943 deletions
diff --git a/compiler/rustc_hir_analysis/src/check/compare_method.rs b/compiler/rustc_hir_analysis/src/check/compare_method.rs
deleted file mode 100644
index db150ebf0..000000000
--- a/compiler/rustc_hir_analysis/src/check/compare_method.rs
+++ /dev/null
@@ -1,1943 +0,0 @@
-use super::potentially_plural_count;
-use crate::errors::LifetimesOrBoundsMismatchOnTrait;
-use hir::def_id::{DefId, LocalDefId};
-use rustc_data_structures::fx::{FxHashMap, FxIndexSet};
-use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticId, ErrorGuaranteed};
-use rustc_hir as hir;
-use rustc_hir::def::{DefKind, Res};
-use rustc_hir::intravisit;
-use rustc_hir::{GenericParamKind, ImplItemKind, TraitItemKind};
-use rustc_infer::infer::outlives::env::OutlivesEnvironment;
-use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
-use rustc_infer::infer::{self, InferCtxt, TyCtxtInferExt};
-use rustc_infer::traits::util;
-use rustc_middle::ty::error::{ExpectedFound, TypeError};
-use rustc_middle::ty::util::ExplicitSelf;
-use rustc_middle::ty::{
- self, DefIdTree, InternalSubsts, Ty, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeVisitable,
-};
-use rustc_middle::ty::{GenericParamDefKind, ToPredicate, TyCtxt};
-use rustc_span::Span;
-use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt;
-use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
-use rustc_trait_selection::traits::{
- self, ObligationCause, ObligationCauseCode, ObligationCtxt, Reveal,
-};
-use std::iter;
-
-/// Checks that a method from an impl conforms to the signature of
-/// the same method as declared in the trait.
-///
-/// # Parameters
-///
-/// - `impl_m`: type of the method we are checking
-/// - `impl_m_span`: span to use for reporting errors
-/// - `trait_m`: the method in the trait
-/// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
-pub(crate) fn compare_impl_method<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_m: &ty::AssocItem,
- trait_m: &ty::AssocItem,
- impl_trait_ref: ty::TraitRef<'tcx>,
- trait_item_span: Option<Span>,
-) {
- debug!("compare_impl_method(impl_trait_ref={:?})", impl_trait_ref);
-
- let impl_m_span = tcx.def_span(impl_m.def_id);
-
- if let Err(_) = compare_self_type(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref) {
- return;
- }
-
- if let Err(_) = compare_number_of_generics(tcx, impl_m, trait_m, trait_item_span, false) {
- return;
- }
-
- if let Err(_) = compare_generic_param_kinds(tcx, impl_m, trait_m, false) {
- return;
- }
-
- if let Err(_) =
- compare_number_of_method_arguments(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
- {
- return;
- }
-
- if let Err(_) = compare_synthetic_generics(tcx, impl_m, trait_m) {
- return;
- }
-
- if let Err(_) = compare_predicate_entailment(
- tcx,
- impl_m,
- impl_m_span,
- trait_m,
- impl_trait_ref,
- CheckImpliedWfMode::Check,
- ) {
- return;
- }
-}
-
-/// This function is best explained by example. Consider a trait:
-///
-/// trait Trait<'t, T> {
-/// // `trait_m`
-/// fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
-/// }
-///
-/// And an impl:
-///
-/// impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
-/// // `impl_m`
-/// fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo;
-/// }
-///
-/// We wish to decide if those two method types are compatible.
-/// For this we have to show that, assuming the bounds of the impl hold, the
-/// bounds of `trait_m` imply the bounds of `impl_m`.
-///
-/// We start out with `trait_to_impl_substs`, that maps the trait
-/// type parameters to impl type parameters. This is taken from the
-/// impl trait reference:
-///
-/// trait_to_impl_substs = {'t => 'j, T => &'i U, Self => Foo}
-///
-/// We create a mapping `dummy_substs` that maps from the impl type
-/// parameters to fresh types and regions. For type parameters,
-/// this is the identity transform, but we could as well use any
-/// placeholder types. For regions, we convert from bound to free
-/// regions (Note: but only early-bound regions, i.e., those
-/// declared on the impl or used in type parameter bounds).
-///
-/// impl_to_placeholder_substs = {'i => 'i0, U => U0, N => N0 }
-///
-/// Now we can apply `placeholder_substs` to the type of the impl method
-/// to yield a new function type in terms of our fresh, placeholder
-/// types:
-///
-/// <'b> fn(t: &'i0 U0, m: &'b) -> Foo
-///
-/// We now want to extract and substitute the type of the *trait*
-/// method and compare it. To do so, we must create a compound
-/// substitution by combining `trait_to_impl_substs` and
-/// `impl_to_placeholder_substs`, and also adding a mapping for the method
-/// type parameters. We extend the mapping to also include
-/// the method parameters.
-///
-/// trait_to_placeholder_substs = { T => &'i0 U0, Self => Foo, M => N0 }
-///
-/// Applying this to the trait method type yields:
-///
-/// <'a> fn(t: &'i0 U0, m: &'a) -> Foo
-///
-/// This type is also the same but the name of the bound region (`'a`
-/// vs `'b`). However, the normal subtyping rules on fn types handle
-/// this kind of equivalency just fine.
-///
-/// We now use these substitutions to ensure that all declared bounds are
-/// satisfied by the implementation's method.
-///
-/// We do this by creating a parameter environment which contains a
-/// substitution corresponding to `impl_to_placeholder_substs`. We then build
-/// `trait_to_placeholder_substs` and use it to convert the predicates contained
-/// in the `trait_m` generics to the placeholder form.
-///
-/// Finally we register each of these predicates as an obligation and check that
-/// they hold.
-#[instrument(level = "debug", skip(tcx, impl_m_span, impl_trait_ref))]
-fn compare_predicate_entailment<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_m: &ty::AssocItem,
- impl_m_span: Span,
- trait_m: &ty::AssocItem,
- impl_trait_ref: ty::TraitRef<'tcx>,
- check_implied_wf: CheckImpliedWfMode,
-) -> Result<(), ErrorGuaranteed> {
- let trait_to_impl_substs = impl_trait_ref.substs;
-
- // This node-id should be used for the `body_id` field on each
- // `ObligationCause` (and the `FnCtxt`).
- //
- // FIXME(@lcnr): remove that after removing `cause.body_id` from
- // obligations.
- let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
- let cause = ObligationCause::new(
- impl_m_span,
- impl_m_hir_id,
- ObligationCauseCode::CompareImplItemObligation {
- impl_item_def_id: impl_m.def_id.expect_local(),
- trait_item_def_id: trait_m.def_id,
- kind: impl_m.kind,
- },
- );
-
- // Create mapping from impl to placeholder.
- let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
-
- // Create mapping from trait to placeholder.
- let trait_to_placeholder_substs =
- impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container_id(tcx), trait_to_impl_substs);
- debug!("compare_impl_method: trait_to_placeholder_substs={:?}", trait_to_placeholder_substs);
-
- let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
- let trait_m_predicates = tcx.predicates_of(trait_m.def_id);
-
- // Check region bounds.
- check_region_bounds_on_impl_item(tcx, impl_m, trait_m, false)?;
-
- // Create obligations for each predicate declared by the impl
- // definition in the context of the trait's parameter
- // environment. We can't just use `impl_env.caller_bounds`,
- // however, because we want to replace all late-bound regions with
- // region variables.
- let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
- let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
-
- debug!("compare_impl_method: impl_bounds={:?}", hybrid_preds);
-
- // This is the only tricky bit of the new way we check implementation methods
- // We need to build a set of predicates where only the method-level bounds
- // are from the trait and we assume all other bounds from the implementation
- // to be previously satisfied.
- //
- // We then register the obligations from the impl_m and check to see
- // if all constraints hold.
- hybrid_preds
- .predicates
- .extend(trait_m_predicates.instantiate_own(tcx, trait_to_placeholder_substs).predicates);
-
- // Construct trait parameter environment and then shift it into the placeholder viewpoint.
- // The key step here is to update the caller_bounds's predicates to be
- // the new hybrid bounds we computed.
- let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_hir_id);
- let param_env = ty::ParamEnv::new(
- tcx.intern_predicates(&hybrid_preds.predicates),
- Reveal::UserFacing,
- hir::Constness::NotConst,
- );
- let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
-
- let infcx = &tcx.infer_ctxt().build();
- let ocx = ObligationCtxt::new(infcx);
-
- debug!("compare_impl_method: caller_bounds={:?}", param_env.caller_bounds());
-
- let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_placeholder_substs);
- for (predicate, span) in iter::zip(impl_m_own_bounds.predicates, impl_m_own_bounds.spans) {
- let normalize_cause = traits::ObligationCause::misc(span, impl_m_hir_id);
- let predicate = ocx.normalize(&normalize_cause, param_env, predicate);
-
- let cause = ObligationCause::new(
- span,
- impl_m_hir_id,
- ObligationCauseCode::CompareImplItemObligation {
- impl_item_def_id: impl_m.def_id.expect_local(),
- trait_item_def_id: trait_m.def_id,
- kind: impl_m.kind,
- },
- );
- ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
- }
-
- // We now need to check that the signature of the impl method is
- // compatible with that of the trait method. We do this by
- // checking that `impl_fty <: trait_fty`.
- //
- // FIXME. Unfortunately, this doesn't quite work right now because
- // associated type normalization is not integrated into subtype
- // checks. For the comparison to be valid, we need to
- // normalize the associated types in the impl/trait methods
- // first. However, because function types bind regions, just
- // calling `normalize_associated_types_in` would have no effect on
- // any associated types appearing in the fn arguments or return
- // type.
-
- // Compute placeholder form of impl and trait method tys.
- let tcx = infcx.tcx;
-
- let mut wf_tys = FxIndexSet::default();
-
- let unnormalized_impl_sig = infcx.replace_bound_vars_with_fresh_vars(
- impl_m_span,
- infer::HigherRankedType,
- tcx.fn_sig(impl_m.def_id),
- );
- let unnormalized_impl_fty = tcx.mk_fn_ptr(ty::Binder::dummy(unnormalized_impl_sig));
-
- let norm_cause = ObligationCause::misc(impl_m_span, impl_m_hir_id);
- let impl_fty = ocx.normalize(&norm_cause, param_env, unnormalized_impl_fty);
- debug!("compare_impl_method: impl_fty={:?}", impl_fty);
-
- let trait_sig = tcx.bound_fn_sig(trait_m.def_id).subst(tcx, trait_to_placeholder_substs);
- let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, trait_sig);
-
- // Next, add all inputs and output as well-formed tys. Importantly,
- // we have to do this before normalization, since the normalized ty may
- // not contain the input parameters. See issue #87748.
- wf_tys.extend(trait_sig.inputs_and_output.iter());
- let trait_sig = ocx.normalize(&norm_cause, param_env, trait_sig);
- // We also have to add the normalized trait signature
- // as we don't normalize during implied bounds computation.
- wf_tys.extend(trait_sig.inputs_and_output.iter());
- let trait_fty = tcx.mk_fn_ptr(ty::Binder::dummy(trait_sig));
-
- debug!("compare_impl_method: trait_fty={:?}", trait_fty);
-
- // FIXME: We'd want to keep more accurate spans than "the method signature" when
- // processing the comparison between the trait and impl fn, but we sadly lose them
- // and point at the whole signature when a trait bound or specific input or output
- // type would be more appropriate. In other places we have a `Vec<Span>`
- // corresponding to their `Vec<Predicate>`, but we don't have that here.
- // Fixing this would improve the output of test `issue-83765.rs`.
- let result = ocx.sup(&cause, param_env, trait_fty, impl_fty);
-
- if let Err(terr) = result {
- debug!(?terr, "sub_types failed: impl ty {:?}, trait ty {:?}", impl_fty, trait_fty);
-
- let emitted = report_trait_method_mismatch(
- &infcx,
- cause,
- terr,
- (trait_m, trait_fty),
- (impl_m, impl_fty),
- trait_sig,
- impl_trait_ref,
- );
- return Err(emitted);
- }
-
- if check_implied_wf == CheckImpliedWfMode::Check {
- // We need to check that the impl's args are well-formed given
- // the hybrid param-env (impl + trait method where-clauses).
- ocx.register_obligation(traits::Obligation::new(
- infcx.tcx,
- ObligationCause::dummy(),
- param_env,
- ty::Binder::dummy(ty::PredicateKind::WellFormed(unnormalized_impl_fty.into())),
- ));
- }
- let emit_implied_wf_lint = || {
- infcx.tcx.struct_span_lint_hir(
- rustc_session::lint::builtin::IMPLIED_BOUNDS_ENTAILMENT,
- impl_m_hir_id,
- infcx.tcx.def_span(impl_m.def_id),
- "impl method assumes more implied bounds than the corresponding trait method",
- |lint| lint,
- );
- };
-
- // Check that all obligations are satisfied by the implementation's
- // version.
- let errors = ocx.select_all_or_error();
- if !errors.is_empty() {
- match check_implied_wf {
- CheckImpliedWfMode::Check => {
- return compare_predicate_entailment(
- tcx,
- impl_m,
- impl_m_span,
- trait_m,
- impl_trait_ref,
- CheckImpliedWfMode::Skip,
- )
- .map(|()| {
- // If the skip-mode was successful, emit a lint.
- emit_implied_wf_lint();
- });
- }
- CheckImpliedWfMode::Skip => {
- let reported = infcx.err_ctxt().report_fulfillment_errors(&errors, None);
- return Err(reported);
- }
- }
- }
-
- // Finally, resolve all regions. This catches wily misuses of
- // lifetime parameters.
- let outlives_env = OutlivesEnvironment::with_bounds(
- param_env,
- Some(infcx),
- infcx.implied_bounds_tys(param_env, impl_m_hir_id, wf_tys.clone()),
- );
- infcx.process_registered_region_obligations(
- outlives_env.region_bound_pairs(),
- outlives_env.param_env,
- );
- let errors = infcx.resolve_regions(&outlives_env);
- if !errors.is_empty() {
- // FIXME(compiler-errors): This can be simplified when IMPLIED_BOUNDS_ENTAILMENT
- // becomes a hard error (i.e. ideally we'd just call `resolve_regions_and_report_errors`
- match check_implied_wf {
- CheckImpliedWfMode::Check => {
- return compare_predicate_entailment(
- tcx,
- impl_m,
- impl_m_span,
- trait_m,
- impl_trait_ref,
- CheckImpliedWfMode::Skip,
- )
- .map(|()| {
- // If the skip-mode was successful, emit a lint.
- emit_implied_wf_lint();
- });
- }
- CheckImpliedWfMode::Skip => {
- if infcx.tainted_by_errors().is_none() {
- infcx.err_ctxt().report_region_errors(impl_m.def_id.expect_local(), &errors);
- }
- return Err(tcx
- .sess
- .delay_span_bug(rustc_span::DUMMY_SP, "error should have been emitted"));
- }
- }
- }
-
- Ok(())
-}
-
-#[derive(Debug, PartialEq, Eq)]
-enum CheckImpliedWfMode {
- /// Checks implied well-formedness of the impl method. If it fails, we will
- /// re-check with `Skip`, and emit a lint if it succeeds.
- Check,
- /// Skips checking implied well-formedness of the impl method, but will emit
- /// a lint if the `compare_predicate_entailment` succeeded. This means that
- /// the reason that we had failed earlier during `Check` was due to the impl
- /// having stronger requirements than the trait.
- Skip,
-}
-
-#[instrument(skip(tcx), level = "debug", ret)]
-pub fn collect_trait_impl_trait_tys<'tcx>(
- tcx: TyCtxt<'tcx>,
- def_id: DefId,
-) -> Result<&'tcx FxHashMap<DefId, Ty<'tcx>>, ErrorGuaranteed> {
- let impl_m = tcx.opt_associated_item(def_id).unwrap();
- let trait_m = tcx.opt_associated_item(impl_m.trait_item_def_id.unwrap()).unwrap();
- let impl_trait_ref = tcx.impl_trait_ref(impl_m.impl_container(tcx).unwrap()).unwrap();
- let param_env = tcx.param_env(def_id);
-
- // First, check a few of the same thing as `compare_impl_method`, just so we don't ICE during substitutions later.
- compare_number_of_generics(tcx, impl_m, trait_m, tcx.hir().span_if_local(impl_m.def_id), true)?;
- compare_generic_param_kinds(tcx, impl_m, trait_m, true)?;
- check_region_bounds_on_impl_item(tcx, impl_m, trait_m, true)?;
-
- let trait_to_impl_substs = impl_trait_ref.substs;
-
- let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
- let return_span = tcx.hir().fn_decl_by_hir_id(impl_m_hir_id).unwrap().output.span();
- let cause = ObligationCause::new(
- return_span,
- impl_m_hir_id,
- ObligationCauseCode::CompareImplItemObligation {
- impl_item_def_id: impl_m.def_id.expect_local(),
- trait_item_def_id: trait_m.def_id,
- kind: impl_m.kind,
- },
- );
-
- // Create mapping from impl to placeholder.
- let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
-
- // Create mapping from trait to placeholder.
- let trait_to_placeholder_substs =
- impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container_id(tcx), trait_to_impl_substs);
-
- let infcx = &tcx.infer_ctxt().build();
- let ocx = ObligationCtxt::new(infcx);
-
- // Normalize the impl signature with fresh variables for lifetime inference.
- let norm_cause = ObligationCause::misc(return_span, impl_m_hir_id);
- let impl_sig = ocx.normalize(
- &norm_cause,
- param_env,
- infcx.replace_bound_vars_with_fresh_vars(
- return_span,
- infer::HigherRankedType,
- tcx.fn_sig(impl_m.def_id),
- ),
- );
- let impl_return_ty = impl_sig.output();
-
- // Normalize the trait signature with liberated bound vars, passing it through
- // the ImplTraitInTraitCollector, which gathers all of the RPITITs and replaces
- // them with inference variables.
- // We will use these inference variables to collect the hidden types of RPITITs.
- let mut collector = ImplTraitInTraitCollector::new(&ocx, return_span, param_env, impl_m_hir_id);
- let unnormalized_trait_sig = tcx
- .liberate_late_bound_regions(
- impl_m.def_id,
- tcx.bound_fn_sig(trait_m.def_id).subst(tcx, trait_to_placeholder_substs),
- )
- .fold_with(&mut collector);
- let trait_sig = ocx.normalize(&norm_cause, param_env, unnormalized_trait_sig);
- let trait_return_ty = trait_sig.output();
-
- let wf_tys = FxIndexSet::from_iter(
- unnormalized_trait_sig.inputs_and_output.iter().chain(trait_sig.inputs_and_output.iter()),
- );
-
- match ocx.eq(&cause, param_env, trait_return_ty, impl_return_ty) {
- Ok(()) => {}
- Err(terr) => {
- let mut diag = struct_span_err!(
- tcx.sess,
- cause.span(),
- E0053,
- "method `{}` has an incompatible return type for trait",
- trait_m.name
- );
- let hir = tcx.hir();
- infcx.err_ctxt().note_type_err(
- &mut diag,
- &cause,
- hir.get_if_local(impl_m.def_id)
- .and_then(|node| node.fn_decl())
- .map(|decl| (decl.output.span(), "return type in trait".to_owned())),
- Some(infer::ValuePairs::Terms(ExpectedFound {
- expected: trait_return_ty.into(),
- found: impl_return_ty.into(),
- })),
- terr,
- false,
- false,
- );
- return Err(diag.emit());
- }
- }
-
- debug!(?trait_sig, ?impl_sig, "equating function signatures");
-
- let trait_fty = tcx.mk_fn_ptr(ty::Binder::dummy(trait_sig));
- let impl_fty = tcx.mk_fn_ptr(ty::Binder::dummy(impl_sig));
-
- // Unify the whole function signature. We need to do this to fully infer
- // the lifetimes of the return type, but do this after unifying just the
- // return types, since we want to avoid duplicating errors from
- // `compare_predicate_entailment`.
- match ocx.eq(&cause, param_env, trait_fty, impl_fty) {
- Ok(()) => {}
- Err(terr) => {
- // This function gets called during `compare_predicate_entailment` when normalizing a
- // signature that contains RPITIT. When the method signatures don't match, we have to
- // emit an error now because `compare_predicate_entailment` will not report the error
- // when normalization fails.
- let emitted = report_trait_method_mismatch(
- infcx,
- cause,
- terr,
- (trait_m, trait_fty),
- (impl_m, impl_fty),
- trait_sig,
- impl_trait_ref,
- );
- return Err(emitted);
- }
- }
-
- // Check that all obligations are satisfied by the implementation's
- // RPITs.
- let errors = ocx.select_all_or_error();
- if !errors.is_empty() {
- let reported = infcx.err_ctxt().report_fulfillment_errors(&errors, None);
- return Err(reported);
- }
-
- // Finally, resolve all regions. This catches wily misuses of
- // lifetime parameters.
- let outlives_environment = OutlivesEnvironment::with_bounds(
- param_env,
- Some(infcx),
- infcx.implied_bounds_tys(param_env, impl_m_hir_id, wf_tys),
- );
- infcx.check_region_obligations_and_report_errors(
- impl_m.def_id.expect_local(),
- &outlives_environment,
- );
-
- let mut collected_tys = FxHashMap::default();
- for (def_id, (ty, substs)) in collector.types {
- match infcx.fully_resolve(ty) {
- Ok(ty) => {
- // `ty` contains free regions that we created earlier while liberating the
- // trait fn signature. However, projection normalization expects `ty` to
- // contains `def_id`'s early-bound regions.
- let id_substs = InternalSubsts::identity_for_item(tcx, def_id);
- debug!(?id_substs, ?substs);
- let map: FxHashMap<ty::GenericArg<'tcx>, ty::GenericArg<'tcx>> =
- std::iter::zip(substs, id_substs).collect();
- debug!(?map);
-
- // NOTE(compiler-errors): RPITITs, like all other RPITs, have early-bound
- // region substs that are synthesized during AST lowering. These are substs
- // that are appended to the parent substs (trait and trait method). However,
- // we're trying to infer the unsubstituted type value of the RPITIT inside
- // the *impl*, so we can later use the impl's method substs to normalize
- // an RPITIT to a concrete type (`confirm_impl_trait_in_trait_candidate`).
- //
- // Due to the design of RPITITs, during AST lowering, we have no idea that
- // an impl method corresponds to a trait method with RPITITs in it. Therefore,
- // we don't have a list of early-bound region substs for the RPITIT in the impl.
- // Since early region parameters are index-based, we can't just rebase these
- // (trait method) early-bound region substs onto the impl, and there's no
- // guarantee that the indices from the trait substs and impl substs line up.
- // So to fix this, we subtract the number of trait substs and add the number of
- // impl substs to *renumber* these early-bound regions to their corresponding
- // indices in the impl's substitutions list.
- //
- // Also, we only need to account for a difference in trait and impl substs,
- // since we previously enforce that the trait method and impl method have the
- // same generics.
- let num_trait_substs = trait_to_impl_substs.len();
- let num_impl_substs = tcx.generics_of(impl_m.container_id(tcx)).params.len();
- let ty = tcx.fold_regions(ty, |region, _| {
- match region.kind() {
- // Remap all free regions, which correspond to late-bound regions in the function.
- ty::ReFree(_) => {}
- // Remap early-bound regions as long as they don't come from the `impl` itself.
- ty::ReEarlyBound(ebr) if tcx.parent(ebr.def_id) != impl_m.container_id(tcx) => {}
- _ => return region,
- }
- let Some(ty::ReEarlyBound(e)) = map.get(&region.into()).map(|r| r.expect_region().kind())
- else {
- tcx
- .sess
- .delay_span_bug(
- return_span,
- "expected ReFree to map to ReEarlyBound"
- );
- return tcx.lifetimes.re_static;
- };
- tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
- def_id: e.def_id,
- name: e.name,
- index: (e.index as usize - num_trait_substs + num_impl_substs) as u32,
- }))
- });
- debug!(%ty);
- collected_tys.insert(def_id, ty);
- }
- Err(err) => {
- let reported = tcx.sess.delay_span_bug(
- return_span,
- format!("could not fully resolve: {ty} => {err:?}"),
- );
- collected_tys.insert(def_id, tcx.ty_error_with_guaranteed(reported));
- }
- }
- }
-
- Ok(&*tcx.arena.alloc(collected_tys))
-}
-
-struct ImplTraitInTraitCollector<'a, 'tcx> {
- ocx: &'a ObligationCtxt<'a, 'tcx>,
- types: FxHashMap<DefId, (Ty<'tcx>, ty::SubstsRef<'tcx>)>,
- span: Span,
- param_env: ty::ParamEnv<'tcx>,
- body_id: hir::HirId,
-}
-
-impl<'a, 'tcx> ImplTraitInTraitCollector<'a, 'tcx> {
- fn new(
- ocx: &'a ObligationCtxt<'a, 'tcx>,
- span: Span,
- param_env: ty::ParamEnv<'tcx>,
- body_id: hir::HirId,
- ) -> Self {
- ImplTraitInTraitCollector { ocx, types: FxHashMap::default(), span, param_env, body_id }
- }
-}
-
-impl<'tcx> TypeFolder<'tcx> for ImplTraitInTraitCollector<'_, 'tcx> {
- fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
- self.ocx.infcx.tcx
- }
-
- fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
- if let ty::Projection(proj) = ty.kind()
- && self.tcx().def_kind(proj.item_def_id) == DefKind::ImplTraitPlaceholder
- {
- if let Some((ty, _)) = self.types.get(&proj.item_def_id) {
- return *ty;
- }
- //FIXME(RPITIT): Deny nested RPITIT in substs too
- if proj.substs.has_escaping_bound_vars() {
- bug!("FIXME(RPITIT): error here");
- }
- // Replace with infer var
- let infer_ty = self.ocx.infcx.next_ty_var(TypeVariableOrigin {
- span: self.span,
- kind: TypeVariableOriginKind::MiscVariable,
- });
- self.types.insert(proj.item_def_id, (infer_ty, proj.substs));
- // Recurse into bounds
- for (pred, pred_span) in self.tcx().bound_explicit_item_bounds(proj.item_def_id).subst_iter_copied(self.tcx(), proj.substs) {
- let pred = pred.fold_with(self);
- let pred = self.ocx.normalize(
- &ObligationCause::misc(self.span, self.body_id),
- self.param_env,
- pred,
- );
-
- self.ocx.register_obligation(traits::Obligation::new(
- self.tcx(),
- ObligationCause::new(
- self.span,
- self.body_id,
- ObligationCauseCode::BindingObligation(proj.item_def_id, pred_span),
- ),
- self.param_env,
- pred,
- ));
- }
- infer_ty
- } else {
- ty.super_fold_with(self)
- }
- }
-}
-
-fn report_trait_method_mismatch<'tcx>(
- infcx: &InferCtxt<'tcx>,
- mut cause: ObligationCause<'tcx>,
- terr: TypeError<'tcx>,
- (trait_m, trait_fty): (&ty::AssocItem, Ty<'tcx>),
- (impl_m, impl_fty): (&ty::AssocItem, Ty<'tcx>),
- trait_sig: ty::FnSig<'tcx>,
- impl_trait_ref: ty::TraitRef<'tcx>,
-) -> ErrorGuaranteed {
- let tcx = infcx.tcx;
- let (impl_err_span, trait_err_span) =
- extract_spans_for_error_reporting(&infcx, terr, &cause, impl_m, trait_m);
-
- let mut diag = struct_span_err!(
- tcx.sess,
- impl_err_span,
- E0053,
- "method `{}` has an incompatible type for trait",
- trait_m.name
- );
- match &terr {
- TypeError::ArgumentMutability(0) | TypeError::ArgumentSorts(_, 0)
- if trait_m.fn_has_self_parameter =>
- {
- let ty = trait_sig.inputs()[0];
- let sugg = match ExplicitSelf::determine(ty, |_| ty == impl_trait_ref.self_ty()) {
- ExplicitSelf::ByValue => "self".to_owned(),
- ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
- ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
- _ => format!("self: {ty}"),
- };
-
- // When the `impl` receiver is an arbitrary self type, like `self: Box<Self>`, the
- // span points only at the type `Box<Self`>, but we want to cover the whole
- // argument pattern and type.
- let span = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
- ImplItemKind::Fn(ref sig, body) => tcx
- .hir()
- .body_param_names(body)
- .zip(sig.decl.inputs.iter())
- .map(|(param, ty)| param.span.to(ty.span))
- .next()
- .unwrap_or(impl_err_span),
- _ => bug!("{:?} is not a method", impl_m),
- };
-
- diag.span_suggestion(
- span,
- "change the self-receiver type to match the trait",
- sugg,
- Applicability::MachineApplicable,
- );
- }
- TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(_, i) => {
- if trait_sig.inputs().len() == *i {
- // Suggestion to change output type. We do not suggest in `async` functions
- // to avoid complex logic or incorrect output.
- match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
- ImplItemKind::Fn(ref sig, _) if !sig.header.asyncness.is_async() => {
- let msg = "change the output type to match the trait";
- let ap = Applicability::MachineApplicable;
- match sig.decl.output {
- hir::FnRetTy::DefaultReturn(sp) => {
- let sugg = format!("-> {} ", trait_sig.output());
- diag.span_suggestion_verbose(sp, msg, sugg, ap);
- }
- hir::FnRetTy::Return(hir_ty) => {
- let sugg = trait_sig.output();
- diag.span_suggestion(hir_ty.span, msg, sugg, ap);
- }
- };
- }
- _ => {}
- };
- } else if let Some(trait_ty) = trait_sig.inputs().get(*i) {
- diag.span_suggestion(
- impl_err_span,
- "change the parameter type to match the trait",
- trait_ty,
- Applicability::MachineApplicable,
- );
- }
- }
- _ => {}
- }
-
- cause.span = impl_err_span;
- infcx.err_ctxt().note_type_err(
- &mut diag,
- &cause,
- trait_err_span.map(|sp| (sp, "type in trait".to_owned())),
- Some(infer::ValuePairs::Terms(ExpectedFound {
- expected: trait_fty.into(),
- found: impl_fty.into(),
- })),
- terr,
- false,
- false,
- );
-
- return diag.emit();
-}
-
-fn check_region_bounds_on_impl_item<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_m: &ty::AssocItem,
- trait_m: &ty::AssocItem,
- delay: bool,
-) -> Result<(), ErrorGuaranteed> {
- let impl_generics = tcx.generics_of(impl_m.def_id);
- let impl_params = impl_generics.own_counts().lifetimes;
-
- let trait_generics = tcx.generics_of(trait_m.def_id);
- let trait_params = trait_generics.own_counts().lifetimes;
-
- debug!(
- "check_region_bounds_on_impl_item: \
- trait_generics={:?} \
- impl_generics={:?}",
- trait_generics, impl_generics
- );
-
- // Must have same number of early-bound lifetime parameters.
- // Unfortunately, if the user screws up the bounds, then this
- // will change classification between early and late. E.g.,
- // if in trait we have `<'a,'b:'a>`, and in impl we just have
- // `<'a,'b>`, then we have 2 early-bound lifetime parameters
- // in trait but 0 in the impl. But if we report "expected 2
- // but found 0" it's confusing, because it looks like there
- // are zero. Since I don't quite know how to phrase things at
- // the moment, give a kind of vague error message.
- if trait_params != impl_params {
- let span = tcx
- .hir()
- .get_generics(impl_m.def_id.expect_local())
- .expect("expected impl item to have generics or else we can't compare them")
- .span;
-
- let mut generics_span = None;
- let mut bounds_span = vec![];
- let mut where_span = None;
- if let Some(trait_node) = tcx.hir().get_if_local(trait_m.def_id)
- && let Some(trait_generics) = trait_node.generics()
- {
- generics_span = Some(trait_generics.span);
- // FIXME: we could potentially look at the impl's bounds to not point at bounds that
- // *are* present in the impl.
- for p in trait_generics.predicates {
- if let hir::WherePredicate::BoundPredicate(pred) = p {
- for b in pred.bounds {
- if let hir::GenericBound::Outlives(lt) = b {
- bounds_span.push(lt.ident.span);
- }
- }
- }
- }
- if let Some(impl_node) = tcx.hir().get_if_local(impl_m.def_id)
- && let Some(impl_generics) = impl_node.generics()
- {
- let mut impl_bounds = 0;
- for p in impl_generics.predicates {
- if let hir::WherePredicate::BoundPredicate(pred) = p {
- for b in pred.bounds {
- if let hir::GenericBound::Outlives(_) = b {
- impl_bounds += 1;
- }
- }
- }
- }
- if impl_bounds == bounds_span.len() {
- bounds_span = vec![];
- } else if impl_generics.has_where_clause_predicates {
- where_span = Some(impl_generics.where_clause_span);
- }
- }
- }
- let reported = tcx
- .sess
- .create_err(LifetimesOrBoundsMismatchOnTrait {
- span,
- item_kind: assoc_item_kind_str(impl_m),
- ident: impl_m.ident(tcx),
- generics_span,
- bounds_span,
- where_span,
- })
- .emit_unless(delay);
- return Err(reported);
- }
-
- Ok(())
-}
-
-#[instrument(level = "debug", skip(infcx))]
-fn extract_spans_for_error_reporting<'tcx>(
- infcx: &infer::InferCtxt<'tcx>,
- terr: TypeError<'_>,
- cause: &ObligationCause<'tcx>,
- impl_m: &ty::AssocItem,
- trait_m: &ty::AssocItem,
-) -> (Span, Option<Span>) {
- let tcx = infcx.tcx;
- let mut impl_args = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
- ImplItemKind::Fn(ref sig, _) => {
- sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
- }
- _ => bug!("{:?} is not a method", impl_m),
- };
- let trait_args =
- trait_m.def_id.as_local().map(|def_id| match tcx.hir().expect_trait_item(def_id).kind {
- TraitItemKind::Fn(ref sig, _) => {
- sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
- }
- _ => bug!("{:?} is not a TraitItemKind::Fn", trait_m),
- });
-
- match terr {
- TypeError::ArgumentMutability(i) => {
- (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
- }
- TypeError::ArgumentSorts(ExpectedFound { .. }, i) => {
- (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
- }
- _ => (cause.span(), tcx.hir().span_if_local(trait_m.def_id)),
- }
-}
-
-fn compare_self_type<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_m: &ty::AssocItem,
- impl_m_span: Span,
- trait_m: &ty::AssocItem,
- impl_trait_ref: ty::TraitRef<'tcx>,
-) -> Result<(), ErrorGuaranteed> {
- // Try to give more informative error messages about self typing
- // mismatches. Note that any mismatch will also be detected
- // below, where we construct a canonical function type that
- // includes the self parameter as a normal parameter. It's just
- // that the error messages you get out of this code are a bit more
- // inscrutable, particularly for cases where one method has no
- // self.
-
- let self_string = |method: &ty::AssocItem| {
- let untransformed_self_ty = match method.container {
- ty::ImplContainer => impl_trait_ref.self_ty(),
- ty::TraitContainer => tcx.types.self_param,
- };
- let self_arg_ty = tcx.fn_sig(method.def_id).input(0);
- let param_env = ty::ParamEnv::reveal_all();
-
- let infcx = tcx.infer_ctxt().build();
- let self_arg_ty = tcx.liberate_late_bound_regions(method.def_id, self_arg_ty);
- let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty).is_ok();
- match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
- ExplicitSelf::ByValue => "self".to_owned(),
- ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
- ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
- _ => format!("self: {self_arg_ty}"),
- }
- };
-
- match (trait_m.fn_has_self_parameter, impl_m.fn_has_self_parameter) {
- (false, false) | (true, true) => {}
-
- (false, true) => {
- let self_descr = self_string(impl_m);
- let mut err = struct_span_err!(
- tcx.sess,
- impl_m_span,
- E0185,
- "method `{}` has a `{}` declaration in the impl, but not in the trait",
- trait_m.name,
- self_descr
- );
- err.span_label(impl_m_span, format!("`{self_descr}` used in impl"));
- if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
- err.span_label(span, format!("trait method declared without `{self_descr}`"));
- } else {
- err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
- }
- let reported = err.emit();
- return Err(reported);
- }
-
- (true, false) => {
- let self_descr = self_string(trait_m);
- let mut err = struct_span_err!(
- tcx.sess,
- impl_m_span,
- E0186,
- "method `{}` has a `{}` declaration in the trait, but not in the impl",
- trait_m.name,
- self_descr
- );
- err.span_label(impl_m_span, format!("expected `{self_descr}` in impl"));
- if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
- err.span_label(span, format!("`{self_descr}` used in trait"));
- } else {
- err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
- }
- let reported = err.emit();
- return Err(reported);
- }
- }
-
- Ok(())
-}
-
-/// Checks that the number of generics on a given assoc item in a trait impl is the same
-/// as the number of generics on the respective assoc item in the trait definition.
-///
-/// For example this code emits the errors in the following code:
-/// ```
-/// trait Trait {
-/// fn foo();
-/// type Assoc<T>;
-/// }
-///
-/// impl Trait for () {
-/// fn foo<T>() {}
-/// //~^ error
-/// type Assoc = u32;
-/// //~^ error
-/// }
-/// ```
-///
-/// Notably this does not error on `foo<T>` implemented as `foo<const N: u8>` or
-/// `foo<const N: u8>` implemented as `foo<const N: u32>`. This is handled in
-/// [`compare_generic_param_kinds`]. This function also does not handle lifetime parameters
-fn compare_number_of_generics<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_: &ty::AssocItem,
- trait_: &ty::AssocItem,
- trait_span: Option<Span>,
- delay: bool,
-) -> Result<(), ErrorGuaranteed> {
- let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
- let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();
-
- // This avoids us erroring on `foo<T>` implemented as `foo<const N: u8>` as this is implemented
- // in `compare_generic_param_kinds` which will give a nicer error message than something like:
- // "expected 1 type parameter, found 0 type parameters"
- if (trait_own_counts.types + trait_own_counts.consts)
- == (impl_own_counts.types + impl_own_counts.consts)
- {
- return Ok(());
- }
-
- let matchings = [
- ("type", trait_own_counts.types, impl_own_counts.types),
- ("const", trait_own_counts.consts, impl_own_counts.consts),
- ];
-
- let item_kind = assoc_item_kind_str(impl_);
-
- let mut err_occurred = None;
- for (kind, trait_count, impl_count) in matchings {
- if impl_count != trait_count {
- let arg_spans = |kind: ty::AssocKind, generics: &hir::Generics<'_>| {
- let mut spans = generics
- .params
- .iter()
- .filter(|p| match p.kind {
- hir::GenericParamKind::Lifetime {
- kind: hir::LifetimeParamKind::Elided,
- } => {
- // A fn can have an arbitrary number of extra elided lifetimes for the
- // same signature.
- !matches!(kind, ty::AssocKind::Fn)
- }
- _ => true,
- })
- .map(|p| p.span)
- .collect::<Vec<Span>>();
- if spans.is_empty() {
- spans = vec![generics.span]
- }
- spans
- };
- let (trait_spans, impl_trait_spans) = if let Some(def_id) = trait_.def_id.as_local() {
- let trait_item = tcx.hir().expect_trait_item(def_id);
- let arg_spans: Vec<Span> = arg_spans(trait_.kind, trait_item.generics);
- let impl_trait_spans: Vec<Span> = trait_item
- .generics
- .params
- .iter()
- .filter_map(|p| match p.kind {
- GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
- _ => None,
- })
- .collect();
- (Some(arg_spans), impl_trait_spans)
- } else {
- (trait_span.map(|s| vec![s]), vec![])
- };
-
- let impl_item = tcx.hir().expect_impl_item(impl_.def_id.expect_local());
- let impl_item_impl_trait_spans: Vec<Span> = impl_item
- .generics
- .params
- .iter()
- .filter_map(|p| match p.kind {
- GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
- _ => None,
- })
- .collect();
- let spans = arg_spans(impl_.kind, impl_item.generics);
- let span = spans.first().copied();
-
- let mut err = tcx.sess.struct_span_err_with_code(
- spans,
- &format!(
- "{} `{}` has {} {kind} parameter{} but its trait \
- declaration has {} {kind} parameter{}",
- item_kind,
- trait_.name,
- impl_count,
- pluralize!(impl_count),
- trait_count,
- pluralize!(trait_count),
- kind = kind,
- ),
- DiagnosticId::Error("E0049".into()),
- );
-
- let mut suffix = None;
-
- if let Some(spans) = trait_spans {
- let mut spans = spans.iter();
- if let Some(span) = spans.next() {
- err.span_label(
- *span,
- format!(
- "expected {} {} parameter{}",
- trait_count,
- kind,
- pluralize!(trait_count),
- ),
- );
- }
- for span in spans {
- err.span_label(*span, "");
- }
- } else {
- suffix = Some(format!(", expected {trait_count}"));
- }
-
- if let Some(span) = span {
- err.span_label(
- span,
- format!(
- "found {} {} parameter{}{}",
- impl_count,
- kind,
- pluralize!(impl_count),
- suffix.unwrap_or_else(String::new),
- ),
- );
- }
-
- for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
- err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
- }
-
- let reported = err.emit_unless(delay);
- err_occurred = Some(reported);
- }
- }
-
- if let Some(reported) = err_occurred { Err(reported) } else { Ok(()) }
-}
-
-fn compare_number_of_method_arguments<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_m: &ty::AssocItem,
- impl_m_span: Span,
- trait_m: &ty::AssocItem,
- trait_item_span: Option<Span>,
-) -> Result<(), ErrorGuaranteed> {
- let impl_m_fty = tcx.fn_sig(impl_m.def_id);
- let trait_m_fty = tcx.fn_sig(trait_m.def_id);
- let trait_number_args = trait_m_fty.inputs().skip_binder().len();
- let impl_number_args = impl_m_fty.inputs().skip_binder().len();
- if trait_number_args != impl_number_args {
- let trait_span = if let Some(def_id) = trait_m.def_id.as_local() {
- match tcx.hir().expect_trait_item(def_id).kind {
- TraitItemKind::Fn(ref trait_m_sig, _) => {
- let pos = if trait_number_args > 0 { trait_number_args - 1 } else { 0 };
- if let Some(arg) = trait_m_sig.decl.inputs.get(pos) {
- Some(if pos == 0 {
- arg.span
- } else {
- arg.span.with_lo(trait_m_sig.decl.inputs[0].span.lo())
- })
- } else {
- trait_item_span
- }
- }
- _ => bug!("{:?} is not a method", impl_m),
- }
- } else {
- trait_item_span
- };
- let impl_span = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
- ImplItemKind::Fn(ref impl_m_sig, _) => {
- let pos = if impl_number_args > 0 { impl_number_args - 1 } else { 0 };
- if let Some(arg) = impl_m_sig.decl.inputs.get(pos) {
- if pos == 0 {
- arg.span
- } else {
- arg.span.with_lo(impl_m_sig.decl.inputs[0].span.lo())
- }
- } else {
- impl_m_span
- }
- }
- _ => bug!("{:?} is not a method", impl_m),
- };
- let mut err = struct_span_err!(
- tcx.sess,
- impl_span,
- E0050,
- "method `{}` has {} but the declaration in trait `{}` has {}",
- trait_m.name,
- potentially_plural_count(impl_number_args, "parameter"),
- tcx.def_path_str(trait_m.def_id),
- trait_number_args
- );
- if let Some(trait_span) = trait_span {
- err.span_label(
- trait_span,
- format!(
- "trait requires {}",
- potentially_plural_count(trait_number_args, "parameter")
- ),
- );
- } else {
- err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
- }
- err.span_label(
- impl_span,
- format!(
- "expected {}, found {}",
- potentially_plural_count(trait_number_args, "parameter"),
- impl_number_args
- ),
- );
- let reported = err.emit();
- return Err(reported);
- }
-
- Ok(())
-}
-
-fn compare_synthetic_generics<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_m: &ty::AssocItem,
- trait_m: &ty::AssocItem,
-) -> Result<(), ErrorGuaranteed> {
- // FIXME(chrisvittal) Clean up this function, list of FIXME items:
- // 1. Better messages for the span labels
- // 2. Explanation as to what is going on
- // If we get here, we already have the same number of generics, so the zip will
- // be okay.
- let mut error_found = None;
- let impl_m_generics = tcx.generics_of(impl_m.def_id);
- let trait_m_generics = tcx.generics_of(trait_m.def_id);
- let impl_m_type_params = impl_m_generics.params.iter().filter_map(|param| match param.kind {
- GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
- GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
- });
- let trait_m_type_params = trait_m_generics.params.iter().filter_map(|param| match param.kind {
- GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
- GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
- });
- for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
- iter::zip(impl_m_type_params, trait_m_type_params)
- {
- if impl_synthetic != trait_synthetic {
- let impl_def_id = impl_def_id.expect_local();
- let impl_span = tcx.def_span(impl_def_id);
- let trait_span = tcx.def_span(trait_def_id);
- let mut err = struct_span_err!(
- tcx.sess,
- impl_span,
- E0643,
- "method `{}` has incompatible signature for trait",
- trait_m.name
- );
- err.span_label(trait_span, "declaration in trait here");
- match (impl_synthetic, trait_synthetic) {
- // The case where the impl method uses `impl Trait` but the trait method uses
- // explicit generics
- (true, false) => {
- err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
- (|| {
- // try taking the name from the trait impl
- // FIXME: this is obviously suboptimal since the name can already be used
- // as another generic argument
- let new_name = tcx.opt_item_name(trait_def_id)?;
- let trait_m = trait_m.def_id.as_local()?;
- let trait_m = tcx.hir().expect_trait_item(trait_m);
-
- let impl_m = impl_m.def_id.as_local()?;
- let impl_m = tcx.hir().expect_impl_item(impl_m);
-
- // in case there are no generics, take the spot between the function name
- // and the opening paren of the argument list
- let new_generics_span = tcx.def_ident_span(impl_def_id)?.shrink_to_hi();
- // in case there are generics, just replace them
- let generics_span =
- impl_m.generics.span.substitute_dummy(new_generics_span);
- // replace with the generics from the trait
- let new_generics =
- tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;
-
- err.multipart_suggestion(
- "try changing the `impl Trait` argument to a generic parameter",
- vec![
- // replace `impl Trait` with `T`
- (impl_span, new_name.to_string()),
- // replace impl method generics with trait method generics
- // This isn't quite right, as users might have changed the names
- // of the generics, but it works for the common case
- (generics_span, new_generics),
- ],
- Applicability::MaybeIncorrect,
- );
- Some(())
- })();
- }
- // The case where the trait method uses `impl Trait`, but the impl method uses
- // explicit generics.
- (false, true) => {
- err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
- (|| {
- let impl_m = impl_m.def_id.as_local()?;
- let impl_m = tcx.hir().expect_impl_item(impl_m);
- let input_tys = match impl_m.kind {
- hir::ImplItemKind::Fn(ref sig, _) => sig.decl.inputs,
- _ => unreachable!(),
- };
- struct Visitor(Option<Span>, hir::def_id::LocalDefId);
- impl<'v> intravisit::Visitor<'v> for Visitor {
- fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
- intravisit::walk_ty(self, ty);
- if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) =
- ty.kind
- && let Res::Def(DefKind::TyParam, def_id) = path.res
- && def_id == self.1.to_def_id()
- {
- self.0 = Some(ty.span);
- }
- }
- }
- let mut visitor = Visitor(None, impl_def_id);
- for ty in input_tys {
- intravisit::Visitor::visit_ty(&mut visitor, ty);
- }
- let span = visitor.0?;
-
- let bounds = impl_m.generics.bounds_for_param(impl_def_id).next()?.bounds;
- let bounds = bounds.first()?.span().to(bounds.last()?.span());
- let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;
-
- err.multipart_suggestion(
- "try removing the generic parameter and using `impl Trait` instead",
- vec![
- // delete generic parameters
- (impl_m.generics.span, String::new()),
- // replace param usage with `impl Trait`
- (span, format!("impl {bounds}")),
- ],
- Applicability::MaybeIncorrect,
- );
- Some(())
- })();
- }
- _ => unreachable!(),
- }
- let reported = err.emit();
- error_found = Some(reported);
- }
- }
- if let Some(reported) = error_found { Err(reported) } else { Ok(()) }
-}
-
-/// Checks that all parameters in the generics of a given assoc item in a trait impl have
-/// the same kind as the respective generic parameter in the trait def.
-///
-/// For example all 4 errors in the following code are emitted here:
-/// ```
-/// trait Foo {
-/// fn foo<const N: u8>();
-/// type bar<const N: u8>;
-/// fn baz<const N: u32>();
-/// type blah<T>;
-/// }
-///
-/// impl Foo for () {
-/// fn foo<const N: u64>() {}
-/// //~^ error
-/// type bar<const N: u64> {}
-/// //~^ error
-/// fn baz<T>() {}
-/// //~^ error
-/// type blah<const N: i64> = u32;
-/// //~^ error
-/// }
-/// ```
-///
-/// This function does not handle lifetime parameters
-fn compare_generic_param_kinds<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_item: &ty::AssocItem,
- trait_item: &ty::AssocItem,
- delay: bool,
-) -> Result<(), ErrorGuaranteed> {
- assert_eq!(impl_item.kind, trait_item.kind);
-
- let ty_const_params_of = |def_id| {
- tcx.generics_of(def_id).params.iter().filter(|param| {
- matches!(
- param.kind,
- GenericParamDefKind::Const { .. } | GenericParamDefKind::Type { .. }
- )
- })
- };
-
- for (param_impl, param_trait) in
- iter::zip(ty_const_params_of(impl_item.def_id), ty_const_params_of(trait_item.def_id))
- {
- use GenericParamDefKind::*;
- if match (&param_impl.kind, &param_trait.kind) {
- (Const { .. }, Const { .. })
- if tcx.type_of(param_impl.def_id) != tcx.type_of(param_trait.def_id) =>
- {
- true
- }
- (Const { .. }, Type { .. }) | (Type { .. }, Const { .. }) => true,
- // this is exhaustive so that anyone adding new generic param kinds knows
- // to make sure this error is reported for them.
- (Const { .. }, Const { .. }) | (Type { .. }, Type { .. }) => false,
- (Lifetime { .. }, _) | (_, Lifetime { .. }) => unreachable!(),
- } {
- let param_impl_span = tcx.def_span(param_impl.def_id);
- let param_trait_span = tcx.def_span(param_trait.def_id);
-
- let mut err = struct_span_err!(
- tcx.sess,
- param_impl_span,
- E0053,
- "{} `{}` has an incompatible generic parameter for trait `{}`",
- assoc_item_kind_str(&impl_item),
- trait_item.name,
- &tcx.def_path_str(tcx.parent(trait_item.def_id))
- );
-
- let make_param_message = |prefix: &str, param: &ty::GenericParamDef| match param.kind {
- Const { .. } => {
- format!("{} const parameter of type `{}`", prefix, tcx.type_of(param.def_id))
- }
- Type { .. } => format!("{} type parameter", prefix),
- Lifetime { .. } => unreachable!(),
- };
-
- let trait_header_span = tcx.def_ident_span(tcx.parent(trait_item.def_id)).unwrap();
- err.span_label(trait_header_span, "");
- err.span_label(param_trait_span, make_param_message("expected", param_trait));
-
- let impl_header_span = tcx.def_span(tcx.parent(impl_item.def_id));
- err.span_label(impl_header_span, "");
- err.span_label(param_impl_span, make_param_message("found", param_impl));
-
- let reported = err.emit_unless(delay);
- return Err(reported);
- }
- }
-
- Ok(())
-}
-
-/// Use `tcx.compare_assoc_const_impl_item_with_trait_item` instead
-pub(crate) fn raw_compare_const_impl<'tcx>(
- tcx: TyCtxt<'tcx>,
- (impl_const_item_def, trait_const_item_def): (LocalDefId, DefId),
-) -> Result<(), ErrorGuaranteed> {
- let impl_const_item = tcx.associated_item(impl_const_item_def);
- let trait_const_item = tcx.associated_item(trait_const_item_def);
- let impl_trait_ref = tcx.impl_trait_ref(impl_const_item.container_id(tcx)).unwrap();
- debug!("compare_const_impl(impl_trait_ref={:?})", impl_trait_ref);
-
- let impl_c_span = tcx.def_span(impl_const_item_def.to_def_id());
-
- let infcx = tcx.infer_ctxt().build();
- let param_env = tcx.param_env(impl_const_item_def.to_def_id());
- let ocx = ObligationCtxt::new(&infcx);
-
- // The below is for the most part highly similar to the procedure
- // for methods above. It is simpler in many respects, especially
- // because we shouldn't really have to deal with lifetimes or
- // predicates. In fact some of this should probably be put into
- // shared functions because of DRY violations...
- let trait_to_impl_substs = impl_trait_ref.substs;
-
- // Create a parameter environment that represents the implementation's
- // method.
- let impl_c_hir_id = tcx.hir().local_def_id_to_hir_id(impl_const_item_def);
-
- // Compute placeholder form of impl and trait const tys.
- let impl_ty = tcx.type_of(impl_const_item_def.to_def_id());
- let trait_ty = tcx.bound_type_of(trait_const_item_def).subst(tcx, trait_to_impl_substs);
- let mut cause = ObligationCause::new(
- impl_c_span,
- impl_c_hir_id,
- ObligationCauseCode::CompareImplItemObligation {
- impl_item_def_id: impl_const_item_def,
- trait_item_def_id: trait_const_item_def,
- kind: impl_const_item.kind,
- },
- );
-
- // There is no "body" here, so just pass dummy id.
- let impl_ty = ocx.normalize(&cause, param_env, impl_ty);
-
- debug!("compare_const_impl: impl_ty={:?}", impl_ty);
-
- let trait_ty = ocx.normalize(&cause, param_env, trait_ty);
-
- debug!("compare_const_impl: trait_ty={:?}", trait_ty);
-
- let err = ocx.sup(&cause, param_env, trait_ty, impl_ty);
-
- if let Err(terr) = err {
- debug!(
- "checking associated const for compatibility: impl ty {:?}, trait ty {:?}",
- impl_ty, trait_ty
- );
-
- // Locate the Span containing just the type of the offending impl
- match tcx.hir().expect_impl_item(impl_const_item_def).kind {
- ImplItemKind::Const(ref ty, _) => cause.span = ty.span,
- _ => bug!("{:?} is not a impl const", impl_const_item),
- }
-
- let mut diag = struct_span_err!(
- tcx.sess,
- cause.span,
- E0326,
- "implemented const `{}` has an incompatible type for trait",
- trait_const_item.name
- );
-
- let trait_c_span = trait_const_item_def.as_local().map(|trait_c_def_id| {
- // Add a label to the Span containing just the type of the const
- match tcx.hir().expect_trait_item(trait_c_def_id).kind {
- TraitItemKind::Const(ref ty, _) => ty.span,
- _ => bug!("{:?} is not a trait const", trait_const_item),
- }
- });
-
- infcx.err_ctxt().note_type_err(
- &mut diag,
- &cause,
- trait_c_span.map(|span| (span, "type in trait".to_owned())),
- Some(infer::ValuePairs::Terms(ExpectedFound {
- expected: trait_ty.into(),
- found: impl_ty.into(),
- })),
- terr,
- false,
- false,
- );
- return Err(diag.emit());
- };
-
- // Check that all obligations are satisfied by the implementation's
- // version.
- let errors = ocx.select_all_or_error();
- if !errors.is_empty() {
- return Err(infcx.err_ctxt().report_fulfillment_errors(&errors, None));
- }
-
- // FIXME return `ErrorReported` if region obligations error?
- let outlives_environment = OutlivesEnvironment::new(param_env);
- infcx.check_region_obligations_and_report_errors(impl_const_item_def, &outlives_environment);
- Ok(())
-}
-
-pub(crate) fn compare_ty_impl<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_ty: &ty::AssocItem,
- impl_ty_span: Span,
- trait_ty: &ty::AssocItem,
- impl_trait_ref: ty::TraitRef<'tcx>,
- trait_item_span: Option<Span>,
-) {
- debug!("compare_impl_type(impl_trait_ref={:?})", impl_trait_ref);
-
- let _: Result<(), ErrorGuaranteed> = (|| {
- compare_number_of_generics(tcx, impl_ty, trait_ty, trait_item_span, false)?;
-
- compare_generic_param_kinds(tcx, impl_ty, trait_ty, false)?;
-
- let sp = tcx.def_span(impl_ty.def_id);
- compare_type_predicate_entailment(tcx, impl_ty, sp, trait_ty, impl_trait_ref)?;
-
- check_type_bounds(tcx, trait_ty, impl_ty, impl_ty_span, impl_trait_ref)
- })();
-}
-
-/// The equivalent of [compare_predicate_entailment], but for associated types
-/// instead of associated functions.
-fn compare_type_predicate_entailment<'tcx>(
- tcx: TyCtxt<'tcx>,
- impl_ty: &ty::AssocItem,
- impl_ty_span: Span,
- trait_ty: &ty::AssocItem,
- impl_trait_ref: ty::TraitRef<'tcx>,
-) -> Result<(), ErrorGuaranteed> {
- let impl_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
- let trait_to_impl_substs =
- impl_substs.rebase_onto(tcx, impl_ty.container_id(tcx), impl_trait_ref.substs);
-
- let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
- let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);
-
- check_region_bounds_on_impl_item(tcx, impl_ty, trait_ty, false)?;
-
- let impl_ty_own_bounds = impl_ty_predicates.instantiate_own(tcx, impl_substs);
-
- if impl_ty_own_bounds.is_empty() {
- // Nothing to check.
- return Ok(());
- }
-
- // This `HirId` should be used for the `body_id` field on each
- // `ObligationCause` (and the `FnCtxt`). This is what
- // `regionck_item` expects.
- let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
- debug!("compare_type_predicate_entailment: trait_to_impl_substs={:?}", trait_to_impl_substs);
-
- // The predicates declared by the impl definition, the trait and the
- // associated type in the trait are assumed.
- let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
- let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
- hybrid_preds
- .predicates
- .extend(trait_ty_predicates.instantiate_own(tcx, trait_to_impl_substs).predicates);
-
- debug!("compare_type_predicate_entailment: bounds={:?}", hybrid_preds);
-
- let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_hir_id);
- let param_env = ty::ParamEnv::new(
- tcx.intern_predicates(&hybrid_preds.predicates),
- Reveal::UserFacing,
- hir::Constness::NotConst,
- );
- let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
- let infcx = tcx.infer_ctxt().build();
- let ocx = ObligationCtxt::new(&infcx);
-
- debug!("compare_type_predicate_entailment: caller_bounds={:?}", param_env.caller_bounds());
-
- assert_eq!(impl_ty_own_bounds.predicates.len(), impl_ty_own_bounds.spans.len());
- for (span, predicate) in std::iter::zip(impl_ty_own_bounds.spans, impl_ty_own_bounds.predicates)
- {
- let cause = ObligationCause::misc(span, impl_ty_hir_id);
- let predicate = ocx.normalize(&cause, param_env, predicate);
-
- let cause = ObligationCause::new(
- span,
- impl_ty_hir_id,
- ObligationCauseCode::CompareImplItemObligation {
- impl_item_def_id: impl_ty.def_id.expect_local(),
- trait_item_def_id: trait_ty.def_id,
- kind: impl_ty.kind,
- },
- );
- ocx.register_obligation(traits::Obligation::new(tcx, cause, param_env, predicate));
- }
-
- // Check that all obligations are satisfied by the implementation's
- // version.
- let errors = ocx.select_all_or_error();
- if !errors.is_empty() {
- let reported = infcx.err_ctxt().report_fulfillment_errors(&errors, None);
- return Err(reported);
- }
-
- // Finally, resolve all regions. This catches wily misuses of
- // lifetime parameters.
- let outlives_environment = OutlivesEnvironment::new(param_env);
- infcx.check_region_obligations_and_report_errors(
- impl_ty.def_id.expect_local(),
- &outlives_environment,
- );
-
- Ok(())
-}
-
-/// Validate that `ProjectionCandidate`s created for this associated type will
-/// be valid.
-///
-/// Usually given
-///
-/// trait X { type Y: Copy } impl X for T { type Y = S; }
-///
-/// We are able to normalize `<T as X>::U` to `S`, and so when we check the
-/// impl is well-formed we have to prove `S: Copy`.
-///
-/// For default associated types the normalization is not possible (the value
-/// from the impl could be overridden). We also can't normalize generic
-/// associated types (yet) because they contain bound parameters.
-#[instrument(level = "debug", skip(tcx))]
-pub fn check_type_bounds<'tcx>(
- tcx: TyCtxt<'tcx>,
- trait_ty: &ty::AssocItem,
- impl_ty: &ty::AssocItem,
- impl_ty_span: Span,
- impl_trait_ref: ty::TraitRef<'tcx>,
-) -> Result<(), ErrorGuaranteed> {
- // Given
- //
- // impl<A, B> Foo<u32> for (A, B) {
- // type Bar<C> =...
- // }
- //
- // - `impl_trait_ref` would be `<(A, B) as Foo<u32>>
- // - `impl_ty_substs` would be `[A, B, ^0.0]` (`^0.0` here is the bound var with db 0 and index 0)
- // - `rebased_substs` would be `[(A, B), u32, ^0.0]`, combining the substs from
- // the *trait* with the generic associated type parameters (as bound vars).
- //
- // A note regarding the use of bound vars here:
- // Imagine as an example
- // ```
- // trait Family {
- // type Member<C: Eq>;
- // }
- //
- // impl Family for VecFamily {
- // type Member<C: Eq> = i32;
- // }
- // ```
- // Here, we would generate
- // ```notrust
- // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) }
- // ```
- // when we really would like to generate
- // ```notrust
- // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) :- Implemented(C: Eq) }
- // ```
- // But, this is probably fine, because although the first clause can be used with types C that
- // do not implement Eq, for it to cause some kind of problem, there would have to be a
- // VecFamily::Member<X> for some type X where !(X: Eq), that appears in the value of type
- // Member<C: Eq> = .... That type would fail a well-formedness check that we ought to be doing
- // elsewhere, which would check that any <T as Family>::Member<X> meets the bounds declared in
- // the trait (notably, that X: Eq and T: Family).
- let defs: &ty::Generics = tcx.generics_of(impl_ty.def_id);
- let mut substs = smallvec::SmallVec::with_capacity(defs.count());
- if let Some(def_id) = defs.parent {
- let parent_defs = tcx.generics_of(def_id);
- InternalSubsts::fill_item(&mut substs, tcx, parent_defs, &mut |param, _| {
- tcx.mk_param_from_def(param)
- });
- }
- let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
- smallvec::SmallVec::with_capacity(defs.count());
- InternalSubsts::fill_single(&mut substs, defs, &mut |param, _| match param.kind {
- GenericParamDefKind::Type { .. } => {
- let kind = ty::BoundTyKind::Param(param.name);
- let bound_var = ty::BoundVariableKind::Ty(kind);
- bound_vars.push(bound_var);
- tcx.mk_ty(ty::Bound(
- ty::INNERMOST,
- ty::BoundTy { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
- ))
- .into()
- }
- GenericParamDefKind::Lifetime => {
- let kind = ty::BoundRegionKind::BrNamed(param.def_id, param.name);
- let bound_var = ty::BoundVariableKind::Region(kind);
- bound_vars.push(bound_var);
- tcx.mk_region(ty::ReLateBound(
- ty::INNERMOST,
- ty::BoundRegion { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
- ))
- .into()
- }
- GenericParamDefKind::Const { .. } => {
- let bound_var = ty::BoundVariableKind::Const;
- bound_vars.push(bound_var);
- tcx.mk_const(
- ty::ConstKind::Bound(ty::INNERMOST, ty::BoundVar::from_usize(bound_vars.len() - 1)),
- tcx.type_of(param.def_id),
- )
- .into()
- }
- });
- let bound_vars = tcx.mk_bound_variable_kinds(bound_vars.into_iter());
- let impl_ty_substs = tcx.intern_substs(&substs);
- let container_id = impl_ty.container_id(tcx);
-
- let rebased_substs = impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
- let impl_ty_value = tcx.type_of(impl_ty.def_id);
-
- let param_env = tcx.param_env(impl_ty.def_id);
-
- // When checking something like
- //
- // trait X { type Y: PartialEq<<Self as X>::Y> }
- // impl X for T { default type Y = S; }
- //
- // We will have to prove the bound S: PartialEq<<T as X>::Y>. In this case
- // we want <T as X>::Y to normalize to S. This is valid because we are
- // checking the default value specifically here. Add this equality to the
- // ParamEnv for normalization specifically.
- let normalize_param_env = {
- let mut predicates = param_env.caller_bounds().iter().collect::<Vec<_>>();
- match impl_ty_value.kind() {
- ty::Projection(proj)
- if proj.item_def_id == trait_ty.def_id && proj.substs == rebased_substs =>
- {
- // Don't include this predicate if the projected type is
- // exactly the same as the projection. This can occur in
- // (somewhat dubious) code like this:
- //
- // impl<T> X for T where T: X { type Y = <T as X>::Y; }
- }
- _ => predicates.push(
- ty::Binder::bind_with_vars(
- ty::ProjectionPredicate {
- projection_ty: ty::ProjectionTy {
- item_def_id: trait_ty.def_id,
- substs: rebased_substs,
- },
- term: impl_ty_value.into(),
- },
- bound_vars,
- )
- .to_predicate(tcx),
- ),
- };
- ty::ParamEnv::new(
- tcx.intern_predicates(&predicates),
- Reveal::UserFacing,
- param_env.constness(),
- )
- };
- debug!(?normalize_param_env);
-
- let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
- let impl_ty_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
- let rebased_substs = impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
-
- let infcx = tcx.infer_ctxt().build();
- let ocx = ObligationCtxt::new(&infcx);
-
- let assumed_wf_types =
- ocx.assumed_wf_types(param_env, impl_ty_span, impl_ty.def_id.expect_local());
-
- let normalize_cause = ObligationCause::new(
- impl_ty_span,
- impl_ty_hir_id,
- ObligationCauseCode::CheckAssociatedTypeBounds {
- impl_item_def_id: impl_ty.def_id.expect_local(),
- trait_item_def_id: trait_ty.def_id,
- },
- );
- let mk_cause = |span: Span| {
- let code = if span.is_dummy() {
- traits::ItemObligation(trait_ty.def_id)
- } else {
- traits::BindingObligation(trait_ty.def_id, span)
- };
- ObligationCause::new(impl_ty_span, impl_ty_hir_id, code)
- };
-
- let obligations = tcx
- .bound_explicit_item_bounds(trait_ty.def_id)
- .subst_iter_copied(tcx, rebased_substs)
- .map(|(concrete_ty_bound, span)| {
- debug!("check_type_bounds: concrete_ty_bound = {:?}", concrete_ty_bound);
- traits::Obligation::new(tcx, mk_cause(span), param_env, concrete_ty_bound)
- })
- .collect();
- debug!("check_type_bounds: item_bounds={:?}", obligations);
-
- for mut obligation in util::elaborate_obligations(tcx, obligations) {
- let normalized_predicate =
- ocx.normalize(&normalize_cause, normalize_param_env, obligation.predicate);
- debug!("compare_projection_bounds: normalized predicate = {:?}", normalized_predicate);
- obligation.predicate = normalized_predicate;
-
- ocx.register_obligation(obligation);
- }
- // Check that all obligations are satisfied by the implementation's
- // version.
- let errors = ocx.select_all_or_error();
- if !errors.is_empty() {
- let reported = infcx.err_ctxt().report_fulfillment_errors(&errors, None);
- return Err(reported);
- }
-
- // Finally, resolve all regions. This catches wily misuses of
- // lifetime parameters.
- let implied_bounds = infcx.implied_bounds_tys(param_env, impl_ty_hir_id, assumed_wf_types);
- let outlives_environment =
- OutlivesEnvironment::with_bounds(param_env, Some(&infcx), implied_bounds);
-
- infcx.check_region_obligations_and_report_errors(
- impl_ty.def_id.expect_local(),
- &outlives_environment,
- );
-
- let constraints = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
- for (key, value) in constraints {
- infcx
- .err_ctxt()
- .report_mismatched_types(
- &ObligationCause::misc(
- value.hidden_type.span,
- tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local()),
- ),
- tcx.mk_opaque(key.def_id.to_def_id(), key.substs),
- value.hidden_type.ty,
- TypeError::Mismatch,
- )
- .emit();
- }
-
- Ok(())
-}
-
-fn assoc_item_kind_str(impl_item: &ty::AssocItem) -> &'static str {
- match impl_item.kind {
- ty::AssocKind::Const => "const",
- ty::AssocKind::Fn => "method",
- ty::AssocKind::Type => "type",
- }
-}