summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_privacy/src
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /compiler/rustc_privacy/src
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'compiler/rustc_privacy/src')
-rw-r--r--compiler/rustc_privacy/src/errors.rs92
-rw-r--r--compiler/rustc_privacy/src/lib.rs2093
2 files changed, 2185 insertions, 0 deletions
diff --git a/compiler/rustc_privacy/src/errors.rs b/compiler/rustc_privacy/src/errors.rs
new file mode 100644
index 000000000..aca7d770f
--- /dev/null
+++ b/compiler/rustc_privacy/src/errors.rs
@@ -0,0 +1,92 @@
+use rustc_errors::DiagnosticArgFromDisplay;
+use rustc_macros::{LintDiagnostic, SessionDiagnostic, SessionSubdiagnostic};
+use rustc_span::{Span, Symbol};
+
+#[derive(SessionDiagnostic)]
+#[error(privacy::field_is_private, code = "E0451")]
+pub struct FieldIsPrivate {
+ #[primary_span]
+ pub span: Span,
+ pub field_name: Symbol,
+ pub variant_descr: &'static str,
+ pub def_path_str: String,
+ #[subdiagnostic]
+ pub label: FieldIsPrivateLabel,
+}
+
+#[derive(SessionSubdiagnostic)]
+pub enum FieldIsPrivateLabel {
+ #[label(privacy::field_is_private_is_update_syntax_label)]
+ IsUpdateSyntax {
+ #[primary_span]
+ span: Span,
+ field_name: Symbol,
+ },
+ #[label(privacy::field_is_private_label)]
+ Other {
+ #[primary_span]
+ span: Span,
+ },
+}
+
+#[derive(SessionDiagnostic)]
+#[error(privacy::item_is_private)]
+pub struct ItemIsPrivate<'a> {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+ pub kind: &'a str,
+ pub descr: DiagnosticArgFromDisplay<'a>,
+}
+
+#[derive(SessionDiagnostic)]
+#[error(privacy::unnamed_item_is_private)]
+pub struct UnnamedItemIsPrivate {
+ #[primary_span]
+ pub span: Span,
+ pub kind: &'static str,
+}
+
+// Duplicate of `InPublicInterface` but with a different error code, shares the same slug.
+#[derive(SessionDiagnostic)]
+#[error(privacy::in_public_interface, code = "E0445")]
+pub struct InPublicInterfaceTraits<'a> {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+ pub vis_descr: &'static str,
+ pub kind: &'a str,
+ pub descr: DiagnosticArgFromDisplay<'a>,
+ #[label(privacy::visibility_label)]
+ pub vis_span: Span,
+}
+
+// Duplicate of `InPublicInterfaceTraits` but with a different error code, shares the same slug.
+#[derive(SessionDiagnostic)]
+#[error(privacy::in_public_interface, code = "E0446")]
+pub struct InPublicInterface<'a> {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+ pub vis_descr: &'static str,
+ pub kind: &'a str,
+ pub descr: DiagnosticArgFromDisplay<'a>,
+ #[label(privacy::visibility_label)]
+ pub vis_span: Span,
+}
+
+#[derive(LintDiagnostic)]
+#[lint(privacy::from_private_dep_in_public_interface)]
+pub struct FromPrivateDependencyInPublicInterface<'a> {
+ pub kind: &'a str,
+ pub descr: DiagnosticArgFromDisplay<'a>,
+ pub krate: Symbol,
+}
+
+#[derive(LintDiagnostic)]
+#[lint(privacy::private_in_public_lint)]
+pub struct PrivateInPublicLint<'a> {
+ pub vis_descr: &'static str,
+ pub kind: &'a str,
+ pub descr: DiagnosticArgFromDisplay<'a>,
+}
diff --git a/compiler/rustc_privacy/src/lib.rs b/compiler/rustc_privacy/src/lib.rs
new file mode 100644
index 000000000..c28d0569d
--- /dev/null
+++ b/compiler/rustc_privacy/src/lib.rs
@@ -0,0 +1,2093 @@
+#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
+#![feature(associated_type_defaults)]
+#![feature(control_flow_enum)]
+#![feature(rustc_private)]
+#![feature(try_blocks)]
+#![recursion_limit = "256"]
+#![allow(rustc::potential_query_instability)]
+#![cfg_attr(not(bootstrap), deny(rustc::untranslatable_diagnostic))]
+#![cfg_attr(not(bootstrap), deny(rustc::diagnostic_outside_of_impl))]
+
+mod errors;
+
+use rustc_ast::MacroDef;
+use rustc_attr as attr;
+use rustc_data_structures::fx::FxHashSet;
+use rustc_data_structures::intern::Interned;
+use rustc_hir as hir;
+use rustc_hir::def::{DefKind, Res};
+use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
+use rustc_hir::intravisit::{self, Visitor};
+use rustc_hir::{AssocItemKind, HirIdSet, ItemId, Node, PatKind};
+use rustc_middle::bug;
+use rustc_middle::hir::nested_filter;
+use rustc_middle::middle::privacy::{AccessLevel, AccessLevels};
+use rustc_middle::span_bug;
+use rustc_middle::ty::abstract_const::{walk_abstract_const, AbstractConst, Node as ACNode};
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::subst::InternalSubsts;
+use rustc_middle::ty::{self, Const, DefIdTree, GenericParamDefKind};
+use rustc_middle::ty::{TraitRef, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor};
+use rustc_session::lint;
+use rustc_span::hygiene::Transparency;
+use rustc_span::symbol::{kw, Ident};
+use rustc_span::Span;
+
+use std::marker::PhantomData;
+use std::ops::ControlFlow;
+use std::{cmp, fmt, mem};
+
+use errors::{
+ FieldIsPrivate, FieldIsPrivateLabel, FromPrivateDependencyInPublicInterface, InPublicInterface,
+ InPublicInterfaceTraits, ItemIsPrivate, PrivateInPublicLint, UnnamedItemIsPrivate,
+};
+
+////////////////////////////////////////////////////////////////////////////////
+/// Generic infrastructure used to implement specific visitors below.
+////////////////////////////////////////////////////////////////////////////////
+
+/// Implemented to visit all `DefId`s in a type.
+/// Visiting `DefId`s is useful because visibilities and reachabilities are attached to them.
+/// The idea is to visit "all components of a type", as documented in
+/// <https://github.com/rust-lang/rfcs/blob/master/text/2145-type-privacy.md#how-to-determine-visibility-of-a-type>.
+/// The default type visitor (`TypeVisitor`) does most of the job, but it has some shortcomings.
+/// First, it doesn't have overridable `fn visit_trait_ref`, so we have to catch trait `DefId`s
+/// manually. Second, it doesn't visit some type components like signatures of fn types, or traits
+/// in `impl Trait`, see individual comments in `DefIdVisitorSkeleton::visit_ty`.
+trait DefIdVisitor<'tcx> {
+ type BreakTy = ();
+
+ fn tcx(&self) -> TyCtxt<'tcx>;
+ fn shallow(&self) -> bool {
+ false
+ }
+ fn skip_assoc_tys(&self) -> bool {
+ false
+ }
+ fn visit_def_id(
+ &mut self,
+ def_id: DefId,
+ kind: &str,
+ descr: &dyn fmt::Display,
+ ) -> ControlFlow<Self::BreakTy>;
+
+ /// Not overridden, but used to actually visit types and traits.
+ fn skeleton(&mut self) -> DefIdVisitorSkeleton<'_, 'tcx, Self> {
+ DefIdVisitorSkeleton {
+ def_id_visitor: self,
+ visited_opaque_tys: Default::default(),
+ dummy: Default::default(),
+ }
+ }
+ fn visit(&mut self, ty_fragment: impl TypeVisitable<'tcx>) -> ControlFlow<Self::BreakTy> {
+ ty_fragment.visit_with(&mut self.skeleton())
+ }
+ fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow<Self::BreakTy> {
+ self.skeleton().visit_trait(trait_ref)
+ }
+ fn visit_projection_ty(
+ &mut self,
+ projection: ty::ProjectionTy<'tcx>,
+ ) -> ControlFlow<Self::BreakTy> {
+ self.skeleton().visit_projection_ty(projection)
+ }
+ fn visit_predicates(
+ &mut self,
+ predicates: ty::GenericPredicates<'tcx>,
+ ) -> ControlFlow<Self::BreakTy> {
+ self.skeleton().visit_predicates(predicates)
+ }
+}
+
+struct DefIdVisitorSkeleton<'v, 'tcx, V: ?Sized> {
+ def_id_visitor: &'v mut V,
+ visited_opaque_tys: FxHashSet<DefId>,
+ dummy: PhantomData<TyCtxt<'tcx>>,
+}
+
+impl<'tcx, V> DefIdVisitorSkeleton<'_, 'tcx, V>
+where
+ V: DefIdVisitor<'tcx> + ?Sized,
+{
+ fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow<V::BreakTy> {
+ let TraitRef { def_id, substs } = trait_ref;
+ self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref.print_only_trait_path())?;
+ if self.def_id_visitor.shallow() { ControlFlow::CONTINUE } else { substs.visit_with(self) }
+ }
+
+ fn visit_projection_ty(
+ &mut self,
+ projection: ty::ProjectionTy<'tcx>,
+ ) -> ControlFlow<V::BreakTy> {
+ let (trait_ref, assoc_substs) =
+ projection.trait_ref_and_own_substs(self.def_id_visitor.tcx());
+ self.visit_trait(trait_ref)?;
+ if self.def_id_visitor.shallow() {
+ ControlFlow::CONTINUE
+ } else {
+ assoc_substs.iter().try_for_each(|subst| subst.visit_with(self))
+ }
+ }
+
+ fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> ControlFlow<V::BreakTy> {
+ match predicate.kind().skip_binder() {
+ ty::PredicateKind::Trait(ty::TraitPredicate {
+ trait_ref,
+ constness: _,
+ polarity: _,
+ }) => self.visit_trait(trait_ref),
+ ty::PredicateKind::Projection(ty::ProjectionPredicate { projection_ty, term }) => {
+ term.visit_with(self)?;
+ self.visit_projection_ty(projection_ty)
+ }
+ ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty, _region)) => {
+ ty.visit_with(self)
+ }
+ ty::PredicateKind::RegionOutlives(..) => ControlFlow::CONTINUE,
+ ty::PredicateKind::ConstEvaluatable(uv)
+ if self.def_id_visitor.tcx().features().generic_const_exprs =>
+ {
+ let tcx = self.def_id_visitor.tcx();
+ if let Ok(Some(ct)) = AbstractConst::new(tcx, uv) {
+ self.visit_abstract_const_expr(tcx, ct)?;
+ }
+ ControlFlow::CONTINUE
+ }
+ ty::PredicateKind::WellFormed(arg) => arg.visit_with(self),
+ _ => bug!("unexpected predicate: {:?}", predicate),
+ }
+ }
+
+ fn visit_abstract_const_expr(
+ &mut self,
+ tcx: TyCtxt<'tcx>,
+ ct: AbstractConst<'tcx>,
+ ) -> ControlFlow<V::BreakTy> {
+ walk_abstract_const(tcx, ct, |node| match node.root(tcx) {
+ ACNode::Leaf(leaf) => self.visit_const(leaf),
+ ACNode::Cast(_, _, ty) => self.visit_ty(ty),
+ ACNode::Binop(..) | ACNode::UnaryOp(..) | ACNode::FunctionCall(_, _) => {
+ ControlFlow::CONTINUE
+ }
+ })
+ }
+
+ fn visit_predicates(
+ &mut self,
+ predicates: ty::GenericPredicates<'tcx>,
+ ) -> ControlFlow<V::BreakTy> {
+ let ty::GenericPredicates { parent: _, predicates } = predicates;
+ predicates.iter().try_for_each(|&(predicate, _span)| self.visit_predicate(predicate))
+ }
+}
+
+impl<'tcx, V> TypeVisitor<'tcx> for DefIdVisitorSkeleton<'_, 'tcx, V>
+where
+ V: DefIdVisitor<'tcx> + ?Sized,
+{
+ type BreakTy = V::BreakTy;
+
+ fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<V::BreakTy> {
+ let tcx = self.def_id_visitor.tcx();
+ // InternalSubsts are not visited here because they are visited below
+ // in `super_visit_with`.
+ match *ty.kind() {
+ ty::Adt(ty::AdtDef(Interned(&ty::AdtDefData { did: def_id, .. }, _)), ..)
+ | ty::Foreign(def_id)
+ | ty::FnDef(def_id, ..)
+ | ty::Closure(def_id, ..)
+ | ty::Generator(def_id, ..) => {
+ self.def_id_visitor.visit_def_id(def_id, "type", &ty)?;
+ if self.def_id_visitor.shallow() {
+ return ControlFlow::CONTINUE;
+ }
+ // Default type visitor doesn't visit signatures of fn types.
+ // Something like `fn() -> Priv {my_func}` is considered a private type even if
+ // `my_func` is public, so we need to visit signatures.
+ if let ty::FnDef(..) = ty.kind() {
+ tcx.fn_sig(def_id).visit_with(self)?;
+ }
+ // Inherent static methods don't have self type in substs.
+ // Something like `fn() {my_method}` type of the method
+ // `impl Pub<Priv> { pub fn my_method() {} }` is considered a private type,
+ // so we need to visit the self type additionally.
+ if let Some(assoc_item) = tcx.opt_associated_item(def_id) {
+ if let Some(impl_def_id) = assoc_item.impl_container(tcx) {
+ tcx.type_of(impl_def_id).visit_with(self)?;
+ }
+ }
+ }
+ ty::Projection(proj) => {
+ if self.def_id_visitor.skip_assoc_tys() {
+ // Visitors searching for minimal visibility/reachability want to
+ // conservatively approximate associated types like `<Type as Trait>::Alias`
+ // as visible/reachable even if both `Type` and `Trait` are private.
+ // Ideally, associated types should be substituted in the same way as
+ // free type aliases, but this isn't done yet.
+ return ControlFlow::CONTINUE;
+ }
+ // This will also visit substs if necessary, so we don't need to recurse.
+ return self.visit_projection_ty(proj);
+ }
+ ty::Dynamic(predicates, ..) => {
+ // All traits in the list are considered the "primary" part of the type
+ // and are visited by shallow visitors.
+ for predicate in predicates {
+ let trait_ref = match predicate.skip_binder() {
+ ty::ExistentialPredicate::Trait(trait_ref) => trait_ref,
+ ty::ExistentialPredicate::Projection(proj) => proj.trait_ref(tcx),
+ ty::ExistentialPredicate::AutoTrait(def_id) => {
+ ty::ExistentialTraitRef { def_id, substs: InternalSubsts::empty() }
+ }
+ };
+ let ty::ExistentialTraitRef { def_id, substs: _ } = trait_ref;
+ self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref)?;
+ }
+ }
+ ty::Opaque(def_id, ..) => {
+ // Skip repeated `Opaque`s to avoid infinite recursion.
+ if self.visited_opaque_tys.insert(def_id) {
+ // The intent is to treat `impl Trait1 + Trait2` identically to
+ // `dyn Trait1 + Trait2`. Therefore we ignore def-id of the opaque type itself
+ // (it either has no visibility, or its visibility is insignificant, like
+ // visibilities of type aliases) and recurse into bounds instead to go
+ // through the trait list (default type visitor doesn't visit those traits).
+ // All traits in the list are considered the "primary" part of the type
+ // and are visited by shallow visitors.
+ self.visit_predicates(ty::GenericPredicates {
+ parent: None,
+ predicates: tcx.explicit_item_bounds(def_id),
+ })?;
+ }
+ }
+ // These types don't have their own def-ids (but may have subcomponents
+ // with def-ids that should be visited recursively).
+ ty::Bool
+ | ty::Char
+ | ty::Int(..)
+ | ty::Uint(..)
+ | ty::Float(..)
+ | ty::Str
+ | ty::Never
+ | ty::Array(..)
+ | ty::Slice(..)
+ | ty::Tuple(..)
+ | ty::RawPtr(..)
+ | ty::Ref(..)
+ | ty::FnPtr(..)
+ | ty::Param(..)
+ | ty::Error(_)
+ | ty::GeneratorWitness(..) => {}
+ ty::Bound(..) | ty::Placeholder(..) | ty::Infer(..) => {
+ bug!("unexpected type: {:?}", ty)
+ }
+ }
+
+ if self.def_id_visitor.shallow() {
+ ControlFlow::CONTINUE
+ } else {
+ ty.super_visit_with(self)
+ }
+ }
+
+ fn visit_const(&mut self, c: Const<'tcx>) -> ControlFlow<Self::BreakTy> {
+ self.visit_ty(c.ty())?;
+ let tcx = self.def_id_visitor.tcx();
+ if let Ok(Some(ct)) = AbstractConst::from_const(tcx, c) {
+ self.visit_abstract_const_expr(tcx, ct)?;
+ }
+ ControlFlow::CONTINUE
+ }
+}
+
+fn min(vis1: ty::Visibility, vis2: ty::Visibility, tcx: TyCtxt<'_>) -> ty::Visibility {
+ if vis1.is_at_least(vis2, tcx) { vis2 } else { vis1 }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+/// Visitor used to determine impl visibility and reachability.
+////////////////////////////////////////////////////////////////////////////////
+
+struct FindMin<'a, 'tcx, VL: VisibilityLike> {
+ tcx: TyCtxt<'tcx>,
+ access_levels: &'a AccessLevels,
+ min: VL,
+}
+
+impl<'a, 'tcx, VL: VisibilityLike> DefIdVisitor<'tcx> for FindMin<'a, 'tcx, VL> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+ fn shallow(&self) -> bool {
+ VL::SHALLOW
+ }
+ fn skip_assoc_tys(&self) -> bool {
+ true
+ }
+ fn visit_def_id(
+ &mut self,
+ def_id: DefId,
+ _kind: &str,
+ _descr: &dyn fmt::Display,
+ ) -> ControlFlow<Self::BreakTy> {
+ self.min = VL::new_min(self, def_id);
+ ControlFlow::CONTINUE
+ }
+}
+
+trait VisibilityLike: Sized {
+ const MAX: Self;
+ const SHALLOW: bool = false;
+ fn new_min(find: &FindMin<'_, '_, Self>, def_id: DefId) -> Self;
+
+ // Returns an over-approximation (`skip_assoc_tys` = true) of visibility due to
+ // associated types for which we can't determine visibility precisely.
+ fn of_impl(def_id: LocalDefId, tcx: TyCtxt<'_>, access_levels: &AccessLevels) -> Self {
+ let mut find = FindMin { tcx, access_levels, min: Self::MAX };
+ find.visit(tcx.type_of(def_id));
+ if let Some(trait_ref) = tcx.impl_trait_ref(def_id) {
+ find.visit_trait(trait_ref);
+ }
+ find.min
+ }
+}
+impl VisibilityLike for ty::Visibility {
+ const MAX: Self = ty::Visibility::Public;
+ fn new_min(find: &FindMin<'_, '_, Self>, def_id: DefId) -> Self {
+ min(find.tcx.visibility(def_id), find.min, find.tcx)
+ }
+}
+impl VisibilityLike for Option<AccessLevel> {
+ const MAX: Self = Some(AccessLevel::Public);
+ // Type inference is very smart sometimes.
+ // It can make an impl reachable even some components of its type or trait are unreachable.
+ // E.g. methods of `impl ReachableTrait<UnreachableTy> for ReachableTy<UnreachableTy> { ... }`
+ // can be usable from other crates (#57264). So we skip substs when calculating reachability
+ // and consider an impl reachable if its "shallow" type and trait are reachable.
+ //
+ // The assumption we make here is that type-inference won't let you use an impl without knowing
+ // both "shallow" version of its self type and "shallow" version of its trait if it exists
+ // (which require reaching the `DefId`s in them).
+ const SHALLOW: bool = true;
+ fn new_min(find: &FindMin<'_, '_, Self>, def_id: DefId) -> Self {
+ cmp::min(
+ if let Some(def_id) = def_id.as_local() {
+ find.access_levels.map.get(&def_id).copied()
+ } else {
+ Self::MAX
+ },
+ find.min,
+ )
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+/// The embargo visitor, used to determine the exports of the AST.
+////////////////////////////////////////////////////////////////////////////////
+
+struct EmbargoVisitor<'tcx> {
+ tcx: TyCtxt<'tcx>,
+
+ /// Accessibility levels for reachable nodes.
+ access_levels: AccessLevels,
+ /// A set of pairs corresponding to modules, where the first module is
+ /// reachable via a macro that's defined in the second module. This cannot
+ /// be represented as reachable because it can't handle the following case:
+ ///
+ /// pub mod n { // Should be `Public`
+ /// pub(crate) mod p { // Should *not* be accessible
+ /// pub fn f() -> i32 { 12 } // Must be `Reachable`
+ /// }
+ /// }
+ /// pub macro m() {
+ /// n::p::f()
+ /// }
+ macro_reachable: FxHashSet<(LocalDefId, LocalDefId)>,
+ /// Previous accessibility level; `None` means unreachable.
+ prev_level: Option<AccessLevel>,
+ /// Has something changed in the level map?
+ changed: bool,
+}
+
+struct ReachEverythingInTheInterfaceVisitor<'a, 'tcx> {
+ access_level: Option<AccessLevel>,
+ item_def_id: LocalDefId,
+ ev: &'a mut EmbargoVisitor<'tcx>,
+}
+
+impl<'tcx> EmbargoVisitor<'tcx> {
+ fn get(&self, def_id: LocalDefId) -> Option<AccessLevel> {
+ self.access_levels.map.get(&def_id).copied()
+ }
+
+ fn update_with_hir_id(
+ &mut self,
+ hir_id: hir::HirId,
+ level: Option<AccessLevel>,
+ ) -> Option<AccessLevel> {
+ let def_id = self.tcx.hir().local_def_id(hir_id);
+ self.update(def_id, level)
+ }
+
+ /// Updates node level and returns the updated level.
+ fn update(&mut self, def_id: LocalDefId, level: Option<AccessLevel>) -> Option<AccessLevel> {
+ let old_level = self.get(def_id);
+ // Accessibility levels can only grow.
+ if level > old_level {
+ self.access_levels.map.insert(def_id, level.unwrap());
+ self.changed = true;
+ level
+ } else {
+ old_level
+ }
+ }
+
+ fn reach(
+ &mut self,
+ def_id: LocalDefId,
+ access_level: Option<AccessLevel>,
+ ) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
+ ReachEverythingInTheInterfaceVisitor {
+ access_level: cmp::min(access_level, Some(AccessLevel::Reachable)),
+ item_def_id: def_id,
+ ev: self,
+ }
+ }
+
+ // We have to make sure that the items that macros might reference
+ // are reachable, since they might be exported transitively.
+ fn update_reachability_from_macro(&mut self, local_def_id: LocalDefId, md: &MacroDef) {
+ // Non-opaque macros cannot make other items more accessible than they already are.
+
+ let hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id);
+ let attrs = self.tcx.hir().attrs(hir_id);
+ if attr::find_transparency(attrs, md.macro_rules).0 != Transparency::Opaque {
+ return;
+ }
+
+ let macro_module_def_id = self.tcx.local_parent(local_def_id);
+ if self.tcx.opt_def_kind(macro_module_def_id) != Some(DefKind::Mod) {
+ // The macro's parent doesn't correspond to a `mod`, return early (#63164, #65252).
+ return;
+ }
+
+ if self.get(local_def_id).is_none() {
+ return;
+ }
+
+ // Since we are starting from an externally visible module,
+ // all the parents in the loop below are also guaranteed to be modules.
+ let mut module_def_id = macro_module_def_id;
+ loop {
+ let changed_reachability =
+ self.update_macro_reachable(module_def_id, macro_module_def_id);
+ if changed_reachability || module_def_id == CRATE_DEF_ID {
+ break;
+ }
+ module_def_id = self.tcx.local_parent(module_def_id);
+ }
+ }
+
+ /// Updates the item as being reachable through a macro defined in the given
+ /// module. Returns `true` if the level has changed.
+ fn update_macro_reachable(
+ &mut self,
+ module_def_id: LocalDefId,
+ defining_mod: LocalDefId,
+ ) -> bool {
+ if self.macro_reachable.insert((module_def_id, defining_mod)) {
+ self.update_macro_reachable_mod(module_def_id, defining_mod);
+ true
+ } else {
+ false
+ }
+ }
+
+ fn update_macro_reachable_mod(&mut self, module_def_id: LocalDefId, defining_mod: LocalDefId) {
+ let module = self.tcx.hir().get_module(module_def_id).0;
+ for item_id in module.item_ids {
+ let def_kind = self.tcx.def_kind(item_id.def_id);
+ let vis = self.tcx.visibility(item_id.def_id);
+ self.update_macro_reachable_def(item_id.def_id, def_kind, vis, defining_mod);
+ }
+ if let Some(exports) = self.tcx.module_reexports(module_def_id) {
+ for export in exports {
+ if export.vis.is_accessible_from(defining_mod.to_def_id(), self.tcx) {
+ if let Res::Def(def_kind, def_id) = export.res {
+ if let Some(def_id) = def_id.as_local() {
+ let vis = self.tcx.visibility(def_id.to_def_id());
+ self.update_macro_reachable_def(def_id, def_kind, vis, defining_mod);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ fn update_macro_reachable_def(
+ &mut self,
+ def_id: LocalDefId,
+ def_kind: DefKind,
+ vis: ty::Visibility,
+ module: LocalDefId,
+ ) {
+ let level = Some(AccessLevel::Reachable);
+ if vis.is_public() {
+ self.update(def_id, level);
+ }
+ match def_kind {
+ // No type privacy, so can be directly marked as reachable.
+ DefKind::Const | DefKind::Static(_) | DefKind::TraitAlias | DefKind::TyAlias => {
+ if vis.is_accessible_from(module.to_def_id(), self.tcx) {
+ self.update(def_id, level);
+ }
+ }
+
+ // Hygiene isn't really implemented for `macro_rules!` macros at the
+ // moment. Accordingly, marking them as reachable is unwise. `macro` macros
+ // have normal hygiene, so we can treat them like other items without type
+ // privacy and mark them reachable.
+ DefKind::Macro(_) => {
+ let item = self.tcx.hir().expect_item(def_id);
+ if let hir::ItemKind::Macro(MacroDef { macro_rules: false, .. }, _) = item.kind {
+ if vis.is_accessible_from(module.to_def_id(), self.tcx) {
+ self.update(def_id, level);
+ }
+ }
+ }
+
+ // We can't use a module name as the final segment of a path, except
+ // in use statements. Since re-export checking doesn't consider
+ // hygiene these don't need to be marked reachable. The contents of
+ // the module, however may be reachable.
+ DefKind::Mod => {
+ if vis.is_accessible_from(module.to_def_id(), self.tcx) {
+ self.update_macro_reachable(def_id, module);
+ }
+ }
+
+ DefKind::Struct | DefKind::Union => {
+ // While structs and unions have type privacy, their fields do not.
+ if vis.is_public() {
+ let item = self.tcx.hir().expect_item(def_id);
+ if let hir::ItemKind::Struct(ref struct_def, _)
+ | hir::ItemKind::Union(ref struct_def, _) = item.kind
+ {
+ for field in struct_def.fields() {
+ let def_id = self.tcx.hir().local_def_id(field.hir_id);
+ let field_vis = self.tcx.visibility(def_id);
+ if field_vis.is_accessible_from(module.to_def_id(), self.tcx) {
+ self.reach(def_id, level).ty();
+ }
+ }
+ } else {
+ bug!("item {:?} with DefKind {:?}", item, def_kind);
+ }
+ }
+ }
+
+ // These have type privacy, so are not reachable unless they're
+ // public, or are not namespaced at all.
+ DefKind::AssocConst
+ | DefKind::AssocTy
+ | DefKind::ConstParam
+ | DefKind::Ctor(_, _)
+ | DefKind::Enum
+ | DefKind::ForeignTy
+ | DefKind::Fn
+ | DefKind::OpaqueTy
+ | DefKind::AssocFn
+ | DefKind::Trait
+ | DefKind::TyParam
+ | DefKind::Variant
+ | DefKind::LifetimeParam
+ | DefKind::ExternCrate
+ | DefKind::Use
+ | DefKind::ForeignMod
+ | DefKind::AnonConst
+ | DefKind::InlineConst
+ | DefKind::Field
+ | DefKind::GlobalAsm
+ | DefKind::Impl
+ | DefKind::Closure
+ | DefKind::Generator => (),
+ }
+ }
+}
+
+impl<'tcx> Visitor<'tcx> for EmbargoVisitor<'tcx> {
+ type NestedFilter = nested_filter::All;
+
+ /// We want to visit items in the context of their containing
+ /// module and so forth, so supply a crate for doing a deep walk.
+ fn nested_visit_map(&mut self) -> Self::Map {
+ self.tcx.hir()
+ }
+
+ fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
+ let item_level = match item.kind {
+ hir::ItemKind::Impl { .. } => {
+ let impl_level =
+ Option::<AccessLevel>::of_impl(item.def_id, self.tcx, &self.access_levels);
+ self.update(item.def_id, impl_level)
+ }
+ _ => self.get(item.def_id),
+ };
+
+ // Update levels of nested things.
+ match item.kind {
+ hir::ItemKind::Enum(ref def, _) => {
+ for variant in def.variants {
+ let variant_level = self.update_with_hir_id(variant.id, item_level);
+ if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
+ self.update_with_hir_id(ctor_hir_id, item_level);
+ }
+ for field in variant.data.fields() {
+ self.update_with_hir_id(field.hir_id, variant_level);
+ }
+ }
+ }
+ hir::ItemKind::Impl(ref impl_) => {
+ for impl_item_ref in impl_.items {
+ if impl_.of_trait.is_some()
+ || self.tcx.visibility(impl_item_ref.id.def_id) == ty::Visibility::Public
+ {
+ self.update(impl_item_ref.id.def_id, item_level);
+ }
+ }
+ }
+ hir::ItemKind::Trait(.., trait_item_refs) => {
+ for trait_item_ref in trait_item_refs {
+ self.update(trait_item_ref.id.def_id, item_level);
+ }
+ }
+ hir::ItemKind::Struct(ref def, _) | hir::ItemKind::Union(ref def, _) => {
+ if let Some(ctor_hir_id) = def.ctor_hir_id() {
+ self.update_with_hir_id(ctor_hir_id, item_level);
+ }
+ for field in def.fields() {
+ let def_id = self.tcx.hir().local_def_id(field.hir_id);
+ let vis = self.tcx.visibility(def_id);
+ if vis.is_public() {
+ self.update_with_hir_id(field.hir_id, item_level);
+ }
+ }
+ }
+ hir::ItemKind::Macro(ref macro_def, _) => {
+ self.update_reachability_from_macro(item.def_id, macro_def);
+ }
+ hir::ItemKind::ForeignMod { items, .. } => {
+ for foreign_item in items {
+ if self.tcx.visibility(foreign_item.id.def_id) == ty::Visibility::Public {
+ self.update(foreign_item.id.def_id, item_level);
+ }
+ }
+ }
+
+ hir::ItemKind::OpaqueTy(..)
+ | hir::ItemKind::Use(..)
+ | hir::ItemKind::Static(..)
+ | hir::ItemKind::Const(..)
+ | hir::ItemKind::GlobalAsm(..)
+ | hir::ItemKind::TyAlias(..)
+ | hir::ItemKind::Mod(..)
+ | hir::ItemKind::TraitAlias(..)
+ | hir::ItemKind::Fn(..)
+ | hir::ItemKind::ExternCrate(..) => {}
+ }
+
+ // Mark all items in interfaces of reachable items as reachable.
+ match item.kind {
+ // The interface is empty.
+ hir::ItemKind::Macro(..) | hir::ItemKind::ExternCrate(..) => {}
+ // All nested items are checked by `visit_item`.
+ hir::ItemKind::Mod(..) => {}
+ // Handled in the access level of in rustc_resolve
+ hir::ItemKind::Use(..) => {}
+ // The interface is empty.
+ hir::ItemKind::GlobalAsm(..) => {}
+ hir::ItemKind::OpaqueTy(..) => {
+ // HACK(jynelson): trying to infer the type of `impl trait` breaks `async-std` (and `pub async fn` in general)
+ // Since rustdoc never needs to do codegen and doesn't care about link-time reachability,
+ // mark this as unreachable.
+ // See https://github.com/rust-lang/rust/issues/75100
+ if !self.tcx.sess.opts.actually_rustdoc {
+ // FIXME: This is some serious pessimization intended to workaround deficiencies
+ // in the reachability pass (`middle/reachable.rs`). Types are marked as link-time
+ // reachable if they are returned via `impl Trait`, even from private functions.
+ let exist_level =
+ cmp::max(item_level, Some(AccessLevel::ReachableFromImplTrait));
+ self.reach(item.def_id, exist_level).generics().predicates().ty();
+ }
+ }
+ // Visit everything.
+ hir::ItemKind::Const(..)
+ | hir::ItemKind::Static(..)
+ | hir::ItemKind::Fn(..)
+ | hir::ItemKind::TyAlias(..) => {
+ if item_level.is_some() {
+ self.reach(item.def_id, item_level).generics().predicates().ty();
+ }
+ }
+ hir::ItemKind::Trait(.., trait_item_refs) => {
+ if item_level.is_some() {
+ self.reach(item.def_id, item_level).generics().predicates();
+
+ for trait_item_ref in trait_item_refs {
+ let tcx = self.tcx;
+ let mut reach = self.reach(trait_item_ref.id.def_id, item_level);
+ reach.generics().predicates();
+
+ if trait_item_ref.kind == AssocItemKind::Type
+ && !tcx.impl_defaultness(trait_item_ref.id.def_id).has_value()
+ {
+ // No type to visit.
+ } else {
+ reach.ty();
+ }
+ }
+ }
+ }
+ hir::ItemKind::TraitAlias(..) => {
+ if item_level.is_some() {
+ self.reach(item.def_id, item_level).generics().predicates();
+ }
+ }
+ // Visit everything except for private impl items.
+ hir::ItemKind::Impl(ref impl_) => {
+ if item_level.is_some() {
+ self.reach(item.def_id, item_level).generics().predicates().ty().trait_ref();
+
+ for impl_item_ref in impl_.items {
+ let impl_item_level = self.get(impl_item_ref.id.def_id);
+ if impl_item_level.is_some() {
+ self.reach(impl_item_ref.id.def_id, impl_item_level)
+ .generics()
+ .predicates()
+ .ty();
+ }
+ }
+ }
+ }
+
+ // Visit everything, but enum variants have their own levels.
+ hir::ItemKind::Enum(ref def, _) => {
+ if item_level.is_some() {
+ self.reach(item.def_id, item_level).generics().predicates();
+ }
+ for variant in def.variants {
+ let variant_level = self.get(self.tcx.hir().local_def_id(variant.id));
+ if variant_level.is_some() {
+ for field in variant.data.fields() {
+ self.reach(self.tcx.hir().local_def_id(field.hir_id), variant_level)
+ .ty();
+ }
+ // Corner case: if the variant is reachable, but its
+ // enum is not, make the enum reachable as well.
+ self.reach(item.def_id, variant_level).ty();
+ }
+ if let Some(hir_id) = variant.data.ctor_hir_id() {
+ let ctor_def_id = self.tcx.hir().local_def_id(hir_id);
+ let ctor_level = self.get(ctor_def_id);
+ if ctor_level.is_some() {
+ self.reach(item.def_id, ctor_level).ty();
+ }
+ }
+ }
+ }
+ // Visit everything, but foreign items have their own levels.
+ hir::ItemKind::ForeignMod { items, .. } => {
+ for foreign_item in items {
+ let foreign_item_level = self.get(foreign_item.id.def_id);
+ if foreign_item_level.is_some() {
+ self.reach(foreign_item.id.def_id, foreign_item_level)
+ .generics()
+ .predicates()
+ .ty();
+ }
+ }
+ }
+ // Visit everything except for private fields.
+ hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
+ if item_level.is_some() {
+ self.reach(item.def_id, item_level).generics().predicates();
+ for field in struct_def.fields() {
+ let def_id = self.tcx.hir().local_def_id(field.hir_id);
+ let field_level = self.get(def_id);
+ if field_level.is_some() {
+ self.reach(def_id, field_level).ty();
+ }
+ }
+ }
+ if let Some(hir_id) = struct_def.ctor_hir_id() {
+ let ctor_def_id = self.tcx.hir().local_def_id(hir_id);
+ let ctor_level = self.get(ctor_def_id);
+ if ctor_level.is_some() {
+ self.reach(item.def_id, ctor_level).ty();
+ }
+ }
+ }
+ }
+
+ let orig_level = mem::replace(&mut self.prev_level, item_level);
+ intravisit::walk_item(self, item);
+ self.prev_level = orig_level;
+ }
+
+ fn visit_block(&mut self, b: &'tcx hir::Block<'tcx>) {
+ // Blocks can have public items, for example impls, but they always
+ // start as completely private regardless of publicity of a function,
+ // constant, type, field, etc., in which this block resides.
+ let orig_level = mem::replace(&mut self.prev_level, None);
+ intravisit::walk_block(self, b);
+ self.prev_level = orig_level;
+ }
+}
+
+impl ReachEverythingInTheInterfaceVisitor<'_, '_> {
+ fn generics(&mut self) -> &mut Self {
+ for param in &self.ev.tcx.generics_of(self.item_def_id).params {
+ match param.kind {
+ GenericParamDefKind::Lifetime => {}
+ GenericParamDefKind::Type { has_default, .. } => {
+ if has_default {
+ self.visit(self.ev.tcx.type_of(param.def_id));
+ }
+ }
+ GenericParamDefKind::Const { has_default } => {
+ self.visit(self.ev.tcx.type_of(param.def_id));
+ if has_default {
+ self.visit(self.ev.tcx.const_param_default(param.def_id));
+ }
+ }
+ }
+ }
+ self
+ }
+
+ fn predicates(&mut self) -> &mut Self {
+ self.visit_predicates(self.ev.tcx.predicates_of(self.item_def_id));
+ self
+ }
+
+ fn ty(&mut self) -> &mut Self {
+ self.visit(self.ev.tcx.type_of(self.item_def_id));
+ self
+ }
+
+ fn trait_ref(&mut self) -> &mut Self {
+ if let Some(trait_ref) = self.ev.tcx.impl_trait_ref(self.item_def_id) {
+ self.visit_trait(trait_ref);
+ }
+ self
+ }
+}
+
+impl<'tcx> DefIdVisitor<'tcx> for ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.ev.tcx
+ }
+ fn visit_def_id(
+ &mut self,
+ def_id: DefId,
+ _kind: &str,
+ _descr: &dyn fmt::Display,
+ ) -> ControlFlow<Self::BreakTy> {
+ if let Some(def_id) = def_id.as_local() {
+ if let (ty::Visibility::Public, _) | (_, Some(AccessLevel::ReachableFromImplTrait)) =
+ (self.tcx().visibility(def_id.to_def_id()), self.access_level)
+ {
+ self.ev.update(def_id, self.access_level);
+ }
+ }
+ ControlFlow::CONTINUE
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////////////
+/// Name privacy visitor, checks privacy and reports violations.
+/// Most of name privacy checks are performed during the main resolution phase,
+/// or later in type checking when field accesses and associated items are resolved.
+/// This pass performs remaining checks for fields in struct expressions and patterns.
+//////////////////////////////////////////////////////////////////////////////////////
+
+struct NamePrivacyVisitor<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>,
+ current_item: LocalDefId,
+}
+
+impl<'tcx> NamePrivacyVisitor<'tcx> {
+ /// Gets the type-checking results for the current body.
+ /// As this will ICE if called outside bodies, only call when working with
+ /// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies).
+ #[track_caller]
+ fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> {
+ self.maybe_typeck_results
+ .expect("`NamePrivacyVisitor::typeck_results` called outside of body")
+ }
+
+ // Checks that a field in a struct constructor (expression or pattern) is accessible.
+ fn check_field(
+ &mut self,
+ use_ctxt: Span, // syntax context of the field name at the use site
+ span: Span, // span of the field pattern, e.g., `x: 0`
+ def: ty::AdtDef<'tcx>, // definition of the struct or enum
+ field: &'tcx ty::FieldDef,
+ in_update_syntax: bool,
+ ) {
+ if def.is_enum() {
+ return;
+ }
+
+ // definition of the field
+ let ident = Ident::new(kw::Empty, use_ctxt);
+ let hir_id = self.tcx.hir().local_def_id_to_hir_id(self.current_item);
+ let def_id = self.tcx.adjust_ident_and_get_scope(ident, def.did(), hir_id).1;
+ if !field.vis.is_accessible_from(def_id, self.tcx) {
+ self.tcx.sess.emit_err(FieldIsPrivate {
+ span,
+ field_name: field.name,
+ variant_descr: def.variant_descr(),
+ def_path_str: self.tcx.def_path_str(def.did()),
+ label: if in_update_syntax {
+ FieldIsPrivateLabel::IsUpdateSyntax { span, field_name: field.name }
+ } else {
+ FieldIsPrivateLabel::Other { span }
+ },
+ });
+ }
+ }
+}
+
+impl<'tcx> Visitor<'tcx> for NamePrivacyVisitor<'tcx> {
+ type NestedFilter = nested_filter::All;
+
+ /// We want to visit items in the context of their containing
+ /// module and so forth, so supply a crate for doing a deep walk.
+ fn nested_visit_map(&mut self) -> Self::Map {
+ self.tcx.hir()
+ }
+
+ fn visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId) {
+ // Don't visit nested modules, since we run a separate visitor walk
+ // for each module in `privacy_access_levels`
+ }
+
+ fn visit_nested_body(&mut self, body: hir::BodyId) {
+ let old_maybe_typeck_results =
+ self.maybe_typeck_results.replace(self.tcx.typeck_body(body));
+ let body = self.tcx.hir().body(body);
+ self.visit_body(body);
+ self.maybe_typeck_results = old_maybe_typeck_results;
+ }
+
+ fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
+ let orig_current_item = mem::replace(&mut self.current_item, item.def_id);
+ intravisit::walk_item(self, item);
+ self.current_item = orig_current_item;
+ }
+
+ fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
+ if let hir::ExprKind::Struct(qpath, fields, ref base) = expr.kind {
+ let res = self.typeck_results().qpath_res(qpath, expr.hir_id);
+ let adt = self.typeck_results().expr_ty(expr).ty_adt_def().unwrap();
+ let variant = adt.variant_of_res(res);
+ if let Some(base) = *base {
+ // If the expression uses FRU we need to make sure all the unmentioned fields
+ // are checked for privacy (RFC 736). Rather than computing the set of
+ // unmentioned fields, just check them all.
+ for (vf_index, variant_field) in variant.fields.iter().enumerate() {
+ let field = fields.iter().find(|f| {
+ self.tcx.field_index(f.hir_id, self.typeck_results()) == vf_index
+ });
+ let (use_ctxt, span) = match field {
+ Some(field) => (field.ident.span, field.span),
+ None => (base.span, base.span),
+ };
+ self.check_field(use_ctxt, span, adt, variant_field, true);
+ }
+ } else {
+ for field in fields {
+ let use_ctxt = field.ident.span;
+ let index = self.tcx.field_index(field.hir_id, self.typeck_results());
+ self.check_field(use_ctxt, field.span, adt, &variant.fields[index], false);
+ }
+ }
+ }
+
+ intravisit::walk_expr(self, expr);
+ }
+
+ fn visit_pat(&mut self, pat: &'tcx hir::Pat<'tcx>) {
+ if let PatKind::Struct(ref qpath, fields, _) = pat.kind {
+ let res = self.typeck_results().qpath_res(qpath, pat.hir_id);
+ let adt = self.typeck_results().pat_ty(pat).ty_adt_def().unwrap();
+ let variant = adt.variant_of_res(res);
+ for field in fields {
+ let use_ctxt = field.ident.span;
+ let index = self.tcx.field_index(field.hir_id, self.typeck_results());
+ self.check_field(use_ctxt, field.span, adt, &variant.fields[index], false);
+ }
+ }
+
+ intravisit::walk_pat(self, pat);
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////
+/// Type privacy visitor, checks types for privacy and reports violations.
+/// Both explicitly written types and inferred types of expressions and patterns are checked.
+/// Checks are performed on "semantic" types regardless of names and their hygiene.
+////////////////////////////////////////////////////////////////////////////////////////////
+
+struct TypePrivacyVisitor<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>,
+ current_item: LocalDefId,
+ span: Span,
+}
+
+impl<'tcx> TypePrivacyVisitor<'tcx> {
+ /// Gets the type-checking results for the current body.
+ /// As this will ICE if called outside bodies, only call when working with
+ /// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies).
+ #[track_caller]
+ fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> {
+ self.maybe_typeck_results
+ .expect("`TypePrivacyVisitor::typeck_results` called outside of body")
+ }
+
+ fn item_is_accessible(&self, did: DefId) -> bool {
+ self.tcx.visibility(did).is_accessible_from(self.current_item.to_def_id(), self.tcx)
+ }
+
+ // Take node-id of an expression or pattern and check its type for privacy.
+ fn check_expr_pat_type(&mut self, id: hir::HirId, span: Span) -> bool {
+ self.span = span;
+ let typeck_results = self.typeck_results();
+ let result: ControlFlow<()> = try {
+ self.visit(typeck_results.node_type(id))?;
+ self.visit(typeck_results.node_substs(id))?;
+ if let Some(adjustments) = typeck_results.adjustments().get(id) {
+ adjustments.iter().try_for_each(|adjustment| self.visit(adjustment.target))?;
+ }
+ };
+ result.is_break()
+ }
+
+ fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
+ let is_error = !self.item_is_accessible(def_id);
+ if is_error {
+ self.tcx.sess.emit_err(ItemIsPrivate { span: self.span, kind, descr: descr.into() });
+ }
+ is_error
+ }
+}
+
+impl<'tcx> Visitor<'tcx> for TypePrivacyVisitor<'tcx> {
+ type NestedFilter = nested_filter::All;
+
+ /// We want to visit items in the context of their containing
+ /// module and so forth, so supply a crate for doing a deep walk.
+ fn nested_visit_map(&mut self) -> Self::Map {
+ self.tcx.hir()
+ }
+
+ fn visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId) {
+ // Don't visit nested modules, since we run a separate visitor walk
+ // for each module in `privacy_access_levels`
+ }
+
+ fn visit_nested_body(&mut self, body: hir::BodyId) {
+ let old_maybe_typeck_results =
+ self.maybe_typeck_results.replace(self.tcx.typeck_body(body));
+ let body = self.tcx.hir().body(body);
+ self.visit_body(body);
+ self.maybe_typeck_results = old_maybe_typeck_results;
+ }
+
+ fn visit_generic_arg(&mut self, generic_arg: &'tcx hir::GenericArg<'tcx>) {
+ match generic_arg {
+ hir::GenericArg::Type(t) => self.visit_ty(t),
+ hir::GenericArg::Infer(inf) => self.visit_infer(inf),
+ hir::GenericArg::Lifetime(_) | hir::GenericArg::Const(_) => {}
+ }
+ }
+
+ fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'tcx>) {
+ self.span = hir_ty.span;
+ if let Some(typeck_results) = self.maybe_typeck_results {
+ // Types in bodies.
+ if self.visit(typeck_results.node_type(hir_ty.hir_id)).is_break() {
+ return;
+ }
+ } else {
+ // Types in signatures.
+ // FIXME: This is very ineffective. Ideally each HIR type should be converted
+ // into a semantic type only once and the result should be cached somehow.
+ if self.visit(rustc_typeck::hir_ty_to_ty(self.tcx, hir_ty)).is_break() {
+ return;
+ }
+ }
+
+ intravisit::walk_ty(self, hir_ty);
+ }
+
+ fn visit_infer(&mut self, inf: &'tcx hir::InferArg) {
+ self.span = inf.span;
+ if let Some(typeck_results) = self.maybe_typeck_results {
+ if let Some(ty) = typeck_results.node_type_opt(inf.hir_id) {
+ if self.visit(ty).is_break() {
+ return;
+ }
+ } else {
+ // We don't do anything for const infers here.
+ }
+ } else {
+ bug!("visit_infer without typeck_results");
+ }
+ intravisit::walk_inf(self, inf);
+ }
+
+ fn visit_trait_ref(&mut self, trait_ref: &'tcx hir::TraitRef<'tcx>) {
+ self.span = trait_ref.path.span;
+ if self.maybe_typeck_results.is_none() {
+ // Avoid calling `hir_trait_to_predicates` in bodies, it will ICE.
+ // The traits' privacy in bodies is already checked as a part of trait object types.
+ let bounds = rustc_typeck::hir_trait_to_predicates(
+ self.tcx,
+ trait_ref,
+ // NOTE: This isn't really right, but the actual type doesn't matter here. It's
+ // just required by `ty::TraitRef`.
+ self.tcx.types.never,
+ );
+
+ for (trait_predicate, _, _) in bounds.trait_bounds {
+ if self.visit_trait(trait_predicate.skip_binder()).is_break() {
+ return;
+ }
+ }
+
+ for (poly_predicate, _) in bounds.projection_bounds {
+ let pred = poly_predicate.skip_binder();
+ let poly_pred_term = self.visit(pred.term);
+ if poly_pred_term.is_break()
+ || self.visit_projection_ty(pred.projection_ty).is_break()
+ {
+ return;
+ }
+ }
+ }
+
+ intravisit::walk_trait_ref(self, trait_ref);
+ }
+
+ // Check types of expressions
+ fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
+ if self.check_expr_pat_type(expr.hir_id, expr.span) {
+ // Do not check nested expressions if the error already happened.
+ return;
+ }
+ match expr.kind {
+ hir::ExprKind::Assign(_, rhs, _) | hir::ExprKind::Match(rhs, ..) => {
+ // Do not report duplicate errors for `x = y` and `match x { ... }`.
+ if self.check_expr_pat_type(rhs.hir_id, rhs.span) {
+ return;
+ }
+ }
+ hir::ExprKind::MethodCall(segment, ..) => {
+ // Method calls have to be checked specially.
+ self.span = segment.ident.span;
+ if let Some(def_id) = self.typeck_results().type_dependent_def_id(expr.hir_id) {
+ if self.visit(self.tcx.type_of(def_id)).is_break() {
+ return;
+ }
+ } else {
+ self.tcx
+ .sess
+ .delay_span_bug(expr.span, "no type-dependent def for method call");
+ }
+ }
+ _ => {}
+ }
+
+ intravisit::walk_expr(self, expr);
+ }
+
+ // Prohibit access to associated items with insufficient nominal visibility.
+ //
+ // Additionally, until better reachability analysis for macros 2.0 is available,
+ // we prohibit access to private statics from other crates, this allows to give
+ // more code internal visibility at link time. (Access to private functions
+ // is already prohibited by type privacy for function types.)
+ fn visit_qpath(&mut self, qpath: &'tcx hir::QPath<'tcx>, id: hir::HirId, span: Span) {
+ let def = match qpath {
+ hir::QPath::Resolved(_, path) => match path.res {
+ Res::Def(kind, def_id) => Some((kind, def_id)),
+ _ => None,
+ },
+ hir::QPath::TypeRelative(..) | hir::QPath::LangItem(..) => self
+ .maybe_typeck_results
+ .and_then(|typeck_results| typeck_results.type_dependent_def(id)),
+ };
+ let def = def.filter(|(kind, _)| {
+ matches!(
+ kind,
+ DefKind::AssocFn | DefKind::AssocConst | DefKind::AssocTy | DefKind::Static(_)
+ )
+ });
+ if let Some((kind, def_id)) = def {
+ let is_local_static =
+ if let DefKind::Static(_) = kind { def_id.is_local() } else { false };
+ if !self.item_is_accessible(def_id) && !is_local_static {
+ let sess = self.tcx.sess;
+ let sm = sess.source_map();
+ let name = match qpath {
+ hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => {
+ sm.span_to_snippet(qpath.span()).ok()
+ }
+ hir::QPath::TypeRelative(_, segment) => Some(segment.ident.to_string()),
+ };
+ let kind = kind.descr(def_id);
+ let _ = match name {
+ Some(name) => {
+ sess.emit_err(ItemIsPrivate { span, kind, descr: (&name).into() })
+ }
+ None => sess.emit_err(UnnamedItemIsPrivate { span, kind }),
+ };
+ return;
+ }
+ }
+
+ intravisit::walk_qpath(self, qpath, id, span);
+ }
+
+ // Check types of patterns.
+ fn visit_pat(&mut self, pattern: &'tcx hir::Pat<'tcx>) {
+ if self.check_expr_pat_type(pattern.hir_id, pattern.span) {
+ // Do not check nested patterns if the error already happened.
+ return;
+ }
+
+ intravisit::walk_pat(self, pattern);
+ }
+
+ fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) {
+ if let Some(init) = local.init {
+ if self.check_expr_pat_type(init.hir_id, init.span) {
+ // Do not report duplicate errors for `let x = y`.
+ return;
+ }
+ }
+
+ intravisit::walk_local(self, local);
+ }
+
+ // Check types in item interfaces.
+ fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
+ let orig_current_item = mem::replace(&mut self.current_item, item.def_id);
+ let old_maybe_typeck_results = self.maybe_typeck_results.take();
+ intravisit::walk_item(self, item);
+ self.maybe_typeck_results = old_maybe_typeck_results;
+ self.current_item = orig_current_item;
+ }
+}
+
+impl<'tcx> DefIdVisitor<'tcx> for TypePrivacyVisitor<'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+ fn visit_def_id(
+ &mut self,
+ def_id: DefId,
+ kind: &str,
+ descr: &dyn fmt::Display,
+ ) -> ControlFlow<Self::BreakTy> {
+ if self.check_def_id(def_id, kind, descr) {
+ ControlFlow::BREAK
+ } else {
+ ControlFlow::CONTINUE
+ }
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////////
+/// Obsolete visitors for checking for private items in public interfaces.
+/// These visitors are supposed to be kept in frozen state and produce an
+/// "old error node set". For backward compatibility the new visitor reports
+/// warnings instead of hard errors when the erroneous node is not in this old set.
+///////////////////////////////////////////////////////////////////////////////
+
+struct ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ access_levels: &'a AccessLevels,
+ in_variant: bool,
+ // Set of errors produced by this obsolete visitor.
+ old_error_set: HirIdSet,
+}
+
+struct ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
+ inner: &'a ObsoleteVisiblePrivateTypesVisitor<'b, 'tcx>,
+ /// Whether the type refers to private types.
+ contains_private: bool,
+ /// Whether we've recurred at all (i.e., if we're pointing at the
+ /// first type on which `visit_ty` was called).
+ at_outer_type: bool,
+ /// Whether that first type is a public path.
+ outer_type_is_public_path: bool,
+}
+
+impl<'a, 'tcx> ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
+ fn path_is_private_type(&self, path: &hir::Path<'_>) -> bool {
+ let did = match path.res {
+ Res::PrimTy(..) | Res::SelfTy { .. } | Res::Err => return false,
+ res => res.def_id(),
+ };
+
+ // A path can only be private if:
+ // it's in this crate...
+ if let Some(did) = did.as_local() {
+ // .. and it corresponds to a private type in the AST (this returns
+ // `None` for type parameters).
+ match self.tcx.hir().find(self.tcx.hir().local_def_id_to_hir_id(did)) {
+ Some(Node::Item(_)) => !self.tcx.visibility(did).is_public(),
+ Some(_) | None => false,
+ }
+ } else {
+ false
+ }
+ }
+
+ fn trait_is_public(&self, trait_id: LocalDefId) -> bool {
+ // FIXME: this would preferably be using `exported_items`, but all
+ // traits are exported currently (see `EmbargoVisitor.exported_trait`).
+ self.access_levels.is_public(trait_id)
+ }
+
+ fn check_generic_bound(&mut self, bound: &hir::GenericBound<'_>) {
+ if let hir::GenericBound::Trait(ref trait_ref, _) = *bound {
+ if self.path_is_private_type(trait_ref.trait_ref.path) {
+ self.old_error_set.insert(trait_ref.trait_ref.hir_ref_id);
+ }
+ }
+ }
+
+ fn item_is_public(&self, def_id: LocalDefId) -> bool {
+ self.access_levels.is_reachable(def_id) || self.tcx.visibility(def_id).is_public()
+ }
+}
+
+impl<'a, 'b, 'tcx, 'v> Visitor<'v> for ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
+ fn visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>) {
+ match generic_arg {
+ hir::GenericArg::Type(t) => self.visit_ty(t),
+ hir::GenericArg::Infer(inf) => self.visit_ty(&inf.to_ty()),
+ hir::GenericArg::Lifetime(_) | hir::GenericArg::Const(_) => {}
+ }
+ }
+
+ fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
+ if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = ty.kind {
+ if self.inner.path_is_private_type(path) {
+ self.contains_private = true;
+ // Found what we're looking for, so let's stop working.
+ return;
+ }
+ }
+ if let hir::TyKind::Path(_) = ty.kind {
+ if self.at_outer_type {
+ self.outer_type_is_public_path = true;
+ }
+ }
+ self.at_outer_type = false;
+ intravisit::walk_ty(self, ty)
+ }
+
+ // Don't want to recurse into `[, .. expr]`.
+ fn visit_expr(&mut self, _: &hir::Expr<'_>) {}
+}
+
+impl<'a, 'tcx> Visitor<'tcx> for ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
+ type NestedFilter = nested_filter::All;
+
+ /// We want to visit items in the context of their containing
+ /// module and so forth, so supply a crate for doing a deep walk.
+ fn nested_visit_map(&mut self) -> Self::Map {
+ self.tcx.hir()
+ }
+
+ fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
+ match item.kind {
+ // Contents of a private mod can be re-exported, so we need
+ // to check internals.
+ hir::ItemKind::Mod(_) => {}
+
+ // An `extern {}` doesn't introduce a new privacy
+ // namespace (the contents have their own privacies).
+ hir::ItemKind::ForeignMod { .. } => {}
+
+ hir::ItemKind::Trait(.., bounds, _) => {
+ if !self.trait_is_public(item.def_id) {
+ return;
+ }
+
+ for bound in bounds.iter() {
+ self.check_generic_bound(bound)
+ }
+ }
+
+ // Impls need some special handling to try to offer useful
+ // error messages without (too many) false positives
+ // (i.e., we could just return here to not check them at
+ // all, or some worse estimation of whether an impl is
+ // publicly visible).
+ hir::ItemKind::Impl(ref impl_) => {
+ // `impl [... for] Private` is never visible.
+ let self_contains_private;
+ // `impl [... for] Public<...>`, but not `impl [... for]
+ // Vec<Public>` or `(Public,)`, etc.
+ let self_is_public_path;
+
+ // Check the properties of the `Self` type:
+ {
+ let mut visitor = ObsoleteCheckTypeForPrivatenessVisitor {
+ inner: self,
+ contains_private: false,
+ at_outer_type: true,
+ outer_type_is_public_path: false,
+ };
+ visitor.visit_ty(impl_.self_ty);
+ self_contains_private = visitor.contains_private;
+ self_is_public_path = visitor.outer_type_is_public_path;
+ }
+
+ // Miscellaneous info about the impl:
+
+ // `true` iff this is `impl Private for ...`.
+ let not_private_trait = impl_.of_trait.as_ref().map_or(
+ true, // no trait counts as public trait
+ |tr| {
+ if let Some(def_id) = tr.path.res.def_id().as_local() {
+ self.trait_is_public(def_id)
+ } else {
+ true // external traits must be public
+ }
+ },
+ );
+
+ // `true` iff this is a trait impl or at least one method is public.
+ //
+ // `impl Public { $( fn ...() {} )* }` is not visible.
+ //
+ // This is required over just using the methods' privacy
+ // directly because we might have `impl<T: Foo<Private>> ...`,
+ // and we shouldn't warn about the generics if all the methods
+ // are private (because `T` won't be visible externally).
+ let trait_or_some_public_method = impl_.of_trait.is_some()
+ || impl_.items.iter().any(|impl_item_ref| {
+ let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
+ match impl_item.kind {
+ hir::ImplItemKind::Const(..) | hir::ImplItemKind::Fn(..) => {
+ self.access_levels.is_reachable(impl_item_ref.id.def_id)
+ }
+ hir::ImplItemKind::TyAlias(_) => false,
+ }
+ });
+
+ if !self_contains_private && not_private_trait && trait_or_some_public_method {
+ intravisit::walk_generics(self, &impl_.generics);
+
+ match impl_.of_trait {
+ None => {
+ for impl_item_ref in impl_.items {
+ // This is where we choose whether to walk down
+ // further into the impl to check its items. We
+ // should only walk into public items so that we
+ // don't erroneously report errors for private
+ // types in private items.
+ let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
+ match impl_item.kind {
+ hir::ImplItemKind::Const(..) | hir::ImplItemKind::Fn(..)
+ if self.item_is_public(impl_item.def_id) =>
+ {
+ intravisit::walk_impl_item(self, impl_item)
+ }
+ hir::ImplItemKind::TyAlias(..) => {
+ intravisit::walk_impl_item(self, impl_item)
+ }
+ _ => {}
+ }
+ }
+ }
+ Some(ref tr) => {
+ // Any private types in a trait impl fall into three
+ // categories.
+ // 1. mentioned in the trait definition
+ // 2. mentioned in the type params/generics
+ // 3. mentioned in the associated types of the impl
+ //
+ // Those in 1. can only occur if the trait is in
+ // this crate and will have been warned about on the
+ // trait definition (there's no need to warn twice
+ // so we don't check the methods).
+ //
+ // Those in 2. are warned via walk_generics and this
+ // call here.
+ intravisit::walk_path(self, tr.path);
+
+ // Those in 3. are warned with this call.
+ for impl_item_ref in impl_.items {
+ let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
+ if let hir::ImplItemKind::TyAlias(ty) = impl_item.kind {
+ self.visit_ty(ty);
+ }
+ }
+ }
+ }
+ } else if impl_.of_trait.is_none() && self_is_public_path {
+ // `impl Public<Private> { ... }`. Any public static
+ // methods will be visible as `Public::foo`.
+ let mut found_pub_static = false;
+ for impl_item_ref in impl_.items {
+ if self.access_levels.is_reachable(impl_item_ref.id.def_id)
+ || self.tcx.visibility(impl_item_ref.id.def_id)
+ == ty::Visibility::Public
+ {
+ let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
+ match impl_item_ref.kind {
+ AssocItemKind::Const => {
+ found_pub_static = true;
+ intravisit::walk_impl_item(self, impl_item);
+ }
+ AssocItemKind::Fn { has_self: false } => {
+ found_pub_static = true;
+ intravisit::walk_impl_item(self, impl_item);
+ }
+ _ => {}
+ }
+ }
+ }
+ if found_pub_static {
+ intravisit::walk_generics(self, &impl_.generics)
+ }
+ }
+ return;
+ }
+
+ // `type ... = ...;` can contain private types, because
+ // we're introducing a new name.
+ hir::ItemKind::TyAlias(..) => return,
+
+ // Not at all public, so we don't care.
+ _ if !self.item_is_public(item.def_id) => {
+ return;
+ }
+
+ _ => {}
+ }
+
+ // We've carefully constructed it so that if we're here, then
+ // any `visit_ty`'s will be called on things that are in
+ // public signatures, i.e., things that we're interested in for
+ // this visitor.
+ intravisit::walk_item(self, item);
+ }
+
+ fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
+ for predicate in generics.predicates {
+ match predicate {
+ hir::WherePredicate::BoundPredicate(bound_pred) => {
+ for bound in bound_pred.bounds.iter() {
+ self.check_generic_bound(bound)
+ }
+ }
+ hir::WherePredicate::RegionPredicate(_) => {}
+ hir::WherePredicate::EqPredicate(eq_pred) => {
+ self.visit_ty(eq_pred.rhs_ty);
+ }
+ }
+ }
+ }
+
+ fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
+ if self.access_levels.is_reachable(item.def_id) {
+ intravisit::walk_foreign_item(self, item)
+ }
+ }
+
+ fn visit_ty(&mut self, t: &'tcx hir::Ty<'tcx>) {
+ if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = t.kind {
+ if self.path_is_private_type(path) {
+ self.old_error_set.insert(t.hir_id);
+ }
+ }
+ intravisit::walk_ty(self, t)
+ }
+
+ fn visit_variant(
+ &mut self,
+ v: &'tcx hir::Variant<'tcx>,
+ g: &'tcx hir::Generics<'tcx>,
+ item_id: hir::HirId,
+ ) {
+ if self.access_levels.is_reachable(self.tcx.hir().local_def_id(v.id)) {
+ self.in_variant = true;
+ intravisit::walk_variant(self, v, g, item_id);
+ self.in_variant = false;
+ }
+ }
+
+ fn visit_field_def(&mut self, s: &'tcx hir::FieldDef<'tcx>) {
+ let def_id = self.tcx.hir().local_def_id(s.hir_id);
+ let vis = self.tcx.visibility(def_id);
+ if vis.is_public() || self.in_variant {
+ intravisit::walk_field_def(self, s);
+ }
+ }
+
+ // We don't need to introspect into these at all: an
+ // expression/block context can't possibly contain exported things.
+ // (Making them no-ops stops us from traversing the whole AST without
+ // having to be super careful about our `walk_...` calls above.)
+ fn visit_block(&mut self, _: &'tcx hir::Block<'tcx>) {}
+ fn visit_expr(&mut self, _: &'tcx hir::Expr<'tcx>) {}
+}
+
+///////////////////////////////////////////////////////////////////////////////
+/// SearchInterfaceForPrivateItemsVisitor traverses an item's interface and
+/// finds any private components in it.
+/// PrivateItemsInPublicInterfacesVisitor ensures there are no private types
+/// and traits in public interfaces.
+///////////////////////////////////////////////////////////////////////////////
+
+struct SearchInterfaceForPrivateItemsVisitor<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ item_def_id: LocalDefId,
+ /// The visitor checks that each component type is at least this visible.
+ required_visibility: ty::Visibility,
+ has_old_errors: bool,
+ in_assoc_ty: bool,
+}
+
+impl SearchInterfaceForPrivateItemsVisitor<'_> {
+ fn generics(&mut self) -> &mut Self {
+ for param in &self.tcx.generics_of(self.item_def_id).params {
+ match param.kind {
+ GenericParamDefKind::Lifetime => {}
+ GenericParamDefKind::Type { has_default, .. } => {
+ if has_default {
+ self.visit(self.tcx.type_of(param.def_id));
+ }
+ }
+ // FIXME(generic_const_exprs): May want to look inside const here
+ GenericParamDefKind::Const { .. } => {
+ self.visit(self.tcx.type_of(param.def_id));
+ }
+ }
+ }
+ self
+ }
+
+ fn predicates(&mut self) -> &mut Self {
+ // N.B., we use `explicit_predicates_of` and not `predicates_of`
+ // because we don't want to report privacy errors due to where
+ // clauses that the compiler inferred. We only want to
+ // consider the ones that the user wrote. This is important
+ // for the inferred outlives rules; see
+ // `src/test/ui/rfc-2093-infer-outlives/privacy.rs`.
+ self.visit_predicates(self.tcx.explicit_predicates_of(self.item_def_id));
+ self
+ }
+
+ fn bounds(&mut self) -> &mut Self {
+ self.visit_predicates(ty::GenericPredicates {
+ parent: None,
+ predicates: self.tcx.explicit_item_bounds(self.item_def_id),
+ });
+ self
+ }
+
+ fn ty(&mut self) -> &mut Self {
+ self.visit(self.tcx.type_of(self.item_def_id));
+ self
+ }
+
+ fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
+ if self.leaks_private_dep(def_id) {
+ self.tcx.emit_spanned_lint(
+ lint::builtin::EXPORTED_PRIVATE_DEPENDENCIES,
+ self.tcx.hir().local_def_id_to_hir_id(self.item_def_id),
+ self.tcx.def_span(self.item_def_id.to_def_id()),
+ FromPrivateDependencyInPublicInterface {
+ kind,
+ descr: descr.into(),
+ krate: self.tcx.crate_name(def_id.krate),
+ },
+ );
+ }
+
+ let hir_id = match def_id.as_local() {
+ Some(def_id) => self.tcx.hir().local_def_id_to_hir_id(def_id),
+ None => return false,
+ };
+
+ let vis = self.tcx.visibility(def_id);
+ if !vis.is_at_least(self.required_visibility, self.tcx) {
+ let vis_descr = match vis {
+ ty::Visibility::Public => "public",
+ ty::Visibility::Invisible => "private",
+ ty::Visibility::Restricted(vis_def_id) => {
+ if vis_def_id == self.tcx.parent_module(hir_id).to_def_id() {
+ "private"
+ } else if vis_def_id.is_top_level_module() {
+ "crate-private"
+ } else {
+ "restricted"
+ }
+ }
+ };
+ let span = self.tcx.def_span(self.item_def_id.to_def_id());
+ if self.has_old_errors
+ || self.in_assoc_ty
+ || self.tcx.resolutions(()).has_pub_restricted
+ {
+ let vis_span = self.tcx.def_span(def_id);
+ if kind == "trait" {
+ self.tcx.sess.emit_err(InPublicInterfaceTraits {
+ span,
+ vis_descr,
+ kind,
+ descr: descr.into(),
+ vis_span,
+ });
+ } else {
+ self.tcx.sess.emit_err(InPublicInterface {
+ span,
+ vis_descr,
+ kind,
+ descr: descr.into(),
+ vis_span,
+ });
+ }
+ } else {
+ self.tcx.emit_spanned_lint(
+ lint::builtin::PRIVATE_IN_PUBLIC,
+ hir_id,
+ span,
+ PrivateInPublicLint { vis_descr, kind, descr: descr.into() },
+ );
+ }
+ }
+
+ false
+ }
+
+ /// An item is 'leaked' from a private dependency if all
+ /// of the following are true:
+ /// 1. It's contained within a public type
+ /// 2. It comes from a private crate
+ fn leaks_private_dep(&self, item_id: DefId) -> bool {
+ let ret = self.required_visibility.is_public() && self.tcx.is_private_dep(item_id.krate);
+
+ tracing::debug!("leaks_private_dep(item_id={:?})={}", item_id, ret);
+ ret
+ }
+}
+
+impl<'tcx> DefIdVisitor<'tcx> for SearchInterfaceForPrivateItemsVisitor<'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+ fn visit_def_id(
+ &mut self,
+ def_id: DefId,
+ kind: &str,
+ descr: &dyn fmt::Display,
+ ) -> ControlFlow<Self::BreakTy> {
+ if self.check_def_id(def_id, kind, descr) {
+ ControlFlow::BREAK
+ } else {
+ ControlFlow::CONTINUE
+ }
+ }
+}
+
+struct PrivateItemsInPublicInterfacesChecker<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ old_error_set_ancestry: LocalDefIdSet,
+}
+
+impl<'tcx> PrivateItemsInPublicInterfacesChecker<'tcx> {
+ fn check(
+ &self,
+ def_id: LocalDefId,
+ required_visibility: ty::Visibility,
+ ) -> SearchInterfaceForPrivateItemsVisitor<'tcx> {
+ SearchInterfaceForPrivateItemsVisitor {
+ tcx: self.tcx,
+ item_def_id: def_id,
+ required_visibility,
+ has_old_errors: self.old_error_set_ancestry.contains(&def_id),
+ in_assoc_ty: false,
+ }
+ }
+
+ fn check_assoc_item(
+ &self,
+ def_id: LocalDefId,
+ assoc_item_kind: AssocItemKind,
+ vis: ty::Visibility,
+ ) {
+ let mut check = self.check(def_id, vis);
+
+ let (check_ty, is_assoc_ty) = match assoc_item_kind {
+ AssocItemKind::Const | AssocItemKind::Fn { .. } => (true, false),
+ AssocItemKind::Type => (self.tcx.impl_defaultness(def_id).has_value(), true),
+ };
+ check.in_assoc_ty = is_assoc_ty;
+ check.generics().predicates();
+ if check_ty {
+ check.ty();
+ }
+ }
+
+ pub fn check_item(&mut self, id: ItemId) {
+ let tcx = self.tcx;
+ let item_visibility = tcx.visibility(id.def_id);
+ let def_kind = tcx.def_kind(id.def_id);
+
+ match def_kind {
+ DefKind::Const | DefKind::Static(_) | DefKind::Fn | DefKind::TyAlias => {
+ self.check(id.def_id, item_visibility).generics().predicates().ty();
+ }
+ DefKind::OpaqueTy => {
+ // `ty()` for opaque types is the underlying type,
+ // it's not a part of interface, so we skip it.
+ self.check(id.def_id, item_visibility).generics().bounds();
+ }
+ DefKind::Trait => {
+ let item = tcx.hir().item(id);
+ if let hir::ItemKind::Trait(.., trait_item_refs) = item.kind {
+ self.check(item.def_id, item_visibility).generics().predicates();
+
+ for trait_item_ref in trait_item_refs {
+ self.check_assoc_item(
+ trait_item_ref.id.def_id,
+ trait_item_ref.kind,
+ item_visibility,
+ );
+
+ if let AssocItemKind::Type = trait_item_ref.kind {
+ self.check(trait_item_ref.id.def_id, item_visibility).bounds();
+ }
+ }
+ }
+ }
+ DefKind::TraitAlias => {
+ self.check(id.def_id, item_visibility).generics().predicates();
+ }
+ DefKind::Enum => {
+ let item = tcx.hir().item(id);
+ if let hir::ItemKind::Enum(ref def, _) = item.kind {
+ self.check(item.def_id, item_visibility).generics().predicates();
+
+ for variant in def.variants {
+ for field in variant.data.fields() {
+ self.check(self.tcx.hir().local_def_id(field.hir_id), item_visibility)
+ .ty();
+ }
+ }
+ }
+ }
+ // Subitems of foreign modules have their own publicity.
+ DefKind::ForeignMod => {
+ let item = tcx.hir().item(id);
+ if let hir::ItemKind::ForeignMod { items, .. } = item.kind {
+ for foreign_item in items {
+ let vis = tcx.visibility(foreign_item.id.def_id);
+ self.check(foreign_item.id.def_id, vis).generics().predicates().ty();
+ }
+ }
+ }
+ // Subitems of structs and unions have their own publicity.
+ DefKind::Struct | DefKind::Union => {
+ let item = tcx.hir().item(id);
+ if let hir::ItemKind::Struct(ref struct_def, _)
+ | hir::ItemKind::Union(ref struct_def, _) = item.kind
+ {
+ self.check(item.def_id, item_visibility).generics().predicates();
+
+ for field in struct_def.fields() {
+ let def_id = tcx.hir().local_def_id(field.hir_id);
+ let field_visibility = tcx.visibility(def_id);
+ self.check(def_id, min(item_visibility, field_visibility, tcx)).ty();
+ }
+ }
+ }
+ // An inherent impl is public when its type is public
+ // Subitems of inherent impls have their own publicity.
+ // A trait impl is public when both its type and its trait are public
+ // Subitems of trait impls have inherited publicity.
+ DefKind::Impl => {
+ let item = tcx.hir().item(id);
+ if let hir::ItemKind::Impl(ref impl_) = item.kind {
+ let impl_vis = ty::Visibility::of_impl(item.def_id, tcx, &Default::default());
+ // check that private components do not appear in the generics or predicates of inherent impls
+ // this check is intentionally NOT performed for impls of traits, per #90586
+ if impl_.of_trait.is_none() {
+ self.check(item.def_id, impl_vis).generics().predicates();
+ }
+ for impl_item_ref in impl_.items {
+ let impl_item_vis = if impl_.of_trait.is_none() {
+ min(tcx.visibility(impl_item_ref.id.def_id), impl_vis, tcx)
+ } else {
+ impl_vis
+ };
+ self.check_assoc_item(
+ impl_item_ref.id.def_id,
+ impl_item_ref.kind,
+ impl_item_vis,
+ );
+ }
+ }
+ }
+ _ => {}
+ }
+ }
+}
+
+pub fn provide(providers: &mut Providers) {
+ *providers = Providers {
+ visibility,
+ privacy_access_levels,
+ check_private_in_public,
+ check_mod_privacy,
+ ..*providers
+ };
+}
+
+fn visibility(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Visibility {
+ let def_id = def_id.expect_local();
+ match tcx.resolutions(()).visibilities.get(&def_id) {
+ Some(vis) => *vis,
+ None => {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+ match tcx.hir().get(hir_id) {
+ // Unique types created for closures participate in type privacy checking.
+ // They have visibilities inherited from the module they are defined in.
+ Node::Expr(hir::Expr { kind: hir::ExprKind::Closure{..}, .. })
+ // - AST lowering creates dummy `use` items which don't
+ // get their entries in the resolver's visibility table.
+ // - AST lowering also creates opaque type items with inherited visibilities.
+ // Visibility on them should have no effect, but to avoid the visibility
+ // query failing on some items, we provide it for opaque types as well.
+ | Node::Item(hir::Item {
+ kind: hir::ItemKind::Use(_, hir::UseKind::ListStem) | hir::ItemKind::OpaqueTy(..),
+ ..
+ }) => ty::Visibility::Restricted(tcx.parent_module(hir_id).to_def_id()),
+ // Visibilities of trait impl items are inherited from their traits
+ // and are not filled in resolve.
+ Node::ImplItem(impl_item) => {
+ match tcx.hir().get_by_def_id(tcx.hir().get_parent_item(hir_id)) {
+ Node::Item(hir::Item {
+ kind: hir::ItemKind::Impl(hir::Impl { of_trait: Some(tr), .. }),
+ ..
+ }) => tr.path.res.opt_def_id().map_or_else(
+ || {
+ tcx.sess.delay_span_bug(tr.path.span, "trait without a def-id");
+ ty::Visibility::Public
+ },
+ |def_id| tcx.visibility(def_id),
+ ),
+ _ => span_bug!(impl_item.span, "the parent is not a trait impl"),
+ }
+ }
+ _ => span_bug!(
+ tcx.def_span(def_id),
+ "visibility table unexpectedly missing a def-id: {:?}",
+ def_id,
+ ),
+ }
+ }
+ }
+}
+
+fn check_mod_privacy(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
+ // Check privacy of names not checked in previous compilation stages.
+ let mut visitor =
+ NamePrivacyVisitor { tcx, maybe_typeck_results: None, current_item: module_def_id };
+ let (module, span, hir_id) = tcx.hir().get_module(module_def_id);
+
+ intravisit::walk_mod(&mut visitor, module, hir_id);
+
+ // Check privacy of explicitly written types and traits as well as
+ // inferred types of expressions and patterns.
+ let mut visitor =
+ TypePrivacyVisitor { tcx, maybe_typeck_results: None, current_item: module_def_id, span };
+ intravisit::walk_mod(&mut visitor, module, hir_id);
+}
+
+fn privacy_access_levels(tcx: TyCtxt<'_>, (): ()) -> &AccessLevels {
+ // Build up a set of all exported items in the AST. This is a set of all
+ // items which are reachable from external crates based on visibility.
+ let mut visitor = EmbargoVisitor {
+ tcx,
+ access_levels: tcx.resolutions(()).access_levels.clone(),
+ macro_reachable: Default::default(),
+ prev_level: Some(AccessLevel::Public),
+ changed: false,
+ };
+
+ loop {
+ tcx.hir().walk_toplevel_module(&mut visitor);
+ if visitor.changed {
+ visitor.changed = false;
+ } else {
+ break;
+ }
+ }
+
+ tcx.arena.alloc(visitor.access_levels)
+}
+
+fn check_private_in_public(tcx: TyCtxt<'_>, (): ()) {
+ let access_levels = tcx.privacy_access_levels(());
+
+ let mut visitor = ObsoleteVisiblePrivateTypesVisitor {
+ tcx,
+ access_levels,
+ in_variant: false,
+ old_error_set: Default::default(),
+ };
+ tcx.hir().walk_toplevel_module(&mut visitor);
+
+ let mut old_error_set_ancestry = HirIdSet::default();
+ for mut id in visitor.old_error_set.iter().copied() {
+ loop {
+ if !old_error_set_ancestry.insert(id) {
+ break;
+ }
+ let parent = tcx.hir().get_parent_node(id);
+ if parent == id {
+ break;
+ }
+ id = parent;
+ }
+ }
+
+ // Check for private types and traits in public interfaces.
+ let mut checker = PrivateItemsInPublicInterfacesChecker {
+ tcx,
+ // Only definition IDs are ever searched in `old_error_set_ancestry`,
+ // so we can filter away all non-definition IDs at this point.
+ old_error_set_ancestry: old_error_set_ancestry
+ .into_iter()
+ .filter_map(|hir_id| tcx.hir().opt_local_def_id(hir_id))
+ .collect(),
+ };
+
+ for id in tcx.hir().items() {
+ checker.check_item(id);
+ }
+}