diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 12:02:58 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 12:02:58 +0000 |
commit | 698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch) | |
tree | 173a775858bd501c378080a10dca74132f05bc50 /compiler/rustc_resolve/src/late | |
parent | Initial commit. (diff) | |
download | rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip |
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | compiler/rustc_resolve/src/late.rs | 3984 | ||||
-rw-r--r-- | compiler/rustc_resolve/src/late/diagnostics.rs | 2369 | ||||
-rw-r--r-- | compiler/rustc_resolve/src/late/lifetimes.rs | 2144 |
3 files changed, 8497 insertions, 0 deletions
diff --git a/compiler/rustc_resolve/src/late.rs b/compiler/rustc_resolve/src/late.rs new file mode 100644 index 000000000..dea3eaecd --- /dev/null +++ b/compiler/rustc_resolve/src/late.rs @@ -0,0 +1,3984 @@ +// ignore-tidy-filelength +//! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros. +//! It runs when the crate is fully expanded and its module structure is fully built. +//! So it just walks through the crate and resolves all the expressions, types, etc. +//! +//! If you wonder why there's no `early.rs`, that's because it's split into three files - +//! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`. + +use RibKind::*; + +use crate::{path_names_to_string, BindingError, Finalize, LexicalScopeBinding}; +use crate::{Module, ModuleOrUniformRoot, NameBinding, ParentScope, PathResult}; +use crate::{ResolutionError, Resolver, Segment, UseError}; + +use rustc_ast::ptr::P; +use rustc_ast::visit::{self, AssocCtxt, BoundKind, FnCtxt, FnKind, Visitor}; +use rustc_ast::*; +use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap}; +use rustc_errors::DiagnosticId; +use rustc_hir::def::Namespace::{self, *}; +use rustc_hir::def::{self, CtorKind, DefKind, LifetimeRes, PartialRes, PerNS}; +use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID}; +use rustc_hir::{PrimTy, TraitCandidate}; +use rustc_middle::middle::resolve_lifetime::Set1; +use rustc_middle::ty::DefIdTree; +use rustc_middle::{bug, span_bug}; +use rustc_session::lint; +use rustc_span::symbol::{kw, sym, Ident, Symbol}; +use rustc_span::{BytePos, Span}; +use smallvec::{smallvec, SmallVec}; + +use rustc_span::source_map::{respan, Spanned}; +use std::collections::{hash_map::Entry, BTreeSet}; +use std::mem::{replace, take}; +use tracing::debug; + +mod diagnostics; +pub(crate) mod lifetimes; + +type Res = def::Res<NodeId>; + +type IdentMap<T> = FxHashMap<Ident, T>; + +/// Map from the name in a pattern to its binding mode. +type BindingMap = IdentMap<BindingInfo>; + +use diagnostics::{ + ElisionFnParameter, LifetimeElisionCandidate, MissingLifetime, MissingLifetimeKind, +}; + +#[derive(Copy, Clone, Debug)] +struct BindingInfo { + span: Span, + binding_mode: BindingMode, +} + +#[derive(Copy, Clone, PartialEq, Eq, Debug)] +pub enum PatternSource { + Match, + Let, + For, + FnParam, +} + +#[derive(Copy, Clone, Debug, PartialEq, Eq)] +enum IsRepeatExpr { + No, + Yes, +} + +impl PatternSource { + pub fn descr(self) -> &'static str { + match self { + PatternSource::Match => "match binding", + PatternSource::Let => "let binding", + PatternSource::For => "for binding", + PatternSource::FnParam => "function parameter", + } + } +} + +/// Denotes whether the context for the set of already bound bindings is a `Product` +/// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`. +/// See those functions for more information. +#[derive(PartialEq)] +enum PatBoundCtx { + /// A product pattern context, e.g., `Variant(a, b)`. + Product, + /// An or-pattern context, e.g., `p_0 | ... | p_n`. + Or, +} + +/// Does this the item (from the item rib scope) allow generic parameters? +#[derive(Copy, Clone, Debug, Eq, PartialEq)] +pub(crate) enum HasGenericParams { + Yes, + No, +} + +impl HasGenericParams { + fn force_yes_if(self, b: bool) -> Self { + if b { Self::Yes } else { self } + } +} + +#[derive(Copy, Clone, Debug, Eq, PartialEq)] +pub(crate) enum ConstantItemKind { + Const, + Static, +} + +/// The rib kind restricts certain accesses, +/// e.g. to a `Res::Local` of an outer item. +#[derive(Copy, Clone, Debug)] +pub(crate) enum RibKind<'a> { + /// No restriction needs to be applied. + NormalRibKind, + + /// We passed through an impl or trait and are now in one of its + /// methods or associated types. Allow references to ty params that impl or trait + /// binds. Disallow any other upvars (including other ty params that are + /// upvars). + AssocItemRibKind, + + /// We passed through a closure. Disallow labels. + ClosureOrAsyncRibKind, + + /// We passed through a function definition. Disallow upvars. + /// Permit only those const parameters that are specified in the function's generics. + FnItemRibKind, + + /// We passed through an item scope. Disallow upvars. + ItemRibKind(HasGenericParams), + + /// We're in a constant item. Can't refer to dynamic stuff. + /// + /// The item may reference generic parameters in trivial constant expressions. + /// All other constants aren't allowed to use generic params at all. + ConstantItemRibKind(HasGenericParams, Option<(Ident, ConstantItemKind)>), + + /// We passed through a module. + ModuleRibKind(Module<'a>), + + /// We passed through a `macro_rules!` statement + MacroDefinition(DefId), + + /// All bindings in this rib are generic parameters that can't be used + /// from the default of a generic parameter because they're not declared + /// before said generic parameter. Also see the `visit_generics` override. + ForwardGenericParamBanRibKind, + + /// We are inside of the type of a const parameter. Can't refer to any + /// parameters. + ConstParamTyRibKind, + + /// We are inside a `sym` inline assembly operand. Can only refer to + /// globals. + InlineAsmSymRibKind, +} + +impl RibKind<'_> { + /// Whether this rib kind contains generic parameters, as opposed to local + /// variables. + pub(crate) fn contains_params(&self) -> bool { + match self { + NormalRibKind + | ClosureOrAsyncRibKind + | FnItemRibKind + | ConstantItemRibKind(..) + | ModuleRibKind(_) + | MacroDefinition(_) + | ConstParamTyRibKind + | InlineAsmSymRibKind => false, + AssocItemRibKind | ItemRibKind(_) | ForwardGenericParamBanRibKind => true, + } + } + + /// This rib forbids referring to labels defined in upwards ribs. + fn is_label_barrier(self) -> bool { + match self { + NormalRibKind | MacroDefinition(..) => false, + + AssocItemRibKind + | ClosureOrAsyncRibKind + | FnItemRibKind + | ItemRibKind(..) + | ConstantItemRibKind(..) + | ModuleRibKind(..) + | ForwardGenericParamBanRibKind + | ConstParamTyRibKind + | InlineAsmSymRibKind => true, + } + } +} + +/// A single local scope. +/// +/// A rib represents a scope names can live in. Note that these appear in many places, not just +/// around braces. At any place where the list of accessible names (of the given namespace) +/// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a +/// stack. This may be, for example, a `let` statement (because it introduces variables), a macro, +/// etc. +/// +/// Different [rib kinds](enum@RibKind) are transparent for different names. +/// +/// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When +/// resolving, the name is looked up from inside out. +#[derive(Debug)] +pub(crate) struct Rib<'a, R = Res> { + pub bindings: IdentMap<R>, + pub kind: RibKind<'a>, +} + +impl<'a, R> Rib<'a, R> { + fn new(kind: RibKind<'a>) -> Rib<'a, R> { + Rib { bindings: Default::default(), kind } + } +} + +#[derive(Clone, Copy, Debug)] +enum LifetimeUseSet { + One { use_span: Span, use_ctxt: visit::LifetimeCtxt }, + Many, +} + +#[derive(Copy, Clone, Debug)] +enum LifetimeRibKind { + /// This rib acts as a barrier to forbid reference to lifetimes of a parent item. + Item, + + /// This rib declares generic parameters. + Generics { binder: NodeId, span: Span, kind: LifetimeBinderKind }, + + /// FIXME(const_generics): This patches over an ICE caused by non-'static lifetimes in const + /// generics. We are disallowing this until we can decide on how we want to handle non-'static + /// lifetimes in const generics. See issue #74052 for discussion. + ConstGeneric, + + /// Non-static lifetimes are prohibited in anonymous constants under `min_const_generics`. + /// This function will emit an error if `generic_const_exprs` is not enabled, the body identified by + /// `body_id` is an anonymous constant and `lifetime_ref` is non-static. + AnonConst, + + /// Create a new anonymous lifetime parameter and reference it. + /// + /// If `report_in_path`, report an error when encountering lifetime elision in a path: + /// ```compile_fail + /// struct Foo<'a> { x: &'a () } + /// async fn foo(x: Foo) {} + /// ``` + /// + /// Note: the error should not trigger when the elided lifetime is in a pattern or + /// expression-position path: + /// ``` + /// struct Foo<'a> { x: &'a () } + /// async fn foo(Foo { x: _ }: Foo<'_>) {} + /// ``` + AnonymousCreateParameter { binder: NodeId, report_in_path: bool }, + + /// Give a hard error when either `&` or `'_` is written. Used to + /// rule out things like `where T: Foo<'_>`. Does not imply an + /// error on default object bounds (e.g., `Box<dyn Foo>`). + AnonymousReportError, + + /// Replace all anonymous lifetimes by provided lifetime. + Elided(LifetimeRes), + + /// Signal we cannot find which should be the anonymous lifetime. + ElisionFailure, +} + +#[derive(Copy, Clone, Debug)] +enum LifetimeBinderKind { + BareFnType, + PolyTrait, + WhereBound, + Item, + Function, + Closure, + ImplBlock, +} + +impl LifetimeBinderKind { + fn descr(self) -> &'static str { + use LifetimeBinderKind::*; + match self { + BareFnType => "type", + PolyTrait => "bound", + WhereBound => "bound", + Item => "item", + ImplBlock => "impl block", + Function => "function", + Closure => "closure", + } + } +} + +#[derive(Debug)] +struct LifetimeRib { + kind: LifetimeRibKind, + // We need to preserve insertion order for async fns. + bindings: FxIndexMap<Ident, (NodeId, LifetimeRes)>, +} + +impl LifetimeRib { + fn new(kind: LifetimeRibKind) -> LifetimeRib { + LifetimeRib { bindings: Default::default(), kind } + } +} + +#[derive(Copy, Clone, PartialEq, Eq, Debug)] +pub(crate) enum AliasPossibility { + No, + Maybe, +} + +#[derive(Copy, Clone, Debug)] +pub(crate) enum PathSource<'a> { + // Type paths `Path`. + Type, + // Trait paths in bounds or impls. + Trait(AliasPossibility), + // Expression paths `path`, with optional parent context. + Expr(Option<&'a Expr>), + // Paths in path patterns `Path`. + Pat, + // Paths in struct expressions and patterns `Path { .. }`. + Struct, + // Paths in tuple struct patterns `Path(..)`. + TupleStruct(Span, &'a [Span]), + // `m::A::B` in `<T as m::A>::B::C`. + TraitItem(Namespace), +} + +impl<'a> PathSource<'a> { + fn namespace(self) -> Namespace { + match self { + PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS, + PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct(..) => ValueNS, + PathSource::TraitItem(ns) => ns, + } + } + + fn defer_to_typeck(self) -> bool { + match self { + PathSource::Type + | PathSource::Expr(..) + | PathSource::Pat + | PathSource::Struct + | PathSource::TupleStruct(..) => true, + PathSource::Trait(_) | PathSource::TraitItem(..) => false, + } + } + + fn descr_expected(self) -> &'static str { + match &self { + PathSource::Type => "type", + PathSource::Trait(_) => "trait", + PathSource::Pat => "unit struct, unit variant or constant", + PathSource::Struct => "struct, variant or union type", + PathSource::TupleStruct(..) => "tuple struct or tuple variant", + PathSource::TraitItem(ns) => match ns { + TypeNS => "associated type", + ValueNS => "method or associated constant", + MacroNS => bug!("associated macro"), + }, + PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) { + // "function" here means "anything callable" rather than `DefKind::Fn`, + // this is not precise but usually more helpful than just "value". + Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind { + // the case of `::some_crate()` + ExprKind::Path(_, path) + if path.segments.len() == 2 + && path.segments[0].ident.name == kw::PathRoot => + { + "external crate" + } + ExprKind::Path(_, path) => { + let mut msg = "function"; + if let Some(segment) = path.segments.iter().last() { + if let Some(c) = segment.ident.to_string().chars().next() { + if c.is_uppercase() { + msg = "function, tuple struct or tuple variant"; + } + } + } + msg + } + _ => "function", + }, + _ => "value", + }, + } + } + + fn is_call(self) -> bool { + matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. }))) + } + + pub(crate) fn is_expected(self, res: Res) -> bool { + match self { + PathSource::Type => matches!( + res, + Res::Def( + DefKind::Struct + | DefKind::Union + | DefKind::Enum + | DefKind::Trait + | DefKind::TraitAlias + | DefKind::TyAlias + | DefKind::AssocTy + | DefKind::TyParam + | DefKind::OpaqueTy + | DefKind::ForeignTy, + _, + ) | Res::PrimTy(..) + | Res::SelfTy { .. } + ), + PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)), + PathSource::Trait(AliasPossibility::Maybe) => { + matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _)) + } + PathSource::Expr(..) => matches!( + res, + Res::Def( + DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn) + | DefKind::Const + | DefKind::Static(_) + | DefKind::Fn + | DefKind::AssocFn + | DefKind::AssocConst + | DefKind::ConstParam, + _, + ) | Res::Local(..) + | Res::SelfCtor(..) + ), + PathSource::Pat => { + res.expected_in_unit_struct_pat() + || matches!(res, Res::Def(DefKind::Const | DefKind::AssocConst, _)) + } + PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(), + PathSource::Struct => matches!( + res, + Res::Def( + DefKind::Struct + | DefKind::Union + | DefKind::Variant + | DefKind::TyAlias + | DefKind::AssocTy, + _, + ) | Res::SelfTy { .. } + ), + PathSource::TraitItem(ns) => match res { + Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true, + Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true, + _ => false, + }, + } + } + + fn error_code(self, has_unexpected_resolution: bool) -> DiagnosticId { + use rustc_errors::error_code; + match (self, has_unexpected_resolution) { + (PathSource::Trait(_), true) => error_code!(E0404), + (PathSource::Trait(_), false) => error_code!(E0405), + (PathSource::Type, true) => error_code!(E0573), + (PathSource::Type, false) => error_code!(E0412), + (PathSource::Struct, true) => error_code!(E0574), + (PathSource::Struct, false) => error_code!(E0422), + (PathSource::Expr(..), true) => error_code!(E0423), + (PathSource::Expr(..), false) => error_code!(E0425), + (PathSource::Pat | PathSource::TupleStruct(..), true) => error_code!(E0532), + (PathSource::Pat | PathSource::TupleStruct(..), false) => error_code!(E0531), + (PathSource::TraitItem(..), true) => error_code!(E0575), + (PathSource::TraitItem(..), false) => error_code!(E0576), + } + } +} + +#[derive(Default)] +struct DiagnosticMetadata<'ast> { + /// The current trait's associated items' ident, used for diagnostic suggestions. + current_trait_assoc_items: Option<&'ast [P<AssocItem>]>, + + /// The current self type if inside an impl (used for better errors). + current_self_type: Option<Ty>, + + /// The current self item if inside an ADT (used for better errors). + current_self_item: Option<NodeId>, + + /// The current trait (used to suggest). + current_item: Option<&'ast Item>, + + /// When processing generics and encountering a type not found, suggest introducing a type + /// param. + currently_processing_generics: bool, + + /// The current enclosing (non-closure) function (used for better errors). + current_function: Option<(FnKind<'ast>, Span)>, + + /// A list of labels as of yet unused. Labels will be removed from this map when + /// they are used (in a `break` or `continue` statement) + unused_labels: FxHashMap<NodeId, Span>, + + /// Only used for better errors on `fn(): fn()`. + current_type_ascription: Vec<Span>, + + /// Only used for better errors on `let x = { foo: bar };`. + /// In the case of a parse error with `let x = { foo: bar, };`, this isn't needed, it's only + /// needed for cases where this parses as a correct type ascription. + current_block_could_be_bare_struct_literal: Option<Span>, + + /// Only used for better errors on `let <pat>: <expr, not type>;`. + current_let_binding: Option<(Span, Option<Span>, Option<Span>)>, + + /// Used to detect possible `if let` written without `let` and to provide structured suggestion. + in_if_condition: Option<&'ast Expr>, + + /// If we are currently in a trait object definition. Used to point at the bounds when + /// encountering a struct or enum. + current_trait_object: Option<&'ast [ast::GenericBound]>, + + /// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`. + current_where_predicate: Option<&'ast WherePredicate>, + + current_type_path: Option<&'ast Ty>, + + /// The current impl items (used to suggest). + current_impl_items: Option<&'ast [P<AssocItem>]>, + + /// When processing impl trait + currently_processing_impl_trait: Option<(TraitRef, Ty)>, + + /// Accumulate the errors due to missed lifetime elision, + /// and report them all at once for each function. + current_elision_failures: Vec<MissingLifetime>, +} + +struct LateResolutionVisitor<'a, 'b, 'ast> { + r: &'b mut Resolver<'a>, + + /// The module that represents the current item scope. + parent_scope: ParentScope<'a>, + + /// The current set of local scopes for types and values. + /// FIXME #4948: Reuse ribs to avoid allocation. + ribs: PerNS<Vec<Rib<'a>>>, + + /// The current set of local scopes, for labels. + label_ribs: Vec<Rib<'a, NodeId>>, + + /// The current set of local scopes for lifetimes. + lifetime_ribs: Vec<LifetimeRib>, + + /// We are looking for lifetimes in an elision context. + /// The set contains all the resolutions that we encountered so far. + /// They will be used to determine the correct lifetime for the fn return type. + /// The `LifetimeElisionCandidate` is used for diagnostics, to suggest introducing named + /// lifetimes. + lifetime_elision_candidates: Option<FxIndexMap<LifetimeRes, LifetimeElisionCandidate>>, + + /// The trait that the current context can refer to. + current_trait_ref: Option<(Module<'a>, TraitRef)>, + + /// Fields used to add information to diagnostic errors. + diagnostic_metadata: Box<DiagnosticMetadata<'ast>>, + + /// State used to know whether to ignore resolution errors for function bodies. + /// + /// In particular, rustdoc uses this to avoid giving errors for `cfg()` items. + /// In most cases this will be `None`, in which case errors will always be reported. + /// If it is `true`, then it will be updated when entering a nested function or trait body. + in_func_body: bool, + + /// Count the number of places a lifetime is used. + lifetime_uses: FxHashMap<LocalDefId, LifetimeUseSet>, +} + +/// Walks the whole crate in DFS order, visiting each item, resolving names as it goes. +impl<'a: 'ast, 'ast> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast> { + fn visit_attribute(&mut self, _: &'ast Attribute) { + // We do not want to resolve expressions that appear in attributes, + // as they do not correspond to actual code. + } + fn visit_item(&mut self, item: &'ast Item) { + let prev = replace(&mut self.diagnostic_metadata.current_item, Some(item)); + // Always report errors in items we just entered. + let old_ignore = replace(&mut self.in_func_body, false); + self.with_lifetime_rib(LifetimeRibKind::Item, |this| this.resolve_item(item)); + self.in_func_body = old_ignore; + self.diagnostic_metadata.current_item = prev; + } + fn visit_arm(&mut self, arm: &'ast Arm) { + self.resolve_arm(arm); + } + fn visit_block(&mut self, block: &'ast Block) { + self.resolve_block(block); + } + fn visit_anon_const(&mut self, constant: &'ast AnonConst) { + // We deal with repeat expressions explicitly in `resolve_expr`. + self.with_lifetime_rib(LifetimeRibKind::AnonConst, |this| { + this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Static), |this| { + this.resolve_anon_const(constant, IsRepeatExpr::No); + }) + }) + } + fn visit_expr(&mut self, expr: &'ast Expr) { + self.resolve_expr(expr, None); + } + fn visit_local(&mut self, local: &'ast Local) { + let local_spans = match local.pat.kind { + // We check for this to avoid tuple struct fields. + PatKind::Wild => None, + _ => Some(( + local.pat.span, + local.ty.as_ref().map(|ty| ty.span), + local.kind.init().map(|init| init.span), + )), + }; + let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans); + self.resolve_local(local); + self.diagnostic_metadata.current_let_binding = original; + } + fn visit_ty(&mut self, ty: &'ast Ty) { + let prev = self.diagnostic_metadata.current_trait_object; + let prev_ty = self.diagnostic_metadata.current_type_path; + match ty.kind { + TyKind::Rptr(None, _) => { + // Elided lifetime in reference: we resolve as if there was some lifetime `'_` with + // NodeId `ty.id`. + // This span will be used in case of elision failure. + let span = self.r.session.source_map().next_point(ty.span.shrink_to_lo()); + self.resolve_elided_lifetime(ty.id, span); + visit::walk_ty(self, ty); + } + TyKind::Path(ref qself, ref path) => { + self.diagnostic_metadata.current_type_path = Some(ty); + self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type); + + // Check whether we should interpret this as a bare trait object. + if qself.is_none() + && let Some(partial_res) = self.r.partial_res_map.get(&ty.id) + && partial_res.unresolved_segments() == 0 + && let Res::Def(DefKind::Trait | DefKind::TraitAlias, _) = partial_res.base_res() + { + // This path is actually a bare trait object. In case of a bare `Fn`-trait + // object with anonymous lifetimes, we need this rib to correctly place the + // synthetic lifetimes. + let span = ty.span.shrink_to_lo().to(path.span.shrink_to_lo()); + self.with_generic_param_rib( + &[], + NormalRibKind, + LifetimeRibKind::Generics { + binder: ty.id, + kind: LifetimeBinderKind::PolyTrait, + span, + }, + |this| this.visit_path(&path, ty.id), + ); + } else { + visit::walk_ty(self, ty) + } + } + TyKind::ImplicitSelf => { + let self_ty = Ident::with_dummy_span(kw::SelfUpper); + let res = self + .resolve_ident_in_lexical_scope( + self_ty, + TypeNS, + Some(Finalize::new(ty.id, ty.span)), + None, + ) + .map_or(Res::Err, |d| d.res()); + self.r.record_partial_res(ty.id, PartialRes::new(res)); + visit::walk_ty(self, ty) + } + TyKind::ImplTrait(..) => { + let candidates = self.lifetime_elision_candidates.take(); + visit::walk_ty(self, ty); + self.lifetime_elision_candidates = candidates; + } + TyKind::TraitObject(ref bounds, ..) => { + self.diagnostic_metadata.current_trait_object = Some(&bounds[..]); + visit::walk_ty(self, ty) + } + TyKind::BareFn(ref bare_fn) => { + let span = ty.span.shrink_to_lo().to(bare_fn.decl_span.shrink_to_lo()); + self.with_generic_param_rib( + &bare_fn.generic_params, + NormalRibKind, + LifetimeRibKind::Generics { + binder: ty.id, + kind: LifetimeBinderKind::BareFnType, + span, + }, + |this| { + this.visit_generic_params(&bare_fn.generic_params, false); + this.with_lifetime_rib( + LifetimeRibKind::AnonymousCreateParameter { + binder: ty.id, + report_in_path: false, + }, + |this| { + this.resolve_fn_signature( + ty.id, + false, + // We don't need to deal with patterns in parameters, because + // they are not possible for foreign or bodiless functions. + bare_fn + .decl + .inputs + .iter() + .map(|Param { ty, .. }| (None, &**ty)), + &bare_fn.decl.output, + ) + }, + ); + }, + ) + } + _ => visit::walk_ty(self, ty), + } + self.diagnostic_metadata.current_trait_object = prev; + self.diagnostic_metadata.current_type_path = prev_ty; + } + fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef, _: &'ast TraitBoundModifier) { + let span = tref.span.shrink_to_lo().to(tref.trait_ref.path.span.shrink_to_lo()); + self.with_generic_param_rib( + &tref.bound_generic_params, + NormalRibKind, + LifetimeRibKind::Generics { + binder: tref.trait_ref.ref_id, + kind: LifetimeBinderKind::PolyTrait, + span, + }, + |this| { + this.visit_generic_params(&tref.bound_generic_params, false); + this.smart_resolve_path( + tref.trait_ref.ref_id, + None, + &tref.trait_ref.path, + PathSource::Trait(AliasPossibility::Maybe), + ); + this.visit_trait_ref(&tref.trait_ref); + }, + ); + } + fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) { + match foreign_item.kind { + ForeignItemKind::TyAlias(box TyAlias { ref generics, .. }) => { + self.with_lifetime_rib(LifetimeRibKind::Item, |this| { + this.with_generic_param_rib( + &generics.params, + ItemRibKind(HasGenericParams::Yes), + LifetimeRibKind::Generics { + binder: foreign_item.id, + kind: LifetimeBinderKind::Item, + span: generics.span, + }, + |this| visit::walk_foreign_item(this, foreign_item), + ) + }); + } + ForeignItemKind::Fn(box Fn { ref generics, .. }) => { + self.with_lifetime_rib(LifetimeRibKind::Item, |this| { + this.with_generic_param_rib( + &generics.params, + ItemRibKind(HasGenericParams::Yes), + LifetimeRibKind::Generics { + binder: foreign_item.id, + kind: LifetimeBinderKind::Function, + span: generics.span, + }, + |this| visit::walk_foreign_item(this, foreign_item), + ) + }); + } + ForeignItemKind::Static(..) => { + self.with_item_rib(|this| { + visit::walk_foreign_item(this, foreign_item); + }); + } + ForeignItemKind::MacCall(..) => { + panic!("unexpanded macro in resolve!") + } + } + } + fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, fn_id: NodeId) { + let rib_kind = match fn_kind { + // Bail if the function is foreign, and thus cannot validly have + // a body, or if there's no body for some other reason. + FnKind::Fn(FnCtxt::Foreign, _, sig, _, generics, _) + | FnKind::Fn(_, _, sig, _, generics, None) => { + self.visit_fn_header(&sig.header); + self.visit_generics(generics); + self.with_lifetime_rib( + LifetimeRibKind::AnonymousCreateParameter { + binder: fn_id, + report_in_path: false, + }, + |this| { + this.resolve_fn_signature( + fn_id, + sig.decl.has_self(), + sig.decl.inputs.iter().map(|Param { ty, .. }| (None, &**ty)), + &sig.decl.output, + ) + }, + ); + return; + } + FnKind::Fn(FnCtxt::Free, ..) => FnItemRibKind, + FnKind::Fn(FnCtxt::Assoc(_), ..) => NormalRibKind, + FnKind::Closure(..) => ClosureOrAsyncRibKind, + }; + let previous_value = self.diagnostic_metadata.current_function; + if matches!(fn_kind, FnKind::Fn(..)) { + self.diagnostic_metadata.current_function = Some((fn_kind, sp)); + } + debug!("(resolving function) entering function"); + + // Create a value rib for the function. + self.with_rib(ValueNS, rib_kind, |this| { + // Create a label rib for the function. + this.with_label_rib(FnItemRibKind, |this| { + match fn_kind { + FnKind::Fn(_, _, sig, _, generics, body) => { + this.visit_generics(generics); + + let declaration = &sig.decl; + let async_node_id = sig.header.asyncness.opt_return_id(); + + this.with_lifetime_rib( + LifetimeRibKind::AnonymousCreateParameter { + binder: fn_id, + report_in_path: async_node_id.is_some(), + }, + |this| { + this.resolve_fn_signature( + fn_id, + declaration.has_self(), + declaration + .inputs + .iter() + .map(|Param { pat, ty, .. }| (Some(&**pat), &**ty)), + &declaration.output, + ) + }, + ); + + // Construct the list of in-scope lifetime parameters for async lowering. + // We include all lifetime parameters, either named or "Fresh". + // The order of those parameters does not matter, as long as it is + // deterministic. + if let Some(async_node_id) = async_node_id { + let mut extra_lifetime_params = this + .r + .extra_lifetime_params_map + .get(&fn_id) + .cloned() + .unwrap_or_default(); + for rib in this.lifetime_ribs.iter().rev() { + extra_lifetime_params.extend( + rib.bindings + .iter() + .map(|(&ident, &(node_id, res))| (ident, node_id, res)), + ); + match rib.kind { + LifetimeRibKind::Item => break, + LifetimeRibKind::AnonymousCreateParameter { + binder, .. + } => { + if let Some(earlier_fresh) = + this.r.extra_lifetime_params_map.get(&binder) + { + extra_lifetime_params.extend(earlier_fresh); + } + } + _ => {} + } + } + this.r + .extra_lifetime_params_map + .insert(async_node_id, extra_lifetime_params); + } + + if let Some(body) = body { + // Ignore errors in function bodies if this is rustdoc + // Be sure not to set this until the function signature has been resolved. + let previous_state = replace(&mut this.in_func_body, true); + // Resolve the function body, potentially inside the body of an async closure + this.with_lifetime_rib( + LifetimeRibKind::Elided(LifetimeRes::Infer), + |this| this.visit_block(body), + ); + + debug!("(resolving function) leaving function"); + this.in_func_body = previous_state; + } + } + FnKind::Closure(binder, declaration, body) => { + this.visit_closure_binder(binder); + + this.with_lifetime_rib( + match binder { + // We do not have any explicit generic lifetime parameter. + ClosureBinder::NotPresent => { + LifetimeRibKind::AnonymousCreateParameter { + binder: fn_id, + report_in_path: false, + } + } + ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError, + }, + // Add each argument to the rib. + |this| this.resolve_params(&declaration.inputs), + ); + this.with_lifetime_rib( + match binder { + ClosureBinder::NotPresent => { + LifetimeRibKind::Elided(LifetimeRes::Infer) + } + ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError, + }, + |this| visit::walk_fn_ret_ty(this, &declaration.output), + ); + + // Ignore errors in function bodies if this is rustdoc + // Be sure not to set this until the function signature has been resolved. + let previous_state = replace(&mut this.in_func_body, true); + // Resolve the function body, potentially inside the body of an async closure + this.with_lifetime_rib( + LifetimeRibKind::Elided(LifetimeRes::Infer), + |this| this.visit_expr(body), + ); + + debug!("(resolving function) leaving function"); + this.in_func_body = previous_state; + } + } + }) + }); + self.diagnostic_metadata.current_function = previous_value; + } + fn visit_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) { + self.resolve_lifetime(lifetime, use_ctxt) + } + + fn visit_generics(&mut self, generics: &'ast Generics) { + self.visit_generic_params( + &generics.params, + self.diagnostic_metadata.current_self_item.is_some(), + ); + for p in &generics.where_clause.predicates { + self.visit_where_predicate(p); + } + } + + fn visit_closure_binder(&mut self, b: &'ast ClosureBinder) { + match b { + ClosureBinder::NotPresent => {} + ClosureBinder::For { generic_params, .. } => { + self.visit_generic_params( + &generic_params, + self.diagnostic_metadata.current_self_item.is_some(), + ); + } + } + } + + fn visit_generic_arg(&mut self, arg: &'ast GenericArg) { + debug!("visit_generic_arg({:?})", arg); + let prev = replace(&mut self.diagnostic_metadata.currently_processing_generics, true); + match arg { + GenericArg::Type(ref ty) => { + // We parse const arguments as path types as we cannot distinguish them during + // parsing. We try to resolve that ambiguity by attempting resolution the type + // namespace first, and if that fails we try again in the value namespace. If + // resolution in the value namespace succeeds, we have an generic const argument on + // our hands. + if let TyKind::Path(ref qself, ref path) = ty.kind { + // We cannot disambiguate multi-segment paths right now as that requires type + // checking. + if path.segments.len() == 1 && path.segments[0].args.is_none() { + let mut check_ns = |ns| { + self.maybe_resolve_ident_in_lexical_scope(path.segments[0].ident, ns) + .is_some() + }; + if !check_ns(TypeNS) && check_ns(ValueNS) { + // This must be equivalent to `visit_anon_const`, but we cannot call it + // directly due to visitor lifetimes so we have to copy-paste some code. + // + // Note that we might not be inside of an repeat expression here, + // but considering that `IsRepeatExpr` is only relevant for + // non-trivial constants this is doesn't matter. + self.with_constant_rib( + IsRepeatExpr::No, + HasGenericParams::Yes, + None, + |this| { + this.smart_resolve_path( + ty.id, + qself.as_ref(), + path, + PathSource::Expr(None), + ); + + if let Some(ref qself) = *qself { + this.visit_ty(&qself.ty); + } + this.visit_path(path, ty.id); + }, + ); + + self.diagnostic_metadata.currently_processing_generics = prev; + return; + } + } + } + + self.visit_ty(ty); + } + GenericArg::Lifetime(lt) => self.visit_lifetime(lt, visit::LifetimeCtxt::GenericArg), + GenericArg::Const(ct) => self.visit_anon_const(ct), + } + self.diagnostic_metadata.currently_processing_generics = prev; + } + + fn visit_assoc_constraint(&mut self, constraint: &'ast AssocConstraint) { + self.visit_ident(constraint.ident); + if let Some(ref gen_args) = constraint.gen_args { + // Forbid anonymous lifetimes in GAT parameters until proper semantics are decided. + self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| { + this.visit_generic_args(gen_args.span(), gen_args) + }); + } + match constraint.kind { + AssocConstraintKind::Equality { ref term } => match term { + Term::Ty(ty) => self.visit_ty(ty), + Term::Const(c) => self.visit_anon_const(c), + }, + AssocConstraintKind::Bound { ref bounds } => { + walk_list!(self, visit_param_bound, bounds, BoundKind::Bound); + } + } + } + + fn visit_path_segment(&mut self, path_span: Span, path_segment: &'ast PathSegment) { + if let Some(ref args) = path_segment.args { + match &**args { + GenericArgs::AngleBracketed(..) => visit::walk_generic_args(self, path_span, args), + GenericArgs::Parenthesized(p_args) => { + // Probe the lifetime ribs to know how to behave. + for rib in self.lifetime_ribs.iter().rev() { + match rib.kind { + // We are inside a `PolyTraitRef`. The lifetimes are + // to be intoduced in that (maybe implicit) `for<>` binder. + LifetimeRibKind::Generics { + binder, + kind: LifetimeBinderKind::PolyTrait, + .. + } => { + self.with_lifetime_rib( + LifetimeRibKind::AnonymousCreateParameter { + binder, + report_in_path: false, + }, + |this| { + this.resolve_fn_signature( + binder, + false, + p_args.inputs.iter().map(|ty| (None, &**ty)), + &p_args.output, + ) + }, + ); + break; + } + // We have nowhere to introduce generics. Code is malformed, + // so use regular lifetime resolution to avoid spurious errors. + LifetimeRibKind::Item | LifetimeRibKind::Generics { .. } => { + visit::walk_generic_args(self, path_span, args); + break; + } + LifetimeRibKind::AnonymousCreateParameter { .. } + | LifetimeRibKind::AnonymousReportError + | LifetimeRibKind::Elided(_) + | LifetimeRibKind::ElisionFailure + | LifetimeRibKind::AnonConst + | LifetimeRibKind::ConstGeneric => {} + } + } + } + } + } + } + + fn visit_where_predicate(&mut self, p: &'ast WherePredicate) { + debug!("visit_where_predicate {:?}", p); + let previous_value = + replace(&mut self.diagnostic_metadata.current_where_predicate, Some(p)); + self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| { + if let WherePredicate::BoundPredicate(WhereBoundPredicate { + ref bounded_ty, + ref bounds, + ref bound_generic_params, + span: predicate_span, + .. + }) = p + { + let span = predicate_span.shrink_to_lo().to(bounded_ty.span.shrink_to_lo()); + this.with_generic_param_rib( + &bound_generic_params, + NormalRibKind, + LifetimeRibKind::Generics { + binder: bounded_ty.id, + kind: LifetimeBinderKind::WhereBound, + span, + }, + |this| { + this.visit_generic_params(&bound_generic_params, false); + this.visit_ty(bounded_ty); + for bound in bounds { + this.visit_param_bound(bound, BoundKind::Bound) + } + }, + ); + } else { + visit::walk_where_predicate(this, p); + } + }); + self.diagnostic_metadata.current_where_predicate = previous_value; + } + + fn visit_inline_asm(&mut self, asm: &'ast InlineAsm) { + for (op, _) in &asm.operands { + match op { + InlineAsmOperand::In { expr, .. } + | InlineAsmOperand::Out { expr: Some(expr), .. } + | InlineAsmOperand::InOut { expr, .. } => self.visit_expr(expr), + InlineAsmOperand::Out { expr: None, .. } => {} + InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => { + self.visit_expr(in_expr); + if let Some(out_expr) = out_expr { + self.visit_expr(out_expr); + } + } + InlineAsmOperand::Const { anon_const, .. } => { + // Although this is `DefKind::AnonConst`, it is allowed to reference outer + // generic parameters like an inline const. + self.resolve_inline_const(anon_const); + } + InlineAsmOperand::Sym { sym } => self.visit_inline_asm_sym(sym), + } + } + } + + fn visit_inline_asm_sym(&mut self, sym: &'ast InlineAsmSym) { + // This is similar to the code for AnonConst. + self.with_rib(ValueNS, InlineAsmSymRibKind, |this| { + this.with_rib(TypeNS, InlineAsmSymRibKind, |this| { + this.with_label_rib(InlineAsmSymRibKind, |this| { + this.smart_resolve_path( + sym.id, + sym.qself.as_ref(), + &sym.path, + PathSource::Expr(None), + ); + visit::walk_inline_asm_sym(this, sym); + }); + }) + }); + } +} + +impl<'a: 'ast, 'b, 'ast> LateResolutionVisitor<'a, 'b, 'ast> { + fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b, 'ast> { + // During late resolution we only track the module component of the parent scope, + // although it may be useful to track other components as well for diagnostics. + let graph_root = resolver.graph_root; + let parent_scope = ParentScope::module(graph_root, resolver); + let start_rib_kind = ModuleRibKind(graph_root); + LateResolutionVisitor { + r: resolver, + parent_scope, + ribs: PerNS { + value_ns: vec![Rib::new(start_rib_kind)], + type_ns: vec![Rib::new(start_rib_kind)], + macro_ns: vec![Rib::new(start_rib_kind)], + }, + label_ribs: Vec::new(), + lifetime_ribs: Vec::new(), + lifetime_elision_candidates: None, + current_trait_ref: None, + diagnostic_metadata: Box::new(DiagnosticMetadata::default()), + // errors at module scope should always be reported + in_func_body: false, + lifetime_uses: Default::default(), + } + } + + fn maybe_resolve_ident_in_lexical_scope( + &mut self, + ident: Ident, + ns: Namespace, + ) -> Option<LexicalScopeBinding<'a>> { + self.r.resolve_ident_in_lexical_scope( + ident, + ns, + &self.parent_scope, + None, + &self.ribs[ns], + None, + ) + } + + fn resolve_ident_in_lexical_scope( + &mut self, + ident: Ident, + ns: Namespace, + finalize: Option<Finalize>, + ignore_binding: Option<&'a NameBinding<'a>>, + ) -> Option<LexicalScopeBinding<'a>> { + self.r.resolve_ident_in_lexical_scope( + ident, + ns, + &self.parent_scope, + finalize, + &self.ribs[ns], + ignore_binding, + ) + } + + fn resolve_path( + &mut self, + path: &[Segment], + opt_ns: Option<Namespace>, // `None` indicates a module path in import + finalize: Option<Finalize>, + ) -> PathResult<'a> { + self.r.resolve_path_with_ribs( + path, + opt_ns, + &self.parent_scope, + finalize, + Some(&self.ribs), + None, + ) + } + + // AST resolution + // + // We maintain a list of value ribs and type ribs. + // + // Simultaneously, we keep track of the current position in the module + // graph in the `parent_scope.module` pointer. When we go to resolve a name in + // the value or type namespaces, we first look through all the ribs and + // then query the module graph. When we resolve a name in the module + // namespace, we can skip all the ribs (since nested modules are not + // allowed within blocks in Rust) and jump straight to the current module + // graph node. + // + // Named implementations are handled separately. When we find a method + // call, we consult the module node to find all of the implementations in + // scope. This information is lazily cached in the module node. We then + // generate a fake "implementation scope" containing all the + // implementations thus found, for compatibility with old resolve pass. + + /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`). + fn with_rib<T>( + &mut self, + ns: Namespace, + kind: RibKind<'a>, + work: impl FnOnce(&mut Self) -> T, + ) -> T { + self.ribs[ns].push(Rib::new(kind)); + let ret = work(self); + self.ribs[ns].pop(); + ret + } + + fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T { + if let Some(module) = self.r.get_module(self.r.local_def_id(id).to_def_id()) { + // Move down in the graph. + let orig_module = replace(&mut self.parent_scope.module, module); + self.with_rib(ValueNS, ModuleRibKind(module), |this| { + this.with_rib(TypeNS, ModuleRibKind(module), |this| { + let ret = f(this); + this.parent_scope.module = orig_module; + ret + }) + }) + } else { + f(self) + } + } + + fn visit_generic_params(&mut self, params: &'ast [GenericParam], add_self_upper: bool) { + // For type parameter defaults, we have to ban access + // to following type parameters, as the InternalSubsts can only + // provide previous type parameters as they're built. We + // put all the parameters on the ban list and then remove + // them one by one as they are processed and become available. + let mut forward_ty_ban_rib = Rib::new(ForwardGenericParamBanRibKind); + let mut forward_const_ban_rib = Rib::new(ForwardGenericParamBanRibKind); + for param in params.iter() { + match param.kind { + GenericParamKind::Type { .. } => { + forward_ty_ban_rib + .bindings + .insert(Ident::with_dummy_span(param.ident.name), Res::Err); + } + GenericParamKind::Const { .. } => { + forward_const_ban_rib + .bindings + .insert(Ident::with_dummy_span(param.ident.name), Res::Err); + } + GenericParamKind::Lifetime => {} + } + } + + // rust-lang/rust#61631: The type `Self` is essentially + // another type parameter. For ADTs, we consider it + // well-defined only after all of the ADT type parameters have + // been provided. Therefore, we do not allow use of `Self` + // anywhere in ADT type parameter defaults. + // + // (We however cannot ban `Self` for defaults on *all* generic + // lists; e.g. trait generics can usefully refer to `Self`, + // such as in the case of `trait Add<Rhs = Self>`.) + if add_self_upper { + // (`Some` if + only if we are in ADT's generics.) + forward_ty_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err); + } + + self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| { + for param in params { + match param.kind { + GenericParamKind::Lifetime => { + for bound in ¶m.bounds { + this.visit_param_bound(bound, BoundKind::Bound); + } + } + GenericParamKind::Type { ref default } => { + for bound in ¶m.bounds { + this.visit_param_bound(bound, BoundKind::Bound); + } + + if let Some(ref ty) = default { + this.ribs[TypeNS].push(forward_ty_ban_rib); + this.ribs[ValueNS].push(forward_const_ban_rib); + this.visit_ty(ty); + forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap(); + forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap(); + } + + // Allow all following defaults to refer to this type parameter. + forward_ty_ban_rib + .bindings + .remove(&Ident::with_dummy_span(param.ident.name)); + } + GenericParamKind::Const { ref ty, kw_span: _, ref default } => { + // Const parameters can't have param bounds. + assert!(param.bounds.is_empty()); + + this.ribs[TypeNS].push(Rib::new(ConstParamTyRibKind)); + this.ribs[ValueNS].push(Rib::new(ConstParamTyRibKind)); + this.with_lifetime_rib(LifetimeRibKind::ConstGeneric, |this| { + this.visit_ty(ty) + }); + this.ribs[TypeNS].pop().unwrap(); + this.ribs[ValueNS].pop().unwrap(); + + if let Some(ref expr) = default { + this.ribs[TypeNS].push(forward_ty_ban_rib); + this.ribs[ValueNS].push(forward_const_ban_rib); + this.with_lifetime_rib(LifetimeRibKind::ConstGeneric, |this| { + this.resolve_anon_const(expr, IsRepeatExpr::No) + }); + forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap(); + forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap(); + } + + // Allow all following defaults to refer to this const parameter. + forward_const_ban_rib + .bindings + .remove(&Ident::with_dummy_span(param.ident.name)); + } + } + } + }) + } + + #[tracing::instrument(level = "debug", skip(self, work))] + fn with_lifetime_rib<T>( + &mut self, + kind: LifetimeRibKind, + work: impl FnOnce(&mut Self) -> T, + ) -> T { + self.lifetime_ribs.push(LifetimeRib::new(kind)); + let outer_elision_candidates = self.lifetime_elision_candidates.take(); + let ret = work(self); + self.lifetime_elision_candidates = outer_elision_candidates; + self.lifetime_ribs.pop(); + ret + } + + #[tracing::instrument(level = "debug", skip(self))] + fn resolve_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) { + let ident = lifetime.ident; + + if ident.name == kw::StaticLifetime { + self.record_lifetime_res( + lifetime.id, + LifetimeRes::Static, + LifetimeElisionCandidate::Named, + ); + return; + } + + if ident.name == kw::UnderscoreLifetime { + return self.resolve_anonymous_lifetime(lifetime, false); + } + + let mut indices = (0..self.lifetime_ribs.len()).rev(); + for i in &mut indices { + let rib = &self.lifetime_ribs[i]; + let normalized_ident = ident.normalize_to_macros_2_0(); + if let Some(&(_, res)) = rib.bindings.get(&normalized_ident) { + self.record_lifetime_res(lifetime.id, res, LifetimeElisionCandidate::Named); + + if let LifetimeRes::Param { param, .. } = res { + match self.lifetime_uses.entry(param) { + Entry::Vacant(v) => { + debug!("First use of {:?} at {:?}", res, ident.span); + let use_set = self + .lifetime_ribs + .iter() + .rev() + .find_map(|rib| match rib.kind { + // Do not suggest eliding a lifetime where an anonymous + // lifetime would be illegal. + LifetimeRibKind::Item + | LifetimeRibKind::AnonymousReportError + | LifetimeRibKind::ElisionFailure => Some(LifetimeUseSet::Many), + // An anonymous lifetime is legal here, go ahead. + LifetimeRibKind::AnonymousCreateParameter { .. } => { + Some(LifetimeUseSet::One { use_span: ident.span, use_ctxt }) + } + // Only report if eliding the lifetime would have the same + // semantics. + LifetimeRibKind::Elided(r) => Some(if res == r { + LifetimeUseSet::One { use_span: ident.span, use_ctxt } + } else { + LifetimeUseSet::Many + }), + LifetimeRibKind::Generics { .. } + | LifetimeRibKind::ConstGeneric + | LifetimeRibKind::AnonConst => None, + }) + .unwrap_or(LifetimeUseSet::Many); + debug!(?use_ctxt, ?use_set); + v.insert(use_set); + } + Entry::Occupied(mut o) => { + debug!("Many uses of {:?} at {:?}", res, ident.span); + *o.get_mut() = LifetimeUseSet::Many; + } + } + } + return; + } + + match rib.kind { + LifetimeRibKind::Item => break, + LifetimeRibKind::ConstGeneric => { + self.emit_non_static_lt_in_const_generic_error(lifetime); + self.record_lifetime_res( + lifetime.id, + LifetimeRes::Error, + LifetimeElisionCandidate::Ignore, + ); + return; + } + LifetimeRibKind::AnonConst => { + self.maybe_emit_forbidden_non_static_lifetime_error(lifetime); + self.record_lifetime_res( + lifetime.id, + LifetimeRes::Error, + LifetimeElisionCandidate::Ignore, + ); + return; + } + _ => {} + } + } + + let mut outer_res = None; + for i in indices { + let rib = &self.lifetime_ribs[i]; + let normalized_ident = ident.normalize_to_macros_2_0(); + if let Some((&outer, _)) = rib.bindings.get_key_value(&normalized_ident) { + outer_res = Some(outer); + break; + } + } + + self.emit_undeclared_lifetime_error(lifetime, outer_res); + self.record_lifetime_res(lifetime.id, LifetimeRes::Error, LifetimeElisionCandidate::Named); + } + + #[tracing::instrument(level = "debug", skip(self))] + fn resolve_anonymous_lifetime(&mut self, lifetime: &Lifetime, elided: bool) { + debug_assert_eq!(lifetime.ident.name, kw::UnderscoreLifetime); + + let missing_lifetime = MissingLifetime { + id: lifetime.id, + span: lifetime.ident.span, + kind: if elided { + MissingLifetimeKind::Ampersand + } else { + MissingLifetimeKind::Underscore + }, + count: 1, + }; + let elision_candidate = LifetimeElisionCandidate::Missing(missing_lifetime); + for i in (0..self.lifetime_ribs.len()).rev() { + let rib = &mut self.lifetime_ribs[i]; + debug!(?rib.kind); + match rib.kind { + LifetimeRibKind::AnonymousCreateParameter { binder, .. } => { + let res = self.create_fresh_lifetime(lifetime.id, lifetime.ident, binder); + self.record_lifetime_res(lifetime.id, res, elision_candidate); + return; + } + LifetimeRibKind::AnonymousReportError => { + let (msg, note) = if elided { + ( + "`&` without an explicit lifetime name cannot be used here", + "explicit lifetime name needed here", + ) + } else { + ("`'_` cannot be used here", "`'_` is a reserved lifetime name") + }; + rustc_errors::struct_span_err!( + self.r.session, + lifetime.ident.span, + E0637, + "{}", + msg, + ) + .span_label(lifetime.ident.span, note) + .emit(); + + self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate); + return; + } + LifetimeRibKind::Elided(res) => { + self.record_lifetime_res(lifetime.id, res, elision_candidate); + return; + } + LifetimeRibKind::ElisionFailure => { + self.diagnostic_metadata.current_elision_failures.push(missing_lifetime); + self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate); + return; + } + LifetimeRibKind::Item => break, + LifetimeRibKind::Generics { .. } + | LifetimeRibKind::ConstGeneric + | LifetimeRibKind::AnonConst => {} + } + } + self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate); + self.report_missing_lifetime_specifiers(vec![missing_lifetime], None); + } + + #[tracing::instrument(level = "debug", skip(self))] + fn resolve_elided_lifetime(&mut self, anchor_id: NodeId, span: Span) { + let id = self.r.next_node_id(); + let lt = Lifetime { id, ident: Ident::new(kw::UnderscoreLifetime, span) }; + + self.record_lifetime_res( + anchor_id, + LifetimeRes::ElidedAnchor { start: id, end: NodeId::from_u32(id.as_u32() + 1) }, + LifetimeElisionCandidate::Ignore, + ); + self.resolve_anonymous_lifetime(<, true); + } + + #[tracing::instrument(level = "debug", skip(self))] + fn create_fresh_lifetime(&mut self, id: NodeId, ident: Ident, binder: NodeId) -> LifetimeRes { + debug_assert_eq!(ident.name, kw::UnderscoreLifetime); + debug!(?ident.span); + + // Leave the responsibility to create the `LocalDefId` to lowering. + let param = self.r.next_node_id(); + let res = LifetimeRes::Fresh { param, binder }; + + // Record the created lifetime parameter so lowering can pick it up and add it to HIR. + self.r + .extra_lifetime_params_map + .entry(binder) + .or_insert_with(Vec::new) + .push((ident, param, res)); + res + } + + #[tracing::instrument(level = "debug", skip(self))] + fn resolve_elided_lifetimes_in_path( + &mut self, + path_id: NodeId, + partial_res: PartialRes, + path: &[Segment], + source: PathSource<'_>, + path_span: Span, + ) { + let proj_start = path.len() - partial_res.unresolved_segments(); + for (i, segment) in path.iter().enumerate() { + if segment.has_lifetime_args { + continue; + } + let Some(segment_id) = segment.id else { + continue; + }; + + // Figure out if this is a type/trait segment, + // which may need lifetime elision performed. + let type_def_id = match partial_res.base_res() { + Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => self.r.parent(def_id), + Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => self.r.parent(def_id), + Res::Def(DefKind::Struct, def_id) + | Res::Def(DefKind::Union, def_id) + | Res::Def(DefKind::Enum, def_id) + | Res::Def(DefKind::TyAlias, def_id) + | Res::Def(DefKind::Trait, def_id) + if i + 1 == proj_start => + { + def_id + } + _ => continue, + }; + + let expected_lifetimes = self.r.item_generics_num_lifetimes(type_def_id); + if expected_lifetimes == 0 { + continue; + } + + let node_ids = self.r.next_node_ids(expected_lifetimes); + self.record_lifetime_res( + segment_id, + LifetimeRes::ElidedAnchor { start: node_ids.start, end: node_ids.end }, + LifetimeElisionCandidate::Ignore, + ); + + let inferred = match source { + PathSource::Trait(..) | PathSource::TraitItem(..) | PathSource::Type => false, + PathSource::Expr(..) + | PathSource::Pat + | PathSource::Struct + | PathSource::TupleStruct(..) => true, + }; + if inferred { + // Do not create a parameter for patterns and expressions: type checking can infer + // the appropriate lifetime for us. + for id in node_ids { + self.record_lifetime_res( + id, + LifetimeRes::Infer, + LifetimeElisionCandidate::Named, + ); + } + continue; + } + + let elided_lifetime_span = if segment.has_generic_args { + // If there are brackets, but not generic arguments, then use the opening bracket + segment.args_span.with_hi(segment.args_span.lo() + BytePos(1)) + } else { + // If there are no brackets, use the identifier span. + // HACK: we use find_ancestor_inside to properly suggest elided spans in paths + // originating from macros, since the segment's span might be from a macro arg. + segment.ident.span.find_ancestor_inside(path_span).unwrap_or(path_span) + }; + let ident = Ident::new(kw::UnderscoreLifetime, elided_lifetime_span); + + let missing_lifetime = MissingLifetime { + id: node_ids.start, + span: elided_lifetime_span, + kind: if segment.has_generic_args { + MissingLifetimeKind::Comma + } else { + MissingLifetimeKind::Brackets + }, + count: expected_lifetimes, + }; + let mut should_lint = true; + for rib in self.lifetime_ribs.iter().rev() { + match rib.kind { + // In create-parameter mode we error here because we don't want to support + // deprecated impl elision in new features like impl elision and `async fn`, + // both of which work using the `CreateParameter` mode: + // + // impl Foo for std::cell::Ref<u32> // note lack of '_ + // async fn foo(_: std::cell::Ref<u32>) { ... } + LifetimeRibKind::AnonymousCreateParameter { report_in_path: true, .. } => { + let sess = self.r.session; + let mut err = rustc_errors::struct_span_err!( + sess, + path_span, + E0726, + "implicit elided lifetime not allowed here" + ); + rustc_errors::add_elided_lifetime_in_path_suggestion( + sess.source_map(), + &mut err, + expected_lifetimes, + path_span, + !segment.has_generic_args, + elided_lifetime_span, + ); + err.note("assuming a `'static` lifetime..."); + err.emit(); + should_lint = false; + + for id in node_ids { + self.record_lifetime_res( + id, + LifetimeRes::Error, + LifetimeElisionCandidate::Named, + ); + } + break; + } + // Do not create a parameter for patterns and expressions. + LifetimeRibKind::AnonymousCreateParameter { binder, .. } => { + // Group all suggestions into the first record. + let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime); + for id in node_ids { + let res = self.create_fresh_lifetime(id, ident, binder); + self.record_lifetime_res( + id, + res, + replace(&mut candidate, LifetimeElisionCandidate::Named), + ); + } + break; + } + LifetimeRibKind::Elided(res) => { + let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime); + for id in node_ids { + self.record_lifetime_res( + id, + res, + replace(&mut candidate, LifetimeElisionCandidate::Ignore), + ); + } + break; + } + LifetimeRibKind::ElisionFailure => { + self.diagnostic_metadata.current_elision_failures.push(missing_lifetime); + for id in node_ids { + self.record_lifetime_res( + id, + LifetimeRes::Error, + LifetimeElisionCandidate::Ignore, + ); + } + break; + } + // `LifetimeRes::Error`, which would usually be used in the case of + // `ReportError`, is unsuitable here, as we don't emit an error yet. Instead, + // we simply resolve to an implicit lifetime, which will be checked later, at + // which point a suitable error will be emitted. + LifetimeRibKind::AnonymousReportError | LifetimeRibKind::Item => { + for id in node_ids { + self.record_lifetime_res( + id, + LifetimeRes::Error, + LifetimeElisionCandidate::Ignore, + ); + } + self.report_missing_lifetime_specifiers(vec![missing_lifetime], None); + break; + } + LifetimeRibKind::Generics { .. } + | LifetimeRibKind::ConstGeneric + | LifetimeRibKind::AnonConst => {} + } + } + + if should_lint { + self.r.lint_buffer.buffer_lint_with_diagnostic( + lint::builtin::ELIDED_LIFETIMES_IN_PATHS, + segment_id, + elided_lifetime_span, + "hidden lifetime parameters in types are deprecated", + lint::BuiltinLintDiagnostics::ElidedLifetimesInPaths( + expected_lifetimes, + path_span, + !segment.has_generic_args, + elided_lifetime_span, + ), + ); + } + } + } + + #[tracing::instrument(level = "debug", skip(self))] + fn record_lifetime_res( + &mut self, + id: NodeId, + res: LifetimeRes, + candidate: LifetimeElisionCandidate, + ) { + if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) { + panic!( + "lifetime {:?} resolved multiple times ({:?} before, {:?} now)", + id, prev_res, res + ) + } + match res { + LifetimeRes::Param { .. } | LifetimeRes::Fresh { .. } | LifetimeRes::Static => { + if let Some(ref mut candidates) = self.lifetime_elision_candidates { + candidates.insert(res, candidate); + } + } + LifetimeRes::Infer | LifetimeRes::Error | LifetimeRes::ElidedAnchor { .. } => {} + } + } + + #[tracing::instrument(level = "debug", skip(self))] + fn record_lifetime_param(&mut self, id: NodeId, res: LifetimeRes) { + if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) { + panic!( + "lifetime parameter {:?} resolved multiple times ({:?} before, {:?} now)", + id, prev_res, res + ) + } + } + + /// Perform resolution of a function signature, accounting for lifetime elision. + #[tracing::instrument(level = "debug", skip(self, inputs))] + fn resolve_fn_signature( + &mut self, + fn_id: NodeId, + has_self: bool, + inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)> + Clone, + output_ty: &'ast FnRetTy, + ) { + // Add each argument to the rib. + let elision_lifetime = self.resolve_fn_params(has_self, inputs); + debug!(?elision_lifetime); + + let outer_failures = take(&mut self.diagnostic_metadata.current_elision_failures); + let output_rib = if let Ok(res) = elision_lifetime.as_ref() { + LifetimeRibKind::Elided(*res) + } else { + LifetimeRibKind::ElisionFailure + }; + self.with_lifetime_rib(output_rib, |this| visit::walk_fn_ret_ty(this, &output_ty)); + let elision_failures = + replace(&mut self.diagnostic_metadata.current_elision_failures, outer_failures); + if !elision_failures.is_empty() { + let Err(failure_info) = elision_lifetime else { bug!() }; + self.report_missing_lifetime_specifiers(elision_failures, Some(failure_info)); + } + } + + /// Resolve inside function parameters and parameter types. + /// Returns the lifetime for elision in fn return type, + /// or diagnostic information in case of elision failure. + fn resolve_fn_params( + &mut self, + has_self: bool, + inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)>, + ) -> Result<LifetimeRes, (Vec<MissingLifetime>, Vec<ElisionFnParameter>)> { + let outer_candidates = + replace(&mut self.lifetime_elision_candidates, Some(Default::default())); + + let mut elision_lifetime = None; + let mut lifetime_count = 0; + let mut parameter_info = Vec::new(); + + let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())]; + for (index, (pat, ty)) in inputs.enumerate() { + debug!(?pat, ?ty); + if let Some(pat) = pat { + self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings); + } + self.visit_ty(ty); + + if let Some(ref candidates) = self.lifetime_elision_candidates { + let new_count = candidates.len(); + let local_count = new_count - lifetime_count; + if local_count != 0 { + parameter_info.push(ElisionFnParameter { + index, + ident: if let Some(pat) = pat && let PatKind::Ident(_, ident, _) = pat.kind { + Some(ident) + } else { + None + }, + lifetime_count: local_count, + span: ty.span, + }); + } + lifetime_count = new_count; + } + + // Handle `self` specially. + if index == 0 && has_self { + let self_lifetime = self.find_lifetime_for_self(ty); + if let Set1::One(lifetime) = self_lifetime { + elision_lifetime = Some(lifetime); + self.lifetime_elision_candidates = None; + } else { + self.lifetime_elision_candidates = Some(Default::default()); + lifetime_count = 0; + } + } + debug!("(resolving function / closure) recorded parameter"); + } + + let all_candidates = replace(&mut self.lifetime_elision_candidates, outer_candidates); + debug!(?all_candidates); + + if let Some(res) = elision_lifetime { + return Ok(res); + } + + // We do not have a `self` candidate, look at the full list. + let all_candidates = all_candidates.unwrap(); + if all_candidates.len() == 1 { + Ok(*all_candidates.first().unwrap().0) + } else { + let all_candidates = all_candidates + .into_iter() + .filter_map(|(_, candidate)| match candidate { + LifetimeElisionCandidate::Ignore | LifetimeElisionCandidate::Named => None, + LifetimeElisionCandidate::Missing(missing) => Some(missing), + }) + .collect(); + Err((all_candidates, parameter_info)) + } + } + + /// List all the lifetimes that appear in the provided type. + fn find_lifetime_for_self(&self, ty: &'ast Ty) -> Set1<LifetimeRes> { + struct SelfVisitor<'r, 'a> { + r: &'r Resolver<'a>, + impl_self: Option<Res>, + lifetime: Set1<LifetimeRes>, + } + + impl SelfVisitor<'_, '_> { + // Look for `self: &'a Self` - also desugared from `&'a self`, + // and if that matches, use it for elision and return early. + fn is_self_ty(&self, ty: &Ty) -> bool { + match ty.kind { + TyKind::ImplicitSelf => true, + TyKind::Path(None, _) => { + let path_res = self.r.partial_res_map[&ty.id].base_res(); + if let Res::SelfTy { .. } = path_res { + return true; + } + Some(path_res) == self.impl_self + } + _ => false, + } + } + } + + impl<'a> Visitor<'a> for SelfVisitor<'_, '_> { + fn visit_ty(&mut self, ty: &'a Ty) { + trace!("SelfVisitor considering ty={:?}", ty); + if let TyKind::Rptr(lt, ref mt) = ty.kind && self.is_self_ty(&mt.ty) { + let lt_id = if let Some(lt) = lt { + lt.id + } else { + let res = self.r.lifetimes_res_map[&ty.id]; + let LifetimeRes::ElidedAnchor { start, .. } = res else { bug!() }; + start + }; + let lt_res = self.r.lifetimes_res_map[<_id]; + trace!("SelfVisitor inserting res={:?}", lt_res); + self.lifetime.insert(lt_res); + } + visit::walk_ty(self, ty) + } + } + + let impl_self = self + .diagnostic_metadata + .current_self_type + .as_ref() + .and_then(|ty| { + if let TyKind::Path(None, _) = ty.kind { + self.r.partial_res_map.get(&ty.id) + } else { + None + } + }) + .map(|res| res.base_res()) + .filter(|res| { + // Permit the types that unambiguously always + // result in the same type constructor being used + // (it can't differ between `Self` and `self`). + matches!( + res, + Res::Def(DefKind::Struct | DefKind::Union | DefKind::Enum, _,) | Res::PrimTy(_) + ) + }); + let mut visitor = SelfVisitor { r: self.r, impl_self, lifetime: Set1::Empty }; + visitor.visit_ty(ty); + trace!("SelfVisitor found={:?}", visitor.lifetime); + visitor.lifetime + } + + /// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved + /// label and reports an error if the label is not found or is unreachable. + fn resolve_label(&mut self, mut label: Ident) -> Result<(NodeId, Span), ResolutionError<'a>> { + let mut suggestion = None; + + for i in (0..self.label_ribs.len()).rev() { + let rib = &self.label_ribs[i]; + + if let MacroDefinition(def) = rib.kind { + // If an invocation of this macro created `ident`, give up on `ident` + // and switch to `ident`'s source from the macro definition. + if def == self.r.macro_def(label.span.ctxt()) { + label.span.remove_mark(); + } + } + + let ident = label.normalize_to_macro_rules(); + if let Some((ident, id)) = rib.bindings.get_key_value(&ident) { + let definition_span = ident.span; + return if self.is_label_valid_from_rib(i) { + Ok((*id, definition_span)) + } else { + Err(ResolutionError::UnreachableLabel { + name: label.name, + definition_span, + suggestion, + }) + }; + } + + // Diagnostics: Check if this rib contains a label with a similar name, keep track of + // the first such label that is encountered. + suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label)); + } + + Err(ResolutionError::UndeclaredLabel { name: label.name, suggestion }) + } + + /// Determine whether or not a label from the `rib_index`th label rib is reachable. + fn is_label_valid_from_rib(&self, rib_index: usize) -> bool { + let ribs = &self.label_ribs[rib_index + 1..]; + + for rib in ribs { + if rib.kind.is_label_barrier() { + return false; + } + } + + true + } + + fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) { + debug!("resolve_adt"); + self.with_current_self_item(item, |this| { + this.with_generic_param_rib( + &generics.params, + ItemRibKind(HasGenericParams::Yes), + LifetimeRibKind::Generics { + binder: item.id, + kind: LifetimeBinderKind::Item, + span: generics.span, + }, + |this| { + let item_def_id = this.r.local_def_id(item.id).to_def_id(); + this.with_self_rib( + Res::SelfTy { trait_: None, alias_to: Some((item_def_id, false)) }, + |this| { + visit::walk_item(this, item); + }, + ); + }, + ); + }); + } + + fn future_proof_import(&mut self, use_tree: &UseTree) { + let segments = &use_tree.prefix.segments; + if !segments.is_empty() { + let ident = segments[0].ident; + if ident.is_path_segment_keyword() || ident.span.rust_2015() { + return; + } + + let nss = match use_tree.kind { + UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..], + _ => &[TypeNS], + }; + let report_error = |this: &Self, ns| { + let what = if ns == TypeNS { "type parameters" } else { "local variables" }; + if this.should_report_errs() { + this.r + .session + .span_err(ident.span, &format!("imports cannot refer to {}", what)); + } + }; + + for &ns in nss { + match self.maybe_resolve_ident_in_lexical_scope(ident, ns) { + Some(LexicalScopeBinding::Res(..)) => { + report_error(self, ns); + } + Some(LexicalScopeBinding::Item(binding)) => { + if let Some(LexicalScopeBinding::Res(..)) = + self.resolve_ident_in_lexical_scope(ident, ns, None, Some(binding)) + { + report_error(self, ns); + } + } + None => {} + } + } + } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind { + for (use_tree, _) in use_trees { + self.future_proof_import(use_tree); + } + } + } + + fn resolve_item(&mut self, item: &'ast Item) { + let name = item.ident.name; + debug!("(resolving item) resolving {} ({:?})", name, item.kind); + + match item.kind { + ItemKind::TyAlias(box TyAlias { ref generics, .. }) => { + self.with_generic_param_rib( + &generics.params, + ItemRibKind(HasGenericParams::Yes), + LifetimeRibKind::Generics { + binder: item.id, + kind: LifetimeBinderKind::Item, + span: generics.span, + }, + |this| visit::walk_item(this, item), + ); + } + + ItemKind::Fn(box Fn { ref generics, .. }) => { + self.with_generic_param_rib( + &generics.params, + ItemRibKind(HasGenericParams::Yes), + LifetimeRibKind::Generics { + binder: item.id, + kind: LifetimeBinderKind::Function, + span: generics.span, + }, + |this| visit::walk_item(this, item), + ); + } + + ItemKind::Enum(_, ref generics) + | ItemKind::Struct(_, ref generics) + | ItemKind::Union(_, ref generics) => { + self.resolve_adt(item, generics); + } + + ItemKind::Impl(box Impl { + ref generics, + ref of_trait, + ref self_ty, + items: ref impl_items, + .. + }) => { + self.diagnostic_metadata.current_impl_items = Some(impl_items); + self.resolve_implementation(generics, of_trait, &self_ty, item.id, impl_items); + self.diagnostic_metadata.current_impl_items = None; + } + + ItemKind::Trait(box Trait { ref generics, ref bounds, ref items, .. }) => { + // Create a new rib for the trait-wide type parameters. + self.with_generic_param_rib( + &generics.params, + ItemRibKind(HasGenericParams::Yes), + LifetimeRibKind::Generics { + binder: item.id, + kind: LifetimeBinderKind::Item, + span: generics.span, + }, + |this| { + let local_def_id = this.r.local_def_id(item.id).to_def_id(); + this.with_self_rib( + Res::SelfTy { trait_: Some(local_def_id), alias_to: None }, + |this| { + this.visit_generics(generics); + walk_list!(this, visit_param_bound, bounds, BoundKind::SuperTraits); + this.resolve_trait_items(items); + }, + ); + }, + ); + } + + ItemKind::TraitAlias(ref generics, ref bounds) => { + // Create a new rib for the trait-wide type parameters. + self.with_generic_param_rib( + &generics.params, + ItemRibKind(HasGenericParams::Yes), + LifetimeRibKind::Generics { + binder: item.id, + kind: LifetimeBinderKind::Item, + span: generics.span, + }, + |this| { + let local_def_id = this.r.local_def_id(item.id).to_def_id(); + this.with_self_rib( + Res::SelfTy { trait_: Some(local_def_id), alias_to: None }, + |this| { + this.visit_generics(generics); + walk_list!(this, visit_param_bound, bounds, BoundKind::Bound); + }, + ); + }, + ); + } + + ItemKind::Mod(..) | ItemKind::ForeignMod(_) => { + self.with_scope(item.id, |this| { + visit::walk_item(this, item); + }); + } + + ItemKind::Static(ref ty, _, ref expr) | ItemKind::Const(_, ref ty, ref expr) => { + self.with_item_rib(|this| { + this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Static), |this| { + this.visit_ty(ty); + }); + this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| { + if let Some(expr) = expr { + let constant_item_kind = match item.kind { + ItemKind::Const(..) => ConstantItemKind::Const, + ItemKind::Static(..) => ConstantItemKind::Static, + _ => unreachable!(), + }; + // We already forbid generic params because of the above item rib, + // so it doesn't matter whether this is a trivial constant. + this.with_constant_rib( + IsRepeatExpr::No, + HasGenericParams::Yes, + Some((item.ident, constant_item_kind)), + |this| this.visit_expr(expr), + ); + } + }); + }); + } + + ItemKind::Use(ref use_tree) => { + self.future_proof_import(use_tree); + } + + ItemKind::ExternCrate(..) | ItemKind::MacroDef(..) => { + // do nothing, these are just around to be encoded + } + + ItemKind::GlobalAsm(_) => { + visit::walk_item(self, item); + } + + ItemKind::MacCall(_) => panic!("unexpanded macro in resolve!"), + } + } + + fn with_generic_param_rib<'c, F>( + &'c mut self, + params: &'c [GenericParam], + kind: RibKind<'a>, + lifetime_kind: LifetimeRibKind, + f: F, + ) where + F: FnOnce(&mut Self), + { + debug!("with_generic_param_rib"); + let LifetimeRibKind::Generics { binder, span: generics_span, kind: generics_kind, .. } + = lifetime_kind else { panic!() }; + + let mut function_type_rib = Rib::new(kind); + let mut function_value_rib = Rib::new(kind); + let mut function_lifetime_rib = LifetimeRib::new(lifetime_kind); + let mut seen_bindings = FxHashMap::default(); + // Store all seen lifetimes names from outer scopes. + let mut seen_lifetimes = FxHashSet::default(); + + // We also can't shadow bindings from the parent item + if let AssocItemRibKind = kind { + let mut add_bindings_for_ns = |ns| { + let parent_rib = self.ribs[ns] + .iter() + .rfind(|r| matches!(r.kind, ItemRibKind(_))) + .expect("associated item outside of an item"); + seen_bindings + .extend(parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span))); + }; + add_bindings_for_ns(ValueNS); + add_bindings_for_ns(TypeNS); + } + + // Forbid shadowing lifetime bindings + for rib in self.lifetime_ribs.iter().rev() { + seen_lifetimes.extend(rib.bindings.iter().map(|(ident, _)| *ident)); + if let LifetimeRibKind::Item = rib.kind { + break; + } + } + + for param in params { + let ident = param.ident.normalize_to_macros_2_0(); + debug!("with_generic_param_rib: {}", param.id); + + if let GenericParamKind::Lifetime = param.kind + && let Some(&original) = seen_lifetimes.get(&ident) + { + diagnostics::signal_lifetime_shadowing(self.r.session, original, param.ident); + // Record lifetime res, so lowering knows there is something fishy. + self.record_lifetime_param(param.id, LifetimeRes::Error); + continue; + } + + match seen_bindings.entry(ident) { + Entry::Occupied(entry) => { + let span = *entry.get(); + let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, span); + self.report_error(param.ident.span, err); + if let GenericParamKind::Lifetime = param.kind { + // Record lifetime res, so lowering knows there is something fishy. + self.record_lifetime_param(param.id, LifetimeRes::Error); + continue; + } + } + Entry::Vacant(entry) => { + entry.insert(param.ident.span); + } + } + + if param.ident.name == kw::UnderscoreLifetime { + rustc_errors::struct_span_err!( + self.r.session, + param.ident.span, + E0637, + "`'_` cannot be used here" + ) + .span_label(param.ident.span, "`'_` is a reserved lifetime name") + .emit(); + // Record lifetime res, so lowering knows there is something fishy. + self.record_lifetime_param(param.id, LifetimeRes::Error); + continue; + } + + if param.ident.name == kw::StaticLifetime { + rustc_errors::struct_span_err!( + self.r.session, + param.ident.span, + E0262, + "invalid lifetime parameter name: `{}`", + param.ident, + ) + .span_label(param.ident.span, "'static is a reserved lifetime name") + .emit(); + // Record lifetime res, so lowering knows there is something fishy. + self.record_lifetime_param(param.id, LifetimeRes::Error); + continue; + } + + let def_id = self.r.local_def_id(param.id); + + // Plain insert (no renaming). + let (rib, def_kind) = match param.kind { + GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam), + GenericParamKind::Const { .. } => (&mut function_value_rib, DefKind::ConstParam), + GenericParamKind::Lifetime => { + let res = LifetimeRes::Param { param: def_id, binder }; + self.record_lifetime_param(param.id, res); + function_lifetime_rib.bindings.insert(ident, (param.id, res)); + continue; + } + }; + + let res = match kind { + ItemRibKind(..) | AssocItemRibKind => Res::Def(def_kind, def_id.to_def_id()), + NormalRibKind => Res::Err, + _ => span_bug!(param.ident.span, "Unexpected rib kind {:?}", kind), + }; + self.r.record_partial_res(param.id, PartialRes::new(res)); + rib.bindings.insert(ident, res); + } + + self.lifetime_ribs.push(function_lifetime_rib); + self.ribs[ValueNS].push(function_value_rib); + self.ribs[TypeNS].push(function_type_rib); + + f(self); + + self.ribs[TypeNS].pop(); + self.ribs[ValueNS].pop(); + let function_lifetime_rib = self.lifetime_ribs.pop().unwrap(); + + // Do not account for the parameters we just bound for function lifetime elision. + if let Some(ref mut candidates) = self.lifetime_elision_candidates { + for (_, res) in function_lifetime_rib.bindings.values() { + candidates.remove(res); + } + } + + if let LifetimeBinderKind::BareFnType + | LifetimeBinderKind::WhereBound + | LifetimeBinderKind::Function + | LifetimeBinderKind::ImplBlock = generics_kind + { + self.maybe_report_lifetime_uses(generics_span, params) + } + } + + fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) { + self.label_ribs.push(Rib::new(kind)); + f(self); + self.label_ribs.pop(); + } + + fn with_item_rib(&mut self, f: impl FnOnce(&mut Self)) { + let kind = ItemRibKind(HasGenericParams::No); + self.with_lifetime_rib(LifetimeRibKind::Item, |this| { + this.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f)) + }) + } + + // HACK(min_const_generics,const_evaluatable_unchecked): We + // want to keep allowing `[0; std::mem::size_of::<*mut T>()]` + // with a future compat lint for now. We do this by adding an + // additional special case for repeat expressions. + // + // Note that we intentionally still forbid `[0; N + 1]` during + // name resolution so that we don't extend the future + // compat lint to new cases. + #[instrument(level = "debug", skip(self, f))] + fn with_constant_rib( + &mut self, + is_repeat: IsRepeatExpr, + may_use_generics: HasGenericParams, + item: Option<(Ident, ConstantItemKind)>, + f: impl FnOnce(&mut Self), + ) { + self.with_rib(ValueNS, ConstantItemRibKind(may_use_generics, item), |this| { + this.with_rib( + TypeNS, + ConstantItemRibKind( + may_use_generics.force_yes_if(is_repeat == IsRepeatExpr::Yes), + item, + ), + |this| { + this.with_label_rib(ConstantItemRibKind(may_use_generics, item), f); + }, + ) + }); + } + + fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T { + // Handle nested impls (inside fn bodies) + let previous_value = + replace(&mut self.diagnostic_metadata.current_self_type, Some(self_type.clone())); + let result = f(self); + self.diagnostic_metadata.current_self_type = previous_value; + result + } + + fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T { + let previous_value = + replace(&mut self.diagnostic_metadata.current_self_item, Some(self_item.id)); + let result = f(self); + self.diagnostic_metadata.current_self_item = previous_value; + result + } + + /// When evaluating a `trait` use its associated types' idents for suggestions in E0412. + fn resolve_trait_items(&mut self, trait_items: &'ast [P<AssocItem>]) { + let trait_assoc_items = + replace(&mut self.diagnostic_metadata.current_trait_assoc_items, Some(&trait_items)); + + let walk_assoc_item = + |this: &mut Self, generics: &Generics, kind, item: &'ast AssocItem| { + this.with_generic_param_rib( + &generics.params, + AssocItemRibKind, + LifetimeRibKind::Generics { binder: item.id, span: generics.span, kind }, + |this| visit::walk_assoc_item(this, item, AssocCtxt::Trait), + ); + }; + + for item in trait_items { + match &item.kind { + AssocItemKind::Const(_, ty, default) => { + self.visit_ty(ty); + // Only impose the restrictions of `ConstRibKind` for an + // actual constant expression in a provided default. + if let Some(expr) = default { + // We allow arbitrary const expressions inside of associated consts, + // even if they are potentially not const evaluatable. + // + // Type parameters can already be used and as associated consts are + // not used as part of the type system, this is far less surprising. + self.with_lifetime_rib( + LifetimeRibKind::Elided(LifetimeRes::Infer), + |this| { + this.with_constant_rib( + IsRepeatExpr::No, + HasGenericParams::Yes, + None, + |this| this.visit_expr(expr), + ) + }, + ); + } + } + AssocItemKind::Fn(box Fn { generics, .. }) => { + walk_assoc_item(self, generics, LifetimeBinderKind::Function, item); + } + AssocItemKind::TyAlias(box TyAlias { generics, .. }) => self + .with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| { + walk_assoc_item(this, generics, LifetimeBinderKind::Item, item) + }), + AssocItemKind::MacCall(_) => { + panic!("unexpanded macro in resolve!") + } + }; + } + + self.diagnostic_metadata.current_trait_assoc_items = trait_assoc_items; + } + + /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`). + fn with_optional_trait_ref<T>( + &mut self, + opt_trait_ref: Option<&TraitRef>, + self_type: &'ast Ty, + f: impl FnOnce(&mut Self, Option<DefId>) -> T, + ) -> T { + let mut new_val = None; + let mut new_id = None; + if let Some(trait_ref) = opt_trait_ref { + let path: Vec<_> = Segment::from_path(&trait_ref.path); + self.diagnostic_metadata.currently_processing_impl_trait = + Some((trait_ref.clone(), self_type.clone())); + let res = self.smart_resolve_path_fragment( + None, + &path, + PathSource::Trait(AliasPossibility::No), + Finalize::new(trait_ref.ref_id, trait_ref.path.span), + ); + self.diagnostic_metadata.currently_processing_impl_trait = None; + if let Some(def_id) = res.base_res().opt_def_id() { + new_id = Some(def_id); + new_val = Some((self.r.expect_module(def_id), trait_ref.clone())); + } + } + let original_trait_ref = replace(&mut self.current_trait_ref, new_val); + let result = f(self, new_id); + self.current_trait_ref = original_trait_ref; + result + } + + fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) { + let mut self_type_rib = Rib::new(NormalRibKind); + + // Plain insert (no renaming, since types are not currently hygienic) + self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res); + self.ribs[ns].push(self_type_rib); + f(self); + self.ribs[ns].pop(); + } + + fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) { + self.with_self_rib_ns(TypeNS, self_res, f) + } + + fn resolve_implementation( + &mut self, + generics: &'ast Generics, + opt_trait_reference: &'ast Option<TraitRef>, + self_type: &'ast Ty, + item_id: NodeId, + impl_items: &'ast [P<AssocItem>], + ) { + debug!("resolve_implementation"); + // If applicable, create a rib for the type parameters. + self.with_generic_param_rib( + &generics.params, + ItemRibKind(HasGenericParams::Yes), + LifetimeRibKind::Generics { + span: generics.span, + binder: item_id, + kind: LifetimeBinderKind::ImplBlock, + }, + |this| { + // Dummy self type for better errors if `Self` is used in the trait path. + this.with_self_rib(Res::SelfTy { trait_: None, alias_to: None }, |this| { + this.with_lifetime_rib( + LifetimeRibKind::AnonymousCreateParameter { + binder: item_id, + report_in_path: true + }, + |this| { + // Resolve the trait reference, if necessary. + this.with_optional_trait_ref( + opt_trait_reference.as_ref(), + self_type, + |this, trait_id| { + let item_def_id = this.r.local_def_id(item_id); + + // Register the trait definitions from here. + if let Some(trait_id) = trait_id { + this.r + .trait_impls + .entry(trait_id) + .or_default() + .push(item_def_id); + } + + let item_def_id = item_def_id.to_def_id(); + let res = Res::SelfTy { + trait_: trait_id, + alias_to: Some((item_def_id, false)), + }; + this.with_self_rib(res, |this| { + if let Some(trait_ref) = opt_trait_reference.as_ref() { + // Resolve type arguments in the trait path. + visit::walk_trait_ref(this, trait_ref); + } + // Resolve the self type. + this.visit_ty(self_type); + // Resolve the generic parameters. + this.visit_generics(generics); + + // Resolve the items within the impl. + this.with_current_self_type(self_type, |this| { + this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| { + debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)"); + for item in impl_items { + this.resolve_impl_item(&**item); + } + }); + }); + }); + }, + ) + }, + ); + }); + }, + ); + } + + fn resolve_impl_item(&mut self, item: &'ast AssocItem) { + use crate::ResolutionError::*; + match &item.kind { + AssocItemKind::Const(_, ty, default) => { + debug!("resolve_implementation AssocItemKind::Const"); + // If this is a trait impl, ensure the const + // exists in trait + self.check_trait_item( + item.id, + item.ident, + &item.kind, + ValueNS, + item.span, + |i, s, c| ConstNotMemberOfTrait(i, s, c), + ); + + self.visit_ty(ty); + if let Some(expr) = default { + // We allow arbitrary const expressions inside of associated consts, + // even if they are potentially not const evaluatable. + // + // Type parameters can already be used and as associated consts are + // not used as part of the type system, this is far less surprising. + self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| { + this.with_constant_rib( + IsRepeatExpr::No, + HasGenericParams::Yes, + None, + |this| this.visit_expr(expr), + ) + }); + } + } + AssocItemKind::Fn(box Fn { generics, .. }) => { + debug!("resolve_implementation AssocItemKind::Fn"); + // We also need a new scope for the impl item type parameters. + self.with_generic_param_rib( + &generics.params, + AssocItemRibKind, + LifetimeRibKind::Generics { + binder: item.id, + span: generics.span, + kind: LifetimeBinderKind::Function, + }, + |this| { + // If this is a trait impl, ensure the method + // exists in trait + this.check_trait_item( + item.id, + item.ident, + &item.kind, + ValueNS, + item.span, + |i, s, c| MethodNotMemberOfTrait(i, s, c), + ); + + visit::walk_assoc_item(this, item, AssocCtxt::Impl) + }, + ); + } + AssocItemKind::TyAlias(box TyAlias { generics, .. }) => { + debug!("resolve_implementation AssocItemKind::TyAlias"); + // We also need a new scope for the impl item type parameters. + self.with_generic_param_rib( + &generics.params, + AssocItemRibKind, + LifetimeRibKind::Generics { + binder: item.id, + span: generics.span, + kind: LifetimeBinderKind::Item, + }, + |this| { + this.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| { + // If this is a trait impl, ensure the type + // exists in trait + this.check_trait_item( + item.id, + item.ident, + &item.kind, + TypeNS, + item.span, + |i, s, c| TypeNotMemberOfTrait(i, s, c), + ); + + visit::walk_assoc_item(this, item, AssocCtxt::Impl) + }); + }, + ); + } + AssocItemKind::MacCall(_) => { + panic!("unexpanded macro in resolve!") + } + } + } + + fn check_trait_item<F>( + &mut self, + id: NodeId, + mut ident: Ident, + kind: &AssocItemKind, + ns: Namespace, + span: Span, + err: F, + ) where + F: FnOnce(Ident, String, Option<Symbol>) -> ResolutionError<'a>, + { + // If there is a TraitRef in scope for an impl, then the method must be in the trait. + let Some((module, _)) = &self.current_trait_ref else { return; }; + ident.span.normalize_to_macros_2_0_and_adjust(module.expansion); + let key = self.r.new_key(ident, ns); + let mut binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding); + debug!(?binding); + if binding.is_none() { + // We could not find the trait item in the correct namespace. + // Check the other namespace to report an error. + let ns = match ns { + ValueNS => TypeNS, + TypeNS => ValueNS, + _ => ns, + }; + let key = self.r.new_key(ident, ns); + binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding); + debug!(?binding); + } + let Some(binding) = binding else { + // We could not find the method: report an error. + let candidate = self.find_similarly_named_assoc_item(ident.name, kind); + let path = &self.current_trait_ref.as_ref().unwrap().1.path; + let path_names = path_names_to_string(path); + self.report_error(span, err(ident, path_names, candidate)); + return; + }; + + let res = binding.res(); + let Res::Def(def_kind, _) = res else { bug!() }; + match (def_kind, kind) { + (DefKind::AssocTy, AssocItemKind::TyAlias(..)) + | (DefKind::AssocFn, AssocItemKind::Fn(..)) + | (DefKind::AssocConst, AssocItemKind::Const(..)) => { + self.r.record_partial_res(id, PartialRes::new(res)); + return; + } + _ => {} + } + + // The method kind does not correspond to what appeared in the trait, report. + let path = &self.current_trait_ref.as_ref().unwrap().1.path; + let (code, kind) = match kind { + AssocItemKind::Const(..) => (rustc_errors::error_code!(E0323), "const"), + AssocItemKind::Fn(..) => (rustc_errors::error_code!(E0324), "method"), + AssocItemKind::TyAlias(..) => (rustc_errors::error_code!(E0325), "type"), + AssocItemKind::MacCall(..) => span_bug!(span, "unexpanded macro"), + }; + let trait_path = path_names_to_string(path); + self.report_error( + span, + ResolutionError::TraitImplMismatch { + name: ident.name, + kind, + code, + trait_path, + trait_item_span: binding.span, + }, + ); + } + + fn resolve_params(&mut self, params: &'ast [Param]) { + let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())]; + for Param { pat, ty, .. } in params { + self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings); + self.visit_ty(ty); + debug!("(resolving function / closure) recorded parameter"); + } + } + + fn resolve_local(&mut self, local: &'ast Local) { + debug!("resolving local ({:?})", local); + // Resolve the type. + walk_list!(self, visit_ty, &local.ty); + + // Resolve the initializer. + if let Some((init, els)) = local.kind.init_else_opt() { + self.visit_expr(init); + + // Resolve the `else` block + if let Some(els) = els { + self.visit_block(els); + } + } + + // Resolve the pattern. + self.resolve_pattern_top(&local.pat, PatternSource::Let); + } + + /// build a map from pattern identifiers to binding-info's. + /// this is done hygienically. This could arise for a macro + /// that expands into an or-pattern where one 'x' was from the + /// user and one 'x' came from the macro. + fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap { + let mut binding_map = FxHashMap::default(); + + pat.walk(&mut |pat| { + match pat.kind { + PatKind::Ident(binding_mode, ident, ref sub_pat) + if sub_pat.is_some() || self.is_base_res_local(pat.id) => + { + binding_map.insert(ident, BindingInfo { span: ident.span, binding_mode }); + } + PatKind::Or(ref ps) => { + // Check the consistency of this or-pattern and + // then add all bindings to the larger map. + for bm in self.check_consistent_bindings(ps) { + binding_map.extend(bm); + } + return false; + } + _ => {} + } + + true + }); + + binding_map + } + + fn is_base_res_local(&self, nid: NodeId) -> bool { + matches!(self.r.partial_res_map.get(&nid).map(|res| res.base_res()), Some(Res::Local(..))) + } + + /// Checks that all of the arms in an or-pattern have exactly the + /// same set of bindings, with the same binding modes for each. + fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> { + let mut missing_vars = FxHashMap::default(); + let mut inconsistent_vars = FxHashMap::default(); + + // 1) Compute the binding maps of all arms. + let maps = pats.iter().map(|pat| self.binding_mode_map(pat)).collect::<Vec<_>>(); + + // 2) Record any missing bindings or binding mode inconsistencies. + for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) { + // Check against all arms except for the same pattern which is always self-consistent. + let inners = pats + .iter() + .enumerate() + .filter(|(_, pat)| pat.id != pat_outer.id) + .flat_map(|(idx, _)| maps[idx].iter()) + .map(|(key, binding)| (key.name, map_outer.get(&key), binding)); + + for (name, info, &binding_inner) in inners { + match info { + None => { + // The inner binding is missing in the outer. + let binding_error = + missing_vars.entry(name).or_insert_with(|| BindingError { + name, + origin: BTreeSet::new(), + target: BTreeSet::new(), + could_be_path: name.as_str().starts_with(char::is_uppercase), + }); + binding_error.origin.insert(binding_inner.span); + binding_error.target.insert(pat_outer.span); + } + Some(binding_outer) => { + if binding_outer.binding_mode != binding_inner.binding_mode { + // The binding modes in the outer and inner bindings differ. + inconsistent_vars + .entry(name) + .or_insert((binding_inner.span, binding_outer.span)); + } + } + } + } + } + + // 3) Report all missing variables we found. + let mut missing_vars = missing_vars.into_iter().collect::<Vec<_>>(); + missing_vars.sort_by_key(|&(sym, ref _err)| sym); + + for (name, mut v) in missing_vars.into_iter() { + if inconsistent_vars.contains_key(&name) { + v.could_be_path = false; + } + self.report_error( + *v.origin.iter().next().unwrap(), + ResolutionError::VariableNotBoundInPattern(v, self.parent_scope), + ); + } + + // 4) Report all inconsistencies in binding modes we found. + let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>(); + inconsistent_vars.sort(); + for (name, v) in inconsistent_vars { + self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1)); + } + + // 5) Finally bubble up all the binding maps. + maps + } + + /// Check the consistency of the outermost or-patterns. + fn check_consistent_bindings_top(&mut self, pat: &'ast Pat) { + pat.walk(&mut |pat| match pat.kind { + PatKind::Or(ref ps) => { + self.check_consistent_bindings(ps); + false + } + _ => true, + }) + } + + fn resolve_arm(&mut self, arm: &'ast Arm) { + self.with_rib(ValueNS, NormalRibKind, |this| { + this.resolve_pattern_top(&arm.pat, PatternSource::Match); + walk_list!(this, visit_expr, &arm.guard); + this.visit_expr(&arm.body); + }); + } + + /// Arising from `source`, resolve a top level pattern. + fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) { + let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())]; + self.resolve_pattern(pat, pat_src, &mut bindings); + } + + fn resolve_pattern( + &mut self, + pat: &'ast Pat, + pat_src: PatternSource, + bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>, + ) { + // We walk the pattern before declaring the pattern's inner bindings, + // so that we avoid resolving a literal expression to a binding defined + // by the pattern. + visit::walk_pat(self, pat); + self.resolve_pattern_inner(pat, pat_src, bindings); + // This has to happen *after* we determine which pat_idents are variants: + self.check_consistent_bindings_top(pat); + } + + /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`. + /// + /// ### `bindings` + /// + /// A stack of sets of bindings accumulated. + /// + /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should + /// be interpreted as re-binding an already bound binding. This results in an error. + /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result + /// in reusing this binding rather than creating a fresh one. + /// + /// When called at the top level, the stack must have a single element + /// with `PatBound::Product`. Otherwise, pushing to the stack happens as + /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs + /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`. + /// When each `p_i` has been dealt with, the top set is merged with its parent. + /// When a whole or-pattern has been dealt with, the thing happens. + /// + /// See the implementation and `fresh_binding` for more details. + fn resolve_pattern_inner( + &mut self, + pat: &Pat, + pat_src: PatternSource, + bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>, + ) { + // Visit all direct subpatterns of this pattern. + pat.walk(&mut |pat| { + debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind); + match pat.kind { + PatKind::Ident(bmode, ident, ref sub) => { + // First try to resolve the identifier as some existing entity, + // then fall back to a fresh binding. + let has_sub = sub.is_some(); + let res = self + .try_resolve_as_non_binding(pat_src, bmode, ident, has_sub) + .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings)); + self.r.record_partial_res(pat.id, PartialRes::new(res)); + self.r.record_pat_span(pat.id, pat.span); + } + PatKind::TupleStruct(ref qself, ref path, ref sub_patterns) => { + self.smart_resolve_path( + pat.id, + qself.as_ref(), + path, + PathSource::TupleStruct( + pat.span, + self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)), + ), + ); + } + PatKind::Path(ref qself, ref path) => { + self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat); + } + PatKind::Struct(ref qself, ref path, ..) => { + self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Struct); + } + PatKind::Or(ref ps) => { + // Add a new set of bindings to the stack. `Or` here records that when a + // binding already exists in this set, it should not result in an error because + // `V1(a) | V2(a)` must be allowed and are checked for consistency later. + bindings.push((PatBoundCtx::Or, Default::default())); + for p in ps { + // Now we need to switch back to a product context so that each + // part of the or-pattern internally rejects already bound names. + // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad. + bindings.push((PatBoundCtx::Product, Default::default())); + self.resolve_pattern_inner(p, pat_src, bindings); + // Move up the non-overlapping bindings to the or-pattern. + // Existing bindings just get "merged". + let collected = bindings.pop().unwrap().1; + bindings.last_mut().unwrap().1.extend(collected); + } + // This or-pattern itself can itself be part of a product, + // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`. + // Both cases bind `a` again in a product pattern and must be rejected. + let collected = bindings.pop().unwrap().1; + bindings.last_mut().unwrap().1.extend(collected); + + // Prevent visiting `ps` as we've already done so above. + return false; + } + _ => {} + } + true + }); + } + + fn fresh_binding( + &mut self, + ident: Ident, + pat_id: NodeId, + pat_src: PatternSource, + bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>, + ) -> Res { + // Add the binding to the local ribs, if it doesn't already exist in the bindings map. + // (We must not add it if it's in the bindings map because that breaks the assumptions + // later passes make about or-patterns.) + let ident = ident.normalize_to_macro_rules(); + + let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident)); + // Already bound in a product pattern? e.g. `(a, a)` which is not allowed. + let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product); + // Already bound in an or-pattern? e.g. `V1(a) | V2(a)`. + // This is *required* for consistency which is checked later. + let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or); + + if already_bound_and { + // Overlap in a product pattern somewhere; report an error. + use ResolutionError::*; + let error = match pat_src { + // `fn f(a: u8, a: u8)`: + PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList, + // `Variant(a, a)`: + _ => IdentifierBoundMoreThanOnceInSamePattern, + }; + self.report_error(ident.span, error(ident.name)); + } + + // Record as bound if it's valid: + let ident_valid = ident.name != kw::Empty; + if ident_valid { + bindings.last_mut().unwrap().1.insert(ident); + } + + if already_bound_or { + // `Variant1(a) | Variant2(a)`, ok + // Reuse definition from the first `a`. + self.innermost_rib_bindings(ValueNS)[&ident] + } else { + let res = Res::Local(pat_id); + if ident_valid { + // A completely fresh binding add to the set if it's valid. + self.innermost_rib_bindings(ValueNS).insert(ident, res); + } + res + } + } + + fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> { + &mut self.ribs[ns].last_mut().unwrap().bindings + } + + fn try_resolve_as_non_binding( + &mut self, + pat_src: PatternSource, + bm: BindingMode, + ident: Ident, + has_sub: bool, + ) -> Option<Res> { + // An immutable (no `mut`) by-value (no `ref`) binding pattern without + // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could + // also be interpreted as a path to e.g. a constant, variant, etc. + let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Not); + + let ls_binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS)?; + let (res, binding) = match ls_binding { + LexicalScopeBinding::Item(binding) + if is_syntactic_ambiguity && binding.is_ambiguity() => + { + // For ambiguous bindings we don't know all their definitions and cannot check + // whether they can be shadowed by fresh bindings or not, so force an error. + // issues/33118#issuecomment-233962221 (see below) still applies here, + // but we have to ignore it for backward compatibility. + self.r.record_use(ident, binding, false); + return None; + } + LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)), + LexicalScopeBinding::Res(res) => (res, None), + }; + + match res { + Res::SelfCtor(_) // See #70549. + | Res::Def( + DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::ConstParam, + _, + ) if is_syntactic_ambiguity => { + // Disambiguate in favor of a unit struct/variant or constant pattern. + if let Some(binding) = binding { + self.r.record_use(ident, binding, false); + } + Some(res) + } + Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::Static(_), _) => { + // This is unambiguously a fresh binding, either syntactically + // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves + // to something unusable as a pattern (e.g., constructor function), + // but we still conservatively report an error, see + // issues/33118#issuecomment-233962221 for one reason why. + let binding = binding.expect("no binding for a ctor or static"); + self.report_error( + ident.span, + ResolutionError::BindingShadowsSomethingUnacceptable { + shadowing_binding: pat_src, + name: ident.name, + participle: if binding.is_import() { "imported" } else { "defined" }, + article: binding.res().article(), + shadowed_binding: binding.res(), + shadowed_binding_span: binding.span, + }, + ); + None + } + Res::Def(DefKind::ConstParam, def_id) => { + // Same as for DefKind::Const above, but here, `binding` is `None`, so we + // have to construct the error differently + self.report_error( + ident.span, + ResolutionError::BindingShadowsSomethingUnacceptable { + shadowing_binding: pat_src, + name: ident.name, + participle: "defined", + article: res.article(), + shadowed_binding: res, + shadowed_binding_span: self.r.opt_span(def_id).expect("const parameter defined outside of local crate"), + } + ); + None + } + Res::Def(DefKind::Fn, _) | Res::Local(..) | Res::Err => { + // These entities are explicitly allowed to be shadowed by fresh bindings. + None + } + Res::SelfCtor(_) => { + // We resolve `Self` in pattern position as an ident sometimes during recovery, + // so delay a bug instead of ICEing. + self.r.session.delay_span_bug( + ident.span, + "unexpected `SelfCtor` in pattern, expected identifier" + ); + None + } + _ => span_bug!( + ident.span, + "unexpected resolution for an identifier in pattern: {:?}", + res, + ), + } + } + + // High-level and context dependent path resolution routine. + // Resolves the path and records the resolution into definition map. + // If resolution fails tries several techniques to find likely + // resolution candidates, suggest imports or other help, and report + // errors in user friendly way. + fn smart_resolve_path( + &mut self, + id: NodeId, + qself: Option<&QSelf>, + path: &Path, + source: PathSource<'ast>, + ) { + self.smart_resolve_path_fragment( + qself, + &Segment::from_path(path), + source, + Finalize::new(id, path.span), + ); + } + + fn smart_resolve_path_fragment( + &mut self, + qself: Option<&QSelf>, + path: &[Segment], + source: PathSource<'ast>, + finalize: Finalize, + ) -> PartialRes { + tracing::debug!( + "smart_resolve_path_fragment(qself={:?}, path={:?}, finalize={:?})", + qself, + path, + finalize, + ); + let ns = source.namespace(); + + let Finalize { node_id, path_span, .. } = finalize; + let report_errors = |this: &mut Self, res: Option<Res>| { + if this.should_report_errs() { + let (err, candidates) = + this.smart_resolve_report_errors(path, path_span, source, res); + + let def_id = this.parent_scope.module.nearest_parent_mod(); + let instead = res.is_some(); + let suggestion = + if res.is_none() { this.report_missing_type_error(path) } else { None }; + + this.r.use_injections.push(UseError { + err, + candidates, + def_id, + instead, + suggestion, + path: path.into(), + }); + } + + PartialRes::new(Res::Err) + }; + + // For paths originating from calls (like in `HashMap::new()`), tries + // to enrich the plain `failed to resolve: ...` message with hints + // about possible missing imports. + // + // Similar thing, for types, happens in `report_errors` above. + let report_errors_for_call = |this: &mut Self, parent_err: Spanned<ResolutionError<'a>>| { + if !source.is_call() { + return Some(parent_err); + } + + // Before we start looking for candidates, we have to get our hands + // on the type user is trying to perform invocation on; basically: + // we're transforming `HashMap::new` into just `HashMap`. + let path = match path.split_last() { + Some((_, path)) if !path.is_empty() => path, + _ => return Some(parent_err), + }; + + let (mut err, candidates) = + this.smart_resolve_report_errors(path, path_span, PathSource::Type, None); + + if candidates.is_empty() { + err.cancel(); + return Some(parent_err); + } + + // There are two different error messages user might receive at + // this point: + // - E0412 cannot find type `{}` in this scope + // - E0433 failed to resolve: use of undeclared type or module `{}` + // + // The first one is emitted for paths in type-position, and the + // latter one - for paths in expression-position. + // + // Thus (since we're in expression-position at this point), not to + // confuse the user, we want to keep the *message* from E0432 (so + // `parent_err`), but we want *hints* from E0412 (so `err`). + // + // And that's what happens below - we're just mixing both messages + // into a single one. + let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node); + + err.message = take(&mut parent_err.message); + err.code = take(&mut parent_err.code); + err.children = take(&mut parent_err.children); + + parent_err.cancel(); + + let def_id = this.parent_scope.module.nearest_parent_mod(); + + if this.should_report_errs() { + this.r.use_injections.push(UseError { + err, + candidates, + def_id, + instead: false, + suggestion: None, + path: path.into(), + }); + } else { + err.cancel(); + } + + // We don't return `Some(parent_err)` here, because the error will + // be already printed as part of the `use` injections + None + }; + + let partial_res = match self.resolve_qpath_anywhere( + qself, + path, + ns, + path_span, + source.defer_to_typeck(), + finalize, + ) { + Ok(Some(partial_res)) if partial_res.unresolved_segments() == 0 => { + if source.is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err + { + partial_res + } else { + report_errors(self, Some(partial_res.base_res())) + } + } + + Ok(Some(partial_res)) if source.defer_to_typeck() => { + // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B` + // or `<T>::A::B`. If `B` should be resolved in value namespace then + // it needs to be added to the trait map. + if ns == ValueNS { + let item_name = path.last().unwrap().ident; + let traits = self.traits_in_scope(item_name, ns); + self.r.trait_map.insert(node_id, traits); + } + + if PrimTy::from_name(path[0].ident.name).is_some() { + let mut std_path = Vec::with_capacity(1 + path.len()); + + std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std))); + std_path.extend(path); + if let PathResult::Module(_) | PathResult::NonModule(_) = + self.resolve_path(&std_path, Some(ns), None) + { + // Check if we wrote `str::from_utf8` instead of `std::str::from_utf8` + let item_span = + path.iter().last().map_or(path_span, |segment| segment.ident.span); + + self.r.confused_type_with_std_module.insert(item_span, path_span); + self.r.confused_type_with_std_module.insert(path_span, path_span); + } + } + + partial_res + } + + Err(err) => { + if let Some(err) = report_errors_for_call(self, err) { + self.report_error(err.span, err.node); + } + + PartialRes::new(Res::Err) + } + + _ => report_errors(self, None), + }; + + if !matches!(source, PathSource::TraitItem(..)) { + // Avoid recording definition of `A::B` in `<T as A>::B::C`. + self.r.record_partial_res(node_id, partial_res); + self.resolve_elided_lifetimes_in_path(node_id, partial_res, path, source, path_span); + } + + partial_res + } + + fn self_type_is_available(&mut self) -> bool { + let binding = self + .maybe_resolve_ident_in_lexical_scope(Ident::with_dummy_span(kw::SelfUpper), TypeNS); + if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false } + } + + fn self_value_is_available(&mut self, self_span: Span) -> bool { + let ident = Ident::new(kw::SelfLower, self_span); + let binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS); + if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false } + } + + /// A wrapper around [`Resolver::report_error`]. + /// + /// This doesn't emit errors for function bodies if this is rustdoc. + fn report_error(&mut self, span: Span, resolution_error: ResolutionError<'a>) { + if self.should_report_errs() { + self.r.report_error(span, resolution_error); + } + } + + #[inline] + /// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items. + fn should_report_errs(&self) -> bool { + !(self.r.session.opts.actually_rustdoc && self.in_func_body) + } + + // Resolve in alternative namespaces if resolution in the primary namespace fails. + fn resolve_qpath_anywhere( + &mut self, + qself: Option<&QSelf>, + path: &[Segment], + primary_ns: Namespace, + span: Span, + defer_to_typeck: bool, + finalize: Finalize, + ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> { + let mut fin_res = None; + + for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() { + if i == 0 || ns != primary_ns { + match self.resolve_qpath(qself, path, ns, finalize)? { + Some(partial_res) + if partial_res.unresolved_segments() == 0 || defer_to_typeck => + { + return Ok(Some(partial_res)); + } + partial_res => { + if fin_res.is_none() { + fin_res = partial_res; + } + } + } + } + } + + assert!(primary_ns != MacroNS); + + if qself.is_none() { + let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident); + let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None }; + if let Ok((_, res)) = + self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false) + { + return Ok(Some(PartialRes::new(res))); + } + } + + Ok(fin_res) + } + + /// Handles paths that may refer to associated items. + fn resolve_qpath( + &mut self, + qself: Option<&QSelf>, + path: &[Segment], + ns: Namespace, + finalize: Finalize, + ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> { + debug!( + "resolve_qpath(qself={:?}, path={:?}, ns={:?}, finalize={:?})", + qself, path, ns, finalize, + ); + + if let Some(qself) = qself { + if qself.position == 0 { + // This is a case like `<T>::B`, where there is no + // trait to resolve. In that case, we leave the `B` + // segment to be resolved by type-check. + return Ok(Some(PartialRes::with_unresolved_segments( + Res::Def(DefKind::Mod, CRATE_DEF_ID.to_def_id()), + path.len(), + ))); + } + + // Make sure `A::B` in `<T as A::B>::C` is a trait item. + // + // Currently, `path` names the full item (`A::B::C`, in + // our example). so we extract the prefix of that that is + // the trait (the slice upto and including + // `qself.position`). And then we recursively resolve that, + // but with `qself` set to `None`. + let ns = if qself.position + 1 == path.len() { ns } else { TypeNS }; + let partial_res = self.smart_resolve_path_fragment( + None, + &path[..=qself.position], + PathSource::TraitItem(ns), + Finalize::with_root_span(finalize.node_id, finalize.path_span, qself.path_span), + ); + + // The remaining segments (the `C` in our example) will + // have to be resolved by type-check, since that requires doing + // trait resolution. + return Ok(Some(PartialRes::with_unresolved_segments( + partial_res.base_res(), + partial_res.unresolved_segments() + path.len() - qself.position - 1, + ))); + } + + let result = match self.resolve_path(&path, Some(ns), Some(finalize)) { + PathResult::NonModule(path_res) => path_res, + PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => { + PartialRes::new(module.res().unwrap()) + } + // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we + // don't report an error right away, but try to fallback to a primitive type. + // So, we are still able to successfully resolve something like + // + // use std::u8; // bring module u8 in scope + // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8 + // u8::max_value() // OK, resolves to associated function <u8>::max_value, + // // not to non-existent std::u8::max_value + // } + // + // Such behavior is required for backward compatibility. + // The same fallback is used when `a` resolves to nothing. + PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. } + if (ns == TypeNS || path.len() > 1) + && PrimTy::from_name(path[0].ident.name).is_some() => + { + let prim = PrimTy::from_name(path[0].ident.name).unwrap(); + PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1) + } + PathResult::Module(ModuleOrUniformRoot::Module(module)) => { + PartialRes::new(module.res().unwrap()) + } + PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => { + return Err(respan(span, ResolutionError::FailedToResolve { label, suggestion })); + } + PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None), + PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"), + }; + + if path.len() > 1 + && result.base_res() != Res::Err + && path[0].ident.name != kw::PathRoot + && path[0].ident.name != kw::DollarCrate + { + let unqualified_result = { + match self.resolve_path(&[*path.last().unwrap()], Some(ns), None) { + PathResult::NonModule(path_res) => path_res.base_res(), + PathResult::Module(ModuleOrUniformRoot::Module(module)) => { + module.res().unwrap() + } + _ => return Ok(Some(result)), + } + }; + if result.base_res() == unqualified_result { + let lint = lint::builtin::UNUSED_QUALIFICATIONS; + self.r.lint_buffer.buffer_lint( + lint, + finalize.node_id, + finalize.path_span, + "unnecessary qualification", + ) + } + } + + Ok(Some(result)) + } + + fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) { + if let Some(label) = label { + if label.ident.as_str().as_bytes()[1] != b'_' { + self.diagnostic_metadata.unused_labels.insert(id, label.ident.span); + } + + if let Ok((_, orig_span)) = self.resolve_label(label.ident) { + diagnostics::signal_label_shadowing(self.r.session, orig_span, label.ident) + } + + self.with_label_rib(NormalRibKind, |this| { + let ident = label.ident.normalize_to_macro_rules(); + this.label_ribs.last_mut().unwrap().bindings.insert(ident, id); + f(this); + }); + } else { + f(self); + } + } + + fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) { + self.with_resolved_label(label, id, |this| this.visit_block(block)); + } + + fn resolve_block(&mut self, block: &'ast Block) { + debug!("(resolving block) entering block"); + // Move down in the graph, if there's an anonymous module rooted here. + let orig_module = self.parent_scope.module; + let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference + + let mut num_macro_definition_ribs = 0; + if let Some(anonymous_module) = anonymous_module { + debug!("(resolving block) found anonymous module, moving down"); + self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module))); + self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module))); + self.parent_scope.module = anonymous_module; + } else { + self.ribs[ValueNS].push(Rib::new(NormalRibKind)); + } + + let prev = self.diagnostic_metadata.current_block_could_be_bare_struct_literal.take(); + if let (true, [Stmt { kind: StmtKind::Expr(expr), .. }]) = + (block.could_be_bare_literal, &block.stmts[..]) + && let ExprKind::Type(..) = expr.kind + { + self.diagnostic_metadata.current_block_could_be_bare_struct_literal = + Some(block.span); + } + // Descend into the block. + for stmt in &block.stmts { + if let StmtKind::Item(ref item) = stmt.kind + && let ItemKind::MacroDef(..) = item.kind { + num_macro_definition_ribs += 1; + let res = self.r.local_def_id(item.id).to_def_id(); + self.ribs[ValueNS].push(Rib::new(MacroDefinition(res))); + self.label_ribs.push(Rib::new(MacroDefinition(res))); + } + + self.visit_stmt(stmt); + } + self.diagnostic_metadata.current_block_could_be_bare_struct_literal = prev; + + // Move back up. + self.parent_scope.module = orig_module; + for _ in 0..num_macro_definition_ribs { + self.ribs[ValueNS].pop(); + self.label_ribs.pop(); + } + self.ribs[ValueNS].pop(); + if anonymous_module.is_some() { + self.ribs[TypeNS].pop(); + } + debug!("(resolving block) leaving block"); + } + + fn resolve_anon_const(&mut self, constant: &'ast AnonConst, is_repeat: IsRepeatExpr) { + debug!("resolve_anon_const {:?} is_repeat: {:?}", constant, is_repeat); + self.with_constant_rib( + is_repeat, + if constant.value.is_potential_trivial_const_param() { + HasGenericParams::Yes + } else { + HasGenericParams::No + }, + None, + |this| visit::walk_anon_const(this, constant), + ); + } + + fn resolve_inline_const(&mut self, constant: &'ast AnonConst) { + debug!("resolve_anon_const {constant:?}"); + self.with_constant_rib(IsRepeatExpr::No, HasGenericParams::Yes, None, |this| { + visit::walk_anon_const(this, constant); + }); + } + + fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) { + // First, record candidate traits for this expression if it could + // result in the invocation of a method call. + + self.record_candidate_traits_for_expr_if_necessary(expr); + + // Next, resolve the node. + match expr.kind { + ExprKind::Path(ref qself, ref path) => { + self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent)); + visit::walk_expr(self, expr); + } + + ExprKind::Struct(ref se) => { + self.smart_resolve_path(expr.id, se.qself.as_ref(), &se.path, PathSource::Struct); + visit::walk_expr(self, expr); + } + + ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => { + match self.resolve_label(label.ident) { + Ok((node_id, _)) => { + // Since this res is a label, it is never read. + self.r.label_res_map.insert(expr.id, node_id); + self.diagnostic_metadata.unused_labels.remove(&node_id); + } + Err(error) => { + self.report_error(label.ident.span, error); + } + } + + // visit `break` argument if any + visit::walk_expr(self, expr); + } + + ExprKind::Break(None, Some(ref e)) => { + // We use this instead of `visit::walk_expr` to keep the parent expr around for + // better diagnostics. + self.resolve_expr(e, Some(&expr)); + } + + ExprKind::Let(ref pat, ref scrutinee, _) => { + self.visit_expr(scrutinee); + self.resolve_pattern_top(pat, PatternSource::Let); + } + + ExprKind::If(ref cond, ref then, ref opt_else) => { + self.with_rib(ValueNS, NormalRibKind, |this| { + let old = this.diagnostic_metadata.in_if_condition.replace(cond); + this.visit_expr(cond); + this.diagnostic_metadata.in_if_condition = old; + this.visit_block(then); + }); + if let Some(expr) = opt_else { + self.visit_expr(expr); + } + } + + ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block), + + ExprKind::While(ref cond, ref block, label) => { + self.with_resolved_label(label, expr.id, |this| { + this.with_rib(ValueNS, NormalRibKind, |this| { + let old = this.diagnostic_metadata.in_if_condition.replace(cond); + this.visit_expr(cond); + this.diagnostic_metadata.in_if_condition = old; + this.visit_block(block); + }) + }); + } + + ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => { + self.visit_expr(iter_expr); + self.with_rib(ValueNS, NormalRibKind, |this| { + this.resolve_pattern_top(pat, PatternSource::For); + this.resolve_labeled_block(label, expr.id, block); + }); + } + + ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block), + + // Equivalent to `visit::walk_expr` + passing some context to children. + ExprKind::Field(ref subexpression, _) => { + self.resolve_expr(subexpression, Some(expr)); + } + ExprKind::MethodCall(ref segment, ref arguments, _) => { + let mut arguments = arguments.iter(); + self.resolve_expr(arguments.next().unwrap(), Some(expr)); + for argument in arguments { + self.resolve_expr(argument, None); + } + self.visit_path_segment(expr.span, segment); + } + + ExprKind::Call(ref callee, ref arguments) => { + self.resolve_expr(callee, Some(expr)); + let const_args = self.r.legacy_const_generic_args(callee).unwrap_or_default(); + for (idx, argument) in arguments.iter().enumerate() { + // Constant arguments need to be treated as AnonConst since + // that is how they will be later lowered to HIR. + if const_args.contains(&idx) { + self.with_constant_rib( + IsRepeatExpr::No, + if argument.is_potential_trivial_const_param() { + HasGenericParams::Yes + } else { + HasGenericParams::No + }, + None, + |this| { + this.resolve_expr(argument, None); + }, + ); + } else { + self.resolve_expr(argument, None); + } + } + } + ExprKind::Type(ref type_expr, ref ty) => { + // `ParseSess::type_ascription_path_suggestions` keeps spans of colon tokens in + // type ascription. Here we are trying to retrieve the span of the colon token as + // well, but only if it's written without spaces `expr:Ty` and therefore confusable + // with `expr::Ty`, only in this case it will match the span from + // `type_ascription_path_suggestions`. + self.diagnostic_metadata + .current_type_ascription + .push(type_expr.span.between(ty.span)); + visit::walk_expr(self, expr); + self.diagnostic_metadata.current_type_ascription.pop(); + } + // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to + // resolve the arguments within the proper scopes so that usages of them inside the + // closure are detected as upvars rather than normal closure arg usages. + ExprKind::Closure(_, _, Async::Yes { .. }, _, ref fn_decl, ref body, _span) => { + self.with_rib(ValueNS, NormalRibKind, |this| { + this.with_label_rib(ClosureOrAsyncRibKind, |this| { + // Resolve arguments: + this.resolve_params(&fn_decl.inputs); + // No need to resolve return type -- + // the outer closure return type is `FnRetTy::Default`. + + // Now resolve the inner closure + { + // No need to resolve arguments: the inner closure has none. + // Resolve the return type: + visit::walk_fn_ret_ty(this, &fn_decl.output); + // Resolve the body + this.visit_expr(body); + } + }) + }); + } + // For closures, ClosureOrAsyncRibKind is added in visit_fn + ExprKind::Closure(ClosureBinder::For { ref generic_params, span }, ..) => { + self.with_generic_param_rib( + &generic_params, + NormalRibKind, + LifetimeRibKind::Generics { + binder: expr.id, + kind: LifetimeBinderKind::Closure, + span, + }, + |this| visit::walk_expr(this, expr), + ); + } + ExprKind::Closure(..) => visit::walk_expr(self, expr), + ExprKind::Async(..) => { + self.with_label_rib(ClosureOrAsyncRibKind, |this| visit::walk_expr(this, expr)); + } + ExprKind::Repeat(ref elem, ref ct) => { + self.visit_expr(elem); + self.with_lifetime_rib(LifetimeRibKind::AnonConst, |this| { + this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Static), |this| { + this.resolve_anon_const(ct, IsRepeatExpr::Yes) + }) + }); + } + ExprKind::ConstBlock(ref ct) => { + self.resolve_inline_const(ct); + } + ExprKind::Index(ref elem, ref idx) => { + self.resolve_expr(elem, Some(expr)); + self.visit_expr(idx); + } + _ => { + visit::walk_expr(self, expr); + } + } + } + + fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) { + match expr.kind { + ExprKind::Field(_, ident) => { + // FIXME(#6890): Even though you can't treat a method like a + // field, we need to add any trait methods we find that match + // the field name so that we can do some nice error reporting + // later on in typeck. + let traits = self.traits_in_scope(ident, ValueNS); + self.r.trait_map.insert(expr.id, traits); + } + ExprKind::MethodCall(ref segment, ..) => { + debug!("(recording candidate traits for expr) recording traits for {}", expr.id); + let traits = self.traits_in_scope(segment.ident, ValueNS); + self.r.trait_map.insert(expr.id, traits); + } + _ => { + // Nothing to do. + } + } + } + + fn traits_in_scope(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> { + self.r.traits_in_scope( + self.current_trait_ref.as_ref().map(|(module, _)| *module), + &self.parent_scope, + ident.span.ctxt(), + Some((ident.name, ns)), + ) + } +} + +struct LifetimeCountVisitor<'a, 'b> { + r: &'b mut Resolver<'a>, +} + +/// Walks the whole crate in DFS order, visiting each item, counting the declared number of +/// lifetime generic parameters. +impl<'ast> Visitor<'ast> for LifetimeCountVisitor<'_, '_> { + fn visit_item(&mut self, item: &'ast Item) { + match &item.kind { + ItemKind::TyAlias(box TyAlias { ref generics, .. }) + | ItemKind::Fn(box Fn { ref generics, .. }) + | ItemKind::Enum(_, ref generics) + | ItemKind::Struct(_, ref generics) + | ItemKind::Union(_, ref generics) + | ItemKind::Impl(box Impl { ref generics, .. }) + | ItemKind::Trait(box Trait { ref generics, .. }) + | ItemKind::TraitAlias(ref generics, _) => { + let def_id = self.r.local_def_id(item.id); + let count = generics + .params + .iter() + .filter(|param| matches!(param.kind, ast::GenericParamKind::Lifetime { .. })) + .count(); + self.r.item_generics_num_lifetimes.insert(def_id, count); + } + + ItemKind::Mod(..) + | ItemKind::ForeignMod(..) + | ItemKind::Static(..) + | ItemKind::Const(..) + | ItemKind::Use(..) + | ItemKind::ExternCrate(..) + | ItemKind::MacroDef(..) + | ItemKind::GlobalAsm(..) + | ItemKind::MacCall(..) => {} + } + visit::walk_item(self, item) + } +} + +impl<'a> Resolver<'a> { + pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) { + visit::walk_crate(&mut LifetimeCountVisitor { r: self }, krate); + let mut late_resolution_visitor = LateResolutionVisitor::new(self); + visit::walk_crate(&mut late_resolution_visitor, krate); + for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() { + self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label"); + } + } +} diff --git a/compiler/rustc_resolve/src/late/diagnostics.rs b/compiler/rustc_resolve/src/late/diagnostics.rs new file mode 100644 index 000000000..2b1f2b88e --- /dev/null +++ b/compiler/rustc_resolve/src/late/diagnostics.rs @@ -0,0 +1,2369 @@ +use crate::diagnostics::{ImportSuggestion, LabelSuggestion, TypoSuggestion}; +use crate::late::{AliasPossibility, LateResolutionVisitor, RibKind}; +use crate::late::{LifetimeBinderKind, LifetimeRes, LifetimeRibKind, LifetimeUseSet}; +use crate::path_names_to_string; +use crate::{Module, ModuleKind, ModuleOrUniformRoot}; +use crate::{PathResult, PathSource, Segment}; + +use rustc_ast::visit::{FnCtxt, FnKind, LifetimeCtxt}; +use rustc_ast::{ + self as ast, AssocItemKind, Expr, ExprKind, GenericParam, GenericParamKind, Item, ItemKind, + NodeId, Path, Ty, TyKind, DUMMY_NODE_ID, +}; +use rustc_ast_pretty::pprust::path_segment_to_string; +use rustc_data_structures::fx::FxHashSet; +use rustc_errors::{ + pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, + MultiSpan, +}; +use rustc_hir as hir; +use rustc_hir::def::Namespace::{self, *}; +use rustc_hir::def::{self, CtorKind, CtorOf, DefKind}; +use rustc_hir::def_id::{DefId, CRATE_DEF_ID, LOCAL_CRATE}; +use rustc_hir::PrimTy; +use rustc_session::lint; +use rustc_session::parse::feature_err; +use rustc_session::Session; +use rustc_span::edition::Edition; +use rustc_span::hygiene::MacroKind; +use rustc_span::lev_distance::find_best_match_for_name; +use rustc_span::symbol::{kw, sym, Ident, Symbol}; +use rustc_span::{BytePos, Span}; + +use std::iter; +use std::ops::Deref; + +use tracing::debug; + +type Res = def::Res<ast::NodeId>; + +/// A field or associated item from self type suggested in case of resolution failure. +enum AssocSuggestion { + Field, + MethodWithSelf, + AssocFn, + AssocType, + AssocConst, +} + +impl AssocSuggestion { + fn action(&self) -> &'static str { + match self { + AssocSuggestion::Field => "use the available field", + AssocSuggestion::MethodWithSelf => "call the method with the fully-qualified path", + AssocSuggestion::AssocFn => "call the associated function", + AssocSuggestion::AssocConst => "use the associated `const`", + AssocSuggestion::AssocType => "use the associated type", + } + } +} + +fn is_self_type(path: &[Segment], namespace: Namespace) -> bool { + namespace == TypeNS && path.len() == 1 && path[0].ident.name == kw::SelfUpper +} + +fn is_self_value(path: &[Segment], namespace: Namespace) -> bool { + namespace == ValueNS && path.len() == 1 && path[0].ident.name == kw::SelfLower +} + +/// Gets the stringified path for an enum from an `ImportSuggestion` for an enum variant. +fn import_candidate_to_enum_paths(suggestion: &ImportSuggestion) -> (String, String) { + let variant_path = &suggestion.path; + let variant_path_string = path_names_to_string(variant_path); + + let path_len = suggestion.path.segments.len(); + let enum_path = ast::Path { + span: suggestion.path.span, + segments: suggestion.path.segments[0..path_len - 1].to_vec(), + tokens: None, + }; + let enum_path_string = path_names_to_string(&enum_path); + + (variant_path_string, enum_path_string) +} + +/// Description of an elided lifetime. +#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)] +pub(super) struct MissingLifetime { + /// Used to overwrite the resolution with the suggestion, to avoid cascasing errors. + pub id: NodeId, + /// Where to suggest adding the lifetime. + pub span: Span, + /// How the lifetime was introduced, to have the correct space and comma. + pub kind: MissingLifetimeKind, + /// Number of elided lifetimes, used for elision in path. + pub count: usize, +} + +#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)] +pub(super) enum MissingLifetimeKind { + /// An explicit `'_`. + Underscore, + /// An elided lifetime `&' ty`. + Ampersand, + /// An elided lifetime in brackets with written brackets. + Comma, + /// An elided lifetime with elided brackets. + Brackets, +} + +/// Description of the lifetimes appearing in a function parameter. +/// This is used to provide a literal explanation to the elision failure. +#[derive(Clone, Debug)] +pub(super) struct ElisionFnParameter { + /// The index of the argument in the original definition. + pub index: usize, + /// The name of the argument if it's a simple ident. + pub ident: Option<Ident>, + /// The number of lifetimes in the parameter. + pub lifetime_count: usize, + /// The span of the parameter. + pub span: Span, +} + +/// Description of lifetimes that appear as candidates for elision. +/// This is used to suggest introducing an explicit lifetime. +#[derive(Debug)] +pub(super) enum LifetimeElisionCandidate { + /// This is not a real lifetime. + Ignore, + /// There is a named lifetime, we won't suggest anything. + Named, + Missing(MissingLifetime), +} + +impl<'a: 'ast, 'ast> LateResolutionVisitor<'a, '_, 'ast> { + fn def_span(&self, def_id: DefId) -> Option<Span> { + match def_id.krate { + LOCAL_CRATE => self.r.opt_span(def_id), + _ => Some(self.r.cstore().get_span_untracked(def_id, self.r.session)), + } + } + + /// Handles error reporting for `smart_resolve_path_fragment` function. + /// Creates base error and amends it with one short label and possibly some longer helps/notes. + pub(crate) fn smart_resolve_report_errors( + &mut self, + path: &[Segment], + span: Span, + source: PathSource<'_>, + res: Option<Res>, + ) -> (DiagnosticBuilder<'a, ErrorGuaranteed>, Vec<ImportSuggestion>) { + let ident_span = path.last().map_or(span, |ident| ident.ident.span); + let ns = source.namespace(); + let is_expected = &|res| source.is_expected(res); + let is_enum_variant = &|res| matches!(res, Res::Def(DefKind::Variant, _)); + + debug!(?res, ?source); + + // Make the base error. + struct BaseError<'a> { + msg: String, + fallback_label: String, + span: Span, + could_be_expr: bool, + suggestion: Option<(Span, &'a str, String)>, + } + let mut expected = source.descr_expected(); + let path_str = Segment::names_to_string(path); + let item_str = path.last().unwrap().ident; + let base_error = if let Some(res) = res { + BaseError { + msg: format!("expected {}, found {} `{}`", expected, res.descr(), path_str), + fallback_label: format!("not a {expected}"), + span, + could_be_expr: match res { + Res::Def(DefKind::Fn, _) => { + // Verify whether this is a fn call or an Fn used as a type. + self.r + .session + .source_map() + .span_to_snippet(span) + .map(|snippet| snippet.ends_with(')')) + .unwrap_or(false) + } + Res::Def( + DefKind::Ctor(..) | DefKind::AssocFn | DefKind::Const | DefKind::AssocConst, + _, + ) + | Res::SelfCtor(_) + | Res::PrimTy(_) + | Res::Local(_) => true, + _ => false, + }, + suggestion: None, + } + } else { + let item_span = path.last().unwrap().ident.span; + let (mod_prefix, mod_str, suggestion) = if path.len() == 1 { + debug!(?self.diagnostic_metadata.current_impl_items); + debug!(?self.diagnostic_metadata.current_function); + let suggestion = if let Some(items) = self.diagnostic_metadata.current_impl_items + && let Some((fn_kind, _)) = self.diagnostic_metadata.current_function + && self.current_trait_ref.is_none() + && let Some(FnCtxt::Assoc(_)) = fn_kind.ctxt() + && let Some(item) = items.iter().find(|i| { + if let AssocItemKind::Fn(fn_) = &i.kind + && !fn_.sig.decl.has_self() + && i.ident.name == item_str.name + { + debug!(?item_str.name); + debug!(?fn_.sig.decl.inputs); + return true + } + false + }) + { + Some(( + item_span, + "consider using the associated function", + format!("Self::{}", item.ident) + )) + } else { + None + }; + (String::new(), "this scope".to_string(), suggestion) + } else if path.len() == 2 && path[0].ident.name == kw::PathRoot { + if self.r.session.edition() > Edition::Edition2015 { + // In edition 2018 onwards, the `::foo` syntax may only pull from the extern prelude + // which overrides all other expectations of item type + expected = "crate"; + (String::new(), "the list of imported crates".to_string(), None) + } else { + (String::new(), "the crate root".to_string(), None) + } + } else if path.len() == 2 && path[0].ident.name == kw::Crate { + (String::new(), "the crate root".to_string(), None) + } else { + let mod_path = &path[..path.len() - 1]; + let mod_prefix = match self.resolve_path(mod_path, Some(TypeNS), None) { + PathResult::Module(ModuleOrUniformRoot::Module(module)) => module.res(), + _ => None, + } + .map_or_else(String::new, |res| format!("{} ", res.descr())); + (mod_prefix, format!("`{}`", Segment::names_to_string(mod_path)), None) + }; + BaseError { + msg: format!("cannot find {expected} `{item_str}` in {mod_prefix}{mod_str}"), + fallback_label: if path_str == "async" && expected.starts_with("struct") { + "`async` blocks are only allowed in Rust 2018 or later".to_string() + } else { + format!("not found in {mod_str}") + }, + span: item_span, + could_be_expr: false, + suggestion, + } + }; + + let code = source.error_code(res.is_some()); + let mut err = + self.r.session.struct_span_err_with_code(base_error.span, &base_error.msg, code); + + self.suggest_swapping_misplaced_self_ty_and_trait(&mut err, source, res, base_error.span); + + if let Some(sugg) = base_error.suggestion { + err.span_suggestion_verbose(sugg.0, sugg.1, sugg.2, Applicability::MaybeIncorrect); + } + + if let Some(span) = self.diagnostic_metadata.current_block_could_be_bare_struct_literal { + err.multipart_suggestion( + "you might have meant to write a `struct` literal", + vec![ + (span.shrink_to_lo(), "{ SomeStruct ".to_string()), + (span.shrink_to_hi(), "}".to_string()), + ], + Applicability::HasPlaceholders, + ); + } + match (source, self.diagnostic_metadata.in_if_condition) { + ( + PathSource::Expr(_), + Some(Expr { span: expr_span, kind: ExprKind::Assign(lhs, _, _), .. }), + ) => { + // Icky heuristic so we don't suggest: + // `if (i + 2) = 2` => `if let (i + 2) = 2` (approximately pattern) + // `if 2 = i` => `if let 2 = i` (lhs needs to contain error span) + if lhs.is_approximately_pattern() && lhs.span.contains(span) { + err.span_suggestion_verbose( + expr_span.shrink_to_lo(), + "you might have meant to use pattern matching", + "let ", + Applicability::MaybeIncorrect, + ); + } + } + _ => {} + } + + let is_assoc_fn = self.self_type_is_available(); + // Emit help message for fake-self from other languages (e.g., `this` in Javascript). + if ["this", "my"].contains(&item_str.as_str()) && is_assoc_fn { + err.span_suggestion_short( + span, + "you might have meant to use `self` here instead", + "self", + Applicability::MaybeIncorrect, + ); + if !self.self_value_is_available(path[0].ident.span) { + if let Some((FnKind::Fn(_, _, sig, ..), fn_span)) = + &self.diagnostic_metadata.current_function + { + let (span, sugg) = if let Some(param) = sig.decl.inputs.get(0) { + (param.span.shrink_to_lo(), "&self, ") + } else { + ( + self.r + .session + .source_map() + .span_through_char(*fn_span, '(') + .shrink_to_hi(), + "&self", + ) + }; + err.span_suggestion_verbose( + span, + "if you meant to use `self`, you are also missing a `self` receiver \ + argument", + sugg, + Applicability::MaybeIncorrect, + ); + } + } + } + + self.detect_assoct_type_constraint_meant_as_path(base_error.span, &mut err); + + // Emit special messages for unresolved `Self` and `self`. + if is_self_type(path, ns) { + err.code(rustc_errors::error_code!(E0411)); + err.span_label( + span, + "`Self` is only available in impls, traits, and type definitions".to_string(), + ); + if let Some(item_kind) = self.diagnostic_metadata.current_item { + err.span_label( + item_kind.ident.span, + format!( + "`Self` not allowed in {} {}", + item_kind.kind.article(), + item_kind.kind.descr() + ), + ); + } + return (err, Vec::new()); + } + if is_self_value(path, ns) { + debug!("smart_resolve_path_fragment: E0424, source={:?}", source); + + err.code(rustc_errors::error_code!(E0424)); + err.span_label(span, match source { + PathSource::Pat => "`self` value is a keyword and may not be bound to variables or shadowed", + _ => "`self` value is a keyword only available in methods with a `self` parameter", + }); + if let Some((fn_kind, span)) = &self.diagnostic_metadata.current_function { + // The current function has a `self' parameter, but we were unable to resolve + // a reference to `self`. This can only happen if the `self` identifier we + // are resolving came from a different hygiene context. + if fn_kind.decl().inputs.get(0).map_or(false, |p| p.is_self()) { + err.span_label(*span, "this function has a `self` parameter, but a macro invocation can only access identifiers it receives from parameters"); + } else { + let doesnt = if is_assoc_fn { + let (span, sugg) = fn_kind + .decl() + .inputs + .get(0) + .map(|p| (p.span.shrink_to_lo(), "&self, ")) + .unwrap_or_else(|| { + // Try to look for the "(" after the function name, if possible. + // This avoids placing the suggestion into the visibility specifier. + let span = fn_kind + .ident() + .map_or(*span, |ident| span.with_lo(ident.span.hi())); + ( + self.r + .session + .source_map() + .span_through_char(span, '(') + .shrink_to_hi(), + "&self", + ) + }); + err.span_suggestion_verbose( + span, + "add a `self` receiver parameter to make the associated `fn` a method", + sugg, + Applicability::MaybeIncorrect, + ); + "doesn't" + } else { + "can't" + }; + if let Some(ident) = fn_kind.ident() { + err.span_label( + ident.span, + &format!("this function {} have a `self` parameter", doesnt), + ); + } + } + } else if let Some(item_kind) = self.diagnostic_metadata.current_item { + err.span_label( + item_kind.ident.span, + format!( + "`self` not allowed in {} {}", + item_kind.kind.article(), + item_kind.kind.descr() + ), + ); + } + return (err, Vec::new()); + } + + // Try to lookup name in more relaxed fashion for better error reporting. + let ident = path.last().unwrap().ident; + let mut candidates = self + .r + .lookup_import_candidates(ident, ns, &self.parent_scope, is_expected) + .into_iter() + .filter(|ImportSuggestion { did, .. }| { + match (did, res.and_then(|res| res.opt_def_id())) { + (Some(suggestion_did), Some(actual_did)) => *suggestion_did != actual_did, + _ => true, + } + }) + .collect::<Vec<_>>(); + let crate_def_id = CRATE_DEF_ID.to_def_id(); + // Try to filter out intrinsics candidates, as long as we have + // some other candidates to suggest. + let intrinsic_candidates: Vec<_> = candidates + .drain_filter(|sugg| { + let path = path_names_to_string(&sugg.path); + path.starts_with("core::intrinsics::") || path.starts_with("std::intrinsics::") + }) + .collect(); + if candidates.is_empty() { + // Put them back if we have no more candidates to suggest... + candidates.extend(intrinsic_candidates); + } + if candidates.is_empty() && is_expected(Res::Def(DefKind::Enum, crate_def_id)) { + let mut enum_candidates: Vec<_> = self + .r + .lookup_import_candidates(ident, ns, &self.parent_scope, is_enum_variant) + .into_iter() + .map(|suggestion| import_candidate_to_enum_paths(&suggestion)) + .filter(|(_, enum_ty_path)| !enum_ty_path.starts_with("std::prelude::")) + .collect(); + if !enum_candidates.is_empty() { + if let (PathSource::Type, Some(span)) = + (source, self.diagnostic_metadata.current_type_ascription.last()) + { + if self + .r + .session + .parse_sess + .type_ascription_path_suggestions + .borrow() + .contains(span) + { + // Already reported this issue on the lhs of the type ascription. + err.delay_as_bug(); + return (err, candidates); + } + } + + enum_candidates.sort(); + + // Contextualize for E0412 "cannot find type", but don't belabor the point + // (that it's a variant) for E0573 "expected type, found variant". + let preamble = if res.is_none() { + let others = match enum_candidates.len() { + 1 => String::new(), + 2 => " and 1 other".to_owned(), + n => format!(" and {} others", n), + }; + format!("there is an enum variant `{}`{}; ", enum_candidates[0].0, others) + } else { + String::new() + }; + let msg = format!("{}try using the variant's enum", preamble); + + err.span_suggestions( + span, + &msg, + enum_candidates.into_iter().map(|(_variant_path, enum_ty_path)| enum_ty_path), + Applicability::MachineApplicable, + ); + } + } + // Try Levenshtein algorithm. + let typo_sugg = self.lookup_typo_candidate(path, ns, is_expected); + if path.len() == 1 && self.self_type_is_available() { + if let Some(candidate) = self.lookup_assoc_candidate(ident, ns, is_expected) { + let self_is_available = self.self_value_is_available(path[0].ident.span); + match candidate { + AssocSuggestion::Field => { + if self_is_available { + err.span_suggestion( + span, + "you might have meant to use the available field", + format!("self.{path_str}"), + Applicability::MachineApplicable, + ); + } else { + err.span_label(span, "a field by this name exists in `Self`"); + } + } + AssocSuggestion::MethodWithSelf if self_is_available => { + err.span_suggestion( + span, + "you might have meant to call the method", + format!("self.{path_str}"), + Applicability::MachineApplicable, + ); + } + AssocSuggestion::MethodWithSelf + | AssocSuggestion::AssocFn + | AssocSuggestion::AssocConst + | AssocSuggestion::AssocType => { + err.span_suggestion( + span, + &format!("you might have meant to {}", candidate.action()), + format!("Self::{path_str}"), + Applicability::MachineApplicable, + ); + } + } + self.r.add_typo_suggestion(&mut err, typo_sugg, ident_span); + return (err, candidates); + } + + // If the first argument in call is `self` suggest calling a method. + if let Some((call_span, args_span)) = self.call_has_self_arg(source) { + let mut args_snippet = String::new(); + if let Some(args_span) = args_span { + if let Ok(snippet) = self.r.session.source_map().span_to_snippet(args_span) { + args_snippet = snippet; + } + } + + err.span_suggestion( + call_span, + &format!("try calling `{ident}` as a method"), + format!("self.{path_str}({args_snippet})"), + Applicability::MachineApplicable, + ); + return (err, candidates); + } + } + + // Try context-dependent help if relaxed lookup didn't work. + if let Some(res) = res { + if self.smart_resolve_context_dependent_help( + &mut err, + span, + source, + res, + &path_str, + &base_error.fallback_label, + ) { + // We do this to avoid losing a secondary span when we override the main error span. + self.r.add_typo_suggestion(&mut err, typo_sugg, ident_span); + return (err, candidates); + } + } + + let is_macro = + base_error.span.from_expansion() && base_error.span.desugaring_kind().is_none(); + if !self.type_ascription_suggestion(&mut err, base_error.span) { + let mut fallback = false; + if let ( + PathSource::Trait(AliasPossibility::Maybe), + Some(Res::Def(DefKind::Struct | DefKind::Enum | DefKind::Union, _)), + false, + ) = (source, res, is_macro) + { + if let Some(bounds @ [_, .., _]) = self.diagnostic_metadata.current_trait_object { + fallback = true; + let spans: Vec<Span> = bounds + .iter() + .map(|bound| bound.span()) + .filter(|&sp| sp != base_error.span) + .collect(); + + let start_span = bounds.iter().map(|bound| bound.span()).next().unwrap(); + // `end_span` is the end of the poly trait ref (Foo + 'baz + Bar><) + let end_span = bounds.iter().map(|bound| bound.span()).last().unwrap(); + // `last_bound_span` is the last bound of the poly trait ref (Foo + >'baz< + Bar) + let last_bound_span = spans.last().cloned().unwrap(); + let mut multi_span: MultiSpan = spans.clone().into(); + for sp in spans { + let msg = if sp == last_bound_span { + format!( + "...because of {these} bound{s}", + these = pluralize!("this", bounds.len() - 1), + s = pluralize!(bounds.len() - 1), + ) + } else { + String::new() + }; + multi_span.push_span_label(sp, msg); + } + multi_span + .push_span_label(base_error.span, "expected this type to be a trait..."); + err.span_help( + multi_span, + "`+` is used to constrain a \"trait object\" type with lifetimes or \ + auto-traits; structs and enums can't be bound in that way", + ); + if bounds.iter().all(|bound| match bound { + ast::GenericBound::Outlives(_) => true, + ast::GenericBound::Trait(tr, _) => tr.span == base_error.span, + }) { + let mut sugg = vec![]; + if base_error.span != start_span { + sugg.push((start_span.until(base_error.span), String::new())); + } + if base_error.span != end_span { + sugg.push((base_error.span.shrink_to_hi().to(end_span), String::new())); + } + + err.multipart_suggestion( + "if you meant to use a type and not a trait here, remove the bounds", + sugg, + Applicability::MaybeIncorrect, + ); + } + } + } + + fallback |= self.restrict_assoc_type_in_where_clause(span, &mut err); + + if !self.r.add_typo_suggestion(&mut err, typo_sugg, ident_span) { + fallback = true; + match self.diagnostic_metadata.current_let_binding { + Some((pat_sp, Some(ty_sp), None)) + if ty_sp.contains(base_error.span) && base_error.could_be_expr => + { + err.span_suggestion_short( + pat_sp.between(ty_sp), + "use `=` if you meant to assign", + " = ", + Applicability::MaybeIncorrect, + ); + } + _ => {} + } + + // If the trait has a single item (which wasn't matched by Levenshtein), suggest it + let suggestion = self.get_single_associated_item(&path, &source, is_expected); + self.r.add_typo_suggestion(&mut err, suggestion, ident_span); + } + if fallback { + // Fallback label. + err.span_label(base_error.span, base_error.fallback_label); + } + } + if let Some(err_code) = &err.code { + if err_code == &rustc_errors::error_code!(E0425) { + for label_rib in &self.label_ribs { + for (label_ident, node_id) in &label_rib.bindings { + if format!("'{}", ident) == label_ident.to_string() { + err.span_label(label_ident.span, "a label with a similar name exists"); + if let PathSource::Expr(Some(Expr { + kind: ExprKind::Break(None, Some(_)), + .. + })) = source + { + err.span_suggestion( + span, + "use the similarly named label", + label_ident.name, + Applicability::MaybeIncorrect, + ); + // Do not lint against unused label when we suggest them. + self.diagnostic_metadata.unused_labels.remove(node_id); + } + } + } + } + } else if err_code == &rustc_errors::error_code!(E0412) { + if let Some(correct) = Self::likely_rust_type(path) { + err.span_suggestion( + span, + "perhaps you intended to use this type", + correct, + Applicability::MaybeIncorrect, + ); + } + } + } + + (err, candidates) + } + + fn detect_assoct_type_constraint_meant_as_path(&self, base_span: Span, err: &mut Diagnostic) { + let Some(ty) = self.diagnostic_metadata.current_type_path else { return; }; + let TyKind::Path(_, path) = &ty.kind else { return; }; + for segment in &path.segments { + let Some(params) = &segment.args else { continue; }; + let ast::GenericArgs::AngleBracketed(ref params) = params.deref() else { continue; }; + for param in ¶ms.args { + let ast::AngleBracketedArg::Constraint(constraint) = param else { continue; }; + let ast::AssocConstraintKind::Bound { bounds } = &constraint.kind else { + continue; + }; + for bound in bounds { + let ast::GenericBound::Trait(trait_ref, ast::TraitBoundModifier::None) + = bound else + { + continue; + }; + if base_span == trait_ref.span { + err.span_suggestion_verbose( + constraint.ident.span.between(trait_ref.span), + "you might have meant to write a path instead of an associated type bound", + "::", + Applicability::MachineApplicable, + ); + } + } + } + } + } + + fn suggest_swapping_misplaced_self_ty_and_trait( + &mut self, + err: &mut Diagnostic, + source: PathSource<'_>, + res: Option<Res>, + span: Span, + ) { + if let Some((trait_ref, self_ty)) = + self.diagnostic_metadata.currently_processing_impl_trait.clone() + && let TyKind::Path(_, self_ty_path) = &self_ty.kind + && let PathResult::Module(ModuleOrUniformRoot::Module(module)) = + self.resolve_path(&Segment::from_path(self_ty_path), Some(TypeNS), None) + && let ModuleKind::Def(DefKind::Trait, ..) = module.kind + && trait_ref.path.span == span + && let PathSource::Trait(_) = source + && let Some(Res::Def(DefKind::Struct | DefKind::Enum | DefKind::Union, _)) = res + && let Ok(self_ty_str) = + self.r.session.source_map().span_to_snippet(self_ty.span) + && let Ok(trait_ref_str) = + self.r.session.source_map().span_to_snippet(trait_ref.path.span) + { + err.multipart_suggestion( + "`impl` items mention the trait being implemented first and the type it is being implemented for second", + vec![(trait_ref.path.span, self_ty_str), (self_ty.span, trait_ref_str)], + Applicability::MaybeIncorrect, + ); + } + } + + fn get_single_associated_item( + &mut self, + path: &[Segment], + source: &PathSource<'_>, + filter_fn: &impl Fn(Res) -> bool, + ) -> Option<TypoSuggestion> { + if let crate::PathSource::TraitItem(_) = source { + let mod_path = &path[..path.len() - 1]; + if let PathResult::Module(ModuleOrUniformRoot::Module(module)) = + self.resolve_path(mod_path, None, None) + { + let resolutions = self.r.resolutions(module).borrow(); + let targets: Vec<_> = + resolutions + .iter() + .filter_map(|(key, resolution)| { + resolution.borrow().binding.map(|binding| binding.res()).and_then( + |res| if filter_fn(res) { Some((key, res)) } else { None }, + ) + }) + .collect(); + if targets.len() == 1 { + let target = targets[0]; + return Some(TypoSuggestion::single_item_from_res( + target.0.ident.name, + target.1, + )); + } + } + } + None + } + + /// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`. + fn restrict_assoc_type_in_where_clause(&mut self, span: Span, err: &mut Diagnostic) -> bool { + // Detect that we are actually in a `where` predicate. + let (bounded_ty, bounds, where_span) = + if let Some(ast::WherePredicate::BoundPredicate(ast::WhereBoundPredicate { + bounded_ty, + bound_generic_params, + bounds, + span, + })) = self.diagnostic_metadata.current_where_predicate + { + if !bound_generic_params.is_empty() { + return false; + } + (bounded_ty, bounds, span) + } else { + return false; + }; + + // Confirm that the target is an associated type. + let (ty, position, path) = if let ast::TyKind::Path( + Some(ast::QSelf { ty, position, .. }), + path, + ) = &bounded_ty.kind + { + // use this to verify that ident is a type param. + let Some(partial_res) = self.r.partial_res_map.get(&bounded_ty.id) else { + return false; + }; + if !(matches!( + partial_res.base_res(), + hir::def::Res::Def(hir::def::DefKind::AssocTy, _) + ) && partial_res.unresolved_segments() == 0) + { + return false; + } + (ty, position, path) + } else { + return false; + }; + + let peeled_ty = ty.peel_refs(); + if let ast::TyKind::Path(None, type_param_path) = &peeled_ty.kind { + // Confirm that the `SelfTy` is a type parameter. + let Some(partial_res) = self.r.partial_res_map.get(&peeled_ty.id) else { + return false; + }; + if !(matches!( + partial_res.base_res(), + hir::def::Res::Def(hir::def::DefKind::TyParam, _) + ) && partial_res.unresolved_segments() == 0) + { + return false; + } + if let ( + [ast::PathSegment { ident: constrain_ident, args: None, .. }], + [ast::GenericBound::Trait(poly_trait_ref, ast::TraitBoundModifier::None)], + ) = (&type_param_path.segments[..], &bounds[..]) + { + if let [ast::PathSegment { ident, args: None, .. }] = + &poly_trait_ref.trait_ref.path.segments[..] + { + if ident.span == span { + err.span_suggestion_verbose( + *where_span, + &format!("constrain the associated type to `{}`", ident), + format!( + "{}: {}<{} = {}>", + self.r + .session + .source_map() + .span_to_snippet(ty.span) // Account for `<&'a T as Foo>::Bar`. + .unwrap_or_else(|_| constrain_ident.to_string()), + path.segments[..*position] + .iter() + .map(|segment| path_segment_to_string(segment)) + .collect::<Vec<_>>() + .join("::"), + path.segments[*position..] + .iter() + .map(|segment| path_segment_to_string(segment)) + .collect::<Vec<_>>() + .join("::"), + ident, + ), + Applicability::MaybeIncorrect, + ); + } + return true; + } + } + } + false + } + + /// Check if the source is call expression and the first argument is `self`. If true, + /// return the span of whole call and the span for all arguments expect the first one (`self`). + fn call_has_self_arg(&self, source: PathSource<'_>) -> Option<(Span, Option<Span>)> { + let mut has_self_arg = None; + if let PathSource::Expr(Some(parent)) = source { + match &parent.kind { + ExprKind::Call(_, args) if !args.is_empty() => { + let mut expr_kind = &args[0].kind; + loop { + match expr_kind { + ExprKind::Path(_, arg_name) if arg_name.segments.len() == 1 => { + if arg_name.segments[0].ident.name == kw::SelfLower { + let call_span = parent.span; + let tail_args_span = if args.len() > 1 { + Some(Span::new( + args[1].span.lo(), + args.last().unwrap().span.hi(), + call_span.ctxt(), + None, + )) + } else { + None + }; + has_self_arg = Some((call_span, tail_args_span)); + } + break; + } + ExprKind::AddrOf(_, _, expr) => expr_kind = &expr.kind, + _ => break, + } + } + } + _ => (), + } + }; + has_self_arg + } + + fn followed_by_brace(&self, span: Span) -> (bool, Option<Span>) { + // HACK(estebank): find a better way to figure out that this was a + // parser issue where a struct literal is being used on an expression + // where a brace being opened means a block is being started. Look + // ahead for the next text to see if `span` is followed by a `{`. + let sm = self.r.session.source_map(); + let mut sp = span; + loop { + sp = sm.next_point(sp); + match sm.span_to_snippet(sp) { + Ok(ref snippet) => { + if snippet.chars().any(|c| !c.is_whitespace()) { + break; + } + } + _ => break, + } + } + let followed_by_brace = matches!(sm.span_to_snippet(sp), Ok(ref snippet) if snippet == "{"); + // In case this could be a struct literal that needs to be surrounded + // by parentheses, find the appropriate span. + let mut i = 0; + let mut closing_brace = None; + loop { + sp = sm.next_point(sp); + match sm.span_to_snippet(sp) { + Ok(ref snippet) => { + if snippet == "}" { + closing_brace = Some(span.to(sp)); + break; + } + } + _ => break, + } + i += 1; + // The bigger the span, the more likely we're incorrect -- + // bound it to 100 chars long. + if i > 100 { + break; + } + } + (followed_by_brace, closing_brace) + } + + /// Provides context-dependent help for errors reported by the `smart_resolve_path_fragment` + /// function. + /// Returns `true` if able to provide context-dependent help. + fn smart_resolve_context_dependent_help( + &mut self, + err: &mut Diagnostic, + span: Span, + source: PathSource<'_>, + res: Res, + path_str: &str, + fallback_label: &str, + ) -> bool { + let ns = source.namespace(); + let is_expected = &|res| source.is_expected(res); + + let path_sep = |err: &mut Diagnostic, expr: &Expr| match expr.kind { + ExprKind::Field(_, ident) => { + err.span_suggestion( + expr.span, + "use the path separator to refer to an item", + format!("{}::{}", path_str, ident), + Applicability::MaybeIncorrect, + ); + true + } + ExprKind::MethodCall(ref segment, ..) => { + let span = expr.span.with_hi(segment.ident.span.hi()); + err.span_suggestion( + span, + "use the path separator to refer to an item", + format!("{}::{}", path_str, segment.ident), + Applicability::MaybeIncorrect, + ); + true + } + _ => false, + }; + + let find_span = |source: &PathSource<'_>, err: &mut Diagnostic| { + match source { + PathSource::Expr(Some(Expr { span, kind: ExprKind::Call(_, _), .. })) + | PathSource::TupleStruct(span, _) => { + // We want the main underline to cover the suggested code as well for + // cleaner output. + err.set_span(*span); + *span + } + _ => span, + } + }; + + let mut bad_struct_syntax_suggestion = |def_id: DefId| { + let (followed_by_brace, closing_brace) = self.followed_by_brace(span); + + match source { + PathSource::Expr(Some( + parent @ Expr { kind: ExprKind::Field(..) | ExprKind::MethodCall(..), .. }, + )) if path_sep(err, &parent) => {} + PathSource::Expr( + None + | Some(Expr { + kind: + ExprKind::Path(..) + | ExprKind::Binary(..) + | ExprKind::Unary(..) + | ExprKind::If(..) + | ExprKind::While(..) + | ExprKind::ForLoop(..) + | ExprKind::Match(..), + .. + }), + ) if followed_by_brace => { + if let Some(sp) = closing_brace { + err.span_label(span, fallback_label); + err.multipart_suggestion( + "surround the struct literal with parentheses", + vec![ + (sp.shrink_to_lo(), "(".to_string()), + (sp.shrink_to_hi(), ")".to_string()), + ], + Applicability::MaybeIncorrect, + ); + } else { + err.span_label( + span, // Note the parentheses surrounding the suggestion below + format!( + "you might want to surround a struct literal with parentheses: \ + `({} {{ /* fields */ }})`?", + path_str + ), + ); + } + } + PathSource::Expr(_) | PathSource::TupleStruct(..) | PathSource::Pat => { + let span = find_span(&source, err); + if let Some(span) = self.def_span(def_id) { + err.span_label(span, &format!("`{}` defined here", path_str)); + } + let (tail, descr, applicability) = match source { + PathSource::Pat | PathSource::TupleStruct(..) => { + ("", "pattern", Applicability::MachineApplicable) + } + _ => (": val", "literal", Applicability::HasPlaceholders), + }; + let (fields, applicability) = match self.r.field_names.get(&def_id) { + Some(fields) => ( + fields + .iter() + .map(|f| format!("{}{}", f.node, tail)) + .collect::<Vec<String>>() + .join(", "), + applicability, + ), + None => ("/* fields */".to_string(), Applicability::HasPlaceholders), + }; + let pad = match self.r.field_names.get(&def_id) { + Some(fields) if fields.is_empty() => "", + _ => " ", + }; + err.span_suggestion( + span, + &format!("use struct {} syntax instead", descr), + format!("{path_str} {{{pad}{fields}{pad}}}"), + applicability, + ); + } + _ => { + err.span_label(span, fallback_label); + } + } + }; + + match (res, source) { + ( + Res::Def(DefKind::Macro(MacroKind::Bang), _), + PathSource::Expr(Some(Expr { + kind: ExprKind::Index(..) | ExprKind::Call(..), .. + })) + | PathSource::Struct, + ) => { + err.span_label(span, fallback_label); + err.span_suggestion_verbose( + span.shrink_to_hi(), + "use `!` to invoke the macro", + "!", + Applicability::MaybeIncorrect, + ); + if path_str == "try" && span.rust_2015() { + err.note("if you want the `try` keyword, you need Rust 2018 or later"); + } + } + (Res::Def(DefKind::Macro(MacroKind::Bang), _), _) => { + err.span_label(span, fallback_label); + } + (Res::Def(DefKind::TyAlias, def_id), PathSource::Trait(_)) => { + err.span_label(span, "type aliases cannot be used as traits"); + if self.r.session.is_nightly_build() { + let msg = "you might have meant to use `#![feature(trait_alias)]` instead of a \ + `type` alias"; + if let Some(span) = self.def_span(def_id) { + if let Ok(snip) = self.r.session.source_map().span_to_snippet(span) { + // The span contains a type alias so we should be able to + // replace `type` with `trait`. + let snip = snip.replacen("type", "trait", 1); + err.span_suggestion(span, msg, snip, Applicability::MaybeIncorrect); + } else { + err.span_help(span, msg); + } + } else { + err.help(msg); + } + } + } + (Res::Def(DefKind::Mod, _), PathSource::Expr(Some(parent))) => { + if !path_sep(err, &parent) { + return false; + } + } + ( + Res::Def(DefKind::Enum, def_id), + PathSource::TupleStruct(..) | PathSource::Expr(..), + ) => { + if self + .diagnostic_metadata + .current_type_ascription + .last() + .map(|sp| { + self.r + .session + .parse_sess + .type_ascription_path_suggestions + .borrow() + .contains(&sp) + }) + .unwrap_or(false) + { + err.downgrade_to_delayed_bug(); + // We already suggested changing `:` into `::` during parsing. + return false; + } + + self.suggest_using_enum_variant(err, source, def_id, span); + } + (Res::Def(DefKind::Struct, def_id), source) if ns == ValueNS => { + let (ctor_def, ctor_vis, fields) = + if let Some(struct_ctor) = self.r.struct_constructors.get(&def_id).cloned() { + if let PathSource::Expr(Some(parent)) = source { + if let ExprKind::Field(..) | ExprKind::MethodCall(..) = parent.kind { + bad_struct_syntax_suggestion(def_id); + return true; + } + } + struct_ctor + } else { + bad_struct_syntax_suggestion(def_id); + return true; + }; + + let is_accessible = self.r.is_accessible_from(ctor_vis, self.parent_scope.module); + if !is_expected(ctor_def) || is_accessible { + return true; + } + + let field_spans = match source { + // e.g. `if let Enum::TupleVariant(field1, field2) = _` + PathSource::TupleStruct(_, pattern_spans) => { + err.set_primary_message( + "cannot match against a tuple struct which contains private fields", + ); + + // Use spans of the tuple struct pattern. + Some(Vec::from(pattern_spans)) + } + // e.g. `let _ = Enum::TupleVariant(field1, field2);` + _ if source.is_call() => { + err.set_primary_message( + "cannot initialize a tuple struct which contains private fields", + ); + + // Use spans of the tuple struct definition. + self.r + .field_names + .get(&def_id) + .map(|fields| fields.iter().map(|f| f.span).collect::<Vec<_>>()) + } + _ => None, + }; + + if let Some(spans) = + field_spans.filter(|spans| spans.len() > 0 && fields.len() == spans.len()) + { + let non_visible_spans: Vec<Span> = iter::zip(&fields, &spans) + .filter(|(vis, _)| { + !self.r.is_accessible_from(**vis, self.parent_scope.module) + }) + .map(|(_, span)| *span) + .collect(); + + if non_visible_spans.len() > 0 { + let mut m: MultiSpan = non_visible_spans.clone().into(); + non_visible_spans + .into_iter() + .for_each(|s| m.push_span_label(s, "private field")); + err.span_note(m, "constructor is not visible here due to private fields"); + } + + return true; + } + + err.span_label(span, "constructor is not visible here due to private fields"); + } + ( + Res::Def( + DefKind::Union | DefKind::Variant | DefKind::Ctor(_, CtorKind::Fictive), + def_id, + ), + _, + ) if ns == ValueNS => { + bad_struct_syntax_suggestion(def_id); + } + (Res::Def(DefKind::Ctor(_, CtorKind::Const), def_id), _) if ns == ValueNS => { + match source { + PathSource::Expr(_) | PathSource::TupleStruct(..) | PathSource::Pat => { + let span = find_span(&source, err); + if let Some(span) = self.def_span(def_id) { + err.span_label(span, &format!("`{}` defined here", path_str)); + } + err.span_suggestion( + span, + "use this syntax instead", + path_str, + Applicability::MaybeIncorrect, + ); + } + _ => return false, + } + } + (Res::Def(DefKind::Ctor(_, CtorKind::Fn), def_id), _) if ns == ValueNS => { + if let Some(span) = self.def_span(def_id) { + err.span_label(span, &format!("`{}` defined here", path_str)); + } + let fields = self.r.field_names.get(&def_id).map_or_else( + || "/* fields */".to_string(), + |fields| vec!["_"; fields.len()].join(", "), + ); + err.span_suggestion( + span, + "use the tuple variant pattern syntax instead", + format!("{}({})", path_str, fields), + Applicability::HasPlaceholders, + ); + } + (Res::SelfTy { .. }, _) if ns == ValueNS => { + err.span_label(span, fallback_label); + err.note("can't use `Self` as a constructor, you must use the implemented struct"); + } + (Res::Def(DefKind::TyAlias | DefKind::AssocTy, _), _) if ns == ValueNS => { + err.note("can't use a type alias as a constructor"); + } + _ => return false, + } + true + } + + /// Given the target `ident` and `kind`, search for the similarly named associated item + /// in `self.current_trait_ref`. + pub(crate) fn find_similarly_named_assoc_item( + &mut self, + ident: Symbol, + kind: &AssocItemKind, + ) -> Option<Symbol> { + let (module, _) = self.current_trait_ref.as_ref()?; + if ident == kw::Underscore { + // We do nothing for `_`. + return None; + } + + let resolutions = self.r.resolutions(module); + let targets = resolutions + .borrow() + .iter() + .filter_map(|(key, res)| res.borrow().binding.map(|binding| (key, binding.res()))) + .filter(|(_, res)| match (kind, res) { + (AssocItemKind::Const(..), Res::Def(DefKind::AssocConst, _)) => true, + (AssocItemKind::Fn(_), Res::Def(DefKind::AssocFn, _)) => true, + (AssocItemKind::TyAlias(..), Res::Def(DefKind::AssocTy, _)) => true, + _ => false, + }) + .map(|(key, _)| key.ident.name) + .collect::<Vec<_>>(); + + find_best_match_for_name(&targets, ident, None) + } + + fn lookup_assoc_candidate<FilterFn>( + &mut self, + ident: Ident, + ns: Namespace, + filter_fn: FilterFn, + ) -> Option<AssocSuggestion> + where + FilterFn: Fn(Res) -> bool, + { + fn extract_node_id(t: &Ty) -> Option<NodeId> { + match t.kind { + TyKind::Path(None, _) => Some(t.id), + TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty), + // This doesn't handle the remaining `Ty` variants as they are not + // that commonly the self_type, it might be interesting to provide + // support for those in future. + _ => None, + } + } + + // Fields are generally expected in the same contexts as locals. + if filter_fn(Res::Local(ast::DUMMY_NODE_ID)) { + if let Some(node_id) = + self.diagnostic_metadata.current_self_type.as_ref().and_then(extract_node_id) + { + // Look for a field with the same name in the current self_type. + if let Some(resolution) = self.r.partial_res_map.get(&node_id) { + match resolution.base_res() { + Res::Def(DefKind::Struct | DefKind::Union, did) + if resolution.unresolved_segments() == 0 => + { + if let Some(field_names) = self.r.field_names.get(&did) { + if field_names + .iter() + .any(|&field_name| ident.name == field_name.node) + { + return Some(AssocSuggestion::Field); + } + } + } + _ => {} + } + } + } + } + + if let Some(items) = self.diagnostic_metadata.current_trait_assoc_items { + for assoc_item in items { + if assoc_item.ident == ident { + return Some(match &assoc_item.kind { + ast::AssocItemKind::Const(..) => AssocSuggestion::AssocConst, + ast::AssocItemKind::Fn(box ast::Fn { sig, .. }) if sig.decl.has_self() => { + AssocSuggestion::MethodWithSelf + } + ast::AssocItemKind::Fn(..) => AssocSuggestion::AssocFn, + ast::AssocItemKind::TyAlias(..) => AssocSuggestion::AssocType, + ast::AssocItemKind::MacCall(_) => continue, + }); + } + } + } + + // Look for associated items in the current trait. + if let Some((module, _)) = self.current_trait_ref { + if let Ok(binding) = self.r.maybe_resolve_ident_in_module( + ModuleOrUniformRoot::Module(module), + ident, + ns, + &self.parent_scope, + ) { + let res = binding.res(); + if filter_fn(res) { + if self.r.has_self.contains(&res.def_id()) { + return Some(AssocSuggestion::MethodWithSelf); + } else { + match res { + Res::Def(DefKind::AssocFn, _) => return Some(AssocSuggestion::AssocFn), + Res::Def(DefKind::AssocConst, _) => { + return Some(AssocSuggestion::AssocConst); + } + Res::Def(DefKind::AssocTy, _) => { + return Some(AssocSuggestion::AssocType); + } + _ => {} + } + } + } + } + } + + None + } + + fn lookup_typo_candidate( + &mut self, + path: &[Segment], + ns: Namespace, + filter_fn: &impl Fn(Res) -> bool, + ) -> Option<TypoSuggestion> { + let mut names = Vec::new(); + if path.len() == 1 { + // Search in lexical scope. + // Walk backwards up the ribs in scope and collect candidates. + for rib in self.ribs[ns].iter().rev() { + // Locals and type parameters + for (ident, &res) in &rib.bindings { + if filter_fn(res) { + names.push(TypoSuggestion::typo_from_res(ident.name, res)); + } + } + // Items in scope + if let RibKind::ModuleRibKind(module) = rib.kind { + // Items from this module + self.r.add_module_candidates(module, &mut names, &filter_fn); + + if let ModuleKind::Block = module.kind { + // We can see through blocks + } else { + // Items from the prelude + if !module.no_implicit_prelude { + let extern_prelude = self.r.extern_prelude.clone(); + names.extend(extern_prelude.iter().flat_map(|(ident, _)| { + self.r.crate_loader.maybe_process_path_extern(ident.name).and_then( + |crate_id| { + let crate_mod = + Res::Def(DefKind::Mod, crate_id.as_def_id()); + + if filter_fn(crate_mod) { + Some(TypoSuggestion::typo_from_res( + ident.name, crate_mod, + )) + } else { + None + } + }, + ) + })); + + if let Some(prelude) = self.r.prelude { + self.r.add_module_candidates(prelude, &mut names, &filter_fn); + } + } + break; + } + } + } + // Add primitive types to the mix + if filter_fn(Res::PrimTy(PrimTy::Bool)) { + names.extend(PrimTy::ALL.iter().map(|prim_ty| { + TypoSuggestion::typo_from_res(prim_ty.name(), Res::PrimTy(*prim_ty)) + })) + } + } else { + // Search in module. + let mod_path = &path[..path.len() - 1]; + if let PathResult::Module(ModuleOrUniformRoot::Module(module)) = + self.resolve_path(mod_path, Some(TypeNS), None) + { + self.r.add_module_candidates(module, &mut names, &filter_fn); + } + } + + let name = path[path.len() - 1].ident.name; + // Make sure error reporting is deterministic. + names.sort_by(|a, b| a.candidate.as_str().partial_cmp(b.candidate.as_str()).unwrap()); + + match find_best_match_for_name( + &names.iter().map(|suggestion| suggestion.candidate).collect::<Vec<Symbol>>(), + name, + None, + ) { + Some(found) if found != name => { + names.into_iter().find(|suggestion| suggestion.candidate == found) + } + _ => None, + } + } + + // Returns the name of the Rust type approximately corresponding to + // a type name in another programming language. + fn likely_rust_type(path: &[Segment]) -> Option<Symbol> { + let name = path[path.len() - 1].ident.as_str(); + // Common Java types + Some(match name { + "byte" => sym::u8, // In Java, bytes are signed, but in practice one almost always wants unsigned bytes. + "short" => sym::i16, + "Bool" => sym::bool, + "Boolean" => sym::bool, + "boolean" => sym::bool, + "int" => sym::i32, + "long" => sym::i64, + "float" => sym::f32, + "double" => sym::f64, + _ => return None, + }) + } + + /// Only used in a specific case of type ascription suggestions + fn get_colon_suggestion_span(&self, start: Span) -> Span { + let sm = self.r.session.source_map(); + start.to(sm.next_point(start)) + } + + fn type_ascription_suggestion(&self, err: &mut Diagnostic, base_span: Span) -> bool { + let sm = self.r.session.source_map(); + let base_snippet = sm.span_to_snippet(base_span); + if let Some(&sp) = self.diagnostic_metadata.current_type_ascription.last() { + if let Ok(snippet) = sm.span_to_snippet(sp) { + let len = snippet.trim_end().len() as u32; + if snippet.trim() == ":" { + let colon_sp = + sp.with_lo(sp.lo() + BytePos(len - 1)).with_hi(sp.lo() + BytePos(len)); + let mut show_label = true; + if sm.is_multiline(sp) { + err.span_suggestion_short( + colon_sp, + "maybe you meant to write `;` here", + ";", + Applicability::MaybeIncorrect, + ); + } else { + let after_colon_sp = + self.get_colon_suggestion_span(colon_sp.shrink_to_hi()); + if snippet.len() == 1 { + // `foo:bar` + err.span_suggestion( + colon_sp, + "maybe you meant to write a path separator here", + "::", + Applicability::MaybeIncorrect, + ); + show_label = false; + if !self + .r + .session + .parse_sess + .type_ascription_path_suggestions + .borrow_mut() + .insert(colon_sp) + { + err.downgrade_to_delayed_bug(); + } + } + if let Ok(base_snippet) = base_snippet { + let mut sp = after_colon_sp; + for _ in 0..100 { + // Try to find an assignment + sp = sm.next_point(sp); + let snippet = sm.span_to_snippet(sp.to(sm.next_point(sp))); + match snippet { + Ok(ref x) if x.as_str() == "=" => { + err.span_suggestion( + base_span, + "maybe you meant to write an assignment here", + format!("let {}", base_snippet), + Applicability::MaybeIncorrect, + ); + show_label = false; + break; + } + Ok(ref x) if x.as_str() == "\n" => break, + Err(_) => break, + Ok(_) => {} + } + } + } + } + if show_label { + err.span_label( + base_span, + "expecting a type here because of type ascription", + ); + } + return show_label; + } + } + } + false + } + + fn find_module(&mut self, def_id: DefId) -> Option<(Module<'a>, ImportSuggestion)> { + let mut result = None; + let mut seen_modules = FxHashSet::default(); + let mut worklist = vec![(self.r.graph_root, Vec::new())]; + + while let Some((in_module, path_segments)) = worklist.pop() { + // abort if the module is already found + if result.is_some() { + break; + } + + in_module.for_each_child(self.r, |_, ident, _, name_binding| { + // abort if the module is already found or if name_binding is private external + if result.is_some() || !name_binding.vis.is_visible_locally() { + return; + } + if let Some(module) = name_binding.module() { + // form the path + let mut path_segments = path_segments.clone(); + path_segments.push(ast::PathSegment::from_ident(ident)); + let module_def_id = module.def_id(); + if module_def_id == def_id { + let path = + Path { span: name_binding.span, segments: path_segments, tokens: None }; + result = Some(( + module, + ImportSuggestion { + did: Some(def_id), + descr: "module", + path, + accessible: true, + note: None, + }, + )); + } else { + // add the module to the lookup + if seen_modules.insert(module_def_id) { + worklist.push((module, path_segments)); + } + } + } + }); + } + + result + } + + fn collect_enum_ctors(&mut self, def_id: DefId) -> Option<Vec<(Path, DefId, CtorKind)>> { + self.find_module(def_id).map(|(enum_module, enum_import_suggestion)| { + let mut variants = Vec::new(); + enum_module.for_each_child(self.r, |_, ident, _, name_binding| { + if let Res::Def(DefKind::Ctor(CtorOf::Variant, kind), def_id) = name_binding.res() { + let mut segms = enum_import_suggestion.path.segments.clone(); + segms.push(ast::PathSegment::from_ident(ident)); + let path = Path { span: name_binding.span, segments: segms, tokens: None }; + variants.push((path, def_id, kind)); + } + }); + variants + }) + } + + /// Adds a suggestion for using an enum's variant when an enum is used instead. + fn suggest_using_enum_variant( + &mut self, + err: &mut Diagnostic, + source: PathSource<'_>, + def_id: DefId, + span: Span, + ) { + let Some(variants) = self.collect_enum_ctors(def_id) else { + err.note("you might have meant to use one of the enum's variants"); + return; + }; + + let suggest_only_tuple_variants = + matches!(source, PathSource::TupleStruct(..)) || source.is_call(); + if suggest_only_tuple_variants { + // Suggest only tuple variants regardless of whether they have fields and do not + // suggest path with added parentheses. + let suggestable_variants = variants + .iter() + .filter(|(.., kind)| *kind == CtorKind::Fn) + .map(|(variant, ..)| path_names_to_string(variant)) + .collect::<Vec<_>>(); + + let non_suggestable_variant_count = variants.len() - suggestable_variants.len(); + + let source_msg = if source.is_call() { + "to construct" + } else if matches!(source, PathSource::TupleStruct(..)) { + "to match against" + } else { + unreachable!() + }; + + if !suggestable_variants.is_empty() { + let msg = if non_suggestable_variant_count == 0 && suggestable_variants.len() == 1 { + format!("try {} the enum's variant", source_msg) + } else { + format!("try {} one of the enum's variants", source_msg) + }; + + err.span_suggestions( + span, + &msg, + suggestable_variants.into_iter(), + Applicability::MaybeIncorrect, + ); + } + + // If the enum has no tuple variants.. + if non_suggestable_variant_count == variants.len() { + err.help(&format!("the enum has no tuple variants {}", source_msg)); + } + + // If there are also non-tuple variants.. + if non_suggestable_variant_count == 1 { + err.help(&format!( + "you might have meant {} the enum's non-tuple variant", + source_msg + )); + } else if non_suggestable_variant_count >= 1 { + err.help(&format!( + "you might have meant {} one of the enum's non-tuple variants", + source_msg + )); + } + } else { + let needs_placeholder = |def_id: DefId, kind: CtorKind| { + let has_no_fields = self.r.field_names.get(&def_id).map_or(false, |f| f.is_empty()); + match kind { + CtorKind::Const => false, + CtorKind::Fn | CtorKind::Fictive if has_no_fields => false, + _ => true, + } + }; + + let mut suggestable_variants = variants + .iter() + .filter(|(_, def_id, kind)| !needs_placeholder(*def_id, *kind)) + .map(|(variant, _, kind)| (path_names_to_string(variant), kind)) + .map(|(variant, kind)| match kind { + CtorKind::Const => variant, + CtorKind::Fn => format!("({}())", variant), + CtorKind::Fictive => format!("({} {{}})", variant), + }) + .collect::<Vec<_>>(); + + if !suggestable_variants.is_empty() { + let msg = if suggestable_variants.len() == 1 { + "you might have meant to use the following enum variant" + } else { + "you might have meant to use one of the following enum variants" + }; + + err.span_suggestions( + span, + msg, + suggestable_variants.drain(..), + Applicability::MaybeIncorrect, + ); + } + + let suggestable_variants_with_placeholders = variants + .iter() + .filter(|(_, def_id, kind)| needs_placeholder(*def_id, *kind)) + .map(|(variant, _, kind)| (path_names_to_string(variant), kind)) + .filter_map(|(variant, kind)| match kind { + CtorKind::Fn => Some(format!("({}(/* fields */))", variant)), + CtorKind::Fictive => Some(format!("({} {{ /* fields */ }})", variant)), + _ => None, + }) + .collect::<Vec<_>>(); + + if !suggestable_variants_with_placeholders.is_empty() { + let msg = match ( + suggestable_variants.is_empty(), + suggestable_variants_with_placeholders.len(), + ) { + (true, 1) => "the following enum variant is available", + (true, _) => "the following enum variants are available", + (false, 1) => "alternatively, the following enum variant is available", + (false, _) => "alternatively, the following enum variants are also available", + }; + + err.span_suggestions( + span, + msg, + suggestable_variants_with_placeholders.into_iter(), + Applicability::HasPlaceholders, + ); + } + }; + + if def_id.is_local() { + if let Some(span) = self.def_span(def_id) { + err.span_note(span, "the enum is defined here"); + } + } + } + + pub(crate) fn report_missing_type_error( + &self, + path: &[Segment], + ) -> Option<(Span, &'static str, String, Applicability)> { + let (ident, span) = match path { + [segment] if !segment.has_generic_args && segment.ident.name != kw::SelfUpper => { + (segment.ident.to_string(), segment.ident.span) + } + _ => return None, + }; + let mut iter = ident.chars().map(|c| c.is_uppercase()); + let single_uppercase_char = + matches!(iter.next(), Some(true)) && matches!(iter.next(), None); + if !self.diagnostic_metadata.currently_processing_generics && !single_uppercase_char { + return None; + } + match (self.diagnostic_metadata.current_item, single_uppercase_char, self.diagnostic_metadata.currently_processing_generics) { + (Some(Item { kind: ItemKind::Fn(..), ident, .. }), _, _) if ident.name == sym::main => { + // Ignore `fn main()` as we don't want to suggest `fn main<T>()` + } + ( + Some(Item { + kind: + kind @ ItemKind::Fn(..) + | kind @ ItemKind::Enum(..) + | kind @ ItemKind::Struct(..) + | kind @ ItemKind::Union(..), + .. + }), + true, _ + ) + // Without the 2nd `true`, we'd suggest `impl <T>` for `impl T` when a type `T` isn't found + | (Some(Item { kind: kind @ ItemKind::Impl(..), .. }), true, true) + | (Some(Item { kind, .. }), false, _) => { + // Likely missing type parameter. + if let Some(generics) = kind.generics() { + if span.overlaps(generics.span) { + // Avoid the following: + // error[E0405]: cannot find trait `A` in this scope + // --> $DIR/typo-suggestion-named-underscore.rs:CC:LL + // | + // L | fn foo<T: A>(x: T) {} // Shouldn't suggest underscore + // | ^- help: you might be missing a type parameter: `, A` + // | | + // | not found in this scope + return None; + } + let msg = "you might be missing a type parameter"; + let (span, sugg) = if let [.., param] = &generics.params[..] { + let span = if let [.., bound] = ¶m.bounds[..] { + bound.span() + } else if let GenericParam { + kind: GenericParamKind::Const { ty, kw_span: _, default }, .. + } = param { + default.as_ref().map(|def| def.value.span).unwrap_or(ty.span) + } else { + param.ident.span + }; + (span, format!(", {}", ident)) + } else { + (generics.span, format!("<{}>", ident)) + }; + // Do not suggest if this is coming from macro expansion. + if span.can_be_used_for_suggestions() { + return Some(( + span.shrink_to_hi(), + msg, + sugg, + Applicability::MaybeIncorrect, + )); + } + } + } + _ => {} + } + None + } + + /// Given the target `label`, search the `rib_index`th label rib for similarly named labels, + /// optionally returning the closest match and whether it is reachable. + pub(crate) fn suggestion_for_label_in_rib( + &self, + rib_index: usize, + label: Ident, + ) -> Option<LabelSuggestion> { + // Are ribs from this `rib_index` within scope? + let within_scope = self.is_label_valid_from_rib(rib_index); + + let rib = &self.label_ribs[rib_index]; + let names = rib + .bindings + .iter() + .filter(|(id, _)| id.span.eq_ctxt(label.span)) + .map(|(id, _)| id.name) + .collect::<Vec<Symbol>>(); + + find_best_match_for_name(&names, label.name, None).map(|symbol| { + // Upon finding a similar name, get the ident that it was from - the span + // contained within helps make a useful diagnostic. In addition, determine + // whether this candidate is within scope. + let (ident, _) = rib.bindings.iter().find(|(ident, _)| ident.name == symbol).unwrap(); + (*ident, within_scope) + }) + } + + pub(crate) fn maybe_report_lifetime_uses( + &mut self, + generics_span: Span, + params: &[ast::GenericParam], + ) { + for (param_index, param) in params.iter().enumerate() { + let GenericParamKind::Lifetime = param.kind else { continue }; + + let def_id = self.r.local_def_id(param.id); + + let use_set = self.lifetime_uses.remove(&def_id); + debug!( + "Use set for {:?}({:?} at {:?}) is {:?}", + def_id, param.ident, param.ident.span, use_set + ); + + let deletion_span = || { + if params.len() == 1 { + // if sole lifetime, remove the entire `<>` brackets + generics_span + } else if param_index == 0 { + // if removing within `<>` brackets, we also want to + // delete a leading or trailing comma as appropriate + param.span().to(params[param_index + 1].span().shrink_to_lo()) + } else { + // if removing within `<>` brackets, we also want to + // delete a leading or trailing comma as appropriate + params[param_index - 1].span().shrink_to_hi().to(param.span()) + } + }; + match use_set { + Some(LifetimeUseSet::Many) => {} + Some(LifetimeUseSet::One { use_span, use_ctxt }) => { + debug!(?param.ident, ?param.ident.span, ?use_span); + + let elidable = matches!(use_ctxt, LifetimeCtxt::Rptr); + + let deletion_span = deletion_span(); + self.r.lint_buffer.buffer_lint_with_diagnostic( + lint::builtin::SINGLE_USE_LIFETIMES, + param.id, + param.ident.span, + &format!("lifetime parameter `{}` only used once", param.ident), + lint::BuiltinLintDiagnostics::SingleUseLifetime { + param_span: param.ident.span, + use_span: Some((use_span, elidable)), + deletion_span, + }, + ); + } + None => { + debug!(?param.ident, ?param.ident.span); + + let deletion_span = deletion_span(); + self.r.lint_buffer.buffer_lint_with_diagnostic( + lint::builtin::UNUSED_LIFETIMES, + param.id, + param.ident.span, + &format!("lifetime parameter `{}` never used", param.ident), + lint::BuiltinLintDiagnostics::SingleUseLifetime { + param_span: param.ident.span, + use_span: None, + deletion_span, + }, + ); + } + } + } + } + + pub(crate) fn emit_undeclared_lifetime_error( + &self, + lifetime_ref: &ast::Lifetime, + outer_lifetime_ref: Option<Ident>, + ) { + debug_assert_ne!(lifetime_ref.ident.name, kw::UnderscoreLifetime); + let mut err = if let Some(outer) = outer_lifetime_ref { + let mut err = struct_span_err!( + self.r.session, + lifetime_ref.ident.span, + E0401, + "can't use generic parameters from outer item", + ); + err.span_label(lifetime_ref.ident.span, "use of generic parameter from outer item"); + err.span_label(outer.span, "lifetime parameter from outer item"); + err + } else { + let mut err = struct_span_err!( + self.r.session, + lifetime_ref.ident.span, + E0261, + "use of undeclared lifetime name `{}`", + lifetime_ref.ident + ); + err.span_label(lifetime_ref.ident.span, "undeclared lifetime"); + err + }; + self.suggest_introducing_lifetime( + &mut err, + Some(lifetime_ref.ident.name.as_str()), + |err, _, span, message, suggestion| { + err.span_suggestion(span, message, suggestion, Applicability::MaybeIncorrect); + true + }, + ); + err.emit(); + } + + fn suggest_introducing_lifetime( + &self, + err: &mut DiagnosticBuilder<'_, ErrorGuaranteed>, + name: Option<&str>, + suggest: impl Fn(&mut DiagnosticBuilder<'_, ErrorGuaranteed>, bool, Span, &str, String) -> bool, + ) { + let mut suggest_note = true; + for rib in self.lifetime_ribs.iter().rev() { + let mut should_continue = true; + match rib.kind { + LifetimeRibKind::Generics { binder: _, span, kind } => { + if !span.can_be_used_for_suggestions() && suggest_note && let Some(name) = name { + suggest_note = false; // Avoid displaying the same help multiple times. + err.span_label( + span, + &format!( + "lifetime `{}` is missing in item created through this procedural macro", + name, + ), + ); + continue; + } + + let higher_ranked = matches!( + kind, + LifetimeBinderKind::BareFnType + | LifetimeBinderKind::PolyTrait + | LifetimeBinderKind::WhereBound + ); + let (span, sugg) = if span.is_empty() { + let sugg = format!( + "{}<{}>{}", + if higher_ranked { "for" } else { "" }, + name.unwrap_or("'a"), + if higher_ranked { " " } else { "" }, + ); + (span, sugg) + } else { + let span = + self.r.session.source_map().span_through_char(span, '<').shrink_to_hi(); + let sugg = format!("{}, ", name.unwrap_or("'a")); + (span, sugg) + }; + if higher_ranked { + let message = format!( + "consider making the {} lifetime-generic with a new `{}` lifetime", + kind.descr(), + name.unwrap_or("'a"), + ); + should_continue = suggest(err, true, span, &message, sugg); + err.note_once( + "for more information on higher-ranked polymorphism, visit \ + https://doc.rust-lang.org/nomicon/hrtb.html", + ); + } else if let Some(name) = name { + let message = format!("consider introducing lifetime `{}` here", name); + should_continue = suggest(err, false, span, &message, sugg); + } else { + let message = format!("consider introducing a named lifetime parameter"); + should_continue = suggest(err, false, span, &message, sugg); + } + } + LifetimeRibKind::Item => break, + _ => {} + } + if !should_continue { + break; + } + } + } + + pub(crate) fn emit_non_static_lt_in_const_generic_error(&self, lifetime_ref: &ast::Lifetime) { + struct_span_err!( + self.r.session, + lifetime_ref.ident.span, + E0771, + "use of non-static lifetime `{}` in const generic", + lifetime_ref.ident + ) + .note( + "for more information, see issue #74052 \ + <https://github.com/rust-lang/rust/issues/74052>", + ) + .emit(); + } + + /// Non-static lifetimes are prohibited in anonymous constants under `min_const_generics`. + /// This function will emit an error if `generic_const_exprs` is not enabled, the body identified by + /// `body_id` is an anonymous constant and `lifetime_ref` is non-static. + pub(crate) fn maybe_emit_forbidden_non_static_lifetime_error( + &self, + lifetime_ref: &ast::Lifetime, + ) { + let feature_active = self.r.session.features_untracked().generic_const_exprs; + if !feature_active { + feature_err( + &self.r.session.parse_sess, + sym::generic_const_exprs, + lifetime_ref.ident.span, + "a non-static lifetime is not allowed in a `const`", + ) + .emit(); + } + } + + pub(crate) fn report_missing_lifetime_specifiers( + &mut self, + lifetime_refs: Vec<MissingLifetime>, + function_param_lifetimes: Option<(Vec<MissingLifetime>, Vec<ElisionFnParameter>)>, + ) -> ErrorGuaranteed { + let num_lifetimes: usize = lifetime_refs.iter().map(|lt| lt.count).sum(); + let spans: Vec<_> = lifetime_refs.iter().map(|lt| lt.span).collect(); + + let mut err = struct_span_err!( + self.r.session, + spans, + E0106, + "missing lifetime specifier{}", + pluralize!(num_lifetimes) + ); + self.add_missing_lifetime_specifiers_label( + &mut err, + lifetime_refs, + function_param_lifetimes, + ); + err.emit() + } + + pub(crate) fn add_missing_lifetime_specifiers_label( + &mut self, + err: &mut DiagnosticBuilder<'_, ErrorGuaranteed>, + lifetime_refs: Vec<MissingLifetime>, + function_param_lifetimes: Option<(Vec<MissingLifetime>, Vec<ElisionFnParameter>)>, + ) { + for < in &lifetime_refs { + err.span_label( + lt.span, + format!( + "expected {} lifetime parameter{}", + if lt.count == 1 { "named".to_string() } else { lt.count.to_string() }, + pluralize!(lt.count), + ), + ); + } + + let mut in_scope_lifetimes: Vec<_> = self + .lifetime_ribs + .iter() + .rev() + .take_while(|rib| !matches!(rib.kind, LifetimeRibKind::Item)) + .flat_map(|rib| rib.bindings.iter()) + .map(|(&ident, &res)| (ident, res)) + .filter(|(ident, _)| ident.name != kw::UnderscoreLifetime) + .collect(); + debug!(?in_scope_lifetimes); + + debug!(?function_param_lifetimes); + if let Some((param_lifetimes, params)) = &function_param_lifetimes { + let elided_len = param_lifetimes.len(); + let num_params = params.len(); + + let mut m = String::new(); + + for (i, info) in params.iter().enumerate() { + let ElisionFnParameter { ident, index, lifetime_count, span } = *info; + debug_assert_ne!(lifetime_count, 0); + + err.span_label(span, ""); + + if i != 0 { + if i + 1 < num_params { + m.push_str(", "); + } else if num_params == 2 { + m.push_str(" or "); + } else { + m.push_str(", or "); + } + } + + let help_name = if let Some(ident) = ident { + format!("`{}`", ident) + } else { + format!("argument {}", index + 1) + }; + + if lifetime_count == 1 { + m.push_str(&help_name[..]) + } else { + m.push_str(&format!("one of {}'s {} lifetimes", help_name, lifetime_count)[..]) + } + } + + if num_params == 0 { + err.help( + "this function's return type contains a borrowed value, \ + but there is no value for it to be borrowed from", + ); + if in_scope_lifetimes.is_empty() { + in_scope_lifetimes = vec![( + Ident::with_dummy_span(kw::StaticLifetime), + (DUMMY_NODE_ID, LifetimeRes::Static), + )]; + } + } else if elided_len == 0 { + err.help( + "this function's return type contains a borrowed value with \ + an elided lifetime, but the lifetime cannot be derived from \ + the arguments", + ); + if in_scope_lifetimes.is_empty() { + in_scope_lifetimes = vec![( + Ident::with_dummy_span(kw::StaticLifetime), + (DUMMY_NODE_ID, LifetimeRes::Static), + )]; + } + } else if num_params == 1 { + err.help(&format!( + "this function's return type contains a borrowed value, \ + but the signature does not say which {} it is borrowed from", + m + )); + } else { + err.help(&format!( + "this function's return type contains a borrowed value, \ + but the signature does not say whether it is borrowed from {}", + m + )); + } + } + + let existing_name = match &in_scope_lifetimes[..] { + [] => Symbol::intern("'a"), + [(existing, _)] => existing.name, + _ => Symbol::intern("'lifetime"), + }; + + let mut spans_suggs: Vec<_> = Vec::new(); + let build_sugg = |lt: MissingLifetime| match lt.kind { + MissingLifetimeKind::Underscore => { + debug_assert_eq!(lt.count, 1); + (lt.span, existing_name.to_string()) + } + MissingLifetimeKind::Ampersand => { + debug_assert_eq!(lt.count, 1); + (lt.span.shrink_to_hi(), format!("{} ", existing_name)) + } + MissingLifetimeKind::Comma => { + let sugg: String = std::iter::repeat([existing_name.as_str(), ", "]) + .take(lt.count) + .flatten() + .collect(); + (lt.span.shrink_to_hi(), sugg) + } + MissingLifetimeKind::Brackets => { + let sugg: String = std::iter::once("<") + .chain( + std::iter::repeat(existing_name.as_str()).take(lt.count).intersperse(", "), + ) + .chain([">"]) + .collect(); + (lt.span.shrink_to_hi(), sugg) + } + }; + for < in &lifetime_refs { + spans_suggs.push(build_sugg(lt)); + } + debug!(?spans_suggs); + match in_scope_lifetimes.len() { + 0 => { + if let Some((param_lifetimes, _)) = function_param_lifetimes { + for lt in param_lifetimes { + spans_suggs.push(build_sugg(lt)) + } + } + self.suggest_introducing_lifetime( + err, + None, + |err, higher_ranked, span, message, intro_sugg| { + err.multipart_suggestion_verbose( + message, + std::iter::once((span, intro_sugg)) + .chain(spans_suggs.clone()) + .collect(), + Applicability::MaybeIncorrect, + ); + higher_ranked + }, + ); + } + 1 => { + err.multipart_suggestion_verbose( + &format!("consider using the `{}` lifetime", existing_name), + spans_suggs, + Applicability::MaybeIncorrect, + ); + + // Record as using the suggested resolution. + let (_, (_, res)) = in_scope_lifetimes[0]; + for < in &lifetime_refs { + self.r.lifetimes_res_map.insert(lt.id, res); + } + } + _ => { + let lifetime_spans: Vec<_> = + in_scope_lifetimes.iter().map(|(ident, _)| ident.span).collect(); + err.span_note(lifetime_spans, "these named lifetimes are available to use"); + + if spans_suggs.len() > 0 { + // This happens when we have `Foo<T>` where we point at the space before `T`, + // but this can be confusing so we give a suggestion with placeholders. + err.multipart_suggestion_verbose( + "consider using one of the available lifetimes here", + spans_suggs, + Applicability::HasPlaceholders, + ); + } + } + } + } +} + +/// Report lifetime/lifetime shadowing as an error. +pub fn signal_lifetime_shadowing(sess: &Session, orig: Ident, shadower: Ident) { + let mut err = struct_span_err!( + sess, + shadower.span, + E0496, + "lifetime name `{}` shadows a lifetime name that is already in scope", + orig.name, + ); + err.span_label(orig.span, "first declared here"); + err.span_label(shadower.span, format!("lifetime `{}` already in scope", orig.name)); + err.emit(); +} + +/// Shadowing involving a label is only a warning for historical reasons. +//FIXME: make this a proper lint. +pub fn signal_label_shadowing(sess: &Session, orig: Span, shadower: Ident) { + let name = shadower.name; + let shadower = shadower.span; + let mut err = sess.struct_span_warn( + shadower, + &format!("label name `{}` shadows a label name that is already in scope", name), + ); + err.span_label(orig, "first declared here"); + err.span_label(shadower, format!("label `{}` already in scope", name)); + err.emit(); +} diff --git a/compiler/rustc_resolve/src/late/lifetimes.rs b/compiler/rustc_resolve/src/late/lifetimes.rs new file mode 100644 index 000000000..94460e33d --- /dev/null +++ b/compiler/rustc_resolve/src/late/lifetimes.rs @@ -0,0 +1,2144 @@ +//! Resolution of early vs late bound lifetimes. +//! +//! Name resolution for lifetimes is performed on the AST and embedded into HIR. From this +//! information, typechecking needs to transform the lifetime parameters into bound lifetimes. +//! Lifetimes can be early-bound or late-bound. Construction of typechecking terms needs to visit +//! the types in HIR to identify late-bound lifetimes and assign their Debruijn indices. This file +//! is also responsible for assigning their semantics to implicit lifetimes in trait objects. + +use rustc_ast::walk_list; +use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet}; +use rustc_errors::struct_span_err; +use rustc_hir as hir; +use rustc_hir::def::{DefKind, Res}; +use rustc_hir::def_id::{DefIdMap, LocalDefId}; +use rustc_hir::intravisit::{self, Visitor}; +use rustc_hir::{GenericArg, GenericParam, GenericParamKind, HirIdMap, LifetimeName, Node}; +use rustc_middle::bug; +use rustc_middle::hir::map::Map; +use rustc_middle::hir::nested_filter; +use rustc_middle::middle::resolve_lifetime::*; +use rustc_middle::ty::{self, GenericParamDefKind, TyCtxt}; +use rustc_span::def_id::DefId; +use rustc_span::symbol::{sym, Ident}; +use rustc_span::Span; +use std::borrow::Cow; +use std::fmt; +use std::mem::take; + +trait RegionExt { + fn early(hir_map: Map<'_>, index: &mut u32, param: &GenericParam<'_>) -> (LocalDefId, Region); + + fn late(index: u32, hir_map: Map<'_>, param: &GenericParam<'_>) -> (LocalDefId, Region); + + fn id(&self) -> Option<DefId>; + + fn shifted(self, amount: u32) -> Region; + + fn shifted_out_to_binder(self, binder: ty::DebruijnIndex) -> Region; + + fn subst<'a, L>(self, params: L, map: &NamedRegionMap) -> Option<Region> + where + L: Iterator<Item = &'a hir::Lifetime>; +} + +impl RegionExt for Region { + fn early(hir_map: Map<'_>, index: &mut u32, param: &GenericParam<'_>) -> (LocalDefId, Region) { + let i = *index; + *index += 1; + let def_id = hir_map.local_def_id(param.hir_id); + debug!("Region::early: index={} def_id={:?}", i, def_id); + (def_id, Region::EarlyBound(i, def_id.to_def_id())) + } + + fn late(idx: u32, hir_map: Map<'_>, param: &GenericParam<'_>) -> (LocalDefId, Region) { + let depth = ty::INNERMOST; + let def_id = hir_map.local_def_id(param.hir_id); + debug!( + "Region::late: idx={:?}, param={:?} depth={:?} def_id={:?}", + idx, param, depth, def_id, + ); + (def_id, Region::LateBound(depth, idx, def_id.to_def_id())) + } + + fn id(&self) -> Option<DefId> { + match *self { + Region::Static => None, + + Region::EarlyBound(_, id) | Region::LateBound(_, _, id) | Region::Free(_, id) => { + Some(id) + } + } + } + + fn shifted(self, amount: u32) -> Region { + match self { + Region::LateBound(debruijn, idx, id) => { + Region::LateBound(debruijn.shifted_in(amount), idx, id) + } + _ => self, + } + } + + fn shifted_out_to_binder(self, binder: ty::DebruijnIndex) -> Region { + match self { + Region::LateBound(debruijn, index, id) => { + Region::LateBound(debruijn.shifted_out_to_binder(binder), index, id) + } + _ => self, + } + } + + fn subst<'a, L>(self, mut params: L, map: &NamedRegionMap) -> Option<Region> + where + L: Iterator<Item = &'a hir::Lifetime>, + { + if let Region::EarlyBound(index, _) = self { + params.nth(index as usize).and_then(|lifetime| map.defs.get(&lifetime.hir_id).cloned()) + } else { + Some(self) + } + } +} + +/// Maps the id of each lifetime reference to the lifetime decl +/// that it corresponds to. +/// +/// FIXME. This struct gets converted to a `ResolveLifetimes` for +/// actual use. It has the same data, but indexed by `LocalDefId`. This +/// is silly. +#[derive(Debug, Default)] +struct NamedRegionMap { + // maps from every use of a named (not anonymous) lifetime to a + // `Region` describing how that region is bound + defs: HirIdMap<Region>, + + // Maps relevant hir items to the bound vars on them. These include: + // - function defs + // - function pointers + // - closures + // - trait refs + // - bound types (like `T` in `for<'a> T<'a>: Foo`) + late_bound_vars: HirIdMap<Vec<ty::BoundVariableKind>>, +} + +pub(crate) struct LifetimeContext<'a, 'tcx> { + pub(crate) tcx: TyCtxt<'tcx>, + map: &'a mut NamedRegionMap, + scope: ScopeRef<'a>, + + /// Indicates that we only care about the definition of a trait. This should + /// be false if the `Item` we are resolving lifetimes for is not a trait or + /// we eventually need lifetimes resolve for trait items. + trait_definition_only: bool, + + /// Cache for cross-crate per-definition object lifetime defaults. + xcrate_object_lifetime_defaults: DefIdMap<Vec<ObjectLifetimeDefault>>, +} + +#[derive(Debug)] +enum Scope<'a> { + /// Declares lifetimes, and each can be early-bound or late-bound. + /// The `DebruijnIndex` of late-bound lifetimes starts at `1` and + /// it should be shifted by the number of `Binder`s in between the + /// declaration `Binder` and the location it's referenced from. + Binder { + /// We use an IndexMap here because we want these lifetimes in order + /// for diagnostics. + lifetimes: FxIndexMap<LocalDefId, Region>, + + /// if we extend this scope with another scope, what is the next index + /// we should use for an early-bound region? + next_early_index: u32, + + /// Whether or not this binder would serve as the parent + /// binder for opaque types introduced within. For example: + /// + /// ```text + /// fn foo<'a>() -> impl for<'b> Trait<Item = impl Trait2<'a>> + /// ``` + /// + /// Here, the opaque types we create for the `impl Trait` + /// and `impl Trait2` references will both have the `foo` item + /// as their parent. When we get to `impl Trait2`, we find + /// that it is nested within the `for<>` binder -- this flag + /// allows us to skip that when looking for the parent binder + /// of the resulting opaque type. + opaque_type_parent: bool, + + scope_type: BinderScopeType, + + /// The late bound vars for a given item are stored by `HirId` to be + /// queried later. However, if we enter an elision scope, we have to + /// later append the elided bound vars to the list and need to know what + /// to append to. + hir_id: hir::HirId, + + s: ScopeRef<'a>, + + /// If this binder comes from a where clause, specify how it was created. + /// This is used to diagnose inaccessible lifetimes in APIT: + /// ```ignore (illustrative) + /// fn foo(x: impl for<'a> Trait<'a, Assoc = impl Copy + 'a>) {} + /// ``` + where_bound_origin: Option<hir::PredicateOrigin>, + }, + + /// Lifetimes introduced by a fn are scoped to the call-site for that fn, + /// if this is a fn body, otherwise the original definitions are used. + /// Unspecified lifetimes are inferred, unless an elision scope is nested, + /// e.g., `(&T, fn(&T) -> &T);` becomes `(&'_ T, for<'a> fn(&'a T) -> &'a T)`. + Body { + id: hir::BodyId, + s: ScopeRef<'a>, + }, + + /// A scope which either determines unspecified lifetimes or errors + /// on them (e.g., due to ambiguity). + Elision { + s: ScopeRef<'a>, + }, + + /// Use a specific lifetime (if `Some`) or leave it unset (to be + /// inferred in a function body or potentially error outside one), + /// for the default choice of lifetime in a trait object type. + ObjectLifetimeDefault { + lifetime: Option<Region>, + s: ScopeRef<'a>, + }, + + /// When we have nested trait refs, we concatenate late bound vars for inner + /// trait refs from outer ones. But we also need to include any HRTB + /// lifetimes encountered when identifying the trait that an associated type + /// is declared on. + Supertrait { + lifetimes: Vec<ty::BoundVariableKind>, + s: ScopeRef<'a>, + }, + + TraitRefBoundary { + s: ScopeRef<'a>, + }, + + Root, +} + +#[derive(Copy, Clone, Debug)] +enum BinderScopeType { + /// Any non-concatenating binder scopes. + Normal, + /// Within a syntactic trait ref, there may be multiple poly trait refs that + /// are nested (under the `associated_type_bounds` feature). The binders of + /// the inner poly trait refs are extended from the outer poly trait refs + /// and don't increase the late bound depth. If you had + /// `T: for<'a> Foo<Bar: for<'b> Baz<'a, 'b>>`, then the `for<'b>` scope + /// would be `Concatenating`. This also used in trait refs in where clauses + /// where we have two binders `for<> T: for<> Foo` (I've intentionally left + /// out any lifetimes because they aren't needed to show the two scopes). + /// The inner `for<>` has a scope of `Concatenating`. + Concatenating, +} + +// A helper struct for debugging scopes without printing parent scopes +struct TruncatedScopeDebug<'a>(&'a Scope<'a>); + +impl<'a> fmt::Debug for TruncatedScopeDebug<'a> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + match self.0 { + Scope::Binder { + lifetimes, + next_early_index, + opaque_type_parent, + scope_type, + hir_id, + where_bound_origin, + s: _, + } => f + .debug_struct("Binder") + .field("lifetimes", lifetimes) + .field("next_early_index", next_early_index) + .field("opaque_type_parent", opaque_type_parent) + .field("scope_type", scope_type) + .field("hir_id", hir_id) + .field("where_bound_origin", where_bound_origin) + .field("s", &"..") + .finish(), + Scope::Body { id, s: _ } => { + f.debug_struct("Body").field("id", id).field("s", &"..").finish() + } + Scope::Elision { s: _ } => f.debug_struct("Elision").field("s", &"..").finish(), + Scope::ObjectLifetimeDefault { lifetime, s: _ } => f + .debug_struct("ObjectLifetimeDefault") + .field("lifetime", lifetime) + .field("s", &"..") + .finish(), + Scope::Supertrait { lifetimes, s: _ } => f + .debug_struct("Supertrait") + .field("lifetimes", lifetimes) + .field("s", &"..") + .finish(), + Scope::TraitRefBoundary { s: _ } => f.debug_struct("TraitRefBoundary").finish(), + Scope::Root => f.debug_struct("Root").finish(), + } + } +} + +type ScopeRef<'a> = &'a Scope<'a>; + +const ROOT_SCOPE: ScopeRef<'static> = &Scope::Root; + +pub fn provide(providers: &mut ty::query::Providers) { + *providers = ty::query::Providers { + resolve_lifetimes_trait_definition, + resolve_lifetimes, + + named_region_map: |tcx, id| resolve_lifetimes_for(tcx, id).defs.get(&id), + is_late_bound_map, + object_lifetime_defaults: |tcx, id| match tcx.hir().find_by_def_id(id) { + Some(Node::Item(item)) => compute_object_lifetime_defaults(tcx, item), + _ => None, + }, + late_bound_vars_map: |tcx, id| resolve_lifetimes_for(tcx, id).late_bound_vars.get(&id), + + ..*providers + }; +} + +/// Like `resolve_lifetimes`, but does not resolve lifetimes for trait items. +/// Also does not generate any diagnostics. +/// +/// This is ultimately a subset of the `resolve_lifetimes` work. It effectively +/// resolves lifetimes only within the trait "header" -- that is, the trait +/// and supertrait list. In contrast, `resolve_lifetimes` resolves all the +/// lifetimes within the trait and its items. There is room to refactor this, +/// for example to resolve lifetimes for each trait item in separate queries, +/// but it's convenient to do the entire trait at once because the lifetimes +/// from the trait definition are in scope within the trait items as well. +/// +/// The reason for this separate call is to resolve what would otherwise +/// be a cycle. Consider this example: +/// +/// ```ignore UNSOLVED (maybe @jackh726 knows what lifetime parameter to give Sub) +/// trait Base<'a> { +/// type BaseItem; +/// } +/// trait Sub<'b>: for<'a> Base<'a> { +/// type SubItem: Sub<BaseItem = &'b u32>; +/// } +/// ``` +/// +/// When we resolve `Sub` and all its items, we also have to resolve `Sub<BaseItem = &'b u32>`. +/// To figure out the index of `'b`, we have to know about the supertraits +/// of `Sub` so that we can determine that the `for<'a>` will be in scope. +/// (This is because we -- currently at least -- flatten all the late-bound +/// lifetimes into a single binder.) This requires us to resolve the +/// *trait definition* of `Sub`; basically just enough lifetime information +/// to look at the supertraits. +#[tracing::instrument(level = "debug", skip(tcx))] +fn resolve_lifetimes_trait_definition( + tcx: TyCtxt<'_>, + local_def_id: LocalDefId, +) -> ResolveLifetimes { + convert_named_region_map(do_resolve(tcx, local_def_id, true)) +} + +/// Computes the `ResolveLifetimes` map that contains data for an entire `Item`. +/// You should not read the result of this query directly, but rather use +/// `named_region_map`, `is_late_bound_map`, etc. +#[tracing::instrument(level = "debug", skip(tcx))] +fn resolve_lifetimes(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> ResolveLifetimes { + convert_named_region_map(do_resolve(tcx, local_def_id, false)) +} + +fn do_resolve( + tcx: TyCtxt<'_>, + local_def_id: LocalDefId, + trait_definition_only: bool, +) -> NamedRegionMap { + let item = tcx.hir().expect_item(local_def_id); + let mut named_region_map = + NamedRegionMap { defs: Default::default(), late_bound_vars: Default::default() }; + let mut visitor = LifetimeContext { + tcx, + map: &mut named_region_map, + scope: ROOT_SCOPE, + trait_definition_only, + xcrate_object_lifetime_defaults: Default::default(), + }; + visitor.visit_item(item); + + named_region_map +} + +fn convert_named_region_map(named_region_map: NamedRegionMap) -> ResolveLifetimes { + let mut rl = ResolveLifetimes::default(); + + for (hir_id, v) in named_region_map.defs { + let map = rl.defs.entry(hir_id.owner).or_default(); + map.insert(hir_id.local_id, v); + } + for (hir_id, v) in named_region_map.late_bound_vars { + let map = rl.late_bound_vars.entry(hir_id.owner).or_default(); + map.insert(hir_id.local_id, v); + } + + debug!(?rl.defs); + rl +} + +/// Given `any` owner (structs, traits, trait methods, etc.), does lifetime resolution. +/// There are two important things this does. +/// First, we have to resolve lifetimes for +/// the entire *`Item`* that contains this owner, because that's the largest "scope" +/// where we can have relevant lifetimes. +/// Second, if we are asking for lifetimes in a trait *definition*, we use `resolve_lifetimes_trait_definition` +/// instead of `resolve_lifetimes`, which does not descend into the trait items and does not emit diagnostics. +/// This allows us to avoid cycles. Importantly, if we ask for lifetimes for lifetimes that have an owner +/// other than the trait itself (like the trait methods or associated types), then we just use the regular +/// `resolve_lifetimes`. +fn resolve_lifetimes_for<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &'tcx ResolveLifetimes { + let item_id = item_for(tcx, def_id); + if item_id == def_id { + let item = tcx.hir().item(hir::ItemId { def_id: item_id }); + match item.kind { + hir::ItemKind::Trait(..) => tcx.resolve_lifetimes_trait_definition(item_id), + _ => tcx.resolve_lifetimes(item_id), + } + } else { + tcx.resolve_lifetimes(item_id) + } +} + +/// Finds the `Item` that contains the given `LocalDefId` +fn item_for(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> LocalDefId { + match tcx.hir().find_by_def_id(local_def_id) { + Some(Node::Item(item)) => { + return item.def_id; + } + _ => {} + } + let item = { + let hir_id = tcx.hir().local_def_id_to_hir_id(local_def_id); + let mut parent_iter = tcx.hir().parent_iter(hir_id); + loop { + let node = parent_iter.next().map(|n| n.1); + match node { + Some(hir::Node::Item(item)) => break item.def_id, + Some(hir::Node::Crate(_)) | None => bug!("Called `item_for` on an Item."), + _ => {} + } + } + }; + item +} + +/// In traits, there is an implicit `Self` type parameter which comes before the generics. +/// We have to account for this when computing the index of the other generic parameters. +/// This function returns whether there is such an implicit parameter defined on the given item. +fn sub_items_have_self_param(node: &hir::ItemKind<'_>) -> bool { + matches!(*node, hir::ItemKind::Trait(..) | hir::ItemKind::TraitAlias(..)) +} + +fn late_region_as_bound_region<'tcx>(tcx: TyCtxt<'tcx>, region: &Region) -> ty::BoundVariableKind { + match region { + Region::LateBound(_, _, def_id) => { + let name = tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id.expect_local())); + ty::BoundVariableKind::Region(ty::BrNamed(*def_id, name)) + } + _ => bug!("{:?} is not a late region", region), + } +} + +impl<'a, 'tcx> LifetimeContext<'a, 'tcx> { + /// Returns the binders in scope and the type of `Binder` that should be created for a poly trait ref. + fn poly_trait_ref_binder_info(&mut self) -> (Vec<ty::BoundVariableKind>, BinderScopeType) { + let mut scope = self.scope; + let mut supertrait_lifetimes = vec![]; + loop { + match scope { + Scope::Body { .. } | Scope::Root => { + break (vec![], BinderScopeType::Normal); + } + + Scope::Elision { s, .. } | Scope::ObjectLifetimeDefault { s, .. } => { + scope = s; + } + + Scope::Supertrait { s, lifetimes } => { + supertrait_lifetimes = lifetimes.clone(); + scope = s; + } + + Scope::TraitRefBoundary { .. } => { + // We should only see super trait lifetimes if there is a `Binder` above + assert!(supertrait_lifetimes.is_empty()); + break (vec![], BinderScopeType::Normal); + } + + Scope::Binder { hir_id, .. } => { + // Nested poly trait refs have the binders concatenated + let mut full_binders = + self.map.late_bound_vars.entry(*hir_id).or_default().clone(); + full_binders.extend(supertrait_lifetimes.into_iter()); + break (full_binders, BinderScopeType::Concatenating); + } + } + } + } +} +impl<'a, 'tcx> Visitor<'tcx> for LifetimeContext<'a, 'tcx> { + type NestedFilter = nested_filter::All; + + fn nested_visit_map(&mut self) -> Self::Map { + self.tcx.hir() + } + + // We want to nest trait/impl items in their parent, but nothing else. + fn visit_nested_item(&mut self, _: hir::ItemId) {} + + fn visit_trait_item_ref(&mut self, ii: &'tcx hir::TraitItemRef) { + if !self.trait_definition_only { + intravisit::walk_trait_item_ref(self, ii) + } + } + + fn visit_nested_body(&mut self, body: hir::BodyId) { + let body = self.tcx.hir().body(body); + self.with(Scope::Body { id: body.id(), s: self.scope }, |this| { + this.visit_body(body); + }); + } + + fn visit_expr(&mut self, e: &'tcx hir::Expr<'tcx>) { + if let hir::ExprKind::Closure(hir::Closure { + binder, bound_generic_params, fn_decl, .. + }) = e.kind + { + if let &hir::ClosureBinder::For { span: for_sp, .. } = binder { + fn span_of_infer(ty: &hir::Ty<'_>) -> Option<Span> { + struct V(Option<Span>); + + impl<'v> Visitor<'v> for V { + fn visit_ty(&mut self, t: &'v hir::Ty<'v>) { + match t.kind { + _ if self.0.is_some() => (), + hir::TyKind::Infer => { + self.0 = Some(t.span); + } + _ => intravisit::walk_ty(self, t), + } + } + } + + let mut v = V(None); + v.visit_ty(ty); + v.0 + } + + let infer_in_rt_sp = match fn_decl.output { + hir::FnRetTy::DefaultReturn(sp) => Some(sp), + hir::FnRetTy::Return(ty) => span_of_infer(ty), + }; + + let infer_spans = fn_decl + .inputs + .into_iter() + .filter_map(span_of_infer) + .chain(infer_in_rt_sp) + .collect::<Vec<_>>(); + + if !infer_spans.is_empty() { + self.tcx.sess + .struct_span_err( + infer_spans, + "implicit types in closure signatures are forbidden when `for<...>` is present", + ) + .span_label(for_sp, "`for<...>` is here") + .emit(); + } + } + + let next_early_index = self.next_early_index(); + let (lifetimes, binders): (FxIndexMap<LocalDefId, Region>, Vec<_>) = + bound_generic_params + .iter() + .filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. })) + .enumerate() + .map(|(late_bound_idx, param)| { + let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param); + let r = late_region_as_bound_region(self.tcx, &pair.1); + (pair, r) + }) + .unzip(); + + self.map.late_bound_vars.insert(e.hir_id, binders); + let scope = Scope::Binder { + hir_id: e.hir_id, + lifetimes, + s: self.scope, + next_early_index, + opaque_type_parent: false, + scope_type: BinderScopeType::Normal, + where_bound_origin: None, + }; + + self.with(scope, |this| { + // a closure has no bounds, so everything + // contained within is scoped within its binder. + intravisit::walk_expr(this, e) + }); + } else { + intravisit::walk_expr(self, e) + } + } + + fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { + match &item.kind { + hir::ItemKind::Impl(hir::Impl { of_trait, .. }) => { + if let Some(of_trait) = of_trait { + self.map.late_bound_vars.insert(of_trait.hir_ref_id, Vec::default()); + } + } + _ => {} + } + match item.kind { + hir::ItemKind::Fn(_, ref generics, _) => { + self.visit_early_late(None, item.hir_id(), generics, |this| { + intravisit::walk_item(this, item); + }); + } + + hir::ItemKind::ExternCrate(_) + | hir::ItemKind::Use(..) + | hir::ItemKind::Macro(..) + | hir::ItemKind::Mod(..) + | hir::ItemKind::ForeignMod { .. } + | hir::ItemKind::GlobalAsm(..) => { + // These sorts of items have no lifetime parameters at all. + intravisit::walk_item(self, item); + } + hir::ItemKind::Static(..) | hir::ItemKind::Const(..) => { + // No lifetime parameters, but implied 'static. + self.with(Scope::Elision { s: self.scope }, |this| { + intravisit::walk_item(this, item) + }); + } + hir::ItemKind::OpaqueTy(hir::OpaqueTy { .. }) => { + // Opaque types are visited when we visit the + // `TyKind::OpaqueDef`, so that they have the lifetimes from + // their parent opaque_ty in scope. + // + // The core idea here is that since OpaqueTys are generated with the impl Trait as + // their owner, we can keep going until we find the Item that owns that. We then + // conservatively add all resolved lifetimes. Otherwise we run into problems in + // cases like `type Foo<'a> = impl Bar<As = impl Baz + 'a>`. + for (_hir_id, node) in + self.tcx.hir().parent_iter(self.tcx.hir().local_def_id_to_hir_id(item.def_id)) + { + match node { + hir::Node::Item(parent_item) => { + let resolved_lifetimes: &ResolveLifetimes = + self.tcx.resolve_lifetimes(item_for(self.tcx, parent_item.def_id)); + // We need to add *all* deps, since opaque tys may want them from *us* + for (&owner, defs) in resolved_lifetimes.defs.iter() { + defs.iter().for_each(|(&local_id, region)| { + self.map.defs.insert(hir::HirId { owner, local_id }, *region); + }); + } + for (&owner, late_bound_vars) in + resolved_lifetimes.late_bound_vars.iter() + { + late_bound_vars.iter().for_each(|(&local_id, late_bound_vars)| { + self.map.late_bound_vars.insert( + hir::HirId { owner, local_id }, + late_bound_vars.clone(), + ); + }); + } + break; + } + hir::Node::Crate(_) => bug!("No Item about an OpaqueTy"), + _ => {} + } + } + } + hir::ItemKind::TyAlias(_, ref generics) + | hir::ItemKind::Enum(_, ref generics) + | hir::ItemKind::Struct(_, ref generics) + | hir::ItemKind::Union(_, ref generics) + | hir::ItemKind::Trait(_, _, ref generics, ..) + | hir::ItemKind::TraitAlias(ref generics, ..) + | hir::ItemKind::Impl(hir::Impl { ref generics, .. }) => { + // These kinds of items have only early-bound lifetime parameters. + let mut index = if sub_items_have_self_param(&item.kind) { + 1 // Self comes before lifetimes + } else { + 0 + }; + let mut non_lifetime_count = 0; + let lifetimes = generics + .params + .iter() + .filter_map(|param| match param.kind { + GenericParamKind::Lifetime { .. } => { + Some(Region::early(self.tcx.hir(), &mut index, param)) + } + GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => { + non_lifetime_count += 1; + None + } + }) + .collect(); + self.map.late_bound_vars.insert(item.hir_id(), vec![]); + let scope = Scope::Binder { + hir_id: item.hir_id(), + lifetimes, + next_early_index: index + non_lifetime_count, + opaque_type_parent: true, + scope_type: BinderScopeType::Normal, + s: ROOT_SCOPE, + where_bound_origin: None, + }; + self.with(scope, |this| { + let scope = Scope::TraitRefBoundary { s: this.scope }; + this.with(scope, |this| { + intravisit::walk_item(this, item); + }); + }); + } + } + } + + fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) { + match item.kind { + hir::ForeignItemKind::Fn(_, _, ref generics) => { + self.visit_early_late(None, item.hir_id(), generics, |this| { + intravisit::walk_foreign_item(this, item); + }) + } + hir::ForeignItemKind::Static(..) => { + intravisit::walk_foreign_item(self, item); + } + hir::ForeignItemKind::Type => { + intravisit::walk_foreign_item(self, item); + } + } + } + + #[tracing::instrument(level = "debug", skip(self))] + fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) { + match ty.kind { + hir::TyKind::BareFn(ref c) => { + let next_early_index = self.next_early_index(); + let (lifetimes, binders): (FxIndexMap<LocalDefId, Region>, Vec<_>) = c + .generic_params + .iter() + .filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. })) + .enumerate() + .map(|(late_bound_idx, param)| { + let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param); + let r = late_region_as_bound_region(self.tcx, &pair.1); + (pair, r) + }) + .unzip(); + self.map.late_bound_vars.insert(ty.hir_id, binders); + let scope = Scope::Binder { + hir_id: ty.hir_id, + lifetimes, + s: self.scope, + next_early_index, + opaque_type_parent: false, + scope_type: BinderScopeType::Normal, + where_bound_origin: None, + }; + self.with(scope, |this| { + // a bare fn has no bounds, so everything + // contained within is scoped within its binder. + intravisit::walk_ty(this, ty); + }); + } + hir::TyKind::TraitObject(bounds, ref lifetime, _) => { + debug!(?bounds, ?lifetime, "TraitObject"); + let scope = Scope::TraitRefBoundary { s: self.scope }; + self.with(scope, |this| { + for bound in bounds { + this.visit_poly_trait_ref(bound, hir::TraitBoundModifier::None); + } + }); + match lifetime.name { + LifetimeName::ImplicitObjectLifetimeDefault => { + // If the user does not write *anything*, we + // use the object lifetime defaulting + // rules. So e.g., `Box<dyn Debug>` becomes + // `Box<dyn Debug + 'static>`. + self.resolve_object_lifetime_default(lifetime) + } + LifetimeName::Infer => { + // If the user writes `'_`, we use the *ordinary* elision + // rules. So the `'_` in e.g., `Box<dyn Debug + '_>` will be + // resolved the same as the `'_` in `&'_ Foo`. + // + // cc #48468 + } + LifetimeName::Param(..) | LifetimeName::Static => { + // If the user wrote an explicit name, use that. + self.visit_lifetime(lifetime); + } + LifetimeName::Error => {} + } + } + hir::TyKind::Rptr(ref lifetime_ref, ref mt) => { + self.visit_lifetime(lifetime_ref); + let scope = Scope::ObjectLifetimeDefault { + lifetime: self.map.defs.get(&lifetime_ref.hir_id).cloned(), + s: self.scope, + }; + self.with(scope, |this| this.visit_ty(&mt.ty)); + } + hir::TyKind::OpaqueDef(item_id, lifetimes) => { + // Resolve the lifetimes in the bounds to the lifetime defs in the generics. + // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to + // `type MyAnonTy<'b> = impl MyTrait<'b>;` + // ^ ^ this gets resolved in the scope of + // the opaque_ty generics + let opaque_ty = self.tcx.hir().item(item_id); + let (generics, bounds) = match opaque_ty.kind { + hir::ItemKind::OpaqueTy(hir::OpaqueTy { + origin: hir::OpaqueTyOrigin::TyAlias, + .. + }) => { + intravisit::walk_ty(self, ty); + + // Elided lifetimes are not allowed in non-return + // position impl Trait + let scope = Scope::TraitRefBoundary { s: self.scope }; + self.with(scope, |this| { + let scope = Scope::Elision { s: this.scope }; + this.with(scope, |this| { + intravisit::walk_item(this, opaque_ty); + }) + }); + + return; + } + hir::ItemKind::OpaqueTy(hir::OpaqueTy { + origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..), + ref generics, + bounds, + .. + }) => (generics, bounds), + ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i), + }; + + // Resolve the lifetimes that are applied to the opaque type. + // These are resolved in the current scope. + // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to + // `fn foo<'a>() -> MyAnonTy<'a> { ... }` + // ^ ^this gets resolved in the current scope + for lifetime in lifetimes { + let hir::GenericArg::Lifetime(lifetime) = lifetime else { + continue + }; + self.visit_lifetime(lifetime); + + // Check for predicates like `impl for<'a> Trait<impl OtherTrait<'a>>` + // and ban them. Type variables instantiated inside binders aren't + // well-supported at the moment, so this doesn't work. + // In the future, this should be fixed and this error should be removed. + let def = self.map.defs.get(&lifetime.hir_id).cloned(); + let Some(Region::LateBound(_, _, def_id)) = def else { + continue + }; + let Some(def_id) = def_id.as_local() else { + continue + }; + let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id); + // Ensure that the parent of the def is an item, not HRTB + let parent_id = self.tcx.hir().get_parent_node(hir_id); + if !parent_id.is_owner() { + if !self.trait_definition_only { + struct_span_err!( + self.tcx.sess, + lifetime.span, + E0657, + "`impl Trait` can only capture lifetimes \ + bound at the fn or impl level" + ) + .emit(); + } + self.uninsert_lifetime_on_error(lifetime, def.unwrap()); + } + if let hir::Node::Item(hir::Item { + kind: hir::ItemKind::OpaqueTy { .. }, .. + }) = self.tcx.hir().get(parent_id) + { + if !self.trait_definition_only { + let mut err = self.tcx.sess.struct_span_err( + lifetime.span, + "higher kinded lifetime bounds on nested opaque types are not supported yet", + ); + err.span_note(self.tcx.def_span(def_id), "lifetime declared here"); + err.emit(); + } + self.uninsert_lifetime_on_error(lifetime, def.unwrap()); + } + } + + // We want to start our early-bound indices at the end of the parent scope, + // not including any parent `impl Trait`s. + let mut index = self.next_early_index_for_opaque_type(); + debug!(?index); + + let mut lifetimes = FxIndexMap::default(); + let mut non_lifetime_count = 0; + debug!(?generics.params); + for param in generics.params { + match param.kind { + GenericParamKind::Lifetime { .. } => { + let (def_id, reg) = Region::early(self.tcx.hir(), &mut index, ¶m); + lifetimes.insert(def_id, reg); + } + GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => { + non_lifetime_count += 1; + } + } + } + let next_early_index = index + non_lifetime_count; + self.map.late_bound_vars.insert(ty.hir_id, vec![]); + + let scope = Scope::Binder { + hir_id: ty.hir_id, + lifetimes, + next_early_index, + s: self.scope, + opaque_type_parent: false, + scope_type: BinderScopeType::Normal, + where_bound_origin: None, + }; + self.with(scope, |this| { + let scope = Scope::TraitRefBoundary { s: this.scope }; + this.with(scope, |this| { + this.visit_generics(generics); + for bound in bounds { + this.visit_param_bound(bound); + } + }) + }); + } + _ => intravisit::walk_ty(self, ty), + } + } + + fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) { + use self::hir::TraitItemKind::*; + match trait_item.kind { + Fn(_, _) => { + let tcx = self.tcx; + self.visit_early_late( + Some(tcx.hir().get_parent_item(trait_item.hir_id())), + trait_item.hir_id(), + &trait_item.generics, + |this| intravisit::walk_trait_item(this, trait_item), + ); + } + Type(bounds, ref ty) => { + let generics = &trait_item.generics; + let mut index = self.next_early_index(); + debug!("visit_ty: index = {}", index); + let mut non_lifetime_count = 0; + let lifetimes = generics + .params + .iter() + .filter_map(|param| match param.kind { + GenericParamKind::Lifetime { .. } => { + Some(Region::early(self.tcx.hir(), &mut index, param)) + } + GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => { + non_lifetime_count += 1; + None + } + }) + .collect(); + self.map.late_bound_vars.insert(trait_item.hir_id(), vec![]); + let scope = Scope::Binder { + hir_id: trait_item.hir_id(), + lifetimes, + next_early_index: index + non_lifetime_count, + s: self.scope, + opaque_type_parent: true, + scope_type: BinderScopeType::Normal, + where_bound_origin: None, + }; + self.with(scope, |this| { + let scope = Scope::TraitRefBoundary { s: this.scope }; + this.with(scope, |this| { + this.visit_generics(generics); + for bound in bounds { + this.visit_param_bound(bound); + } + if let Some(ty) = ty { + this.visit_ty(ty); + } + }) + }); + } + Const(_, _) => { + // Only methods and types support generics. + assert!(trait_item.generics.params.is_empty()); + intravisit::walk_trait_item(self, trait_item); + } + } + } + + fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) { + use self::hir::ImplItemKind::*; + match impl_item.kind { + Fn(..) => { + let tcx = self.tcx; + self.visit_early_late( + Some(tcx.hir().get_parent_item(impl_item.hir_id())), + impl_item.hir_id(), + &impl_item.generics, + |this| intravisit::walk_impl_item(this, impl_item), + ); + } + TyAlias(ref ty) => { + let generics = &impl_item.generics; + let mut index = self.next_early_index(); + let mut non_lifetime_count = 0; + debug!("visit_ty: index = {}", index); + let lifetimes: FxIndexMap<LocalDefId, Region> = generics + .params + .iter() + .filter_map(|param| match param.kind { + GenericParamKind::Lifetime { .. } => { + Some(Region::early(self.tcx.hir(), &mut index, param)) + } + GenericParamKind::Const { .. } | GenericParamKind::Type { .. } => { + non_lifetime_count += 1; + None + } + }) + .collect(); + self.map.late_bound_vars.insert(ty.hir_id, vec![]); + let scope = Scope::Binder { + hir_id: ty.hir_id, + lifetimes, + next_early_index: index + non_lifetime_count, + s: self.scope, + opaque_type_parent: true, + scope_type: BinderScopeType::Normal, + where_bound_origin: None, + }; + self.with(scope, |this| { + let scope = Scope::TraitRefBoundary { s: this.scope }; + this.with(scope, |this| { + this.visit_generics(generics); + this.visit_ty(ty); + }) + }); + } + Const(_, _) => { + // Only methods and types support generics. + assert!(impl_item.generics.params.is_empty()); + intravisit::walk_impl_item(self, impl_item); + } + } + } + + #[tracing::instrument(level = "debug", skip(self))] + fn visit_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime) { + match lifetime_ref.name { + hir::LifetimeName::Static => self.insert_lifetime(lifetime_ref, Region::Static), + hir::LifetimeName::Param(param_def_id, _) => { + self.resolve_lifetime_ref(param_def_id, lifetime_ref) + } + // If we've already reported an error, just ignore `lifetime_ref`. + hir::LifetimeName::Error => {} + // Those will be resolved by typechecking. + hir::LifetimeName::ImplicitObjectLifetimeDefault | hir::LifetimeName::Infer => {} + } + } + + fn visit_path(&mut self, path: &'tcx hir::Path<'tcx>, _: hir::HirId) { + for (i, segment) in path.segments.iter().enumerate() { + let depth = path.segments.len() - i - 1; + if let Some(ref args) = segment.args { + self.visit_segment_args(path.res, depth, args); + } + } + } + + fn visit_fn( + &mut self, + fk: intravisit::FnKind<'tcx>, + fd: &'tcx hir::FnDecl<'tcx>, + body_id: hir::BodyId, + _: Span, + _: hir::HirId, + ) { + let output = match fd.output { + hir::FnRetTy::DefaultReturn(_) => None, + hir::FnRetTy::Return(ref ty) => Some(&**ty), + }; + self.visit_fn_like_elision(&fd.inputs, output, matches!(fk, intravisit::FnKind::Closure)); + intravisit::walk_fn_kind(self, fk); + self.visit_nested_body(body_id) + } + + fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) { + let scope = Scope::TraitRefBoundary { s: self.scope }; + self.with(scope, |this| { + for param in generics.params { + match param.kind { + GenericParamKind::Lifetime { .. } => {} + GenericParamKind::Type { ref default, .. } => { + if let Some(ref ty) = default { + this.visit_ty(&ty); + } + } + GenericParamKind::Const { ref ty, default } => { + this.visit_ty(&ty); + if let Some(default) = default { + this.visit_body(this.tcx.hir().body(default.body)); + } + } + } + } + for predicate in generics.predicates { + match predicate { + &hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate { + ref bounded_ty, + bounds, + ref bound_generic_params, + origin, + .. + }) => { + let (lifetimes, binders): (FxIndexMap<LocalDefId, Region>, Vec<_>) = + bound_generic_params + .iter() + .filter(|param| { + matches!(param.kind, GenericParamKind::Lifetime { .. }) + }) + .enumerate() + .map(|(late_bound_idx, param)| { + let pair = + Region::late(late_bound_idx as u32, this.tcx.hir(), param); + let r = late_region_as_bound_region(this.tcx, &pair.1); + (pair, r) + }) + .unzip(); + this.map.late_bound_vars.insert(bounded_ty.hir_id, binders.clone()); + let next_early_index = this.next_early_index(); + // Even if there are no lifetimes defined here, we still wrap it in a binder + // scope. If there happens to be a nested poly trait ref (an error), that + // will be `Concatenating` anyways, so we don't have to worry about the depth + // being wrong. + let scope = Scope::Binder { + hir_id: bounded_ty.hir_id, + lifetimes, + s: this.scope, + next_early_index, + opaque_type_parent: false, + scope_type: BinderScopeType::Normal, + where_bound_origin: Some(origin), + }; + this.with(scope, |this| { + this.visit_ty(&bounded_ty); + walk_list!(this, visit_param_bound, bounds); + }) + } + &hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate { + ref lifetime, + bounds, + .. + }) => { + this.visit_lifetime(lifetime); + walk_list!(this, visit_param_bound, bounds); + + if lifetime.name != hir::LifetimeName::Static { + for bound in bounds { + let hir::GenericBound::Outlives(ref lt) = bound else { + continue; + }; + if lt.name != hir::LifetimeName::Static { + continue; + } + this.insert_lifetime(lt, Region::Static); + this.tcx + .sess + .struct_span_warn( + lifetime.span, + &format!( + "unnecessary lifetime parameter `{}`", + lifetime.name.ident(), + ), + ) + .help(&format!( + "you can use the `'static` lifetime directly, in place of `{}`", + lifetime.name.ident(), + )) + .emit(); + } + } + } + &hir::WherePredicate::EqPredicate(hir::WhereEqPredicate { + ref lhs_ty, + ref rhs_ty, + .. + }) => { + this.visit_ty(lhs_ty); + this.visit_ty(rhs_ty); + } + } + } + }) + } + + fn visit_param_bound(&mut self, bound: &'tcx hir::GenericBound<'tcx>) { + match bound { + hir::GenericBound::LangItemTrait(_, _, hir_id, _) => { + // FIXME(jackh726): This is pretty weird. `LangItemTrait` doesn't go + // through the regular poly trait ref code, so we don't get another + // chance to introduce a binder. For now, I'm keeping the existing logic + // of "if there isn't a Binder scope above us, add one", but I + // imagine there's a better way to go about this. + let (binders, scope_type) = self.poly_trait_ref_binder_info(); + + self.map.late_bound_vars.insert(*hir_id, binders); + let scope = Scope::Binder { + hir_id: *hir_id, + lifetimes: FxIndexMap::default(), + s: self.scope, + next_early_index: self.next_early_index(), + opaque_type_parent: false, + scope_type, + where_bound_origin: None, + }; + self.with(scope, |this| { + intravisit::walk_param_bound(this, bound); + }); + } + _ => intravisit::walk_param_bound(self, bound), + } + } + + fn visit_poly_trait_ref( + &mut self, + trait_ref: &'tcx hir::PolyTraitRef<'tcx>, + _modifier: hir::TraitBoundModifier, + ) { + debug!("visit_poly_trait_ref(trait_ref={:?})", trait_ref); + + let next_early_index = self.next_early_index(); + let (mut binders, scope_type) = self.poly_trait_ref_binder_info(); + + let initial_bound_vars = binders.len() as u32; + let mut lifetimes: FxIndexMap<LocalDefId, Region> = FxIndexMap::default(); + let binders_iter = trait_ref + .bound_generic_params + .iter() + .filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. })) + .enumerate() + .map(|(late_bound_idx, param)| { + let pair = + Region::late(initial_bound_vars + late_bound_idx as u32, self.tcx.hir(), param); + let r = late_region_as_bound_region(self.tcx, &pair.1); + lifetimes.insert(pair.0, pair.1); + r + }); + binders.extend(binders_iter); + + debug!(?binders); + self.map.late_bound_vars.insert(trait_ref.trait_ref.hir_ref_id, binders); + + // Always introduce a scope here, even if this is in a where clause and + // we introduced the binders around the bounded Ty. In that case, we + // just reuse the concatenation functionality also present in nested trait + // refs. + let scope = Scope::Binder { + hir_id: trait_ref.trait_ref.hir_ref_id, + lifetimes, + s: self.scope, + next_early_index, + opaque_type_parent: false, + scope_type, + where_bound_origin: None, + }; + self.with(scope, |this| { + walk_list!(this, visit_generic_param, trait_ref.bound_generic_params); + this.visit_trait_ref(&trait_ref.trait_ref); + }); + } +} + +fn compute_object_lifetime_defaults<'tcx>( + tcx: TyCtxt<'tcx>, + item: &hir::Item<'_>, +) -> Option<&'tcx [ObjectLifetimeDefault]> { + match item.kind { + hir::ItemKind::Struct(_, ref generics) + | hir::ItemKind::Union(_, ref generics) + | hir::ItemKind::Enum(_, ref generics) + | hir::ItemKind::OpaqueTy(hir::OpaqueTy { + ref generics, + origin: hir::OpaqueTyOrigin::TyAlias, + .. + }) + | hir::ItemKind::TyAlias(_, ref generics) + | hir::ItemKind::Trait(_, _, ref generics, ..) => { + let result = object_lifetime_defaults_for_item(tcx, generics); + + // Debugging aid. + let attrs = tcx.hir().attrs(item.hir_id()); + if tcx.sess.contains_name(attrs, sym::rustc_object_lifetime_default) { + let object_lifetime_default_reprs: String = result + .iter() + .map(|set| match *set { + Set1::Empty => "BaseDefault".into(), + Set1::One(Region::Static) => "'static".into(), + Set1::One(Region::EarlyBound(mut i, _)) => generics + .params + .iter() + .find_map(|param| match param.kind { + GenericParamKind::Lifetime { .. } => { + if i == 0 { + return Some(param.name.ident().to_string().into()); + } + i -= 1; + None + } + _ => None, + }) + .unwrap(), + Set1::One(_) => bug!(), + Set1::Many => "Ambiguous".into(), + }) + .collect::<Vec<Cow<'static, str>>>() + .join(","); + tcx.sess.span_err(item.span, &object_lifetime_default_reprs); + } + + Some(result) + } + _ => None, + } +} + +/// Scan the bounds and where-clauses on parameters to extract bounds +/// of the form `T:'a` so as to determine the `ObjectLifetimeDefault` +/// for each type parameter. +fn object_lifetime_defaults_for_item<'tcx>( + tcx: TyCtxt<'tcx>, + generics: &hir::Generics<'_>, +) -> &'tcx [ObjectLifetimeDefault] { + fn add_bounds(set: &mut Set1<hir::LifetimeName>, bounds: &[hir::GenericBound<'_>]) { + for bound in bounds { + if let hir::GenericBound::Outlives(ref lifetime) = *bound { + set.insert(lifetime.name.normalize_to_macros_2_0()); + } + } + } + + let process_param = |param: &hir::GenericParam<'_>| match param.kind { + GenericParamKind::Lifetime { .. } => None, + GenericParamKind::Type { .. } => { + let mut set = Set1::Empty; + + let param_def_id = tcx.hir().local_def_id(param.hir_id); + for predicate in generics.predicates { + // Look for `type: ...` where clauses. + let hir::WherePredicate::BoundPredicate(ref data) = *predicate else { continue }; + + // Ignore `for<'a> type: ...` as they can change what + // lifetimes mean (although we could "just" handle it). + if !data.bound_generic_params.is_empty() { + continue; + } + + let res = match data.bounded_ty.kind { + hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => path.res, + _ => continue, + }; + + if res == Res::Def(DefKind::TyParam, param_def_id.to_def_id()) { + add_bounds(&mut set, &data.bounds); + } + } + + Some(match set { + Set1::Empty => Set1::Empty, + Set1::One(name) => { + if name == hir::LifetimeName::Static { + Set1::One(Region::Static) + } else { + generics + .params + .iter() + .filter_map(|param| match param.kind { + GenericParamKind::Lifetime { .. } => { + let param_def_id = tcx.hir().local_def_id(param.hir_id); + Some(( + param_def_id, + hir::LifetimeName::Param(param_def_id, param.name), + )) + } + _ => None, + }) + .enumerate() + .find(|&(_, (_, lt_name))| lt_name == name) + .map_or(Set1::Many, |(i, (def_id, _))| { + Set1::One(Region::EarlyBound(i as u32, def_id.to_def_id())) + }) + } + } + Set1::Many => Set1::Many, + }) + } + GenericParamKind::Const { .. } => { + // Generic consts don't impose any constraints. + // + // We still store a dummy value here to allow generic parameters + // in an arbitrary order. + Some(Set1::Empty) + } + }; + + tcx.arena.alloc_from_iter(generics.params.iter().filter_map(process_param)) +} + +impl<'a, 'tcx> LifetimeContext<'a, 'tcx> { + fn with<F>(&mut self, wrap_scope: Scope<'_>, f: F) + where + F: for<'b> FnOnce(&mut LifetimeContext<'b, 'tcx>), + { + let LifetimeContext { tcx, map, .. } = self; + let xcrate_object_lifetime_defaults = take(&mut self.xcrate_object_lifetime_defaults); + let mut this = LifetimeContext { + tcx: *tcx, + map, + scope: &wrap_scope, + trait_definition_only: self.trait_definition_only, + xcrate_object_lifetime_defaults, + }; + let span = tracing::debug_span!("scope", scope = ?TruncatedScopeDebug(&this.scope)); + { + let _enter = span.enter(); + f(&mut this); + } + self.xcrate_object_lifetime_defaults = this.xcrate_object_lifetime_defaults; + } + + /// Visits self by adding a scope and handling recursive walk over the contents with `walk`. + /// + /// Handles visiting fns and methods. These are a bit complicated because we must distinguish + /// early- vs late-bound lifetime parameters. We do this by checking which lifetimes appear + /// within type bounds; those are early bound lifetimes, and the rest are late bound. + /// + /// For example: + /// + /// fn foo<'a,'b,'c,T:Trait<'b>>(...) + /// + /// Here `'a` and `'c` are late bound but `'b` is early bound. Note that early- and late-bound + /// lifetimes may be interspersed together. + /// + /// If early bound lifetimes are present, we separate them into their own list (and likewise + /// for late bound). They will be numbered sequentially, starting from the lowest index that is + /// already in scope (for a fn item, that will be 0, but for a method it might not be). Late + /// bound lifetimes are resolved by name and associated with a binder ID (`binder_id`), so the + /// ordering is not important there. + fn visit_early_late<F>( + &mut self, + parent_id: Option<LocalDefId>, + hir_id: hir::HirId, + generics: &'tcx hir::Generics<'tcx>, + walk: F, + ) where + F: for<'b, 'c> FnOnce(&'b mut LifetimeContext<'c, 'tcx>), + { + // Find the start of nested early scopes, e.g., in methods. + let mut next_early_index = 0; + if let Some(parent_id) = parent_id { + let parent = self.tcx.hir().expect_item(parent_id); + if sub_items_have_self_param(&parent.kind) { + next_early_index += 1; // Self comes before lifetimes + } + match parent.kind { + hir::ItemKind::Trait(_, _, ref generics, ..) + | hir::ItemKind::Impl(hir::Impl { ref generics, .. }) => { + next_early_index += generics.params.len() as u32; + } + _ => {} + } + } + + let mut non_lifetime_count = 0; + let mut named_late_bound_vars = 0; + let lifetimes: FxIndexMap<LocalDefId, Region> = generics + .params + .iter() + .filter_map(|param| match param.kind { + GenericParamKind::Lifetime { .. } => { + if self.tcx.is_late_bound(param.hir_id) { + let late_bound_idx = named_late_bound_vars; + named_late_bound_vars += 1; + Some(Region::late(late_bound_idx, self.tcx.hir(), param)) + } else { + Some(Region::early(self.tcx.hir(), &mut next_early_index, param)) + } + } + GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => { + non_lifetime_count += 1; + None + } + }) + .collect(); + let next_early_index = next_early_index + non_lifetime_count; + + let binders: Vec<_> = generics + .params + .iter() + .filter(|param| { + matches!(param.kind, GenericParamKind::Lifetime { .. }) + && self.tcx.is_late_bound(param.hir_id) + }) + .enumerate() + .map(|(late_bound_idx, param)| { + let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param); + late_region_as_bound_region(self.tcx, &pair.1) + }) + .collect(); + self.map.late_bound_vars.insert(hir_id, binders); + let scope = Scope::Binder { + hir_id, + lifetimes, + next_early_index, + s: self.scope, + opaque_type_parent: true, + scope_type: BinderScopeType::Normal, + where_bound_origin: None, + }; + self.with(scope, walk); + } + + fn next_early_index_helper(&self, only_opaque_type_parent: bool) -> u32 { + let mut scope = self.scope; + loop { + match *scope { + Scope::Root => return 0, + + Scope::Binder { next_early_index, opaque_type_parent, .. } + if (!only_opaque_type_parent || opaque_type_parent) => + { + return next_early_index; + } + + Scope::Binder { s, .. } + | Scope::Body { s, .. } + | Scope::Elision { s, .. } + | Scope::ObjectLifetimeDefault { s, .. } + | Scope::Supertrait { s, .. } + | Scope::TraitRefBoundary { s, .. } => scope = s, + } + } + } + + /// Returns the next index one would use for an early-bound-region + /// if extending the current scope. + fn next_early_index(&self) -> u32 { + self.next_early_index_helper(true) + } + + /// Returns the next index one would use for an `impl Trait` that + /// is being converted into an opaque type alias `impl Trait`. This will be the + /// next early index from the enclosing item, for the most + /// part. See the `opaque_type_parent` field for more info. + fn next_early_index_for_opaque_type(&self) -> u32 { + self.next_early_index_helper(false) + } + + #[tracing::instrument(level = "debug", skip(self))] + fn resolve_lifetime_ref( + &mut self, + region_def_id: LocalDefId, + lifetime_ref: &'tcx hir::Lifetime, + ) { + // Walk up the scope chain, tracking the number of fn scopes + // that we pass through, until we find a lifetime with the + // given name or we run out of scopes. + // search. + let mut late_depth = 0; + let mut scope = self.scope; + let mut outermost_body = None; + let result = loop { + match *scope { + Scope::Body { id, s } => { + outermost_body = Some(id); + scope = s; + } + + Scope::Root => { + break None; + } + + Scope::Binder { ref lifetimes, scope_type, s, where_bound_origin, .. } => { + if let Some(&def) = lifetimes.get(®ion_def_id) { + break Some(def.shifted(late_depth)); + } + match scope_type { + BinderScopeType::Normal => late_depth += 1, + BinderScopeType::Concatenating => {} + } + // Fresh lifetimes in APIT used to be allowed in async fns and forbidden in + // regular fns. + if let Some(hir::PredicateOrigin::ImplTrait) = where_bound_origin + && let hir::LifetimeName::Param(_, hir::ParamName::Fresh) = lifetime_ref.name + && let hir::IsAsync::NotAsync = self.tcx.asyncness(lifetime_ref.hir_id.owner) + && !self.tcx.features().anonymous_lifetime_in_impl_trait + { + rustc_session::parse::feature_err( + &self.tcx.sess.parse_sess, + sym::anonymous_lifetime_in_impl_trait, + lifetime_ref.span, + "anonymous lifetimes in `impl Trait` are unstable", + ).emit(); + return; + } + scope = s; + } + + Scope::Elision { s, .. } + | Scope::ObjectLifetimeDefault { s, .. } + | Scope::Supertrait { s, .. } + | Scope::TraitRefBoundary { s, .. } => { + scope = s; + } + } + }; + + if let Some(mut def) = result { + if let Region::EarlyBound(..) = def { + // Do not free early-bound regions, only late-bound ones. + } else if let Some(body_id) = outermost_body { + let fn_id = self.tcx.hir().body_owner(body_id); + match self.tcx.hir().get(fn_id) { + Node::Item(&hir::Item { kind: hir::ItemKind::Fn(..), .. }) + | Node::TraitItem(&hir::TraitItem { + kind: hir::TraitItemKind::Fn(..), .. + }) + | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) => { + let scope = self.tcx.hir().local_def_id(fn_id); + def = Region::Free(scope.to_def_id(), def.id().unwrap()); + } + _ => {} + } + } + + self.insert_lifetime(lifetime_ref, def); + return; + } + + // We may fail to resolve higher-ranked lifetimes that are mentionned by APIT. + // AST-based resolution does not care for impl-trait desugaring, which are the + // responibility of lowering. This may create a mismatch between the resolution + // AST found (`region_def_id`) which points to HRTB, and what HIR allows. + // ``` + // fn foo(x: impl for<'a> Trait<'a, Assoc = impl Copy + 'a>) {} + // ``` + // + // In such case, walk back the binders to diagnose it properly. + let mut scope = self.scope; + loop { + match *scope { + Scope::Binder { + where_bound_origin: Some(hir::PredicateOrigin::ImplTrait), .. + } => { + let mut err = self.tcx.sess.struct_span_err( + lifetime_ref.span, + "`impl Trait` can only mention lifetimes bound at the fn or impl level", + ); + err.span_note(self.tcx.def_span(region_def_id), "lifetime declared here"); + err.emit(); + return; + } + Scope::Root => break, + Scope::Binder { s, .. } + | Scope::Body { s, .. } + | Scope::Elision { s, .. } + | Scope::ObjectLifetimeDefault { s, .. } + | Scope::Supertrait { s, .. } + | Scope::TraitRefBoundary { s, .. } => { + scope = s; + } + } + } + + self.tcx.sess.delay_span_bug( + lifetime_ref.span, + &format!("Could not resolve {:?} in scope {:#?}", lifetime_ref, self.scope,), + ); + } + + fn visit_segment_args( + &mut self, + res: Res, + depth: usize, + generic_args: &'tcx hir::GenericArgs<'tcx>, + ) { + debug!( + "visit_segment_args(res={:?}, depth={:?}, generic_args={:?})", + res, depth, generic_args, + ); + + if generic_args.parenthesized { + self.visit_fn_like_elision( + generic_args.inputs(), + Some(generic_args.bindings[0].ty()), + false, + ); + return; + } + + for arg in generic_args.args { + if let hir::GenericArg::Lifetime(lt) = arg { + self.visit_lifetime(lt); + } + } + + // Figure out if this is a type/trait segment, + // which requires object lifetime defaults. + let parent_def_id = |this: &mut Self, def_id: DefId| { + let def_key = this.tcx.def_key(def_id); + DefId { krate: def_id.krate, index: def_key.parent.expect("missing parent") } + }; + let type_def_id = match res { + Res::Def(DefKind::AssocTy, def_id) if depth == 1 => Some(parent_def_id(self, def_id)), + Res::Def(DefKind::Variant, def_id) if depth == 0 => Some(parent_def_id(self, def_id)), + Res::Def( + DefKind::Struct + | DefKind::Union + | DefKind::Enum + | DefKind::TyAlias + | DefKind::Trait, + def_id, + ) if depth == 0 => Some(def_id), + _ => None, + }; + + debug!("visit_segment_args: type_def_id={:?}", type_def_id); + + // Compute a vector of defaults, one for each type parameter, + // per the rules given in RFCs 599 and 1156. Example: + // + // ```rust + // struct Foo<'a, T: 'a, U> { } + // ``` + // + // If you have `Foo<'x, dyn Bar, dyn Baz>`, we want to default + // `dyn Bar` to `dyn Bar + 'x` (because of the `T: 'a` bound) + // and `dyn Baz` to `dyn Baz + 'static` (because there is no + // such bound). + // + // Therefore, we would compute `object_lifetime_defaults` to a + // vector like `['x, 'static]`. Note that the vector only + // includes type parameters. + let object_lifetime_defaults = type_def_id.map_or_else(Vec::new, |def_id| { + let in_body = { + let mut scope = self.scope; + loop { + match *scope { + Scope::Root => break false, + + Scope::Body { .. } => break true, + + Scope::Binder { s, .. } + | Scope::Elision { s, .. } + | Scope::ObjectLifetimeDefault { s, .. } + | Scope::Supertrait { s, .. } + | Scope::TraitRefBoundary { s, .. } => { + scope = s; + } + } + } + }; + + let map = &self.map; + let set_to_region = |set: &ObjectLifetimeDefault| match *set { + Set1::Empty => { + if in_body { + None + } else { + Some(Region::Static) + } + } + Set1::One(r) => { + let lifetimes = generic_args.args.iter().filter_map(|arg| match arg { + GenericArg::Lifetime(lt) => Some(lt), + _ => None, + }); + r.subst(lifetimes, map) + } + Set1::Many => None, + }; + if let Some(def_id) = def_id.as_local() { + let id = self.tcx.hir().local_def_id_to_hir_id(def_id); + self.tcx + .object_lifetime_defaults(id.owner) + .unwrap() + .iter() + .map(set_to_region) + .collect() + } else { + let tcx = self.tcx; + self.xcrate_object_lifetime_defaults + .entry(def_id) + .or_insert_with(|| { + tcx.generics_of(def_id) + .params + .iter() + .filter_map(|param| match param.kind { + GenericParamDefKind::Type { object_lifetime_default, .. } => { + Some(object_lifetime_default) + } + GenericParamDefKind::Const { .. } => Some(Set1::Empty), + GenericParamDefKind::Lifetime => None, + }) + .collect() + }) + .iter() + .map(set_to_region) + .collect() + } + }); + + debug!("visit_segment_args: object_lifetime_defaults={:?}", object_lifetime_defaults); + + let mut i = 0; + for arg in generic_args.args { + match arg { + GenericArg::Lifetime(_) => {} + GenericArg::Type(ty) => { + if let Some(<) = object_lifetime_defaults.get(i) { + let scope = Scope::ObjectLifetimeDefault { lifetime: lt, s: self.scope }; + self.with(scope, |this| this.visit_ty(ty)); + } else { + self.visit_ty(ty); + } + i += 1; + } + GenericArg::Const(ct) => { + self.visit_anon_const(&ct.value); + i += 1; + } + GenericArg::Infer(inf) => { + self.visit_id(inf.hir_id); + i += 1; + } + } + } + + // Hack: when resolving the type `XX` in binding like `dyn + // Foo<'b, Item = XX>`, the current object-lifetime default + // would be to examine the trait `Foo` to check whether it has + // a lifetime bound declared on `Item`. e.g., if `Foo` is + // declared like so, then the default object lifetime bound in + // `XX` should be `'b`: + // + // ```rust + // trait Foo<'a> { + // type Item: 'a; + // } + // ``` + // + // but if we just have `type Item;`, then it would be + // `'static`. However, we don't get all of this logic correct. + // + // Instead, we do something hacky: if there are no lifetime parameters + // to the trait, then we simply use a default object lifetime + // bound of `'static`, because there is no other possibility. On the other hand, + // if there ARE lifetime parameters, then we require the user to give an + // explicit bound for now. + // + // This is intended to leave room for us to implement the + // correct behavior in the future. + let has_lifetime_parameter = + generic_args.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_))); + + // Resolve lifetimes found in the bindings, so either in the type `XX` in `Item = XX` or + // in the trait ref `YY<...>` in `Item: YY<...>`. + for binding in generic_args.bindings { + let scope = Scope::ObjectLifetimeDefault { + lifetime: if has_lifetime_parameter { None } else { Some(Region::Static) }, + s: self.scope, + }; + if let Some(type_def_id) = type_def_id { + let lifetimes = LifetimeContext::supertrait_hrtb_lifetimes( + self.tcx, + type_def_id, + binding.ident, + ); + self.with(scope, |this| { + let scope = Scope::Supertrait { + lifetimes: lifetimes.unwrap_or_default(), + s: this.scope, + }; + this.with(scope, |this| this.visit_assoc_type_binding(binding)); + }); + } else { + self.with(scope, |this| this.visit_assoc_type_binding(binding)); + } + } + } + + /// Returns all the late-bound vars that come into scope from supertrait HRTBs, based on the + /// associated type name and starting trait. + /// For example, imagine we have + /// ```ignore (illustrative) + /// trait Foo<'a, 'b> { + /// type As; + /// } + /// trait Bar<'b>: for<'a> Foo<'a, 'b> {} + /// trait Bar: for<'b> Bar<'b> {} + /// ``` + /// In this case, if we wanted to the supertrait HRTB lifetimes for `As` on + /// the starting trait `Bar`, we would return `Some(['b, 'a])`. + fn supertrait_hrtb_lifetimes( + tcx: TyCtxt<'tcx>, + def_id: DefId, + assoc_name: Ident, + ) -> Option<Vec<ty::BoundVariableKind>> { + let trait_defines_associated_type_named = |trait_def_id: DefId| { + tcx.associated_items(trait_def_id) + .find_by_name_and_kind(tcx, assoc_name, ty::AssocKind::Type, trait_def_id) + .is_some() + }; + + use smallvec::{smallvec, SmallVec}; + let mut stack: SmallVec<[(DefId, SmallVec<[ty::BoundVariableKind; 8]>); 8]> = + smallvec![(def_id, smallvec![])]; + let mut visited: FxHashSet<DefId> = FxHashSet::default(); + loop { + let Some((def_id, bound_vars)) = stack.pop() else { + break None; + }; + // See issue #83753. If someone writes an associated type on a non-trait, just treat it as + // there being no supertrait HRTBs. + match tcx.def_kind(def_id) { + DefKind::Trait | DefKind::TraitAlias | DefKind::Impl => {} + _ => break None, + } + + if trait_defines_associated_type_named(def_id) { + break Some(bound_vars.into_iter().collect()); + } + let predicates = + tcx.super_predicates_that_define_assoc_type((def_id, Some(assoc_name))); + let obligations = predicates.predicates.iter().filter_map(|&(pred, _)| { + let bound_predicate = pred.kind(); + match bound_predicate.skip_binder() { + ty::PredicateKind::Trait(data) => { + // The order here needs to match what we would get from `subst_supertrait` + let pred_bound_vars = bound_predicate.bound_vars(); + let mut all_bound_vars = bound_vars.clone(); + all_bound_vars.extend(pred_bound_vars.iter()); + let super_def_id = data.trait_ref.def_id; + Some((super_def_id, all_bound_vars)) + } + _ => None, + } + }); + + let obligations = obligations.filter(|o| visited.insert(o.0)); + stack.extend(obligations); + } + } + + #[tracing::instrument(level = "debug", skip(self))] + fn visit_fn_like_elision( + &mut self, + inputs: &'tcx [hir::Ty<'tcx>], + output: Option<&'tcx hir::Ty<'tcx>>, + in_closure: bool, + ) { + self.with(Scope::Elision { s: self.scope }, |this| { + for input in inputs { + this.visit_ty(input); + } + if !in_closure && let Some(output) = output { + this.visit_ty(output); + } + }); + if in_closure && let Some(output) = output { + self.visit_ty(output); + } + } + + fn resolve_object_lifetime_default(&mut self, lifetime_ref: &'tcx hir::Lifetime) { + debug!("resolve_object_lifetime_default(lifetime_ref={:?})", lifetime_ref); + let mut late_depth = 0; + let mut scope = self.scope; + let lifetime = loop { + match *scope { + Scope::Binder { s, scope_type, .. } => { + match scope_type { + BinderScopeType::Normal => late_depth += 1, + BinderScopeType::Concatenating => {} + } + scope = s; + } + + Scope::Root | Scope::Elision { .. } => break Region::Static, + + Scope::Body { .. } | Scope::ObjectLifetimeDefault { lifetime: None, .. } => return, + + Scope::ObjectLifetimeDefault { lifetime: Some(l), .. } => break l, + + Scope::Supertrait { s, .. } | Scope::TraitRefBoundary { s, .. } => { + scope = s; + } + } + }; + self.insert_lifetime(lifetime_ref, lifetime.shifted(late_depth)); + } + + #[tracing::instrument(level = "debug", skip(self))] + fn insert_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime, def: Region) { + debug!( + node = ?self.tcx.hir().node_to_string(lifetime_ref.hir_id), + span = ?self.tcx.sess.source_map().span_to_diagnostic_string(lifetime_ref.span) + ); + self.map.defs.insert(lifetime_ref.hir_id, def); + } + + /// Sometimes we resolve a lifetime, but later find that it is an + /// error (esp. around impl trait). In that case, we remove the + /// entry into `map.defs` so as not to confuse later code. + fn uninsert_lifetime_on_error(&mut self, lifetime_ref: &'tcx hir::Lifetime, bad_def: Region) { + let old_value = self.map.defs.remove(&lifetime_ref.hir_id); + assert_eq!(old_value, Some(bad_def)); + } +} + +/// Detects late-bound lifetimes and inserts them into +/// `late_bound`. +/// +/// A region declared on a fn is **late-bound** if: +/// - it is constrained by an argument type; +/// - it does not appear in a where-clause. +/// +/// "Constrained" basically means that it appears in any type but +/// not amongst the inputs to a projection. In other words, `<&'a +/// T as Trait<''b>>::Foo` does not constrain `'a` or `'b`. +fn is_late_bound_map(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option<&FxIndexSet<LocalDefId>> { + let hir_id = tcx.hir().local_def_id_to_hir_id(def_id); + let decl = tcx.hir().fn_decl_by_hir_id(hir_id)?; + let generics = tcx.hir().get_generics(def_id)?; + + let mut late_bound = FxIndexSet::default(); + + let mut constrained_by_input = ConstrainedCollector::default(); + for arg_ty in decl.inputs { + constrained_by_input.visit_ty(arg_ty); + } + + let mut appears_in_output = AllCollector::default(); + intravisit::walk_fn_ret_ty(&mut appears_in_output, &decl.output); + + debug!(?constrained_by_input.regions); + + // Walk the lifetimes that appear in where clauses. + // + // Subtle point: because we disallow nested bindings, we can just + // ignore binders here and scrape up all names we see. + let mut appears_in_where_clause = AllCollector::default(); + appears_in_where_clause.visit_generics(generics); + debug!(?appears_in_where_clause.regions); + + // Late bound regions are those that: + // - appear in the inputs + // - do not appear in the where-clauses + // - are not implicitly captured by `impl Trait` + for param in generics.params { + match param.kind { + hir::GenericParamKind::Lifetime { .. } => { /* fall through */ } + + // Neither types nor consts are late-bound. + hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => continue, + } + + let param_def_id = tcx.hir().local_def_id(param.hir_id); + + // appears in the where clauses? early-bound. + if appears_in_where_clause.regions.contains(¶m_def_id) { + continue; + } + + // does not appear in the inputs, but appears in the return type? early-bound. + if !constrained_by_input.regions.contains(¶m_def_id) + && appears_in_output.regions.contains(¶m_def_id) + { + continue; + } + + debug!("lifetime {:?} with id {:?} is late-bound", param.name.ident(), param.hir_id); + + let inserted = late_bound.insert(param_def_id); + assert!(inserted, "visited lifetime {:?} twice", param.hir_id); + } + + debug!(?late_bound); + return Some(tcx.arena.alloc(late_bound)); + + #[derive(Default)] + struct ConstrainedCollector { + regions: FxHashSet<LocalDefId>, + } + + impl<'v> Visitor<'v> for ConstrainedCollector { + fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) { + match ty.kind { + hir::TyKind::Path( + hir::QPath::Resolved(Some(_), _) | hir::QPath::TypeRelative(..), + ) => { + // ignore lifetimes appearing in associated type + // projections, as they are not *constrained* + // (defined above) + } + + hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => { + // consider only the lifetimes on the final + // segment; I am not sure it's even currently + // valid to have them elsewhere, but even if it + // is, those would be potentially inputs to + // projections + if let Some(last_segment) = path.segments.last() { + self.visit_path_segment(path.span, last_segment); + } + } + + _ => { + intravisit::walk_ty(self, ty); + } + } + } + + fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) { + if let hir::LifetimeName::Param(def_id, _) = lifetime_ref.name { + self.regions.insert(def_id); + } + } + } + + #[derive(Default)] + struct AllCollector { + regions: FxHashSet<LocalDefId>, + } + + impl<'v> Visitor<'v> for AllCollector { + fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) { + if let hir::LifetimeName::Param(def_id, _) = lifetime_ref.name { + self.regions.insert(def_id); + } + } + } +} |