summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/coercion.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:11:38 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:13:23 +0000
commit20431706a863f92cb37dc512fef6e48d192aaf2c (patch)
tree2867f13f5fd5437ba628c67d7f87309ccadcd286 /compiler/rustc_typeck/src/check/coercion.rs
parentReleasing progress-linux version 1.65.0+dfsg1-2~progress7.99u1. (diff)
downloadrustc-20431706a863f92cb37dc512fef6e48d192aaf2c.tar.xz
rustc-20431706a863f92cb37dc512fef6e48d192aaf2c.zip
Merging upstream version 1.66.0+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'compiler/rustc_typeck/src/check/coercion.rs')
-rw-r--r--compiler/rustc_typeck/src/check/coercion.rs1885
1 files changed, 0 insertions, 1885 deletions
diff --git a/compiler/rustc_typeck/src/check/coercion.rs b/compiler/rustc_typeck/src/check/coercion.rs
deleted file mode 100644
index def592c46..000000000
--- a/compiler/rustc_typeck/src/check/coercion.rs
+++ /dev/null
@@ -1,1885 +0,0 @@
-//! # Type Coercion
-//!
-//! Under certain circumstances we will coerce from one type to another,
-//! for example by auto-borrowing. This occurs in situations where the
-//! compiler has a firm 'expected type' that was supplied from the user,
-//! and where the actual type is similar to that expected type in purpose
-//! but not in representation (so actual subtyping is inappropriate).
-//!
-//! ## Reborrowing
-//!
-//! Note that if we are expecting a reference, we will *reborrow*
-//! even if the argument provided was already a reference. This is
-//! useful for freezing mut things (that is, when the expected type is &T
-//! but you have &mut T) and also for avoiding the linearity
-//! of mut things (when the expected is &mut T and you have &mut T). See
-//! the various `src/test/ui/coerce/*.rs` tests for
-//! examples of where this is useful.
-//!
-//! ## Subtle note
-//!
-//! When inferring the generic arguments of functions, the argument
-//! order is relevant, which can lead to the following edge case:
-//!
-//! ```ignore (illustrative)
-//! fn foo<T>(a: T, b: T) {
-//! // ...
-//! }
-//!
-//! foo(&7i32, &mut 7i32);
-//! // This compiles, as we first infer `T` to be `&i32`,
-//! // and then coerce `&mut 7i32` to `&7i32`.
-//!
-//! foo(&mut 7i32, &7i32);
-//! // This does not compile, as we first infer `T` to be `&mut i32`
-//! // and are then unable to coerce `&7i32` to `&mut i32`.
-//! ```
-
-use crate::astconv::AstConv;
-use crate::check::FnCtxt;
-use rustc_errors::{
- struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, MultiSpan,
-};
-use rustc_hir as hir;
-use rustc_hir::def_id::DefId;
-use rustc_hir::intravisit::{self, Visitor};
-use rustc_hir::Expr;
-use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
-use rustc_infer::infer::{Coercion, InferOk, InferResult};
-use rustc_infer::traits::{Obligation, TraitEngine, TraitEngineExt};
-use rustc_middle::lint::in_external_macro;
-use rustc_middle::ty::adjustment::{
- Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability, PointerCast,
-};
-use rustc_middle::ty::error::TypeError;
-use rustc_middle::ty::relate::RelateResult;
-use rustc_middle::ty::subst::SubstsRef;
-use rustc_middle::ty::visit::TypeVisitable;
-use rustc_middle::ty::{self, ToPredicate, Ty, TypeAndMut};
-use rustc_session::parse::feature_err;
-use rustc_span::symbol::sym;
-use rustc_span::{self, BytePos, DesugaringKind, Span};
-use rustc_target::spec::abi::Abi;
-use rustc_trait_selection::infer::InferCtxtExt as _;
-use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
-use rustc_trait_selection::traits::{self, ObligationCause, ObligationCauseCode};
-
-use smallvec::{smallvec, SmallVec};
-use std::ops::Deref;
-
-struct Coerce<'a, 'tcx> {
- fcx: &'a FnCtxt<'a, 'tcx>,
- cause: ObligationCause<'tcx>,
- use_lub: bool,
- /// Determines whether or not allow_two_phase_borrow is set on any
- /// autoref adjustments we create while coercing. We don't want to
- /// allow deref coercions to create two-phase borrows, at least initially,
- /// but we do need two-phase borrows for function argument reborrows.
- /// See #47489 and #48598
- /// See docs on the "AllowTwoPhase" type for a more detailed discussion
- allow_two_phase: AllowTwoPhase,
-}
-
-impl<'a, 'tcx> Deref for Coerce<'a, 'tcx> {
- type Target = FnCtxt<'a, 'tcx>;
- fn deref(&self) -> &Self::Target {
- &self.fcx
- }
-}
-
-type CoerceResult<'tcx> = InferResult<'tcx, (Vec<Adjustment<'tcx>>, Ty<'tcx>)>;
-
-struct CollectRetsVisitor<'tcx> {
- ret_exprs: Vec<&'tcx hir::Expr<'tcx>>,
-}
-
-impl<'tcx> Visitor<'tcx> for CollectRetsVisitor<'tcx> {
- fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) {
- if let hir::ExprKind::Ret(_) = expr.kind {
- self.ret_exprs.push(expr);
- }
- intravisit::walk_expr(self, expr);
- }
-}
-
-/// Coercing a mutable reference to an immutable works, while
-/// coercing `&T` to `&mut T` should be forbidden.
-fn coerce_mutbls<'tcx>(
- from_mutbl: hir::Mutability,
- to_mutbl: hir::Mutability,
-) -> RelateResult<'tcx, ()> {
- match (from_mutbl, to_mutbl) {
- (hir::Mutability::Mut, hir::Mutability::Mut | hir::Mutability::Not)
- | (hir::Mutability::Not, hir::Mutability::Not) => Ok(()),
- (hir::Mutability::Not, hir::Mutability::Mut) => Err(TypeError::Mutability),
- }
-}
-
-/// Do not require any adjustments, i.e. coerce `x -> x`.
-fn identity(_: Ty<'_>) -> Vec<Adjustment<'_>> {
- vec![]
-}
-
-fn simple<'tcx>(kind: Adjust<'tcx>) -> impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>> {
- move |target| vec![Adjustment { kind, target }]
-}
-
-/// This always returns `Ok(...)`.
-fn success<'tcx>(
- adj: Vec<Adjustment<'tcx>>,
- target: Ty<'tcx>,
- obligations: traits::PredicateObligations<'tcx>,
-) -> CoerceResult<'tcx> {
- Ok(InferOk { value: (adj, target), obligations })
-}
-
-impl<'f, 'tcx> Coerce<'f, 'tcx> {
- fn new(
- fcx: &'f FnCtxt<'f, 'tcx>,
- cause: ObligationCause<'tcx>,
- allow_two_phase: AllowTwoPhase,
- ) -> Self {
- Coerce { fcx, cause, allow_two_phase, use_lub: false }
- }
-
- fn unify(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>> {
- debug!("unify(a: {:?}, b: {:?}, use_lub: {})", a, b, self.use_lub);
- self.commit_if_ok(|_| {
- if self.use_lub {
- self.at(&self.cause, self.fcx.param_env).lub(b, a)
- } else {
- self.at(&self.cause, self.fcx.param_env)
- .sup(b, a)
- .map(|InferOk { value: (), obligations }| InferOk { value: a, obligations })
- }
- })
- }
-
- /// Unify two types (using sub or lub) and produce a specific coercion.
- fn unify_and<F>(&self, a: Ty<'tcx>, b: Ty<'tcx>, f: F) -> CoerceResult<'tcx>
- where
- F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
- {
- self.unify(a, b)
- .and_then(|InferOk { value: ty, obligations }| success(f(ty), ty, obligations))
- }
-
- #[instrument(skip(self))]
- fn coerce(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
- // First, remove any resolved type variables (at the top level, at least):
- let a = self.shallow_resolve(a);
- let b = self.shallow_resolve(b);
- debug!("Coerce.tys({:?} => {:?})", a, b);
-
- // Just ignore error types.
- if a.references_error() || b.references_error() {
- return success(vec![], self.fcx.tcx.ty_error(), vec![]);
- }
-
- // Coercing from `!` to any type is allowed:
- if a.is_never() {
- return success(simple(Adjust::NeverToAny)(b), b, vec![]);
- }
-
- // Coercing *from* an unresolved inference variable means that
- // we have no information about the source type. This will always
- // ultimately fall back to some form of subtyping.
- if a.is_ty_var() {
- return self.coerce_from_inference_variable(a, b, identity);
- }
-
- // Consider coercing the subtype to a DST
- //
- // NOTE: this is wrapped in a `commit_if_ok` because it creates
- // a "spurious" type variable, and we don't want to have that
- // type variable in memory if the coercion fails.
- let unsize = self.commit_if_ok(|_| self.coerce_unsized(a, b));
- match unsize {
- Ok(_) => {
- debug!("coerce: unsize successful");
- return unsize;
- }
- Err(TypeError::ObjectUnsafeCoercion(did)) => {
- debug!("coerce: unsize not object safe");
- return Err(TypeError::ObjectUnsafeCoercion(did));
- }
- Err(error) => {
- debug!(?error, "coerce: unsize failed");
- }
- }
-
- // Examine the supertype and consider auto-borrowing.
- match *b.kind() {
- ty::RawPtr(mt_b) => {
- return self.coerce_unsafe_ptr(a, b, mt_b.mutbl);
- }
- ty::Ref(r_b, _, mutbl_b) => {
- return self.coerce_borrowed_pointer(a, b, r_b, mutbl_b);
- }
- _ => {}
- }
-
- match *a.kind() {
- ty::FnDef(..) => {
- // Function items are coercible to any closure
- // type; function pointers are not (that would
- // require double indirection).
- // Additionally, we permit coercion of function
- // items to drop the unsafe qualifier.
- self.coerce_from_fn_item(a, b)
- }
- ty::FnPtr(a_f) => {
- // We permit coercion of fn pointers to drop the
- // unsafe qualifier.
- self.coerce_from_fn_pointer(a, a_f, b)
- }
- ty::Closure(closure_def_id_a, substs_a) => {
- // Non-capturing closures are coercible to
- // function pointers or unsafe function pointers.
- // It cannot convert closures that require unsafe.
- self.coerce_closure_to_fn(a, closure_def_id_a, substs_a, b)
- }
- _ => {
- // Otherwise, just use unification rules.
- self.unify_and(a, b, identity)
- }
- }
- }
-
- /// Coercing *from* an inference variable. In this case, we have no information
- /// about the source type, so we can't really do a true coercion and we always
- /// fall back to subtyping (`unify_and`).
- fn coerce_from_inference_variable(
- &self,
- a: Ty<'tcx>,
- b: Ty<'tcx>,
- make_adjustments: impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
- ) -> CoerceResult<'tcx> {
- debug!("coerce_from_inference_variable(a={:?}, b={:?})", a, b);
- assert!(a.is_ty_var() && self.shallow_resolve(a) == a);
- assert!(self.shallow_resolve(b) == b);
-
- if b.is_ty_var() {
- // Two unresolved type variables: create a `Coerce` predicate.
- let target_ty = if self.use_lub {
- self.next_ty_var(TypeVariableOrigin {
- kind: TypeVariableOriginKind::LatticeVariable,
- span: self.cause.span,
- })
- } else {
- b
- };
-
- let mut obligations = Vec::with_capacity(2);
- for &source_ty in &[a, b] {
- if source_ty != target_ty {
- obligations.push(Obligation::new(
- self.cause.clone(),
- self.param_env,
- ty::Binder::dummy(ty::PredicateKind::Coerce(ty::CoercePredicate {
- a: source_ty,
- b: target_ty,
- }))
- .to_predicate(self.tcx()),
- ));
- }
- }
-
- debug!(
- "coerce_from_inference_variable: two inference variables, target_ty={:?}, obligations={:?}",
- target_ty, obligations
- );
- let adjustments = make_adjustments(target_ty);
- InferResult::Ok(InferOk { value: (adjustments, target_ty), obligations })
- } else {
- // One unresolved type variable: just apply subtyping, we may be able
- // to do something useful.
- self.unify_and(a, b, make_adjustments)
- }
- }
-
- /// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
- /// To match `A` with `B`, autoderef will be performed,
- /// calling `deref`/`deref_mut` where necessary.
- fn coerce_borrowed_pointer(
- &self,
- a: Ty<'tcx>,
- b: Ty<'tcx>,
- r_b: ty::Region<'tcx>,
- mutbl_b: hir::Mutability,
- ) -> CoerceResult<'tcx> {
- debug!("coerce_borrowed_pointer(a={:?}, b={:?})", a, b);
-
- // If we have a parameter of type `&M T_a` and the value
- // provided is `expr`, we will be adding an implicit borrow,
- // meaning that we convert `f(expr)` to `f(&M *expr)`. Therefore,
- // to type check, we will construct the type that `&M*expr` would
- // yield.
-
- let (r_a, mt_a) = match *a.kind() {
- ty::Ref(r_a, ty, mutbl) => {
- let mt_a = ty::TypeAndMut { ty, mutbl };
- coerce_mutbls(mt_a.mutbl, mutbl_b)?;
- (r_a, mt_a)
- }
- _ => return self.unify_and(a, b, identity),
- };
-
- let span = self.cause.span;
-
- let mut first_error = None;
- let mut r_borrow_var = None;
- let mut autoderef = self.autoderef(span, a);
- let mut found = None;
-
- for (referent_ty, autoderefs) in autoderef.by_ref() {
- if autoderefs == 0 {
- // Don't let this pass, otherwise it would cause
- // &T to autoref to &&T.
- continue;
- }
-
- // At this point, we have deref'd `a` to `referent_ty`. So
- // imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
- // In the autoderef loop for `&'a mut Vec<T>`, we would get
- // three callbacks:
- //
- // - `&'a mut Vec<T>` -- 0 derefs, just ignore it
- // - `Vec<T>` -- 1 deref
- // - `[T]` -- 2 deref
- //
- // At each point after the first callback, we want to
- // check to see whether this would match out target type
- // (`&'b mut [T]`) if we autoref'd it. We can't just
- // compare the referent types, though, because we still
- // have to consider the mutability. E.g., in the case
- // we've been considering, we have an `&mut` reference, so
- // the `T` in `[T]` needs to be unified with equality.
- //
- // Therefore, we construct reference types reflecting what
- // the types will be after we do the final auto-ref and
- // compare those. Note that this means we use the target
- // mutability [1], since it may be that we are coercing
- // from `&mut T` to `&U`.
- //
- // One fine point concerns the region that we use. We
- // choose the region such that the region of the final
- // type that results from `unify` will be the region we
- // want for the autoref:
- //
- // - if in sub mode, that means we want to use `'b` (the
- // region from the target reference) for both
- // pointers [2]. This is because sub mode (somewhat
- // arbitrarily) returns the subtype region. In the case
- // where we are coercing to a target type, we know we
- // want to use that target type region (`'b`) because --
- // for the program to type-check -- it must be the
- // smaller of the two.
- // - One fine point. It may be surprising that we can
- // use `'b` without relating `'a` and `'b`. The reason
- // that this is ok is that what we produce is
- // effectively a `&'b *x` expression (if you could
- // annotate the region of a borrow), and regionck has
- // code that adds edges from the region of a borrow
- // (`'b`, here) into the regions in the borrowed
- // expression (`*x`, here). (Search for "link".)
- // - if in lub mode, things can get fairly complicated. The
- // easiest thing is just to make a fresh
- // region variable [4], which effectively means we defer
- // the decision to region inference (and regionck, which will add
- // some more edges to this variable). However, this can wind up
- // creating a crippling number of variables in some cases --
- // e.g., #32278 -- so we optimize one particular case [3].
- // Let me try to explain with some examples:
- // - The "running example" above represents the simple case,
- // where we have one `&` reference at the outer level and
- // ownership all the rest of the way down. In this case,
- // we want `LUB('a, 'b)` as the resulting region.
- // - However, if there are nested borrows, that region is
- // too strong. Consider a coercion from `&'a &'x Rc<T>` to
- // `&'b T`. In this case, `'a` is actually irrelevant.
- // The pointer we want is `LUB('x, 'b`). If we choose `LUB('a,'b)`
- // we get spurious errors (`ui/regions-lub-ref-ref-rc.rs`).
- // (The errors actually show up in borrowck, typically, because
- // this extra edge causes the region `'a` to be inferred to something
- // too big, which then results in borrowck errors.)
- // - We could track the innermost shared reference, but there is already
- // code in regionck that has the job of creating links between
- // the region of a borrow and the regions in the thing being
- // borrowed (here, `'a` and `'x`), and it knows how to handle
- // all the various cases. So instead we just make a region variable
- // and let regionck figure it out.
- let r = if !self.use_lub {
- r_b // [2] above
- } else if autoderefs == 1 {
- r_a // [3] above
- } else {
- if r_borrow_var.is_none() {
- // create var lazily, at most once
- let coercion = Coercion(span);
- let r = self.next_region_var(coercion);
- r_borrow_var = Some(r); // [4] above
- }
- r_borrow_var.unwrap()
- };
- let derefd_ty_a = self.tcx.mk_ref(
- r,
- TypeAndMut {
- ty: referent_ty,
- mutbl: mutbl_b, // [1] above
- },
- );
- match self.unify(derefd_ty_a, b) {
- Ok(ok) => {
- found = Some(ok);
- break;
- }
- Err(err) => {
- if first_error.is_none() {
- first_error = Some(err);
- }
- }
- }
- }
-
- // Extract type or return an error. We return the first error
- // we got, which should be from relating the "base" type
- // (e.g., in example above, the failure from relating `Vec<T>`
- // to the target type), since that should be the least
- // confusing.
- let Some(InferOk { value: ty, mut obligations }) = found else {
- let err = first_error.expect("coerce_borrowed_pointer had no error");
- debug!("coerce_borrowed_pointer: failed with err = {:?}", err);
- return Err(err);
- };
-
- if ty == a && mt_a.mutbl == hir::Mutability::Not && autoderef.step_count() == 1 {
- // As a special case, if we would produce `&'a *x`, that's
- // a total no-op. We end up with the type `&'a T` just as
- // we started with. In that case, just skip it
- // altogether. This is just an optimization.
- //
- // Note that for `&mut`, we DO want to reborrow --
- // otherwise, this would be a move, which might be an
- // error. For example `foo(self.x)` where `self` and
- // `self.x` both have `&mut `type would be a move of
- // `self.x`, but we auto-coerce it to `foo(&mut *self.x)`,
- // which is a borrow.
- assert_eq!(mutbl_b, hir::Mutability::Not); // can only coerce &T -> &U
- return success(vec![], ty, obligations);
- }
-
- let InferOk { value: mut adjustments, obligations: o } =
- self.adjust_steps_as_infer_ok(&autoderef);
- obligations.extend(o);
- obligations.extend(autoderef.into_obligations());
-
- // Now apply the autoref. We have to extract the region out of
- // the final ref type we got.
- let ty::Ref(r_borrow, _, _) = ty.kind() else {
- span_bug!(span, "expected a ref type, got {:?}", ty);
- };
- let mutbl = match mutbl_b {
- hir::Mutability::Not => AutoBorrowMutability::Not,
- hir::Mutability::Mut => {
- AutoBorrowMutability::Mut { allow_two_phase_borrow: self.allow_two_phase }
- }
- };
- adjustments.push(Adjustment {
- kind: Adjust::Borrow(AutoBorrow::Ref(*r_borrow, mutbl)),
- target: ty,
- });
-
- debug!("coerce_borrowed_pointer: succeeded ty={:?} adjustments={:?}", ty, adjustments);
-
- success(adjustments, ty, obligations)
- }
-
- // &[T; n] or &mut [T; n] -> &[T]
- // or &mut [T; n] -> &mut [T]
- // or &Concrete -> &Trait, etc.
- #[instrument(skip(self), level = "debug")]
- fn coerce_unsized(&self, mut source: Ty<'tcx>, mut target: Ty<'tcx>) -> CoerceResult<'tcx> {
- source = self.shallow_resolve(source);
- target = self.shallow_resolve(target);
- debug!(?source, ?target);
-
- // These 'if' statements require some explanation.
- // The `CoerceUnsized` trait is special - it is only
- // possible to write `impl CoerceUnsized<B> for A` where
- // A and B have 'matching' fields. This rules out the following
- // two types of blanket impls:
- //
- // `impl<T> CoerceUnsized<T> for SomeType`
- // `impl<T> CoerceUnsized<SomeType> for T`
- //
- // Both of these trigger a special `CoerceUnsized`-related error (E0376)
- //
- // We can take advantage of this fact to avoid performing unnecessary work.
- // If either `source` or `target` is a type variable, then any applicable impl
- // would need to be generic over the self-type (`impl<T> CoerceUnsized<SomeType> for T`)
- // or generic over the `CoerceUnsized` type parameter (`impl<T> CoerceUnsized<T> for
- // SomeType`).
- //
- // However, these are exactly the kinds of impls which are forbidden by
- // the compiler! Therefore, we can be sure that coercion will always fail
- // when either the source or target type is a type variable. This allows us
- // to skip performing any trait selection, and immediately bail out.
- if source.is_ty_var() {
- debug!("coerce_unsized: source is a TyVar, bailing out");
- return Err(TypeError::Mismatch);
- }
- if target.is_ty_var() {
- debug!("coerce_unsized: target is a TyVar, bailing out");
- return Err(TypeError::Mismatch);
- }
-
- let traits =
- (self.tcx.lang_items().unsize_trait(), self.tcx.lang_items().coerce_unsized_trait());
- let (Some(unsize_did), Some(coerce_unsized_did)) = traits else {
- debug!("missing Unsize or CoerceUnsized traits");
- return Err(TypeError::Mismatch);
- };
-
- // Note, we want to avoid unnecessary unsizing. We don't want to coerce to
- // a DST unless we have to. This currently comes out in the wash since
- // we can't unify [T] with U. But to properly support DST, we need to allow
- // that, at which point we will need extra checks on the target here.
-
- // Handle reborrows before selecting `Source: CoerceUnsized<Target>`.
- let reborrow = match (source.kind(), target.kind()) {
- (&ty::Ref(_, ty_a, mutbl_a), &ty::Ref(_, _, mutbl_b)) => {
- coerce_mutbls(mutbl_a, mutbl_b)?;
-
- let coercion = Coercion(self.cause.span);
- let r_borrow = self.next_region_var(coercion);
- let mutbl = match mutbl_b {
- hir::Mutability::Not => AutoBorrowMutability::Not,
- hir::Mutability::Mut => AutoBorrowMutability::Mut {
- // We don't allow two-phase borrows here, at least for initial
- // implementation. If it happens that this coercion is a function argument,
- // the reborrow in coerce_borrowed_ptr will pick it up.
- allow_two_phase_borrow: AllowTwoPhase::No,
- },
- };
- Some((
- Adjustment { kind: Adjust::Deref(None), target: ty_a },
- Adjustment {
- kind: Adjust::Borrow(AutoBorrow::Ref(r_borrow, mutbl)),
- target: self
- .tcx
- .mk_ref(r_borrow, ty::TypeAndMut { mutbl: mutbl_b, ty: ty_a }),
- },
- ))
- }
- (&ty::Ref(_, ty_a, mt_a), &ty::RawPtr(ty::TypeAndMut { mutbl: mt_b, .. })) => {
- coerce_mutbls(mt_a, mt_b)?;
-
- Some((
- Adjustment { kind: Adjust::Deref(None), target: ty_a },
- Adjustment {
- kind: Adjust::Borrow(AutoBorrow::RawPtr(mt_b)),
- target: self.tcx.mk_ptr(ty::TypeAndMut { mutbl: mt_b, ty: ty_a }),
- },
- ))
- }
- _ => None,
- };
- let coerce_source = reborrow.as_ref().map_or(source, |&(_, ref r)| r.target);
-
- // Setup either a subtyping or a LUB relationship between
- // the `CoerceUnsized` target type and the expected type.
- // We only have the latter, so we use an inference variable
- // for the former and let type inference do the rest.
- let origin = TypeVariableOrigin {
- kind: TypeVariableOriginKind::MiscVariable,
- span: self.cause.span,
- };
- let coerce_target = self.next_ty_var(origin);
- let mut coercion = self.unify_and(coerce_target, target, |target| {
- let unsize = Adjustment { kind: Adjust::Pointer(PointerCast::Unsize), target };
- match reborrow {
- None => vec![unsize],
- Some((ref deref, ref autoref)) => vec![deref.clone(), autoref.clone(), unsize],
- }
- })?;
-
- let mut selcx = traits::SelectionContext::new(self);
-
- // Create an obligation for `Source: CoerceUnsized<Target>`.
- let cause = ObligationCause::new(
- self.cause.span,
- self.body_id,
- ObligationCauseCode::Coercion { source, target },
- );
-
- // Use a FIFO queue for this custom fulfillment procedure.
- //
- // A Vec (or SmallVec) is not a natural choice for a queue. However,
- // this code path is hot, and this queue usually has a max length of 1
- // and almost never more than 3. By using a SmallVec we avoid an
- // allocation, at the (very small) cost of (occasionally) having to
- // shift subsequent elements down when removing the front element.
- let mut queue: SmallVec<[_; 4]> = smallvec![traits::predicate_for_trait_def(
- self.tcx,
- self.fcx.param_env,
- cause,
- coerce_unsized_did,
- 0,
- coerce_source,
- &[coerce_target.into()]
- )];
-
- let mut has_unsized_tuple_coercion = false;
- let mut has_trait_upcasting_coercion = None;
-
- // Keep resolving `CoerceUnsized` and `Unsize` predicates to avoid
- // emitting a coercion in cases like `Foo<$1>` -> `Foo<$2>`, where
- // inference might unify those two inner type variables later.
- let traits = [coerce_unsized_did, unsize_did];
- while !queue.is_empty() {
- let obligation = queue.remove(0);
- debug!("coerce_unsized resolve step: {:?}", obligation);
- let bound_predicate = obligation.predicate.kind();
- let trait_pred = match bound_predicate.skip_binder() {
- ty::PredicateKind::Trait(trait_pred) if traits.contains(&trait_pred.def_id()) => {
- if unsize_did == trait_pred.def_id() {
- let self_ty = trait_pred.self_ty();
- let unsize_ty = trait_pred.trait_ref.substs[1].expect_ty();
- if let (ty::Dynamic(ref data_a, ..), ty::Dynamic(ref data_b, ..)) =
- (self_ty.kind(), unsize_ty.kind())
- && data_a.principal_def_id() != data_b.principal_def_id()
- {
- debug!("coerce_unsized: found trait upcasting coercion");
- has_trait_upcasting_coercion = Some((self_ty, unsize_ty));
- }
- if let ty::Tuple(..) = unsize_ty.kind() {
- debug!("coerce_unsized: found unsized tuple coercion");
- has_unsized_tuple_coercion = true;
- }
- }
- bound_predicate.rebind(trait_pred)
- }
- _ => {
- coercion.obligations.push(obligation);
- continue;
- }
- };
- match selcx.select(&obligation.with(trait_pred)) {
- // Uncertain or unimplemented.
- Ok(None) => {
- if trait_pred.def_id() == unsize_did {
- let trait_pred = self.resolve_vars_if_possible(trait_pred);
- let self_ty = trait_pred.skip_binder().self_ty();
- let unsize_ty = trait_pred.skip_binder().trait_ref.substs[1].expect_ty();
- debug!("coerce_unsized: ambiguous unsize case for {:?}", trait_pred);
- match (&self_ty.kind(), &unsize_ty.kind()) {
- (ty::Infer(ty::TyVar(v)), ty::Dynamic(..))
- if self.type_var_is_sized(*v) =>
- {
- debug!("coerce_unsized: have sized infer {:?}", v);
- coercion.obligations.push(obligation);
- // `$0: Unsize<dyn Trait>` where we know that `$0: Sized`, try going
- // for unsizing.
- }
- _ => {
- // Some other case for `$0: Unsize<Something>`. Note that we
- // hit this case even if `Something` is a sized type, so just
- // don't do the coercion.
- debug!("coerce_unsized: ambiguous unsize");
- return Err(TypeError::Mismatch);
- }
- }
- } else {
- debug!("coerce_unsized: early return - ambiguous");
- return Err(TypeError::Mismatch);
- }
- }
- Err(traits::Unimplemented) => {
- debug!("coerce_unsized: early return - can't prove obligation");
- return Err(TypeError::Mismatch);
- }
-
- // Object safety violations or miscellaneous.
- Err(err) => {
- self.report_selection_error(obligation.clone(), &obligation, &err, false);
- // Treat this like an obligation and follow through
- // with the unsizing - the lack of a coercion should
- // be silent, as it causes a type mismatch later.
- }
-
- Ok(Some(impl_source)) => queue.extend(impl_source.nested_obligations()),
- }
- }
-
- if has_unsized_tuple_coercion && !self.tcx.features().unsized_tuple_coercion {
- feature_err(
- &self.tcx.sess.parse_sess,
- sym::unsized_tuple_coercion,
- self.cause.span,
- "unsized tuple coercion is not stable enough for use and is subject to change",
- )
- .emit();
- }
-
- if let Some((sub, sup)) = has_trait_upcasting_coercion
- && !self.tcx().features().trait_upcasting
- {
- // Renders better when we erase regions, since they're not really the point here.
- let (sub, sup) = self.tcx.erase_regions((sub, sup));
- let mut err = feature_err(
- &self.tcx.sess.parse_sess,
- sym::trait_upcasting,
- self.cause.span,
- &format!("cannot cast `{sub}` to `{sup}`, trait upcasting coercion is experimental"),
- );
- err.note(&format!("required when coercing `{source}` into `{target}`"));
- err.emit();
- }
-
- Ok(coercion)
- }
-
- fn coerce_from_safe_fn<F, G>(
- &self,
- a: Ty<'tcx>,
- fn_ty_a: ty::PolyFnSig<'tcx>,
- b: Ty<'tcx>,
- to_unsafe: F,
- normal: G,
- ) -> CoerceResult<'tcx>
- where
- F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
- G: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
- {
- self.commit_if_ok(|snapshot| {
- let result = if let ty::FnPtr(fn_ty_b) = b.kind()
- && let (hir::Unsafety::Normal, hir::Unsafety::Unsafe) =
- (fn_ty_a.unsafety(), fn_ty_b.unsafety())
- {
- let unsafe_a = self.tcx.safe_to_unsafe_fn_ty(fn_ty_a);
- self.unify_and(unsafe_a, b, to_unsafe)
- } else {
- self.unify_and(a, b, normal)
- };
-
- // FIXME(#73154): This is a hack. Currently LUB can generate
- // unsolvable constraints. Additionally, it returns `a`
- // unconditionally, even when the "LUB" is `b`. In the future, we
- // want the coerced type to be the actual supertype of these two,
- // but for now, we want to just error to ensure we don't lock
- // ourselves into a specific behavior with NLL.
- self.leak_check(false, snapshot)?;
-
- result
- })
- }
-
- fn coerce_from_fn_pointer(
- &self,
- a: Ty<'tcx>,
- fn_ty_a: ty::PolyFnSig<'tcx>,
- b: Ty<'tcx>,
- ) -> CoerceResult<'tcx> {
- //! Attempts to coerce from the type of a Rust function item
- //! into a closure or a `proc`.
- //!
-
- let b = self.shallow_resolve(b);
- debug!("coerce_from_fn_pointer(a={:?}, b={:?})", a, b);
-
- self.coerce_from_safe_fn(
- a,
- fn_ty_a,
- b,
- simple(Adjust::Pointer(PointerCast::UnsafeFnPointer)),
- identity,
- )
- }
-
- fn coerce_from_fn_item(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
- //! Attempts to coerce from the type of a Rust function item
- //! into a closure or a `proc`.
-
- let b = self.shallow_resolve(b);
- let InferOk { value: b, mut obligations } =
- self.normalize_associated_types_in_as_infer_ok(self.cause.span, b);
- debug!("coerce_from_fn_item(a={:?}, b={:?})", a, b);
-
- match b.kind() {
- ty::FnPtr(b_sig) => {
- let a_sig = a.fn_sig(self.tcx);
- if let ty::FnDef(def_id, _) = *a.kind() {
- // Intrinsics are not coercible to function pointers
- if self.tcx.is_intrinsic(def_id) {
- return Err(TypeError::IntrinsicCast);
- }
-
- // Safe `#[target_feature]` functions are not assignable to safe fn pointers (RFC 2396).
-
- if b_sig.unsafety() == hir::Unsafety::Normal
- && !self.tcx.codegen_fn_attrs(def_id).target_features.is_empty()
- {
- return Err(TypeError::TargetFeatureCast(def_id));
- }
- }
-
- let InferOk { value: a_sig, obligations: o1 } =
- self.normalize_associated_types_in_as_infer_ok(self.cause.span, a_sig);
- obligations.extend(o1);
-
- let a_fn_pointer = self.tcx.mk_fn_ptr(a_sig);
- let InferOk { value, obligations: o2 } = self.coerce_from_safe_fn(
- a_fn_pointer,
- a_sig,
- b,
- |unsafe_ty| {
- vec![
- Adjustment {
- kind: Adjust::Pointer(PointerCast::ReifyFnPointer),
- target: a_fn_pointer,
- },
- Adjustment {
- kind: Adjust::Pointer(PointerCast::UnsafeFnPointer),
- target: unsafe_ty,
- },
- ]
- },
- simple(Adjust::Pointer(PointerCast::ReifyFnPointer)),
- )?;
-
- obligations.extend(o2);
- Ok(InferOk { value, obligations })
- }
- _ => self.unify_and(a, b, identity),
- }
- }
-
- fn coerce_closure_to_fn(
- &self,
- a: Ty<'tcx>,
- closure_def_id_a: DefId,
- substs_a: SubstsRef<'tcx>,
- b: Ty<'tcx>,
- ) -> CoerceResult<'tcx> {
- //! Attempts to coerce from the type of a non-capturing closure
- //! into a function pointer.
- //!
-
- let b = self.shallow_resolve(b);
-
- match b.kind() {
- // At this point we haven't done capture analysis, which means
- // that the ClosureSubsts just contains an inference variable instead
- // of tuple of captured types.
- //
- // All we care here is if any variable is being captured and not the exact paths,
- // so we check `upvars_mentioned` for root variables being captured.
- ty::FnPtr(fn_ty)
- if self
- .tcx
- .upvars_mentioned(closure_def_id_a.expect_local())
- .map_or(true, |u| u.is_empty()) =>
- {
- // We coerce the closure, which has fn type
- // `extern "rust-call" fn((arg0,arg1,...)) -> _`
- // to
- // `fn(arg0,arg1,...) -> _`
- // or
- // `unsafe fn(arg0,arg1,...) -> _`
- let closure_sig = substs_a.as_closure().sig();
- let unsafety = fn_ty.unsafety();
- let pointer_ty =
- self.tcx.mk_fn_ptr(self.tcx.signature_unclosure(closure_sig, unsafety));
- debug!("coerce_closure_to_fn(a={:?}, b={:?}, pty={:?})", a, b, pointer_ty);
- self.unify_and(
- pointer_ty,
- b,
- simple(Adjust::Pointer(PointerCast::ClosureFnPointer(unsafety))),
- )
- }
- _ => self.unify_and(a, b, identity),
- }
- }
-
- fn coerce_unsafe_ptr(
- &self,
- a: Ty<'tcx>,
- b: Ty<'tcx>,
- mutbl_b: hir::Mutability,
- ) -> CoerceResult<'tcx> {
- debug!("coerce_unsafe_ptr(a={:?}, b={:?})", a, b);
-
- let (is_ref, mt_a) = match *a.kind() {
- ty::Ref(_, ty, mutbl) => (true, ty::TypeAndMut { ty, mutbl }),
- ty::RawPtr(mt) => (false, mt),
- _ => return self.unify_and(a, b, identity),
- };
- coerce_mutbls(mt_a.mutbl, mutbl_b)?;
-
- // Check that the types which they point at are compatible.
- let a_unsafe = self.tcx.mk_ptr(ty::TypeAndMut { mutbl: mutbl_b, ty: mt_a.ty });
- // Although references and unsafe ptrs have the same
- // representation, we still register an Adjust::DerefRef so that
- // regionck knows that the region for `a` must be valid here.
- if is_ref {
- self.unify_and(a_unsafe, b, |target| {
- vec![
- Adjustment { kind: Adjust::Deref(None), target: mt_a.ty },
- Adjustment { kind: Adjust::Borrow(AutoBorrow::RawPtr(mutbl_b)), target },
- ]
- })
- } else if mt_a.mutbl != mutbl_b {
- self.unify_and(a_unsafe, b, simple(Adjust::Pointer(PointerCast::MutToConstPointer)))
- } else {
- self.unify_and(a_unsafe, b, identity)
- }
- }
-}
-
-impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
- /// Attempt to coerce an expression to a type, and return the
- /// adjusted type of the expression, if successful.
- /// Adjustments are only recorded if the coercion succeeded.
- /// The expressions *must not* have any pre-existing adjustments.
- pub fn try_coerce(
- &self,
- expr: &hir::Expr<'_>,
- expr_ty: Ty<'tcx>,
- target: Ty<'tcx>,
- allow_two_phase: AllowTwoPhase,
- cause: Option<ObligationCause<'tcx>>,
- ) -> RelateResult<'tcx, Ty<'tcx>> {
- let source = self.resolve_vars_with_obligations(expr_ty);
- debug!("coercion::try({:?}: {:?} -> {:?})", expr, source, target);
-
- let cause =
- cause.unwrap_or_else(|| self.cause(expr.span, ObligationCauseCode::ExprAssignable));
- let coerce = Coerce::new(self, cause, allow_two_phase);
- let ok = self.commit_if_ok(|_| coerce.coerce(source, target))?;
-
- let (adjustments, _) = self.register_infer_ok_obligations(ok);
- self.apply_adjustments(expr, adjustments);
- Ok(if expr_ty.references_error() { self.tcx.ty_error() } else { target })
- }
-
- /// Same as `try_coerce()`, but without side-effects.
- ///
- /// Returns false if the coercion creates any obligations that result in
- /// errors.
- pub fn can_coerce(&self, expr_ty: Ty<'tcx>, target: Ty<'tcx>) -> bool {
- let source = self.resolve_vars_with_obligations(expr_ty);
- debug!("coercion::can_with_predicates({:?} -> {:?})", source, target);
-
- let cause = self.cause(rustc_span::DUMMY_SP, ObligationCauseCode::ExprAssignable);
- // We don't ever need two-phase here since we throw out the result of the coercion
- let coerce = Coerce::new(self, cause, AllowTwoPhase::No);
- self.probe(|_| {
- let Ok(ok) = coerce.coerce(source, target) else {
- return false;
- };
- let mut fcx = traits::FulfillmentContext::new_in_snapshot();
- fcx.register_predicate_obligations(self, ok.obligations);
- fcx.select_where_possible(&self).is_empty()
- })
- }
-
- /// Given a type and a target type, this function will calculate and return
- /// how many dereference steps needed to achieve `expr_ty <: target`. If
- /// it's not possible, return `None`.
- pub fn deref_steps(&self, expr_ty: Ty<'tcx>, target: Ty<'tcx>) -> Option<usize> {
- let cause = self.cause(rustc_span::DUMMY_SP, ObligationCauseCode::ExprAssignable);
- // We don't ever need two-phase here since we throw out the result of the coercion
- let coerce = Coerce::new(self, cause, AllowTwoPhase::No);
- coerce
- .autoderef(rustc_span::DUMMY_SP, expr_ty)
- .find_map(|(ty, steps)| self.probe(|_| coerce.unify(ty, target)).ok().map(|_| steps))
- }
-
- /// Given a type, this function will calculate and return the type given
- /// for `<Ty as Deref>::Target` only if `Ty` also implements `DerefMut`.
- ///
- /// This function is for diagnostics only, since it does not register
- /// trait or region sub-obligations. (presumably we could, but it's not
- /// particularly important for diagnostics...)
- pub fn deref_once_mutably_for_diagnostic(&self, expr_ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
- self.autoderef(rustc_span::DUMMY_SP, expr_ty).nth(1).and_then(|(deref_ty, _)| {
- self.infcx
- .type_implements_trait(
- self.tcx.lang_items().deref_mut_trait()?,
- expr_ty,
- ty::List::empty(),
- self.param_env,
- )
- .may_apply()
- .then(|| deref_ty)
- })
- }
-
- /// Given some expressions, their known unified type and another expression,
- /// tries to unify the types, potentially inserting coercions on any of the
- /// provided expressions and returns their LUB (aka "common supertype").
- ///
- /// This is really an internal helper. From outside the coercion
- /// module, you should instantiate a `CoerceMany` instance.
- fn try_find_coercion_lub<E>(
- &self,
- cause: &ObligationCause<'tcx>,
- exprs: &[E],
- prev_ty: Ty<'tcx>,
- new: &hir::Expr<'_>,
- new_ty: Ty<'tcx>,
- ) -> RelateResult<'tcx, Ty<'tcx>>
- where
- E: AsCoercionSite,
- {
- let prev_ty = self.resolve_vars_with_obligations(prev_ty);
- let new_ty = self.resolve_vars_with_obligations(new_ty);
- debug!(
- "coercion::try_find_coercion_lub({:?}, {:?}, exprs={:?} exprs)",
- prev_ty,
- new_ty,
- exprs.len()
- );
-
- // The following check fixes #88097, where the compiler erroneously
- // attempted to coerce a closure type to itself via a function pointer.
- if prev_ty == new_ty {
- return Ok(prev_ty);
- }
-
- // Special-case that coercion alone cannot handle:
- // Function items or non-capturing closures of differing IDs or InternalSubsts.
- let (a_sig, b_sig) = {
- #[allow(rustc::usage_of_ty_tykind)]
- let is_capturing_closure = |ty: &ty::TyKind<'tcx>| {
- if let &ty::Closure(closure_def_id, _substs) = ty {
- self.tcx.upvars_mentioned(closure_def_id.expect_local()).is_some()
- } else {
- false
- }
- };
- if is_capturing_closure(prev_ty.kind()) || is_capturing_closure(new_ty.kind()) {
- (None, None)
- } else {
- match (prev_ty.kind(), new_ty.kind()) {
- (ty::FnDef(..), ty::FnDef(..)) => {
- // Don't reify if the function types have a LUB, i.e., they
- // are the same function and their parameters have a LUB.
- match self
- .commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
- {
- // We have a LUB of prev_ty and new_ty, just return it.
- Ok(ok) => return Ok(self.register_infer_ok_obligations(ok)),
- Err(_) => {
- (Some(prev_ty.fn_sig(self.tcx)), Some(new_ty.fn_sig(self.tcx)))
- }
- }
- }
- (ty::Closure(_, substs), ty::FnDef(..)) => {
- let b_sig = new_ty.fn_sig(self.tcx);
- let a_sig = self
- .tcx
- .signature_unclosure(substs.as_closure().sig(), b_sig.unsafety());
- (Some(a_sig), Some(b_sig))
- }
- (ty::FnDef(..), ty::Closure(_, substs)) => {
- let a_sig = prev_ty.fn_sig(self.tcx);
- let b_sig = self
- .tcx
- .signature_unclosure(substs.as_closure().sig(), a_sig.unsafety());
- (Some(a_sig), Some(b_sig))
- }
- (ty::Closure(_, substs_a), ty::Closure(_, substs_b)) => (
- Some(self.tcx.signature_unclosure(
- substs_a.as_closure().sig(),
- hir::Unsafety::Normal,
- )),
- Some(self.tcx.signature_unclosure(
- substs_b.as_closure().sig(),
- hir::Unsafety::Normal,
- )),
- ),
- _ => (None, None),
- }
- }
- };
- if let (Some(a_sig), Some(b_sig)) = (a_sig, b_sig) {
- // Intrinsics are not coercible to function pointers.
- if a_sig.abi() == Abi::RustIntrinsic
- || a_sig.abi() == Abi::PlatformIntrinsic
- || b_sig.abi() == Abi::RustIntrinsic
- || b_sig.abi() == Abi::PlatformIntrinsic
- {
- return Err(TypeError::IntrinsicCast);
- }
- // The signature must match.
- let a_sig = self.normalize_associated_types_in(new.span, a_sig);
- let b_sig = self.normalize_associated_types_in(new.span, b_sig);
- let sig = self
- .at(cause, self.param_env)
- .trace(prev_ty, new_ty)
- .lub(a_sig, b_sig)
- .map(|ok| self.register_infer_ok_obligations(ok))?;
-
- // Reify both sides and return the reified fn pointer type.
- let fn_ptr = self.tcx.mk_fn_ptr(sig);
- let prev_adjustment = match prev_ty.kind() {
- ty::Closure(..) => Adjust::Pointer(PointerCast::ClosureFnPointer(a_sig.unsafety())),
- ty::FnDef(..) => Adjust::Pointer(PointerCast::ReifyFnPointer),
- _ => unreachable!(),
- };
- let next_adjustment = match new_ty.kind() {
- ty::Closure(..) => Adjust::Pointer(PointerCast::ClosureFnPointer(b_sig.unsafety())),
- ty::FnDef(..) => Adjust::Pointer(PointerCast::ReifyFnPointer),
- _ => unreachable!(),
- };
- for expr in exprs.iter().map(|e| e.as_coercion_site()) {
- self.apply_adjustments(
- expr,
- vec![Adjustment { kind: prev_adjustment.clone(), target: fn_ptr }],
- );
- }
- self.apply_adjustments(new, vec![Adjustment { kind: next_adjustment, target: fn_ptr }]);
- return Ok(fn_ptr);
- }
-
- // Configure a Coerce instance to compute the LUB.
- // We don't allow two-phase borrows on any autorefs this creates since we
- // probably aren't processing function arguments here and even if we were,
- // they're going to get autorefed again anyway and we can apply 2-phase borrows
- // at that time.
- let mut coerce = Coerce::new(self, cause.clone(), AllowTwoPhase::No);
- coerce.use_lub = true;
-
- // First try to coerce the new expression to the type of the previous ones,
- // but only if the new expression has no coercion already applied to it.
- let mut first_error = None;
- if !self.typeck_results.borrow().adjustments().contains_key(new.hir_id) {
- let result = self.commit_if_ok(|_| coerce.coerce(new_ty, prev_ty));
- match result {
- Ok(ok) => {
- let (adjustments, target) = self.register_infer_ok_obligations(ok);
- self.apply_adjustments(new, adjustments);
- debug!(
- "coercion::try_find_coercion_lub: was able to coerce from new type {:?} to previous type {:?} ({:?})",
- new_ty, prev_ty, target
- );
- return Ok(target);
- }
- Err(e) => first_error = Some(e),
- }
- }
-
- // Then try to coerce the previous expressions to the type of the new one.
- // This requires ensuring there are no coercions applied to *any* of the
- // previous expressions, other than noop reborrows (ignoring lifetimes).
- for expr in exprs {
- let expr = expr.as_coercion_site();
- let noop = match self.typeck_results.borrow().expr_adjustments(expr) {
- &[
- Adjustment { kind: Adjust::Deref(_), .. },
- Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(_, mutbl_adj)), .. },
- ] => {
- match *self.node_ty(expr.hir_id).kind() {
- ty::Ref(_, _, mt_orig) => {
- let mutbl_adj: hir::Mutability = mutbl_adj.into();
- // Reborrow that we can safely ignore, because
- // the next adjustment can only be a Deref
- // which will be merged into it.
- mutbl_adj == mt_orig
- }
- _ => false,
- }
- }
- &[Adjustment { kind: Adjust::NeverToAny, .. }] | &[] => true,
- _ => false,
- };
-
- if !noop {
- debug!(
- "coercion::try_find_coercion_lub: older expression {:?} had adjustments, requiring LUB",
- expr,
- );
-
- return self
- .commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
- .map(|ok| self.register_infer_ok_obligations(ok));
- }
- }
-
- match self.commit_if_ok(|_| coerce.coerce(prev_ty, new_ty)) {
- Err(_) => {
- // Avoid giving strange errors on failed attempts.
- if let Some(e) = first_error {
- Err(e)
- } else {
- self.commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
- .map(|ok| self.register_infer_ok_obligations(ok))
- }
- }
- Ok(ok) => {
- let (adjustments, target) = self.register_infer_ok_obligations(ok);
- for expr in exprs {
- let expr = expr.as_coercion_site();
- self.apply_adjustments(expr, adjustments.clone());
- }
- debug!(
- "coercion::try_find_coercion_lub: was able to coerce previous type {:?} to new type {:?} ({:?})",
- prev_ty, new_ty, target
- );
- Ok(target)
- }
- }
- }
-}
-
-/// CoerceMany encapsulates the pattern you should use when you have
-/// many expressions that are all getting coerced to a common
-/// type. This arises, for example, when you have a match (the result
-/// of each arm is coerced to a common type). It also arises in less
-/// obvious places, such as when you have many `break foo` expressions
-/// that target the same loop, or the various `return` expressions in
-/// a function.
-///
-/// The basic protocol is as follows:
-///
-/// - Instantiate the `CoerceMany` with an initial `expected_ty`.
-/// This will also serve as the "starting LUB". The expectation is
-/// that this type is something which all of the expressions *must*
-/// be coercible to. Use a fresh type variable if needed.
-/// - For each expression whose result is to be coerced, invoke `coerce()` with.
-/// - In some cases we wish to coerce "non-expressions" whose types are implicitly
-/// unit. This happens for example if you have a `break` with no expression,
-/// or an `if` with no `else`. In that case, invoke `coerce_forced_unit()`.
-/// - `coerce()` and `coerce_forced_unit()` may report errors. They hide this
-/// from you so that you don't have to worry your pretty head about it.
-/// But if an error is reported, the final type will be `err`.
-/// - Invoking `coerce()` may cause us to go and adjust the "adjustments" on
-/// previously coerced expressions.
-/// - When all done, invoke `complete()`. This will return the LUB of
-/// all your expressions.
-/// - WARNING: I don't believe this final type is guaranteed to be
-/// related to your initial `expected_ty` in any particular way,
-/// although it will typically be a subtype, so you should check it.
-/// - Invoking `complete()` may cause us to go and adjust the "adjustments" on
-/// previously coerced expressions.
-///
-/// Example:
-///
-/// ```ignore (illustrative)
-/// let mut coerce = CoerceMany::new(expected_ty);
-/// for expr in exprs {
-/// let expr_ty = fcx.check_expr_with_expectation(expr, expected);
-/// coerce.coerce(fcx, &cause, expr, expr_ty);
-/// }
-/// let final_ty = coerce.complete(fcx);
-/// ```
-pub struct CoerceMany<'tcx, 'exprs, E: AsCoercionSite> {
- expected_ty: Ty<'tcx>,
- final_ty: Option<Ty<'tcx>>,
- expressions: Expressions<'tcx, 'exprs, E>,
- pushed: usize,
-}
-
-/// The type of a `CoerceMany` that is storing up the expressions into
-/// a buffer. We use this in `check/mod.rs` for things like `break`.
-pub type DynamicCoerceMany<'tcx> = CoerceMany<'tcx, 'tcx, &'tcx hir::Expr<'tcx>>;
-
-enum Expressions<'tcx, 'exprs, E: AsCoercionSite> {
- Dynamic(Vec<&'tcx hir::Expr<'tcx>>),
- UpFront(&'exprs [E]),
-}
-
-impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
- /// The usual case; collect the set of expressions dynamically.
- /// If the full set of coercion sites is known before hand,
- /// consider `with_coercion_sites()` instead to avoid allocation.
- pub fn new(expected_ty: Ty<'tcx>) -> Self {
- Self::make(expected_ty, Expressions::Dynamic(vec![]))
- }
-
- /// As an optimization, you can create a `CoerceMany` with a
- /// pre-existing slice of expressions. In this case, you are
- /// expected to pass each element in the slice to `coerce(...)` in
- /// order. This is used with arrays in particular to avoid
- /// needlessly cloning the slice.
- pub fn with_coercion_sites(expected_ty: Ty<'tcx>, coercion_sites: &'exprs [E]) -> Self {
- Self::make(expected_ty, Expressions::UpFront(coercion_sites))
- }
-
- fn make(expected_ty: Ty<'tcx>, expressions: Expressions<'tcx, 'exprs, E>) -> Self {
- CoerceMany { expected_ty, final_ty: None, expressions, pushed: 0 }
- }
-
- /// Returns the "expected type" with which this coercion was
- /// constructed. This represents the "downward propagated" type
- /// that was given to us at the start of typing whatever construct
- /// we are typing (e.g., the match expression).
- ///
- /// Typically, this is used as the expected type when
- /// type-checking each of the alternative expressions whose types
- /// we are trying to merge.
- pub fn expected_ty(&self) -> Ty<'tcx> {
- self.expected_ty
- }
-
- /// Returns the current "merged type", representing our best-guess
- /// at the LUB of the expressions we've seen so far (if any). This
- /// isn't *final* until you call `self.complete()`, which will return
- /// the merged type.
- pub fn merged_ty(&self) -> Ty<'tcx> {
- self.final_ty.unwrap_or(self.expected_ty)
- }
-
- /// Indicates that the value generated by `expression`, which is
- /// of type `expression_ty`, is one of the possibilities that we
- /// could coerce from. This will record `expression`, and later
- /// calls to `coerce` may come back and add adjustments and things
- /// if necessary.
- pub fn coerce<'a>(
- &mut self,
- fcx: &FnCtxt<'a, 'tcx>,
- cause: &ObligationCause<'tcx>,
- expression: &'tcx hir::Expr<'tcx>,
- expression_ty: Ty<'tcx>,
- ) {
- self.coerce_inner(fcx, cause, Some(expression), expression_ty, None, false)
- }
-
- /// Indicates that one of the inputs is a "forced unit". This
- /// occurs in a case like `if foo { ... };`, where the missing else
- /// generates a "forced unit". Another example is a `loop { break;
- /// }`, where the `break` has no argument expression. We treat
- /// these cases slightly differently for error-reporting
- /// purposes. Note that these tend to correspond to cases where
- /// the `()` expression is implicit in the source, and hence we do
- /// not take an expression argument.
- ///
- /// The `augment_error` gives you a chance to extend the error
- /// message, in case any results (e.g., we use this to suggest
- /// removing a `;`).
- pub fn coerce_forced_unit<'a>(
- &mut self,
- fcx: &FnCtxt<'a, 'tcx>,
- cause: &ObligationCause<'tcx>,
- augment_error: &mut dyn FnMut(&mut Diagnostic),
- label_unit_as_expected: bool,
- ) {
- self.coerce_inner(
- fcx,
- cause,
- None,
- fcx.tcx.mk_unit(),
- Some(augment_error),
- label_unit_as_expected,
- )
- }
-
- /// The inner coercion "engine". If `expression` is `None`, this
- /// is a forced-unit case, and hence `expression_ty` must be
- /// `Nil`.
- #[instrument(skip(self, fcx, augment_error, label_expression_as_expected), level = "debug")]
- pub(crate) fn coerce_inner<'a>(
- &mut self,
- fcx: &FnCtxt<'a, 'tcx>,
- cause: &ObligationCause<'tcx>,
- expression: Option<&'tcx hir::Expr<'tcx>>,
- mut expression_ty: Ty<'tcx>,
- augment_error: Option<&mut dyn FnMut(&mut Diagnostic)>,
- label_expression_as_expected: bool,
- ) {
- // Incorporate whatever type inference information we have
- // until now; in principle we might also want to process
- // pending obligations, but doing so should only improve
- // compatibility (hopefully that is true) by helping us
- // uncover never types better.
- if expression_ty.is_ty_var() {
- expression_ty = fcx.infcx.shallow_resolve(expression_ty);
- }
-
- // If we see any error types, just propagate that error
- // upwards.
- if expression_ty.references_error() || self.merged_ty().references_error() {
- self.final_ty = Some(fcx.tcx.ty_error());
- return;
- }
-
- // Handle the actual type unification etc.
- let result = if let Some(expression) = expression {
- if self.pushed == 0 {
- // Special-case the first expression we are coercing.
- // To be honest, I'm not entirely sure why we do this.
- // We don't allow two-phase borrows, see comment in try_find_coercion_lub for why
- fcx.try_coerce(
- expression,
- expression_ty,
- self.expected_ty,
- AllowTwoPhase::No,
- Some(cause.clone()),
- )
- } else {
- match self.expressions {
- Expressions::Dynamic(ref exprs) => fcx.try_find_coercion_lub(
- cause,
- exprs,
- self.merged_ty(),
- expression,
- expression_ty,
- ),
- Expressions::UpFront(ref coercion_sites) => fcx.try_find_coercion_lub(
- cause,
- &coercion_sites[0..self.pushed],
- self.merged_ty(),
- expression,
- expression_ty,
- ),
- }
- }
- } else {
- // this is a hack for cases where we default to `()` because
- // the expression etc has been omitted from the source. An
- // example is an `if let` without an else:
- //
- // if let Some(x) = ... { }
- //
- // we wind up with a second match arm that is like `_ =>
- // ()`. That is the case we are considering here. We take
- // a different path to get the right "expected, found"
- // message and so forth (and because we know that
- // `expression_ty` will be unit).
- //
- // Another example is `break` with no argument expression.
- assert!(expression_ty.is_unit(), "if let hack without unit type");
- fcx.at(cause, fcx.param_env)
- .eq_exp(label_expression_as_expected, expression_ty, self.merged_ty())
- .map(|infer_ok| {
- fcx.register_infer_ok_obligations(infer_ok);
- expression_ty
- })
- };
-
- debug!(?result);
- match result {
- Ok(v) => {
- self.final_ty = Some(v);
- if let Some(e) = expression {
- match self.expressions {
- Expressions::Dynamic(ref mut buffer) => buffer.push(e),
- Expressions::UpFront(coercion_sites) => {
- // if the user gave us an array to validate, check that we got
- // the next expression in the list, as expected
- assert_eq!(
- coercion_sites[self.pushed].as_coercion_site().hir_id,
- e.hir_id
- );
- }
- }
- self.pushed += 1;
- }
- }
- Err(coercion_error) => {
- // Mark that we've failed to coerce the types here to suppress
- // any superfluous errors we might encounter while trying to
- // emit or provide suggestions on how to fix the initial error.
- fcx.set_tainted_by_errors();
- let (expected, found) = if label_expression_as_expected {
- // In the case where this is a "forced unit", like
- // `break`, we want to call the `()` "expected"
- // since it is implied by the syntax.
- // (Note: not all force-units work this way.)"
- (expression_ty, self.merged_ty())
- } else {
- // Otherwise, the "expected" type for error
- // reporting is the current unification type,
- // which is basically the LUB of the expressions
- // we've seen so far (combined with the expected
- // type)
- (self.merged_ty(), expression_ty)
- };
- let (expected, found) = fcx.resolve_vars_if_possible((expected, found));
-
- let mut err;
- let mut unsized_return = false;
- let mut visitor = CollectRetsVisitor { ret_exprs: vec![] };
- match *cause.code() {
- ObligationCauseCode::ReturnNoExpression => {
- err = struct_span_err!(
- fcx.tcx.sess,
- cause.span,
- E0069,
- "`return;` in a function whose return type is not `()`"
- );
- err.span_label(cause.span, "return type is not `()`");
- }
- ObligationCauseCode::BlockTailExpression(blk_id) => {
- let parent_id = fcx.tcx.hir().get_parent_node(blk_id);
- err = self.report_return_mismatched_types(
- cause,
- expected,
- found,
- coercion_error.clone(),
- fcx,
- parent_id,
- expression,
- Some(blk_id),
- );
- if !fcx.tcx.features().unsized_locals {
- unsized_return = self.is_return_ty_unsized(fcx, blk_id);
- }
- if let Some(expression) = expression
- && let hir::ExprKind::Loop(loop_blk, ..) = expression.kind {
- intravisit::walk_block(& mut visitor, loop_blk);
- }
- }
- ObligationCauseCode::ReturnValue(id) => {
- err = self.report_return_mismatched_types(
- cause,
- expected,
- found,
- coercion_error.clone(),
- fcx,
- id,
- expression,
- None,
- );
- if !fcx.tcx.features().unsized_locals {
- let id = fcx.tcx.hir().get_parent_node(id);
- unsized_return = self.is_return_ty_unsized(fcx, id);
- }
- }
- _ => {
- err = fcx.report_mismatched_types(
- cause,
- expected,
- found,
- coercion_error.clone(),
- );
- }
- }
-
- if let Some(augment_error) = augment_error {
- augment_error(&mut err);
- }
-
- let is_insufficiently_polymorphic =
- matches!(coercion_error, TypeError::RegionsInsufficientlyPolymorphic(..));
-
- if !is_insufficiently_polymorphic && let Some(expr) = expression {
- fcx.emit_coerce_suggestions(
- &mut err,
- expr,
- found,
- expected,
- None,
- Some(coercion_error),
- );
- }
-
- if visitor.ret_exprs.len() > 0 && let Some(expr) = expression {
- self.note_unreachable_loop_return(&mut err, &expr, &visitor.ret_exprs);
- }
- err.emit_unless(unsized_return);
-
- self.final_ty = Some(fcx.tcx.ty_error());
- }
- }
- }
- fn note_unreachable_loop_return(
- &self,
- err: &mut Diagnostic,
- expr: &hir::Expr<'tcx>,
- ret_exprs: &Vec<&'tcx hir::Expr<'tcx>>,
- ) {
- let hir::ExprKind::Loop(_, _, _, loop_span) = expr.kind else { return;};
- let mut span: MultiSpan = vec![loop_span].into();
- span.push_span_label(loop_span, "this might have zero elements to iterate on");
- const MAXITER: usize = 3;
- let iter = ret_exprs.iter().take(MAXITER);
- for ret_expr in iter {
- span.push_span_label(
- ret_expr.span,
- "if the loop doesn't execute, this value would never get returned",
- );
- }
- err.span_note(
- span,
- "the function expects a value to always be returned, but loops might run zero times",
- );
- if MAXITER < ret_exprs.len() {
- err.note(&format!(
- "if the loop doesn't execute, {} other values would never get returned",
- ret_exprs.len() - MAXITER
- ));
- }
- err.help(
- "return a value for the case when the loop has zero elements to iterate on, or \
- consider changing the return type to account for that possibility",
- );
- }
-
- fn report_return_mismatched_types<'a>(
- &self,
- cause: &ObligationCause<'tcx>,
- expected: Ty<'tcx>,
- found: Ty<'tcx>,
- ty_err: TypeError<'tcx>,
- fcx: &FnCtxt<'a, 'tcx>,
- id: hir::HirId,
- expression: Option<&'tcx hir::Expr<'tcx>>,
- blk_id: Option<hir::HirId>,
- ) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
- let mut err = fcx.report_mismatched_types(cause, expected, found, ty_err);
-
- let mut pointing_at_return_type = false;
- let mut fn_output = None;
-
- let parent_id = fcx.tcx.hir().get_parent_node(id);
- let parent = fcx.tcx.hir().get(parent_id);
- if let Some(expr) = expression
- && let hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Closure(&hir::Closure { body, .. }), .. }) = parent
- && !matches!(fcx.tcx.hir().body(body).value.kind, hir::ExprKind::Block(..))
- {
- fcx.suggest_missing_semicolon(&mut err, expr, expected, true);
- }
- // Verify that this is a tail expression of a function, otherwise the
- // label pointing out the cause for the type coercion will be wrong
- // as prior return coercions would not be relevant (#57664).
- let fn_decl = if let (Some(expr), Some(blk_id)) = (expression, blk_id) {
- pointing_at_return_type =
- fcx.suggest_mismatched_types_on_tail(&mut err, expr, expected, found, blk_id);
- if let (Some(cond_expr), true, false) = (
- fcx.tcx.hir().get_if_cause(expr.hir_id),
- expected.is_unit(),
- pointing_at_return_type,
- )
- // If the block is from an external macro or try (`?`) desugaring, then
- // do not suggest adding a semicolon, because there's nowhere to put it.
- // See issues #81943 and #87051.
- && matches!(
- cond_expr.span.desugaring_kind(),
- None | Some(DesugaringKind::WhileLoop)
- ) && !in_external_macro(fcx.tcx.sess, cond_expr.span)
- && !matches!(
- cond_expr.kind,
- hir::ExprKind::Match(.., hir::MatchSource::TryDesugar)
- )
- {
- err.span_label(cond_expr.span, "expected this to be `()`");
- if expr.can_have_side_effects() {
- fcx.suggest_semicolon_at_end(cond_expr.span, &mut err);
- }
- }
- fcx.get_node_fn_decl(parent).map(|(fn_decl, _, is_main)| (fn_decl, is_main))
- } else {
- fcx.get_fn_decl(parent_id)
- };
-
- if let Some((fn_decl, can_suggest)) = fn_decl {
- if blk_id.is_none() {
- pointing_at_return_type |= fcx.suggest_missing_return_type(
- &mut err,
- &fn_decl,
- expected,
- found,
- can_suggest,
- fcx.tcx.hir().local_def_id_to_hir_id(fcx.tcx.hir().get_parent_item(id)),
- );
- }
- if !pointing_at_return_type {
- fn_output = Some(&fn_decl.output); // `impl Trait` return type
- }
- }
-
- let parent_id = fcx.tcx.hir().get_parent_item(id);
- let parent_item = fcx.tcx.hir().get_by_def_id(parent_id);
-
- if let (Some(expr), Some(_), Some((fn_decl, _, _))) =
- (expression, blk_id, fcx.get_node_fn_decl(parent_item))
- {
- fcx.suggest_missing_break_or_return_expr(
- &mut err,
- expr,
- fn_decl,
- expected,
- found,
- id,
- fcx.tcx.hir().local_def_id_to_hir_id(parent_id),
- );
- }
-
- let ret_coercion_span = fcx.ret_coercion_span.get();
-
- if let Some(sp) = ret_coercion_span
- // If the closure has an explicit return type annotation, or if
- // the closure's return type has been inferred from outside
- // requirements (such as an Fn* trait bound), then a type error
- // may occur at the first return expression we see in the closure
- // (if it conflicts with the declared return type). Skip adding a
- // note in this case, since it would be incorrect.
- && !fcx.return_type_pre_known
- {
- err.span_note(
- sp,
- &format!(
- "return type inferred to be `{}` here",
- expected
- ),
- );
- }
-
- if let (Some(sp), Some(fn_output)) = (ret_coercion_span, fn_output) {
- self.add_impl_trait_explanation(&mut err, cause, fcx, expected, sp, fn_output);
- }
-
- err
- }
-
- fn add_impl_trait_explanation<'a>(
- &self,
- err: &mut Diagnostic,
- cause: &ObligationCause<'tcx>,
- fcx: &FnCtxt<'a, 'tcx>,
- expected: Ty<'tcx>,
- sp: Span,
- fn_output: &hir::FnRetTy<'_>,
- ) {
- let return_sp = fn_output.span();
- err.span_label(return_sp, "expected because this return type...");
- err.span_label(
- sp,
- format!("...is found to be `{}` here", fcx.resolve_vars_with_obligations(expected)),
- );
- let impl_trait_msg = "for information on `impl Trait`, see \
- <https://doc.rust-lang.org/book/ch10-02-traits.html\
- #returning-types-that-implement-traits>";
- let trait_obj_msg = "for information on trait objects, see \
- <https://doc.rust-lang.org/book/ch17-02-trait-objects.html\
- #using-trait-objects-that-allow-for-values-of-different-types>";
- err.note("to return `impl Trait`, all returned values must be of the same type");
- err.note(impl_trait_msg);
- let snippet = fcx
- .tcx
- .sess
- .source_map()
- .span_to_snippet(return_sp)
- .unwrap_or_else(|_| "dyn Trait".to_string());
- let mut snippet_iter = snippet.split_whitespace();
- let has_impl = snippet_iter.next().map_or(false, |s| s == "impl");
- // Only suggest `Box<dyn Trait>` if `Trait` in `impl Trait` is object safe.
- let mut is_object_safe = false;
- if let hir::FnRetTy::Return(ty) = fn_output
- // Get the return type.
- && let hir::TyKind::OpaqueDef(..) = ty.kind
- {
- let ty = <dyn AstConv<'_>>::ast_ty_to_ty(fcx, ty);
- // Get the `impl Trait`'s `DefId`.
- if let ty::Opaque(def_id, _) = ty.kind()
- // Get the `impl Trait`'s `Item` so that we can get its trait bounds and
- // get the `Trait`'s `DefId`.
- && let hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds, .. }) =
- fcx.tcx.hir().expect_item(def_id.expect_local()).kind
- {
- // Are of this `impl Trait`'s traits object safe?
- is_object_safe = bounds.iter().all(|bound| {
- bound
- .trait_ref()
- .and_then(|t| t.trait_def_id())
- .map_or(false, |def_id| {
- fcx.tcx.object_safety_violations(def_id).is_empty()
- })
- })
- }
- };
- if has_impl {
- if is_object_safe {
- err.multipart_suggestion(
- "you could change the return type to be a boxed trait object",
- vec![
- (return_sp.with_hi(return_sp.lo() + BytePos(4)), "Box<dyn".to_string()),
- (return_sp.shrink_to_hi(), ">".to_string()),
- ],
- Applicability::MachineApplicable,
- );
- let sugg = [sp, cause.span]
- .into_iter()
- .flat_map(|sp| {
- [
- (sp.shrink_to_lo(), "Box::new(".to_string()),
- (sp.shrink_to_hi(), ")".to_string()),
- ]
- .into_iter()
- })
- .collect::<Vec<_>>();
- err.multipart_suggestion(
- "if you change the return type to expect trait objects, box the returned \
- expressions",
- sugg,
- Applicability::MaybeIncorrect,
- );
- } else {
- err.help(&format!(
- "if the trait `{}` were object safe, you could return a boxed trait object",
- &snippet[5..]
- ));
- }
- err.note(trait_obj_msg);
- }
- err.help("you could instead create a new `enum` with a variant for each returned type");
- }
-
- fn is_return_ty_unsized<'a>(&self, fcx: &FnCtxt<'a, 'tcx>, blk_id: hir::HirId) -> bool {
- if let Some((fn_decl, _)) = fcx.get_fn_decl(blk_id)
- && let hir::FnRetTy::Return(ty) = fn_decl.output
- && let ty = <dyn AstConv<'_>>::ast_ty_to_ty(fcx, ty)
- && let ty::Dynamic(..) = ty.kind()
- {
- return true;
- }
- false
- }
-
- pub fn complete<'a>(self, fcx: &FnCtxt<'a, 'tcx>) -> Ty<'tcx> {
- if let Some(final_ty) = self.final_ty {
- final_ty
- } else {
- // If we only had inputs that were of type `!` (or no
- // inputs at all), then the final type is `!`.
- assert_eq!(self.pushed, 0);
- fcx.tcx.types.never
- }
- }
-}
-
-/// Something that can be converted into an expression to which we can
-/// apply a coercion.
-pub trait AsCoercionSite {
- fn as_coercion_site(&self) -> &hir::Expr<'_>;
-}
-
-impl AsCoercionSite for hir::Expr<'_> {
- fn as_coercion_site(&self) -> &hir::Expr<'_> {
- self
- }
-}
-
-impl<'a, T> AsCoercionSite for &'a T
-where
- T: AsCoercionSite,
-{
- fn as_coercion_site(&self) -> &hir::Expr<'_> {
- (**self).as_coercion_site()
- }
-}
-
-impl AsCoercionSite for ! {
- fn as_coercion_site(&self) -> &hir::Expr<'_> {
- unreachable!()
- }
-}
-
-impl AsCoercionSite for hir::Arm<'_> {
- fn as_coercion_site(&self) -> &hir::Expr<'_> {
- &self.body
- }
-}