summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_typeck/src/check/method/probe.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:11:38 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:13:23 +0000
commit20431706a863f92cb37dc512fef6e48d192aaf2c (patch)
tree2867f13f5fd5437ba628c67d7f87309ccadcd286 /compiler/rustc_typeck/src/check/method/probe.rs
parentReleasing progress-linux version 1.65.0+dfsg1-2~progress7.99u1. (diff)
downloadrustc-20431706a863f92cb37dc512fef6e48d192aaf2c.tar.xz
rustc-20431706a863f92cb37dc512fef6e48d192aaf2c.zip
Merging upstream version 1.66.0+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'compiler/rustc_typeck/src/check/method/probe.rs')
-rw-r--r--compiler/rustc_typeck/src/check/method/probe.rs1927
1 files changed, 0 insertions, 1927 deletions
diff --git a/compiler/rustc_typeck/src/check/method/probe.rs b/compiler/rustc_typeck/src/check/method/probe.rs
deleted file mode 100644
index e9f55ab34..000000000
--- a/compiler/rustc_typeck/src/check/method/probe.rs
+++ /dev/null
@@ -1,1927 +0,0 @@
-use super::suggest;
-use super::CandidateSource;
-use super::MethodError;
-use super::NoMatchData;
-
-use crate::check::FnCtxt;
-use crate::errors::MethodCallOnUnknownType;
-use crate::hir::def::DefKind;
-use crate::hir::def_id::DefId;
-
-use rustc_data_structures::fx::FxHashSet;
-use rustc_errors::Applicability;
-use rustc_hir as hir;
-use rustc_hir::def::Namespace;
-use rustc_infer::infer::canonical::OriginalQueryValues;
-use rustc_infer::infer::canonical::{Canonical, QueryResponse};
-use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
-use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
-use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
-use rustc_middle::middle::stability;
-use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
-use rustc_middle::ty::subst::{InternalSubsts, Subst, SubstsRef};
-use rustc_middle::ty::GenericParamDefKind;
-use rustc_middle::ty::{self, ParamEnvAnd, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitable};
-use rustc_session::lint;
-use rustc_span::def_id::LocalDefId;
-use rustc_span::lev_distance::{
- find_best_match_for_name_with_substrings, lev_distance_with_substrings,
-};
-use rustc_span::symbol::sym;
-use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
-use rustc_trait_selection::autoderef::{self, Autoderef};
-use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
-use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
-use rustc_trait_selection::traits::query::method_autoderef::{
- CandidateStep, MethodAutoderefStepsResult,
-};
-use rustc_trait_selection::traits::query::CanonicalTyGoal;
-use rustc_trait_selection::traits::{self, ObligationCause};
-use std::cmp::max;
-use std::iter;
-use std::mem;
-use std::ops::Deref;
-
-use smallvec::{smallvec, SmallVec};
-
-use self::CandidateKind::*;
-pub use self::PickKind::*;
-
-/// Boolean flag used to indicate if this search is for a suggestion
-/// or not. If true, we can allow ambiguity and so forth.
-#[derive(Clone, Copy, Debug)]
-pub struct IsSuggestion(pub bool);
-
-struct ProbeContext<'a, 'tcx> {
- fcx: &'a FnCtxt<'a, 'tcx>,
- span: Span,
- mode: Mode,
- method_name: Option<Ident>,
- return_type: Option<Ty<'tcx>>,
-
- /// This is the OriginalQueryValues for the steps queries
- /// that are answered in steps.
- orig_steps_var_values: OriginalQueryValues<'tcx>,
- steps: &'tcx [CandidateStep<'tcx>],
-
- inherent_candidates: Vec<Candidate<'tcx>>,
- extension_candidates: Vec<Candidate<'tcx>>,
- impl_dups: FxHashSet<DefId>,
-
- /// Collects near misses when the candidate functions are missing a `self` keyword and is only
- /// used for error reporting
- static_candidates: Vec<CandidateSource>,
-
- /// When probing for names, include names that are close to the
- /// requested name (by Levensthein distance)
- allow_similar_names: bool,
-
- /// Some(candidate) if there is a private candidate
- private_candidate: Option<(DefKind, DefId)>,
-
- /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
- /// for error reporting
- unsatisfied_predicates:
- Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
-
- is_suggestion: IsSuggestion,
-
- scope_expr_id: hir::HirId,
-}
-
-impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
- type Target = FnCtxt<'a, 'tcx>;
- fn deref(&self) -> &Self::Target {
- self.fcx
- }
-}
-
-#[derive(Debug, Clone)]
-struct Candidate<'tcx> {
- // Candidates are (I'm not quite sure, but they are mostly) basically
- // some metadata on top of a `ty::AssocItem` (without substs).
- //
- // However, method probing wants to be able to evaluate the predicates
- // for a function with the substs applied - for example, if a function
- // has `where Self: Sized`, we don't want to consider it unless `Self`
- // is actually `Sized`, and similarly, return-type suggestions want
- // to consider the "actual" return type.
- //
- // The way this is handled is through `xform_self_ty`. It contains
- // the receiver type of this candidate, but `xform_self_ty`,
- // `xform_ret_ty` and `kind` (which contains the predicates) have the
- // generic parameters of this candidate substituted with the *same set*
- // of inference variables, which acts as some weird sort of "query".
- //
- // When we check out a candidate, we require `xform_self_ty` to be
- // a subtype of the passed-in self-type, and this equates the type
- // variables in the rest of the fields.
- //
- // For example, if we have this candidate:
- // ```
- // trait Foo {
- // fn foo(&self) where Self: Sized;
- // }
- // ```
- //
- // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
- // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
- // the receiver `&T`, we'll do the subtyping which will make `?X`
- // get the right value, then when we evaluate the predicate we'll check
- // if `T: Sized`.
- xform_self_ty: Ty<'tcx>,
- xform_ret_ty: Option<Ty<'tcx>>,
- item: ty::AssocItem,
- kind: CandidateKind<'tcx>,
- import_ids: SmallVec<[LocalDefId; 1]>,
-}
-
-#[derive(Debug, Clone)]
-enum CandidateKind<'tcx> {
- InherentImplCandidate(
- SubstsRef<'tcx>,
- // Normalize obligations
- Vec<traits::PredicateObligation<'tcx>>,
- ),
- ObjectCandidate,
- TraitCandidate(ty::TraitRef<'tcx>),
- WhereClauseCandidate(
- // Trait
- ty::PolyTraitRef<'tcx>,
- ),
-}
-
-#[derive(Debug, PartialEq, Eq, Copy, Clone)]
-enum ProbeResult {
- NoMatch,
- BadReturnType,
- Match,
-}
-
-/// When adjusting a receiver we often want to do one of
-///
-/// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
-/// - If the receiver has type `*mut T`, convert it to `*const T`
-///
-/// This type tells us which one to do.
-///
-/// Note that in principle we could do both at the same time. For example, when the receiver has
-/// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
-/// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
-/// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
-/// `mut`), or it has type `*mut T` and we convert it to `*const T`.
-#[derive(Debug, PartialEq, Copy, Clone)]
-pub enum AutorefOrPtrAdjustment {
- /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
- /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
- Autoref {
- mutbl: hir::Mutability,
-
- /// Indicates that the source expression should be "unsized" to a target type.
- /// This is special-cased for just arrays unsizing to slices.
- unsize: bool,
- },
- /// Receiver has type `*mut T`, convert to `*const T`
- ToConstPtr,
-}
-
-impl AutorefOrPtrAdjustment {
- fn get_unsize(&self) -> bool {
- match self {
- AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
- AutorefOrPtrAdjustment::ToConstPtr => false,
- }
- }
-}
-
-#[derive(Debug, PartialEq, Clone)]
-pub struct Pick<'tcx> {
- pub item: ty::AssocItem,
- pub kind: PickKind<'tcx>,
- pub import_ids: SmallVec<[LocalDefId; 1]>,
-
- /// Indicates that the source expression should be autoderef'd N times
- /// ```ignore (not-rust)
- /// A = expr | *expr | **expr | ...
- /// ```
- pub autoderefs: usize,
-
- /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
- /// `*mut T`, convert it to `*const T`.
- pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
- pub self_ty: Ty<'tcx>,
-}
-
-#[derive(Clone, Debug, PartialEq, Eq)]
-pub enum PickKind<'tcx> {
- InherentImplPick,
- ObjectPick,
- TraitPick,
- WhereClausePick(
- // Trait
- ty::PolyTraitRef<'tcx>,
- ),
-}
-
-pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
-
-#[derive(PartialEq, Eq, Copy, Clone, Debug)]
-pub enum Mode {
- // An expression of the form `receiver.method_name(...)`.
- // Autoderefs are performed on `receiver`, lookup is done based on the
- // `self` argument of the method, and static methods aren't considered.
- MethodCall,
- // An expression of the form `Type::item` or `<T>::item`.
- // No autoderefs are performed, lookup is done based on the type each
- // implementation is for, and static methods are included.
- Path,
-}
-
-#[derive(PartialEq, Eq, Copy, Clone, Debug)]
-pub enum ProbeScope {
- // Assemble candidates coming only from traits in scope.
- TraitsInScope,
-
- // Assemble candidates coming from all traits.
- AllTraits,
-}
-
-impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
- /// This is used to offer suggestions to users. It returns methods
- /// that could have been called which have the desired return
- /// type. Some effort is made to rule out methods that, if called,
- /// would result in an error (basically, the same criteria we
- /// would use to decide if a method is a plausible fit for
- /// ambiguity purposes).
- #[instrument(level = "debug", skip(self))]
- pub fn probe_for_return_type(
- &self,
- span: Span,
- mode: Mode,
- return_type: Ty<'tcx>,
- self_ty: Ty<'tcx>,
- scope_expr_id: hir::HirId,
- ) -> Vec<ty::AssocItem> {
- let method_names = self
- .probe_op(
- span,
- mode,
- None,
- Some(return_type),
- IsSuggestion(true),
- self_ty,
- scope_expr_id,
- ProbeScope::AllTraits,
- |probe_cx| Ok(probe_cx.candidate_method_names()),
- )
- .unwrap_or_default();
- method_names
- .iter()
- .flat_map(|&method_name| {
- self.probe_op(
- span,
- mode,
- Some(method_name),
- Some(return_type),
- IsSuggestion(true),
- self_ty,
- scope_expr_id,
- ProbeScope::AllTraits,
- |probe_cx| probe_cx.pick(),
- )
- .ok()
- .map(|pick| pick.item)
- })
- .collect()
- }
-
- #[instrument(level = "debug", skip(self))]
- pub fn probe_for_name(
- &self,
- span: Span,
- mode: Mode,
- item_name: Ident,
- is_suggestion: IsSuggestion,
- self_ty: Ty<'tcx>,
- scope_expr_id: hir::HirId,
- scope: ProbeScope,
- ) -> PickResult<'tcx> {
- self.probe_op(
- span,
- mode,
- Some(item_name),
- None,
- is_suggestion,
- self_ty,
- scope_expr_id,
- scope,
- |probe_cx| probe_cx.pick(),
- )
- }
-
- fn probe_op<OP, R>(
- &'a self,
- span: Span,
- mode: Mode,
- method_name: Option<Ident>,
- return_type: Option<Ty<'tcx>>,
- is_suggestion: IsSuggestion,
- self_ty: Ty<'tcx>,
- scope_expr_id: hir::HirId,
- scope: ProbeScope,
- op: OP,
- ) -> Result<R, MethodError<'tcx>>
- where
- OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
- {
- let mut orig_values = OriginalQueryValues::default();
- let param_env_and_self_ty = self.canonicalize_query(
- ParamEnvAnd { param_env: self.param_env, value: self_ty },
- &mut orig_values,
- );
-
- let steps = if mode == Mode::MethodCall {
- self.tcx.method_autoderef_steps(param_env_and_self_ty)
- } else {
- self.probe(|_| {
- // Mode::Path - the deref steps is "trivial". This turns
- // our CanonicalQuery into a "trivial" QueryResponse. This
- // is a bit inefficient, but I don't think that writing
- // special handling for this "trivial case" is a good idea.
-
- let infcx = &self.infcx;
- let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
- infcx.instantiate_canonical_with_fresh_inference_vars(
- span,
- &param_env_and_self_ty,
- );
- debug!(
- "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
- param_env_and_self_ty, self_ty
- );
- MethodAutoderefStepsResult {
- steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
- self_ty: self.make_query_response_ignoring_pending_obligations(
- canonical_inference_vars,
- self_ty,
- ),
- autoderefs: 0,
- from_unsafe_deref: false,
- unsize: false,
- }]),
- opt_bad_ty: None,
- reached_recursion_limit: false,
- }
- })
- };
-
- // If our autoderef loop had reached the recursion limit,
- // report an overflow error, but continue going on with
- // the truncated autoderef list.
- if steps.reached_recursion_limit {
- self.probe(|_| {
- let ty = &steps
- .steps
- .last()
- .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
- .self_ty;
- let ty = self
- .probe_instantiate_query_response(span, &orig_values, ty)
- .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
- autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
- });
- }
-
- // If we encountered an `_` type or an error type during autoderef, this is
- // ambiguous.
- if let Some(bad_ty) = &steps.opt_bad_ty {
- if is_suggestion.0 {
- // Ambiguity was encountered during a suggestion. Just keep going.
- debug!("ProbeContext: encountered ambiguity in suggestion");
- } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
- // this case used to be allowed by the compiler,
- // so we do a future-compat lint here for the 2015 edition
- // (see https://github.com/rust-lang/rust/issues/46906)
- if self.tcx.sess.rust_2018() {
- self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
- } else {
- self.tcx.struct_span_lint_hir(
- lint::builtin::TYVAR_BEHIND_RAW_POINTER,
- scope_expr_id,
- span,
- |lint| {
- lint.build("type annotations needed").emit();
- },
- );
- }
- } else {
- // Encountered a real ambiguity, so abort the lookup. If `ty` is not
- // an `Err`, report the right "type annotations needed" error pointing
- // to it.
- let ty = &bad_ty.ty;
- let ty = self
- .probe_instantiate_query_response(span, &orig_values, ty)
- .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
- let ty = self.structurally_resolved_type(span, ty.value);
- assert!(matches!(ty.kind(), ty::Error(_)));
- return Err(MethodError::NoMatch(NoMatchData {
- static_candidates: Vec::new(),
- unsatisfied_predicates: Vec::new(),
- out_of_scope_traits: Vec::new(),
- lev_candidate: None,
- mode,
- }));
- }
- }
-
- debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
-
- // this creates one big transaction so that all type variables etc
- // that we create during the probe process are removed later
- self.probe(|_| {
- let mut probe_cx = ProbeContext::new(
- self,
- span,
- mode,
- method_name,
- return_type,
- orig_values,
- steps.steps,
- is_suggestion,
- scope_expr_id,
- );
-
- probe_cx.assemble_inherent_candidates();
- match scope {
- ProbeScope::TraitsInScope => {
- probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
- }
- ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
- };
- op(probe_cx)
- })
- }
-}
-
-pub fn provide(providers: &mut ty::query::Providers) {
- providers.method_autoderef_steps = method_autoderef_steps;
-}
-
-fn method_autoderef_steps<'tcx>(
- tcx: TyCtxt<'tcx>,
- goal: CanonicalTyGoal<'tcx>,
-) -> MethodAutoderefStepsResult<'tcx> {
- debug!("method_autoderef_steps({:?})", goal);
-
- tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
- let ParamEnvAnd { param_env, value: self_ty } = goal;
-
- let mut autoderef =
- Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty, DUMMY_SP)
- .include_raw_pointers()
- .silence_errors();
- let mut reached_raw_pointer = false;
- let mut steps: Vec<_> = autoderef
- .by_ref()
- .map(|(ty, d)| {
- let step = CandidateStep {
- self_ty: infcx.make_query_response_ignoring_pending_obligations(
- inference_vars.clone(),
- ty,
- ),
- autoderefs: d,
- from_unsafe_deref: reached_raw_pointer,
- unsize: false,
- };
- if let ty::RawPtr(_) = ty.kind() {
- // all the subsequent steps will be from_unsafe_deref
- reached_raw_pointer = true;
- }
- step
- })
- .collect();
-
- let final_ty = autoderef.final_ty(true);
- let opt_bad_ty = match final_ty.kind() {
- ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
- reached_raw_pointer,
- ty: infcx
- .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
- }),
- ty::Array(elem_ty, _) => {
- let dereferences = steps.len() - 1;
-
- steps.push(CandidateStep {
- self_ty: infcx.make_query_response_ignoring_pending_obligations(
- inference_vars,
- infcx.tcx.mk_slice(*elem_ty),
- ),
- autoderefs: dereferences,
- // this could be from an unsafe deref if we had
- // a *mut/const [T; N]
- from_unsafe_deref: reached_raw_pointer,
- unsize: true,
- });
-
- None
- }
- _ => None,
- };
-
- debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
-
- MethodAutoderefStepsResult {
- steps: tcx.arena.alloc_from_iter(steps),
- opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
- reached_recursion_limit: autoderef.reached_recursion_limit(),
- }
- })
-}
-
-impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
- fn new(
- fcx: &'a FnCtxt<'a, 'tcx>,
- span: Span,
- mode: Mode,
- method_name: Option<Ident>,
- return_type: Option<Ty<'tcx>>,
- orig_steps_var_values: OriginalQueryValues<'tcx>,
- steps: &'tcx [CandidateStep<'tcx>],
- is_suggestion: IsSuggestion,
- scope_expr_id: hir::HirId,
- ) -> ProbeContext<'a, 'tcx> {
- ProbeContext {
- fcx,
- span,
- mode,
- method_name,
- return_type,
- inherent_candidates: Vec::new(),
- extension_candidates: Vec::new(),
- impl_dups: FxHashSet::default(),
- orig_steps_var_values,
- steps,
- static_candidates: Vec::new(),
- allow_similar_names: false,
- private_candidate: None,
- unsatisfied_predicates: Vec::new(),
- is_suggestion,
- scope_expr_id,
- }
- }
-
- fn reset(&mut self) {
- self.inherent_candidates.clear();
- self.extension_candidates.clear();
- self.impl_dups.clear();
- self.static_candidates.clear();
- self.private_candidate = None;
- }
-
- ///////////////////////////////////////////////////////////////////////////
- // CANDIDATE ASSEMBLY
-
- fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
- let is_accessible = if let Some(name) = self.method_name {
- let item = candidate.item;
- let def_scope = self
- .tcx
- .adjust_ident_and_get_scope(name, item.container_id(self.tcx), self.body_id)
- .1;
- item.visibility(self.tcx).is_accessible_from(def_scope, self.tcx)
- } else {
- true
- };
- if is_accessible {
- if is_inherent {
- self.inherent_candidates.push(candidate);
- } else {
- self.extension_candidates.push(candidate);
- }
- } else if self.private_candidate.is_none() {
- self.private_candidate =
- Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
- }
- }
-
- fn assemble_inherent_candidates(&mut self) {
- for step in self.steps.iter() {
- self.assemble_probe(&step.self_ty);
- }
- }
-
- fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
- debug!("assemble_probe: self_ty={:?}", self_ty);
- let raw_self_ty = self_ty.value.value;
- match *raw_self_ty.kind() {
- ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
- // Subtle: we can't use `instantiate_query_response` here: using it will
- // commit to all of the type equalities assumed by inference going through
- // autoderef (see the `method-probe-no-guessing` test).
- //
- // However, in this code, it is OK if we end up with an object type that is
- // "more general" than the object type that we are evaluating. For *every*
- // object type `MY_OBJECT`, a function call that goes through a trait-ref
- // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
- // `ObjectCandidate`, and it should be discoverable "exactly" through one
- // of the iterations in the autoderef loop, so there is no problem with it
- // being discoverable in another one of these iterations.
- //
- // Using `instantiate_canonical_with_fresh_inference_vars` on our
- // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
- // `CanonicalVarValues` will exactly give us such a generalization - it
- // will still match the original object type, but it won't pollute our
- // type variables in any form, so just do that!
- let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
- self.fcx
- .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
-
- self.assemble_inherent_candidates_from_object(generalized_self_ty);
- self.assemble_inherent_impl_candidates_for_type(p.def_id());
- if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
- self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
- }
- }
- ty::Adt(def, _) => {
- let def_id = def.did();
- self.assemble_inherent_impl_candidates_for_type(def_id);
- if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
- self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
- }
- }
- ty::Foreign(did) => {
- self.assemble_inherent_impl_candidates_for_type(did);
- if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
- self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty);
- }
- }
- ty::Param(p) => {
- self.assemble_inherent_candidates_from_param(p);
- }
- ty::Bool
- | ty::Char
- | ty::Int(_)
- | ty::Uint(_)
- | ty::Float(_)
- | ty::Str
- | ty::Array(..)
- | ty::Slice(_)
- | ty::RawPtr(_)
- | ty::Ref(..)
- | ty::Never
- | ty::Tuple(..) => self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty),
- _ => {}
- }
- }
-
- fn assemble_inherent_candidates_for_incoherent_ty(&mut self, self_ty: Ty<'tcx>) {
- let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsInfer) else {
- bug!("unexpected incoherent type: {:?}", self_ty)
- };
- for &impl_def_id in self.tcx.incoherent_impls(simp) {
- self.assemble_inherent_impl_probe(impl_def_id);
- }
- }
-
- fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
- let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
- for &impl_def_id in impl_def_ids.iter() {
- self.assemble_inherent_impl_probe(impl_def_id);
- }
- }
-
- fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
- if !self.impl_dups.insert(impl_def_id) {
- return; // already visited
- }
-
- debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
-
- for item in self.impl_or_trait_item(impl_def_id) {
- if !self.has_applicable_self(&item) {
- // No receiver declared. Not a candidate.
- self.record_static_candidate(CandidateSource::Impl(impl_def_id));
- continue;
- }
-
- let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
- let impl_ty = impl_ty.subst(self.tcx, impl_substs);
-
- debug!("impl_ty: {:?}", impl_ty);
-
- // Determine the receiver type that the method itself expects.
- let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
- debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
-
- // We can't use normalize_associated_types_in as it will pollute the
- // fcx's fulfillment context after this probe is over.
- // Note: we only normalize `xform_self_ty` here since the normalization
- // of the return type can lead to inference results that prohibit
- // valid candidates from being found, see issue #85671
- // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
- // which might be caused by the `param_env` itself. The clauses of the `param_env`
- // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
- // see issue #89650
- let cause = traits::ObligationCause::misc(self.span, self.body_id);
- let selcx = &mut traits::SelectionContext::new(self.fcx);
- let traits::Normalized { value: xform_self_ty, obligations } =
- traits::normalize(selcx, self.param_env, cause, xform_self_ty);
- debug!(
- "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
- xform_self_ty, xform_ret_ty
- );
-
- self.push_candidate(
- Candidate {
- xform_self_ty,
- xform_ret_ty,
- item,
- kind: InherentImplCandidate(impl_substs, obligations),
- import_ids: smallvec![],
- },
- true,
- );
- }
- }
-
- fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
- debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
-
- let principal = match self_ty.kind() {
- ty::Dynamic(ref data, ..) => Some(data),
- _ => None,
- }
- .and_then(|data| data.principal())
- .unwrap_or_else(|| {
- span_bug!(
- self.span,
- "non-object {:?} in assemble_inherent_candidates_from_object",
- self_ty
- )
- });
-
- // It is illegal to invoke a method on a trait instance that refers to
- // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
- // will be reported by `object_safety.rs` if the method refers to the
- // `Self` type anywhere other than the receiver. Here, we use a
- // substitution that replaces `Self` with the object type itself. Hence,
- // a `&self` method will wind up with an argument type like `&dyn Trait`.
- let trait_ref = principal.with_self_ty(self.tcx, self_ty);
- self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
- let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
-
- let (xform_self_ty, xform_ret_ty) =
- this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
- this.push_candidate(
- Candidate {
- xform_self_ty,
- xform_ret_ty,
- item,
- kind: ObjectCandidate,
- import_ids: smallvec![],
- },
- true,
- );
- });
- }
-
- fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
- // FIXME: do we want to commit to this behavior for param bounds?
- debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
-
- let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
- let bound_predicate = predicate.kind();
- match bound_predicate.skip_binder() {
- ty::PredicateKind::Trait(trait_predicate) => {
- match *trait_predicate.trait_ref.self_ty().kind() {
- ty::Param(p) if p == param_ty => {
- Some(bound_predicate.rebind(trait_predicate.trait_ref))
- }
- _ => None,
- }
- }
- ty::PredicateKind::Subtype(..)
- | ty::PredicateKind::Coerce(..)
- | ty::PredicateKind::Projection(..)
- | ty::PredicateKind::RegionOutlives(..)
- | ty::PredicateKind::WellFormed(..)
- | ty::PredicateKind::ObjectSafe(..)
- | ty::PredicateKind::ClosureKind(..)
- | ty::PredicateKind::TypeOutlives(..)
- | ty::PredicateKind::ConstEvaluatable(..)
- | ty::PredicateKind::ConstEquate(..)
- | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
- }
- });
-
- self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
- let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
-
- let (xform_self_ty, xform_ret_ty) =
- this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
-
- // Because this trait derives from a where-clause, it
- // should not contain any inference variables or other
- // artifacts. This means it is safe to put into the
- // `WhereClauseCandidate` and (eventually) into the
- // `WhereClausePick`.
- assert!(!trait_ref.substs.needs_infer());
-
- this.push_candidate(
- Candidate {
- xform_self_ty,
- xform_ret_ty,
- item,
- kind: WhereClauseCandidate(poly_trait_ref),
- import_ids: smallvec![],
- },
- true,
- );
- });
- }
-
- // Do a search through a list of bounds, using a callback to actually
- // create the candidates.
- fn elaborate_bounds<F>(
- &mut self,
- bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
- mut mk_cand: F,
- ) where
- F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
- {
- let tcx = self.tcx;
- for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
- debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
- for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
- if !self.has_applicable_self(&item) {
- self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
- } else {
- mk_cand(self, bound_trait_ref, item);
- }
- }
- }
- }
-
- fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
- let mut duplicates = FxHashSet::default();
- let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
- if let Some(applicable_traits) = opt_applicable_traits {
- for trait_candidate in applicable_traits.iter() {
- let trait_did = trait_candidate.def_id;
- if duplicates.insert(trait_did) {
- self.assemble_extension_candidates_for_trait(
- &trait_candidate.import_ids,
- trait_did,
- );
- }
- }
- }
- }
-
- fn assemble_extension_candidates_for_all_traits(&mut self) {
- let mut duplicates = FxHashSet::default();
- for trait_info in suggest::all_traits(self.tcx) {
- if duplicates.insert(trait_info.def_id) {
- self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
- }
- }
- }
-
- pub fn matches_return_type(
- &self,
- method: &ty::AssocItem,
- self_ty: Option<Ty<'tcx>>,
- expected: Ty<'tcx>,
- ) -> bool {
- match method.kind {
- ty::AssocKind::Fn => {
- let fty = self.tcx.bound_fn_sig(method.def_id);
- self.probe(|_| {
- let substs = self.fresh_substs_for_item(self.span, method.def_id);
- let fty = fty.subst(self.tcx, substs);
- let fty =
- self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
-
- if let Some(self_ty) = self_ty {
- if self
- .at(&ObligationCause::dummy(), self.param_env)
- .sup(fty.inputs()[0], self_ty)
- .is_err()
- {
- return false;
- }
- }
- self.can_sub(self.param_env, fty.output(), expected).is_ok()
- })
- }
- _ => false,
- }
- }
-
- fn assemble_extension_candidates_for_trait(
- &mut self,
- import_ids: &SmallVec<[LocalDefId; 1]>,
- trait_def_id: DefId,
- ) {
- debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
- let trait_substs = self.fresh_item_substs(trait_def_id);
- let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
-
- if self.tcx.is_trait_alias(trait_def_id) {
- // For trait aliases, assume all supertraits are relevant.
- let bounds = iter::once(ty::Binder::dummy(trait_ref));
- self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
- let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
-
- let (xform_self_ty, xform_ret_ty) =
- this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
- this.push_candidate(
- Candidate {
- xform_self_ty,
- xform_ret_ty,
- item,
- import_ids: import_ids.clone(),
- kind: TraitCandidate(new_trait_ref),
- },
- false,
- );
- });
- } else {
- debug_assert!(self.tcx.is_trait(trait_def_id));
- for item in self.impl_or_trait_item(trait_def_id) {
- // Check whether `trait_def_id` defines a method with suitable name.
- if !self.has_applicable_self(&item) {
- debug!("method has inapplicable self");
- self.record_static_candidate(CandidateSource::Trait(trait_def_id));
- continue;
- }
-
- let (xform_self_ty, xform_ret_ty) =
- self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
- self.push_candidate(
- Candidate {
- xform_self_ty,
- xform_ret_ty,
- item,
- import_ids: import_ids.clone(),
- kind: TraitCandidate(trait_ref),
- },
- false,
- );
- }
- }
- }
-
- fn candidate_method_names(&self) -> Vec<Ident> {
- let mut set = FxHashSet::default();
- let mut names: Vec<_> = self
- .inherent_candidates
- .iter()
- .chain(&self.extension_candidates)
- .filter(|candidate| {
- if let Some(return_ty) = self.return_type {
- self.matches_return_type(&candidate.item, None, return_ty)
- } else {
- true
- }
- })
- .map(|candidate| candidate.item.ident(self.tcx))
- .filter(|&name| set.insert(name))
- .collect();
-
- // Sort them by the name so we have a stable result.
- names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
- names
- }
-
- ///////////////////////////////////////////////////////////////////////////
- // THE ACTUAL SEARCH
-
- fn pick(mut self) -> PickResult<'tcx> {
- assert!(self.method_name.is_some());
-
- if let Some(r) = self.pick_core() {
- return r;
- }
-
- debug!("pick: actual search failed, assemble diagnostics");
-
- let static_candidates = mem::take(&mut self.static_candidates);
- let private_candidate = self.private_candidate.take();
- let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
-
- // things failed, so lets look at all traits, for diagnostic purposes now:
- self.reset();
-
- let span = self.span;
- let tcx = self.tcx;
-
- self.assemble_extension_candidates_for_all_traits();
-
- let out_of_scope_traits = match self.pick_core() {
- Some(Ok(p)) => vec![p.item.container_id(self.tcx)],
- //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
- Some(Err(MethodError::Ambiguity(v))) => v
- .into_iter()
- .map(|source| match source {
- CandidateSource::Trait(id) => id,
- CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
- Some(id) => id,
- None => span_bug!(span, "found inherent method when looking at traits"),
- },
- })
- .collect(),
- Some(Err(MethodError::NoMatch(NoMatchData {
- out_of_scope_traits: others, ..
- }))) => {
- assert!(others.is_empty());
- vec![]
- }
- _ => vec![],
- };
-
- if let Some((kind, def_id)) = private_candidate {
- return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
- }
- let lev_candidate = self.probe_for_lev_candidate()?;
-
- Err(MethodError::NoMatch(NoMatchData {
- static_candidates,
- unsatisfied_predicates,
- out_of_scope_traits,
- lev_candidate,
- mode: self.mode,
- }))
- }
-
- fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
- let mut unstable_candidates = Vec::new();
- let pick = self.pick_all_method(Some(&mut unstable_candidates));
-
- // In this case unstable picking is done by `pick_method`.
- if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
- return pick;
- }
-
- match pick {
- // Emit a lint if there are unstable candidates alongside the stable ones.
- //
- // We suppress warning if we're picking the method only because it is a
- // suggestion.
- Some(Ok(ref p)) if !self.is_suggestion.0 && !unstable_candidates.is_empty() => {
- self.emit_unstable_name_collision_hint(p, &unstable_candidates);
- pick
- }
- Some(_) => pick,
- None => self.pick_all_method(None),
- }
- }
-
- fn pick_all_method(
- &mut self,
- mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
- ) -> Option<PickResult<'tcx>> {
- let steps = self.steps.clone();
- steps
- .iter()
- .filter(|step| {
- debug!("pick_all_method: step={:?}", step);
- // skip types that are from a type error or that would require dereferencing
- // a raw pointer
- !step.self_ty.references_error() && !step.from_unsafe_deref
- })
- .flat_map(|step| {
- let InferOk { value: self_ty, obligations: _ } = self
- .fcx
- .probe_instantiate_query_response(
- self.span,
- &self.orig_steps_var_values,
- &step.self_ty,
- )
- .unwrap_or_else(|_| {
- span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
- });
- self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
- .or_else(|| {
- self.pick_autorefd_method(
- step,
- self_ty,
- hir::Mutability::Not,
- unstable_candidates.as_deref_mut(),
- )
- .or_else(|| {
- self.pick_autorefd_method(
- step,
- self_ty,
- hir::Mutability::Mut,
- unstable_candidates.as_deref_mut(),
- )
- })
- .or_else(|| {
- self.pick_const_ptr_method(
- step,
- self_ty,
- unstable_candidates.as_deref_mut(),
- )
- })
- })
- })
- .next()
- }
-
- /// For each type `T` in the step list, this attempts to find a method where
- /// the (transformed) self type is exactly `T`. We do however do one
- /// transformation on the adjustment: if we are passing a region pointer in,
- /// we will potentially *reborrow* it to a shorter lifetime. This allows us
- /// to transparently pass `&mut` pointers, in particular, without consuming
- /// them for their entire lifetime.
- fn pick_by_value_method(
- &mut self,
- step: &CandidateStep<'tcx>,
- self_ty: Ty<'tcx>,
- unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
- ) -> Option<PickResult<'tcx>> {
- if step.unsize {
- return None;
- }
-
- self.pick_method(self_ty, unstable_candidates).map(|r| {
- r.map(|mut pick| {
- pick.autoderefs = step.autoderefs;
-
- // Insert a `&*` or `&mut *` if this is a reference type:
- if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
- pick.autoderefs += 1;
- pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
- mutbl,
- unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
- })
- }
-
- pick
- })
- })
- }
-
- fn pick_autorefd_method(
- &mut self,
- step: &CandidateStep<'tcx>,
- self_ty: Ty<'tcx>,
- mutbl: hir::Mutability,
- unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
- ) -> Option<PickResult<'tcx>> {
- let tcx = self.tcx;
-
- // In general, during probing we erase regions.
- let region = tcx.lifetimes.re_erased;
-
- let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
- self.pick_method(autoref_ty, unstable_candidates).map(|r| {
- r.map(|mut pick| {
- pick.autoderefs = step.autoderefs;
- pick.autoref_or_ptr_adjustment =
- Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
- pick
- })
- })
- }
-
- /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
- /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
- /// autorefs would require dereferencing the pointer, which is not safe.
- fn pick_const_ptr_method(
- &mut self,
- step: &CandidateStep<'tcx>,
- self_ty: Ty<'tcx>,
- unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
- ) -> Option<PickResult<'tcx>> {
- // Don't convert an unsized reference to ptr
- if step.unsize {
- return None;
- }
-
- let &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) = self_ty.kind() else {
- return None;
- };
-
- let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
- let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
- self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
- r.map(|mut pick| {
- pick.autoderefs = step.autoderefs;
- pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
- pick
- })
- })
- }
-
- fn pick_method_with_unstable(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
- debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
-
- let mut possibly_unsatisfied_predicates = Vec::new();
- let mut unstable_candidates = Vec::new();
-
- for (kind, candidates) in
- &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
- {
- debug!("searching {} candidates", kind);
- let res = self.consider_candidates(
- self_ty,
- candidates.iter(),
- &mut possibly_unsatisfied_predicates,
- Some(&mut unstable_candidates),
- );
- if let Some(pick) = res {
- if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
- if let Ok(p) = &pick {
- // Emit a lint if there are unstable candidates alongside the stable ones.
- //
- // We suppress warning if we're picking the method only because it is a
- // suggestion.
- self.emit_unstable_name_collision_hint(p, &unstable_candidates);
- }
- }
- return Some(pick);
- }
- }
-
- debug!("searching unstable candidates");
- let res = self.consider_candidates(
- self_ty,
- unstable_candidates.iter().map(|(c, _)| c),
- &mut possibly_unsatisfied_predicates,
- None,
- );
- if res.is_none() {
- self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
- }
- res
- }
-
- fn pick_method(
- &mut self,
- self_ty: Ty<'tcx>,
- mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
- ) -> Option<PickResult<'tcx>> {
- if !self.tcx.sess.opts.unstable_opts.pick_stable_methods_before_any_unstable {
- return self.pick_method_with_unstable(self_ty);
- }
-
- debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
-
- let mut possibly_unsatisfied_predicates = Vec::new();
-
- for (kind, candidates) in
- &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
- {
- debug!("searching {} candidates", kind);
- let res = self.consider_candidates(
- self_ty,
- candidates.iter(),
- &mut possibly_unsatisfied_predicates,
- unstable_candidates.as_deref_mut(),
- );
- if let Some(pick) = res {
- return Some(pick);
- }
- }
-
- // `pick_method` may be called twice for the same self_ty if no stable methods
- // match. Only extend once.
- if unstable_candidates.is_some() {
- self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
- }
- None
- }
-
- fn consider_candidates<'b, ProbesIter>(
- &self,
- self_ty: Ty<'tcx>,
- probes: ProbesIter,
- possibly_unsatisfied_predicates: &mut Vec<(
- ty::Predicate<'tcx>,
- Option<ty::Predicate<'tcx>>,
- Option<ObligationCause<'tcx>>,
- )>,
- unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
- ) -> Option<PickResult<'tcx>>
- where
- ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
- 'tcx: 'b,
- {
- let mut applicable_candidates: Vec<_> = probes
- .clone()
- .map(|probe| {
- (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
- })
- .filter(|&(_, status)| status != ProbeResult::NoMatch)
- .collect();
-
- debug!("applicable_candidates: {:?}", applicable_candidates);
-
- if applicable_candidates.len() > 1 {
- if let Some(pick) =
- self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
- {
- return Some(Ok(pick));
- }
- }
-
- if let Some(uc) = unstable_candidates {
- applicable_candidates.retain(|&(p, _)| {
- if let stability::EvalResult::Deny { feature, .. } =
- self.tcx.eval_stability(p.item.def_id, None, self.span, None)
- {
- uc.push((p.clone(), feature));
- return false;
- }
- true
- });
- }
-
- if applicable_candidates.len() > 1 {
- let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
- return Some(Err(MethodError::Ambiguity(sources)));
- }
-
- applicable_candidates.pop().map(|(probe, status)| {
- if status == ProbeResult::Match {
- Ok(probe.to_unadjusted_pick(self_ty))
- } else {
- Err(MethodError::BadReturnType)
- }
- })
- }
-
- fn emit_unstable_name_collision_hint(
- &self,
- stable_pick: &Pick<'_>,
- unstable_candidates: &[(Candidate<'tcx>, Symbol)],
- ) {
- self.tcx.struct_span_lint_hir(
- lint::builtin::UNSTABLE_NAME_COLLISIONS,
- self.scope_expr_id,
- self.span,
- |lint| {
- let def_kind = stable_pick.item.kind.as_def_kind();
- let mut diag = lint.build(&format!(
- "{} {} with this name may be added to the standard library in the future",
- def_kind.article(),
- def_kind.descr(stable_pick.item.def_id),
- ));
- match (stable_pick.item.kind, stable_pick.item.container) {
- (ty::AssocKind::Fn, _) => {
- // FIXME: This should be a `span_suggestion` instead of `help`
- // However `self.span` only
- // highlights the method name, so we can't use it. Also consider reusing
- // the code from `report_method_error()`.
- diag.help(&format!(
- "call with fully qualified syntax `{}(...)` to keep using the current \
- method",
- self.tcx.def_path_str(stable_pick.item.def_id),
- ));
- }
- (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer) => {
- let def_id = stable_pick.item.container_id(self.tcx);
- diag.span_suggestion(
- self.span,
- "use the fully qualified path to the associated const",
- format!(
- "<{} as {}>::{}",
- stable_pick.self_ty,
- self.tcx.def_path_str(def_id),
- stable_pick.item.name
- ),
- Applicability::MachineApplicable,
- );
- }
- _ => {}
- }
- if self.tcx.sess.is_nightly_build() {
- for (candidate, feature) in unstable_candidates {
- diag.help(&format!(
- "add `#![feature({})]` to the crate attributes to enable `{}`",
- feature,
- self.tcx.def_path_str(candidate.item.def_id),
- ));
- }
- }
-
- diag.emit();
- },
- );
- }
-
- fn select_trait_candidate(
- &self,
- trait_ref: ty::TraitRef<'tcx>,
- ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
- let cause = traits::ObligationCause::misc(self.span, self.body_id);
- let predicate = ty::Binder::dummy(trait_ref).to_poly_trait_predicate();
- let obligation = traits::Obligation::new(cause, self.param_env, predicate);
- traits::SelectionContext::new(self).select(&obligation)
- }
-
- fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
- match candidate.kind {
- InherentImplCandidate(..) => {
- CandidateSource::Impl(candidate.item.container_id(self.tcx))
- }
- ObjectCandidate | WhereClauseCandidate(_) => {
- CandidateSource::Trait(candidate.item.container_id(self.tcx))
- }
- TraitCandidate(trait_ref) => self.probe(|_| {
- let _ = self
- .at(&ObligationCause::dummy(), self.param_env)
- .define_opaque_types(false)
- .sup(candidate.xform_self_ty, self_ty);
- match self.select_trait_candidate(trait_ref) {
- Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
- // If only a single impl matches, make the error message point
- // to that impl.
- CandidateSource::Impl(impl_data.impl_def_id)
- }
- _ => CandidateSource::Trait(candidate.item.container_id(self.tcx)),
- }
- }),
- }
- }
-
- fn consider_probe(
- &self,
- self_ty: Ty<'tcx>,
- probe: &Candidate<'tcx>,
- possibly_unsatisfied_predicates: &mut Vec<(
- ty::Predicate<'tcx>,
- Option<ty::Predicate<'tcx>>,
- Option<ObligationCause<'tcx>>,
- )>,
- ) -> ProbeResult {
- debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
-
- self.probe(|_| {
- // First check that the self type can be related.
- let sub_obligations = match self
- .at(&ObligationCause::dummy(), self.param_env)
- .define_opaque_types(false)
- .sup(probe.xform_self_ty, self_ty)
- {
- Ok(InferOk { obligations, value: () }) => obligations,
- Err(err) => {
- debug!("--> cannot relate self-types {:?}", err);
- return ProbeResult::NoMatch;
- }
- };
-
- let mut result = ProbeResult::Match;
- let mut xform_ret_ty = probe.xform_ret_ty;
- debug!(?xform_ret_ty);
-
- let selcx = &mut traits::SelectionContext::new(self);
- let cause = traits::ObligationCause::misc(self.span, self.body_id);
-
- let mut parent_pred = None;
-
- // If so, impls may carry other conditions (e.g., where
- // clauses) that must be considered. Make sure that those
- // match as well (or at least may match, sometimes we
- // don't have enough information to fully evaluate).
- match probe.kind {
- InherentImplCandidate(ref substs, ref ref_obligations) => {
- // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
- // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
- // for why this is necessary
- let traits::Normalized {
- value: normalized_xform_ret_ty,
- obligations: normalization_obligations,
- } = traits::normalize(selcx, self.param_env, cause.clone(), probe.xform_ret_ty);
- xform_ret_ty = normalized_xform_ret_ty;
- debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
-
- // Check whether the impl imposes obligations we have to worry about.
- let impl_def_id = probe.item.container_id(self.tcx);
- let impl_bounds = self.tcx.predicates_of(impl_def_id);
- let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
- let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
- traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
-
- // Convert the bounds into obligations.
- let impl_obligations = traits::predicates_for_generics(
- move |_, _| cause.clone(),
- self.param_env,
- impl_bounds,
- );
-
- let candidate_obligations = impl_obligations
- .chain(norm_obligations.into_iter())
- .chain(ref_obligations.iter().cloned())
- .chain(normalization_obligations.into_iter());
-
- // Evaluate those obligations to see if they might possibly hold.
- for o in candidate_obligations {
- let o = self.resolve_vars_if_possible(o);
- if !self.predicate_may_hold(&o) {
- result = ProbeResult::NoMatch;
- possibly_unsatisfied_predicates.push((
- o.predicate,
- None,
- Some(o.cause),
- ));
- }
- }
- }
-
- ObjectCandidate | WhereClauseCandidate(..) => {
- // These have no additional conditions to check.
- }
-
- TraitCandidate(trait_ref) => {
- if let Some(method_name) = self.method_name {
- // Some trait methods are excluded for arrays before 2021.
- // (`array.into_iter()` wants a slice iterator for compatibility.)
- if self_ty.is_array() && !method_name.span.rust_2021() {
- let trait_def = self.tcx.trait_def(trait_ref.def_id);
- if trait_def.skip_array_during_method_dispatch {
- return ProbeResult::NoMatch;
- }
- }
- }
- let predicate =
- ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
- parent_pred = Some(predicate);
- let obligation = traits::Obligation::new(cause, self.param_env, predicate);
- if !self.predicate_may_hold(&obligation) {
- result = ProbeResult::NoMatch;
- if self.probe(|_| {
- match self.select_trait_candidate(trait_ref) {
- Err(_) => return true,
- Ok(Some(impl_source))
- if !impl_source.borrow_nested_obligations().is_empty() =>
- {
- for obligation in impl_source.borrow_nested_obligations() {
- // Determine exactly which obligation wasn't met, so
- // that we can give more context in the error.
- if !self.predicate_may_hold(obligation) {
- let nested_predicate =
- self.resolve_vars_if_possible(obligation.predicate);
- let predicate =
- self.resolve_vars_if_possible(predicate);
- let p = if predicate == nested_predicate {
- // Avoid "`MyStruct: Foo` which is required by
- // `MyStruct: Foo`" in E0599.
- None
- } else {
- Some(predicate)
- };
- possibly_unsatisfied_predicates.push((
- nested_predicate,
- p,
- Some(obligation.cause.clone()),
- ));
- }
- }
- }
- _ => {
- // Some nested subobligation of this predicate
- // failed.
- let predicate = self.resolve_vars_if_possible(predicate);
- possibly_unsatisfied_predicates.push((predicate, None, None));
- }
- }
- false
- }) {
- // This candidate's primary obligation doesn't even
- // select - don't bother registering anything in
- // `potentially_unsatisfied_predicates`.
- return ProbeResult::NoMatch;
- }
- }
- }
- }
-
- // Evaluate those obligations to see if they might possibly hold.
- for o in sub_obligations {
- let o = self.resolve_vars_if_possible(o);
- if !self.predicate_may_hold(&o) {
- result = ProbeResult::NoMatch;
- possibly_unsatisfied_predicates.push((o.predicate, parent_pred, Some(o.cause)));
- }
- }
-
- if let ProbeResult::Match = result {
- if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
- let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
- debug!(
- "comparing return_ty {:?} with xform ret ty {:?}",
- return_ty, probe.xform_ret_ty
- );
- if self
- .at(&ObligationCause::dummy(), self.param_env)
- .define_opaque_types(false)
- .sup(return_ty, xform_ret_ty)
- .is_err()
- {
- return ProbeResult::BadReturnType;
- }
- }
- }
-
- result
- })
- }
-
- /// Sometimes we get in a situation where we have multiple probes that are all impls of the
- /// same trait, but we don't know which impl to use. In this case, since in all cases the
- /// external interface of the method can be determined from the trait, it's ok not to decide.
- /// We can basically just collapse all of the probes for various impls into one where-clause
- /// probe. This will result in a pending obligation so when more type-info is available we can
- /// make the final decision.
- ///
- /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
- ///
- /// ```ignore (illustrative)
- /// trait Foo { ... }
- /// impl Foo for Vec<i32> { ... }
- /// impl Foo for Vec<usize> { ... }
- /// ```
- ///
- /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
- /// use, so it's ok to just commit to "using the method from the trait Foo".
- fn collapse_candidates_to_trait_pick(
- &self,
- self_ty: Ty<'tcx>,
- probes: &[(&Candidate<'tcx>, ProbeResult)],
- ) -> Option<Pick<'tcx>> {
- // Do all probes correspond to the same trait?
- let container = probes[0].0.item.trait_container(self.tcx)?;
- for (p, _) in &probes[1..] {
- let p_container = p.item.trait_container(self.tcx)?;
- if p_container != container {
- return None;
- }
- }
-
- // FIXME: check the return type here somehow.
- // If so, just use this trait and call it a day.
- Some(Pick {
- item: probes[0].0.item,
- kind: TraitPick,
- import_ids: probes[0].0.import_ids.clone(),
- autoderefs: 0,
- autoref_or_ptr_adjustment: None,
- self_ty,
- })
- }
-
- /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
- /// candidate method where the method name may have been misspelled. Similarly to other
- /// Levenshtein based suggestions, we provide at most one such suggestion.
- fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
- debug!("probing for method names similar to {:?}", self.method_name);
-
- let steps = self.steps.clone();
- self.probe(|_| {
- let mut pcx = ProbeContext::new(
- self.fcx,
- self.span,
- self.mode,
- self.method_name,
- self.return_type,
- self.orig_steps_var_values.clone(),
- steps,
- IsSuggestion(true),
- self.scope_expr_id,
- );
- pcx.allow_similar_names = true;
- pcx.assemble_inherent_candidates();
-
- let method_names = pcx.candidate_method_names();
- pcx.allow_similar_names = false;
- let applicable_close_candidates: Vec<ty::AssocItem> = method_names
- .iter()
- .filter_map(|&method_name| {
- pcx.reset();
- pcx.method_name = Some(method_name);
- pcx.assemble_inherent_candidates();
- pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
- })
- .collect();
-
- if applicable_close_candidates.is_empty() {
- Ok(None)
- } else {
- let best_name = {
- let names = applicable_close_candidates
- .iter()
- .map(|cand| cand.name)
- .collect::<Vec<Symbol>>();
- find_best_match_for_name_with_substrings(
- &names,
- self.method_name.unwrap().name,
- None,
- )
- }
- .unwrap();
- Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
- }
- })
- }
-
- ///////////////////////////////////////////////////////////////////////////
- // MISCELLANY
- fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
- // "Fast track" -- check for usage of sugar when in method call
- // mode.
- //
- // In Path mode (i.e., resolving a value like `T::next`), consider any
- // associated value (i.e., methods, constants) but not types.
- match self.mode {
- Mode::MethodCall => item.fn_has_self_parameter,
- Mode::Path => match item.kind {
- ty::AssocKind::Type => false,
- ty::AssocKind::Fn | ty::AssocKind::Const => true,
- },
- }
- // FIXME -- check for types that deref to `Self`,
- // like `Rc<Self>` and so on.
- //
- // Note also that the current code will break if this type
- // includes any of the type parameters defined on the method
- // -- but this could be overcome.
- }
-
- fn record_static_candidate(&mut self, source: CandidateSource) {
- self.static_candidates.push(source);
- }
-
- #[instrument(level = "debug", skip(self))]
- fn xform_self_ty(
- &self,
- item: &ty::AssocItem,
- impl_ty: Ty<'tcx>,
- substs: SubstsRef<'tcx>,
- ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
- if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
- let sig = self.xform_method_sig(item.def_id, substs);
- (sig.inputs()[0], Some(sig.output()))
- } else {
- (impl_ty, None)
- }
- }
-
- #[instrument(level = "debug", skip(self))]
- fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
- let fn_sig = self.tcx.bound_fn_sig(method);
- debug!(?fn_sig);
-
- assert!(!substs.has_escaping_bound_vars());
-
- // It is possible for type parameters or early-bound lifetimes
- // to appear in the signature of `self`. The substitutions we
- // are given do not include type/lifetime parameters for the
- // method yet. So create fresh variables here for those too,
- // if there are any.
- let generics = self.tcx.generics_of(method);
- assert_eq!(substs.len(), generics.parent_count as usize);
-
- let xform_fn_sig = if generics.params.is_empty() {
- fn_sig.subst(self.tcx, substs)
- } else {
- let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
- let i = param.index as usize;
- if i < substs.len() {
- substs[i]
- } else {
- match param.kind {
- GenericParamDefKind::Lifetime => {
- // In general, during probe we erase regions.
- self.tcx.lifetimes.re_erased.into()
- }
- GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
- self.var_for_def(self.span, param)
- }
- }
- }
- });
- fn_sig.subst(self.tcx, substs)
- };
-
- self.erase_late_bound_regions(xform_fn_sig)
- }
-
- /// Gets the type of an impl and generate substitutions with inference vars.
- fn impl_ty_and_substs(
- &self,
- impl_def_id: DefId,
- ) -> (ty::EarlyBinder<Ty<'tcx>>, SubstsRef<'tcx>) {
- (self.tcx.bound_type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
- }
-
- fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
- InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
- GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
- GenericParamDefKind::Type { .. } => self
- .next_ty_var(TypeVariableOrigin {
- kind: TypeVariableOriginKind::SubstitutionPlaceholder,
- span: self.tcx.def_span(def_id),
- })
- .into(),
- GenericParamDefKind::Const { .. } => {
- let span = self.tcx.def_span(def_id);
- let origin = ConstVariableOrigin {
- kind: ConstVariableOriginKind::SubstitutionPlaceholder,
- span,
- };
- self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
- }
- })
- }
-
- /// Replaces late-bound-regions bound by `value` with `'static` using
- /// `ty::erase_late_bound_regions`.
- ///
- /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
- /// method matching. It is reasonable during the probe phase because we don't consider region
- /// relationships at all. Therefore, we can just replace all the region variables with 'static
- /// rather than creating fresh region variables. This is nice for two reasons:
- ///
- /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
- /// particular method call, it winds up creating fewer types overall, which helps for memory
- /// usage. (Admittedly, this is a rather small effect, though measurable.)
- ///
- /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
- /// late-bound regions with 'static. Otherwise, if we were going to replace late-bound
- /// regions with actual region variables as is proper, we'd have to ensure that the same
- /// region got replaced with the same variable, which requires a bit more coordination
- /// and/or tracking the substitution and
- /// so forth.
- fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
- where
- T: TypeFoldable<'tcx>,
- {
- self.tcx.erase_late_bound_regions(value)
- }
-
- /// Finds the method with the appropriate name (or return type, as the case may be). If
- /// `allow_similar_names` is set, find methods with close-matching names.
- // The length of the returned iterator is nearly always 0 or 1 and this
- // method is fairly hot.
- fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
- if let Some(name) = self.method_name {
- if self.allow_similar_names {
- let max_dist = max(name.as_str().len(), 3) / 3;
- self.tcx
- .associated_items(def_id)
- .in_definition_order()
- .filter(|x| {
- if x.kind.namespace() != Namespace::ValueNS {
- return false;
- }
- match lev_distance_with_substrings(name.as_str(), x.name.as_str(), max_dist)
- {
- Some(d) => d > 0,
- None => false,
- }
- })
- .copied()
- .collect()
- } else {
- self.fcx
- .associated_value(def_id, name)
- .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
- }
- } else {
- self.tcx.associated_items(def_id).in_definition_order().copied().collect()
- }
- }
-}
-
-impl<'tcx> Candidate<'tcx> {
- fn to_unadjusted_pick(&self, self_ty: Ty<'tcx>) -> Pick<'tcx> {
- Pick {
- item: self.item,
- kind: match self.kind {
- InherentImplCandidate(..) => InherentImplPick,
- ObjectCandidate => ObjectPick,
- TraitCandidate(_) => TraitPick,
- WhereClauseCandidate(ref trait_ref) => {
- // Only trait derived from where-clauses should
- // appear here, so they should not contain any
- // inference variables or other artifacts. This
- // means they are safe to put into the
- // `WhereClausePick`.
- assert!(
- !trait_ref.skip_binder().substs.needs_infer()
- && !trait_ref.skip_binder().substs.has_placeholders()
- );
-
- WhereClausePick(*trait_ref)
- }
- },
- import_ids: self.import_ids.clone(),
- autoderefs: 0,
- autoref_or_ptr_adjustment: None,
- self_ty,
- }
- }
-}