summaryrefslogtreecommitdiffstats
path: root/library/core/src/ffi
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /library/core/src/ffi
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'library/core/src/ffi')
-rw-r--r--library/core/src/ffi/c_char.md8
-rw-r--r--library/core/src/ffi/c_double.md6
-rw-r--r--library/core/src/ffi/c_float.md5
-rw-r--r--library/core/src/ffi/c_int.md5
-rw-r--r--library/core/src/ffi/c_long.md5
-rw-r--r--library/core/src/ffi/c_longlong.md5
-rw-r--r--library/core/src/ffi/c_schar.md5
-rw-r--r--library/core/src/ffi/c_short.md5
-rw-r--r--library/core/src/ffi/c_str.rs608
-rw-r--r--library/core/src/ffi/c_uchar.md5
-rw-r--r--library/core/src/ffi/c_uint.md5
-rw-r--r--library/core/src/ffi/c_ulong.md5
-rw-r--r--library/core/src/ffi/c_ulonglong.md5
-rw-r--r--library/core/src/ffi/c_ushort.md5
-rw-r--r--library/core/src/ffi/c_void.md16
-rw-r--r--library/core/src/ffi/mod.rs580
16 files changed, 1273 insertions, 0 deletions
diff --git a/library/core/src/ffi/c_char.md b/library/core/src/ffi/c_char.md
new file mode 100644
index 000000000..b262a3663
--- /dev/null
+++ b/library/core/src/ffi/c_char.md
@@ -0,0 +1,8 @@
+Equivalent to C's `char` type.
+
+[C's `char` type] is completely unlike [Rust's `char` type]; while Rust's type represents a unicode scalar value, C's `char` type is just an ordinary integer. On modern architectures this type will always be either [`i8`] or [`u8`], as they use byte-addresses memory with 8-bit bytes.
+
+C chars are most commonly used to make C strings. Unlike Rust, where the length of a string is included alongside the string, C strings mark the end of a string with the character `'\0'`. See `CStr` for more information.
+
+[C's `char` type]: https://en.wikipedia.org/wiki/C_data_types#Basic_types
+[Rust's `char` type]: char
diff --git a/library/core/src/ffi/c_double.md b/library/core/src/ffi/c_double.md
new file mode 100644
index 000000000..57f453482
--- /dev/null
+++ b/library/core/src/ffi/c_double.md
@@ -0,0 +1,6 @@
+Equivalent to C's `double` type.
+
+This type will almost always be [`f64`], which is guaranteed to be an [IEEE-754 double-precision float] in Rust. That said, the standard technically only guarantees that it be a floating-point number with at least the precision of a [`float`], and it may be `f32` or something entirely different from the IEEE-754 standard.
+
+[IEEE-754 double-precision float]: https://en.wikipedia.org/wiki/IEEE_754
+[`float`]: c_float
diff --git a/library/core/src/ffi/c_float.md b/library/core/src/ffi/c_float.md
new file mode 100644
index 000000000..61e2abc05
--- /dev/null
+++ b/library/core/src/ffi/c_float.md
@@ -0,0 +1,5 @@
+Equivalent to C's `float` type.
+
+This type will almost always be [`f32`], which is guaranteed to be an [IEEE-754 single-precision float] in Rust. That said, the standard technically only guarantees that it be a floating-point number, and it may have less precision than `f32` or not follow the IEEE-754 standard at all.
+
+[IEEE-754 single-precision float]: https://en.wikipedia.org/wiki/IEEE_754
diff --git a/library/core/src/ffi/c_int.md b/library/core/src/ffi/c_int.md
new file mode 100644
index 000000000..8062ff230
--- /dev/null
+++ b/library/core/src/ffi/c_int.md
@@ -0,0 +1,5 @@
+Equivalent to C's `signed int` (`int`) type.
+
+This type will almost always be [`i32`], but may differ on some esoteric systems. The C standard technically only requires that this type be a signed integer that is at least the size of a [`short`]; some systems define it as an [`i16`], for example.
+
+[`short`]: c_short
diff --git a/library/core/src/ffi/c_long.md b/library/core/src/ffi/c_long.md
new file mode 100644
index 000000000..cc160783f
--- /dev/null
+++ b/library/core/src/ffi/c_long.md
@@ -0,0 +1,5 @@
+Equivalent to C's `signed long` (`long`) type.
+
+This type will always be [`i32`] or [`i64`]. Most notably, many Linux-based systems assume an `i64`, but Windows assumes `i32`. The C standard technically only requires that this type be a signed integer that is at least 32 bits and at least the size of an [`int`], although in practice, no system would have a `long` that is neither an `i32` nor `i64`.
+
+[`int`]: c_int
diff --git a/library/core/src/ffi/c_longlong.md b/library/core/src/ffi/c_longlong.md
new file mode 100644
index 000000000..49c61bd61
--- /dev/null
+++ b/library/core/src/ffi/c_longlong.md
@@ -0,0 +1,5 @@
+Equivalent to C's `signed long long` (`long long`) type.
+
+This type will almost always be [`i64`], but may differ on some systems. The C standard technically only requires that this type be a signed integer that is at least 64 bits and at least the size of a [`long`], although in practice, no system would have a `long long` that is not an `i64`, as most systems do not have a standardised [`i128`] type.
+
+[`long`]: c_int
diff --git a/library/core/src/ffi/c_schar.md b/library/core/src/ffi/c_schar.md
new file mode 100644
index 000000000..69879c9f1
--- /dev/null
+++ b/library/core/src/ffi/c_schar.md
@@ -0,0 +1,5 @@
+Equivalent to C's `signed char` type.
+
+This type will always be [`i8`], but is included for completeness. It is defined as being a signed integer the same size as a C [`char`].
+
+[`char`]: c_char
diff --git a/library/core/src/ffi/c_short.md b/library/core/src/ffi/c_short.md
new file mode 100644
index 000000000..3d1e53d13
--- /dev/null
+++ b/library/core/src/ffi/c_short.md
@@ -0,0 +1,5 @@
+Equivalent to C's `signed short` (`short`) type.
+
+This type will almost always be [`i16`], but may differ on some esoteric systems. The C standard technically only requires that this type be a signed integer with at least 16 bits; some systems may define it as `i32`, for example.
+
+[`char`]: c_char
diff --git a/library/core/src/ffi/c_str.rs b/library/core/src/ffi/c_str.rs
new file mode 100644
index 000000000..82e63a7fe
--- /dev/null
+++ b/library/core/src/ffi/c_str.rs
@@ -0,0 +1,608 @@
+use crate::ascii;
+use crate::cmp::Ordering;
+use crate::ffi::c_char;
+use crate::fmt::{self, Write};
+use crate::intrinsics;
+use crate::ops;
+use crate::slice;
+use crate::slice::memchr;
+use crate::str;
+
+/// Representation of a borrowed C string.
+///
+/// This type represents a borrowed reference to a nul-terminated
+/// array of bytes. It can be constructed safely from a <code>&[[u8]]</code>
+/// slice, or unsafely from a raw `*const c_char`. It can then be
+/// converted to a Rust <code>&[str]</code> by performing UTF-8 validation, or
+/// into an owned `CString`.
+///
+/// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former
+/// in each pair are borrowed references; the latter are owned
+/// strings.
+///
+/// Note that this structure is **not** `repr(C)` and is not recommended to be
+/// placed in the signatures of FFI functions. Instead, safe wrappers of FFI
+/// functions may leverage the unsafe [`CStr::from_ptr`] constructor to provide
+/// a safe interface to other consumers.
+///
+/// # Examples
+///
+/// Inspecting a foreign C string:
+///
+/// ```ignore (extern-declaration)
+/// use std::ffi::CStr;
+/// use std::os::raw::c_char;
+///
+/// extern "C" { fn my_string() -> *const c_char; }
+///
+/// unsafe {
+/// let slice = CStr::from_ptr(my_string());
+/// println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
+/// }
+/// ```
+///
+/// Passing a Rust-originating C string:
+///
+/// ```ignore (extern-declaration)
+/// use std::ffi::{CString, CStr};
+/// use std::os::raw::c_char;
+///
+/// fn work(data: &CStr) {
+/// extern "C" { fn work_with(data: *const c_char); }
+///
+/// unsafe { work_with(data.as_ptr()) }
+/// }
+///
+/// let s = CString::new("data data data data").expect("CString::new failed");
+/// work(&s);
+/// ```
+///
+/// Converting a foreign C string into a Rust `String`:
+///
+/// ```ignore (extern-declaration)
+/// use std::ffi::CStr;
+/// use std::os::raw::c_char;
+///
+/// extern "C" { fn my_string() -> *const c_char; }
+///
+/// fn my_string_safe() -> String {
+/// let cstr = unsafe { CStr::from_ptr(my_string()) };
+/// // Get copy-on-write Cow<'_, str>, then guarantee a freshly-owned String allocation
+/// String::from_utf8_lossy(cstr.to_bytes()).to_string()
+/// }
+///
+/// println!("string: {}", my_string_safe());
+/// ```
+///
+/// [str]: prim@str "str"
+#[derive(Hash)]
+#[cfg_attr(not(test), rustc_diagnostic_item = "CStr")]
+#[stable(feature = "core_c_str", since = "1.64.0")]
+#[rustc_has_incoherent_inherent_impls]
+// FIXME:
+// `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
+// on `CStr` being layout-compatible with `[u8]`.
+// When attribute privacy is implemented, `CStr` should be annotated as `#[repr(transparent)]`.
+// Anyway, `CStr` representation and layout are considered implementation detail, are
+// not documented and must not be relied upon.
+pub struct CStr {
+ // FIXME: this should not be represented with a DST slice but rather with
+ // just a raw `c_char` along with some form of marker to make
+ // this an unsized type. Essentially `sizeof(&CStr)` should be the
+ // same as `sizeof(&c_char)` but `CStr` should be an unsized type.
+ inner: [c_char],
+}
+
+/// An error indicating that a nul byte was not in the expected position.
+///
+/// The slice used to create a [`CStr`] must have one and only one nul byte,
+/// positioned at the end.
+///
+/// This error is created by the [`CStr::from_bytes_with_nul`] method.
+/// See its documentation for more.
+///
+/// # Examples
+///
+/// ```
+/// use std::ffi::{CStr, FromBytesWithNulError};
+///
+/// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
+/// ```
+#[derive(Clone, PartialEq, Eq, Debug)]
+#[stable(feature = "core_c_str", since = "1.64.0")]
+pub struct FromBytesWithNulError {
+ kind: FromBytesWithNulErrorKind,
+}
+
+#[derive(Clone, PartialEq, Eq, Debug)]
+enum FromBytesWithNulErrorKind {
+ InteriorNul(usize),
+ NotNulTerminated,
+}
+
+impl FromBytesWithNulError {
+ fn interior_nul(pos: usize) -> FromBytesWithNulError {
+ FromBytesWithNulError { kind: FromBytesWithNulErrorKind::InteriorNul(pos) }
+ }
+ fn not_nul_terminated() -> FromBytesWithNulError {
+ FromBytesWithNulError { kind: FromBytesWithNulErrorKind::NotNulTerminated }
+ }
+
+ #[doc(hidden)]
+ #[unstable(feature = "cstr_internals", issue = "none")]
+ pub fn __description(&self) -> &str {
+ match self.kind {
+ FromBytesWithNulErrorKind::InteriorNul(..) => {
+ "data provided contains an interior nul byte"
+ }
+ FromBytesWithNulErrorKind::NotNulTerminated => "data provided is not nul terminated",
+ }
+ }
+}
+
+/// An error indicating that no nul byte was present.
+///
+/// A slice used to create a [`CStr`] must contain a nul byte somewhere
+/// within the slice.
+///
+/// This error is created by the [`CStr::from_bytes_until_nul`] method.
+///
+#[derive(Clone, PartialEq, Eq, Debug)]
+#[unstable(feature = "cstr_from_bytes_until_nul", issue = "95027")]
+pub struct FromBytesUntilNulError(());
+
+#[unstable(feature = "cstr_from_bytes_until_nul", issue = "95027")]
+impl fmt::Display for FromBytesUntilNulError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "data provided does not contain a nul")
+ }
+}
+
+#[stable(feature = "cstr_debug", since = "1.3.0")]
+impl fmt::Debug for CStr {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "\"")?;
+ for byte in self.to_bytes().iter().flat_map(|&b| ascii::escape_default(b)) {
+ f.write_char(byte as char)?;
+ }
+ write!(f, "\"")
+ }
+}
+
+#[stable(feature = "cstr_default", since = "1.10.0")]
+impl Default for &CStr {
+ fn default() -> Self {
+ const SLICE: &[c_char] = &[0];
+ // SAFETY: `SLICE` is indeed pointing to a valid nul-terminated string.
+ unsafe { CStr::from_ptr(SLICE.as_ptr()) }
+ }
+}
+
+#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
+impl fmt::Display for FromBytesWithNulError {
+ #[allow(deprecated, deprecated_in_future)]
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.write_str(self.__description())?;
+ if let FromBytesWithNulErrorKind::InteriorNul(pos) = self.kind {
+ write!(f, " at byte pos {pos}")?;
+ }
+ Ok(())
+ }
+}
+
+impl CStr {
+ /// Wraps a raw C string with a safe C string wrapper.
+ ///
+ /// This function will wrap the provided `ptr` with a `CStr` wrapper, which
+ /// allows inspection and interoperation of non-owned C strings. The total
+ /// size of the raw C string must be smaller than `isize::MAX` **bytes**
+ /// in memory due to calling the `slice::from_raw_parts` function.
+ ///
+ /// # Safety
+ ///
+ /// * The memory pointed to by `ptr` must contain a valid nul terminator at the
+ /// end of the string.
+ ///
+ /// * `ptr` must be [valid] for reads of bytes up to and including the null terminator.
+ /// This means in particular:
+ ///
+ /// * The entire memory range of this `CStr` must be contained within a single allocated object!
+ /// * `ptr` must be non-null even for a zero-length cstr.
+ ///
+ /// * The memory referenced by the returned `CStr` must not be mutated for
+ /// the duration of lifetime `'a`.
+ ///
+ /// > **Note**: This operation is intended to be a 0-cost cast but it is
+ /// > currently implemented with an up-front calculation of the length of
+ /// > the string. This is not guaranteed to always be the case.
+ ///
+ /// # Caveat
+ ///
+ /// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse,
+ /// it's suggested to tie the lifetime to whichever source lifetime is safe in the context,
+ /// such as by providing a helper function taking the lifetime of a host value for the slice,
+ /// or by explicit annotation.
+ ///
+ /// # Examples
+ ///
+ /// ```ignore (extern-declaration)
+ /// # fn main() {
+ /// use std::ffi::CStr;
+ /// use std::os::raw::c_char;
+ ///
+ /// extern "C" {
+ /// fn my_string() -> *const c_char;
+ /// }
+ ///
+ /// unsafe {
+ /// let slice = CStr::from_ptr(my_string());
+ /// println!("string returned: {}", slice.to_str().unwrap());
+ /// }
+ /// # }
+ /// ```
+ ///
+ /// [valid]: core::ptr#safety
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
+ // SAFETY: The caller has provided a pointer that points to a valid C
+ // string with a NUL terminator of size less than `isize::MAX`, whose
+ // content remain valid and doesn't change for the lifetime of the
+ // returned `CStr`.
+ //
+ // Thus computing the length is fine (a NUL byte exists), the call to
+ // from_raw_parts is safe because we know the length is at most `isize::MAX`, meaning
+ // the call to `from_bytes_with_nul_unchecked` is correct.
+ //
+ // The cast from c_char to u8 is ok because a c_char is always one byte.
+ unsafe {
+ extern "C" {
+ /// Provided by libc or compiler_builtins.
+ fn strlen(s: *const c_char) -> usize;
+ }
+ let len = strlen(ptr);
+ let ptr = ptr as *const u8;
+ CStr::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr, len as usize + 1))
+ }
+ }
+
+ /// Creates a C string wrapper from a byte slice.
+ ///
+ /// This method will create a `CStr` from any byte slice that contains at
+ /// least one nul byte. The caller does not need to know or specify where
+ /// the nul byte is located.
+ ///
+ /// If the first byte is a nul character, this method will return an
+ /// empty `CStr`. If multiple nul characters are present, the `CStr` will
+ /// end at the first one.
+ ///
+ /// If the slice only has a single nul byte at the end, this method is
+ /// equivalent to [`CStr::from_bytes_with_nul`].
+ ///
+ /// # Examples
+ /// ```
+ /// #![feature(cstr_from_bytes_until_nul)]
+ ///
+ /// use std::ffi::CStr;
+ ///
+ /// let mut buffer = [0u8; 16];
+ /// unsafe {
+ /// // Here we might call an unsafe C function that writes a string
+ /// // into the buffer.
+ /// let buf_ptr = buffer.as_mut_ptr();
+ /// buf_ptr.write_bytes(b'A', 8);
+ /// }
+ /// // Attempt to extract a C nul-terminated string from the buffer.
+ /// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap();
+ /// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA");
+ /// ```
+ ///
+ #[unstable(feature = "cstr_from_bytes_until_nul", issue = "95027")]
+ pub fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> {
+ let nul_pos = memchr::memchr(0, bytes);
+ match nul_pos {
+ Some(nul_pos) => {
+ let subslice = &bytes[..nul_pos + 1];
+ // SAFETY: We know there is a nul byte at nul_pos, so this slice
+ // (ending at the nul byte) is a well-formed C string.
+ Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) })
+ }
+ None => Err(FromBytesUntilNulError(())),
+ }
+ }
+
+ /// Creates a C string wrapper from a byte slice.
+ ///
+ /// This function will cast the provided `bytes` to a `CStr`
+ /// wrapper after ensuring that the byte slice is nul-terminated
+ /// and does not contain any interior nul bytes.
+ ///
+ /// If the nul byte may not be at the end,
+ /// [`CStr::from_bytes_until_nul`] can be used instead.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CStr;
+ ///
+ /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
+ /// assert!(cstr.is_ok());
+ /// ```
+ ///
+ /// Creating a `CStr` without a trailing nul terminator is an error:
+ ///
+ /// ```
+ /// use std::ffi::CStr;
+ ///
+ /// let cstr = CStr::from_bytes_with_nul(b"hello");
+ /// assert!(cstr.is_err());
+ /// ```
+ ///
+ /// Creating a `CStr` with an interior nul byte is an error:
+ ///
+ /// ```
+ /// use std::ffi::CStr;
+ ///
+ /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
+ /// assert!(cstr.is_err());
+ /// ```
+ #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
+ pub fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {
+ let nul_pos = memchr::memchr(0, bytes);
+ match nul_pos {
+ Some(nul_pos) if nul_pos + 1 == bytes.len() => {
+ // SAFETY: We know there is only one nul byte, at the end
+ // of the byte slice.
+ Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
+ }
+ Some(nul_pos) => Err(FromBytesWithNulError::interior_nul(nul_pos)),
+ None => Err(FromBytesWithNulError::not_nul_terminated()),
+ }
+ }
+
+ /// Unsafely creates a C string wrapper from a byte slice.
+ ///
+ /// This function will cast the provided `bytes` to a `CStr` wrapper without
+ /// performing any sanity checks.
+ ///
+ /// # Safety
+ /// The provided slice **must** be nul-terminated and not contain any interior
+ /// nul bytes.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::{CStr, CString};
+ ///
+ /// unsafe {
+ /// let cstring = CString::new("hello").expect("CString::new failed");
+ /// let cstr = CStr::from_bytes_with_nul_unchecked(cstring.to_bytes_with_nul());
+ /// assert_eq!(cstr, &*cstring);
+ /// }
+ /// ```
+ #[inline]
+ #[must_use]
+ #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
+ #[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")]
+ #[rustc_allow_const_fn_unstable(const_eval_select)]
+ pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
+ fn rt_impl(bytes: &[u8]) -> &CStr {
+ // Chance at catching some UB at runtime with debug builds.
+ debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0);
+
+ // SAFETY: Casting to CStr is safe because its internal representation
+ // is a [u8] too (safe only inside std).
+ // Dereferencing the obtained pointer is safe because it comes from a
+ // reference. Making a reference is then safe because its lifetime
+ // is bound by the lifetime of the given `bytes`.
+ unsafe { &*(bytes as *const [u8] as *const CStr) }
+ }
+
+ const fn const_impl(bytes: &[u8]) -> &CStr {
+ // Saturating so that an empty slice panics in the assert with a good
+ // message, not here due to underflow.
+ let mut i = bytes.len().saturating_sub(1);
+ assert!(!bytes.is_empty() && bytes[i] == 0, "input was not nul-terminated");
+
+ // Ending null byte exists, skip to the rest.
+ while i != 0 {
+ i -= 1;
+ let byte = bytes[i];
+ assert!(byte != 0, "input contained interior nul");
+ }
+
+ // SAFETY: See `rt_impl` cast.
+ unsafe { &*(bytes as *const [u8] as *const CStr) }
+ }
+
+ // SAFETY: The const and runtime versions have identical behavior
+ // unless the safety contract of `from_bytes_with_nul_unchecked` is
+ // violated, which is UB.
+ unsafe { intrinsics::const_eval_select((bytes,), const_impl, rt_impl) }
+ }
+
+ /// Returns the inner pointer to this C string.
+ ///
+ /// The returned pointer will be valid for as long as `self` is, and points
+ /// to a contiguous region of memory terminated with a 0 byte to represent
+ /// the end of the string.
+ ///
+ /// **WARNING**
+ ///
+ /// The returned pointer is read-only; writing to it (including passing it
+ /// to C code that writes to it) causes undefined behavior.
+ ///
+ /// It is your responsibility to make sure that the underlying memory is not
+ /// freed too early. For example, the following code will cause undefined
+ /// behavior when `ptr` is used inside the `unsafe` block:
+ ///
+ /// ```no_run
+ /// # #![allow(unused_must_use)] #![allow(temporary_cstring_as_ptr)]
+ /// use std::ffi::CString;
+ ///
+ /// let ptr = CString::new("Hello").expect("CString::new failed").as_ptr();
+ /// unsafe {
+ /// // `ptr` is dangling
+ /// *ptr;
+ /// }
+ /// ```
+ ///
+ /// This happens because the pointer returned by `as_ptr` does not carry any
+ /// lifetime information and the `CString` is deallocated immediately after
+ /// the `CString::new("Hello").expect("CString::new failed").as_ptr()`
+ /// expression is evaluated.
+ /// To fix the problem, bind the `CString` to a local variable:
+ ///
+ /// ```no_run
+ /// # #![allow(unused_must_use)]
+ /// use std::ffi::CString;
+ ///
+ /// let hello = CString::new("Hello").expect("CString::new failed");
+ /// let ptr = hello.as_ptr();
+ /// unsafe {
+ /// // `ptr` is valid because `hello` is in scope
+ /// *ptr;
+ /// }
+ /// ```
+ ///
+ /// This way, the lifetime of the `CString` in `hello` encompasses
+ /// the lifetime of `ptr` and the `unsafe` block.
+ #[inline]
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")]
+ pub const fn as_ptr(&self) -> *const c_char {
+ self.inner.as_ptr()
+ }
+
+ /// Converts this C string to a byte slice.
+ ///
+ /// The returned slice will **not** contain the trailing nul terminator that this C
+ /// string has.
+ ///
+ /// > **Note**: This method is currently implemented as a constant-time
+ /// > cast, but it is planned to alter its definition in the future to
+ /// > perform the length calculation whenever this method is called.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CStr;
+ ///
+ /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
+ /// assert_eq!(cstr.to_bytes(), b"foo");
+ /// ```
+ #[inline]
+ #[must_use = "this returns the result of the operation, \
+ without modifying the original"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn to_bytes(&self) -> &[u8] {
+ let bytes = self.to_bytes_with_nul();
+ // SAFETY: to_bytes_with_nul returns slice with length at least 1
+ unsafe { bytes.get_unchecked(..bytes.len() - 1) }
+ }
+
+ /// Converts this C string to a byte slice containing the trailing 0 byte.
+ ///
+ /// This function is the equivalent of [`CStr::to_bytes`] except that it
+ /// will retain the trailing nul terminator instead of chopping it off.
+ ///
+ /// > **Note**: This method is currently implemented as a 0-cost cast, but
+ /// > it is planned to alter its definition in the future to perform the
+ /// > length calculation whenever this method is called.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CStr;
+ ///
+ /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
+ /// assert_eq!(cstr.to_bytes_with_nul(), b"foo\0");
+ /// ```
+ #[inline]
+ #[must_use = "this returns the result of the operation, \
+ without modifying the original"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn to_bytes_with_nul(&self) -> &[u8] {
+ // SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s
+ // is safe on all supported targets.
+ unsafe { &*(&self.inner as *const [c_char] as *const [u8]) }
+ }
+
+ /// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8.
+ ///
+ /// If the contents of the `CStr` are valid UTF-8 data, this
+ /// function will return the corresponding <code>&[str]</code> slice. Otherwise,
+ /// it will return an error with details of where UTF-8 validation failed.
+ ///
+ /// [str]: prim@str "str"
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::CStr;
+ ///
+ /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
+ /// assert_eq!(cstr.to_str(), Ok("foo"));
+ /// ```
+ #[stable(feature = "cstr_to_str", since = "1.4.0")]
+ pub fn to_str(&self) -> Result<&str, str::Utf8Error> {
+ // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
+ // instead of in `from_ptr()`, it may be worth considering if this should
+ // be rewritten to do the UTF-8 check inline with the length calculation
+ // instead of doing it afterwards.
+ str::from_utf8(self.to_bytes())
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl PartialEq for CStr {
+ fn eq(&self, other: &CStr) -> bool {
+ self.to_bytes().eq(other.to_bytes())
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Eq for CStr {}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl PartialOrd for CStr {
+ fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
+ self.to_bytes().partial_cmp(&other.to_bytes())
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Ord for CStr {
+ fn cmp(&self, other: &CStr) -> Ordering {
+ self.to_bytes().cmp(&other.to_bytes())
+ }
+}
+
+#[stable(feature = "cstr_range_from", since = "1.47.0")]
+impl ops::Index<ops::RangeFrom<usize>> for CStr {
+ type Output = CStr;
+
+ fn index(&self, index: ops::RangeFrom<usize>) -> &CStr {
+ let bytes = self.to_bytes_with_nul();
+ // we need to manually check the starting index to account for the null
+ // byte, since otherwise we could get an empty string that doesn't end
+ // in a null.
+ if index.start < bytes.len() {
+ // SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`.
+ unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) }
+ } else {
+ panic!(
+ "index out of bounds: the len is {} but the index is {}",
+ bytes.len(),
+ index.start
+ );
+ }
+ }
+}
+
+#[stable(feature = "cstring_asref", since = "1.7.0")]
+impl AsRef<CStr> for CStr {
+ #[inline]
+ fn as_ref(&self) -> &CStr {
+ self
+ }
+}
diff --git a/library/core/src/ffi/c_uchar.md b/library/core/src/ffi/c_uchar.md
new file mode 100644
index 000000000..b633bb7f8
--- /dev/null
+++ b/library/core/src/ffi/c_uchar.md
@@ -0,0 +1,5 @@
+Equivalent to C's `unsigned char` type.
+
+This type will always be [`u8`], but is included for completeness. It is defined as being an unsigned integer the same size as a C [`char`].
+
+[`char`]: c_char
diff --git a/library/core/src/ffi/c_uint.md b/library/core/src/ffi/c_uint.md
new file mode 100644
index 000000000..f3abea359
--- /dev/null
+++ b/library/core/src/ffi/c_uint.md
@@ -0,0 +1,5 @@
+Equivalent to C's `unsigned int` type.
+
+This type will almost always be [`u32`], but may differ on some esoteric systems. The C standard technically only requires that this type be an unsigned integer with the same size as an [`int`]; some systems define it as a [`u16`], for example.
+
+[`int`]: c_int
diff --git a/library/core/src/ffi/c_ulong.md b/library/core/src/ffi/c_ulong.md
new file mode 100644
index 000000000..4ab304e65
--- /dev/null
+++ b/library/core/src/ffi/c_ulong.md
@@ -0,0 +1,5 @@
+Equivalent to C's `unsigned long` type.
+
+This type will always be [`u32`] or [`u64`]. Most notably, many Linux-based systems assume an `u64`, but Windows assumes `u32`. The C standard technically only requires that this type be an unsigned integer with the size of a [`long`], although in practice, no system would have a `ulong` that is neither a `u32` nor `u64`.
+
+[`long`]: c_long
diff --git a/library/core/src/ffi/c_ulonglong.md b/library/core/src/ffi/c_ulonglong.md
new file mode 100644
index 000000000..a27d70e17
--- /dev/null
+++ b/library/core/src/ffi/c_ulonglong.md
@@ -0,0 +1,5 @@
+Equivalent to C's `unsigned long long` type.
+
+This type will almost always be [`u64`], but may differ on some systems. The C standard technically only requires that this type be an unsigned integer with the size of a [`long long`], although in practice, no system would have a `long long` that is not a `u64`, as most systems do not have a standardised [`u128`] type.
+
+[`long long`]: c_longlong
diff --git a/library/core/src/ffi/c_ushort.md b/library/core/src/ffi/c_ushort.md
new file mode 100644
index 000000000..6928e51b3
--- /dev/null
+++ b/library/core/src/ffi/c_ushort.md
@@ -0,0 +1,5 @@
+Equivalent to C's `unsigned short` type.
+
+This type will almost always be [`u16`], but may differ on some esoteric systems. The C standard technically only requires that this type be an unsigned integer with the same size as a [`short`].
+
+[`short`]: c_short
diff --git a/library/core/src/ffi/c_void.md b/library/core/src/ffi/c_void.md
new file mode 100644
index 000000000..ee7403aa0
--- /dev/null
+++ b/library/core/src/ffi/c_void.md
@@ -0,0 +1,16 @@
+Equivalent to C's `void` type when used as a [pointer].
+
+In essence, `*const c_void` is equivalent to C's `const void*`
+and `*mut c_void` is equivalent to C's `void*`. That said, this is
+*not* the same as C's `void` return type, which is Rust's `()` type.
+
+To model pointers to opaque types in FFI, until `extern type` is
+stabilized, it is recommended to use a newtype wrapper around an empty
+byte array. See the [Nomicon] for details.
+
+One could use `std::os::raw::c_void` if they want to support old Rust
+compiler down to 1.1.0. After Rust 1.30.0, it was re-exported by
+this definition. For more information, please read [RFC 2521].
+
+[Nomicon]: https://doc.rust-lang.org/nomicon/ffi.html#representing-opaque-structs
+[RFC 2521]: https://github.com/rust-lang/rfcs/blob/master/text/2521-c_void-reunification.md
diff --git a/library/core/src/ffi/mod.rs b/library/core/src/ffi/mod.rs
new file mode 100644
index 000000000..ec1eaa99f
--- /dev/null
+++ b/library/core/src/ffi/mod.rs
@@ -0,0 +1,580 @@
+//! Platform-specific types, as defined by C.
+//!
+//! Code that interacts via FFI will almost certainly be using the
+//! base types provided by C, which aren't nearly as nicely defined
+//! as Rust's primitive types. This module provides types which will
+//! match those defined by C, so that code that interacts with C will
+//! refer to the correct types.
+
+#![stable(feature = "", since = "1.30.0")]
+#![allow(non_camel_case_types)]
+
+use crate::fmt;
+use crate::marker::PhantomData;
+use crate::num::*;
+use crate::ops::{Deref, DerefMut};
+
+#[stable(feature = "core_c_str", since = "1.64.0")]
+pub use self::c_str::{CStr, FromBytesUntilNulError, FromBytesWithNulError};
+
+mod c_str;
+
+macro_rules! type_alias_no_nz {
+ {
+ $Docfile:tt, $Alias:ident = $Real:ty;
+ $( $Cfg:tt )*
+ } => {
+ #[doc = include_str!($Docfile)]
+ $( $Cfg )*
+ #[stable(feature = "core_ffi_c", since = "1.64.0")]
+ pub type $Alias = $Real;
+ }
+}
+
+// To verify that the NonZero types in this file's macro invocations correspond
+//
+// perl -n < library/std/src/os/raw/mod.rs -e 'next unless m/type_alias\!/; die "$_ ?" unless m/, (c_\w+) = (\w+), NonZero_(\w+) = NonZero(\w+)/; die "$_ ?" unless $3 eq $1 and $4 eq ucfirst $2'
+//
+// NB this does not check that the main c_* types are right.
+
+macro_rules! type_alias {
+ {
+ $Docfile:tt, $Alias:ident = $Real:ty, $NZAlias:ident = $NZReal:ty;
+ $( $Cfg:tt )*
+ } => {
+ type_alias_no_nz! { $Docfile, $Alias = $Real; $( $Cfg )* }
+
+ #[doc = concat!("Type alias for `NonZero` version of [`", stringify!($Alias), "`]")]
+ #[unstable(feature = "raw_os_nonzero", issue = "82363")]
+ $( $Cfg )*
+ pub type $NZAlias = $NZReal;
+ }
+}
+
+type_alias! { "c_char.md", c_char = c_char_definition::c_char, NonZero_c_char = c_char_definition::NonZero_c_char;
+// Make this type alias appear cfg-dependent so that Clippy does not suggest
+// replacing `0 as c_char` with `0_i8`/`0_u8`. This #[cfg(all())] can be removed
+// after the false positive in https://github.com/rust-lang/rust-clippy/issues/8093
+// is fixed.
+#[cfg(all())]
+#[doc(cfg(all()))] }
+
+type_alias! { "c_schar.md", c_schar = i8, NonZero_c_schar = NonZeroI8; }
+type_alias! { "c_uchar.md", c_uchar = u8, NonZero_c_uchar = NonZeroU8; }
+type_alias! { "c_short.md", c_short = i16, NonZero_c_short = NonZeroI16; }
+type_alias! { "c_ushort.md", c_ushort = u16, NonZero_c_ushort = NonZeroU16; }
+
+type_alias! { "c_int.md", c_int = c_int_definition::c_int, NonZero_c_int = c_int_definition::NonZero_c_int;
+#[doc(cfg(all()))] }
+type_alias! { "c_uint.md", c_uint = c_int_definition::c_uint, NonZero_c_uint = c_int_definition::NonZero_c_uint;
+#[doc(cfg(all()))] }
+
+type_alias! { "c_long.md", c_long = c_long_definition::c_long, NonZero_c_long = c_long_definition::NonZero_c_long;
+#[doc(cfg(all()))] }
+type_alias! { "c_ulong.md", c_ulong = c_long_definition::c_ulong, NonZero_c_ulong = c_long_definition::NonZero_c_ulong;
+#[doc(cfg(all()))] }
+
+type_alias! { "c_longlong.md", c_longlong = i64, NonZero_c_longlong = NonZeroI64; }
+type_alias! { "c_ulonglong.md", c_ulonglong = u64, NonZero_c_ulonglong = NonZeroU64; }
+
+type_alias_no_nz! { "c_float.md", c_float = f32; }
+type_alias_no_nz! { "c_double.md", c_double = f64; }
+
+/// Equivalent to C's `size_t` type, from `stddef.h` (or `cstddef` for C++).
+///
+/// This type is currently always [`usize`], however in the future there may be
+/// platforms where this is not the case.
+#[unstable(feature = "c_size_t", issue = "88345")]
+pub type c_size_t = usize;
+
+/// Equivalent to C's `ptrdiff_t` type, from `stddef.h` (or `cstddef` for C++).
+///
+/// This type is currently always [`isize`], however in the future there may be
+/// platforms where this is not the case.
+#[unstable(feature = "c_size_t", issue = "88345")]
+pub type c_ptrdiff_t = isize;
+
+/// Equivalent to C's `ssize_t` (on POSIX) or `SSIZE_T` (on Windows) type.
+///
+/// This type is currently always [`isize`], however in the future there may be
+/// platforms where this is not the case.
+#[unstable(feature = "c_size_t", issue = "88345")]
+pub type c_ssize_t = isize;
+
+mod c_char_definition {
+ cfg_if! {
+ // These are the targets on which c_char is unsigned.
+ if #[cfg(any(
+ all(
+ target_os = "linux",
+ any(
+ target_arch = "aarch64",
+ target_arch = "arm",
+ target_arch = "hexagon",
+ target_arch = "powerpc",
+ target_arch = "powerpc64",
+ target_arch = "s390x",
+ target_arch = "riscv64",
+ target_arch = "riscv32"
+ )
+ ),
+ all(target_os = "android", any(target_arch = "aarch64", target_arch = "arm")),
+ all(target_os = "l4re", target_arch = "x86_64"),
+ all(
+ any(target_os = "freebsd", target_os = "openbsd"),
+ any(
+ target_arch = "aarch64",
+ target_arch = "arm",
+ target_arch = "powerpc",
+ target_arch = "powerpc64",
+ target_arch = "riscv64"
+ )
+ ),
+ all(
+ target_os = "netbsd",
+ any(target_arch = "aarch64", target_arch = "arm", target_arch = "powerpc")
+ ),
+ all(
+ target_os = "vxworks",
+ any(
+ target_arch = "aarch64",
+ target_arch = "arm",
+ target_arch = "powerpc64",
+ target_arch = "powerpc"
+ )
+ ),
+ all(target_os = "fuchsia", target_arch = "aarch64"),
+ target_os = "horizon"
+ ))] {
+ pub type c_char = u8;
+ pub type NonZero_c_char = crate::num::NonZeroU8;
+ } else {
+ // On every other target, c_char is signed.
+ pub type c_char = i8;
+ pub type NonZero_c_char = crate::num::NonZeroI8;
+ }
+ }
+}
+
+mod c_int_definition {
+ cfg_if! {
+ if #[cfg(any(target_arch = "avr", target_arch = "msp430"))] {
+ pub type c_int = i16;
+ pub type NonZero_c_int = crate::num::NonZeroI16;
+ pub type c_uint = u16;
+ pub type NonZero_c_uint = crate::num::NonZeroU16;
+ } else {
+ pub type c_int = i32;
+ pub type NonZero_c_int = crate::num::NonZeroI32;
+ pub type c_uint = u32;
+ pub type NonZero_c_uint = crate::num::NonZeroU32;
+ }
+ }
+}
+
+mod c_long_definition {
+ cfg_if! {
+ if #[cfg(all(target_pointer_width = "64", not(windows)))] {
+ pub type c_long = i64;
+ pub type NonZero_c_long = crate::num::NonZeroI64;
+ pub type c_ulong = u64;
+ pub type NonZero_c_ulong = crate::num::NonZeroU64;
+ } else {
+ // The minimal size of `long` in the C standard is 32 bits
+ pub type c_long = i32;
+ pub type NonZero_c_long = crate::num::NonZeroI32;
+ pub type c_ulong = u32;
+ pub type NonZero_c_ulong = crate::num::NonZeroU32;
+ }
+ }
+}
+
+// N.B., for LLVM to recognize the void pointer type and by extension
+// functions like malloc(), we need to have it represented as i8* in
+// LLVM bitcode. The enum used here ensures this and prevents misuse
+// of the "raw" type by only having private variants. We need two
+// variants, because the compiler complains about the repr attribute
+// otherwise and we need at least one variant as otherwise the enum
+// would be uninhabited and at least dereferencing such pointers would
+// be UB.
+#[doc = include_str!("c_void.md")]
+#[repr(u8)]
+#[stable(feature = "core_c_void", since = "1.30.0")]
+pub enum c_void {
+ #[unstable(
+ feature = "c_void_variant",
+ reason = "temporary implementation detail",
+ issue = "none"
+ )]
+ #[doc(hidden)]
+ __variant1,
+ #[unstable(
+ feature = "c_void_variant",
+ reason = "temporary implementation detail",
+ issue = "none"
+ )]
+ #[doc(hidden)]
+ __variant2,
+}
+
+#[stable(feature = "std_debug", since = "1.16.0")]
+impl fmt::Debug for c_void {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("c_void").finish()
+ }
+}
+
+/// Basic implementation of a `va_list`.
+// The name is WIP, using `VaListImpl` for now.
+#[cfg(any(
+ all(not(target_arch = "aarch64"), not(target_arch = "powerpc"), not(target_arch = "x86_64")),
+ all(target_arch = "aarch64", any(target_os = "macos", target_os = "ios")),
+ target_family = "wasm",
+ target_arch = "asmjs",
+ target_os = "uefi",
+ windows,
+))]
+#[repr(transparent)]
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+#[lang = "va_list"]
+pub struct VaListImpl<'f> {
+ ptr: *mut c_void,
+
+ // Invariant over `'f`, so each `VaListImpl<'f>` object is tied to
+ // the region of the function it's defined in
+ _marker: PhantomData<&'f mut &'f c_void>,
+}
+
+#[cfg(any(
+ all(not(target_arch = "aarch64"), not(target_arch = "powerpc"), not(target_arch = "x86_64")),
+ all(target_arch = "aarch64", any(target_os = "macos", target_os = "ios")),
+ target_family = "wasm",
+ target_arch = "asmjs",
+ target_os = "uefi",
+ windows,
+))]
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+impl<'f> fmt::Debug for VaListImpl<'f> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "va_list* {:p}", self.ptr)
+ }
+}
+
+/// AArch64 ABI implementation of a `va_list`. See the
+/// [AArch64 Procedure Call Standard] for more details.
+///
+/// [AArch64 Procedure Call Standard]:
+/// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_aapcs64.pdf
+#[cfg(all(
+ target_arch = "aarch64",
+ not(any(target_os = "macos", target_os = "ios")),
+ not(target_os = "uefi"),
+ not(windows),
+))]
+#[repr(C)]
+#[derive(Debug)]
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+#[lang = "va_list"]
+pub struct VaListImpl<'f> {
+ stack: *mut c_void,
+ gr_top: *mut c_void,
+ vr_top: *mut c_void,
+ gr_offs: i32,
+ vr_offs: i32,
+ _marker: PhantomData<&'f mut &'f c_void>,
+}
+
+/// PowerPC ABI implementation of a `va_list`.
+#[cfg(all(target_arch = "powerpc", not(target_os = "uefi"), not(windows)))]
+#[repr(C)]
+#[derive(Debug)]
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+#[lang = "va_list"]
+pub struct VaListImpl<'f> {
+ gpr: u8,
+ fpr: u8,
+ reserved: u16,
+ overflow_arg_area: *mut c_void,
+ reg_save_area: *mut c_void,
+ _marker: PhantomData<&'f mut &'f c_void>,
+}
+
+/// x86_64 ABI implementation of a `va_list`.
+#[cfg(all(target_arch = "x86_64", not(target_os = "uefi"), not(windows)))]
+#[repr(C)]
+#[derive(Debug)]
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+#[lang = "va_list"]
+pub struct VaListImpl<'f> {
+ gp_offset: i32,
+ fp_offset: i32,
+ overflow_arg_area: *mut c_void,
+ reg_save_area: *mut c_void,
+ _marker: PhantomData<&'f mut &'f c_void>,
+}
+
+/// A wrapper for a `va_list`
+#[repr(transparent)]
+#[derive(Debug)]
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+pub struct VaList<'a, 'f: 'a> {
+ #[cfg(any(
+ all(
+ not(target_arch = "aarch64"),
+ not(target_arch = "powerpc"),
+ not(target_arch = "x86_64")
+ ),
+ all(target_arch = "aarch64", any(target_os = "macos", target_os = "ios")),
+ target_family = "wasm",
+ target_arch = "asmjs",
+ target_os = "uefi",
+ windows,
+ ))]
+ inner: VaListImpl<'f>,
+
+ #[cfg(all(
+ any(target_arch = "aarch64", target_arch = "powerpc", target_arch = "x86_64"),
+ any(not(target_arch = "aarch64"), not(any(target_os = "macos", target_os = "ios"))),
+ not(target_family = "wasm"),
+ not(target_arch = "asmjs"),
+ not(target_os = "uefi"),
+ not(windows),
+ ))]
+ inner: &'a mut VaListImpl<'f>,
+
+ _marker: PhantomData<&'a mut VaListImpl<'f>>,
+}
+
+#[cfg(any(
+ all(not(target_arch = "aarch64"), not(target_arch = "powerpc"), not(target_arch = "x86_64")),
+ all(target_arch = "aarch64", any(target_os = "macos", target_os = "ios")),
+ target_family = "wasm",
+ target_arch = "asmjs",
+ target_os = "uefi",
+ windows,
+))]
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+impl<'f> VaListImpl<'f> {
+ /// Convert a `VaListImpl` into a `VaList` that is binary-compatible with C's `va_list`.
+ #[inline]
+ pub fn as_va_list<'a>(&'a mut self) -> VaList<'a, 'f> {
+ VaList { inner: VaListImpl { ..*self }, _marker: PhantomData }
+ }
+}
+
+#[cfg(all(
+ any(target_arch = "aarch64", target_arch = "powerpc", target_arch = "x86_64"),
+ any(not(target_arch = "aarch64"), not(any(target_os = "macos", target_os = "ios"))),
+ not(target_family = "wasm"),
+ not(target_arch = "asmjs"),
+ not(target_os = "uefi"),
+ not(windows),
+))]
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+impl<'f> VaListImpl<'f> {
+ /// Convert a `VaListImpl` into a `VaList` that is binary-compatible with C's `va_list`.
+ #[inline]
+ pub fn as_va_list<'a>(&'a mut self) -> VaList<'a, 'f> {
+ VaList { inner: self, _marker: PhantomData }
+ }
+}
+
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+impl<'a, 'f: 'a> Deref for VaList<'a, 'f> {
+ type Target = VaListImpl<'f>;
+
+ #[inline]
+ fn deref(&self) -> &VaListImpl<'f> {
+ &self.inner
+ }
+}
+
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+impl<'a, 'f: 'a> DerefMut for VaList<'a, 'f> {
+ #[inline]
+ fn deref_mut(&mut self) -> &mut VaListImpl<'f> {
+ &mut self.inner
+ }
+}
+
+// The VaArgSafe trait needs to be used in public interfaces, however, the trait
+// itself must not be allowed to be used outside this module. Allowing users to
+// implement the trait for a new type (thereby allowing the va_arg intrinsic to
+// be used on a new type) is likely to cause undefined behavior.
+//
+// FIXME(dlrobertson): In order to use the VaArgSafe trait in a public interface
+// but also ensure it cannot be used elsewhere, the trait needs to be public
+// within a private module. Once RFC 2145 has been implemented look into
+// improving this.
+mod sealed_trait {
+ /// Trait which permits the allowed types to be used with [super::VaListImpl::arg].
+ #[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+ )]
+ pub trait VaArgSafe {}
+}
+
+macro_rules! impl_va_arg_safe {
+ ($($t:ty),+) => {
+ $(
+ #[unstable(feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930")]
+ impl sealed_trait::VaArgSafe for $t {}
+ )+
+ }
+}
+
+impl_va_arg_safe! {i8, i16, i32, i64, usize}
+impl_va_arg_safe! {u8, u16, u32, u64, isize}
+impl_va_arg_safe! {f64}
+
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+impl<T> sealed_trait::VaArgSafe for *mut T {}
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+impl<T> sealed_trait::VaArgSafe for *const T {}
+
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+impl<'f> VaListImpl<'f> {
+ /// Advance to the next arg.
+ #[inline]
+ pub unsafe fn arg<T: sealed_trait::VaArgSafe>(&mut self) -> T {
+ // SAFETY: the caller must uphold the safety contract for `va_arg`.
+ unsafe { va_arg(self) }
+ }
+
+ /// Copies the `va_list` at the current location.
+ pub unsafe fn with_copy<F, R>(&self, f: F) -> R
+ where
+ F: for<'copy> FnOnce(VaList<'copy, 'f>) -> R,
+ {
+ let mut ap = self.clone();
+ let ret = f(ap.as_va_list());
+ // SAFETY: the caller must uphold the safety contract for `va_end`.
+ unsafe {
+ va_end(&mut ap);
+ }
+ ret
+ }
+}
+
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+impl<'f> Clone for VaListImpl<'f> {
+ #[inline]
+ fn clone(&self) -> Self {
+ let mut dest = crate::mem::MaybeUninit::uninit();
+ // SAFETY: we write to the `MaybeUninit`, thus it is initialized and `assume_init` is legal
+ unsafe {
+ va_copy(dest.as_mut_ptr(), self);
+ dest.assume_init()
+ }
+ }
+}
+
+#[unstable(
+ feature = "c_variadic",
+ reason = "the `c_variadic` feature has not been properly tested on \
+ all supported platforms",
+ issue = "44930"
+)]
+impl<'f> Drop for VaListImpl<'f> {
+ fn drop(&mut self) {
+ // FIXME: this should call `va_end`, but there's no clean way to
+ // guarantee that `drop` always gets inlined into its caller,
+ // so the `va_end` would get directly called from the same function as
+ // the corresponding `va_copy`. `man va_end` states that C requires this,
+ // and LLVM basically follows the C semantics, so we need to make sure
+ // that `va_end` is always called from the same function as `va_copy`.
+ // For more details, see https://github.com/rust-lang/rust/pull/59625
+ // and https://llvm.org/docs/LangRef.html#llvm-va-end-intrinsic.
+ //
+ // This works for now, since `va_end` is a no-op on all current LLVM targets.
+ }
+}
+
+extern "rust-intrinsic" {
+ /// Destroy the arglist `ap` after initialization with `va_start` or
+ /// `va_copy`.
+ fn va_end(ap: &mut VaListImpl<'_>);
+
+ /// Copies the current location of arglist `src` to the arglist `dst`.
+ fn va_copy<'f>(dest: *mut VaListImpl<'f>, src: &VaListImpl<'f>);
+
+ /// Loads an argument of type `T` from the `va_list` `ap` and increment the
+ /// argument `ap` points to.
+ fn va_arg<T: sealed_trait::VaArgSafe>(ap: &mut VaListImpl<'_>) -> T;
+}