summaryrefslogtreecommitdiffstats
path: root/library/core/src/fmt/mod.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /library/core/src/fmt/mod.rs
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'library/core/src/fmt/mod.rs')
-rw-r--r--library/core/src/fmt/mod.rs2664
1 files changed, 2664 insertions, 0 deletions
diff --git a/library/core/src/fmt/mod.rs b/library/core/src/fmt/mod.rs
new file mode 100644
index 000000000..372141e09
--- /dev/null
+++ b/library/core/src/fmt/mod.rs
@@ -0,0 +1,2664 @@
+//! Utilities for formatting and printing strings.
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+use crate::cell::{Cell, Ref, RefCell, RefMut, SyncUnsafeCell, UnsafeCell};
+use crate::char::EscapeDebugExtArgs;
+use crate::iter;
+use crate::marker::PhantomData;
+use crate::mem;
+use crate::num::fmt as numfmt;
+use crate::ops::Deref;
+use crate::result;
+use crate::str;
+
+mod builders;
+#[cfg(not(no_fp_fmt_parse))]
+mod float;
+#[cfg(no_fp_fmt_parse)]
+mod nofloat;
+mod num;
+
+#[stable(feature = "fmt_flags_align", since = "1.28.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "Alignment")]
+/// Possible alignments returned by `Formatter::align`
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+pub enum Alignment {
+ #[stable(feature = "fmt_flags_align", since = "1.28.0")]
+ /// Indication that contents should be left-aligned.
+ Left,
+ #[stable(feature = "fmt_flags_align", since = "1.28.0")]
+ /// Indication that contents should be right-aligned.
+ Right,
+ #[stable(feature = "fmt_flags_align", since = "1.28.0")]
+ /// Indication that contents should be center-aligned.
+ Center,
+}
+
+#[stable(feature = "debug_builders", since = "1.2.0")]
+pub use self::builders::{DebugList, DebugMap, DebugSet, DebugStruct, DebugTuple};
+
+#[unstable(feature = "fmt_internals", reason = "internal to format_args!", issue = "none")]
+#[doc(hidden)]
+pub mod rt {
+ pub mod v1;
+}
+
+/// The type returned by formatter methods.
+///
+/// # Examples
+///
+/// ```
+/// use std::fmt;
+///
+/// #[derive(Debug)]
+/// struct Triangle {
+/// a: f32,
+/// b: f32,
+/// c: f32
+/// }
+///
+/// impl fmt::Display for Triangle {
+/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+/// write!(f, "({}, {}, {})", self.a, self.b, self.c)
+/// }
+/// }
+///
+/// let pythagorean_triple = Triangle { a: 3.0, b: 4.0, c: 5.0 };
+///
+/// assert_eq!(format!("{pythagorean_triple}"), "(3, 4, 5)");
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+pub type Result = result::Result<(), Error>;
+
+/// The error type which is returned from formatting a message into a stream.
+///
+/// This type does not support transmission of an error other than that an error
+/// occurred. Any extra information must be arranged to be transmitted through
+/// some other means.
+///
+/// An important thing to remember is that the type `fmt::Error` should not be
+/// confused with [`std::io::Error`] or [`std::error::Error`], which you may also
+/// have in scope.
+///
+/// [`std::io::Error`]: ../../std/io/struct.Error.html
+/// [`std::error::Error`]: ../../std/error/trait.Error.html
+///
+/// # Examples
+///
+/// ```rust
+/// use std::fmt::{self, write};
+///
+/// let mut output = String::new();
+/// if let Err(fmt::Error) = write(&mut output, format_args!("Hello {}!", "world")) {
+/// panic!("An error occurred");
+/// }
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[derive(Copy, Clone, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
+pub struct Error;
+
+/// A trait for writing or formatting into Unicode-accepting buffers or streams.
+///
+/// This trait only accepts UTF-8–encoded data and is not [flushable]. If you only
+/// want to accept Unicode and you don't need flushing, you should implement this trait;
+/// otherwise you should implement [`std::io::Write`].
+///
+/// [`std::io::Write`]: ../../std/io/trait.Write.html
+/// [flushable]: ../../std/io/trait.Write.html#tymethod.flush
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait Write {
+ /// Writes a string slice into this writer, returning whether the write
+ /// succeeded.
+ ///
+ /// This method can only succeed if the entire string slice was successfully
+ /// written, and this method will not return until all data has been
+ /// written or an error occurs.
+ ///
+ /// # Errors
+ ///
+ /// This function will return an instance of [`Error`] on error.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt::{Error, Write};
+ ///
+ /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
+ /// f.write_str(s)
+ /// }
+ ///
+ /// let mut buf = String::new();
+ /// writer(&mut buf, "hola").unwrap();
+ /// assert_eq!(&buf, "hola");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn write_str(&mut self, s: &str) -> Result;
+
+ /// Writes a [`char`] into this writer, returning whether the write succeeded.
+ ///
+ /// A single [`char`] may be encoded as more than one byte.
+ /// This method can only succeed if the entire byte sequence was successfully
+ /// written, and this method will not return until all data has been
+ /// written or an error occurs.
+ ///
+ /// # Errors
+ ///
+ /// This function will return an instance of [`Error`] on error.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt::{Error, Write};
+ ///
+ /// fn writer<W: Write>(f: &mut W, c: char) -> Result<(), Error> {
+ /// f.write_char(c)
+ /// }
+ ///
+ /// let mut buf = String::new();
+ /// writer(&mut buf, 'a').unwrap();
+ /// writer(&mut buf, 'b').unwrap();
+ /// assert_eq!(&buf, "ab");
+ /// ```
+ #[stable(feature = "fmt_write_char", since = "1.1.0")]
+ fn write_char(&mut self, c: char) -> Result {
+ self.write_str(c.encode_utf8(&mut [0; 4]))
+ }
+
+ /// Glue for usage of the [`write!`] macro with implementors of this trait.
+ ///
+ /// This method should generally not be invoked manually, but rather through
+ /// the [`write!`] macro itself.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt::{Error, Write};
+ ///
+ /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
+ /// f.write_fmt(format_args!("{s}"))
+ /// }
+ ///
+ /// let mut buf = String::new();
+ /// writer(&mut buf, "world").unwrap();
+ /// assert_eq!(&buf, "world");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn write_fmt(mut self: &mut Self, args: Arguments<'_>) -> Result {
+ write(&mut self, args)
+ }
+}
+
+#[stable(feature = "fmt_write_blanket_impl", since = "1.4.0")]
+impl<W: Write + ?Sized> Write for &mut W {
+ fn write_str(&mut self, s: &str) -> Result {
+ (**self).write_str(s)
+ }
+
+ fn write_char(&mut self, c: char) -> Result {
+ (**self).write_char(c)
+ }
+
+ fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
+ (**self).write_fmt(args)
+ }
+}
+
+/// Configuration for formatting.
+///
+/// A `Formatter` represents various options related to formatting. Users do not
+/// construct `Formatter`s directly; a mutable reference to one is passed to
+/// the `fmt` method of all formatting traits, like [`Debug`] and [`Display`].
+///
+/// To interact with a `Formatter`, you'll call various methods to change the
+/// various options related to formatting. For examples, please see the
+/// documentation of the methods defined on `Formatter` below.
+#[allow(missing_debug_implementations)]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct Formatter<'a> {
+ flags: u32,
+ fill: char,
+ align: rt::v1::Alignment,
+ width: Option<usize>,
+ precision: Option<usize>,
+
+ buf: &'a mut (dyn Write + 'a),
+}
+
+impl<'a> Formatter<'a> {
+ /// Creates a new formatter with default settings.
+ ///
+ /// This can be used as a micro-optimization in cases where a full `Arguments`
+ /// structure (as created by `format_args!`) is not necessary; `Arguments`
+ /// is a little more expensive to use in simple formatting scenarios.
+ ///
+ /// Currently not intended for use outside of the standard library.
+ #[unstable(feature = "fmt_internals", reason = "internal to standard library", issue = "none")]
+ #[doc(hidden)]
+ pub fn new(buf: &'a mut (dyn Write + 'a)) -> Formatter<'a> {
+ Formatter {
+ flags: 0,
+ fill: ' ',
+ align: rt::v1::Alignment::Unknown,
+ width: None,
+ precision: None,
+ buf,
+ }
+ }
+}
+
+// NB. Argument is essentially an optimized partially applied formatting function,
+// equivalent to `exists T.(&T, fn(&T, &mut Formatter<'_>) -> Result`.
+
+extern "C" {
+ type Opaque;
+}
+
+/// This struct represents the generic "argument" which is taken by the Xprintf
+/// family of functions. It contains a function to format the given value. At
+/// compile time it is ensured that the function and the value have the correct
+/// types, and then this struct is used to canonicalize arguments to one type.
+#[derive(Copy, Clone)]
+#[allow(missing_debug_implementations)]
+#[unstable(feature = "fmt_internals", reason = "internal to format_args!", issue = "none")]
+#[doc(hidden)]
+pub struct ArgumentV1<'a> {
+ value: &'a Opaque,
+ formatter: fn(&Opaque, &mut Formatter<'_>) -> Result,
+}
+
+/// This struct represents the unsafety of constructing an `Arguments`.
+/// It exists, rather than an unsafe function, in order to simplify the expansion
+/// of `format_args!(..)` and reduce the scope of the `unsafe` block.
+#[allow(missing_debug_implementations)]
+#[doc(hidden)]
+#[unstable(feature = "fmt_internals", reason = "internal to format_args!", issue = "none")]
+pub struct UnsafeArg {
+ _private: (),
+}
+
+impl UnsafeArg {
+ /// See documentation where `UnsafeArg` is required to know when it is safe to
+ /// create and use `UnsafeArg`.
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_internals", reason = "internal to format_args!", issue = "none")]
+ #[inline(always)]
+ pub unsafe fn new() -> Self {
+ Self { _private: () }
+ }
+}
+
+// This guarantees a single stable value for the function pointer associated with
+// indices/counts in the formatting infrastructure.
+//
+// Note that a function defined as such would not be correct as functions are
+// always tagged unnamed_addr with the current lowering to LLVM IR, so their
+// address is not considered important to LLVM and as such the as_usize cast
+// could have been miscompiled. In practice, we never call as_usize on non-usize
+// containing data (as a matter of static generation of the formatting
+// arguments), so this is merely an additional check.
+//
+// We primarily want to ensure that the function pointer at `USIZE_MARKER` has
+// an address corresponding *only* to functions that also take `&usize` as their
+// first argument. The read_volatile here ensures that we can safely ready out a
+// usize from the passed reference and that this address does not point at a
+// non-usize taking function.
+#[unstable(feature = "fmt_internals", reason = "internal to format_args!", issue = "none")]
+static USIZE_MARKER: fn(&usize, &mut Formatter<'_>) -> Result = |ptr, _| {
+ // SAFETY: ptr is a reference
+ let _v: usize = unsafe { crate::ptr::read_volatile(ptr) };
+ loop {}
+};
+
+macro_rules! arg_new {
+ ($f: ident, $t: ident) => {
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_internals", reason = "internal to format_args!", issue = "none")]
+ #[inline]
+ pub fn $f<'b, T: $t>(x: &'b T) -> ArgumentV1<'_> {
+ Self::new(x, $t::fmt)
+ }
+ };
+}
+
+#[rustc_diagnostic_item = "ArgumentV1Methods"]
+impl<'a> ArgumentV1<'a> {
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_internals", reason = "internal to format_args!", issue = "none")]
+ #[inline]
+ pub fn new<'b, T>(x: &'b T, f: fn(&T, &mut Formatter<'_>) -> Result) -> ArgumentV1<'b> {
+ // SAFETY: `mem::transmute(x)` is safe because
+ // 1. `&'b T` keeps the lifetime it originated with `'b`
+ // (so as to not have an unbounded lifetime)
+ // 2. `&'b T` and `&'b Opaque` have the same memory layout
+ // (when `T` is `Sized`, as it is here)
+ // `mem::transmute(f)` is safe since `fn(&T, &mut Formatter<'_>) -> Result`
+ // and `fn(&Opaque, &mut Formatter<'_>) -> Result` have the same ABI
+ // (as long as `T` is `Sized`)
+ unsafe { ArgumentV1 { formatter: mem::transmute(f), value: mem::transmute(x) } }
+ }
+
+ arg_new!(new_display, Display);
+ arg_new!(new_debug, Debug);
+ arg_new!(new_octal, Octal);
+ arg_new!(new_lower_hex, LowerHex);
+ arg_new!(new_upper_hex, UpperHex);
+ arg_new!(new_pointer, Pointer);
+ arg_new!(new_binary, Binary);
+ arg_new!(new_lower_exp, LowerExp);
+ arg_new!(new_upper_exp, UpperExp);
+
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_internals", reason = "internal to format_args!", issue = "none")]
+ pub fn from_usize(x: &usize) -> ArgumentV1<'_> {
+ ArgumentV1::new(x, USIZE_MARKER)
+ }
+
+ fn as_usize(&self) -> Option<usize> {
+ // We are type punning a bit here: USIZE_MARKER only takes an &usize but
+ // formatter takes an &Opaque. Rust understandably doesn't think we should compare
+ // the function pointers if they don't have the same signature, so we cast to
+ // usizes to tell it that we just want to compare addresses.
+ if self.formatter as usize == USIZE_MARKER as usize {
+ // SAFETY: The `formatter` field is only set to USIZE_MARKER if
+ // the value is a usize, so this is safe
+ Some(unsafe { *(self.value as *const _ as *const usize) })
+ } else {
+ None
+ }
+ }
+}
+
+// flags available in the v1 format of format_args
+#[derive(Copy, Clone)]
+enum FlagV1 {
+ SignPlus,
+ SignMinus,
+ Alternate,
+ SignAwareZeroPad,
+ DebugLowerHex,
+ DebugUpperHex,
+}
+
+impl<'a> Arguments<'a> {
+ /// When using the format_args!() macro, this function is used to generate the
+ /// Arguments structure.
+ #[doc(hidden)]
+ #[inline]
+ #[unstable(feature = "fmt_internals", reason = "internal to format_args!", issue = "none")]
+ #[rustc_const_unstable(feature = "const_fmt_arguments_new", issue = "none")]
+ pub const fn new_v1(pieces: &'a [&'static str], args: &'a [ArgumentV1<'a>]) -> Arguments<'a> {
+ if pieces.len() < args.len() || pieces.len() > args.len() + 1 {
+ panic!("invalid args");
+ }
+ Arguments { pieces, fmt: None, args }
+ }
+
+ /// This function is used to specify nonstandard formatting parameters.
+ ///
+ /// An `UnsafeArg` is required because the following invariants must be held
+ /// in order for this function to be safe:
+ /// 1. The `pieces` slice must be at least as long as `fmt`.
+ /// 2. Every [`rt::v1::Argument::position`] value within `fmt` must be a
+ /// valid index of `args`.
+ /// 3. Every [`Count::Param`] within `fmt` must contain a valid index of
+ /// `args`.
+ #[doc(hidden)]
+ #[inline]
+ #[unstable(feature = "fmt_internals", reason = "internal to format_args!", issue = "none")]
+ #[rustc_const_unstable(feature = "const_fmt_arguments_new", issue = "none")]
+ pub const fn new_v1_formatted(
+ pieces: &'a [&'static str],
+ args: &'a [ArgumentV1<'a>],
+ fmt: &'a [rt::v1::Argument],
+ _unsafe_arg: UnsafeArg,
+ ) -> Arguments<'a> {
+ Arguments { pieces, fmt: Some(fmt), args }
+ }
+
+ /// Estimates the length of the formatted text.
+ ///
+ /// This is intended to be used for setting initial `String` capacity
+ /// when using `format!`. Note: this is neither the lower nor upper bound.
+ #[doc(hidden)]
+ #[inline]
+ #[unstable(feature = "fmt_internals", reason = "internal to format_args!", issue = "none")]
+ pub fn estimated_capacity(&self) -> usize {
+ let pieces_length: usize = self.pieces.iter().map(|x| x.len()).sum();
+
+ if self.args.is_empty() {
+ pieces_length
+ } else if !self.pieces.is_empty() && self.pieces[0].is_empty() && pieces_length < 16 {
+ // If the format string starts with an argument,
+ // don't preallocate anything, unless length
+ // of pieces is significant.
+ 0
+ } else {
+ // There are some arguments, so any additional push
+ // will reallocate the string. To avoid that,
+ // we're "pre-doubling" the capacity here.
+ pieces_length.checked_mul(2).unwrap_or(0)
+ }
+ }
+}
+
+/// This structure represents a safely precompiled version of a format string
+/// and its arguments. This cannot be generated at runtime because it cannot
+/// safely be done, so no constructors are given and the fields are private
+/// to prevent modification.
+///
+/// The [`format_args!`] macro will safely create an instance of this structure.
+/// The macro validates the format string at compile-time so usage of the
+/// [`write()`] and [`format()`] functions can be safely performed.
+///
+/// You can use the `Arguments<'a>` that [`format_args!`] returns in `Debug`
+/// and `Display` contexts as seen below. The example also shows that `Debug`
+/// and `Display` format to the same thing: the interpolated format string
+/// in `format_args!`.
+///
+/// ```rust
+/// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
+/// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
+/// assert_eq!("1 foo 2", display);
+/// assert_eq!(display, debug);
+/// ```
+///
+/// [`format()`]: ../../std/fmt/fn.format.html
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "Arguments")]
+#[derive(Copy, Clone)]
+pub struct Arguments<'a> {
+ // Format string pieces to print.
+ pieces: &'a [&'static str],
+
+ // Placeholder specs, or `None` if all specs are default (as in "{}{}").
+ fmt: Option<&'a [rt::v1::Argument]>,
+
+ // Dynamic arguments for interpolation, to be interleaved with string
+ // pieces. (Every argument is preceded by a string piece.)
+ args: &'a [ArgumentV1<'a>],
+}
+
+impl<'a> Arguments<'a> {
+ /// Get the formatted string, if it has no arguments to be formatted.
+ ///
+ /// This can be used to avoid allocations in the most trivial case.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use std::fmt::Arguments;
+ ///
+ /// fn write_str(_: &str) { /* ... */ }
+ ///
+ /// fn write_fmt(args: &Arguments) {
+ /// if let Some(s) = args.as_str() {
+ /// write_str(s)
+ /// } else {
+ /// write_str(&args.to_string());
+ /// }
+ /// }
+ /// ```
+ ///
+ /// ```rust
+ /// assert_eq!(format_args!("hello").as_str(), Some("hello"));
+ /// assert_eq!(format_args!("").as_str(), Some(""));
+ /// assert_eq!(format_args!("{}", 1).as_str(), None);
+ /// ```
+ #[stable(feature = "fmt_as_str", since = "1.52.0")]
+ #[rustc_const_unstable(feature = "const_arguments_as_str", issue = "none")]
+ #[must_use]
+ #[inline]
+ pub const fn as_str(&self) -> Option<&'static str> {
+ match (self.pieces, self.args) {
+ ([], []) => Some(""),
+ ([s], []) => Some(s),
+ _ => None,
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Debug for Arguments<'_> {
+ fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
+ Display::fmt(self, fmt)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Display for Arguments<'_> {
+ fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
+ write(fmt.buf, *self)
+ }
+}
+
+/// `?` formatting.
+///
+/// `Debug` should format the output in a programmer-facing, debugging context.
+///
+/// Generally speaking, you should just `derive` a `Debug` implementation.
+///
+/// When used with the alternate format specifier `#?`, the output is pretty-printed.
+///
+/// For more information on formatters, see [the module-level documentation][module].
+///
+/// [module]: ../../std/fmt/index.html
+///
+/// This trait can be used with `#[derive]` if all fields implement `Debug`. When
+/// `derive`d for structs, it will use the name of the `struct`, then `{`, then a
+/// comma-separated list of each field's name and `Debug` value, then `}`. For
+/// `enum`s, it will use the name of the variant and, if applicable, `(`, then the
+/// `Debug` values of the fields, then `)`.
+///
+/// # Stability
+///
+/// Derived `Debug` formats are not stable, and so may change with future Rust
+/// versions. Additionally, `Debug` implementations of types provided by the
+/// standard library (`libstd`, `libcore`, `liballoc`, etc.) are not stable, and
+/// may also change with future Rust versions.
+///
+/// # Examples
+///
+/// Deriving an implementation:
+///
+/// ```
+/// #[derive(Debug)]
+/// struct Point {
+/// x: i32,
+/// y: i32,
+/// }
+///
+/// let origin = Point { x: 0, y: 0 };
+///
+/// assert_eq!(format!("The origin is: {origin:?}"), "The origin is: Point { x: 0, y: 0 }");
+/// ```
+///
+/// Manually implementing:
+///
+/// ```
+/// use std::fmt;
+///
+/// struct Point {
+/// x: i32,
+/// y: i32,
+/// }
+///
+/// impl fmt::Debug for Point {
+/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+/// f.debug_struct("Point")
+/// .field("x", &self.x)
+/// .field("y", &self.y)
+/// .finish()
+/// }
+/// }
+///
+/// let origin = Point { x: 0, y: 0 };
+///
+/// assert_eq!(format!("The origin is: {origin:?}"), "The origin is: Point { x: 0, y: 0 }");
+/// ```
+///
+/// There are a number of helper methods on the [`Formatter`] struct to help you with manual
+/// implementations, such as [`debug_struct`].
+///
+/// [`debug_struct`]: Formatter::debug_struct
+///
+/// Types that do not wish to use the standard suite of debug representations
+/// provided by the `Formatter` trait (`debug_struct`, `debug_tuple`,
+/// `debug_list`, `debug_set`, `debug_map`) can do something totally custom by
+/// manually writing an arbitrary representation to the `Formatter`.
+///
+/// ```
+/// # use std::fmt;
+/// # struct Point {
+/// # x: i32,
+/// # y: i32,
+/// # }
+/// #
+/// impl fmt::Debug for Point {
+/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+/// write!(f, "Point [{} {}]", self.x, self.y)
+/// }
+/// }
+/// ```
+///
+/// `Debug` implementations using either `derive` or the debug builder API
+/// on [`Formatter`] support pretty-printing using the alternate flag: `{:#?}`.
+///
+/// Pretty-printing with `#?`:
+///
+/// ```
+/// #[derive(Debug)]
+/// struct Point {
+/// x: i32,
+/// y: i32,
+/// }
+///
+/// let origin = Point { x: 0, y: 0 };
+///
+/// assert_eq!(format!("The origin is: {origin:#?}"),
+/// "The origin is: Point {
+/// x: 0,
+/// y: 0,
+/// }");
+/// ```
+
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_on_unimplemented(
+ on(
+ crate_local,
+ label = "`{Self}` cannot be formatted using `{{:?}}`",
+ note = "add `#[derive(Debug)]` to `{Self}` or manually `impl {Debug} for {Self}`"
+ ),
+ message = "`{Self}` doesn't implement `{Debug}`",
+ label = "`{Self}` cannot be formatted using `{{:?}}` because it doesn't implement `{Debug}`"
+)]
+#[doc(alias = "{:?}")]
+#[rustc_diagnostic_item = "Debug"]
+#[rustc_trivial_field_reads]
+pub trait Debug {
+ /// Formats the value using the given formatter.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// struct Position {
+ /// longitude: f32,
+ /// latitude: f32,
+ /// }
+ ///
+ /// impl fmt::Debug for Position {
+ /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ /// f.debug_tuple("")
+ /// .field(&self.longitude)
+ /// .field(&self.latitude)
+ /// .finish()
+ /// }
+ /// }
+ ///
+ /// let position = Position { longitude: 1.987, latitude: 2.983 };
+ /// assert_eq!(format!("{position:?}"), "(1.987, 2.983)");
+ ///
+ /// assert_eq!(format!("{position:#?}"), "(
+ /// 1.987,
+ /// 2.983,
+ /// )");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result;
+}
+
+// Separate module to reexport the macro `Debug` from prelude without the trait `Debug`.
+pub(crate) mod macros {
+ /// Derive macro generating an impl of the trait `Debug`.
+ #[rustc_builtin_macro]
+ #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
+ #[allow_internal_unstable(core_intrinsics, fmt_helpers_for_derive)]
+ pub macro Debug($item:item) {
+ /* compiler built-in */
+ }
+}
+#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
+#[doc(inline)]
+pub use macros::Debug;
+
+/// Format trait for an empty format, `{}`.
+///
+/// `Display` is similar to [`Debug`], but `Display` is for user-facing
+/// output, and so cannot be derived.
+///
+/// For more information on formatters, see [the module-level documentation][module].
+///
+/// [module]: ../../std/fmt/index.html
+///
+/// # Examples
+///
+/// Implementing `Display` on a type:
+///
+/// ```
+/// use std::fmt;
+///
+/// struct Point {
+/// x: i32,
+/// y: i32,
+/// }
+///
+/// impl fmt::Display for Point {
+/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+/// write!(f, "({}, {})", self.x, self.y)
+/// }
+/// }
+///
+/// let origin = Point { x: 0, y: 0 };
+///
+/// assert_eq!(format!("The origin is: {origin}"), "The origin is: (0, 0)");
+/// ```
+#[rustc_on_unimplemented(
+ on(
+ any(_Self = "std::path::Path", _Self = "std::path::PathBuf"),
+ label = "`{Self}` cannot be formatted with the default formatter; call `.display()` on it",
+ note = "call `.display()` or `.to_string_lossy()` to safely print paths, \
+ as they may contain non-Unicode data"
+ ),
+ message = "`{Self}` doesn't implement `{Display}`",
+ label = "`{Self}` cannot be formatted with the default formatter",
+ note = "in format strings you may be able to use `{{:?}}` (or {{:#?}} for pretty-print) instead"
+)]
+#[doc(alias = "{}")]
+#[rustc_diagnostic_item = "Display"]
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait Display {
+ /// Formats the value using the given formatter.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// struct Position {
+ /// longitude: f32,
+ /// latitude: f32,
+ /// }
+ ///
+ /// impl fmt::Display for Position {
+ /// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ /// write!(f, "({}, {})", self.longitude, self.latitude)
+ /// }
+ /// }
+ ///
+ /// assert_eq!("(1.987, 2.983)",
+ /// format!("{}", Position { longitude: 1.987, latitude: 2.983, }));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result;
+}
+
+/// `o` formatting.
+///
+/// The `Octal` trait should format its output as a number in base-8.
+///
+/// For primitive signed integers (`i8` to `i128`, and `isize`),
+/// negative values are formatted as the two’s complement representation.
+///
+/// The alternate flag, `#`, adds a `0o` in front of the output.
+///
+/// For more information on formatters, see [the module-level documentation][module].
+///
+/// [module]: ../../std/fmt/index.html
+///
+/// # Examples
+///
+/// Basic usage with `i32`:
+///
+/// ```
+/// let x = 42; // 42 is '52' in octal
+///
+/// assert_eq!(format!("{x:o}"), "52");
+/// assert_eq!(format!("{x:#o}"), "0o52");
+///
+/// assert_eq!(format!("{:o}", -16), "37777777760");
+/// ```
+///
+/// Implementing `Octal` on a type:
+///
+/// ```
+/// use std::fmt;
+///
+/// struct Length(i32);
+///
+/// impl fmt::Octal for Length {
+/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+/// let val = self.0;
+///
+/// fmt::Octal::fmt(&val, f) // delegate to i32's implementation
+/// }
+/// }
+///
+/// let l = Length(9);
+///
+/// assert_eq!(format!("l as octal is: {l:o}"), "l as octal is: 11");
+///
+/// assert_eq!(format!("l as octal is: {l:#06o}"), "l as octal is: 0o0011");
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait Octal {
+ /// Formats the value using the given formatter.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result;
+}
+
+/// `b` formatting.
+///
+/// The `Binary` trait should format its output as a number in binary.
+///
+/// For primitive signed integers ([`i8`] to [`i128`], and [`isize`]),
+/// negative values are formatted as the two’s complement representation.
+///
+/// The alternate flag, `#`, adds a `0b` in front of the output.
+///
+/// For more information on formatters, see [the module-level documentation][module].
+///
+/// [module]: ../../std/fmt/index.html
+///
+/// # Examples
+///
+/// Basic usage with [`i32`]:
+///
+/// ```
+/// let x = 42; // 42 is '101010' in binary
+///
+/// assert_eq!(format!("{x:b}"), "101010");
+/// assert_eq!(format!("{x:#b}"), "0b101010");
+///
+/// assert_eq!(format!("{:b}", -16), "11111111111111111111111111110000");
+/// ```
+///
+/// Implementing `Binary` on a type:
+///
+/// ```
+/// use std::fmt;
+///
+/// struct Length(i32);
+///
+/// impl fmt::Binary for Length {
+/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+/// let val = self.0;
+///
+/// fmt::Binary::fmt(&val, f) // delegate to i32's implementation
+/// }
+/// }
+///
+/// let l = Length(107);
+///
+/// assert_eq!(format!("l as binary is: {l:b}"), "l as binary is: 1101011");
+///
+/// assert_eq!(
+/// format!("l as binary is: {l:#032b}"),
+/// "l as binary is: 0b000000000000000000000001101011"
+/// );
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait Binary {
+ /// Formats the value using the given formatter.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result;
+}
+
+/// `x` formatting.
+///
+/// The `LowerHex` trait should format its output as a number in hexadecimal, with `a` through `f`
+/// in lower case.
+///
+/// For primitive signed integers (`i8` to `i128`, and `isize`),
+/// negative values are formatted as the two’s complement representation.
+///
+/// The alternate flag, `#`, adds a `0x` in front of the output.
+///
+/// For more information on formatters, see [the module-level documentation][module].
+///
+/// [module]: ../../std/fmt/index.html
+///
+/// # Examples
+///
+/// Basic usage with `i32`:
+///
+/// ```
+/// let x = 42; // 42 is '2a' in hex
+///
+/// assert_eq!(format!("{x:x}"), "2a");
+/// assert_eq!(format!("{x:#x}"), "0x2a");
+///
+/// assert_eq!(format!("{:x}", -16), "fffffff0");
+/// ```
+///
+/// Implementing `LowerHex` on a type:
+///
+/// ```
+/// use std::fmt;
+///
+/// struct Length(i32);
+///
+/// impl fmt::LowerHex for Length {
+/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+/// let val = self.0;
+///
+/// fmt::LowerHex::fmt(&val, f) // delegate to i32's implementation
+/// }
+/// }
+///
+/// let l = Length(9);
+///
+/// assert_eq!(format!("l as hex is: {l:x}"), "l as hex is: 9");
+///
+/// assert_eq!(format!("l as hex is: {l:#010x}"), "l as hex is: 0x00000009");
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait LowerHex {
+ /// Formats the value using the given formatter.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result;
+}
+
+/// `X` formatting.
+///
+/// The `UpperHex` trait should format its output as a number in hexadecimal, with `A` through `F`
+/// in upper case.
+///
+/// For primitive signed integers (`i8` to `i128`, and `isize`),
+/// negative values are formatted as the two’s complement representation.
+///
+/// The alternate flag, `#`, adds a `0x` in front of the output.
+///
+/// For more information on formatters, see [the module-level documentation][module].
+///
+/// [module]: ../../std/fmt/index.html
+///
+/// # Examples
+///
+/// Basic usage with `i32`:
+///
+/// ```
+/// let x = 42; // 42 is '2A' in hex
+///
+/// assert_eq!(format!("{x:X}"), "2A");
+/// assert_eq!(format!("{x:#X}"), "0x2A");
+///
+/// assert_eq!(format!("{:X}", -16), "FFFFFFF0");
+/// ```
+///
+/// Implementing `UpperHex` on a type:
+///
+/// ```
+/// use std::fmt;
+///
+/// struct Length(i32);
+///
+/// impl fmt::UpperHex for Length {
+/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+/// let val = self.0;
+///
+/// fmt::UpperHex::fmt(&val, f) // delegate to i32's implementation
+/// }
+/// }
+///
+/// let l = Length(i32::MAX);
+///
+/// assert_eq!(format!("l as hex is: {l:X}"), "l as hex is: 7FFFFFFF");
+///
+/// assert_eq!(format!("l as hex is: {l:#010X}"), "l as hex is: 0x7FFFFFFF");
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait UpperHex {
+ /// Formats the value using the given formatter.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result;
+}
+
+/// `p` formatting.
+///
+/// The `Pointer` trait should format its output as a memory location. This is commonly presented
+/// as hexadecimal.
+///
+/// For more information on formatters, see [the module-level documentation][module].
+///
+/// [module]: ../../std/fmt/index.html
+///
+/// # Examples
+///
+/// Basic usage with `&i32`:
+///
+/// ```
+/// let x = &42;
+///
+/// let address = format!("{x:p}"); // this produces something like '0x7f06092ac6d0'
+/// ```
+///
+/// Implementing `Pointer` on a type:
+///
+/// ```
+/// use std::fmt;
+///
+/// struct Length(i32);
+///
+/// impl fmt::Pointer for Length {
+/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+/// // use `as` to convert to a `*const T`, which implements Pointer, which we can use
+///
+/// let ptr = self as *const Self;
+/// fmt::Pointer::fmt(&ptr, f)
+/// }
+/// }
+///
+/// let l = Length(42);
+///
+/// println!("l is in memory here: {l:p}");
+///
+/// let l_ptr = format!("{l:018p}");
+/// assert_eq!(l_ptr.len(), 18);
+/// assert_eq!(&l_ptr[..2], "0x");
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_diagnostic_item = "Pointer"]
+pub trait Pointer {
+ /// Formats the value using the given formatter.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_diagnostic_item = "pointer_trait_fmt"]
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result;
+}
+
+/// `e` formatting.
+///
+/// The `LowerExp` trait should format its output in scientific notation with a lower-case `e`.
+///
+/// For more information on formatters, see [the module-level documentation][module].
+///
+/// [module]: ../../std/fmt/index.html
+///
+/// # Examples
+///
+/// Basic usage with `f64`:
+///
+/// ```
+/// let x = 42.0; // 42.0 is '4.2e1' in scientific notation
+///
+/// assert_eq!(format!("{x:e}"), "4.2e1");
+/// ```
+///
+/// Implementing `LowerExp` on a type:
+///
+/// ```
+/// use std::fmt;
+///
+/// struct Length(i32);
+///
+/// impl fmt::LowerExp for Length {
+/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+/// let val = f64::from(self.0);
+/// fmt::LowerExp::fmt(&val, f) // delegate to f64's implementation
+/// }
+/// }
+///
+/// let l = Length(100);
+///
+/// assert_eq!(
+/// format!("l in scientific notation is: {l:e}"),
+/// "l in scientific notation is: 1e2"
+/// );
+///
+/// assert_eq!(
+/// format!("l in scientific notation is: {l:05e}"),
+/// "l in scientific notation is: 001e2"
+/// );
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait LowerExp {
+ /// Formats the value using the given formatter.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result;
+}
+
+/// `E` formatting.
+///
+/// The `UpperExp` trait should format its output in scientific notation with an upper-case `E`.
+///
+/// For more information on formatters, see [the module-level documentation][module].
+///
+/// [module]: ../../std/fmt/index.html
+///
+/// # Examples
+///
+/// Basic usage with `f64`:
+///
+/// ```
+/// let x = 42.0; // 42.0 is '4.2E1' in scientific notation
+///
+/// assert_eq!(format!("{x:E}"), "4.2E1");
+/// ```
+///
+/// Implementing `UpperExp` on a type:
+///
+/// ```
+/// use std::fmt;
+///
+/// struct Length(i32);
+///
+/// impl fmt::UpperExp for Length {
+/// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+/// let val = f64::from(self.0);
+/// fmt::UpperExp::fmt(&val, f) // delegate to f64's implementation
+/// }
+/// }
+///
+/// let l = Length(100);
+///
+/// assert_eq!(
+/// format!("l in scientific notation is: {l:E}"),
+/// "l in scientific notation is: 1E2"
+/// );
+///
+/// assert_eq!(
+/// format!("l in scientific notation is: {l:05E}"),
+/// "l in scientific notation is: 001E2"
+/// );
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+pub trait UpperExp {
+ /// Formats the value using the given formatter.
+ #[stable(feature = "rust1", since = "1.0.0")]
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result;
+}
+
+/// The `write` function takes an output stream, and an `Arguments` struct
+/// that can be precompiled with the `format_args!` macro.
+///
+/// The arguments will be formatted according to the specified format string
+/// into the output stream provided.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```
+/// use std::fmt;
+///
+/// let mut output = String::new();
+/// fmt::write(&mut output, format_args!("Hello {}!", "world"))
+/// .expect("Error occurred while trying to write in String");
+/// assert_eq!(output, "Hello world!");
+/// ```
+///
+/// Please note that using [`write!`] might be preferable. Example:
+///
+/// ```
+/// use std::fmt::Write;
+///
+/// let mut output = String::new();
+/// write!(&mut output, "Hello {}!", "world")
+/// .expect("Error occurred while trying to write in String");
+/// assert_eq!(output, "Hello world!");
+/// ```
+///
+/// [`write!`]: crate::write!
+#[stable(feature = "rust1", since = "1.0.0")]
+pub fn write(output: &mut dyn Write, args: Arguments<'_>) -> Result {
+ let mut formatter = Formatter::new(output);
+ let mut idx = 0;
+
+ match args.fmt {
+ None => {
+ // We can use default formatting parameters for all arguments.
+ for (i, arg) in args.args.iter().enumerate() {
+ // SAFETY: args.args and args.pieces come from the same Arguments,
+ // which guarantees the indexes are always within bounds.
+ let piece = unsafe { args.pieces.get_unchecked(i) };
+ if !piece.is_empty() {
+ formatter.buf.write_str(*piece)?;
+ }
+ (arg.formatter)(arg.value, &mut formatter)?;
+ idx += 1;
+ }
+ }
+ Some(fmt) => {
+ // Every spec has a corresponding argument that is preceded by
+ // a string piece.
+ for (i, arg) in fmt.iter().enumerate() {
+ // SAFETY: fmt and args.pieces come from the same Arguments,
+ // which guarantees the indexes are always within bounds.
+ let piece = unsafe { args.pieces.get_unchecked(i) };
+ if !piece.is_empty() {
+ formatter.buf.write_str(*piece)?;
+ }
+ // SAFETY: arg and args.args come from the same Arguments,
+ // which guarantees the indexes are always within bounds.
+ unsafe { run(&mut formatter, arg, args.args) }?;
+ idx += 1;
+ }
+ }
+ }
+
+ // There can be only one trailing string piece left.
+ if let Some(piece) = args.pieces.get(idx) {
+ formatter.buf.write_str(*piece)?;
+ }
+
+ Ok(())
+}
+
+unsafe fn run(fmt: &mut Formatter<'_>, arg: &rt::v1::Argument, args: &[ArgumentV1<'_>]) -> Result {
+ fmt.fill = arg.format.fill;
+ fmt.align = arg.format.align;
+ fmt.flags = arg.format.flags;
+ // SAFETY: arg and args come from the same Arguments,
+ // which guarantees the indexes are always within bounds.
+ unsafe {
+ fmt.width = getcount(args, &arg.format.width);
+ fmt.precision = getcount(args, &arg.format.precision);
+ }
+
+ // Extract the correct argument
+ debug_assert!(arg.position < args.len());
+ // SAFETY: arg and args come from the same Arguments,
+ // which guarantees its index is always within bounds.
+ let value = unsafe { args.get_unchecked(arg.position) };
+
+ // Then actually do some printing
+ (value.formatter)(value.value, fmt)
+}
+
+unsafe fn getcount(args: &[ArgumentV1<'_>], cnt: &rt::v1::Count) -> Option<usize> {
+ match *cnt {
+ rt::v1::Count::Is(n) => Some(n),
+ rt::v1::Count::Implied => None,
+ rt::v1::Count::Param(i) => {
+ debug_assert!(i < args.len());
+ // SAFETY: cnt and args come from the same Arguments,
+ // which guarantees this index is always within bounds.
+ unsafe { args.get_unchecked(i).as_usize() }
+ }
+ }
+}
+
+/// Padding after the end of something. Returned by `Formatter::padding`.
+#[must_use = "don't forget to write the post padding"]
+pub(crate) struct PostPadding {
+ fill: char,
+ padding: usize,
+}
+
+impl PostPadding {
+ fn new(fill: char, padding: usize) -> PostPadding {
+ PostPadding { fill, padding }
+ }
+
+ /// Write this post padding.
+ pub(crate) fn write(self, f: &mut Formatter<'_>) -> Result {
+ for _ in 0..self.padding {
+ f.buf.write_char(self.fill)?;
+ }
+ Ok(())
+ }
+}
+
+impl<'a> Formatter<'a> {
+ fn wrap_buf<'b, 'c, F>(&'b mut self, wrap: F) -> Formatter<'c>
+ where
+ 'b: 'c,
+ F: FnOnce(&'b mut (dyn Write + 'b)) -> &'c mut (dyn Write + 'c),
+ {
+ Formatter {
+ // We want to change this
+ buf: wrap(self.buf),
+
+ // And preserve these
+ flags: self.flags,
+ fill: self.fill,
+ align: self.align,
+ width: self.width,
+ precision: self.precision,
+ }
+ }
+
+ // Helper methods used for padding and processing formatting arguments that
+ // all formatting traits can use.
+
+ /// Performs the correct padding for an integer which has already been
+ /// emitted into a str. The str should *not* contain the sign for the
+ /// integer, that will be added by this method.
+ ///
+ /// # Arguments
+ ///
+ /// * is_nonnegative - whether the original integer was either positive or zero.
+ /// * prefix - if the '#' character (Alternate) is provided, this
+ /// is the prefix to put in front of the number.
+ /// * buf - the byte array that the number has been formatted into
+ ///
+ /// This function will correctly account for the flags provided as well as
+ /// the minimum width. It will not take precision into account.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// struct Foo { nb: i32 }
+ ///
+ /// impl Foo {
+ /// fn new(nb: i32) -> Foo {
+ /// Foo {
+ /// nb,
+ /// }
+ /// }
+ /// }
+ ///
+ /// impl fmt::Display for Foo {
+ /// fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ /// // We need to remove "-" from the number output.
+ /// let tmp = self.nb.abs().to_string();
+ ///
+ /// formatter.pad_integral(self.nb >= 0, "Foo ", &tmp)
+ /// }
+ /// }
+ ///
+ /// assert_eq!(&format!("{}", Foo::new(2)), "2");
+ /// assert_eq!(&format!("{}", Foo::new(-1)), "-1");
+ /// assert_eq!(&format!("{}", Foo::new(0)), "0");
+ /// assert_eq!(&format!("{:#}", Foo::new(-1)), "-Foo 1");
+ /// assert_eq!(&format!("{:0>#8}", Foo::new(-1)), "00-Foo 1");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn pad_integral(&mut self, is_nonnegative: bool, prefix: &str, buf: &str) -> Result {
+ let mut width = buf.len();
+
+ let mut sign = None;
+ if !is_nonnegative {
+ sign = Some('-');
+ width += 1;
+ } else if self.sign_plus() {
+ sign = Some('+');
+ width += 1;
+ }
+
+ let prefix = if self.alternate() {
+ width += prefix.chars().count();
+ Some(prefix)
+ } else {
+ None
+ };
+
+ // Writes the sign if it exists, and then the prefix if it was requested
+ #[inline(never)]
+ fn write_prefix(f: &mut Formatter<'_>, sign: Option<char>, prefix: Option<&str>) -> Result {
+ if let Some(c) = sign {
+ f.buf.write_char(c)?;
+ }
+ if let Some(prefix) = prefix { f.buf.write_str(prefix) } else { Ok(()) }
+ }
+
+ // The `width` field is more of a `min-width` parameter at this point.
+ match self.width {
+ // If there's no minimum length requirements then we can just
+ // write the bytes.
+ None => {
+ write_prefix(self, sign, prefix)?;
+ self.buf.write_str(buf)
+ }
+ // Check if we're over the minimum width, if so then we can also
+ // just write the bytes.
+ Some(min) if width >= min => {
+ write_prefix(self, sign, prefix)?;
+ self.buf.write_str(buf)
+ }
+ // The sign and prefix goes before the padding if the fill character
+ // is zero
+ Some(min) if self.sign_aware_zero_pad() => {
+ let old_fill = crate::mem::replace(&mut self.fill, '0');
+ let old_align = crate::mem::replace(&mut self.align, rt::v1::Alignment::Right);
+ write_prefix(self, sign, prefix)?;
+ let post_padding = self.padding(min - width, rt::v1::Alignment::Right)?;
+ self.buf.write_str(buf)?;
+ post_padding.write(self)?;
+ self.fill = old_fill;
+ self.align = old_align;
+ Ok(())
+ }
+ // Otherwise, the sign and prefix goes after the padding
+ Some(min) => {
+ let post_padding = self.padding(min - width, rt::v1::Alignment::Right)?;
+ write_prefix(self, sign, prefix)?;
+ self.buf.write_str(buf)?;
+ post_padding.write(self)
+ }
+ }
+ }
+
+ /// This function takes a string slice and emits it to the internal buffer
+ /// after applying the relevant formatting flags specified. The flags
+ /// recognized for generic strings are:
+ ///
+ /// * width - the minimum width of what to emit
+ /// * fill/align - what to emit and where to emit it if the string
+ /// provided needs to be padded
+ /// * precision - the maximum length to emit, the string is truncated if it
+ /// is longer than this length
+ ///
+ /// Notably this function ignores the `flag` parameters.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// struct Foo;
+ ///
+ /// impl fmt::Display for Foo {
+ /// fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ /// formatter.pad("Foo")
+ /// }
+ /// }
+ ///
+ /// assert_eq!(&format!("{Foo:<4}"), "Foo ");
+ /// assert_eq!(&format!("{Foo:0>4}"), "0Foo");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn pad(&mut self, s: &str) -> Result {
+ // Make sure there's a fast path up front
+ if self.width.is_none() && self.precision.is_none() {
+ return self.buf.write_str(s);
+ }
+ // The `precision` field can be interpreted as a `max-width` for the
+ // string being formatted.
+ let s = if let Some(max) = self.precision {
+ // If our string is longer that the precision, then we must have
+ // truncation. However other flags like `fill`, `width` and `align`
+ // must act as always.
+ if let Some((i, _)) = s.char_indices().nth(max) {
+ // LLVM here can't prove that `..i` won't panic `&s[..i]`, but
+ // we know that it can't panic. Use `get` + `unwrap_or` to avoid
+ // `unsafe` and otherwise don't emit any panic-related code
+ // here.
+ s.get(..i).unwrap_or(s)
+ } else {
+ &s
+ }
+ } else {
+ &s
+ };
+ // The `width` field is more of a `min-width` parameter at this point.
+ match self.width {
+ // If we're under the maximum length, and there's no minimum length
+ // requirements, then we can just emit the string
+ None => self.buf.write_str(s),
+ Some(width) => {
+ let chars_count = s.chars().count();
+ // If we're under the maximum width, check if we're over the minimum
+ // width, if so it's as easy as just emitting the string.
+ if chars_count >= width {
+ self.buf.write_str(s)
+ }
+ // If we're under both the maximum and the minimum width, then fill
+ // up the minimum width with the specified string + some alignment.
+ else {
+ let align = rt::v1::Alignment::Left;
+ let post_padding = self.padding(width - chars_count, align)?;
+ self.buf.write_str(s)?;
+ post_padding.write(self)
+ }
+ }
+ }
+ }
+
+ /// Write the pre-padding and return the unwritten post-padding. Callers are
+ /// responsible for ensuring post-padding is written after the thing that is
+ /// being padded.
+ pub(crate) fn padding(
+ &mut self,
+ padding: usize,
+ default: rt::v1::Alignment,
+ ) -> result::Result<PostPadding, Error> {
+ let align = match self.align {
+ rt::v1::Alignment::Unknown => default,
+ _ => self.align,
+ };
+
+ let (pre_pad, post_pad) = match align {
+ rt::v1::Alignment::Left => (0, padding),
+ rt::v1::Alignment::Right | rt::v1::Alignment::Unknown => (padding, 0),
+ rt::v1::Alignment::Center => (padding / 2, (padding + 1) / 2),
+ };
+
+ for _ in 0..pre_pad {
+ self.buf.write_char(self.fill)?;
+ }
+
+ Ok(PostPadding::new(self.fill, post_pad))
+ }
+
+ /// Takes the formatted parts and applies the padding.
+ /// Assumes that the caller already has rendered the parts with required precision,
+ /// so that `self.precision` can be ignored.
+ fn pad_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
+ if let Some(mut width) = self.width {
+ // for the sign-aware zero padding, we render the sign first and
+ // behave as if we had no sign from the beginning.
+ let mut formatted = formatted.clone();
+ let old_fill = self.fill;
+ let old_align = self.align;
+ let mut align = old_align;
+ if self.sign_aware_zero_pad() {
+ // a sign always goes first
+ let sign = formatted.sign;
+ self.buf.write_str(sign)?;
+
+ // remove the sign from the formatted parts
+ formatted.sign = "";
+ width = width.saturating_sub(sign.len());
+ align = rt::v1::Alignment::Right;
+ self.fill = '0';
+ self.align = rt::v1::Alignment::Right;
+ }
+
+ // remaining parts go through the ordinary padding process.
+ let len = formatted.len();
+ let ret = if width <= len {
+ // no padding
+ self.write_formatted_parts(&formatted)
+ } else {
+ let post_padding = self.padding(width - len, align)?;
+ self.write_formatted_parts(&formatted)?;
+ post_padding.write(self)
+ };
+ self.fill = old_fill;
+ self.align = old_align;
+ ret
+ } else {
+ // this is the common case and we take a shortcut
+ self.write_formatted_parts(formatted)
+ }
+ }
+
+ fn write_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
+ fn write_bytes(buf: &mut dyn Write, s: &[u8]) -> Result {
+ // SAFETY: This is used for `numfmt::Part::Num` and `numfmt::Part::Copy`.
+ // It's safe to use for `numfmt::Part::Num` since every char `c` is between
+ // `b'0'` and `b'9'`, which means `s` is valid UTF-8.
+ // It's also probably safe in practice to use for `numfmt::Part::Copy(buf)`
+ // since `buf` should be plain ASCII, but it's possible for someone to pass
+ // in a bad value for `buf` into `numfmt::to_shortest_str` since it is a
+ // public function.
+ // FIXME: Determine whether this could result in UB.
+ buf.write_str(unsafe { str::from_utf8_unchecked(s) })
+ }
+
+ if !formatted.sign.is_empty() {
+ self.buf.write_str(formatted.sign)?;
+ }
+ for part in formatted.parts {
+ match *part {
+ numfmt::Part::Zero(mut nzeroes) => {
+ const ZEROES: &str = // 64 zeroes
+ "0000000000000000000000000000000000000000000000000000000000000000";
+ while nzeroes > ZEROES.len() {
+ self.buf.write_str(ZEROES)?;
+ nzeroes -= ZEROES.len();
+ }
+ if nzeroes > 0 {
+ self.buf.write_str(&ZEROES[..nzeroes])?;
+ }
+ }
+ numfmt::Part::Num(mut v) => {
+ let mut s = [0; 5];
+ let len = part.len();
+ for c in s[..len].iter_mut().rev() {
+ *c = b'0' + (v % 10) as u8;
+ v /= 10;
+ }
+ write_bytes(self.buf, &s[..len])?;
+ }
+ numfmt::Part::Copy(buf) => {
+ write_bytes(self.buf, buf)?;
+ }
+ }
+ }
+ Ok(())
+ }
+
+ /// Writes some data to the underlying buffer contained within this
+ /// formatter.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// struct Foo;
+ ///
+ /// impl fmt::Display for Foo {
+ /// fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ /// formatter.write_str("Foo")
+ /// // This is equivalent to:
+ /// // write!(formatter, "Foo")
+ /// }
+ /// }
+ ///
+ /// assert_eq!(&format!("{Foo}"), "Foo");
+ /// assert_eq!(&format!("{Foo:0>8}"), "Foo");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn write_str(&mut self, data: &str) -> Result {
+ self.buf.write_str(data)
+ }
+
+ /// Writes some formatted information into this instance.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// struct Foo(i32);
+ ///
+ /// impl fmt::Display for Foo {
+ /// fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ /// formatter.write_fmt(format_args!("Foo {}", self.0))
+ /// }
+ /// }
+ ///
+ /// assert_eq!(&format!("{}", Foo(-1)), "Foo -1");
+ /// assert_eq!(&format!("{:0>8}", Foo(2)), "Foo 2");
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn write_fmt(&mut self, fmt: Arguments<'_>) -> Result {
+ write(self.buf, fmt)
+ }
+
+ /// Flags for formatting
+ #[must_use]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[deprecated(
+ since = "1.24.0",
+ note = "use the `sign_plus`, `sign_minus`, `alternate`, \
+ or `sign_aware_zero_pad` methods instead"
+ )]
+ pub fn flags(&self) -> u32 {
+ self.flags
+ }
+
+ /// Character used as 'fill' whenever there is alignment.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// struct Foo;
+ ///
+ /// impl fmt::Display for Foo {
+ /// fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ /// let c = formatter.fill();
+ /// if let Some(width) = formatter.width() {
+ /// for _ in 0..width {
+ /// write!(formatter, "{c}")?;
+ /// }
+ /// Ok(())
+ /// } else {
+ /// write!(formatter, "{c}")
+ /// }
+ /// }
+ /// }
+ ///
+ /// // We set alignment to the right with ">".
+ /// assert_eq!(&format!("{Foo:G>3}"), "GGG");
+ /// assert_eq!(&format!("{Foo:t>6}"), "tttttt");
+ /// ```
+ #[must_use]
+ #[stable(feature = "fmt_flags", since = "1.5.0")]
+ pub fn fill(&self) -> char {
+ self.fill
+ }
+
+ /// Flag indicating what form of alignment was requested.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// extern crate core;
+ ///
+ /// use std::fmt::{self, Alignment};
+ ///
+ /// struct Foo;
+ ///
+ /// impl fmt::Display for Foo {
+ /// fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ /// let s = if let Some(s) = formatter.align() {
+ /// match s {
+ /// Alignment::Left => "left",
+ /// Alignment::Right => "right",
+ /// Alignment::Center => "center",
+ /// }
+ /// } else {
+ /// "into the void"
+ /// };
+ /// write!(formatter, "{s}")
+ /// }
+ /// }
+ ///
+ /// assert_eq!(&format!("{Foo:<}"), "left");
+ /// assert_eq!(&format!("{Foo:>}"), "right");
+ /// assert_eq!(&format!("{Foo:^}"), "center");
+ /// assert_eq!(&format!("{Foo}"), "into the void");
+ /// ```
+ #[must_use]
+ #[stable(feature = "fmt_flags_align", since = "1.28.0")]
+ pub fn align(&self) -> Option<Alignment> {
+ match self.align {
+ rt::v1::Alignment::Left => Some(Alignment::Left),
+ rt::v1::Alignment::Right => Some(Alignment::Right),
+ rt::v1::Alignment::Center => Some(Alignment::Center),
+ rt::v1::Alignment::Unknown => None,
+ }
+ }
+
+ /// Optionally specified integer width that the output should be.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// struct Foo(i32);
+ ///
+ /// impl fmt::Display for Foo {
+ /// fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ /// if let Some(width) = formatter.width() {
+ /// // If we received a width, we use it
+ /// write!(formatter, "{:width$}", &format!("Foo({})", self.0), width = width)
+ /// } else {
+ /// // Otherwise we do nothing special
+ /// write!(formatter, "Foo({})", self.0)
+ /// }
+ /// }
+ /// }
+ ///
+ /// assert_eq!(&format!("{:10}", Foo(23)), "Foo(23) ");
+ /// assert_eq!(&format!("{}", Foo(23)), "Foo(23)");
+ /// ```
+ #[must_use]
+ #[stable(feature = "fmt_flags", since = "1.5.0")]
+ pub fn width(&self) -> Option<usize> {
+ self.width
+ }
+
+ /// Optionally specified precision for numeric types. Alternatively, the
+ /// maximum width for string types.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// struct Foo(f32);
+ ///
+ /// impl fmt::Display for Foo {
+ /// fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ /// if let Some(precision) = formatter.precision() {
+ /// // If we received a precision, we use it.
+ /// write!(formatter, "Foo({1:.*})", precision, self.0)
+ /// } else {
+ /// // Otherwise we default to 2.
+ /// write!(formatter, "Foo({:.2})", self.0)
+ /// }
+ /// }
+ /// }
+ ///
+ /// assert_eq!(&format!("{:.4}", Foo(23.2)), "Foo(23.2000)");
+ /// assert_eq!(&format!("{}", Foo(23.2)), "Foo(23.20)");
+ /// ```
+ #[must_use]
+ #[stable(feature = "fmt_flags", since = "1.5.0")]
+ pub fn precision(&self) -> Option<usize> {
+ self.precision
+ }
+
+ /// Determines if the `+` flag was specified.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// struct Foo(i32);
+ ///
+ /// impl fmt::Display for Foo {
+ /// fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ /// if formatter.sign_plus() {
+ /// write!(formatter,
+ /// "Foo({}{})",
+ /// if self.0 < 0 { '-' } else { '+' },
+ /// self.0)
+ /// } else {
+ /// write!(formatter, "Foo({})", self.0)
+ /// }
+ /// }
+ /// }
+ ///
+ /// assert_eq!(&format!("{:+}", Foo(23)), "Foo(+23)");
+ /// assert_eq!(&format!("{}", Foo(23)), "Foo(23)");
+ /// ```
+ #[must_use]
+ #[stable(feature = "fmt_flags", since = "1.5.0")]
+ pub fn sign_plus(&self) -> bool {
+ self.flags & (1 << FlagV1::SignPlus as u32) != 0
+ }
+
+ /// Determines if the `-` flag was specified.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// struct Foo(i32);
+ ///
+ /// impl fmt::Display for Foo {
+ /// fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ /// if formatter.sign_minus() {
+ /// // You want a minus sign? Have one!
+ /// write!(formatter, "-Foo({})", self.0)
+ /// } else {
+ /// write!(formatter, "Foo({})", self.0)
+ /// }
+ /// }
+ /// }
+ ///
+ /// assert_eq!(&format!("{:-}", Foo(23)), "-Foo(23)");
+ /// assert_eq!(&format!("{}", Foo(23)), "Foo(23)");
+ /// ```
+ #[must_use]
+ #[stable(feature = "fmt_flags", since = "1.5.0")]
+ pub fn sign_minus(&self) -> bool {
+ self.flags & (1 << FlagV1::SignMinus as u32) != 0
+ }
+
+ /// Determines if the `#` flag was specified.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// struct Foo(i32);
+ ///
+ /// impl fmt::Display for Foo {
+ /// fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ /// if formatter.alternate() {
+ /// write!(formatter, "Foo({})", self.0)
+ /// } else {
+ /// write!(formatter, "{}", self.0)
+ /// }
+ /// }
+ /// }
+ ///
+ /// assert_eq!(&format!("{:#}", Foo(23)), "Foo(23)");
+ /// assert_eq!(&format!("{}", Foo(23)), "23");
+ /// ```
+ #[must_use]
+ #[stable(feature = "fmt_flags", since = "1.5.0")]
+ pub fn alternate(&self) -> bool {
+ self.flags & (1 << FlagV1::Alternate as u32) != 0
+ }
+
+ /// Determines if the `0` flag was specified.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::fmt;
+ ///
+ /// struct Foo(i32);
+ ///
+ /// impl fmt::Display for Foo {
+ /// fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ /// assert!(formatter.sign_aware_zero_pad());
+ /// assert_eq!(formatter.width(), Some(4));
+ /// // We ignore the formatter's options.
+ /// write!(formatter, "{}", self.0)
+ /// }
+ /// }
+ ///
+ /// assert_eq!(&format!("{:04}", Foo(23)), "23");
+ /// ```
+ #[must_use]
+ #[stable(feature = "fmt_flags", since = "1.5.0")]
+ pub fn sign_aware_zero_pad(&self) -> bool {
+ self.flags & (1 << FlagV1::SignAwareZeroPad as u32) != 0
+ }
+
+ // FIXME: Decide what public API we want for these two flags.
+ // https://github.com/rust-lang/rust/issues/48584
+ fn debug_lower_hex(&self) -> bool {
+ self.flags & (1 << FlagV1::DebugLowerHex as u32) != 0
+ }
+
+ fn debug_upper_hex(&self) -> bool {
+ self.flags & (1 << FlagV1::DebugUpperHex as u32) != 0
+ }
+
+ /// Creates a [`DebugStruct`] builder designed to assist with creation of
+ /// [`fmt::Debug`] implementations for structs.
+ ///
+ /// [`fmt::Debug`]: self::Debug
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use std::fmt;
+ /// use std::net::Ipv4Addr;
+ ///
+ /// struct Foo {
+ /// bar: i32,
+ /// baz: String,
+ /// addr: Ipv4Addr,
+ /// }
+ ///
+ /// impl fmt::Debug for Foo {
+ /// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ /// fmt.debug_struct("Foo")
+ /// .field("bar", &self.bar)
+ /// .field("baz", &self.baz)
+ /// .field("addr", &format_args!("{}", self.addr))
+ /// .finish()
+ /// }
+ /// }
+ ///
+ /// assert_eq!(
+ /// "Foo { bar: 10, baz: \"Hello World\", addr: 127.0.0.1 }",
+ /// format!("{:?}", Foo {
+ /// bar: 10,
+ /// baz: "Hello World".to_string(),
+ /// addr: Ipv4Addr::new(127, 0, 0, 1),
+ /// })
+ /// );
+ /// ```
+ #[stable(feature = "debug_builders", since = "1.2.0")]
+ pub fn debug_struct<'b>(&'b mut self, name: &str) -> DebugStruct<'b, 'a> {
+ builders::debug_struct_new(self, name)
+ }
+
+ /// Used to shrink `derive(Debug)` code, for faster compilation and smaller binaries.
+ /// `debug_struct_fields_finish` is more general, but this is faster for 1 field.
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
+ pub fn debug_struct_field1_finish<'b>(
+ &'b mut self,
+ name: &str,
+ name1: &str,
+ value1: &dyn Debug,
+ ) -> Result {
+ let mut builder = builders::debug_struct_new(self, name);
+ builder.field(name1, value1);
+ builder.finish()
+ }
+
+ /// Used to shrink `derive(Debug)` code, for faster compilation and smaller binaries.
+ /// `debug_struct_fields_finish` is more general, but this is faster for 2 fields.
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
+ pub fn debug_struct_field2_finish<'b>(
+ &'b mut self,
+ name: &str,
+ name1: &str,
+ value1: &dyn Debug,
+ name2: &str,
+ value2: &dyn Debug,
+ ) -> Result {
+ let mut builder = builders::debug_struct_new(self, name);
+ builder.field(name1, value1);
+ builder.field(name2, value2);
+ builder.finish()
+ }
+
+ /// Used to shrink `derive(Debug)` code, for faster compilation and smaller binaries.
+ /// `debug_struct_fields_finish` is more general, but this is faster for 3 fields.
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
+ pub fn debug_struct_field3_finish<'b>(
+ &'b mut self,
+ name: &str,
+ name1: &str,
+ value1: &dyn Debug,
+ name2: &str,
+ value2: &dyn Debug,
+ name3: &str,
+ value3: &dyn Debug,
+ ) -> Result {
+ let mut builder = builders::debug_struct_new(self, name);
+ builder.field(name1, value1);
+ builder.field(name2, value2);
+ builder.field(name3, value3);
+ builder.finish()
+ }
+
+ /// Used to shrink `derive(Debug)` code, for faster compilation and smaller binaries.
+ /// `debug_struct_fields_finish` is more general, but this is faster for 4 fields.
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
+ pub fn debug_struct_field4_finish<'b>(
+ &'b mut self,
+ name: &str,
+ name1: &str,
+ value1: &dyn Debug,
+ name2: &str,
+ value2: &dyn Debug,
+ name3: &str,
+ value3: &dyn Debug,
+ name4: &str,
+ value4: &dyn Debug,
+ ) -> Result {
+ let mut builder = builders::debug_struct_new(self, name);
+ builder.field(name1, value1);
+ builder.field(name2, value2);
+ builder.field(name3, value3);
+ builder.field(name4, value4);
+ builder.finish()
+ }
+
+ /// Used to shrink `derive(Debug)` code, for faster compilation and smaller binaries.
+ /// `debug_struct_fields_finish` is more general, but this is faster for 5 fields.
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
+ pub fn debug_struct_field5_finish<'b>(
+ &'b mut self,
+ name: &str,
+ name1: &str,
+ value1: &dyn Debug,
+ name2: &str,
+ value2: &dyn Debug,
+ name3: &str,
+ value3: &dyn Debug,
+ name4: &str,
+ value4: &dyn Debug,
+ name5: &str,
+ value5: &dyn Debug,
+ ) -> Result {
+ let mut builder = builders::debug_struct_new(self, name);
+ builder.field(name1, value1);
+ builder.field(name2, value2);
+ builder.field(name3, value3);
+ builder.field(name4, value4);
+ builder.field(name5, value5);
+ builder.finish()
+ }
+
+ /// Used to shrink `derive(Debug)` code, for faster compilation and smaller binaries.
+ /// For the cases not covered by `debug_struct_field[12345]_finish`.
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
+ pub fn debug_struct_fields_finish<'b>(
+ &'b mut self,
+ name: &str,
+ names: &[&str],
+ values: &[&dyn Debug],
+ ) -> Result {
+ assert_eq!(names.len(), values.len());
+ let mut builder = builders::debug_struct_new(self, name);
+ for (name, value) in iter::zip(names, values) {
+ builder.field(name, value);
+ }
+ builder.finish()
+ }
+
+ /// Creates a `DebugTuple` builder designed to assist with creation of
+ /// `fmt::Debug` implementations for tuple structs.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use std::fmt;
+ /// use std::marker::PhantomData;
+ ///
+ /// struct Foo<T>(i32, String, PhantomData<T>);
+ ///
+ /// impl<T> fmt::Debug for Foo<T> {
+ /// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ /// fmt.debug_tuple("Foo")
+ /// .field(&self.0)
+ /// .field(&self.1)
+ /// .field(&format_args!("_"))
+ /// .finish()
+ /// }
+ /// }
+ ///
+ /// assert_eq!(
+ /// "Foo(10, \"Hello\", _)",
+ /// format!("{:?}", Foo(10, "Hello".to_string(), PhantomData::<u8>))
+ /// );
+ /// ```
+ #[stable(feature = "debug_builders", since = "1.2.0")]
+ pub fn debug_tuple<'b>(&'b mut self, name: &str) -> DebugTuple<'b, 'a> {
+ builders::debug_tuple_new(self, name)
+ }
+
+ /// Used to shrink `derive(Debug)` code, for faster compilation and smaller binaries.
+ /// `debug_tuple_fields_finish` is more general, but this is faster for 1 field.
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
+ pub fn debug_tuple_field1_finish<'b>(&'b mut self, name: &str, value1: &dyn Debug) -> Result {
+ let mut builder = builders::debug_tuple_new(self, name);
+ builder.field(value1);
+ builder.finish()
+ }
+
+ /// Used to shrink `derive(Debug)` code, for faster compilation and smaller binaries.
+ /// `debug_tuple_fields_finish` is more general, but this is faster for 2 fields.
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
+ pub fn debug_tuple_field2_finish<'b>(
+ &'b mut self,
+ name: &str,
+ value1: &dyn Debug,
+ value2: &dyn Debug,
+ ) -> Result {
+ let mut builder = builders::debug_tuple_new(self, name);
+ builder.field(value1);
+ builder.field(value2);
+ builder.finish()
+ }
+
+ /// Used to shrink `derive(Debug)` code, for faster compilation and smaller binaries.
+ /// `debug_tuple_fields_finish` is more general, but this is faster for 3 fields.
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
+ pub fn debug_tuple_field3_finish<'b>(
+ &'b mut self,
+ name: &str,
+ value1: &dyn Debug,
+ value2: &dyn Debug,
+ value3: &dyn Debug,
+ ) -> Result {
+ let mut builder = builders::debug_tuple_new(self, name);
+ builder.field(value1);
+ builder.field(value2);
+ builder.field(value3);
+ builder.finish()
+ }
+
+ /// Used to shrink `derive(Debug)` code, for faster compilation and smaller binaries.
+ /// `debug_tuple_fields_finish` is more general, but this is faster for 4 fields.
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
+ pub fn debug_tuple_field4_finish<'b>(
+ &'b mut self,
+ name: &str,
+ value1: &dyn Debug,
+ value2: &dyn Debug,
+ value3: &dyn Debug,
+ value4: &dyn Debug,
+ ) -> Result {
+ let mut builder = builders::debug_tuple_new(self, name);
+ builder.field(value1);
+ builder.field(value2);
+ builder.field(value3);
+ builder.field(value4);
+ builder.finish()
+ }
+
+ /// Used to shrink `derive(Debug)` code, for faster compilation and smaller binaries.
+ /// `debug_tuple_fields_finish` is more general, but this is faster for 5 fields.
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
+ pub fn debug_tuple_field5_finish<'b>(
+ &'b mut self,
+ name: &str,
+ value1: &dyn Debug,
+ value2: &dyn Debug,
+ value3: &dyn Debug,
+ value4: &dyn Debug,
+ value5: &dyn Debug,
+ ) -> Result {
+ let mut builder = builders::debug_tuple_new(self, name);
+ builder.field(value1);
+ builder.field(value2);
+ builder.field(value3);
+ builder.field(value4);
+ builder.field(value5);
+ builder.finish()
+ }
+
+ /// Used to shrink `derive(Debug)` code, for faster compilation and smaller binaries.
+ /// For the cases not covered by `debug_tuple_field[12345]_finish`.
+ #[doc(hidden)]
+ #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
+ pub fn debug_tuple_fields_finish<'b>(
+ &'b mut self,
+ name: &str,
+ values: &[&dyn Debug],
+ ) -> Result {
+ let mut builder = builders::debug_tuple_new(self, name);
+ for value in values {
+ builder.field(value);
+ }
+ builder.finish()
+ }
+
+ /// Creates a `DebugList` builder designed to assist with creation of
+ /// `fmt::Debug` implementations for list-like structures.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use std::fmt;
+ ///
+ /// struct Foo(Vec<i32>);
+ ///
+ /// impl fmt::Debug for Foo {
+ /// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ /// fmt.debug_list().entries(self.0.iter()).finish()
+ /// }
+ /// }
+ ///
+ /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "[10, 11]");
+ /// ```
+ #[stable(feature = "debug_builders", since = "1.2.0")]
+ pub fn debug_list<'b>(&'b mut self) -> DebugList<'b, 'a> {
+ builders::debug_list_new(self)
+ }
+
+ /// Creates a `DebugSet` builder designed to assist with creation of
+ /// `fmt::Debug` implementations for set-like structures.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use std::fmt;
+ ///
+ /// struct Foo(Vec<i32>);
+ ///
+ /// impl fmt::Debug for Foo {
+ /// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ /// fmt.debug_set().entries(self.0.iter()).finish()
+ /// }
+ /// }
+ ///
+ /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "{10, 11}");
+ /// ```
+ ///
+ /// [`format_args!`]: crate::format_args
+ ///
+ /// In this more complex example, we use [`format_args!`] and `.debug_set()`
+ /// to build a list of match arms:
+ ///
+ /// ```rust
+ /// use std::fmt;
+ ///
+ /// struct Arm<'a, L: 'a, R: 'a>(&'a (L, R));
+ /// struct Table<'a, K: 'a, V: 'a>(&'a [(K, V)], V);
+ ///
+ /// impl<'a, L, R> fmt::Debug for Arm<'a, L, R>
+ /// where
+ /// L: 'a + fmt::Debug, R: 'a + fmt::Debug
+ /// {
+ /// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ /// L::fmt(&(self.0).0, fmt)?;
+ /// fmt.write_str(" => ")?;
+ /// R::fmt(&(self.0).1, fmt)
+ /// }
+ /// }
+ ///
+ /// impl<'a, K, V> fmt::Debug for Table<'a, K, V>
+ /// where
+ /// K: 'a + fmt::Debug, V: 'a + fmt::Debug
+ /// {
+ /// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ /// fmt.debug_set()
+ /// .entries(self.0.iter().map(Arm))
+ /// .entry(&Arm(&(format_args!("_"), &self.1)))
+ /// .finish()
+ /// }
+ /// }
+ /// ```
+ #[stable(feature = "debug_builders", since = "1.2.0")]
+ pub fn debug_set<'b>(&'b mut self) -> DebugSet<'b, 'a> {
+ builders::debug_set_new(self)
+ }
+
+ /// Creates a `DebugMap` builder designed to assist with creation of
+ /// `fmt::Debug` implementations for map-like structures.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use std::fmt;
+ ///
+ /// struct Foo(Vec<(String, i32)>);
+ ///
+ /// impl fmt::Debug for Foo {
+ /// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ /// fmt.debug_map().entries(self.0.iter().map(|&(ref k, ref v)| (k, v))).finish()
+ /// }
+ /// }
+ ///
+ /// assert_eq!(
+ /// format!("{:?}", Foo(vec![("A".to_string(), 10), ("B".to_string(), 11)])),
+ /// r#"{"A": 10, "B": 11}"#
+ /// );
+ /// ```
+ #[stable(feature = "debug_builders", since = "1.2.0")]
+ pub fn debug_map<'b>(&'b mut self) -> DebugMap<'b, 'a> {
+ builders::debug_map_new(self)
+ }
+}
+
+#[stable(since = "1.2.0", feature = "formatter_write")]
+impl Write for Formatter<'_> {
+ fn write_str(&mut self, s: &str) -> Result {
+ self.buf.write_str(s)
+ }
+
+ fn write_char(&mut self, c: char) -> Result {
+ self.buf.write_char(c)
+ }
+
+ fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
+ write(self.buf, args)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Display for Error {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ Display::fmt("an error occurred when formatting an argument", f)
+ }
+}
+
+// Implementations of the core formatting traits
+
+macro_rules! fmt_refs {
+ ($($tr:ident),*) => {
+ $(
+ #[stable(feature = "rust1", since = "1.0.0")]
+ impl<T: ?Sized + $tr> $tr for &T {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
+ }
+ #[stable(feature = "rust1", since = "1.0.0")]
+ impl<T: ?Sized + $tr> $tr for &mut T {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
+ }
+ )*
+ }
+}
+
+fmt_refs! { Debug, Display, Octal, Binary, LowerHex, UpperHex, LowerExp, UpperExp }
+
+#[unstable(feature = "never_type", issue = "35121")]
+impl Debug for ! {
+ fn fmt(&self, _: &mut Formatter<'_>) -> Result {
+ *self
+ }
+}
+
+#[unstable(feature = "never_type", issue = "35121")]
+impl Display for ! {
+ fn fmt(&self, _: &mut Formatter<'_>) -> Result {
+ *self
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Debug for bool {
+ #[inline]
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ Display::fmt(self, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Display for bool {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ Display::fmt(if *self { "true" } else { "false" }, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Debug for str {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ f.write_char('"')?;
+ let mut from = 0;
+ for (i, c) in self.char_indices() {
+ let esc = c.escape_debug_ext(EscapeDebugExtArgs {
+ escape_grapheme_extended: true,
+ escape_single_quote: false,
+ escape_double_quote: true,
+ });
+ // If char needs escaping, flush backlog so far and write, else skip
+ if esc.len() != 1 {
+ f.write_str(&self[from..i])?;
+ for c in esc {
+ f.write_char(c)?;
+ }
+ from = i + c.len_utf8();
+ }
+ }
+ f.write_str(&self[from..])?;
+ f.write_char('"')
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Display for str {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ f.pad(self)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Debug for char {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ f.write_char('\'')?;
+ for c in self.escape_debug_ext(EscapeDebugExtArgs {
+ escape_grapheme_extended: true,
+ escape_single_quote: true,
+ escape_double_quote: false,
+ }) {
+ f.write_char(c)?
+ }
+ f.write_char('\'')
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Display for char {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ if f.width.is_none() && f.precision.is_none() {
+ f.write_char(*self)
+ } else {
+ f.pad(self.encode_utf8(&mut [0; 4]))
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Pointer for *const T {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ // Cast is needed here because `.addr()` requires `T: Sized`.
+ pointer_fmt_inner((*self as *const ()).addr(), f)
+ }
+}
+
+/// Since the formatting will be identical for all pointer types, use a non-monomorphized
+/// implementation for the actual formatting to reduce the amount of codegen work needed.
+///
+/// This uses `ptr_addr: usize` and not `ptr: *const ()` to be able to use this for
+/// `fn(...) -> ...` without using [problematic] "Oxford Casts".
+///
+/// [problematic]: https://github.com/rust-lang/rust/issues/95489
+pub(crate) fn pointer_fmt_inner(ptr_addr: usize, f: &mut Formatter<'_>) -> Result {
+ let old_width = f.width;
+ let old_flags = f.flags;
+
+ // The alternate flag is already treated by LowerHex as being special-
+ // it denotes whether to prefix with 0x. We use it to work out whether
+ // or not to zero extend, and then unconditionally set it to get the
+ // prefix.
+ if f.alternate() {
+ f.flags |= 1 << (FlagV1::SignAwareZeroPad as u32);
+
+ if f.width.is_none() {
+ f.width = Some((usize::BITS / 4) as usize + 2);
+ }
+ }
+ f.flags |= 1 << (FlagV1::Alternate as u32);
+
+ let ret = LowerHex::fmt(&ptr_addr, f);
+
+ f.width = old_width;
+ f.flags = old_flags;
+
+ ret
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Pointer for *mut T {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ Pointer::fmt(&(*self as *const T), f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Pointer for &T {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ Pointer::fmt(&(*self as *const T), f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Pointer for &mut T {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ Pointer::fmt(&(&**self as *const T), f)
+ }
+}
+
+// Implementation of Display/Debug for various core types
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Debug for *const T {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ Pointer::fmt(self, f)
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Debug for *mut T {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ Pointer::fmt(self, f)
+ }
+}
+
+macro_rules! peel {
+ ($name:ident, $($other:ident,)*) => (tuple! { $($other,)* })
+}
+
+macro_rules! tuple {
+ () => ();
+ ( $($name:ident,)+ ) => (
+ maybe_tuple_doc! {
+ $($name)+ @
+ #[stable(feature = "rust1", since = "1.0.0")]
+ impl<$($name:Debug),+> Debug for ($($name,)+) where last_type!($($name,)+): ?Sized {
+ #[allow(non_snake_case, unused_assignments)]
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ let mut builder = f.debug_tuple("");
+ let ($(ref $name,)+) = *self;
+ $(
+ builder.field(&$name);
+ )+
+
+ builder.finish()
+ }
+ }
+ }
+ peel! { $($name,)+ }
+ )
+}
+
+macro_rules! maybe_tuple_doc {
+ ($a:ident @ #[$meta:meta] $item:item) => {
+ #[cfg_attr(not(bootstrap), doc(fake_variadic))]
+ #[doc = "This trait is implemented for tuples up to twelve items long."]
+ #[$meta]
+ $item
+ };
+ ($a:ident $($rest_a:ident)+ @ #[$meta:meta] $item:item) => {
+ #[doc(hidden)]
+ #[$meta]
+ $item
+ };
+}
+
+macro_rules! last_type {
+ ($a:ident,) => { $a };
+ ($a:ident, $($rest_a:ident,)+) => { last_type!($($rest_a,)+) };
+}
+
+tuple! { E, D, C, B, A, Z, Y, X, W, V, U, T, }
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Debug> Debug for [T] {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ f.debug_list().entries(self.iter()).finish()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl Debug for () {
+ #[inline]
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ f.pad("()")
+ }
+}
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Debug for PhantomData<T> {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ f.debug_struct("PhantomData").finish()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: Copy + Debug> Debug for Cell<T> {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ f.debug_struct("Cell").field("value", &self.get()).finish()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + Debug> Debug for RefCell<T> {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ match self.try_borrow() {
+ Ok(borrow) => f.debug_struct("RefCell").field("value", &borrow).finish(),
+ Err(_) => {
+ // The RefCell is mutably borrowed so we can't look at its value
+ // here. Show a placeholder instead.
+ struct BorrowedPlaceholder;
+
+ impl Debug for BorrowedPlaceholder {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ f.write_str("<borrowed>")
+ }
+ }
+
+ f.debug_struct("RefCell").field("value", &BorrowedPlaceholder).finish()
+ }
+ }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + Debug> Debug for Ref<'_, T> {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ Debug::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + Debug> Debug for RefMut<'_, T> {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ Debug::fmt(&*(self.deref()), f)
+ }
+}
+
+#[stable(feature = "core_impl_debug", since = "1.9.0")]
+impl<T: ?Sized> Debug for UnsafeCell<T> {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ f.debug_struct("UnsafeCell").finish_non_exhaustive()
+ }
+}
+
+#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
+impl<T: ?Sized> Debug for SyncUnsafeCell<T> {
+ fn fmt(&self, f: &mut Formatter<'_>) -> Result {
+ f.debug_struct("SyncUnsafeCell").finish_non_exhaustive()
+ }
+}
+
+// If you expected tests to be here, look instead at the core/tests/fmt.rs file,
+// it's a lot easier than creating all of the rt::Piece structures here.
+// There are also tests in the alloc crate, for those that need allocations.