summaryrefslogtreecommitdiffstats
path: root/library/core/src/slice/mod.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /library/core/src/slice/mod.rs
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'library/core/src/slice/mod.rs')
-rw-r--r--library/core/src/slice/mod.rs4244
1 files changed, 4244 insertions, 0 deletions
diff --git a/library/core/src/slice/mod.rs b/library/core/src/slice/mod.rs
new file mode 100644
index 000000000..e6ca6ef82
--- /dev/null
+++ b/library/core/src/slice/mod.rs
@@ -0,0 +1,4244 @@
+//! Slice management and manipulation.
+//!
+//! For more details see [`std::slice`].
+//!
+//! [`std::slice`]: ../../std/slice/index.html
+
+#![stable(feature = "rust1", since = "1.0.0")]
+
+use crate::cmp::Ordering::{self, Greater, Less};
+use crate::intrinsics::{assert_unsafe_precondition, exact_div};
+use crate::marker::Copy;
+use crate::mem;
+use crate::num::NonZeroUsize;
+use crate::ops::{Bound, FnMut, OneSidedRange, Range, RangeBounds};
+use crate::option::Option;
+use crate::option::Option::{None, Some};
+use crate::ptr;
+use crate::result::Result;
+use crate::result::Result::{Err, Ok};
+use crate::simd::{self, Simd};
+use crate::slice;
+
+#[unstable(
+ feature = "slice_internals",
+ issue = "none",
+ reason = "exposed from core to be reused in std; use the memchr crate"
+)]
+/// Pure rust memchr implementation, taken from rust-memchr
+pub mod memchr;
+
+mod ascii;
+mod cmp;
+mod index;
+mod iter;
+mod raw;
+mod rotate;
+mod sort;
+mod specialize;
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use iter::{Chunks, ChunksMut, Windows};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use iter::{Iter, IterMut};
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use iter::{RSplitN, RSplitNMut, Split, SplitMut, SplitN, SplitNMut};
+
+#[stable(feature = "slice_rsplit", since = "1.27.0")]
+pub use iter::{RSplit, RSplitMut};
+
+#[stable(feature = "chunks_exact", since = "1.31.0")]
+pub use iter::{ChunksExact, ChunksExactMut};
+
+#[stable(feature = "rchunks", since = "1.31.0")]
+pub use iter::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
+
+#[unstable(feature = "array_chunks", issue = "74985")]
+pub use iter::{ArrayChunks, ArrayChunksMut};
+
+#[unstable(feature = "array_windows", issue = "75027")]
+pub use iter::ArrayWindows;
+
+#[unstable(feature = "slice_group_by", issue = "80552")]
+pub use iter::{GroupBy, GroupByMut};
+
+#[stable(feature = "split_inclusive", since = "1.51.0")]
+pub use iter::{SplitInclusive, SplitInclusiveMut};
+
+#[stable(feature = "rust1", since = "1.0.0")]
+pub use raw::{from_raw_parts, from_raw_parts_mut};
+
+#[stable(feature = "from_ref", since = "1.28.0")]
+pub use raw::{from_mut, from_ref};
+
+#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
+pub use raw::{from_mut_ptr_range, from_ptr_range};
+
+// This function is public only because there is no other way to unit test heapsort.
+#[unstable(feature = "sort_internals", reason = "internal to sort module", issue = "none")]
+pub use sort::heapsort;
+
+#[stable(feature = "slice_get_slice", since = "1.28.0")]
+pub use index::SliceIndex;
+
+#[unstable(feature = "slice_range", issue = "76393")]
+pub use index::range;
+
+#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
+pub use ascii::EscapeAscii;
+
+/// Calculates the direction and split point of a one-sided range.
+///
+/// This is a helper function for `take` and `take_mut` that returns
+/// the direction of the split (front or back) as well as the index at
+/// which to split. Returns `None` if the split index would overflow.
+#[inline]
+fn split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)> {
+ use Bound::*;
+
+ Some(match (range.start_bound(), range.end_bound()) {
+ (Unbounded, Excluded(i)) => (Direction::Front, *i),
+ (Unbounded, Included(i)) => (Direction::Front, i.checked_add(1)?),
+ (Excluded(i), Unbounded) => (Direction::Back, i.checked_add(1)?),
+ (Included(i), Unbounded) => (Direction::Back, *i),
+ _ => unreachable!(),
+ })
+}
+
+enum Direction {
+ Front,
+ Back,
+}
+
+#[cfg(not(test))]
+impl<T> [T] {
+ /// Returns the number of elements in the slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ /// assert_eq!(a.len(), 3);
+ /// ```
+ #[lang = "slice_len_fn"]
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_stable(feature = "const_slice_len", since = "1.39.0")]
+ #[inline]
+ #[must_use]
+ // SAFETY: const sound because we transmute out the length field as a usize (which it must be)
+ pub const fn len(&self) -> usize {
+ // FIXME: Replace with `crate::ptr::metadata(self)` when that is const-stable.
+ // As of this writing this causes a "Const-stable functions can only call other
+ // const-stable functions" error.
+
+ // SAFETY: Accessing the value from the `PtrRepr` union is safe since *const T
+ // and PtrComponents<T> have the same memory layouts. Only std can make this
+ // guarantee.
+ unsafe { crate::ptr::PtrRepr { const_ptr: self }.components.metadata }
+ }
+
+ /// Returns `true` if the slice has a length of 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ /// assert!(!a.is_empty());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_stable(feature = "const_slice_is_empty", since = "1.39.0")]
+ #[inline]
+ #[must_use]
+ pub const fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ /// Returns the first element of the slice, or `None` if it is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = [10, 40, 30];
+ /// assert_eq!(Some(&10), v.first());
+ ///
+ /// let w: &[i32] = &[];
+ /// assert_eq!(None, w.first());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
+ #[inline]
+ #[must_use]
+ pub const fn first(&self) -> Option<&T> {
+ if let [first, ..] = self { Some(first) } else { None }
+ }
+
+ /// Returns a mutable pointer to the first element of the slice, or `None` if it is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = &mut [0, 1, 2];
+ ///
+ /// if let Some(first) = x.first_mut() {
+ /// *first = 5;
+ /// }
+ /// assert_eq!(x, &[5, 1, 2]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
+ #[inline]
+ #[must_use]
+ pub const fn first_mut(&mut self) -> Option<&mut T> {
+ if let [first, ..] = self { Some(first) } else { None }
+ }
+
+ /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = &[0, 1, 2];
+ ///
+ /// if let Some((first, elements)) = x.split_first() {
+ /// assert_eq!(first, &0);
+ /// assert_eq!(elements, &[1, 2]);
+ /// }
+ /// ```
+ #[stable(feature = "slice_splits", since = "1.5.0")]
+ #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
+ #[inline]
+ #[must_use]
+ pub const fn split_first(&self) -> Option<(&T, &[T])> {
+ if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
+ }
+
+ /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = &mut [0, 1, 2];
+ ///
+ /// if let Some((first, elements)) = x.split_first_mut() {
+ /// *first = 3;
+ /// elements[0] = 4;
+ /// elements[1] = 5;
+ /// }
+ /// assert_eq!(x, &[3, 4, 5]);
+ /// ```
+ #[stable(feature = "slice_splits", since = "1.5.0")]
+ #[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
+ #[inline]
+ #[must_use]
+ pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
+ if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
+ }
+
+ /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = &[0, 1, 2];
+ ///
+ /// if let Some((last, elements)) = x.split_last() {
+ /// assert_eq!(last, &2);
+ /// assert_eq!(elements, &[0, 1]);
+ /// }
+ /// ```
+ #[stable(feature = "slice_splits", since = "1.5.0")]
+ #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
+ #[inline]
+ #[must_use]
+ pub const fn split_last(&self) -> Option<(&T, &[T])> {
+ if let [init @ .., last] = self { Some((last, init)) } else { None }
+ }
+
+ /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = &mut [0, 1, 2];
+ ///
+ /// if let Some((last, elements)) = x.split_last_mut() {
+ /// *last = 3;
+ /// elements[0] = 4;
+ /// elements[1] = 5;
+ /// }
+ /// assert_eq!(x, &[4, 5, 3]);
+ /// ```
+ #[stable(feature = "slice_splits", since = "1.5.0")]
+ #[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
+ #[inline]
+ #[must_use]
+ pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
+ if let [init @ .., last] = self { Some((last, init)) } else { None }
+ }
+
+ /// Returns the last element of the slice, or `None` if it is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = [10, 40, 30];
+ /// assert_eq!(Some(&30), v.last());
+ ///
+ /// let w: &[i32] = &[];
+ /// assert_eq!(None, w.last());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
+ #[inline]
+ #[must_use]
+ pub const fn last(&self) -> Option<&T> {
+ if let [.., last] = self { Some(last) } else { None }
+ }
+
+ /// Returns a mutable pointer to the last item in the slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = &mut [0, 1, 2];
+ ///
+ /// if let Some(last) = x.last_mut() {
+ /// *last = 10;
+ /// }
+ /// assert_eq!(x, &[0, 1, 10]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
+ #[inline]
+ #[must_use]
+ pub const fn last_mut(&mut self) -> Option<&mut T> {
+ if let [.., last] = self { Some(last) } else { None }
+ }
+
+ /// Returns a reference to an element or subslice depending on the type of
+ /// index.
+ ///
+ /// - If given a position, returns a reference to the element at that
+ /// position or `None` if out of bounds.
+ /// - If given a range, returns the subslice corresponding to that range,
+ /// or `None` if out of bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = [10, 40, 30];
+ /// assert_eq!(Some(&40), v.get(1));
+ /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
+ /// assert_eq!(None, v.get(3));
+ /// assert_eq!(None, v.get(0..4));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
+ #[inline]
+ #[must_use]
+ pub const fn get<I>(&self, index: I) -> Option<&I::Output>
+ where
+ I: ~const SliceIndex<Self>,
+ {
+ index.get(self)
+ }
+
+ /// Returns a mutable reference to an element or subslice depending on the
+ /// type of index (see [`get`]) or `None` if the index is out of bounds.
+ ///
+ /// [`get`]: slice::get
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = &mut [0, 1, 2];
+ ///
+ /// if let Some(elem) = x.get_mut(1) {
+ /// *elem = 42;
+ /// }
+ /// assert_eq!(x, &[0, 42, 2]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
+ #[inline]
+ #[must_use]
+ pub const fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
+ where
+ I: ~const SliceIndex<Self>,
+ {
+ index.get_mut(self)
+ }
+
+ /// Returns a reference to an element or subslice, without doing bounds
+ /// checking.
+ ///
+ /// For a safe alternative see [`get`].
+ ///
+ /// # Safety
+ ///
+ /// Calling this method with an out-of-bounds index is *[undefined behavior]*
+ /// even if the resulting reference is not used.
+ ///
+ /// [`get`]: slice::get
+ /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = &[1, 2, 4];
+ ///
+ /// unsafe {
+ /// assert_eq!(x.get_unchecked(1), &2);
+ /// }
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
+ #[inline]
+ #[must_use]
+ pub const unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
+ where
+ I: ~const SliceIndex<Self>,
+ {
+ // SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
+ // the slice is dereferenceable because `self` is a safe reference.
+ // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
+ unsafe { &*index.get_unchecked(self) }
+ }
+
+ /// Returns a mutable reference to an element or subslice, without doing
+ /// bounds checking.
+ ///
+ /// For a safe alternative see [`get_mut`].
+ ///
+ /// # Safety
+ ///
+ /// Calling this method with an out-of-bounds index is *[undefined behavior]*
+ /// even if the resulting reference is not used.
+ ///
+ /// [`get_mut`]: slice::get_mut
+ /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = &mut [1, 2, 4];
+ ///
+ /// unsafe {
+ /// let elem = x.get_unchecked_mut(1);
+ /// *elem = 13;
+ /// }
+ /// assert_eq!(x, &[1, 13, 4]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_slice_index", issue = "none")]
+ #[inline]
+ #[must_use]
+ pub const unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
+ where
+ I: ~const SliceIndex<Self>,
+ {
+ // SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
+ // the slice is dereferenceable because `self` is a safe reference.
+ // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
+ unsafe { &mut *index.get_unchecked_mut(self) }
+ }
+
+ /// Returns a raw pointer to the slice's buffer.
+ ///
+ /// The caller must ensure that the slice outlives the pointer this
+ /// function returns, or else it will end up pointing to garbage.
+ ///
+ /// The caller must also ensure that the memory the pointer (non-transitively) points to
+ /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
+ /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
+ ///
+ /// Modifying the container referenced by this slice may cause its buffer
+ /// to be reallocated, which would also make any pointers to it invalid.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = &[1, 2, 4];
+ /// let x_ptr = x.as_ptr();
+ ///
+ /// unsafe {
+ /// for i in 0..x.len() {
+ /// assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
+ /// }
+ /// }
+ /// ```
+ ///
+ /// [`as_mut_ptr`]: slice::as_mut_ptr
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
+ #[inline]
+ #[must_use]
+ pub const fn as_ptr(&self) -> *const T {
+ self as *const [T] as *const T
+ }
+
+ /// Returns an unsafe mutable pointer to the slice's buffer.
+ ///
+ /// The caller must ensure that the slice outlives the pointer this
+ /// function returns, or else it will end up pointing to garbage.
+ ///
+ /// Modifying the container referenced by this slice may cause its buffer
+ /// to be reallocated, which would also make any pointers to it invalid.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = &mut [1, 2, 4];
+ /// let x_ptr = x.as_mut_ptr();
+ ///
+ /// unsafe {
+ /// for i in 0..x.len() {
+ /// *x_ptr.add(i) += 2;
+ /// }
+ /// }
+ /// assert_eq!(x, &[3, 4, 6]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
+ #[rustc_allow_const_fn_unstable(const_mut_refs)]
+ #[inline]
+ #[must_use]
+ pub const fn as_mut_ptr(&mut self) -> *mut T {
+ self as *mut [T] as *mut T
+ }
+
+ /// Returns the two raw pointers spanning the slice.
+ ///
+ /// The returned range is half-open, which means that the end pointer
+ /// points *one past* the last element of the slice. This way, an empty
+ /// slice is represented by two equal pointers, and the difference between
+ /// the two pointers represents the size of the slice.
+ ///
+ /// See [`as_ptr`] for warnings on using these pointers. The end pointer
+ /// requires extra caution, as it does not point to a valid element in the
+ /// slice.
+ ///
+ /// This function is useful for interacting with foreign interfaces which
+ /// use two pointers to refer to a range of elements in memory, as is
+ /// common in C++.
+ ///
+ /// It can also be useful to check if a pointer to an element refers to an
+ /// element of this slice:
+ ///
+ /// ```
+ /// let a = [1, 2, 3];
+ /// let x = &a[1] as *const _;
+ /// let y = &5 as *const _;
+ ///
+ /// assert!(a.as_ptr_range().contains(&x));
+ /// assert!(!a.as_ptr_range().contains(&y));
+ /// ```
+ ///
+ /// [`as_ptr`]: slice::as_ptr
+ #[stable(feature = "slice_ptr_range", since = "1.48.0")]
+ #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
+ #[inline]
+ #[must_use]
+ pub const fn as_ptr_range(&self) -> Range<*const T> {
+ let start = self.as_ptr();
+ // SAFETY: The `add` here is safe, because:
+ //
+ // - Both pointers are part of the same object, as pointing directly
+ // past the object also counts.
+ //
+ // - The size of the slice is never larger than isize::MAX bytes, as
+ // noted here:
+ // - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
+ // - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
+ // - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
+ // (This doesn't seem normative yet, but the very same assumption is
+ // made in many places, including the Index implementation of slices.)
+ //
+ // - There is no wrapping around involved, as slices do not wrap past
+ // the end of the address space.
+ //
+ // See the documentation of pointer::add.
+ let end = unsafe { start.add(self.len()) };
+ start..end
+ }
+
+ /// Returns the two unsafe mutable pointers spanning the slice.
+ ///
+ /// The returned range is half-open, which means that the end pointer
+ /// points *one past* the last element of the slice. This way, an empty
+ /// slice is represented by two equal pointers, and the difference between
+ /// the two pointers represents the size of the slice.
+ ///
+ /// See [`as_mut_ptr`] for warnings on using these pointers. The end
+ /// pointer requires extra caution, as it does not point to a valid element
+ /// in the slice.
+ ///
+ /// This function is useful for interacting with foreign interfaces which
+ /// use two pointers to refer to a range of elements in memory, as is
+ /// common in C++.
+ ///
+ /// [`as_mut_ptr`]: slice::as_mut_ptr
+ #[stable(feature = "slice_ptr_range", since = "1.48.0")]
+ #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
+ #[rustc_allow_const_fn_unstable(const_mut_refs)]
+ #[inline]
+ #[must_use]
+ pub const fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
+ let start = self.as_mut_ptr();
+ // SAFETY: See as_ptr_range() above for why `add` here is safe.
+ let end = unsafe { start.add(self.len()) };
+ start..end
+ }
+
+ /// Swaps two elements in the slice.
+ ///
+ /// # Arguments
+ ///
+ /// * a - The index of the first element
+ /// * b - The index of the second element
+ ///
+ /// # Panics
+ ///
+ /// Panics if `a` or `b` are out of bounds.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = ["a", "b", "c", "d", "e"];
+ /// v.swap(2, 4);
+ /// assert!(v == ["a", "b", "e", "d", "c"]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_unstable(feature = "const_swap", issue = "83163")]
+ #[inline]
+ #[track_caller]
+ pub const fn swap(&mut self, a: usize, b: usize) {
+ // FIXME: use swap_unchecked here (https://github.com/rust-lang/rust/pull/88540#issuecomment-944344343)
+ // Can't take two mutable loans from one vector, so instead use raw pointers.
+ let pa = ptr::addr_of_mut!(self[a]);
+ let pb = ptr::addr_of_mut!(self[b]);
+ // SAFETY: `pa` and `pb` have been created from safe mutable references and refer
+ // to elements in the slice and therefore are guaranteed to be valid and aligned.
+ // Note that accessing the elements behind `a` and `b` is checked and will
+ // panic when out of bounds.
+ unsafe {
+ ptr::swap(pa, pb);
+ }
+ }
+
+ /// Swaps two elements in the slice, without doing bounds checking.
+ ///
+ /// For a safe alternative see [`swap`].
+ ///
+ /// # Arguments
+ ///
+ /// * a - The index of the first element
+ /// * b - The index of the second element
+ ///
+ /// # Safety
+ ///
+ /// Calling this method with an out-of-bounds index is *[undefined behavior]*.
+ /// The caller has to ensure that `a < self.len()` and `b < self.len()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_swap_unchecked)]
+ ///
+ /// let mut v = ["a", "b", "c", "d"];
+ /// // SAFETY: we know that 1 and 3 are both indices of the slice
+ /// unsafe { v.swap_unchecked(1, 3) };
+ /// assert!(v == ["a", "d", "c", "b"]);
+ /// ```
+ ///
+ /// [`swap`]: slice::swap
+ /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
+ #[unstable(feature = "slice_swap_unchecked", issue = "88539")]
+ #[rustc_const_unstable(feature = "const_swap", issue = "83163")]
+ pub const unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
+ let ptr = self.as_mut_ptr();
+ // SAFETY: caller has to guarantee that `a < self.len()` and `b < self.len()`
+ unsafe {
+ assert_unsafe_precondition!(a < self.len() && b < self.len());
+ ptr::swap(ptr.add(a), ptr.add(b));
+ }
+ }
+
+ /// Reverses the order of elements in the slice, in place.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [1, 2, 3];
+ /// v.reverse();
+ /// assert!(v == [3, 2, 1]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn reverse(&mut self) {
+ let half_len = self.len() / 2;
+ let Range { start, end } = self.as_mut_ptr_range();
+
+ // These slices will skip the middle item for an odd length,
+ // since that one doesn't need to move.
+ let (front_half, back_half) =
+ // SAFETY: Both are subparts of the original slice, so the memory
+ // range is valid, and they don't overlap because they're each only
+ // half (or less) of the original slice.
+ unsafe {
+ (
+ slice::from_raw_parts_mut(start, half_len),
+ slice::from_raw_parts_mut(end.sub(half_len), half_len),
+ )
+ };
+
+ // Introducing a function boundary here means that the two halves
+ // get `noalias` markers, allowing better optimization as LLVM
+ // knows that they're disjoint, unlike in the original slice.
+ revswap(front_half, back_half, half_len);
+
+ #[inline]
+ fn revswap<T>(a: &mut [T], b: &mut [T], n: usize) {
+ debug_assert_eq!(a.len(), n);
+ debug_assert_eq!(b.len(), n);
+
+ // Because this function is first compiled in isolation,
+ // this check tells LLVM that the indexing below is
+ // in-bounds. Then after inlining -- once the actual
+ // lengths of the slices are known -- it's removed.
+ let (a, b) = (&mut a[..n], &mut b[..n]);
+
+ for i in 0..n {
+ mem::swap(&mut a[i], &mut b[n - 1 - i]);
+ }
+ }
+ }
+
+ /// Returns an iterator over the slice.
+ ///
+ /// The iterator yields all items from start to end.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = &[1, 2, 4];
+ /// let mut iterator = x.iter();
+ ///
+ /// assert_eq!(iterator.next(), Some(&1));
+ /// assert_eq!(iterator.next(), Some(&2));
+ /// assert_eq!(iterator.next(), Some(&4));
+ /// assert_eq!(iterator.next(), None);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn iter(&self) -> Iter<'_, T> {
+ Iter::new(self)
+ }
+
+ /// Returns an iterator that allows modifying each value.
+ ///
+ /// The iterator yields all items from start to end.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = &mut [1, 2, 4];
+ /// for elem in x.iter_mut() {
+ /// *elem += 2;
+ /// }
+ /// assert_eq!(x, &[3, 4, 6]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn iter_mut(&mut self) -> IterMut<'_, T> {
+ IterMut::new(self)
+ }
+
+ /// Returns an iterator over all contiguous windows of length
+ /// `size`. The windows overlap. If the slice is shorter than
+ /// `size`, the iterator returns no values.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `size` is 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let slice = ['r', 'u', 's', 't'];
+ /// let mut iter = slice.windows(2);
+ /// assert_eq!(iter.next().unwrap(), &['r', 'u']);
+ /// assert_eq!(iter.next().unwrap(), &['u', 's']);
+ /// assert_eq!(iter.next().unwrap(), &['s', 't']);
+ /// assert!(iter.next().is_none());
+ /// ```
+ ///
+ /// If the slice is shorter than `size`:
+ ///
+ /// ```
+ /// let slice = ['f', 'o', 'o'];
+ /// let mut iter = slice.windows(4);
+ /// assert!(iter.next().is_none());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn windows(&self, size: usize) -> Windows<'_, T> {
+ let size = NonZeroUsize::new(size).expect("size is zero");
+ Windows::new(self, size)
+ }
+
+ /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
+ /// beginning of the slice.
+ ///
+ /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
+ /// slice, then the last chunk will not have length `chunk_size`.
+ ///
+ /// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
+ /// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
+ /// slice.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `chunk_size` is 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let slice = ['l', 'o', 'r', 'e', 'm'];
+ /// let mut iter = slice.chunks(2);
+ /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
+ /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
+ /// assert_eq!(iter.next().unwrap(), &['m']);
+ /// assert!(iter.next().is_none());
+ /// ```
+ ///
+ /// [`chunks_exact`]: slice::chunks_exact
+ /// [`rchunks`]: slice::rchunks
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
+ assert_ne!(chunk_size, 0, "chunks cannot have a size of zero");
+ Chunks::new(self, chunk_size)
+ }
+
+ /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
+ /// beginning of the slice.
+ ///
+ /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
+ /// length of the slice, then the last chunk will not have length `chunk_size`.
+ ///
+ /// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always
+ /// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at
+ /// the end of the slice.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `chunk_size` is 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = &mut [0, 0, 0, 0, 0];
+ /// let mut count = 1;
+ ///
+ /// for chunk in v.chunks_mut(2) {
+ /// for elem in chunk.iter_mut() {
+ /// *elem += count;
+ /// }
+ /// count += 1;
+ /// }
+ /// assert_eq!(v, &[1, 1, 2, 2, 3]);
+ /// ```
+ ///
+ /// [`chunks_exact_mut`]: slice::chunks_exact_mut
+ /// [`rchunks_mut`]: slice::rchunks_mut
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
+ assert_ne!(chunk_size, 0, "chunks cannot have a size of zero");
+ ChunksMut::new(self, chunk_size)
+ }
+
+ /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
+ /// beginning of the slice.
+ ///
+ /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
+ /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
+ /// from the `remainder` function of the iterator.
+ ///
+ /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
+ /// resulting code better than in the case of [`chunks`].
+ ///
+ /// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
+ /// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `chunk_size` is 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let slice = ['l', 'o', 'r', 'e', 'm'];
+ /// let mut iter = slice.chunks_exact(2);
+ /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
+ /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
+ /// assert!(iter.next().is_none());
+ /// assert_eq!(iter.remainder(), &['m']);
+ /// ```
+ ///
+ /// [`chunks`]: slice::chunks
+ /// [`rchunks_exact`]: slice::rchunks_exact
+ #[stable(feature = "chunks_exact", since = "1.31.0")]
+ #[inline]
+ pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
+ assert_ne!(chunk_size, 0);
+ ChunksExact::new(self, chunk_size)
+ }
+
+ /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
+ /// beginning of the slice.
+ ///
+ /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
+ /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
+ /// retrieved from the `into_remainder` function of the iterator.
+ ///
+ /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
+ /// resulting code better than in the case of [`chunks_mut`].
+ ///
+ /// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a
+ /// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of
+ /// the slice.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `chunk_size` is 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = &mut [0, 0, 0, 0, 0];
+ /// let mut count = 1;
+ ///
+ /// for chunk in v.chunks_exact_mut(2) {
+ /// for elem in chunk.iter_mut() {
+ /// *elem += count;
+ /// }
+ /// count += 1;
+ /// }
+ /// assert_eq!(v, &[1, 1, 2, 2, 0]);
+ /// ```
+ ///
+ /// [`chunks_mut`]: slice::chunks_mut
+ /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
+ #[stable(feature = "chunks_exact", since = "1.31.0")]
+ #[inline]
+ pub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
+ assert_ne!(chunk_size, 0);
+ ChunksExactMut::new(self, chunk_size)
+ }
+
+ /// Splits the slice into a slice of `N`-element arrays,
+ /// assuming that there's no remainder.
+ ///
+ /// # Safety
+ ///
+ /// This may only be called when
+ /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
+ /// - `N != 0`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_as_chunks)]
+ /// let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
+ /// let chunks: &[[char; 1]] =
+ /// // SAFETY: 1-element chunks never have remainder
+ /// unsafe { slice.as_chunks_unchecked() };
+ /// assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
+ /// let chunks: &[[char; 3]] =
+ /// // SAFETY: The slice length (6) is a multiple of 3
+ /// unsafe { slice.as_chunks_unchecked() };
+ /// assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
+ ///
+ /// // These would be unsound:
+ /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
+ /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
+ /// ```
+ #[unstable(feature = "slice_as_chunks", issue = "74985")]
+ #[inline]
+ #[must_use]
+ pub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]] {
+ // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
+ let new_len = unsafe {
+ assert_unsafe_precondition!(N != 0 && self.len() % N == 0);
+ exact_div(self.len(), N)
+ };
+ // SAFETY: We cast a slice of `new_len * N` elements into
+ // a slice of `new_len` many `N` elements chunks.
+ unsafe { from_raw_parts(self.as_ptr().cast(), new_len) }
+ }
+
+ /// Splits the slice into a slice of `N`-element arrays,
+ /// starting at the beginning of the slice,
+ /// and a remainder slice with length strictly less than `N`.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `N` is 0. This check will most probably get changed to a compile time
+ /// error before this method gets stabilized.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_as_chunks)]
+ /// let slice = ['l', 'o', 'r', 'e', 'm'];
+ /// let (chunks, remainder) = slice.as_chunks();
+ /// assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
+ /// assert_eq!(remainder, &['m']);
+ /// ```
+ #[unstable(feature = "slice_as_chunks", issue = "74985")]
+ #[inline]
+ #[must_use]
+ pub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T]) {
+ assert_ne!(N, 0);
+ let len = self.len() / N;
+ let (multiple_of_n, remainder) = self.split_at(len * N);
+ // SAFETY: We already panicked for zero, and ensured by construction
+ // that the length of the subslice is a multiple of N.
+ let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
+ (array_slice, remainder)
+ }
+
+ /// Splits the slice into a slice of `N`-element arrays,
+ /// starting at the end of the slice,
+ /// and a remainder slice with length strictly less than `N`.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `N` is 0. This check will most probably get changed to a compile time
+ /// error before this method gets stabilized.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_as_chunks)]
+ /// let slice = ['l', 'o', 'r', 'e', 'm'];
+ /// let (remainder, chunks) = slice.as_rchunks();
+ /// assert_eq!(remainder, &['l']);
+ /// assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
+ /// ```
+ #[unstable(feature = "slice_as_chunks", issue = "74985")]
+ #[inline]
+ #[must_use]
+ pub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]]) {
+ assert_ne!(N, 0);
+ let len = self.len() / N;
+ let (remainder, multiple_of_n) = self.split_at(self.len() - len * N);
+ // SAFETY: We already panicked for zero, and ensured by construction
+ // that the length of the subslice is a multiple of N.
+ let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
+ (remainder, array_slice)
+ }
+
+ /// Returns an iterator over `N` elements of the slice at a time, starting at the
+ /// beginning of the slice.
+ ///
+ /// The chunks are array references and do not overlap. If `N` does not divide the
+ /// length of the slice, then the last up to `N-1` elements will be omitted and can be
+ /// retrieved from the `remainder` function of the iterator.
+ ///
+ /// This method is the const generic equivalent of [`chunks_exact`].
+ ///
+ /// # Panics
+ ///
+ /// Panics if `N` is 0. This check will most probably get changed to a compile time
+ /// error before this method gets stabilized.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(array_chunks)]
+ /// let slice = ['l', 'o', 'r', 'e', 'm'];
+ /// let mut iter = slice.array_chunks();
+ /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
+ /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
+ /// assert!(iter.next().is_none());
+ /// assert_eq!(iter.remainder(), &['m']);
+ /// ```
+ ///
+ /// [`chunks_exact`]: slice::chunks_exact
+ #[unstable(feature = "array_chunks", issue = "74985")]
+ #[inline]
+ pub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N> {
+ assert_ne!(N, 0);
+ ArrayChunks::new(self)
+ }
+
+ /// Splits the slice into a slice of `N`-element arrays,
+ /// assuming that there's no remainder.
+ ///
+ /// # Safety
+ ///
+ /// This may only be called when
+ /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
+ /// - `N != 0`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_as_chunks)]
+ /// let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
+ /// let chunks: &mut [[char; 1]] =
+ /// // SAFETY: 1-element chunks never have remainder
+ /// unsafe { slice.as_chunks_unchecked_mut() };
+ /// chunks[0] = ['L'];
+ /// assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
+ /// let chunks: &mut [[char; 3]] =
+ /// // SAFETY: The slice length (6) is a multiple of 3
+ /// unsafe { slice.as_chunks_unchecked_mut() };
+ /// chunks[1] = ['a', 'x', '?'];
+ /// assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);
+ ///
+ /// // These would be unsound:
+ /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
+ /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
+ /// ```
+ #[unstable(feature = "slice_as_chunks", issue = "74985")]
+ #[inline]
+ #[must_use]
+ pub unsafe fn as_chunks_unchecked_mut<const N: usize>(&mut self) -> &mut [[T; N]] {
+ // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
+ let new_len = unsafe {
+ assert_unsafe_precondition!(N != 0 && self.len() % N == 0);
+ exact_div(self.len(), N)
+ };
+ // SAFETY: We cast a slice of `new_len * N` elements into
+ // a slice of `new_len` many `N` elements chunks.
+ unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), new_len) }
+ }
+
+ /// Splits the slice into a slice of `N`-element arrays,
+ /// starting at the beginning of the slice,
+ /// and a remainder slice with length strictly less than `N`.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `N` is 0. This check will most probably get changed to a compile time
+ /// error before this method gets stabilized.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_as_chunks)]
+ /// let v = &mut [0, 0, 0, 0, 0];
+ /// let mut count = 1;
+ ///
+ /// let (chunks, remainder) = v.as_chunks_mut();
+ /// remainder[0] = 9;
+ /// for chunk in chunks {
+ /// *chunk = [count; 2];
+ /// count += 1;
+ /// }
+ /// assert_eq!(v, &[1, 1, 2, 2, 9]);
+ /// ```
+ #[unstable(feature = "slice_as_chunks", issue = "74985")]
+ #[inline]
+ #[must_use]
+ pub fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T]) {
+ assert_ne!(N, 0);
+ let len = self.len() / N;
+ let (multiple_of_n, remainder) = self.split_at_mut(len * N);
+ // SAFETY: We already panicked for zero, and ensured by construction
+ // that the length of the subslice is a multiple of N.
+ let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
+ (array_slice, remainder)
+ }
+
+ /// Splits the slice into a slice of `N`-element arrays,
+ /// starting at the end of the slice,
+ /// and a remainder slice with length strictly less than `N`.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `N` is 0. This check will most probably get changed to a compile time
+ /// error before this method gets stabilized.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_as_chunks)]
+ /// let v = &mut [0, 0, 0, 0, 0];
+ /// let mut count = 1;
+ ///
+ /// let (remainder, chunks) = v.as_rchunks_mut();
+ /// remainder[0] = 9;
+ /// for chunk in chunks {
+ /// *chunk = [count; 2];
+ /// count += 1;
+ /// }
+ /// assert_eq!(v, &[9, 1, 1, 2, 2]);
+ /// ```
+ #[unstable(feature = "slice_as_chunks", issue = "74985")]
+ #[inline]
+ #[must_use]
+ pub fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]]) {
+ assert_ne!(N, 0);
+ let len = self.len() / N;
+ let (remainder, multiple_of_n) = self.split_at_mut(self.len() - len * N);
+ // SAFETY: We already panicked for zero, and ensured by construction
+ // that the length of the subslice is a multiple of N.
+ let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
+ (remainder, array_slice)
+ }
+
+ /// Returns an iterator over `N` elements of the slice at a time, starting at the
+ /// beginning of the slice.
+ ///
+ /// The chunks are mutable array references and do not overlap. If `N` does not divide
+ /// the length of the slice, then the last up to `N-1` elements will be omitted and
+ /// can be retrieved from the `into_remainder` function of the iterator.
+ ///
+ /// This method is the const generic equivalent of [`chunks_exact_mut`].
+ ///
+ /// # Panics
+ ///
+ /// Panics if `N` is 0. This check will most probably get changed to a compile time
+ /// error before this method gets stabilized.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(array_chunks)]
+ /// let v = &mut [0, 0, 0, 0, 0];
+ /// let mut count = 1;
+ ///
+ /// for chunk in v.array_chunks_mut() {
+ /// *chunk = [count; 2];
+ /// count += 1;
+ /// }
+ /// assert_eq!(v, &[1, 1, 2, 2, 0]);
+ /// ```
+ ///
+ /// [`chunks_exact_mut`]: slice::chunks_exact_mut
+ #[unstable(feature = "array_chunks", issue = "74985")]
+ #[inline]
+ pub fn array_chunks_mut<const N: usize>(&mut self) -> ArrayChunksMut<'_, T, N> {
+ assert_ne!(N, 0);
+ ArrayChunksMut::new(self)
+ }
+
+ /// Returns an iterator over overlapping windows of `N` elements of a slice,
+ /// starting at the beginning of the slice.
+ ///
+ /// This is the const generic equivalent of [`windows`].
+ ///
+ /// If `N` is greater than the size of the slice, it will return no windows.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `N` is 0. This check will most probably get changed to a compile time
+ /// error before this method gets stabilized.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(array_windows)]
+ /// let slice = [0, 1, 2, 3];
+ /// let mut iter = slice.array_windows();
+ /// assert_eq!(iter.next().unwrap(), &[0, 1]);
+ /// assert_eq!(iter.next().unwrap(), &[1, 2]);
+ /// assert_eq!(iter.next().unwrap(), &[2, 3]);
+ /// assert!(iter.next().is_none());
+ /// ```
+ ///
+ /// [`windows`]: slice::windows
+ #[unstable(feature = "array_windows", issue = "75027")]
+ #[inline]
+ pub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> {
+ assert_ne!(N, 0);
+ ArrayWindows::new(self)
+ }
+
+ /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
+ /// of the slice.
+ ///
+ /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
+ /// slice, then the last chunk will not have length `chunk_size`.
+ ///
+ /// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
+ /// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
+ /// of the slice.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `chunk_size` is 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let slice = ['l', 'o', 'r', 'e', 'm'];
+ /// let mut iter = slice.rchunks(2);
+ /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
+ /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
+ /// assert_eq!(iter.next().unwrap(), &['l']);
+ /// assert!(iter.next().is_none());
+ /// ```
+ ///
+ /// [`rchunks_exact`]: slice::rchunks_exact
+ /// [`chunks`]: slice::chunks
+ #[stable(feature = "rchunks", since = "1.31.0")]
+ #[inline]
+ pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
+ assert!(chunk_size != 0);
+ RChunks::new(self, chunk_size)
+ }
+
+ /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
+ /// of the slice.
+ ///
+ /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
+ /// length of the slice, then the last chunk will not have length `chunk_size`.
+ ///
+ /// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always
+ /// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the
+ /// beginning of the slice.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `chunk_size` is 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = &mut [0, 0, 0, 0, 0];
+ /// let mut count = 1;
+ ///
+ /// for chunk in v.rchunks_mut(2) {
+ /// for elem in chunk.iter_mut() {
+ /// *elem += count;
+ /// }
+ /// count += 1;
+ /// }
+ /// assert_eq!(v, &[3, 2, 2, 1, 1]);
+ /// ```
+ ///
+ /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
+ /// [`chunks_mut`]: slice::chunks_mut
+ #[stable(feature = "rchunks", since = "1.31.0")]
+ #[inline]
+ pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
+ assert!(chunk_size != 0);
+ RChunksMut::new(self, chunk_size)
+ }
+
+ /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
+ /// end of the slice.
+ ///
+ /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
+ /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
+ /// from the `remainder` function of the iterator.
+ ///
+ /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
+ /// resulting code better than in the case of [`rchunks`].
+ ///
+ /// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
+ /// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
+ /// slice.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `chunk_size` is 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let slice = ['l', 'o', 'r', 'e', 'm'];
+ /// let mut iter = slice.rchunks_exact(2);
+ /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
+ /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
+ /// assert!(iter.next().is_none());
+ /// assert_eq!(iter.remainder(), &['l']);
+ /// ```
+ ///
+ /// [`chunks`]: slice::chunks
+ /// [`rchunks`]: slice::rchunks
+ /// [`chunks_exact`]: slice::chunks_exact
+ #[stable(feature = "rchunks", since = "1.31.0")]
+ #[inline]
+ pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
+ assert!(chunk_size != 0);
+ RChunksExact::new(self, chunk_size)
+ }
+
+ /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
+ /// of the slice.
+ ///
+ /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
+ /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
+ /// retrieved from the `into_remainder` function of the iterator.
+ ///
+ /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
+ /// resulting code better than in the case of [`chunks_mut`].
+ ///
+ /// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a
+ /// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning
+ /// of the slice.
+ ///
+ /// # Panics
+ ///
+ /// Panics if `chunk_size` is 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = &mut [0, 0, 0, 0, 0];
+ /// let mut count = 1;
+ ///
+ /// for chunk in v.rchunks_exact_mut(2) {
+ /// for elem in chunk.iter_mut() {
+ /// *elem += count;
+ /// }
+ /// count += 1;
+ /// }
+ /// assert_eq!(v, &[0, 2, 2, 1, 1]);
+ /// ```
+ ///
+ /// [`chunks_mut`]: slice::chunks_mut
+ /// [`rchunks_mut`]: slice::rchunks_mut
+ /// [`chunks_exact_mut`]: slice::chunks_exact_mut
+ #[stable(feature = "rchunks", since = "1.31.0")]
+ #[inline]
+ pub fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
+ assert!(chunk_size != 0);
+ RChunksExactMut::new(self, chunk_size)
+ }
+
+ /// Returns an iterator over the slice producing non-overlapping runs
+ /// of elements using the predicate to separate them.
+ ///
+ /// The predicate is called on two elements following themselves,
+ /// it means the predicate is called on `slice[0]` and `slice[1]`
+ /// then on `slice[1]` and `slice[2]` and so on.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_group_by)]
+ ///
+ /// let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
+ ///
+ /// let mut iter = slice.group_by(|a, b| a == b);
+ ///
+ /// assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
+ /// assert_eq!(iter.next(), Some(&[3, 3][..]));
+ /// assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// This method can be used to extract the sorted subslices:
+ ///
+ /// ```
+ /// #![feature(slice_group_by)]
+ ///
+ /// let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
+ ///
+ /// let mut iter = slice.group_by(|a, b| a <= b);
+ ///
+ /// assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
+ /// assert_eq!(iter.next(), Some(&[2, 3][..]));
+ /// assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ #[unstable(feature = "slice_group_by", issue = "80552")]
+ #[inline]
+ pub fn group_by<F>(&self, pred: F) -> GroupBy<'_, T, F>
+ where
+ F: FnMut(&T, &T) -> bool,
+ {
+ GroupBy::new(self, pred)
+ }
+
+ /// Returns an iterator over the slice producing non-overlapping mutable
+ /// runs of elements using the predicate to separate them.
+ ///
+ /// The predicate is called on two elements following themselves,
+ /// it means the predicate is called on `slice[0]` and `slice[1]`
+ /// then on `slice[1]` and `slice[2]` and so on.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_group_by)]
+ ///
+ /// let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];
+ ///
+ /// let mut iter = slice.group_by_mut(|a, b| a == b);
+ ///
+ /// assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
+ /// assert_eq!(iter.next(), Some(&mut [3, 3][..]));
+ /// assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// This method can be used to extract the sorted subslices:
+ ///
+ /// ```
+ /// #![feature(slice_group_by)]
+ ///
+ /// let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];
+ ///
+ /// let mut iter = slice.group_by_mut(|a, b| a <= b);
+ ///
+ /// assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
+ /// assert_eq!(iter.next(), Some(&mut [2, 3][..]));
+ /// assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ #[unstable(feature = "slice_group_by", issue = "80552")]
+ #[inline]
+ pub fn group_by_mut<F>(&mut self, pred: F) -> GroupByMut<'_, T, F>
+ where
+ F: FnMut(&T, &T) -> bool,
+ {
+ GroupByMut::new(self, pred)
+ }
+
+ /// Divides one slice into two at an index.
+ ///
+ /// The first will contain all indices from `[0, mid)` (excluding
+ /// the index `mid` itself) and the second will contain all
+ /// indices from `[mid, len)` (excluding the index `len` itself).
+ ///
+ /// # Panics
+ ///
+ /// Panics if `mid > len`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = [1, 2, 3, 4, 5, 6];
+ ///
+ /// {
+ /// let (left, right) = v.split_at(0);
+ /// assert_eq!(left, []);
+ /// assert_eq!(right, [1, 2, 3, 4, 5, 6]);
+ /// }
+ ///
+ /// {
+ /// let (left, right) = v.split_at(2);
+ /// assert_eq!(left, [1, 2]);
+ /// assert_eq!(right, [3, 4, 5, 6]);
+ /// }
+ ///
+ /// {
+ /// let (left, right) = v.split_at(6);
+ /// assert_eq!(left, [1, 2, 3, 4, 5, 6]);
+ /// assert_eq!(right, []);
+ /// }
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ #[track_caller]
+ #[must_use]
+ pub fn split_at(&self, mid: usize) -> (&[T], &[T]) {
+ assert!(mid <= self.len());
+ // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
+ // fulfills the requirements of `from_raw_parts_mut`.
+ unsafe { self.split_at_unchecked(mid) }
+ }
+
+ /// Divides one mutable slice into two at an index.
+ ///
+ /// The first will contain all indices from `[0, mid)` (excluding
+ /// the index `mid` itself) and the second will contain all
+ /// indices from `[mid, len)` (excluding the index `len` itself).
+ ///
+ /// # Panics
+ ///
+ /// Panics if `mid > len`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [1, 0, 3, 0, 5, 6];
+ /// let (left, right) = v.split_at_mut(2);
+ /// assert_eq!(left, [1, 0]);
+ /// assert_eq!(right, [3, 0, 5, 6]);
+ /// left[1] = 2;
+ /// right[1] = 4;
+ /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ #[track_caller]
+ #[must_use]
+ pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
+ assert!(mid <= self.len());
+ // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
+ // fulfills the requirements of `from_raw_parts_mut`.
+ unsafe { self.split_at_mut_unchecked(mid) }
+ }
+
+ /// Divides one slice into two at an index, without doing bounds checking.
+ ///
+ /// The first will contain all indices from `[0, mid)` (excluding
+ /// the index `mid` itself) and the second will contain all
+ /// indices from `[mid, len)` (excluding the index `len` itself).
+ ///
+ /// For a safe alternative see [`split_at`].
+ ///
+ /// # Safety
+ ///
+ /// Calling this method with an out-of-bounds index is *[undefined behavior]*
+ /// even if the resulting reference is not used. The caller has to ensure that
+ /// `0 <= mid <= self.len()`.
+ ///
+ /// [`split_at`]: slice::split_at
+ /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_split_at_unchecked)]
+ ///
+ /// let v = [1, 2, 3, 4, 5, 6];
+ ///
+ /// unsafe {
+ /// let (left, right) = v.split_at_unchecked(0);
+ /// assert_eq!(left, []);
+ /// assert_eq!(right, [1, 2, 3, 4, 5, 6]);
+ /// }
+ ///
+ /// unsafe {
+ /// let (left, right) = v.split_at_unchecked(2);
+ /// assert_eq!(left, [1, 2]);
+ /// assert_eq!(right, [3, 4, 5, 6]);
+ /// }
+ ///
+ /// unsafe {
+ /// let (left, right) = v.split_at_unchecked(6);
+ /// assert_eq!(left, [1, 2, 3, 4, 5, 6]);
+ /// assert_eq!(right, []);
+ /// }
+ /// ```
+ #[unstable(feature = "slice_split_at_unchecked", reason = "new API", issue = "76014")]
+ #[inline]
+ #[must_use]
+ pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T]) {
+ // SAFETY: Caller has to check that `0 <= mid <= self.len()`
+ unsafe { (self.get_unchecked(..mid), self.get_unchecked(mid..)) }
+ }
+
+ /// Divides one mutable slice into two at an index, without doing bounds checking.
+ ///
+ /// The first will contain all indices from `[0, mid)` (excluding
+ /// the index `mid` itself) and the second will contain all
+ /// indices from `[mid, len)` (excluding the index `len` itself).
+ ///
+ /// For a safe alternative see [`split_at_mut`].
+ ///
+ /// # Safety
+ ///
+ /// Calling this method with an out-of-bounds index is *[undefined behavior]*
+ /// even if the resulting reference is not used. The caller has to ensure that
+ /// `0 <= mid <= self.len()`.
+ ///
+ /// [`split_at_mut`]: slice::split_at_mut
+ /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_split_at_unchecked)]
+ ///
+ /// let mut v = [1, 0, 3, 0, 5, 6];
+ /// // scoped to restrict the lifetime of the borrows
+ /// unsafe {
+ /// let (left, right) = v.split_at_mut_unchecked(2);
+ /// assert_eq!(left, [1, 0]);
+ /// assert_eq!(right, [3, 0, 5, 6]);
+ /// left[1] = 2;
+ /// right[1] = 4;
+ /// }
+ /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
+ /// ```
+ #[unstable(feature = "slice_split_at_unchecked", reason = "new API", issue = "76014")]
+ #[inline]
+ #[must_use]
+ pub unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
+ let len = self.len();
+ let ptr = self.as_mut_ptr();
+
+ // SAFETY: Caller has to check that `0 <= mid <= self.len()`.
+ //
+ // `[ptr; mid]` and `[mid; len]` are not overlapping, so returning a mutable reference
+ // is fine.
+ unsafe {
+ assert_unsafe_precondition!(mid <= len);
+ (from_raw_parts_mut(ptr, mid), from_raw_parts_mut(ptr.add(mid), len - mid))
+ }
+ }
+
+ /// Divides one slice into an array and a remainder slice at an index.
+ ///
+ /// The array will contain all indices from `[0, N)` (excluding
+ /// the index `N` itself) and the slice will contain all
+ /// indices from `[N, len)` (excluding the index `len` itself).
+ ///
+ /// # Panics
+ ///
+ /// Panics if `N > len`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(split_array)]
+ ///
+ /// let v = &[1, 2, 3, 4, 5, 6][..];
+ ///
+ /// {
+ /// let (left, right) = v.split_array_ref::<0>();
+ /// assert_eq!(left, &[]);
+ /// assert_eq!(right, [1, 2, 3, 4, 5, 6]);
+ /// }
+ ///
+ /// {
+ /// let (left, right) = v.split_array_ref::<2>();
+ /// assert_eq!(left, &[1, 2]);
+ /// assert_eq!(right, [3, 4, 5, 6]);
+ /// }
+ ///
+ /// {
+ /// let (left, right) = v.split_array_ref::<6>();
+ /// assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
+ /// assert_eq!(right, []);
+ /// }
+ /// ```
+ #[unstable(feature = "split_array", reason = "new API", issue = "90091")]
+ #[inline]
+ #[track_caller]
+ #[must_use]
+ pub fn split_array_ref<const N: usize>(&self) -> (&[T; N], &[T]) {
+ let (a, b) = self.split_at(N);
+ // SAFETY: a points to [T; N]? Yes it's [T] of length N (checked by split_at)
+ unsafe { (&*(a.as_ptr() as *const [T; N]), b) }
+ }
+
+ /// Divides one mutable slice into an array and a remainder slice at an index.
+ ///
+ /// The array will contain all indices from `[0, N)` (excluding
+ /// the index `N` itself) and the slice will contain all
+ /// indices from `[N, len)` (excluding the index `len` itself).
+ ///
+ /// # Panics
+ ///
+ /// Panics if `N > len`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(split_array)]
+ ///
+ /// let mut v = &mut [1, 0, 3, 0, 5, 6][..];
+ /// let (left, right) = v.split_array_mut::<2>();
+ /// assert_eq!(left, &mut [1, 0]);
+ /// assert_eq!(right, [3, 0, 5, 6]);
+ /// left[1] = 2;
+ /// right[1] = 4;
+ /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
+ /// ```
+ #[unstable(feature = "split_array", reason = "new API", issue = "90091")]
+ #[inline]
+ #[track_caller]
+ #[must_use]
+ pub fn split_array_mut<const N: usize>(&mut self) -> (&mut [T; N], &mut [T]) {
+ let (a, b) = self.split_at_mut(N);
+ // SAFETY: a points to [T; N]? Yes it's [T] of length N (checked by split_at_mut)
+ unsafe { (&mut *(a.as_mut_ptr() as *mut [T; N]), b) }
+ }
+
+ /// Divides one slice into an array and a remainder slice at an index from
+ /// the end.
+ ///
+ /// The slice will contain all indices from `[0, len - N)` (excluding
+ /// the index `len - N` itself) and the array will contain all
+ /// indices from `[len - N, len)` (excluding the index `len` itself).
+ ///
+ /// # Panics
+ ///
+ /// Panics if `N > len`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(split_array)]
+ ///
+ /// let v = &[1, 2, 3, 4, 5, 6][..];
+ ///
+ /// {
+ /// let (left, right) = v.rsplit_array_ref::<0>();
+ /// assert_eq!(left, [1, 2, 3, 4, 5, 6]);
+ /// assert_eq!(right, &[]);
+ /// }
+ ///
+ /// {
+ /// let (left, right) = v.rsplit_array_ref::<2>();
+ /// assert_eq!(left, [1, 2, 3, 4]);
+ /// assert_eq!(right, &[5, 6]);
+ /// }
+ ///
+ /// {
+ /// let (left, right) = v.rsplit_array_ref::<6>();
+ /// assert_eq!(left, []);
+ /// assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
+ /// }
+ /// ```
+ #[unstable(feature = "split_array", reason = "new API", issue = "90091")]
+ #[inline]
+ #[must_use]
+ pub fn rsplit_array_ref<const N: usize>(&self) -> (&[T], &[T; N]) {
+ assert!(N <= self.len());
+ let (a, b) = self.split_at(self.len() - N);
+ // SAFETY: b points to [T; N]? Yes it's [T] of length N (checked by split_at)
+ unsafe { (a, &*(b.as_ptr() as *const [T; N])) }
+ }
+
+ /// Divides one mutable slice into an array and a remainder slice at an
+ /// index from the end.
+ ///
+ /// The slice will contain all indices from `[0, len - N)` (excluding
+ /// the index `N` itself) and the array will contain all
+ /// indices from `[len - N, len)` (excluding the index `len` itself).
+ ///
+ /// # Panics
+ ///
+ /// Panics if `N > len`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(split_array)]
+ ///
+ /// let mut v = &mut [1, 0, 3, 0, 5, 6][..];
+ /// let (left, right) = v.rsplit_array_mut::<4>();
+ /// assert_eq!(left, [1, 0]);
+ /// assert_eq!(right, &mut [3, 0, 5, 6]);
+ /// left[1] = 2;
+ /// right[1] = 4;
+ /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
+ /// ```
+ #[unstable(feature = "split_array", reason = "new API", issue = "90091")]
+ #[inline]
+ #[must_use]
+ pub fn rsplit_array_mut<const N: usize>(&mut self) -> (&mut [T], &mut [T; N]) {
+ assert!(N <= self.len());
+ let (a, b) = self.split_at_mut(self.len() - N);
+ // SAFETY: b points to [T; N]? Yes it's [T] of length N (checked by split_at_mut)
+ unsafe { (a, &mut *(b.as_mut_ptr() as *mut [T; N])) }
+ }
+
+ /// Returns an iterator over subslices separated by elements that match
+ /// `pred`. The matched element is not contained in the subslices.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let slice = [10, 40, 33, 20];
+ /// let mut iter = slice.split(|num| num % 3 == 0);
+ ///
+ /// assert_eq!(iter.next().unwrap(), &[10, 40]);
+ /// assert_eq!(iter.next().unwrap(), &[20]);
+ /// assert!(iter.next().is_none());
+ /// ```
+ ///
+ /// If the first element is matched, an empty slice will be the first item
+ /// returned by the iterator. Similarly, if the last element in the slice
+ /// is matched, an empty slice will be the last item returned by the
+ /// iterator:
+ ///
+ /// ```
+ /// let slice = [10, 40, 33];
+ /// let mut iter = slice.split(|num| num % 3 == 0);
+ ///
+ /// assert_eq!(iter.next().unwrap(), &[10, 40]);
+ /// assert_eq!(iter.next().unwrap(), &[]);
+ /// assert!(iter.next().is_none());
+ /// ```
+ ///
+ /// If two matched elements are directly adjacent, an empty slice will be
+ /// present between them:
+ ///
+ /// ```
+ /// let slice = [10, 6, 33, 20];
+ /// let mut iter = slice.split(|num| num % 3 == 0);
+ ///
+ /// assert_eq!(iter.next().unwrap(), &[10]);
+ /// assert_eq!(iter.next().unwrap(), &[]);
+ /// assert_eq!(iter.next().unwrap(), &[20]);
+ /// assert!(iter.next().is_none());
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
+ where
+ F: FnMut(&T) -> bool,
+ {
+ Split::new(self, pred)
+ }
+
+ /// Returns an iterator over mutable subslices separated by elements that
+ /// match `pred`. The matched element is not contained in the subslices.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [10, 40, 30, 20, 60, 50];
+ ///
+ /// for group in v.split_mut(|num| *num % 3 == 0) {
+ /// group[0] = 1;
+ /// }
+ /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
+ where
+ F: FnMut(&T) -> bool,
+ {
+ SplitMut::new(self, pred)
+ }
+
+ /// Returns an iterator over subslices separated by elements that match
+ /// `pred`. The matched element is contained in the end of the previous
+ /// subslice as a terminator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let slice = [10, 40, 33, 20];
+ /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
+ ///
+ /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
+ /// assert_eq!(iter.next().unwrap(), &[20]);
+ /// assert!(iter.next().is_none());
+ /// ```
+ ///
+ /// If the last element of the slice is matched,
+ /// that element will be considered the terminator of the preceding slice.
+ /// That slice will be the last item returned by the iterator.
+ ///
+ /// ```
+ /// let slice = [3, 10, 40, 33];
+ /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
+ ///
+ /// assert_eq!(iter.next().unwrap(), &[3]);
+ /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
+ /// assert!(iter.next().is_none());
+ /// ```
+ #[stable(feature = "split_inclusive", since = "1.51.0")]
+ #[inline]
+ pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
+ where
+ F: FnMut(&T) -> bool,
+ {
+ SplitInclusive::new(self, pred)
+ }
+
+ /// Returns an iterator over mutable subslices separated by elements that
+ /// match `pred`. The matched element is contained in the previous
+ /// subslice as a terminator.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [10, 40, 30, 20, 60, 50];
+ ///
+ /// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
+ /// let terminator_idx = group.len()-1;
+ /// group[terminator_idx] = 1;
+ /// }
+ /// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
+ /// ```
+ #[stable(feature = "split_inclusive", since = "1.51.0")]
+ #[inline]
+ pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
+ where
+ F: FnMut(&T) -> bool,
+ {
+ SplitInclusiveMut::new(self, pred)
+ }
+
+ /// Returns an iterator over subslices separated by elements that match
+ /// `pred`, starting at the end of the slice and working backwards.
+ /// The matched element is not contained in the subslices.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let slice = [11, 22, 33, 0, 44, 55];
+ /// let mut iter = slice.rsplit(|num| *num == 0);
+ ///
+ /// assert_eq!(iter.next().unwrap(), &[44, 55]);
+ /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
+ /// assert_eq!(iter.next(), None);
+ /// ```
+ ///
+ /// As with `split()`, if the first or last element is matched, an empty
+ /// slice will be the first (or last) item returned by the iterator.
+ ///
+ /// ```
+ /// let v = &[0, 1, 1, 2, 3, 5, 8];
+ /// let mut it = v.rsplit(|n| *n % 2 == 0);
+ /// assert_eq!(it.next().unwrap(), &[]);
+ /// assert_eq!(it.next().unwrap(), &[3, 5]);
+ /// assert_eq!(it.next().unwrap(), &[1, 1]);
+ /// assert_eq!(it.next().unwrap(), &[]);
+ /// assert_eq!(it.next(), None);
+ /// ```
+ #[stable(feature = "slice_rsplit", since = "1.27.0")]
+ #[inline]
+ pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
+ where
+ F: FnMut(&T) -> bool,
+ {
+ RSplit::new(self, pred)
+ }
+
+ /// Returns an iterator over mutable subslices separated by elements that
+ /// match `pred`, starting at the end of the slice and working
+ /// backwards. The matched element is not contained in the subslices.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [100, 400, 300, 200, 600, 500];
+ ///
+ /// let mut count = 0;
+ /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
+ /// count += 1;
+ /// group[0] = count;
+ /// }
+ /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
+ /// ```
+ ///
+ #[stable(feature = "slice_rsplit", since = "1.27.0")]
+ #[inline]
+ pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
+ where
+ F: FnMut(&T) -> bool,
+ {
+ RSplitMut::new(self, pred)
+ }
+
+ /// Returns an iterator over subslices separated by elements that match
+ /// `pred`, limited to returning at most `n` items. The matched element is
+ /// not contained in the subslices.
+ ///
+ /// The last element returned, if any, will contain the remainder of the
+ /// slice.
+ ///
+ /// # Examples
+ ///
+ /// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`,
+ /// `[20, 60, 50]`):
+ ///
+ /// ```
+ /// let v = [10, 40, 30, 20, 60, 50];
+ ///
+ /// for group in v.splitn(2, |num| *num % 3 == 0) {
+ /// println!("{group:?}");
+ /// }
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
+ where
+ F: FnMut(&T) -> bool,
+ {
+ SplitN::new(self.split(pred), n)
+ }
+
+ /// Returns an iterator over subslices separated by elements that match
+ /// `pred`, limited to returning at most `n` items. The matched element is
+ /// not contained in the subslices.
+ ///
+ /// The last element returned, if any, will contain the remainder of the
+ /// slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [10, 40, 30, 20, 60, 50];
+ ///
+ /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
+ /// group[0] = 1;
+ /// }
+ /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
+ where
+ F: FnMut(&T) -> bool,
+ {
+ SplitNMut::new(self.split_mut(pred), n)
+ }
+
+ /// Returns an iterator over subslices separated by elements that match
+ /// `pred` limited to returning at most `n` items. This starts at the end of
+ /// the slice and works backwards. The matched element is not contained in
+ /// the subslices.
+ ///
+ /// The last element returned, if any, will contain the remainder of the
+ /// slice.
+ ///
+ /// # Examples
+ ///
+ /// Print the slice split once, starting from the end, by numbers divisible
+ /// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`):
+ ///
+ /// ```
+ /// let v = [10, 40, 30, 20, 60, 50];
+ ///
+ /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
+ /// println!("{group:?}");
+ /// }
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
+ where
+ F: FnMut(&T) -> bool,
+ {
+ RSplitN::new(self.rsplit(pred), n)
+ }
+
+ /// Returns an iterator over subslices separated by elements that match
+ /// `pred` limited to returning at most `n` items. This starts at the end of
+ /// the slice and works backwards. The matched element is not contained in
+ /// the subslices.
+ ///
+ /// The last element returned, if any, will contain the remainder of the
+ /// slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut s = [10, 40, 30, 20, 60, 50];
+ ///
+ /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
+ /// group[0] = 1;
+ /// }
+ /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
+ where
+ F: FnMut(&T) -> bool,
+ {
+ RSplitNMut::new(self.rsplit_mut(pred), n)
+ }
+
+ /// Returns `true` if the slice contains an element with the given value.
+ ///
+ /// This operation is *O*(*n*).
+ ///
+ /// Note that if you have a sorted slice, [`binary_search`] may be faster.
+ ///
+ /// [`binary_search`]: slice::binary_search
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = [10, 40, 30];
+ /// assert!(v.contains(&30));
+ /// assert!(!v.contains(&50));
+ /// ```
+ ///
+ /// If you do not have a `&T`, but some other value that you can compare
+ /// with one (for example, `String` implements `PartialEq<str>`), you can
+ /// use `iter().any`:
+ ///
+ /// ```
+ /// let v = [String::from("hello"), String::from("world")]; // slice of `String`
+ /// assert!(v.iter().any(|e| e == "hello")); // search with `&str`
+ /// assert!(!v.iter().any(|e| e == "hi"));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ #[must_use]
+ pub fn contains(&self, x: &T) -> bool
+ where
+ T: PartialEq,
+ {
+ cmp::SliceContains::slice_contains(x, self)
+ }
+
+ /// Returns `true` if `needle` is a prefix of the slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = [10, 40, 30];
+ /// assert!(v.starts_with(&[10]));
+ /// assert!(v.starts_with(&[10, 40]));
+ /// assert!(!v.starts_with(&[50]));
+ /// assert!(!v.starts_with(&[10, 50]));
+ /// ```
+ ///
+ /// Always returns `true` if `needle` is an empty slice:
+ ///
+ /// ```
+ /// let v = &[10, 40, 30];
+ /// assert!(v.starts_with(&[]));
+ /// let v: &[u8] = &[];
+ /// assert!(v.starts_with(&[]));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use]
+ pub fn starts_with(&self, needle: &[T]) -> bool
+ where
+ T: PartialEq,
+ {
+ let n = needle.len();
+ self.len() >= n && needle == &self[..n]
+ }
+
+ /// Returns `true` if `needle` is a suffix of the slice.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = [10, 40, 30];
+ /// assert!(v.ends_with(&[30]));
+ /// assert!(v.ends_with(&[40, 30]));
+ /// assert!(!v.ends_with(&[50]));
+ /// assert!(!v.ends_with(&[50, 30]));
+ /// ```
+ ///
+ /// Always returns `true` if `needle` is an empty slice:
+ ///
+ /// ```
+ /// let v = &[10, 40, 30];
+ /// assert!(v.ends_with(&[]));
+ /// let v: &[u8] = &[];
+ /// assert!(v.ends_with(&[]));
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[must_use]
+ pub fn ends_with(&self, needle: &[T]) -> bool
+ where
+ T: PartialEq,
+ {
+ let (m, n) = (self.len(), needle.len());
+ m >= n && needle == &self[m - n..]
+ }
+
+ /// Returns a subslice with the prefix removed.
+ ///
+ /// If the slice starts with `prefix`, returns the subslice after the prefix, wrapped in `Some`.
+ /// If `prefix` is empty, simply returns the original slice.
+ ///
+ /// If the slice does not start with `prefix`, returns `None`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = &[10, 40, 30];
+ /// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
+ /// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
+ /// assert_eq!(v.strip_prefix(&[50]), None);
+ /// assert_eq!(v.strip_prefix(&[10, 50]), None);
+ ///
+ /// let prefix : &str = "he";
+ /// assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
+ /// Some(b"llo".as_ref()));
+ /// ```
+ #[must_use = "returns the subslice without modifying the original"]
+ #[stable(feature = "slice_strip", since = "1.51.0")]
+ pub fn strip_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> Option<&[T]>
+ where
+ T: PartialEq,
+ {
+ // This function will need rewriting if and when SlicePattern becomes more sophisticated.
+ let prefix = prefix.as_slice();
+ let n = prefix.len();
+ if n <= self.len() {
+ let (head, tail) = self.split_at(n);
+ if head == prefix {
+ return Some(tail);
+ }
+ }
+ None
+ }
+
+ /// Returns a subslice with the suffix removed.
+ ///
+ /// If the slice ends with `suffix`, returns the subslice before the suffix, wrapped in `Some`.
+ /// If `suffix` is empty, simply returns the original slice.
+ ///
+ /// If the slice does not end with `suffix`, returns `None`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = &[10, 40, 30];
+ /// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
+ /// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
+ /// assert_eq!(v.strip_suffix(&[50]), None);
+ /// assert_eq!(v.strip_suffix(&[50, 30]), None);
+ /// ```
+ #[must_use = "returns the subslice without modifying the original"]
+ #[stable(feature = "slice_strip", since = "1.51.0")]
+ pub fn strip_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> Option<&[T]>
+ where
+ T: PartialEq,
+ {
+ // This function will need rewriting if and when SlicePattern becomes more sophisticated.
+ let suffix = suffix.as_slice();
+ let (len, n) = (self.len(), suffix.len());
+ if n <= len {
+ let (head, tail) = self.split_at(len - n);
+ if tail == suffix {
+ return Some(head);
+ }
+ }
+ None
+ }
+
+ /// Binary searches this slice for a given element.
+ /// This behaves similary to [`contains`] if this slice is sorted.
+ ///
+ /// If the value is found then [`Result::Ok`] is returned, containing the
+ /// index of the matching element. If there are multiple matches, then any
+ /// one of the matches could be returned. The index is chosen
+ /// deterministically, but is subject to change in future versions of Rust.
+ /// If the value is not found then [`Result::Err`] is returned, containing
+ /// the index where a matching element could be inserted while maintaining
+ /// sorted order.
+ ///
+ /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
+ ///
+ /// [`contains`]: slice::contains
+ /// [`binary_search_by`]: slice::binary_search_by
+ /// [`binary_search_by_key`]: slice::binary_search_by_key
+ /// [`partition_point`]: slice::partition_point
+ ///
+ /// # Examples
+ ///
+ /// Looks up a series of four elements. The first is found, with a
+ /// uniquely determined position; the second and third are not
+ /// found; the fourth could match any position in `[1, 4]`.
+ ///
+ /// ```
+ /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
+ ///
+ /// assert_eq!(s.binary_search(&13), Ok(9));
+ /// assert_eq!(s.binary_search(&4), Err(7));
+ /// assert_eq!(s.binary_search(&100), Err(13));
+ /// let r = s.binary_search(&1);
+ /// assert!(match r { Ok(1..=4) => true, _ => false, });
+ /// ```
+ ///
+ /// If you want to insert an item to a sorted vector, while maintaining
+ /// sort order, consider using [`partition_point`]:
+ ///
+ /// ```
+ /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
+ /// let num = 42;
+ /// let idx = s.partition_point(|&x| x < num);
+ /// // The above is equivalent to `let idx = s.binary_search(&num).unwrap_or_else(|x| x);`
+ /// s.insert(idx, num);
+ /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn binary_search(&self, x: &T) -> Result<usize, usize>
+ where
+ T: Ord,
+ {
+ self.binary_search_by(|p| p.cmp(x))
+ }
+
+ /// Binary searches this slice with a comparator function.
+ /// This behaves similarly to [`contains`] if this slice is sorted.
+ ///
+ /// The comparator function should implement an order consistent
+ /// with the sort order of the underlying slice, returning an
+ /// order code that indicates whether its argument is `Less`,
+ /// `Equal` or `Greater` the desired target.
+ ///
+ /// If the value is found then [`Result::Ok`] is returned, containing the
+ /// index of the matching element. If there are multiple matches, then any
+ /// one of the matches could be returned. The index is chosen
+ /// deterministically, but is subject to change in future versions of Rust.
+ /// If the value is not found then [`Result::Err`] is returned, containing
+ /// the index where a matching element could be inserted while maintaining
+ /// sorted order.
+ ///
+ /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
+ ///
+ /// [`contains`]: slice::contains
+ /// [`binary_search`]: slice::binary_search
+ /// [`binary_search_by_key`]: slice::binary_search_by_key
+ /// [`partition_point`]: slice::partition_point
+ ///
+ /// # Examples
+ ///
+ /// Looks up a series of four elements. The first is found, with a
+ /// uniquely determined position; the second and third are not
+ /// found; the fourth could match any position in `[1, 4]`.
+ ///
+ /// ```
+ /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
+ ///
+ /// let seek = 13;
+ /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
+ /// let seek = 4;
+ /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
+ /// let seek = 100;
+ /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
+ /// let seek = 1;
+ /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
+ /// assert!(match r { Ok(1..=4) => true, _ => false, });
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[inline]
+ pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
+ where
+ F: FnMut(&'a T) -> Ordering,
+ {
+ let mut size = self.len();
+ let mut left = 0;
+ let mut right = size;
+ while left < right {
+ let mid = left + size / 2;
+
+ // SAFETY: the call is made safe by the following invariants:
+ // - `mid >= 0`
+ // - `mid < size`: `mid` is limited by `[left; right)` bound.
+ let cmp = f(unsafe { self.get_unchecked(mid) });
+
+ // The reason why we use if/else control flow rather than match
+ // is because match reorders comparison operations, which is perf sensitive.
+ // This is x86 asm for u8: https://rust.godbolt.org/z/8Y8Pra.
+ if cmp == Less {
+ left = mid + 1;
+ } else if cmp == Greater {
+ right = mid;
+ } else {
+ // SAFETY: same as the `get_unchecked` above
+ unsafe { crate::intrinsics::assume(mid < self.len()) };
+ return Ok(mid);
+ }
+
+ size = right - left;
+ }
+ Err(left)
+ }
+
+ /// Binary searches this slice with a key extraction function.
+ /// This behaves similarly to [`contains`] if this slice is sorted.
+ ///
+ /// Assumes that the slice is sorted by the key, for instance with
+ /// [`sort_by_key`] using the same key extraction function.
+ ///
+ /// If the value is found then [`Result::Ok`] is returned, containing the
+ /// index of the matching element. If there are multiple matches, then any
+ /// one of the matches could be returned. The index is chosen
+ /// deterministically, but is subject to change in future versions of Rust.
+ /// If the value is not found then [`Result::Err`] is returned, containing
+ /// the index where a matching element could be inserted while maintaining
+ /// sorted order.
+ ///
+ /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
+ ///
+ /// [`contains`]: slice::contains
+ /// [`sort_by_key`]: slice::sort_by_key
+ /// [`binary_search`]: slice::binary_search
+ /// [`binary_search_by`]: slice::binary_search_by
+ /// [`partition_point`]: slice::partition_point
+ ///
+ /// # Examples
+ ///
+ /// Looks up a series of four elements in a slice of pairs sorted by
+ /// their second elements. The first is found, with a uniquely
+ /// determined position; the second and third are not found; the
+ /// fourth could match any position in `[1, 4]`.
+ ///
+ /// ```
+ /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
+ /// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
+ /// (1, 21), (2, 34), (4, 55)];
+ ///
+ /// assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b), Ok(9));
+ /// assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b), Err(7));
+ /// assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
+ /// let r = s.binary_search_by_key(&1, |&(a, b)| b);
+ /// assert!(match r { Ok(1..=4) => true, _ => false, });
+ /// ```
+ // Lint rustdoc::broken_intra_doc_links is allowed as `slice::sort_by_key` is
+ // in crate `alloc`, and as such doesn't exists yet when building `core`: #74481.
+ // This breaks links when slice is displayed in core, but changing it to use relative links
+ // would break when the item is re-exported. So allow the core links to be broken for now.
+ #[allow(rustdoc::broken_intra_doc_links)]
+ #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
+ #[inline]
+ pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
+ where
+ F: FnMut(&'a T) -> B,
+ B: Ord,
+ {
+ self.binary_search_by(|k| f(k).cmp(b))
+ }
+
+ /// Sorts the slice, but might not preserve the order of equal elements.
+ ///
+ /// This sort is unstable (i.e., may reorder equal elements), in-place
+ /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+ /// which combines the fast average case of randomized quicksort with the fast worst case of
+ /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+ /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+ /// deterministic behavior.
+ ///
+ /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
+ /// slice consists of several concatenated sorted sequences.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [-5, 4, 1, -3, 2];
+ ///
+ /// v.sort_unstable();
+ /// assert!(v == [-5, -3, 1, 2, 4]);
+ /// ```
+ ///
+ /// [pdqsort]: https://github.com/orlp/pdqsort
+ #[stable(feature = "sort_unstable", since = "1.20.0")]
+ #[inline]
+ pub fn sort_unstable(&mut self)
+ where
+ T: Ord,
+ {
+ sort::quicksort(self, |a, b| a.lt(b));
+ }
+
+ /// Sorts the slice with a comparator function, but might not preserve the order of equal
+ /// elements.
+ ///
+ /// This sort is unstable (i.e., may reorder equal elements), in-place
+ /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
+ ///
+ /// The comparator function must define a total ordering for the elements in the slice. If
+ /// the ordering is not total, the order of the elements is unspecified. An order is a
+ /// total order if it is (for all `a`, `b` and `c`):
+ ///
+ /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
+ /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
+ ///
+ /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
+ /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
+ ///
+ /// ```
+ /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
+ /// floats.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
+ /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
+ /// ```
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+ /// which combines the fast average case of randomized quicksort with the fast worst case of
+ /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+ /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+ /// deterministic behavior.
+ ///
+ /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
+ /// slice consists of several concatenated sorted sequences.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [5, 4, 1, 3, 2];
+ /// v.sort_unstable_by(|a, b| a.cmp(b));
+ /// assert!(v == [1, 2, 3, 4, 5]);
+ ///
+ /// // reverse sorting
+ /// v.sort_unstable_by(|a, b| b.cmp(a));
+ /// assert!(v == [5, 4, 3, 2, 1]);
+ /// ```
+ ///
+ /// [pdqsort]: https://github.com/orlp/pdqsort
+ #[stable(feature = "sort_unstable", since = "1.20.0")]
+ #[inline]
+ pub fn sort_unstable_by<F>(&mut self, mut compare: F)
+ where
+ F: FnMut(&T, &T) -> Ordering,
+ {
+ sort::quicksort(self, |a, b| compare(a, b) == Ordering::Less);
+ }
+
+ /// Sorts the slice with a key extraction function, but might not preserve the order of equal
+ /// elements.
+ ///
+ /// This sort is unstable (i.e., may reorder equal elements), in-place
+ /// (i.e., does not allocate), and *O*(m \* *n* \* log(*n*)) worst-case, where the key function is
+ /// *O*(*m*).
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
+ /// which combines the fast average case of randomized quicksort with the fast worst case of
+ /// heapsort, while achieving linear time on slices with certain patterns. It uses some
+ /// randomization to avoid degenerate cases, but with a fixed seed to always provide
+ /// deterministic behavior.
+ ///
+ /// Due to its key calling strategy, [`sort_unstable_by_key`](#method.sort_unstable_by_key)
+ /// is likely to be slower than [`sort_by_cached_key`](#method.sort_by_cached_key) in
+ /// cases where the key function is expensive.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [-5i32, 4, 1, -3, 2];
+ ///
+ /// v.sort_unstable_by_key(|k| k.abs());
+ /// assert!(v == [1, 2, -3, 4, -5]);
+ /// ```
+ ///
+ /// [pdqsort]: https://github.com/orlp/pdqsort
+ #[stable(feature = "sort_unstable", since = "1.20.0")]
+ #[inline]
+ pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F)
+ where
+ F: FnMut(&T) -> K,
+ K: Ord,
+ {
+ sort::quicksort(self, |a, b| f(a).lt(&f(b)));
+ }
+
+ /// Reorder the slice such that the element at `index` is at its final sorted position.
+ ///
+ /// This reordering has the additional property that any value at position `i < index` will be
+ /// less than or equal to any value at a position `j > index`. Additionally, this reordering is
+ /// unstable (i.e. any number of equal elements may end up at position `index`), in-place
+ /// (i.e. does not allocate), and *O*(*n*) worst-case. This function is also/ known as "kth
+ /// element" in other libraries. It returns a triplet of the following values: all elements less
+ /// than the one at the given index, the value at the given index, and all elements greater than
+ /// the one at the given index.
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is based on the quickselect portion of the same quicksort algorithm
+ /// used for [`sort_unstable`].
+ ///
+ /// [`sort_unstable`]: slice::sort_unstable
+ ///
+ /// # Panics
+ ///
+ /// Panics when `index >= len()`, meaning it always panics on empty slices.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [-5i32, 4, 1, -3, 2];
+ ///
+ /// // Find the median
+ /// v.select_nth_unstable(2);
+ ///
+ /// // We are only guaranteed the slice will be one of the following, based on the way we sort
+ /// // about the specified index.
+ /// assert!(v == [-3, -5, 1, 2, 4] ||
+ /// v == [-5, -3, 1, 2, 4] ||
+ /// v == [-3, -5, 1, 4, 2] ||
+ /// v == [-5, -3, 1, 4, 2]);
+ /// ```
+ #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
+ #[inline]
+ pub fn select_nth_unstable(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T])
+ where
+ T: Ord,
+ {
+ let mut f = |a: &T, b: &T| a.lt(b);
+ sort::partition_at_index(self, index, &mut f)
+ }
+
+ /// Reorder the slice with a comparator function such that the element at `index` is at its
+ /// final sorted position.
+ ///
+ /// This reordering has the additional property that any value at position `i < index` will be
+ /// less than or equal to any value at a position `j > index` using the comparator function.
+ /// Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
+ /// position `index`), in-place (i.e. does not allocate), and *O*(*n*) worst-case. This function
+ /// is also known as "kth element" in other libraries. It returns a triplet of the following
+ /// values: all elements less than the one at the given index, the value at the given index,
+ /// and all elements greater than the one at the given index, using the provided comparator
+ /// function.
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is based on the quickselect portion of the same quicksort algorithm
+ /// used for [`sort_unstable`].
+ ///
+ /// [`sort_unstable`]: slice::sort_unstable
+ ///
+ /// # Panics
+ ///
+ /// Panics when `index >= len()`, meaning it always panics on empty slices.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [-5i32, 4, 1, -3, 2];
+ ///
+ /// // Find the median as if the slice were sorted in descending order.
+ /// v.select_nth_unstable_by(2, |a, b| b.cmp(a));
+ ///
+ /// // We are only guaranteed the slice will be one of the following, based on the way we sort
+ /// // about the specified index.
+ /// assert!(v == [2, 4, 1, -5, -3] ||
+ /// v == [2, 4, 1, -3, -5] ||
+ /// v == [4, 2, 1, -5, -3] ||
+ /// v == [4, 2, 1, -3, -5]);
+ /// ```
+ #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
+ #[inline]
+ pub fn select_nth_unstable_by<F>(
+ &mut self,
+ index: usize,
+ mut compare: F,
+ ) -> (&mut [T], &mut T, &mut [T])
+ where
+ F: FnMut(&T, &T) -> Ordering,
+ {
+ let mut f = |a: &T, b: &T| compare(a, b) == Less;
+ sort::partition_at_index(self, index, &mut f)
+ }
+
+ /// Reorder the slice with a key extraction function such that the element at `index` is at its
+ /// final sorted position.
+ ///
+ /// This reordering has the additional property that any value at position `i < index` will be
+ /// less than or equal to any value at a position `j > index` using the key extraction function.
+ /// Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
+ /// position `index`), in-place (i.e. does not allocate), and *O*(*n*) worst-case. This function
+ /// is also known as "kth element" in other libraries. It returns a triplet of the following
+ /// values: all elements less than the one at the given index, the value at the given index, and
+ /// all elements greater than the one at the given index, using the provided key extraction
+ /// function.
+ ///
+ /// # Current implementation
+ ///
+ /// The current algorithm is based on the quickselect portion of the same quicksort algorithm
+ /// used for [`sort_unstable`].
+ ///
+ /// [`sort_unstable`]: slice::sort_unstable
+ ///
+ /// # Panics
+ ///
+ /// Panics when `index >= len()`, meaning it always panics on empty slices.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut v = [-5i32, 4, 1, -3, 2];
+ ///
+ /// // Return the median as if the array were sorted according to absolute value.
+ /// v.select_nth_unstable_by_key(2, |a| a.abs());
+ ///
+ /// // We are only guaranteed the slice will be one of the following, based on the way we sort
+ /// // about the specified index.
+ /// assert!(v == [1, 2, -3, 4, -5] ||
+ /// v == [1, 2, -3, -5, 4] ||
+ /// v == [2, 1, -3, 4, -5] ||
+ /// v == [2, 1, -3, -5, 4]);
+ /// ```
+ #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
+ #[inline]
+ pub fn select_nth_unstable_by_key<K, F>(
+ &mut self,
+ index: usize,
+ mut f: F,
+ ) -> (&mut [T], &mut T, &mut [T])
+ where
+ F: FnMut(&T) -> K,
+ K: Ord,
+ {
+ let mut g = |a: &T, b: &T| f(a).lt(&f(b));
+ sort::partition_at_index(self, index, &mut g)
+ }
+
+ /// Moves all consecutive repeated elements to the end of the slice according to the
+ /// [`PartialEq`] trait implementation.
+ ///
+ /// Returns two slices. The first contains no consecutive repeated elements.
+ /// The second contains all the duplicates in no specified order.
+ ///
+ /// If the slice is sorted, the first returned slice contains no duplicates.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_partition_dedup)]
+ ///
+ /// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
+ ///
+ /// let (dedup, duplicates) = slice.partition_dedup();
+ ///
+ /// assert_eq!(dedup, [1, 2, 3, 2, 1]);
+ /// assert_eq!(duplicates, [2, 3, 1]);
+ /// ```
+ #[unstable(feature = "slice_partition_dedup", issue = "54279")]
+ #[inline]
+ pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
+ where
+ T: PartialEq,
+ {
+ self.partition_dedup_by(|a, b| a == b)
+ }
+
+ /// Moves all but the first of consecutive elements to the end of the slice satisfying
+ /// a given equality relation.
+ ///
+ /// Returns two slices. The first contains no consecutive repeated elements.
+ /// The second contains all the duplicates in no specified order.
+ ///
+ /// The `same_bucket` function is passed references to two elements from the slice and
+ /// must determine if the elements compare equal. The elements are passed in opposite order
+ /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved
+ /// at the end of the slice.
+ ///
+ /// If the slice is sorted, the first returned slice contains no duplicates.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_partition_dedup)]
+ ///
+ /// let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
+ ///
+ /// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
+ ///
+ /// assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
+ /// assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
+ /// ```
+ #[unstable(feature = "slice_partition_dedup", issue = "54279")]
+ #[inline]
+ pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T])
+ where
+ F: FnMut(&mut T, &mut T) -> bool,
+ {
+ // Although we have a mutable reference to `self`, we cannot make
+ // *arbitrary* changes. The `same_bucket` calls could panic, so we
+ // must ensure that the slice is in a valid state at all times.
+ //
+ // The way that we handle this is by using swaps; we iterate
+ // over all the elements, swapping as we go so that at the end
+ // the elements we wish to keep are in the front, and those we
+ // wish to reject are at the back. We can then split the slice.
+ // This operation is still `O(n)`.
+ //
+ // Example: We start in this state, where `r` represents "next
+ // read" and `w` represents "next_write`.
+ //
+ // r
+ // +---+---+---+---+---+---+
+ // | 0 | 1 | 1 | 2 | 3 | 3 |
+ // +---+---+---+---+---+---+
+ // w
+ //
+ // Comparing self[r] against self[w-1], this is not a duplicate, so
+ // we swap self[r] and self[w] (no effect as r==w) and then increment both
+ // r and w, leaving us with:
+ //
+ // r
+ // +---+---+---+---+---+---+
+ // | 0 | 1 | 1 | 2 | 3 | 3 |
+ // +---+---+---+---+---+---+
+ // w
+ //
+ // Comparing self[r] against self[w-1], this value is a duplicate,
+ // so we increment `r` but leave everything else unchanged:
+ //
+ // r
+ // +---+---+---+---+---+---+
+ // | 0 | 1 | 1 | 2 | 3 | 3 |
+ // +---+---+---+---+---+---+
+ // w
+ //
+ // Comparing self[r] against self[w-1], this is not a duplicate,
+ // so swap self[r] and self[w] and advance r and w:
+ //
+ // r
+ // +---+---+---+---+---+---+
+ // | 0 | 1 | 2 | 1 | 3 | 3 |
+ // +---+---+---+---+---+---+
+ // w
+ //
+ // Not a duplicate, repeat:
+ //
+ // r
+ // +---+---+---+---+---+---+
+ // | 0 | 1 | 2 | 3 | 1 | 3 |
+ // +---+---+---+---+---+---+
+ // w
+ //
+ // Duplicate, advance r. End of slice. Split at w.
+
+ let len = self.len();
+ if len <= 1 {
+ return (self, &mut []);
+ }
+
+ let ptr = self.as_mut_ptr();
+ let mut next_read: usize = 1;
+ let mut next_write: usize = 1;
+
+ // SAFETY: the `while` condition guarantees `next_read` and `next_write`
+ // are less than `len`, thus are inside `self`. `prev_ptr_write` points to
+ // one element before `ptr_write`, but `next_write` starts at 1, so
+ // `prev_ptr_write` is never less than 0 and is inside the slice.
+ // This fulfils the requirements for dereferencing `ptr_read`, `prev_ptr_write`
+ // and `ptr_write`, and for using `ptr.add(next_read)`, `ptr.add(next_write - 1)`
+ // and `prev_ptr_write.offset(1)`.
+ //
+ // `next_write` is also incremented at most once per loop at most meaning
+ // no element is skipped when it may need to be swapped.
+ //
+ // `ptr_read` and `prev_ptr_write` never point to the same element. This
+ // is required for `&mut *ptr_read`, `&mut *prev_ptr_write` to be safe.
+ // The explanation is simply that `next_read >= next_write` is always true,
+ // thus `next_read > next_write - 1` is too.
+ unsafe {
+ // Avoid bounds checks by using raw pointers.
+ while next_read < len {
+ let ptr_read = ptr.add(next_read);
+ let prev_ptr_write = ptr.add(next_write - 1);
+ if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
+ if next_read != next_write {
+ let ptr_write = prev_ptr_write.offset(1);
+ mem::swap(&mut *ptr_read, &mut *ptr_write);
+ }
+ next_write += 1;
+ }
+ next_read += 1;
+ }
+ }
+
+ self.split_at_mut(next_write)
+ }
+
+ /// Moves all but the first of consecutive elements to the end of the slice that resolve
+ /// to the same key.
+ ///
+ /// Returns two slices. The first contains no consecutive repeated elements.
+ /// The second contains all the duplicates in no specified order.
+ ///
+ /// If the slice is sorted, the first returned slice contains no duplicates.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_partition_dedup)]
+ ///
+ /// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
+ ///
+ /// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
+ ///
+ /// assert_eq!(dedup, [10, 20, 30, 20, 11]);
+ /// assert_eq!(duplicates, [21, 30, 13]);
+ /// ```
+ #[unstable(feature = "slice_partition_dedup", issue = "54279")]
+ #[inline]
+ pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T])
+ where
+ F: FnMut(&mut T) -> K,
+ K: PartialEq,
+ {
+ self.partition_dedup_by(|a, b| key(a) == key(b))
+ }
+
+ /// Rotates the slice in-place such that the first `mid` elements of the
+ /// slice move to the end while the last `self.len() - mid` elements move to
+ /// the front. After calling `rotate_left`, the element previously at index
+ /// `mid` will become the first element in the slice.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if `mid` is greater than the length of the
+ /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
+ /// rotation.
+ ///
+ /// # Complexity
+ ///
+ /// Takes linear (in `self.len()`) time.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
+ /// a.rotate_left(2);
+ /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
+ /// ```
+ ///
+ /// Rotating a subslice:
+ ///
+ /// ```
+ /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
+ /// a[1..5].rotate_left(1);
+ /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
+ /// ```
+ #[stable(feature = "slice_rotate", since = "1.26.0")]
+ pub fn rotate_left(&mut self, mid: usize) {
+ assert!(mid <= self.len());
+ let k = self.len() - mid;
+ let p = self.as_mut_ptr();
+
+ // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
+ // valid for reading and writing, as required by `ptr_rotate`.
+ unsafe {
+ rotate::ptr_rotate(mid, p.add(mid), k);
+ }
+ }
+
+ /// Rotates the slice in-place such that the first `self.len() - k`
+ /// elements of the slice move to the end while the last `k` elements move
+ /// to the front. After calling `rotate_right`, the element previously at
+ /// index `self.len() - k` will become the first element in the slice.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if `k` is greater than the length of the
+ /// slice. Note that `k == self.len()` does _not_ panic and is a no-op
+ /// rotation.
+ ///
+ /// # Complexity
+ ///
+ /// Takes linear (in `self.len()`) time.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
+ /// a.rotate_right(2);
+ /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
+ /// ```
+ ///
+ /// Rotate a subslice:
+ ///
+ /// ```
+ /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
+ /// a[1..5].rotate_right(1);
+ /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
+ /// ```
+ #[stable(feature = "slice_rotate", since = "1.26.0")]
+ pub fn rotate_right(&mut self, k: usize) {
+ assert!(k <= self.len());
+ let mid = self.len() - k;
+ let p = self.as_mut_ptr();
+
+ // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
+ // valid for reading and writing, as required by `ptr_rotate`.
+ unsafe {
+ rotate::ptr_rotate(mid, p.add(mid), k);
+ }
+ }
+
+ /// Fills `self` with elements by cloning `value`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut buf = vec![0; 10];
+ /// buf.fill(1);
+ /// assert_eq!(buf, vec![1; 10]);
+ /// ```
+ #[doc(alias = "memset")]
+ #[stable(feature = "slice_fill", since = "1.50.0")]
+ pub fn fill(&mut self, value: T)
+ where
+ T: Clone,
+ {
+ specialize::SpecFill::spec_fill(self, value);
+ }
+
+ /// Fills `self` with elements returned by calling a closure repeatedly.
+ ///
+ /// This method uses a closure to create new values. If you'd rather
+ /// [`Clone`] a given value, use [`fill`]. If you want to use the [`Default`]
+ /// trait to generate values, you can pass [`Default::default`] as the
+ /// argument.
+ ///
+ /// [`fill`]: slice::fill
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let mut buf = vec![1; 10];
+ /// buf.fill_with(Default::default);
+ /// assert_eq!(buf, vec![0; 10]);
+ /// ```
+ #[stable(feature = "slice_fill_with", since = "1.51.0")]
+ pub fn fill_with<F>(&mut self, mut f: F)
+ where
+ F: FnMut() -> T,
+ {
+ for el in self {
+ *el = f();
+ }
+ }
+
+ /// Copies the elements from `src` into `self`.
+ ///
+ /// The length of `src` must be the same as `self`.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if the two slices have different lengths.
+ ///
+ /// # Examples
+ ///
+ /// Cloning two elements from a slice into another:
+ ///
+ /// ```
+ /// let src = [1, 2, 3, 4];
+ /// let mut dst = [0, 0];
+ ///
+ /// // Because the slices have to be the same length,
+ /// // we slice the source slice from four elements
+ /// // to two. It will panic if we don't do this.
+ /// dst.clone_from_slice(&src[2..]);
+ ///
+ /// assert_eq!(src, [1, 2, 3, 4]);
+ /// assert_eq!(dst, [3, 4]);
+ /// ```
+ ///
+ /// Rust enforces that there can only be one mutable reference with no
+ /// immutable references to a particular piece of data in a particular
+ /// scope. Because of this, attempting to use `clone_from_slice` on a
+ /// single slice will result in a compile failure:
+ ///
+ /// ```compile_fail
+ /// let mut slice = [1, 2, 3, 4, 5];
+ ///
+ /// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
+ /// ```
+ ///
+ /// To work around this, we can use [`split_at_mut`] to create two distinct
+ /// sub-slices from a slice:
+ ///
+ /// ```
+ /// let mut slice = [1, 2, 3, 4, 5];
+ ///
+ /// {
+ /// let (left, right) = slice.split_at_mut(2);
+ /// left.clone_from_slice(&right[1..]);
+ /// }
+ ///
+ /// assert_eq!(slice, [4, 5, 3, 4, 5]);
+ /// ```
+ ///
+ /// [`copy_from_slice`]: slice::copy_from_slice
+ /// [`split_at_mut`]: slice::split_at_mut
+ #[stable(feature = "clone_from_slice", since = "1.7.0")]
+ #[track_caller]
+ pub fn clone_from_slice(&mut self, src: &[T])
+ where
+ T: Clone,
+ {
+ self.spec_clone_from(src);
+ }
+
+ /// Copies all elements from `src` into `self`, using a memcpy.
+ ///
+ /// The length of `src` must be the same as `self`.
+ ///
+ /// If `T` does not implement `Copy`, use [`clone_from_slice`].
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if the two slices have different lengths.
+ ///
+ /// # Examples
+ ///
+ /// Copying two elements from a slice into another:
+ ///
+ /// ```
+ /// let src = [1, 2, 3, 4];
+ /// let mut dst = [0, 0];
+ ///
+ /// // Because the slices have to be the same length,
+ /// // we slice the source slice from four elements
+ /// // to two. It will panic if we don't do this.
+ /// dst.copy_from_slice(&src[2..]);
+ ///
+ /// assert_eq!(src, [1, 2, 3, 4]);
+ /// assert_eq!(dst, [3, 4]);
+ /// ```
+ ///
+ /// Rust enforces that there can only be one mutable reference with no
+ /// immutable references to a particular piece of data in a particular
+ /// scope. Because of this, attempting to use `copy_from_slice` on a
+ /// single slice will result in a compile failure:
+ ///
+ /// ```compile_fail
+ /// let mut slice = [1, 2, 3, 4, 5];
+ ///
+ /// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
+ /// ```
+ ///
+ /// To work around this, we can use [`split_at_mut`] to create two distinct
+ /// sub-slices from a slice:
+ ///
+ /// ```
+ /// let mut slice = [1, 2, 3, 4, 5];
+ ///
+ /// {
+ /// let (left, right) = slice.split_at_mut(2);
+ /// left.copy_from_slice(&right[1..]);
+ /// }
+ ///
+ /// assert_eq!(slice, [4, 5, 3, 4, 5]);
+ /// ```
+ ///
+ /// [`clone_from_slice`]: slice::clone_from_slice
+ /// [`split_at_mut`]: slice::split_at_mut
+ #[doc(alias = "memcpy")]
+ #[stable(feature = "copy_from_slice", since = "1.9.0")]
+ #[track_caller]
+ pub fn copy_from_slice(&mut self, src: &[T])
+ where
+ T: Copy,
+ {
+ // The panic code path was put into a cold function to not bloat the
+ // call site.
+ #[inline(never)]
+ #[cold]
+ #[track_caller]
+ fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
+ panic!(
+ "source slice length ({}) does not match destination slice length ({})",
+ src_len, dst_len,
+ );
+ }
+
+ if self.len() != src.len() {
+ len_mismatch_fail(self.len(), src.len());
+ }
+
+ // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
+ // checked to have the same length. The slices cannot overlap because
+ // mutable references are exclusive.
+ unsafe {
+ ptr::copy_nonoverlapping(src.as_ptr(), self.as_mut_ptr(), self.len());
+ }
+ }
+
+ /// Copies elements from one part of the slice to another part of itself,
+ /// using a memmove.
+ ///
+ /// `src` is the range within `self` to copy from. `dest` is the starting
+ /// index of the range within `self` to copy to, which will have the same
+ /// length as `src`. The two ranges may overlap. The ends of the two ranges
+ /// must be less than or equal to `self.len()`.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if either range exceeds the end of the slice,
+ /// or if the end of `src` is before the start.
+ ///
+ /// # Examples
+ ///
+ /// Copying four bytes within a slice:
+ ///
+ /// ```
+ /// let mut bytes = *b"Hello, World!";
+ ///
+ /// bytes.copy_within(1..5, 8);
+ ///
+ /// assert_eq!(&bytes, b"Hello, Wello!");
+ /// ```
+ #[stable(feature = "copy_within", since = "1.37.0")]
+ #[track_caller]
+ pub fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize)
+ where
+ T: Copy,
+ {
+ let Range { start: src_start, end: src_end } = slice::range(src, ..self.len());
+ let count = src_end - src_start;
+ assert!(dest <= self.len() - count, "dest is out of bounds");
+ // SAFETY: the conditions for `ptr::copy` have all been checked above,
+ // as have those for `ptr::add`.
+ unsafe {
+ // Derive both `src_ptr` and `dest_ptr` from the same loan
+ let ptr = self.as_mut_ptr();
+ let src_ptr = ptr.add(src_start);
+ let dest_ptr = ptr.add(dest);
+ ptr::copy(src_ptr, dest_ptr, count);
+ }
+ }
+
+ /// Swaps all elements in `self` with those in `other`.
+ ///
+ /// The length of `other` must be the same as `self`.
+ ///
+ /// # Panics
+ ///
+ /// This function will panic if the two slices have different lengths.
+ ///
+ /// # Example
+ ///
+ /// Swapping two elements across slices:
+ ///
+ /// ```
+ /// let mut slice1 = [0, 0];
+ /// let mut slice2 = [1, 2, 3, 4];
+ ///
+ /// slice1.swap_with_slice(&mut slice2[2..]);
+ ///
+ /// assert_eq!(slice1, [3, 4]);
+ /// assert_eq!(slice2, [1, 2, 0, 0]);
+ /// ```
+ ///
+ /// Rust enforces that there can only be one mutable reference to a
+ /// particular piece of data in a particular scope. Because of this,
+ /// attempting to use `swap_with_slice` on a single slice will result in
+ /// a compile failure:
+ ///
+ /// ```compile_fail
+ /// let mut slice = [1, 2, 3, 4, 5];
+ /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
+ /// ```
+ ///
+ /// To work around this, we can use [`split_at_mut`] to create two distinct
+ /// mutable sub-slices from a slice:
+ ///
+ /// ```
+ /// let mut slice = [1, 2, 3, 4, 5];
+ ///
+ /// {
+ /// let (left, right) = slice.split_at_mut(2);
+ /// left.swap_with_slice(&mut right[1..]);
+ /// }
+ ///
+ /// assert_eq!(slice, [4, 5, 3, 1, 2]);
+ /// ```
+ ///
+ /// [`split_at_mut`]: slice::split_at_mut
+ #[stable(feature = "swap_with_slice", since = "1.27.0")]
+ #[track_caller]
+ pub fn swap_with_slice(&mut self, other: &mut [T]) {
+ assert!(self.len() == other.len(), "destination and source slices have different lengths");
+ // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
+ // checked to have the same length. The slices cannot overlap because
+ // mutable references are exclusive.
+ unsafe {
+ ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len());
+ }
+ }
+
+ /// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`.
+ fn align_to_offsets<U>(&self) -> (usize, usize) {
+ // What we gonna do about `rest` is figure out what multiple of `U`s we can put in a
+ // lowest number of `T`s. And how many `T`s we need for each such "multiple".
+ //
+ // Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider
+ // for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in
+ // place of every 3 Ts in the `rest` slice. A bit more complicated.
+ //
+ // Formula to calculate this is:
+ //
+ // Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U>
+ // Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T>
+ //
+ // Expanded and simplified:
+ //
+ // Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>)
+ // Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>)
+ //
+ // Luckily since all this is constant-evaluated... performance here matters not!
+ #[inline]
+ fn gcd(a: usize, b: usize) -> usize {
+ use crate::intrinsics;
+ // iterative stein’s algorithm
+ // We should still make this `const fn` (and revert to recursive algorithm if we do)
+ // because relying on llvm to consteval all this is… well, it makes me uncomfortable.
+
+ // SAFETY: `a` and `b` are checked to be non-zero values.
+ let (ctz_a, mut ctz_b) = unsafe {
+ if a == 0 {
+ return b;
+ }
+ if b == 0 {
+ return a;
+ }
+ (intrinsics::cttz_nonzero(a), intrinsics::cttz_nonzero(b))
+ };
+ let k = ctz_a.min(ctz_b);
+ let mut a = a >> ctz_a;
+ let mut b = b;
+ loop {
+ // remove all factors of 2 from b
+ b >>= ctz_b;
+ if a > b {
+ mem::swap(&mut a, &mut b);
+ }
+ b = b - a;
+ // SAFETY: `b` is checked to be non-zero.
+ unsafe {
+ if b == 0 {
+ break;
+ }
+ ctz_b = intrinsics::cttz_nonzero(b);
+ }
+ }
+ a << k
+ }
+ let gcd: usize = gcd(mem::size_of::<T>(), mem::size_of::<U>());
+ let ts: usize = mem::size_of::<U>() / gcd;
+ let us: usize = mem::size_of::<T>() / gcd;
+
+ // Armed with this knowledge, we can find how many `U`s we can fit!
+ let us_len = self.len() / ts * us;
+ // And how many `T`s will be in the trailing slice!
+ let ts_len = self.len() % ts;
+ (us_len, ts_len)
+ }
+
+ /// Transmute the slice to a slice of another type, ensuring alignment of the types is
+ /// maintained.
+ ///
+ /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
+ /// slice of a new type, and the suffix slice. The method may make the middle slice the greatest
+ /// length possible for a given type and input slice, but only your algorithm's performance
+ /// should depend on that, not its correctness. It is permissible for all of the input data to
+ /// be returned as the prefix or suffix slice.
+ ///
+ /// This method has no purpose when either input element `T` or output element `U` are
+ /// zero-sized and will return the original slice without splitting anything.
+ ///
+ /// # Safety
+ ///
+ /// This method is essentially a `transmute` with respect to the elements in the returned
+ /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// unsafe {
+ /// let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
+ /// let (prefix, shorts, suffix) = bytes.align_to::<u16>();
+ /// // less_efficient_algorithm_for_bytes(prefix);
+ /// // more_efficient_algorithm_for_aligned_shorts(shorts);
+ /// // less_efficient_algorithm_for_bytes(suffix);
+ /// }
+ /// ```
+ #[stable(feature = "slice_align_to", since = "1.30.0")]
+ #[must_use]
+ pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) {
+ // Note that most of this function will be constant-evaluated,
+ if mem::size_of::<U>() == 0 || mem::size_of::<T>() == 0 {
+ // handle ZSTs specially, which is – don't handle them at all.
+ return (self, &[], &[]);
+ }
+
+ // First, find at what point do we split between the first and 2nd slice. Easy with
+ // ptr.align_offset.
+ let ptr = self.as_ptr();
+ // SAFETY: See the `align_to_mut` method for the detailed safety comment.
+ let offset = unsafe { crate::ptr::align_offset(ptr, mem::align_of::<U>()) };
+ if offset > self.len() {
+ (self, &[], &[])
+ } else {
+ let (left, rest) = self.split_at(offset);
+ let (us_len, ts_len) = rest.align_to_offsets::<U>();
+ // SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay,
+ // since the caller guarantees that we can transmute `T` to `U` safely.
+ unsafe {
+ (
+ left,
+ from_raw_parts(rest.as_ptr() as *const U, us_len),
+ from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len),
+ )
+ }
+ }
+ }
+
+ /// Transmute the slice to a slice of another type, ensuring alignment of the types is
+ /// maintained.
+ ///
+ /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
+ /// slice of a new type, and the suffix slice. The method may make the middle slice the greatest
+ /// length possible for a given type and input slice, but only your algorithm's performance
+ /// should depend on that, not its correctness. It is permissible for all of the input data to
+ /// be returned as the prefix or suffix slice.
+ ///
+ /// This method has no purpose when either input element `T` or output element `U` are
+ /// zero-sized and will return the original slice without splitting anything.
+ ///
+ /// # Safety
+ ///
+ /// This method is essentially a `transmute` with respect to the elements in the returned
+ /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```
+ /// unsafe {
+ /// let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
+ /// let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
+ /// // less_efficient_algorithm_for_bytes(prefix);
+ /// // more_efficient_algorithm_for_aligned_shorts(shorts);
+ /// // less_efficient_algorithm_for_bytes(suffix);
+ /// }
+ /// ```
+ #[stable(feature = "slice_align_to", since = "1.30.0")]
+ #[must_use]
+ pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) {
+ // Note that most of this function will be constant-evaluated,
+ if mem::size_of::<U>() == 0 || mem::size_of::<T>() == 0 {
+ // handle ZSTs specially, which is – don't handle them at all.
+ return (self, &mut [], &mut []);
+ }
+
+ // First, find at what point do we split between the first and 2nd slice. Easy with
+ // ptr.align_offset.
+ let ptr = self.as_ptr();
+ // SAFETY: Here we are ensuring we will use aligned pointers for U for the
+ // rest of the method. This is done by passing a pointer to &[T] with an
+ // alignment targeted for U.
+ // `crate::ptr::align_offset` is called with a correctly aligned and
+ // valid pointer `ptr` (it comes from a reference to `self`) and with
+ // a size that is a power of two (since it comes from the alignement for U),
+ // satisfying its safety constraints.
+ let offset = unsafe { crate::ptr::align_offset(ptr, mem::align_of::<U>()) };
+ if offset > self.len() {
+ (self, &mut [], &mut [])
+ } else {
+ let (left, rest) = self.split_at_mut(offset);
+ let (us_len, ts_len) = rest.align_to_offsets::<U>();
+ let rest_len = rest.len();
+ let mut_ptr = rest.as_mut_ptr();
+ // We can't use `rest` again after this, that would invalidate its alias `mut_ptr`!
+ // SAFETY: see comments for `align_to`.
+ unsafe {
+ (
+ left,
+ from_raw_parts_mut(mut_ptr as *mut U, us_len),
+ from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len),
+ )
+ }
+ }
+ }
+
+ /// Split a slice into a prefix, a middle of aligned SIMD types, and a suffix.
+ ///
+ /// This is a safe wrapper around [`slice::align_to`], so has the same weak
+ /// postconditions as that method. You're only assured that
+ /// `self.len() == prefix.len() + middle.len() * LANES + suffix.len()`.
+ ///
+ /// Notably, all of the following are possible:
+ /// - `prefix.len() >= LANES`.
+ /// - `middle.is_empty()` despite `self.len() >= 3 * LANES`.
+ /// - `suffix.len() >= LANES`.
+ ///
+ /// That said, this is a safe method, so if you're only writing safe code,
+ /// then this can at most cause incorrect logic, not unsoundness.
+ ///
+ /// # Panics
+ ///
+ /// This will panic if the size of the SIMD type is different from
+ /// `LANES` times that of the scalar.
+ ///
+ /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
+ /// that from ever happening, as only power-of-two numbers of lanes are
+ /// supported. It's possible that, in the future, those restrictions might
+ /// be lifted in a way that would make it possible to see panics from this
+ /// method for something like `LANES == 3`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(portable_simd)]
+ /// use core::simd::SimdFloat;
+ ///
+ /// let short = &[1, 2, 3];
+ /// let (prefix, middle, suffix) = short.as_simd::<4>();
+ /// assert_eq!(middle, []); // Not enough elements for anything in the middle
+ ///
+ /// // They might be split in any possible way between prefix and suffix
+ /// let it = prefix.iter().chain(suffix).copied();
+ /// assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
+ ///
+ /// fn basic_simd_sum(x: &[f32]) -> f32 {
+ /// use std::ops::Add;
+ /// use std::simd::f32x4;
+ /// let (prefix, middle, suffix) = x.as_simd();
+ /// let sums = f32x4::from_array([
+ /// prefix.iter().copied().sum(),
+ /// 0.0,
+ /// 0.0,
+ /// suffix.iter().copied().sum(),
+ /// ]);
+ /// let sums = middle.iter().copied().fold(sums, f32x4::add);
+ /// sums.reduce_sum()
+ /// }
+ ///
+ /// let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
+ /// assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
+ /// ```
+ #[unstable(feature = "portable_simd", issue = "86656")]
+ #[must_use]
+ pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
+ where
+ Simd<T, LANES>: AsRef<[T; LANES]>,
+ T: simd::SimdElement,
+ simd::LaneCount<LANES>: simd::SupportedLaneCount,
+ {
+ // These are expected to always match, as vector types are laid out like
+ // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
+ // might as well double-check since it'll optimize away anyhow.
+ assert_eq!(mem::size_of::<Simd<T, LANES>>(), mem::size_of::<[T; LANES]>());
+
+ // SAFETY: The simd types have the same layout as arrays, just with
+ // potentially-higher alignment, so the de-facto transmutes are sound.
+ unsafe { self.align_to() }
+ }
+
+ /// Split a slice into a prefix, a middle of aligned SIMD types, and a suffix.
+ ///
+ /// This is a safe wrapper around [`slice::align_to_mut`], so has the same weak
+ /// postconditions as that method. You're only assured that
+ /// `self.len() == prefix.len() + middle.len() * LANES + suffix.len()`.
+ ///
+ /// Notably, all of the following are possible:
+ /// - `prefix.len() >= LANES`.
+ /// - `middle.is_empty()` despite `self.len() >= 3 * LANES`.
+ /// - `suffix.len() >= LANES`.
+ ///
+ /// That said, this is a safe method, so if you're only writing safe code,
+ /// then this can at most cause incorrect logic, not unsoundness.
+ ///
+ /// This is the mutable version of [`slice::as_simd`]; see that for examples.
+ ///
+ /// # Panics
+ ///
+ /// This will panic if the size of the SIMD type is different from
+ /// `LANES` times that of the scalar.
+ ///
+ /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
+ /// that from ever happening, as only power-of-two numbers of lanes are
+ /// supported. It's possible that, in the future, those restrictions might
+ /// be lifted in a way that would make it possible to see panics from this
+ /// method for something like `LANES == 3`.
+ #[unstable(feature = "portable_simd", issue = "86656")]
+ #[must_use]
+ pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])
+ where
+ Simd<T, LANES>: AsMut<[T; LANES]>,
+ T: simd::SimdElement,
+ simd::LaneCount<LANES>: simd::SupportedLaneCount,
+ {
+ // These are expected to always match, as vector types are laid out like
+ // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
+ // might as well double-check since it'll optimize away anyhow.
+ assert_eq!(mem::size_of::<Simd<T, LANES>>(), mem::size_of::<[T; LANES]>());
+
+ // SAFETY: The simd types have the same layout as arrays, just with
+ // potentially-higher alignment, so the de-facto transmutes are sound.
+ unsafe { self.align_to_mut() }
+ }
+
+ /// Checks if the elements of this slice are sorted.
+ ///
+ /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
+ /// slice yields exactly zero or one element, `true` is returned.
+ ///
+ /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
+ /// implies that this function returns `false` if any two consecutive items are not
+ /// comparable.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(is_sorted)]
+ /// let empty: [i32; 0] = [];
+ ///
+ /// assert!([1, 2, 2, 9].is_sorted());
+ /// assert!(![1, 3, 2, 4].is_sorted());
+ /// assert!([0].is_sorted());
+ /// assert!(empty.is_sorted());
+ /// assert!(![0.0, 1.0, f32::NAN].is_sorted());
+ /// ```
+ #[inline]
+ #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
+ #[must_use]
+ pub fn is_sorted(&self) -> bool
+ where
+ T: PartialOrd,
+ {
+ self.is_sorted_by(|a, b| a.partial_cmp(b))
+ }
+
+ /// Checks if the elements of this slice are sorted using the given comparator function.
+ ///
+ /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
+ /// function to determine the ordering of two elements. Apart from that, it's equivalent to
+ /// [`is_sorted`]; see its documentation for more information.
+ ///
+ /// [`is_sorted`]: slice::is_sorted
+ #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
+ #[must_use]
+ pub fn is_sorted_by<F>(&self, mut compare: F) -> bool
+ where
+ F: FnMut(&T, &T) -> Option<Ordering>,
+ {
+ self.iter().is_sorted_by(|a, b| compare(*a, *b))
+ }
+
+ /// Checks if the elements of this slice are sorted using the given key extraction function.
+ ///
+ /// Instead of comparing the slice's elements directly, this function compares the keys of the
+ /// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its
+ /// documentation for more information.
+ ///
+ /// [`is_sorted`]: slice::is_sorted
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(is_sorted)]
+ ///
+ /// assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
+ /// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
+ /// ```
+ #[inline]
+ #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
+ #[must_use]
+ pub fn is_sorted_by_key<F, K>(&self, f: F) -> bool
+ where
+ F: FnMut(&T) -> K,
+ K: PartialOrd,
+ {
+ self.iter().is_sorted_by_key(f)
+ }
+
+ /// Returns the index of the partition point according to the given predicate
+ /// (the index of the first element of the second partition).
+ ///
+ /// The slice is assumed to be partitioned according to the given predicate.
+ /// This means that all elements for which the predicate returns true are at the start of the slice
+ /// and all elements for which the predicate returns false are at the end.
+ /// For example, [7, 15, 3, 5, 4, 12, 6] is a partitioned under the predicate x % 2 != 0
+ /// (all odd numbers are at the start, all even at the end).
+ ///
+ /// If this slice is not partitioned, the returned result is unspecified and meaningless,
+ /// as this method performs a kind of binary search.
+ ///
+ /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
+ ///
+ /// [`binary_search`]: slice::binary_search
+ /// [`binary_search_by`]: slice::binary_search_by
+ /// [`binary_search_by_key`]: slice::binary_search_by_key
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let v = [1, 2, 3, 3, 5, 6, 7];
+ /// let i = v.partition_point(|&x| x < 5);
+ ///
+ /// assert_eq!(i, 4);
+ /// assert!(v[..i].iter().all(|&x| x < 5));
+ /// assert!(v[i..].iter().all(|&x| !(x < 5)));
+ /// ```
+ ///
+ /// If you want to insert an item to a sorted vector, while maintaining
+ /// sort order:
+ ///
+ /// ```
+ /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
+ /// let num = 42;
+ /// let idx = s.partition_point(|&x| x < num);
+ /// s.insert(idx, num);
+ /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
+ /// ```
+ #[stable(feature = "partition_point", since = "1.52.0")]
+ #[must_use]
+ pub fn partition_point<P>(&self, mut pred: P) -> usize
+ where
+ P: FnMut(&T) -> bool,
+ {
+ self.binary_search_by(|x| if pred(x) { Less } else { Greater }).unwrap_or_else(|i| i)
+ }
+
+ /// Removes the subslice corresponding to the given range
+ /// and returns a reference to it.
+ ///
+ /// Returns `None` and does not modify the slice if the given
+ /// range is out of bounds.
+ ///
+ /// Note that this method only accepts one-sided ranges such as
+ /// `2..` or `..6`, but not `2..6`.
+ ///
+ /// # Examples
+ ///
+ /// Taking the first three elements of a slice:
+ ///
+ /// ```
+ /// #![feature(slice_take)]
+ ///
+ /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
+ /// let mut first_three = slice.take(..3).unwrap();
+ ///
+ /// assert_eq!(slice, &['d']);
+ /// assert_eq!(first_three, &['a', 'b', 'c']);
+ /// ```
+ ///
+ /// Taking the last two elements of a slice:
+ ///
+ /// ```
+ /// #![feature(slice_take)]
+ ///
+ /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
+ /// let mut tail = slice.take(2..).unwrap();
+ ///
+ /// assert_eq!(slice, &['a', 'b']);
+ /// assert_eq!(tail, &['c', 'd']);
+ /// ```
+ ///
+ /// Getting `None` when `range` is out of bounds:
+ ///
+ /// ```
+ /// #![feature(slice_take)]
+ ///
+ /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
+ ///
+ /// assert_eq!(None, slice.take(5..));
+ /// assert_eq!(None, slice.take(..5));
+ /// assert_eq!(None, slice.take(..=4));
+ /// let expected: &[char] = &['a', 'b', 'c', 'd'];
+ /// assert_eq!(Some(expected), slice.take(..4));
+ /// ```
+ #[inline]
+ #[must_use = "method does not modify the slice if the range is out of bounds"]
+ #[unstable(feature = "slice_take", issue = "62280")]
+ pub fn take<'a, R: OneSidedRange<usize>>(self: &mut &'a Self, range: R) -> Option<&'a Self> {
+ let (direction, split_index) = split_point_of(range)?;
+ if split_index > self.len() {
+ return None;
+ }
+ let (front, back) = self.split_at(split_index);
+ match direction {
+ Direction::Front => {
+ *self = back;
+ Some(front)
+ }
+ Direction::Back => {
+ *self = front;
+ Some(back)
+ }
+ }
+ }
+
+ /// Removes the subslice corresponding to the given range
+ /// and returns a mutable reference to it.
+ ///
+ /// Returns `None` and does not modify the slice if the given
+ /// range is out of bounds.
+ ///
+ /// Note that this method only accepts one-sided ranges such as
+ /// `2..` or `..6`, but not `2..6`.
+ ///
+ /// # Examples
+ ///
+ /// Taking the first three elements of a slice:
+ ///
+ /// ```
+ /// #![feature(slice_take)]
+ ///
+ /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
+ /// let mut first_three = slice.take_mut(..3).unwrap();
+ ///
+ /// assert_eq!(slice, &mut ['d']);
+ /// assert_eq!(first_three, &mut ['a', 'b', 'c']);
+ /// ```
+ ///
+ /// Taking the last two elements of a slice:
+ ///
+ /// ```
+ /// #![feature(slice_take)]
+ ///
+ /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
+ /// let mut tail = slice.take_mut(2..).unwrap();
+ ///
+ /// assert_eq!(slice, &mut ['a', 'b']);
+ /// assert_eq!(tail, &mut ['c', 'd']);
+ /// ```
+ ///
+ /// Getting `None` when `range` is out of bounds:
+ ///
+ /// ```
+ /// #![feature(slice_take)]
+ ///
+ /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
+ ///
+ /// assert_eq!(None, slice.take_mut(5..));
+ /// assert_eq!(None, slice.take_mut(..5));
+ /// assert_eq!(None, slice.take_mut(..=4));
+ /// let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
+ /// assert_eq!(Some(expected), slice.take_mut(..4));
+ /// ```
+ #[inline]
+ #[must_use = "method does not modify the slice if the range is out of bounds"]
+ #[unstable(feature = "slice_take", issue = "62280")]
+ pub fn take_mut<'a, R: OneSidedRange<usize>>(
+ self: &mut &'a mut Self,
+ range: R,
+ ) -> Option<&'a mut Self> {
+ let (direction, split_index) = split_point_of(range)?;
+ if split_index > self.len() {
+ return None;
+ }
+ let (front, back) = mem::take(self).split_at_mut(split_index);
+ match direction {
+ Direction::Front => {
+ *self = back;
+ Some(front)
+ }
+ Direction::Back => {
+ *self = front;
+ Some(back)
+ }
+ }
+ }
+
+ /// Removes the first element of the slice and returns a reference
+ /// to it.
+ ///
+ /// Returns `None` if the slice is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_take)]
+ ///
+ /// let mut slice: &[_] = &['a', 'b', 'c'];
+ /// let first = slice.take_first().unwrap();
+ ///
+ /// assert_eq!(slice, &['b', 'c']);
+ /// assert_eq!(first, &'a');
+ /// ```
+ #[inline]
+ #[unstable(feature = "slice_take", issue = "62280")]
+ pub fn take_first<'a>(self: &mut &'a Self) -> Option<&'a T> {
+ let (first, rem) = self.split_first()?;
+ *self = rem;
+ Some(first)
+ }
+
+ /// Removes the first element of the slice and returns a mutable
+ /// reference to it.
+ ///
+ /// Returns `None` if the slice is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_take)]
+ ///
+ /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
+ /// let first = slice.take_first_mut().unwrap();
+ /// *first = 'd';
+ ///
+ /// assert_eq!(slice, &['b', 'c']);
+ /// assert_eq!(first, &'d');
+ /// ```
+ #[inline]
+ #[unstable(feature = "slice_take", issue = "62280")]
+ pub fn take_first_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
+ let (first, rem) = mem::take(self).split_first_mut()?;
+ *self = rem;
+ Some(first)
+ }
+
+ /// Removes the last element of the slice and returns a reference
+ /// to it.
+ ///
+ /// Returns `None` if the slice is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_take)]
+ ///
+ /// let mut slice: &[_] = &['a', 'b', 'c'];
+ /// let last = slice.take_last().unwrap();
+ ///
+ /// assert_eq!(slice, &['a', 'b']);
+ /// assert_eq!(last, &'c');
+ /// ```
+ #[inline]
+ #[unstable(feature = "slice_take", issue = "62280")]
+ pub fn take_last<'a>(self: &mut &'a Self) -> Option<&'a T> {
+ let (last, rem) = self.split_last()?;
+ *self = rem;
+ Some(last)
+ }
+
+ /// Removes the last element of the slice and returns a mutable
+ /// reference to it.
+ ///
+ /// Returns `None` if the slice is empty.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_take)]
+ ///
+ /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
+ /// let last = slice.take_last_mut().unwrap();
+ /// *last = 'd';
+ ///
+ /// assert_eq!(slice, &['a', 'b']);
+ /// assert_eq!(last, &'d');
+ /// ```
+ #[inline]
+ #[unstable(feature = "slice_take", issue = "62280")]
+ pub fn take_last_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
+ let (last, rem) = mem::take(self).split_last_mut()?;
+ *self = rem;
+ Some(last)
+ }
+}
+
+impl<T, const N: usize> [[T; N]] {
+ /// Takes a `&[[T; N]]`, and flattens it to a `&[T]`.
+ ///
+ /// # Panics
+ ///
+ /// This panics if the length of the resulting slice would overflow a `usize`.
+ ///
+ /// This is only possible when flattening a slice of arrays of zero-sized
+ /// types, and thus tends to be irrelevant in practice. If
+ /// `size_of::<T>() > 0`, this will never panic.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_flatten)]
+ ///
+ /// assert_eq!([[1, 2, 3], [4, 5, 6]].flatten(), &[1, 2, 3, 4, 5, 6]);
+ ///
+ /// assert_eq!(
+ /// [[1, 2, 3], [4, 5, 6]].flatten(),
+ /// [[1, 2], [3, 4], [5, 6]].flatten(),
+ /// );
+ ///
+ /// let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []];
+ /// assert!(slice_of_empty_arrays.flatten().is_empty());
+ ///
+ /// let empty_slice_of_arrays: &[[u32; 10]] = &[];
+ /// assert!(empty_slice_of_arrays.flatten().is_empty());
+ /// ```
+ #[unstable(feature = "slice_flatten", issue = "95629")]
+ pub fn flatten(&self) -> &[T] {
+ let len = if crate::mem::size_of::<T>() == 0 {
+ self.len().checked_mul(N).expect("slice len overflow")
+ } else {
+ // SAFETY: `self.len() * N` cannot overflow because `self` is
+ // already in the address space.
+ unsafe { self.len().unchecked_mul(N) }
+ };
+ // SAFETY: `[T]` is layout-identical to `[T; N]`
+ unsafe { from_raw_parts(self.as_ptr().cast(), len) }
+ }
+
+ /// Takes a `&mut [[T; N]]`, and flattens it to a `&mut [T]`.
+ ///
+ /// # Panics
+ ///
+ /// This panics if the length of the resulting slice would overflow a `usize`.
+ ///
+ /// This is only possible when flattening a slice of arrays of zero-sized
+ /// types, and thus tends to be irrelevant in practice. If
+ /// `size_of::<T>() > 0`, this will never panic.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(slice_flatten)]
+ ///
+ /// fn add_5_to_all(slice: &mut [i32]) {
+ /// for i in slice {
+ /// *i += 5;
+ /// }
+ /// }
+ ///
+ /// let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
+ /// add_5_to_all(array.flatten_mut());
+ /// assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]);
+ /// ```
+ #[unstable(feature = "slice_flatten", issue = "95629")]
+ pub fn flatten_mut(&mut self) -> &mut [T] {
+ let len = if crate::mem::size_of::<T>() == 0 {
+ self.len().checked_mul(N).expect("slice len overflow")
+ } else {
+ // SAFETY: `self.len() * N` cannot overflow because `self` is
+ // already in the address space.
+ unsafe { self.len().unchecked_mul(N) }
+ };
+ // SAFETY: `[T]` is layout-identical to `[T; N]`
+ unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), len) }
+ }
+}
+
+#[cfg(not(bootstrap))]
+#[cfg(not(test))]
+impl [f32] {
+ /// Sorts the slice of floats.
+ ///
+ /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
+ /// the ordering defined by [`f32::total_cmp`].
+ ///
+ /// # Current implementation
+ ///
+ /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(sort_floats)]
+ /// let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0];
+ ///
+ /// v.sort_floats();
+ /// let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN];
+ /// assert_eq!(&v[..8], &sorted[..8]);
+ /// assert!(v[8].is_nan());
+ /// ```
+ #[unstable(feature = "sort_floats", issue = "93396")]
+ #[inline]
+ pub fn sort_floats(&mut self) {
+ self.sort_unstable_by(f32::total_cmp);
+ }
+}
+
+#[cfg(not(bootstrap))]
+#[cfg(not(test))]
+impl [f64] {
+ /// Sorts the slice of floats.
+ ///
+ /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
+ /// the ordering defined by [`f64::total_cmp`].
+ ///
+ /// # Current implementation
+ ///
+ /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(sort_floats)]
+ /// let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0];
+ ///
+ /// v.sort_floats();
+ /// let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN];
+ /// assert_eq!(&v[..8], &sorted[..8]);
+ /// assert!(v[8].is_nan());
+ /// ```
+ #[unstable(feature = "sort_floats", issue = "93396")]
+ #[inline]
+ pub fn sort_floats(&mut self) {
+ self.sort_unstable_by(f64::total_cmp);
+ }
+}
+
+trait CloneFromSpec<T> {
+ fn spec_clone_from(&mut self, src: &[T]);
+}
+
+impl<T> CloneFromSpec<T> for [T]
+where
+ T: Clone,
+{
+ #[track_caller]
+ default fn spec_clone_from(&mut self, src: &[T]) {
+ assert!(self.len() == src.len(), "destination and source slices have different lengths");
+ // NOTE: We need to explicitly slice them to the same length
+ // to make it easier for the optimizer to elide bounds checking.
+ // But since it can't be relied on we also have an explicit specialization for T: Copy.
+ let len = self.len();
+ let src = &src[..len];
+ for i in 0..len {
+ self[i].clone_from(&src[i]);
+ }
+ }
+}
+
+impl<T> CloneFromSpec<T> for [T]
+where
+ T: Copy,
+{
+ #[track_caller]
+ fn spec_clone_from(&mut self, src: &[T]) {
+ self.copy_from_slice(src);
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
+impl<T> const Default for &[T] {
+ /// Creates an empty slice.
+ fn default() -> Self {
+ &[]
+ }
+}
+
+#[stable(feature = "mut_slice_default", since = "1.5.0")]
+#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
+impl<T> const Default for &mut [T] {
+ /// Creates a mutable empty slice.
+ fn default() -> Self {
+ &mut []
+ }
+}
+
+#[unstable(feature = "slice_pattern", reason = "stopgap trait for slice patterns", issue = "56345")]
+/// Patterns in slices - currently, only used by `strip_prefix` and `strip_suffix`. At a future
+/// point, we hope to generalise `core::str::Pattern` (which at the time of writing is limited to
+/// `str`) to slices, and then this trait will be replaced or abolished.
+pub trait SlicePattern {
+ /// The element type of the slice being matched on.
+ type Item;
+
+ /// Currently, the consumers of `SlicePattern` need a slice.
+ fn as_slice(&self) -> &[Self::Item];
+}
+
+#[stable(feature = "slice_strip", since = "1.51.0")]
+impl<T> SlicePattern for [T] {
+ type Item = T;
+
+ #[inline]
+ fn as_slice(&self) -> &[Self::Item] {
+ self
+ }
+}
+
+#[stable(feature = "slice_strip", since = "1.51.0")]
+impl<T, const N: usize> SlicePattern for [T; N] {
+ type Item = T;
+
+ #[inline]
+ fn as_slice(&self) -> &[Self::Item] {
+ self
+ }
+}