diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 12:02:58 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 12:02:58 +0000 |
commit | 698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch) | |
tree | 173a775858bd501c378080a10dca74132f05bc50 /library/std/src/process.rs | |
parent | Initial commit. (diff) | |
download | rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip |
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'library/std/src/process.rs')
-rw-r--r-- | library/std/src/process.rs | 2210 |
1 files changed, 2210 insertions, 0 deletions
diff --git a/library/std/src/process.rs b/library/std/src/process.rs new file mode 100644 index 000000000..d6cba7e75 --- /dev/null +++ b/library/std/src/process.rs @@ -0,0 +1,2210 @@ +//! A module for working with processes. +//! +//! This module is mostly concerned with spawning and interacting with child +//! processes, but it also provides [`abort`] and [`exit`] for terminating the +//! current process. +//! +//! # Spawning a process +//! +//! The [`Command`] struct is used to configure and spawn processes: +//! +//! ```no_run +//! use std::process::Command; +//! +//! let output = Command::new("echo") +//! .arg("Hello world") +//! .output() +//! .expect("Failed to execute command"); +//! +//! assert_eq!(b"Hello world\n", output.stdout.as_slice()); +//! ``` +//! +//! Several methods on [`Command`], such as [`spawn`] or [`output`], can be used +//! to spawn a process. In particular, [`output`] spawns the child process and +//! waits until the process terminates, while [`spawn`] will return a [`Child`] +//! that represents the spawned child process. +//! +//! # Handling I/O +//! +//! The [`stdout`], [`stdin`], and [`stderr`] of a child process can be +//! configured by passing an [`Stdio`] to the corresponding method on +//! [`Command`]. Once spawned, they can be accessed from the [`Child`]. For +//! example, piping output from one command into another command can be done +//! like so: +//! +//! ```no_run +//! use std::process::{Command, Stdio}; +//! +//! // stdout must be configured with `Stdio::piped` in order to use +//! // `echo_child.stdout` +//! let echo_child = Command::new("echo") +//! .arg("Oh no, a tpyo!") +//! .stdout(Stdio::piped()) +//! .spawn() +//! .expect("Failed to start echo process"); +//! +//! // Note that `echo_child` is moved here, but we won't be needing +//! // `echo_child` anymore +//! let echo_out = echo_child.stdout.expect("Failed to open echo stdout"); +//! +//! let mut sed_child = Command::new("sed") +//! .arg("s/tpyo/typo/") +//! .stdin(Stdio::from(echo_out)) +//! .stdout(Stdio::piped()) +//! .spawn() +//! .expect("Failed to start sed process"); +//! +//! let output = sed_child.wait_with_output().expect("Failed to wait on sed"); +//! assert_eq!(b"Oh no, a typo!\n", output.stdout.as_slice()); +//! ``` +//! +//! Note that [`ChildStderr`] and [`ChildStdout`] implement [`Read`] and +//! [`ChildStdin`] implements [`Write`]: +//! +//! ```no_run +//! use std::process::{Command, Stdio}; +//! use std::io::Write; +//! +//! let mut child = Command::new("/bin/cat") +//! .stdin(Stdio::piped()) +//! .stdout(Stdio::piped()) +//! .spawn() +//! .expect("failed to execute child"); +//! +//! // If the child process fills its stdout buffer, it may end up +//! // waiting until the parent reads the stdout, and not be able to +//! // read stdin in the meantime, causing a deadlock. +//! // Writing from another thread ensures that stdout is being read +//! // at the same time, avoiding the problem. +//! let mut stdin = child.stdin.take().expect("failed to get stdin"); +//! std::thread::spawn(move || { +//! stdin.write_all(b"test").expect("failed to write to stdin"); +//! }); +//! +//! let output = child +//! .wait_with_output() +//! .expect("failed to wait on child"); +//! +//! assert_eq!(b"test", output.stdout.as_slice()); +//! ``` +//! +//! [`spawn`]: Command::spawn +//! [`output`]: Command::output +//! +//! [`stdout`]: Command::stdout +//! [`stdin`]: Command::stdin +//! [`stderr`]: Command::stderr +//! +//! [`Write`]: io::Write +//! [`Read`]: io::Read + +#![stable(feature = "process", since = "1.0.0")] +#![deny(unsafe_op_in_unsafe_fn)] + +#[cfg(all(test, not(any(target_os = "emscripten", target_env = "sgx"))))] +mod tests; + +use crate::io::prelude::*; + +use crate::convert::Infallible; +use crate::ffi::OsStr; +use crate::fmt; +use crate::fs; +use crate::io::{self, IoSlice, IoSliceMut}; +use crate::num::NonZeroI32; +use crate::path::Path; +use crate::str; +use crate::sys::pipe::{read2, AnonPipe}; +use crate::sys::process as imp; +#[stable(feature = "command_access", since = "1.57.0")] +pub use crate::sys_common::process::CommandEnvs; +use crate::sys_common::{AsInner, AsInnerMut, FromInner, IntoInner}; + +/// Representation of a running or exited child process. +/// +/// This structure is used to represent and manage child processes. A child +/// process is created via the [`Command`] struct, which configures the +/// spawning process and can itself be constructed using a builder-style +/// interface. +/// +/// There is no implementation of [`Drop`] for child processes, +/// so if you do not ensure the `Child` has exited then it will continue to +/// run, even after the `Child` handle to the child process has gone out of +/// scope. +/// +/// Calling [`wait`] (or other functions that wrap around it) will make +/// the parent process wait until the child has actually exited before +/// continuing. +/// +/// # Warning +/// +/// On some systems, calling [`wait`] or similar is necessary for the OS to +/// release resources. A process that terminated but has not been waited on is +/// still around as a "zombie". Leaving too many zombies around may exhaust +/// global resources (for example process IDs). +/// +/// The standard library does *not* automatically wait on child processes (not +/// even if the `Child` is dropped), it is up to the application developer to do +/// so. As a consequence, dropping `Child` handles without waiting on them first +/// is not recommended in long-running applications. +/// +/// # Examples +/// +/// ```should_panic +/// use std::process::Command; +/// +/// let mut child = Command::new("/bin/cat") +/// .arg("file.txt") +/// .spawn() +/// .expect("failed to execute child"); +/// +/// let ecode = child.wait() +/// .expect("failed to wait on child"); +/// +/// assert!(ecode.success()); +/// ``` +/// +/// [`wait`]: Child::wait +#[stable(feature = "process", since = "1.0.0")] +pub struct Child { + pub(crate) handle: imp::Process, + + /// The handle for writing to the child's standard input (stdin), if it has + /// been captured. To avoid partially moving + /// the `child` and thus blocking yourself from calling + /// functions on `child` while using `stdin`, + /// you might find it helpful: + /// + /// ```compile_fail,E0425 + /// let stdin = child.stdin.take().unwrap(); + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub stdin: Option<ChildStdin>, + + /// The handle for reading from the child's standard output (stdout), if it + /// has been captured. You might find it helpful to do + /// + /// ```compile_fail,E0425 + /// let stdout = child.stdout.take().unwrap(); + /// ``` + /// + /// to avoid partially moving the `child` and thus blocking yourself from calling + /// functions on `child` while using `stdout`. + #[stable(feature = "process", since = "1.0.0")] + pub stdout: Option<ChildStdout>, + + /// The handle for reading from the child's standard error (stderr), if it + /// has been captured. You might find it helpful to do + /// + /// ```compile_fail,E0425 + /// let stderr = child.stderr.take().unwrap(); + /// ``` + /// + /// to avoid partially moving the `child` and thus blocking yourself from calling + /// functions on `child` while using `stderr`. + #[stable(feature = "process", since = "1.0.0")] + pub stderr: Option<ChildStderr>, +} + +/// Allows extension traits within `std`. +#[unstable(feature = "sealed", issue = "none")] +impl crate::sealed::Sealed for Child {} + +impl AsInner<imp::Process> for Child { + fn as_inner(&self) -> &imp::Process { + &self.handle + } +} + +impl FromInner<(imp::Process, imp::StdioPipes)> for Child { + fn from_inner((handle, io): (imp::Process, imp::StdioPipes)) -> Child { + Child { + handle, + stdin: io.stdin.map(ChildStdin::from_inner), + stdout: io.stdout.map(ChildStdout::from_inner), + stderr: io.stderr.map(ChildStderr::from_inner), + } + } +} + +impl IntoInner<imp::Process> for Child { + fn into_inner(self) -> imp::Process { + self.handle + } +} + +#[stable(feature = "std_debug", since = "1.16.0")] +impl fmt::Debug for Child { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_struct("Child") + .field("stdin", &self.stdin) + .field("stdout", &self.stdout) + .field("stderr", &self.stderr) + .finish_non_exhaustive() + } +} + +/// A handle to a child process's standard input (stdin). +/// +/// This struct is used in the [`stdin`] field on [`Child`]. +/// +/// When an instance of `ChildStdin` is [dropped], the `ChildStdin`'s underlying +/// file handle will be closed. If the child process was blocked on input prior +/// to being dropped, it will become unblocked after dropping. +/// +/// [`stdin`]: Child::stdin +/// [dropped]: Drop +#[stable(feature = "process", since = "1.0.0")] +pub struct ChildStdin { + inner: AnonPipe, +} + +// In addition to the `impl`s here, `ChildStdin` also has `impl`s for +// `AsFd`/`From<OwnedFd>`/`Into<OwnedFd>` and +// `AsRawFd`/`IntoRawFd`/`FromRawFd`, on Unix and WASI, and +// `AsHandle`/`From<OwnedHandle>`/`Into<OwnedHandle>` and +// `AsRawHandle`/`IntoRawHandle`/`FromRawHandle` on Windows. + +#[stable(feature = "process", since = "1.0.0")] +impl Write for ChildStdin { + fn write(&mut self, buf: &[u8]) -> io::Result<usize> { + (&*self).write(buf) + } + + fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> { + (&*self).write_vectored(bufs) + } + + fn is_write_vectored(&self) -> bool { + io::Write::is_write_vectored(&&*self) + } + + fn flush(&mut self) -> io::Result<()> { + (&*self).flush() + } +} + +#[stable(feature = "write_mt", since = "1.48.0")] +impl Write for &ChildStdin { + fn write(&mut self, buf: &[u8]) -> io::Result<usize> { + self.inner.write(buf) + } + + fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> { + self.inner.write_vectored(bufs) + } + + fn is_write_vectored(&self) -> bool { + self.inner.is_write_vectored() + } + + fn flush(&mut self) -> io::Result<()> { + Ok(()) + } +} + +impl AsInner<AnonPipe> for ChildStdin { + fn as_inner(&self) -> &AnonPipe { + &self.inner + } +} + +impl IntoInner<AnonPipe> for ChildStdin { + fn into_inner(self) -> AnonPipe { + self.inner + } +} + +impl FromInner<AnonPipe> for ChildStdin { + fn from_inner(pipe: AnonPipe) -> ChildStdin { + ChildStdin { inner: pipe } + } +} + +#[stable(feature = "std_debug", since = "1.16.0")] +impl fmt::Debug for ChildStdin { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_struct("ChildStdin").finish_non_exhaustive() + } +} + +/// A handle to a child process's standard output (stdout). +/// +/// This struct is used in the [`stdout`] field on [`Child`]. +/// +/// When an instance of `ChildStdout` is [dropped], the `ChildStdout`'s +/// underlying file handle will be closed. +/// +/// [`stdout`]: Child::stdout +/// [dropped]: Drop +#[stable(feature = "process", since = "1.0.0")] +pub struct ChildStdout { + inner: AnonPipe, +} + +// In addition to the `impl`s here, `ChildStdout` also has `impl`s for +// `AsFd`/`From<OwnedFd>`/`Into<OwnedFd>` and +// `AsRawFd`/`IntoRawFd`/`FromRawFd`, on Unix and WASI, and +// `AsHandle`/`From<OwnedHandle>`/`Into<OwnedHandle>` and +// `AsRawHandle`/`IntoRawHandle`/`FromRawHandle` on Windows. + +#[stable(feature = "process", since = "1.0.0")] +impl Read for ChildStdout { + fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { + self.inner.read(buf) + } + + fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> { + self.inner.read_vectored(bufs) + } + + #[inline] + fn is_read_vectored(&self) -> bool { + self.inner.is_read_vectored() + } +} + +impl AsInner<AnonPipe> for ChildStdout { + fn as_inner(&self) -> &AnonPipe { + &self.inner + } +} + +impl IntoInner<AnonPipe> for ChildStdout { + fn into_inner(self) -> AnonPipe { + self.inner + } +} + +impl FromInner<AnonPipe> for ChildStdout { + fn from_inner(pipe: AnonPipe) -> ChildStdout { + ChildStdout { inner: pipe } + } +} + +#[stable(feature = "std_debug", since = "1.16.0")] +impl fmt::Debug for ChildStdout { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_struct("ChildStdout").finish_non_exhaustive() + } +} + +/// A handle to a child process's stderr. +/// +/// This struct is used in the [`stderr`] field on [`Child`]. +/// +/// When an instance of `ChildStderr` is [dropped], the `ChildStderr`'s +/// underlying file handle will be closed. +/// +/// [`stderr`]: Child::stderr +/// [dropped]: Drop +#[stable(feature = "process", since = "1.0.0")] +pub struct ChildStderr { + inner: AnonPipe, +} + +// In addition to the `impl`s here, `ChildStderr` also has `impl`s for +// `AsFd`/`From<OwnedFd>`/`Into<OwnedFd>` and +// `AsRawFd`/`IntoRawFd`/`FromRawFd`, on Unix and WASI, and +// `AsHandle`/`From<OwnedHandle>`/`Into<OwnedHandle>` and +// `AsRawHandle`/`IntoRawHandle`/`FromRawHandle` on Windows. + +#[stable(feature = "process", since = "1.0.0")] +impl Read for ChildStderr { + fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { + self.inner.read(buf) + } + + fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> { + self.inner.read_vectored(bufs) + } + + #[inline] + fn is_read_vectored(&self) -> bool { + self.inner.is_read_vectored() + } +} + +impl AsInner<AnonPipe> for ChildStderr { + fn as_inner(&self) -> &AnonPipe { + &self.inner + } +} + +impl IntoInner<AnonPipe> for ChildStderr { + fn into_inner(self) -> AnonPipe { + self.inner + } +} + +impl FromInner<AnonPipe> for ChildStderr { + fn from_inner(pipe: AnonPipe) -> ChildStderr { + ChildStderr { inner: pipe } + } +} + +#[stable(feature = "std_debug", since = "1.16.0")] +impl fmt::Debug for ChildStderr { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_struct("ChildStderr").finish_non_exhaustive() + } +} + +/// A process builder, providing fine-grained control +/// over how a new process should be spawned. +/// +/// A default configuration can be +/// generated using `Command::new(program)`, where `program` gives a path to the +/// program to be executed. Additional builder methods allow the configuration +/// to be changed (for example, by adding arguments) prior to spawning: +/// +/// ``` +/// use std::process::Command; +/// +/// let output = if cfg!(target_os = "windows") { +/// Command::new("cmd") +/// .args(["/C", "echo hello"]) +/// .output() +/// .expect("failed to execute process") +/// } else { +/// Command::new("sh") +/// .arg("-c") +/// .arg("echo hello") +/// .output() +/// .expect("failed to execute process") +/// }; +/// +/// let hello = output.stdout; +/// ``` +/// +/// `Command` can be reused to spawn multiple processes. The builder methods +/// change the command without needing to immediately spawn the process. +/// +/// ```no_run +/// use std::process::Command; +/// +/// let mut echo_hello = Command::new("sh"); +/// echo_hello.arg("-c") +/// .arg("echo hello"); +/// let hello_1 = echo_hello.output().expect("failed to execute process"); +/// let hello_2 = echo_hello.output().expect("failed to execute process"); +/// ``` +/// +/// Similarly, you can call builder methods after spawning a process and then +/// spawn a new process with the modified settings. +/// +/// ```no_run +/// use std::process::Command; +/// +/// let mut list_dir = Command::new("ls"); +/// +/// // Execute `ls` in the current directory of the program. +/// list_dir.status().expect("process failed to execute"); +/// +/// println!(); +/// +/// // Change `ls` to execute in the root directory. +/// list_dir.current_dir("/"); +/// +/// // And then execute `ls` again but in the root directory. +/// list_dir.status().expect("process failed to execute"); +/// ``` +#[stable(feature = "process", since = "1.0.0")] +pub struct Command { + inner: imp::Command, +} + +/// Allows extension traits within `std`. +#[unstable(feature = "sealed", issue = "none")] +impl crate::sealed::Sealed for Command {} + +impl Command { + /// Constructs a new `Command` for launching the program at + /// path `program`, with the following default configuration: + /// + /// * No arguments to the program + /// * Inherit the current process's environment + /// * Inherit the current process's working directory + /// * Inherit stdin/stdout/stderr for [`spawn`] or [`status`], but create pipes for [`output`] + /// + /// [`spawn`]: Self::spawn + /// [`status`]: Self::status + /// [`output`]: Self::output + /// + /// Builder methods are provided to change these defaults and + /// otherwise configure the process. + /// + /// If `program` is not an absolute path, the `PATH` will be searched in + /// an OS-defined way. + /// + /// The search path to be used may be controlled by setting the + /// `PATH` environment variable on the Command, + /// but this has some implementation limitations on Windows + /// (see issue #37519). + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::Command; + /// + /// Command::new("sh") + /// .spawn() + /// .expect("sh command failed to start"); + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub fn new<S: AsRef<OsStr>>(program: S) -> Command { + Command { inner: imp::Command::new(program.as_ref()) } + } + + /// Adds an argument to pass to the program. + /// + /// Only one argument can be passed per use. So instead of: + /// + /// ```no_run + /// # std::process::Command::new("sh") + /// .arg("-C /path/to/repo") + /// # ; + /// ``` + /// + /// usage would be: + /// + /// ```no_run + /// # std::process::Command::new("sh") + /// .arg("-C") + /// .arg("/path/to/repo") + /// # ; + /// ``` + /// + /// To pass multiple arguments see [`args`]. + /// + /// [`args`]: Command::args + /// + /// Note that the argument is not passed through a shell, but given + /// literally to the program. This means that shell syntax like quotes, + /// escaped characters, word splitting, glob patterns, substitution, etc. + /// have no effect. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::Command; + /// + /// Command::new("ls") + /// .arg("-l") + /// .arg("-a") + /// .spawn() + /// .expect("ls command failed to start"); + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command { + self.inner.arg(arg.as_ref()); + self + } + + /// Adds multiple arguments to pass to the program. + /// + /// To pass a single argument see [`arg`]. + /// + /// [`arg`]: Command::arg + /// + /// Note that the arguments are not passed through a shell, but given + /// literally to the program. This means that shell syntax like quotes, + /// escaped characters, word splitting, glob patterns, substitution, etc. + /// have no effect. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::Command; + /// + /// Command::new("ls") + /// .args(["-l", "-a"]) + /// .spawn() + /// .expect("ls command failed to start"); + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub fn args<I, S>(&mut self, args: I) -> &mut Command + where + I: IntoIterator<Item = S>, + S: AsRef<OsStr>, + { + for arg in args { + self.arg(arg.as_ref()); + } + self + } + + /// Inserts or updates an environment variable mapping. + /// + /// Note that environment variable names are case-insensitive (but case-preserving) on Windows, + /// and case-sensitive on all other platforms. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::Command; + /// + /// Command::new("ls") + /// .env("PATH", "/bin") + /// .spawn() + /// .expect("ls command failed to start"); + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command + where + K: AsRef<OsStr>, + V: AsRef<OsStr>, + { + self.inner.env_mut().set(key.as_ref(), val.as_ref()); + self + } + + /// Adds or updates multiple environment variable mappings. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::{Command, Stdio}; + /// use std::env; + /// use std::collections::HashMap; + /// + /// let filtered_env : HashMap<String, String> = + /// env::vars().filter(|&(ref k, _)| + /// k == "TERM" || k == "TZ" || k == "LANG" || k == "PATH" + /// ).collect(); + /// + /// Command::new("printenv") + /// .stdin(Stdio::null()) + /// .stdout(Stdio::inherit()) + /// .env_clear() + /// .envs(&filtered_env) + /// .spawn() + /// .expect("printenv failed to start"); + /// ``` + #[stable(feature = "command_envs", since = "1.19.0")] + pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Command + where + I: IntoIterator<Item = (K, V)>, + K: AsRef<OsStr>, + V: AsRef<OsStr>, + { + for (ref key, ref val) in vars { + self.inner.env_mut().set(key.as_ref(), val.as_ref()); + } + self + } + + /// Removes an environment variable mapping. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::Command; + /// + /// Command::new("ls") + /// .env_remove("PATH") + /// .spawn() + /// .expect("ls command failed to start"); + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command { + self.inner.env_mut().remove(key.as_ref()); + self + } + + /// Clears the entire environment map for the child process. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::Command; + /// + /// Command::new("ls") + /// .env_clear() + /// .spawn() + /// .expect("ls command failed to start"); + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub fn env_clear(&mut self) -> &mut Command { + self.inner.env_mut().clear(); + self + } + + /// Sets the working directory for the child process. + /// + /// # Platform-specific behavior + /// + /// If the program path is relative (e.g., `"./script.sh"`), it's ambiguous + /// whether it should be interpreted relative to the parent's working + /// directory or relative to `current_dir`. The behavior in this case is + /// platform specific and unstable, and it's recommended to use + /// [`canonicalize`] to get an absolute program path instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::Command; + /// + /// Command::new("ls") + /// .current_dir("/bin") + /// .spawn() + /// .expect("ls command failed to start"); + /// ``` + /// + /// [`canonicalize`]: crate::fs::canonicalize + #[stable(feature = "process", since = "1.0.0")] + pub fn current_dir<P: AsRef<Path>>(&mut self, dir: P) -> &mut Command { + self.inner.cwd(dir.as_ref().as_ref()); + self + } + + /// Configuration for the child process's standard input (stdin) handle. + /// + /// Defaults to [`inherit`] when used with [`spawn`] or [`status`], and + /// defaults to [`piped`] when used with [`output`]. + /// + /// [`inherit`]: Stdio::inherit + /// [`piped`]: Stdio::piped + /// [`spawn`]: Self::spawn + /// [`status`]: Self::status + /// [`output`]: Self::output + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::{Command, Stdio}; + /// + /// Command::new("ls") + /// .stdin(Stdio::null()) + /// .spawn() + /// .expect("ls command failed to start"); + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub fn stdin<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command { + self.inner.stdin(cfg.into().0); + self + } + + /// Configuration for the child process's standard output (stdout) handle. + /// + /// Defaults to [`inherit`] when used with [`spawn`] or [`status`], and + /// defaults to [`piped`] when used with [`output`]. + /// + /// [`inherit`]: Stdio::inherit + /// [`piped`]: Stdio::piped + /// [`spawn`]: Self::spawn + /// [`status`]: Self::status + /// [`output`]: Self::output + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::{Command, Stdio}; + /// + /// Command::new("ls") + /// .stdout(Stdio::null()) + /// .spawn() + /// .expect("ls command failed to start"); + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub fn stdout<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command { + self.inner.stdout(cfg.into().0); + self + } + + /// Configuration for the child process's standard error (stderr) handle. + /// + /// Defaults to [`inherit`] when used with [`spawn`] or [`status`], and + /// defaults to [`piped`] when used with [`output`]. + /// + /// [`inherit`]: Stdio::inherit + /// [`piped`]: Stdio::piped + /// [`spawn`]: Self::spawn + /// [`status`]: Self::status + /// [`output`]: Self::output + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::{Command, Stdio}; + /// + /// Command::new("ls") + /// .stderr(Stdio::null()) + /// .spawn() + /// .expect("ls command failed to start"); + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub fn stderr<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command { + self.inner.stderr(cfg.into().0); + self + } + + /// Executes the command as a child process, returning a handle to it. + /// + /// By default, stdin, stdout and stderr are inherited from the parent. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::Command; + /// + /// Command::new("ls") + /// .spawn() + /// .expect("ls command failed to start"); + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub fn spawn(&mut self) -> io::Result<Child> { + self.inner.spawn(imp::Stdio::Inherit, true).map(Child::from_inner) + } + + /// Executes the command as a child process, waiting for it to finish and + /// collecting all of its output. + /// + /// By default, stdout and stderr are captured (and used to provide the + /// resulting output). Stdin is not inherited from the parent and any + /// attempt by the child process to read from the stdin stream will result + /// in the stream immediately closing. + /// + /// # Examples + /// + /// ```should_panic + /// use std::process::Command; + /// use std::io::{self, Write}; + /// let output = Command::new("/bin/cat") + /// .arg("file.txt") + /// .output() + /// .expect("failed to execute process"); + /// + /// println!("status: {}", output.status); + /// io::stdout().write_all(&output.stdout).unwrap(); + /// io::stderr().write_all(&output.stderr).unwrap(); + /// + /// assert!(output.status.success()); + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub fn output(&mut self) -> io::Result<Output> { + self.inner + .spawn(imp::Stdio::MakePipe, false) + .map(Child::from_inner) + .and_then(|p| p.wait_with_output()) + } + + /// Executes a command as a child process, waiting for it to finish and + /// collecting its status. + /// + /// By default, stdin, stdout and stderr are inherited from the parent. + /// + /// # Examples + /// + /// ```should_panic + /// use std::process::Command; + /// + /// let status = Command::new("/bin/cat") + /// .arg("file.txt") + /// .status() + /// .expect("failed to execute process"); + /// + /// println!("process finished with: {status}"); + /// + /// assert!(status.success()); + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub fn status(&mut self) -> io::Result<ExitStatus> { + self.inner + .spawn(imp::Stdio::Inherit, true) + .map(Child::from_inner) + .and_then(|mut p| p.wait()) + } + + /// Returns the path to the program that was given to [`Command::new`]. + /// + /// # Examples + /// + /// ``` + /// use std::process::Command; + /// + /// let cmd = Command::new("echo"); + /// assert_eq!(cmd.get_program(), "echo"); + /// ``` + #[must_use] + #[stable(feature = "command_access", since = "1.57.0")] + pub fn get_program(&self) -> &OsStr { + self.inner.get_program() + } + + /// Returns an iterator of the arguments that will be passed to the program. + /// + /// This does not include the path to the program as the first argument; + /// it only includes the arguments specified with [`Command::arg`] and + /// [`Command::args`]. + /// + /// # Examples + /// + /// ``` + /// use std::ffi::OsStr; + /// use std::process::Command; + /// + /// let mut cmd = Command::new("echo"); + /// cmd.arg("first").arg("second"); + /// let args: Vec<&OsStr> = cmd.get_args().collect(); + /// assert_eq!(args, &["first", "second"]); + /// ``` + #[stable(feature = "command_access", since = "1.57.0")] + pub fn get_args(&self) -> CommandArgs<'_> { + CommandArgs { inner: self.inner.get_args() } + } + + /// Returns an iterator of the environment variables that will be set when + /// the process is spawned. + /// + /// Each element is a tuple `(&OsStr, Option<&OsStr>)`, where the first + /// value is the key, and the second is the value, which is [`None`] if + /// the environment variable is to be explicitly removed. + /// + /// This only includes environment variables explicitly set with + /// [`Command::env`], [`Command::envs`], and [`Command::env_remove`]. It + /// does not include environment variables that will be inherited by the + /// child process. + /// + /// # Examples + /// + /// ``` + /// use std::ffi::OsStr; + /// use std::process::Command; + /// + /// let mut cmd = Command::new("ls"); + /// cmd.env("TERM", "dumb").env_remove("TZ"); + /// let envs: Vec<(&OsStr, Option<&OsStr>)> = cmd.get_envs().collect(); + /// assert_eq!(envs, &[ + /// (OsStr::new("TERM"), Some(OsStr::new("dumb"))), + /// (OsStr::new("TZ"), None) + /// ]); + /// ``` + #[stable(feature = "command_access", since = "1.57.0")] + pub fn get_envs(&self) -> CommandEnvs<'_> { + self.inner.get_envs() + } + + /// Returns the working directory for the child process. + /// + /// This returns [`None`] if the working directory will not be changed. + /// + /// # Examples + /// + /// ``` + /// use std::path::Path; + /// use std::process::Command; + /// + /// let mut cmd = Command::new("ls"); + /// assert_eq!(cmd.get_current_dir(), None); + /// cmd.current_dir("/bin"); + /// assert_eq!(cmd.get_current_dir(), Some(Path::new("/bin"))); + /// ``` + #[must_use] + #[stable(feature = "command_access", since = "1.57.0")] + pub fn get_current_dir(&self) -> Option<&Path> { + self.inner.get_current_dir() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl fmt::Debug for Command { + /// Format the program and arguments of a Command for display. Any + /// non-utf8 data is lossily converted using the utf8 replacement + /// character. + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + self.inner.fmt(f) + } +} + +impl AsInner<imp::Command> for Command { + fn as_inner(&self) -> &imp::Command { + &self.inner + } +} + +impl AsInnerMut<imp::Command> for Command { + fn as_inner_mut(&mut self) -> &mut imp::Command { + &mut self.inner + } +} + +/// An iterator over the command arguments. +/// +/// This struct is created by [`Command::get_args`]. See its documentation for +/// more. +#[must_use = "iterators are lazy and do nothing unless consumed"] +#[stable(feature = "command_access", since = "1.57.0")] +#[derive(Debug)] +pub struct CommandArgs<'a> { + inner: imp::CommandArgs<'a>, +} + +#[stable(feature = "command_access", since = "1.57.0")] +impl<'a> Iterator for CommandArgs<'a> { + type Item = &'a OsStr; + fn next(&mut self) -> Option<&'a OsStr> { + self.inner.next() + } + fn size_hint(&self) -> (usize, Option<usize>) { + self.inner.size_hint() + } +} + +#[stable(feature = "command_access", since = "1.57.0")] +impl<'a> ExactSizeIterator for CommandArgs<'a> { + fn len(&self) -> usize { + self.inner.len() + } + fn is_empty(&self) -> bool { + self.inner.is_empty() + } +} + +/// The output of a finished process. +/// +/// This is returned in a Result by either the [`output`] method of a +/// [`Command`], or the [`wait_with_output`] method of a [`Child`] +/// process. +/// +/// [`output`]: Command::output +/// [`wait_with_output`]: Child::wait_with_output +#[derive(PartialEq, Eq, Clone)] +#[stable(feature = "process", since = "1.0.0")] +pub struct Output { + /// The status (exit code) of the process. + #[stable(feature = "process", since = "1.0.0")] + pub status: ExitStatus, + /// The data that the process wrote to stdout. + #[stable(feature = "process", since = "1.0.0")] + pub stdout: Vec<u8>, + /// The data that the process wrote to stderr. + #[stable(feature = "process", since = "1.0.0")] + pub stderr: Vec<u8>, +} + +// If either stderr or stdout are valid utf8 strings it prints the valid +// strings, otherwise it prints the byte sequence instead +#[stable(feature = "process_output_debug", since = "1.7.0")] +impl fmt::Debug for Output { + fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { + let stdout_utf8 = str::from_utf8(&self.stdout); + let stdout_debug: &dyn fmt::Debug = match stdout_utf8 { + Ok(ref str) => str, + Err(_) => &self.stdout, + }; + + let stderr_utf8 = str::from_utf8(&self.stderr); + let stderr_debug: &dyn fmt::Debug = match stderr_utf8 { + Ok(ref str) => str, + Err(_) => &self.stderr, + }; + + fmt.debug_struct("Output") + .field("status", &self.status) + .field("stdout", stdout_debug) + .field("stderr", stderr_debug) + .finish() + } +} + +/// Describes what to do with a standard I/O stream for a child process when +/// passed to the [`stdin`], [`stdout`], and [`stderr`] methods of [`Command`]. +/// +/// [`stdin`]: Command::stdin +/// [`stdout`]: Command::stdout +/// [`stderr`]: Command::stderr +#[stable(feature = "process", since = "1.0.0")] +pub struct Stdio(imp::Stdio); + +impl Stdio { + /// A new pipe should be arranged to connect the parent and child processes. + /// + /// # Examples + /// + /// With stdout: + /// + /// ```no_run + /// use std::process::{Command, Stdio}; + /// + /// let output = Command::new("echo") + /// .arg("Hello, world!") + /// .stdout(Stdio::piped()) + /// .output() + /// .expect("Failed to execute command"); + /// + /// assert_eq!(String::from_utf8_lossy(&output.stdout), "Hello, world!\n"); + /// // Nothing echoed to console + /// ``` + /// + /// With stdin: + /// + /// ```no_run + /// use std::io::Write; + /// use std::process::{Command, Stdio}; + /// + /// let mut child = Command::new("rev") + /// .stdin(Stdio::piped()) + /// .stdout(Stdio::piped()) + /// .spawn() + /// .expect("Failed to spawn child process"); + /// + /// let mut stdin = child.stdin.take().expect("Failed to open stdin"); + /// std::thread::spawn(move || { + /// stdin.write_all("Hello, world!".as_bytes()).expect("Failed to write to stdin"); + /// }); + /// + /// let output = child.wait_with_output().expect("Failed to read stdout"); + /// assert_eq!(String::from_utf8_lossy(&output.stdout), "!dlrow ,olleH"); + /// ``` + /// + /// Writing more than a pipe buffer's worth of input to stdin without also reading + /// stdout and stderr at the same time may cause a deadlock. + /// This is an issue when running any program that doesn't guarantee that it reads + /// its entire stdin before writing more than a pipe buffer's worth of output. + /// The size of a pipe buffer varies on different targets. + /// + #[must_use] + #[stable(feature = "process", since = "1.0.0")] + pub fn piped() -> Stdio { + Stdio(imp::Stdio::MakePipe) + } + + /// The child inherits from the corresponding parent descriptor. + /// + /// # Examples + /// + /// With stdout: + /// + /// ```no_run + /// use std::process::{Command, Stdio}; + /// + /// let output = Command::new("echo") + /// .arg("Hello, world!") + /// .stdout(Stdio::inherit()) + /// .output() + /// .expect("Failed to execute command"); + /// + /// assert_eq!(String::from_utf8_lossy(&output.stdout), ""); + /// // "Hello, world!" echoed to console + /// ``` + /// + /// With stdin: + /// + /// ```no_run + /// use std::process::{Command, Stdio}; + /// use std::io::{self, Write}; + /// + /// let output = Command::new("rev") + /// .stdin(Stdio::inherit()) + /// .stdout(Stdio::piped()) + /// .output() + /// .expect("Failed to execute command"); + /// + /// print!("You piped in the reverse of: "); + /// io::stdout().write_all(&output.stdout).unwrap(); + /// ``` + #[must_use] + #[stable(feature = "process", since = "1.0.0")] + pub fn inherit() -> Stdio { + Stdio(imp::Stdio::Inherit) + } + + /// This stream will be ignored. This is the equivalent of attaching the + /// stream to `/dev/null`. + /// + /// # Examples + /// + /// With stdout: + /// + /// ```no_run + /// use std::process::{Command, Stdio}; + /// + /// let output = Command::new("echo") + /// .arg("Hello, world!") + /// .stdout(Stdio::null()) + /// .output() + /// .expect("Failed to execute command"); + /// + /// assert_eq!(String::from_utf8_lossy(&output.stdout), ""); + /// // Nothing echoed to console + /// ``` + /// + /// With stdin: + /// + /// ```no_run + /// use std::process::{Command, Stdio}; + /// + /// let output = Command::new("rev") + /// .stdin(Stdio::null()) + /// .stdout(Stdio::piped()) + /// .output() + /// .expect("Failed to execute command"); + /// + /// assert_eq!(String::from_utf8_lossy(&output.stdout), ""); + /// // Ignores any piped-in input + /// ``` + #[must_use] + #[stable(feature = "process", since = "1.0.0")] + pub fn null() -> Stdio { + Stdio(imp::Stdio::Null) + } + + /// Returns `true` if this requires [`Command`] to create a new pipe. + /// + /// # Example + /// + /// ``` + /// #![feature(stdio_makes_pipe)] + /// use std::process::Stdio; + /// + /// let io = Stdio::piped(); + /// assert_eq!(io.makes_pipe(), true); + /// ``` + #[unstable(feature = "stdio_makes_pipe", issue = "98288")] + pub fn makes_pipe(&self) -> bool { + matches!(self.0, imp::Stdio::MakePipe) + } +} + +impl FromInner<imp::Stdio> for Stdio { + fn from_inner(inner: imp::Stdio) -> Stdio { + Stdio(inner) + } +} + +#[stable(feature = "std_debug", since = "1.16.0")] +impl fmt::Debug for Stdio { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_struct("Stdio").finish_non_exhaustive() + } +} + +#[stable(feature = "stdio_from", since = "1.20.0")] +impl From<ChildStdin> for Stdio { + /// Converts a [`ChildStdin`] into a [`Stdio`]. + /// + /// # Examples + /// + /// `ChildStdin` will be converted to `Stdio` using `Stdio::from` under the hood. + /// + /// ```rust,no_run + /// use std::process::{Command, Stdio}; + /// + /// let reverse = Command::new("rev") + /// .stdin(Stdio::piped()) + /// .spawn() + /// .expect("failed reverse command"); + /// + /// let _echo = Command::new("echo") + /// .arg("Hello, world!") + /// .stdout(reverse.stdin.unwrap()) // Converted into a Stdio here + /// .output() + /// .expect("failed echo command"); + /// + /// // "!dlrow ,olleH" echoed to console + /// ``` + fn from(child: ChildStdin) -> Stdio { + Stdio::from_inner(child.into_inner().into()) + } +} + +#[stable(feature = "stdio_from", since = "1.20.0")] +impl From<ChildStdout> for Stdio { + /// Converts a [`ChildStdout`] into a [`Stdio`]. + /// + /// # Examples + /// + /// `ChildStdout` will be converted to `Stdio` using `Stdio::from` under the hood. + /// + /// ```rust,no_run + /// use std::process::{Command, Stdio}; + /// + /// let hello = Command::new("echo") + /// .arg("Hello, world!") + /// .stdout(Stdio::piped()) + /// .spawn() + /// .expect("failed echo command"); + /// + /// let reverse = Command::new("rev") + /// .stdin(hello.stdout.unwrap()) // Converted into a Stdio here + /// .output() + /// .expect("failed reverse command"); + /// + /// assert_eq!(reverse.stdout, b"!dlrow ,olleH\n"); + /// ``` + fn from(child: ChildStdout) -> Stdio { + Stdio::from_inner(child.into_inner().into()) + } +} + +#[stable(feature = "stdio_from", since = "1.20.0")] +impl From<ChildStderr> for Stdio { + /// Converts a [`ChildStderr`] into a [`Stdio`]. + /// + /// # Examples + /// + /// ```rust,no_run + /// use std::process::{Command, Stdio}; + /// + /// let reverse = Command::new("rev") + /// .arg("non_existing_file.txt") + /// .stderr(Stdio::piped()) + /// .spawn() + /// .expect("failed reverse command"); + /// + /// let cat = Command::new("cat") + /// .arg("-") + /// .stdin(reverse.stderr.unwrap()) // Converted into a Stdio here + /// .output() + /// .expect("failed echo command"); + /// + /// assert_eq!( + /// String::from_utf8_lossy(&cat.stdout), + /// "rev: cannot open non_existing_file.txt: No such file or directory\n" + /// ); + /// ``` + fn from(child: ChildStderr) -> Stdio { + Stdio::from_inner(child.into_inner().into()) + } +} + +#[stable(feature = "stdio_from", since = "1.20.0")] +impl From<fs::File> for Stdio { + /// Converts a [`File`](fs::File) into a [`Stdio`]. + /// + /// # Examples + /// + /// `File` will be converted to `Stdio` using `Stdio::from` under the hood. + /// + /// ```rust,no_run + /// use std::fs::File; + /// use std::process::Command; + /// + /// // With the `foo.txt` file containing `Hello, world!" + /// let file = File::open("foo.txt").unwrap(); + /// + /// let reverse = Command::new("rev") + /// .stdin(file) // Implicit File conversion into a Stdio + /// .output() + /// .expect("failed reverse command"); + /// + /// assert_eq!(reverse.stdout, b"!dlrow ,olleH"); + /// ``` + fn from(file: fs::File) -> Stdio { + Stdio::from_inner(file.into_inner().into()) + } +} + +/// Describes the result of a process after it has terminated. +/// +/// This `struct` is used to represent the exit status or other termination of a child process. +/// Child processes are created via the [`Command`] struct and their exit +/// status is exposed through the [`status`] method, or the [`wait`] method +/// of a [`Child`] process. +/// +/// An `ExitStatus` represents every possible disposition of a process. On Unix this +/// is the **wait status**. It is *not* simply an *exit status* (a value passed to `exit`). +/// +/// For proper error reporting of failed processes, print the value of `ExitStatus` or +/// `ExitStatusError` using their implementations of [`Display`](crate::fmt::Display). +/// +/// # Differences from `ExitCode` +/// +/// [`ExitCode`] is intended for terminating the currently running process, via +/// the `Termination` trait, in contrast to `ExitStatus`, which represents the +/// termination of a child process. These APIs are separate due to platform +/// compatibility differences and their expected usage; it is not generally +/// possible to exactly reproduce an `ExitStatus` from a child for the current +/// process after the fact. +/// +/// [`status`]: Command::status +/// [`wait`]: Child::wait +// +// We speak slightly loosely (here and in various other places in the stdlib docs) about `exit` +// vs `_exit`. Naming of Unix system calls is not standardised across Unices, so terminology is a +// matter of convention and tradition. For clarity we usually speak of `exit`, even when we might +// mean an underlying system call such as `_exit`. +#[derive(PartialEq, Eq, Clone, Copy, Debug)] +#[stable(feature = "process", since = "1.0.0")] +pub struct ExitStatus(imp::ExitStatus); + +/// Allows extension traits within `std`. +#[unstable(feature = "sealed", issue = "none")] +impl crate::sealed::Sealed for ExitStatus {} + +impl ExitStatus { + /// Was termination successful? Returns a `Result`. + /// + /// # Examples + /// + /// ``` + /// #![feature(exit_status_error)] + /// # if cfg!(unix) { + /// use std::process::Command; + /// + /// let status = Command::new("ls") + /// .arg("/dev/nonexistent") + /// .status() + /// .expect("ls could not be executed"); + /// + /// println!("ls: {status}"); + /// status.exit_ok().expect_err("/dev/nonexistent could be listed!"); + /// # } // cfg!(unix) + /// ``` + #[unstable(feature = "exit_status_error", issue = "84908")] + pub fn exit_ok(&self) -> Result<(), ExitStatusError> { + self.0.exit_ok().map_err(ExitStatusError) + } + + /// Was termination successful? Signal termination is not considered a + /// success, and success is defined as a zero exit status. + /// + /// # Examples + /// + /// ```rust,no_run + /// use std::process::Command; + /// + /// let status = Command::new("mkdir") + /// .arg("projects") + /// .status() + /// .expect("failed to execute mkdir"); + /// + /// if status.success() { + /// println!("'projects/' directory created"); + /// } else { + /// println!("failed to create 'projects/' directory: {status}"); + /// } + /// ``` + #[must_use] + #[stable(feature = "process", since = "1.0.0")] + pub fn success(&self) -> bool { + self.0.exit_ok().is_ok() + } + + /// Returns the exit code of the process, if any. + /// + /// In Unix terms the return value is the **exit status**: the value passed to `exit`, if the + /// process finished by calling `exit`. Note that on Unix the exit status is truncated to 8 + /// bits, and that values that didn't come from a program's call to `exit` may be invented by the + /// runtime system (often, for example, 255, 254, 127 or 126). + /// + /// On Unix, this will return `None` if the process was terminated by a signal. + /// [`ExitStatusExt`](crate::os::unix::process::ExitStatusExt) is an + /// extension trait for extracting any such signal, and other details, from the `ExitStatus`. + /// + /// # Examples + /// + /// ```no_run + /// use std::process::Command; + /// + /// let status = Command::new("mkdir") + /// .arg("projects") + /// .status() + /// .expect("failed to execute mkdir"); + /// + /// match status.code() { + /// Some(code) => println!("Exited with status code: {code}"), + /// None => println!("Process terminated by signal") + /// } + /// ``` + #[must_use] + #[stable(feature = "process", since = "1.0.0")] + pub fn code(&self) -> Option<i32> { + self.0.code() + } +} + +impl AsInner<imp::ExitStatus> for ExitStatus { + fn as_inner(&self) -> &imp::ExitStatus { + &self.0 + } +} + +impl FromInner<imp::ExitStatus> for ExitStatus { + fn from_inner(s: imp::ExitStatus) -> ExitStatus { + ExitStatus(s) + } +} + +#[stable(feature = "process", since = "1.0.0")] +impl fmt::Display for ExitStatus { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + self.0.fmt(f) + } +} + +/// Allows extension traits within `std`. +#[unstable(feature = "sealed", issue = "none")] +impl crate::sealed::Sealed for ExitStatusError {} + +/// Describes the result of a process after it has failed +/// +/// Produced by the [`.exit_ok`](ExitStatus::exit_ok) method on [`ExitStatus`]. +/// +/// # Examples +/// +/// ``` +/// #![feature(exit_status_error)] +/// # if cfg!(unix) { +/// use std::process::{Command, ExitStatusError}; +/// +/// fn run(cmd: &str) -> Result<(),ExitStatusError> { +/// Command::new(cmd).status().unwrap().exit_ok()?; +/// Ok(()) +/// } +/// +/// run("true").unwrap(); +/// run("false").unwrap_err(); +/// # } // cfg!(unix) +/// ``` +#[derive(PartialEq, Eq, Clone, Copy, Debug)] +#[unstable(feature = "exit_status_error", issue = "84908")] +// The definition of imp::ExitStatusError should ideally be such that +// Result<(), imp::ExitStatusError> has an identical representation to imp::ExitStatus. +pub struct ExitStatusError(imp::ExitStatusError); + +#[unstable(feature = "exit_status_error", issue = "84908")] +impl ExitStatusError { + /// Reports the exit code, if applicable, from an `ExitStatusError`. + /// + /// In Unix terms the return value is the **exit status**: the value passed to `exit`, if the + /// process finished by calling `exit`. Note that on Unix the exit status is truncated to 8 + /// bits, and that values that didn't come from a program's call to `exit` may be invented by the + /// runtime system (often, for example, 255, 254, 127 or 126). + /// + /// On Unix, this will return `None` if the process was terminated by a signal. If you want to + /// handle such situations specially, consider using methods from + /// [`ExitStatusExt`](crate::os::unix::process::ExitStatusExt). + /// + /// If the process finished by calling `exit` with a nonzero value, this will return + /// that exit status. + /// + /// If the error was something else, it will return `None`. + /// + /// If the process exited successfully (ie, by calling `exit(0)`), there is no + /// `ExitStatusError`. So the return value from `ExitStatusError::code()` is always nonzero. + /// + /// # Examples + /// + /// ``` + /// #![feature(exit_status_error)] + /// # #[cfg(unix)] { + /// use std::process::Command; + /// + /// let bad = Command::new("false").status().unwrap().exit_ok().unwrap_err(); + /// assert_eq!(bad.code(), Some(1)); + /// # } // #[cfg(unix)] + /// ``` + #[must_use] + pub fn code(&self) -> Option<i32> { + self.code_nonzero().map(Into::into) + } + + /// Reports the exit code, if applicable, from an `ExitStatusError`, as a `NonZero` + /// + /// This is exactly like [`code()`](Self::code), except that it returns a `NonZeroI32`. + /// + /// Plain `code`, returning a plain integer, is provided because is is often more convenient. + /// The returned value from `code()` is indeed also nonzero; use `code_nonzero()` when you want + /// a type-level guarantee of nonzeroness. + /// + /// # Examples + /// + /// ``` + /// #![feature(exit_status_error)] + /// # if cfg!(unix) { + /// use std::num::NonZeroI32; + /// use std::process::Command; + /// + /// let bad = Command::new("false").status().unwrap().exit_ok().unwrap_err(); + /// assert_eq!(bad.code_nonzero().unwrap(), NonZeroI32::try_from(1).unwrap()); + /// # } // cfg!(unix) + /// ``` + #[must_use] + pub fn code_nonzero(&self) -> Option<NonZeroI32> { + self.0.code() + } + + /// Converts an `ExitStatusError` (back) to an `ExitStatus`. + #[must_use] + pub fn into_status(&self) -> ExitStatus { + ExitStatus(self.0.into()) + } +} + +#[unstable(feature = "exit_status_error", issue = "84908")] +impl Into<ExitStatus> for ExitStatusError { + fn into(self) -> ExitStatus { + ExitStatus(self.0.into()) + } +} + +#[unstable(feature = "exit_status_error", issue = "84908")] +impl fmt::Display for ExitStatusError { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + write!(f, "process exited unsuccessfully: {}", self.into_status()) + } +} + +#[unstable(feature = "exit_status_error", issue = "84908")] +impl crate::error::Error for ExitStatusError {} + +/// This type represents the status code the current process can return +/// to its parent under normal termination. +/// +/// `ExitCode` is intended to be consumed only by the standard library (via +/// [`Termination::report()`]), and intentionally does not provide accessors like +/// `PartialEq`, `Eq`, or `Hash`. Instead the standard library provides the +/// canonical `SUCCESS` and `FAILURE` exit codes as well as `From<u8> for +/// ExitCode` for constructing other arbitrary exit codes. +/// +/// # Portability +/// +/// Numeric values used in this type don't have portable meanings, and +/// different platforms may mask different amounts of them. +/// +/// For the platform's canonical successful and unsuccessful codes, see +/// the [`SUCCESS`] and [`FAILURE`] associated items. +/// +/// [`SUCCESS`]: ExitCode::SUCCESS +/// [`FAILURE`]: ExitCode::FAILURE +/// +/// # Differences from `ExitStatus` +/// +/// `ExitCode` is intended for terminating the currently running process, via +/// the `Termination` trait, in contrast to [`ExitStatus`], which represents the +/// termination of a child process. These APIs are separate due to platform +/// compatibility differences and their expected usage; it is not generally +/// possible to exactly reproduce an `ExitStatus` from a child for the current +/// process after the fact. +/// +/// # Examples +/// +/// `ExitCode` can be returned from the `main` function of a crate, as it implements +/// [`Termination`]: +/// +/// ``` +/// use std::process::ExitCode; +/// # fn check_foo() -> bool { true } +/// +/// fn main() -> ExitCode { +/// if !check_foo() { +/// return ExitCode::from(42); +/// } +/// +/// ExitCode::SUCCESS +/// } +/// ``` +#[derive(Clone, Copy, Debug)] +#[stable(feature = "process_exitcode", since = "1.61.0")] +pub struct ExitCode(imp::ExitCode); + +/// Allows extension traits within `std`. +#[unstable(feature = "sealed", issue = "none")] +impl crate::sealed::Sealed for ExitCode {} + +#[stable(feature = "process_exitcode", since = "1.61.0")] +impl ExitCode { + /// The canonical `ExitCode` for successful termination on this platform. + /// + /// Note that a `()`-returning `main` implicitly results in a successful + /// termination, so there's no need to return this from `main` unless + /// you're also returning other possible codes. + #[stable(feature = "process_exitcode", since = "1.61.0")] + pub const SUCCESS: ExitCode = ExitCode(imp::ExitCode::SUCCESS); + + /// The canonical `ExitCode` for unsuccessful termination on this platform. + /// + /// If you're only returning this and `SUCCESS` from `main`, consider + /// instead returning `Err(_)` and `Ok(())` respectively, which will + /// return the same codes (but will also `eprintln!` the error). + #[stable(feature = "process_exitcode", since = "1.61.0")] + pub const FAILURE: ExitCode = ExitCode(imp::ExitCode::FAILURE); + + /// Exit the current process with the given `ExitCode`. + /// + /// Note that this has the same caveats as [`process::exit()`][exit], namely that this function + /// terminates the process immediately, so no destructors on the current stack or any other + /// thread's stack will be run. If a clean shutdown is needed, it is recommended to simply + /// return this ExitCode from the `main` function, as demonstrated in the [type + /// documentation](#examples). + /// + /// # Differences from `process::exit()` + /// + /// `process::exit()` accepts any `i32` value as the exit code for the process; however, there + /// are platforms that only use a subset of that value (see [`process::exit` platform-specific + /// behavior][exit#platform-specific-behavior]). `ExitCode` exists because of this; only + /// `ExitCode`s that are supported by a majority of our platforms can be created, so those + /// problems don't exist (as much) with this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(exitcode_exit_method)] + /// # use std::process::ExitCode; + /// # use std::fmt; + /// # enum UhOhError { GenericProblem, Specific, WithCode { exit_code: ExitCode, _x: () } } + /// # impl fmt::Display for UhOhError { + /// # fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result { unimplemented!() } + /// # } + /// // there's no way to gracefully recover from an UhOhError, so we just + /// // print a message and exit + /// fn handle_unrecoverable_error(err: UhOhError) -> ! { + /// eprintln!("UH OH! {err}"); + /// let code = match err { + /// UhOhError::GenericProblem => ExitCode::FAILURE, + /// UhOhError::Specific => ExitCode::from(3), + /// UhOhError::WithCode { exit_code, .. } => exit_code, + /// }; + /// code.exit_process() + /// } + /// ``` + #[unstable(feature = "exitcode_exit_method", issue = "97100")] + pub fn exit_process(self) -> ! { + exit(self.to_i32()) + } +} + +impl ExitCode { + // This is private/perma-unstable because ExitCode is opaque; we don't know that i32 will serve + // all usecases, for example windows seems to use u32, unix uses the 8-15th bits of an i32, we + // likely want to isolate users anything that could restrict the platform specific + // representation of an ExitCode + // + // More info: https://internals.rust-lang.org/t/mini-pre-rfc-redesigning-process-exitstatus/5426 + /// Convert an `ExitCode` into an i32 + #[unstable( + feature = "process_exitcode_internals", + reason = "exposed only for libstd", + issue = "none" + )] + #[inline] + #[doc(hidden)] + pub fn to_i32(self) -> i32 { + self.0.as_i32() + } +} + +#[stable(feature = "process_exitcode", since = "1.61.0")] +impl From<u8> for ExitCode { + /// Construct an `ExitCode` from an arbitrary u8 value. + fn from(code: u8) -> Self { + ExitCode(imp::ExitCode::from(code)) + } +} + +impl AsInner<imp::ExitCode> for ExitCode { + fn as_inner(&self) -> &imp::ExitCode { + &self.0 + } +} + +impl FromInner<imp::ExitCode> for ExitCode { + fn from_inner(s: imp::ExitCode) -> ExitCode { + ExitCode(s) + } +} + +impl Child { + /// Forces the child process to exit. If the child has already exited, an [`InvalidInput`] + /// error is returned. + /// + /// The mapping to [`ErrorKind`]s is not part of the compatibility contract of the function. + /// + /// This is equivalent to sending a SIGKILL on Unix platforms. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::Command; + /// + /// let mut command = Command::new("yes"); + /// if let Ok(mut child) = command.spawn() { + /// child.kill().expect("command wasn't running"); + /// } else { + /// println!("yes command didn't start"); + /// } + /// ``` + /// + /// [`ErrorKind`]: io::ErrorKind + /// [`InvalidInput`]: io::ErrorKind::InvalidInput + #[stable(feature = "process", since = "1.0.0")] + pub fn kill(&mut self) -> io::Result<()> { + self.handle.kill() + } + + /// Returns the OS-assigned process identifier associated with this child. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::Command; + /// + /// let mut command = Command::new("ls"); + /// if let Ok(child) = command.spawn() { + /// println!("Child's ID is {}", child.id()); + /// } else { + /// println!("ls command didn't start"); + /// } + /// ``` + #[must_use] + #[stable(feature = "process_id", since = "1.3.0")] + pub fn id(&self) -> u32 { + self.handle.id() + } + + /// Waits for the child to exit completely, returning the status that it + /// exited with. This function will continue to have the same return value + /// after it has been called at least once. + /// + /// The stdin handle to the child process, if any, will be closed + /// before waiting. This helps avoid deadlock: it ensures that the + /// child does not block waiting for input from the parent, while + /// the parent waits for the child to exit. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::Command; + /// + /// let mut command = Command::new("ls"); + /// if let Ok(mut child) = command.spawn() { + /// child.wait().expect("command wasn't running"); + /// println!("Child has finished its execution!"); + /// } else { + /// println!("ls command didn't start"); + /// } + /// ``` + #[stable(feature = "process", since = "1.0.0")] + pub fn wait(&mut self) -> io::Result<ExitStatus> { + drop(self.stdin.take()); + self.handle.wait().map(ExitStatus) + } + + /// Attempts to collect the exit status of the child if it has already + /// exited. + /// + /// This function will not block the calling thread and will only + /// check to see if the child process has exited or not. If the child has + /// exited then on Unix the process ID is reaped. This function is + /// guaranteed to repeatedly return a successful exit status so long as the + /// child has already exited. + /// + /// If the child has exited, then `Ok(Some(status))` is returned. If the + /// exit status is not available at this time then `Ok(None)` is returned. + /// If an error occurs, then that error is returned. + /// + /// Note that unlike `wait`, this function will not attempt to drop stdin. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ```no_run + /// use std::process::Command; + /// + /// let mut child = Command::new("ls").spawn().unwrap(); + /// + /// match child.try_wait() { + /// Ok(Some(status)) => println!("exited with: {status}"), + /// Ok(None) => { + /// println!("status not ready yet, let's really wait"); + /// let res = child.wait(); + /// println!("result: {res:?}"); + /// } + /// Err(e) => println!("error attempting to wait: {e}"), + /// } + /// ``` + #[stable(feature = "process_try_wait", since = "1.18.0")] + pub fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> { + Ok(self.handle.try_wait()?.map(ExitStatus)) + } + + /// Simultaneously waits for the child to exit and collect all remaining + /// output on the stdout/stderr handles, returning an `Output` + /// instance. + /// + /// The stdin handle to the child process, if any, will be closed + /// before waiting. This helps avoid deadlock: it ensures that the + /// child does not block waiting for input from the parent, while + /// the parent waits for the child to exit. + /// + /// By default, stdin, stdout and stderr are inherited from the parent. + /// In order to capture the output into this `Result<Output>` it is + /// necessary to create new pipes between parent and child. Use + /// `stdout(Stdio::piped())` or `stderr(Stdio::piped())`, respectively. + /// + /// # Examples + /// + /// ```should_panic + /// use std::process::{Command, Stdio}; + /// + /// let child = Command::new("/bin/cat") + /// .arg("file.txt") + /// .stdout(Stdio::piped()) + /// .spawn() + /// .expect("failed to execute child"); + /// + /// let output = child + /// .wait_with_output() + /// .expect("failed to wait on child"); + /// + /// assert!(output.status.success()); + /// ``` + /// + #[stable(feature = "process", since = "1.0.0")] + pub fn wait_with_output(mut self) -> io::Result<Output> { + drop(self.stdin.take()); + + let (mut stdout, mut stderr) = (Vec::new(), Vec::new()); + match (self.stdout.take(), self.stderr.take()) { + (None, None) => {} + (Some(mut out), None) => { + let res = out.read_to_end(&mut stdout); + res.unwrap(); + } + (None, Some(mut err)) => { + let res = err.read_to_end(&mut stderr); + res.unwrap(); + } + (Some(out), Some(err)) => { + let res = read2(out.inner, &mut stdout, err.inner, &mut stderr); + res.unwrap(); + } + } + + let status = self.wait()?; + Ok(Output { status, stdout, stderr }) + } +} + +/// Terminates the current process with the specified exit code. +/// +/// This function will never return and will immediately terminate the current +/// process. The exit code is passed through to the underlying OS and will be +/// available for consumption by another process. +/// +/// Note that because this function never returns, and that it terminates the +/// process, no destructors on the current stack or any other thread's stack +/// will be run. If a clean shutdown is needed it is recommended to only call +/// this function at a known point where there are no more destructors left +/// to run; or, preferably, simply return a type implementing [`Termination`] +/// (such as [`ExitCode`] or `Result`) from the `main` function and avoid this +/// function altogether: +/// +/// ``` +/// # use std::io::Error as MyError; +/// fn main() -> Result<(), MyError> { +/// // ... +/// Ok(()) +/// } +/// ``` +/// +/// ## Platform-specific behavior +/// +/// **Unix**: On Unix-like platforms, it is unlikely that all 32 bits of `exit` +/// will be visible to a parent process inspecting the exit code. On most +/// Unix-like platforms, only the eight least-significant bits are considered. +/// +/// For example, the exit code for this example will be `0` on Linux, but `256` +/// on Windows: +/// +/// ```no_run +/// use std::process; +/// +/// process::exit(0x0100); +/// ``` +#[stable(feature = "rust1", since = "1.0.0")] +pub fn exit(code: i32) -> ! { + crate::rt::cleanup(); + crate::sys::os::exit(code) +} + +/// Terminates the process in an abnormal fashion. +/// +/// The function will never return and will immediately terminate the current +/// process in a platform specific "abnormal" manner. +/// +/// Note that because this function never returns, and that it terminates the +/// process, no destructors on the current stack or any other thread's stack +/// will be run. +/// +/// Rust IO buffers (eg, from `BufWriter`) will not be flushed. +/// Likewise, C stdio buffers will (on most platforms) not be flushed. +/// +/// This is in contrast to the default behaviour of [`panic!`] which unwinds +/// the current thread's stack and calls all destructors. +/// When `panic="abort"` is set, either as an argument to `rustc` or in a +/// crate's Cargo.toml, [`panic!`] and `abort` are similar. However, +/// [`panic!`] will still call the [panic hook] while `abort` will not. +/// +/// If a clean shutdown is needed it is recommended to only call +/// this function at a known point where there are no more destructors left +/// to run. +/// +/// The process's termination will be similar to that from the C `abort()` +/// function. On Unix, the process will terminate with signal `SIGABRT`, which +/// typically means that the shell prints "Aborted". +/// +/// # Examples +/// +/// ```no_run +/// use std::process; +/// +/// fn main() { +/// println!("aborting"); +/// +/// process::abort(); +/// +/// // execution never gets here +/// } +/// ``` +/// +/// The `abort` function terminates the process, so the destructor will not +/// get run on the example below: +/// +/// ```no_run +/// use std::process; +/// +/// struct HasDrop; +/// +/// impl Drop for HasDrop { +/// fn drop(&mut self) { +/// println!("This will never be printed!"); +/// } +/// } +/// +/// fn main() { +/// let _x = HasDrop; +/// process::abort(); +/// // the destructor implemented for HasDrop will never get run +/// } +/// ``` +/// +/// [panic hook]: crate::panic::set_hook +#[stable(feature = "process_abort", since = "1.17.0")] +#[cold] +pub fn abort() -> ! { + crate::sys::abort_internal(); +} + +/// Returns the OS-assigned process identifier associated with this process. +/// +/// # Examples +/// +/// Basic usage: +/// +/// ```no_run +/// use std::process; +/// +/// println!("My pid is {}", process::id()); +/// ``` +/// +/// +#[must_use] +#[stable(feature = "getpid", since = "1.26.0")] +pub fn id() -> u32 { + crate::sys::os::getpid() +} + +/// A trait for implementing arbitrary return types in the `main` function. +/// +/// The C-main function only supports returning integers. +/// So, every type implementing the `Termination` trait has to be converted +/// to an integer. +/// +/// The default implementations are returning `libc::EXIT_SUCCESS` to indicate +/// a successful execution. In case of a failure, `libc::EXIT_FAILURE` is returned. +/// +/// Because different runtimes have different specifications on the return value +/// of the `main` function, this trait is likely to be available only on +/// standard library's runtime for convenience. Other runtimes are not required +/// to provide similar functionality. +#[cfg_attr(not(test), lang = "termination")] +#[stable(feature = "termination_trait_lib", since = "1.61.0")] +#[rustc_on_unimplemented( + message = "`main` has invalid return type `{Self}`", + label = "`main` can only return types that implement `{Termination}`" +)] +pub trait Termination { + /// Is called to get the representation of the value as status code. + /// This status code is returned to the operating system. + #[stable(feature = "termination_trait_lib", since = "1.61.0")] + fn report(self) -> ExitCode; +} + +#[stable(feature = "termination_trait_lib", since = "1.61.0")] +impl Termination for () { + #[inline] + fn report(self) -> ExitCode { + ExitCode::SUCCESS + } +} + +#[stable(feature = "termination_trait_lib", since = "1.61.0")] +impl Termination for ! { + fn report(self) -> ExitCode { + self + } +} + +#[stable(feature = "termination_trait_lib", since = "1.61.0")] +impl Termination for Infallible { + fn report(self) -> ExitCode { + match self {} + } +} + +#[stable(feature = "termination_trait_lib", since = "1.61.0")] +impl Termination for ExitCode { + #[inline] + fn report(self) -> ExitCode { + self + } +} + +#[stable(feature = "termination_trait_lib", since = "1.61.0")] +impl<T: Termination, E: fmt::Debug> Termination for Result<T, E> { + fn report(self) -> ExitCode { + match self { + Ok(val) => val.report(), + Err(err) => { + // Ignore error if the write fails, for example because stderr is + // already closed. There is not much point panicking at this point. + let _ = writeln!(io::stderr(), "Error: {err:?}"); + ExitCode::FAILURE + } + } + } +} |