summaryrefslogtreecommitdiffstats
path: root/library/std/src/process.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /library/std/src/process.rs
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'library/std/src/process.rs')
-rw-r--r--library/std/src/process.rs2210
1 files changed, 2210 insertions, 0 deletions
diff --git a/library/std/src/process.rs b/library/std/src/process.rs
new file mode 100644
index 000000000..d6cba7e75
--- /dev/null
+++ b/library/std/src/process.rs
@@ -0,0 +1,2210 @@
+//! A module for working with processes.
+//!
+//! This module is mostly concerned with spawning and interacting with child
+//! processes, but it also provides [`abort`] and [`exit`] for terminating the
+//! current process.
+//!
+//! # Spawning a process
+//!
+//! The [`Command`] struct is used to configure and spawn processes:
+//!
+//! ```no_run
+//! use std::process::Command;
+//!
+//! let output = Command::new("echo")
+//! .arg("Hello world")
+//! .output()
+//! .expect("Failed to execute command");
+//!
+//! assert_eq!(b"Hello world\n", output.stdout.as_slice());
+//! ```
+//!
+//! Several methods on [`Command`], such as [`spawn`] or [`output`], can be used
+//! to spawn a process. In particular, [`output`] spawns the child process and
+//! waits until the process terminates, while [`spawn`] will return a [`Child`]
+//! that represents the spawned child process.
+//!
+//! # Handling I/O
+//!
+//! The [`stdout`], [`stdin`], and [`stderr`] of a child process can be
+//! configured by passing an [`Stdio`] to the corresponding method on
+//! [`Command`]. Once spawned, they can be accessed from the [`Child`]. For
+//! example, piping output from one command into another command can be done
+//! like so:
+//!
+//! ```no_run
+//! use std::process::{Command, Stdio};
+//!
+//! // stdout must be configured with `Stdio::piped` in order to use
+//! // `echo_child.stdout`
+//! let echo_child = Command::new("echo")
+//! .arg("Oh no, a tpyo!")
+//! .stdout(Stdio::piped())
+//! .spawn()
+//! .expect("Failed to start echo process");
+//!
+//! // Note that `echo_child` is moved here, but we won't be needing
+//! // `echo_child` anymore
+//! let echo_out = echo_child.stdout.expect("Failed to open echo stdout");
+//!
+//! let mut sed_child = Command::new("sed")
+//! .arg("s/tpyo/typo/")
+//! .stdin(Stdio::from(echo_out))
+//! .stdout(Stdio::piped())
+//! .spawn()
+//! .expect("Failed to start sed process");
+//!
+//! let output = sed_child.wait_with_output().expect("Failed to wait on sed");
+//! assert_eq!(b"Oh no, a typo!\n", output.stdout.as_slice());
+//! ```
+//!
+//! Note that [`ChildStderr`] and [`ChildStdout`] implement [`Read`] and
+//! [`ChildStdin`] implements [`Write`]:
+//!
+//! ```no_run
+//! use std::process::{Command, Stdio};
+//! use std::io::Write;
+//!
+//! let mut child = Command::new("/bin/cat")
+//! .stdin(Stdio::piped())
+//! .stdout(Stdio::piped())
+//! .spawn()
+//! .expect("failed to execute child");
+//!
+//! // If the child process fills its stdout buffer, it may end up
+//! // waiting until the parent reads the stdout, and not be able to
+//! // read stdin in the meantime, causing a deadlock.
+//! // Writing from another thread ensures that stdout is being read
+//! // at the same time, avoiding the problem.
+//! let mut stdin = child.stdin.take().expect("failed to get stdin");
+//! std::thread::spawn(move || {
+//! stdin.write_all(b"test").expect("failed to write to stdin");
+//! });
+//!
+//! let output = child
+//! .wait_with_output()
+//! .expect("failed to wait on child");
+//!
+//! assert_eq!(b"test", output.stdout.as_slice());
+//! ```
+//!
+//! [`spawn`]: Command::spawn
+//! [`output`]: Command::output
+//!
+//! [`stdout`]: Command::stdout
+//! [`stdin`]: Command::stdin
+//! [`stderr`]: Command::stderr
+//!
+//! [`Write`]: io::Write
+//! [`Read`]: io::Read
+
+#![stable(feature = "process", since = "1.0.0")]
+#![deny(unsafe_op_in_unsafe_fn)]
+
+#[cfg(all(test, not(any(target_os = "emscripten", target_env = "sgx"))))]
+mod tests;
+
+use crate::io::prelude::*;
+
+use crate::convert::Infallible;
+use crate::ffi::OsStr;
+use crate::fmt;
+use crate::fs;
+use crate::io::{self, IoSlice, IoSliceMut};
+use crate::num::NonZeroI32;
+use crate::path::Path;
+use crate::str;
+use crate::sys::pipe::{read2, AnonPipe};
+use crate::sys::process as imp;
+#[stable(feature = "command_access", since = "1.57.0")]
+pub use crate::sys_common::process::CommandEnvs;
+use crate::sys_common::{AsInner, AsInnerMut, FromInner, IntoInner};
+
+/// Representation of a running or exited child process.
+///
+/// This structure is used to represent and manage child processes. A child
+/// process is created via the [`Command`] struct, which configures the
+/// spawning process and can itself be constructed using a builder-style
+/// interface.
+///
+/// There is no implementation of [`Drop`] for child processes,
+/// so if you do not ensure the `Child` has exited then it will continue to
+/// run, even after the `Child` handle to the child process has gone out of
+/// scope.
+///
+/// Calling [`wait`] (or other functions that wrap around it) will make
+/// the parent process wait until the child has actually exited before
+/// continuing.
+///
+/// # Warning
+///
+/// On some systems, calling [`wait`] or similar is necessary for the OS to
+/// release resources. A process that terminated but has not been waited on is
+/// still around as a "zombie". Leaving too many zombies around may exhaust
+/// global resources (for example process IDs).
+///
+/// The standard library does *not* automatically wait on child processes (not
+/// even if the `Child` is dropped), it is up to the application developer to do
+/// so. As a consequence, dropping `Child` handles without waiting on them first
+/// is not recommended in long-running applications.
+///
+/// # Examples
+///
+/// ```should_panic
+/// use std::process::Command;
+///
+/// let mut child = Command::new("/bin/cat")
+/// .arg("file.txt")
+/// .spawn()
+/// .expect("failed to execute child");
+///
+/// let ecode = child.wait()
+/// .expect("failed to wait on child");
+///
+/// assert!(ecode.success());
+/// ```
+///
+/// [`wait`]: Child::wait
+#[stable(feature = "process", since = "1.0.0")]
+pub struct Child {
+ pub(crate) handle: imp::Process,
+
+ /// The handle for writing to the child's standard input (stdin), if it has
+ /// been captured. To avoid partially moving
+ /// the `child` and thus blocking yourself from calling
+ /// functions on `child` while using `stdin`,
+ /// you might find it helpful:
+ ///
+ /// ```compile_fail,E0425
+ /// let stdin = child.stdin.take().unwrap();
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub stdin: Option<ChildStdin>,
+
+ /// The handle for reading from the child's standard output (stdout), if it
+ /// has been captured. You might find it helpful to do
+ ///
+ /// ```compile_fail,E0425
+ /// let stdout = child.stdout.take().unwrap();
+ /// ```
+ ///
+ /// to avoid partially moving the `child` and thus blocking yourself from calling
+ /// functions on `child` while using `stdout`.
+ #[stable(feature = "process", since = "1.0.0")]
+ pub stdout: Option<ChildStdout>,
+
+ /// The handle for reading from the child's standard error (stderr), if it
+ /// has been captured. You might find it helpful to do
+ ///
+ /// ```compile_fail,E0425
+ /// let stderr = child.stderr.take().unwrap();
+ /// ```
+ ///
+ /// to avoid partially moving the `child` and thus blocking yourself from calling
+ /// functions on `child` while using `stderr`.
+ #[stable(feature = "process", since = "1.0.0")]
+ pub stderr: Option<ChildStderr>,
+}
+
+/// Allows extension traits within `std`.
+#[unstable(feature = "sealed", issue = "none")]
+impl crate::sealed::Sealed for Child {}
+
+impl AsInner<imp::Process> for Child {
+ fn as_inner(&self) -> &imp::Process {
+ &self.handle
+ }
+}
+
+impl FromInner<(imp::Process, imp::StdioPipes)> for Child {
+ fn from_inner((handle, io): (imp::Process, imp::StdioPipes)) -> Child {
+ Child {
+ handle,
+ stdin: io.stdin.map(ChildStdin::from_inner),
+ stdout: io.stdout.map(ChildStdout::from_inner),
+ stderr: io.stderr.map(ChildStderr::from_inner),
+ }
+ }
+}
+
+impl IntoInner<imp::Process> for Child {
+ fn into_inner(self) -> imp::Process {
+ self.handle
+ }
+}
+
+#[stable(feature = "std_debug", since = "1.16.0")]
+impl fmt::Debug for Child {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("Child")
+ .field("stdin", &self.stdin)
+ .field("stdout", &self.stdout)
+ .field("stderr", &self.stderr)
+ .finish_non_exhaustive()
+ }
+}
+
+/// A handle to a child process's standard input (stdin).
+///
+/// This struct is used in the [`stdin`] field on [`Child`].
+///
+/// When an instance of `ChildStdin` is [dropped], the `ChildStdin`'s underlying
+/// file handle will be closed. If the child process was blocked on input prior
+/// to being dropped, it will become unblocked after dropping.
+///
+/// [`stdin`]: Child::stdin
+/// [dropped]: Drop
+#[stable(feature = "process", since = "1.0.0")]
+pub struct ChildStdin {
+ inner: AnonPipe,
+}
+
+// In addition to the `impl`s here, `ChildStdin` also has `impl`s for
+// `AsFd`/`From<OwnedFd>`/`Into<OwnedFd>` and
+// `AsRawFd`/`IntoRawFd`/`FromRawFd`, on Unix and WASI, and
+// `AsHandle`/`From<OwnedHandle>`/`Into<OwnedHandle>` and
+// `AsRawHandle`/`IntoRawHandle`/`FromRawHandle` on Windows.
+
+#[stable(feature = "process", since = "1.0.0")]
+impl Write for ChildStdin {
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
+ (&*self).write(buf)
+ }
+
+ fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
+ (&*self).write_vectored(bufs)
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ io::Write::is_write_vectored(&&*self)
+ }
+
+ fn flush(&mut self) -> io::Result<()> {
+ (&*self).flush()
+ }
+}
+
+#[stable(feature = "write_mt", since = "1.48.0")]
+impl Write for &ChildStdin {
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
+ self.inner.write(buf)
+ }
+
+ fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
+ self.inner.write_vectored(bufs)
+ }
+
+ fn is_write_vectored(&self) -> bool {
+ self.inner.is_write_vectored()
+ }
+
+ fn flush(&mut self) -> io::Result<()> {
+ Ok(())
+ }
+}
+
+impl AsInner<AnonPipe> for ChildStdin {
+ fn as_inner(&self) -> &AnonPipe {
+ &self.inner
+ }
+}
+
+impl IntoInner<AnonPipe> for ChildStdin {
+ fn into_inner(self) -> AnonPipe {
+ self.inner
+ }
+}
+
+impl FromInner<AnonPipe> for ChildStdin {
+ fn from_inner(pipe: AnonPipe) -> ChildStdin {
+ ChildStdin { inner: pipe }
+ }
+}
+
+#[stable(feature = "std_debug", since = "1.16.0")]
+impl fmt::Debug for ChildStdin {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("ChildStdin").finish_non_exhaustive()
+ }
+}
+
+/// A handle to a child process's standard output (stdout).
+///
+/// This struct is used in the [`stdout`] field on [`Child`].
+///
+/// When an instance of `ChildStdout` is [dropped], the `ChildStdout`'s
+/// underlying file handle will be closed.
+///
+/// [`stdout`]: Child::stdout
+/// [dropped]: Drop
+#[stable(feature = "process", since = "1.0.0")]
+pub struct ChildStdout {
+ inner: AnonPipe,
+}
+
+// In addition to the `impl`s here, `ChildStdout` also has `impl`s for
+// `AsFd`/`From<OwnedFd>`/`Into<OwnedFd>` and
+// `AsRawFd`/`IntoRawFd`/`FromRawFd`, on Unix and WASI, and
+// `AsHandle`/`From<OwnedHandle>`/`Into<OwnedHandle>` and
+// `AsRawHandle`/`IntoRawHandle`/`FromRawHandle` on Windows.
+
+#[stable(feature = "process", since = "1.0.0")]
+impl Read for ChildStdout {
+ fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ self.inner.read(buf)
+ }
+
+ fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
+ self.inner.read_vectored(bufs)
+ }
+
+ #[inline]
+ fn is_read_vectored(&self) -> bool {
+ self.inner.is_read_vectored()
+ }
+}
+
+impl AsInner<AnonPipe> for ChildStdout {
+ fn as_inner(&self) -> &AnonPipe {
+ &self.inner
+ }
+}
+
+impl IntoInner<AnonPipe> for ChildStdout {
+ fn into_inner(self) -> AnonPipe {
+ self.inner
+ }
+}
+
+impl FromInner<AnonPipe> for ChildStdout {
+ fn from_inner(pipe: AnonPipe) -> ChildStdout {
+ ChildStdout { inner: pipe }
+ }
+}
+
+#[stable(feature = "std_debug", since = "1.16.0")]
+impl fmt::Debug for ChildStdout {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("ChildStdout").finish_non_exhaustive()
+ }
+}
+
+/// A handle to a child process's stderr.
+///
+/// This struct is used in the [`stderr`] field on [`Child`].
+///
+/// When an instance of `ChildStderr` is [dropped], the `ChildStderr`'s
+/// underlying file handle will be closed.
+///
+/// [`stderr`]: Child::stderr
+/// [dropped]: Drop
+#[stable(feature = "process", since = "1.0.0")]
+pub struct ChildStderr {
+ inner: AnonPipe,
+}
+
+// In addition to the `impl`s here, `ChildStderr` also has `impl`s for
+// `AsFd`/`From<OwnedFd>`/`Into<OwnedFd>` and
+// `AsRawFd`/`IntoRawFd`/`FromRawFd`, on Unix and WASI, and
+// `AsHandle`/`From<OwnedHandle>`/`Into<OwnedHandle>` and
+// `AsRawHandle`/`IntoRawHandle`/`FromRawHandle` on Windows.
+
+#[stable(feature = "process", since = "1.0.0")]
+impl Read for ChildStderr {
+ fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ self.inner.read(buf)
+ }
+
+ fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
+ self.inner.read_vectored(bufs)
+ }
+
+ #[inline]
+ fn is_read_vectored(&self) -> bool {
+ self.inner.is_read_vectored()
+ }
+}
+
+impl AsInner<AnonPipe> for ChildStderr {
+ fn as_inner(&self) -> &AnonPipe {
+ &self.inner
+ }
+}
+
+impl IntoInner<AnonPipe> for ChildStderr {
+ fn into_inner(self) -> AnonPipe {
+ self.inner
+ }
+}
+
+impl FromInner<AnonPipe> for ChildStderr {
+ fn from_inner(pipe: AnonPipe) -> ChildStderr {
+ ChildStderr { inner: pipe }
+ }
+}
+
+#[stable(feature = "std_debug", since = "1.16.0")]
+impl fmt::Debug for ChildStderr {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("ChildStderr").finish_non_exhaustive()
+ }
+}
+
+/// A process builder, providing fine-grained control
+/// over how a new process should be spawned.
+///
+/// A default configuration can be
+/// generated using `Command::new(program)`, where `program` gives a path to the
+/// program to be executed. Additional builder methods allow the configuration
+/// to be changed (for example, by adding arguments) prior to spawning:
+///
+/// ```
+/// use std::process::Command;
+///
+/// let output = if cfg!(target_os = "windows") {
+/// Command::new("cmd")
+/// .args(["/C", "echo hello"])
+/// .output()
+/// .expect("failed to execute process")
+/// } else {
+/// Command::new("sh")
+/// .arg("-c")
+/// .arg("echo hello")
+/// .output()
+/// .expect("failed to execute process")
+/// };
+///
+/// let hello = output.stdout;
+/// ```
+///
+/// `Command` can be reused to spawn multiple processes. The builder methods
+/// change the command without needing to immediately spawn the process.
+///
+/// ```no_run
+/// use std::process::Command;
+///
+/// let mut echo_hello = Command::new("sh");
+/// echo_hello.arg("-c")
+/// .arg("echo hello");
+/// let hello_1 = echo_hello.output().expect("failed to execute process");
+/// let hello_2 = echo_hello.output().expect("failed to execute process");
+/// ```
+///
+/// Similarly, you can call builder methods after spawning a process and then
+/// spawn a new process with the modified settings.
+///
+/// ```no_run
+/// use std::process::Command;
+///
+/// let mut list_dir = Command::new("ls");
+///
+/// // Execute `ls` in the current directory of the program.
+/// list_dir.status().expect("process failed to execute");
+///
+/// println!();
+///
+/// // Change `ls` to execute in the root directory.
+/// list_dir.current_dir("/");
+///
+/// // And then execute `ls` again but in the root directory.
+/// list_dir.status().expect("process failed to execute");
+/// ```
+#[stable(feature = "process", since = "1.0.0")]
+pub struct Command {
+ inner: imp::Command,
+}
+
+/// Allows extension traits within `std`.
+#[unstable(feature = "sealed", issue = "none")]
+impl crate::sealed::Sealed for Command {}
+
+impl Command {
+ /// Constructs a new `Command` for launching the program at
+ /// path `program`, with the following default configuration:
+ ///
+ /// * No arguments to the program
+ /// * Inherit the current process's environment
+ /// * Inherit the current process's working directory
+ /// * Inherit stdin/stdout/stderr for [`spawn`] or [`status`], but create pipes for [`output`]
+ ///
+ /// [`spawn`]: Self::spawn
+ /// [`status`]: Self::status
+ /// [`output`]: Self::output
+ ///
+ /// Builder methods are provided to change these defaults and
+ /// otherwise configure the process.
+ ///
+ /// If `program` is not an absolute path, the `PATH` will be searched in
+ /// an OS-defined way.
+ ///
+ /// The search path to be used may be controlled by setting the
+ /// `PATH` environment variable on the Command,
+ /// but this has some implementation limitations on Windows
+ /// (see issue #37519).
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::Command;
+ ///
+ /// Command::new("sh")
+ /// .spawn()
+ /// .expect("sh command failed to start");
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn new<S: AsRef<OsStr>>(program: S) -> Command {
+ Command { inner: imp::Command::new(program.as_ref()) }
+ }
+
+ /// Adds an argument to pass to the program.
+ ///
+ /// Only one argument can be passed per use. So instead of:
+ ///
+ /// ```no_run
+ /// # std::process::Command::new("sh")
+ /// .arg("-C /path/to/repo")
+ /// # ;
+ /// ```
+ ///
+ /// usage would be:
+ ///
+ /// ```no_run
+ /// # std::process::Command::new("sh")
+ /// .arg("-C")
+ /// .arg("/path/to/repo")
+ /// # ;
+ /// ```
+ ///
+ /// To pass multiple arguments see [`args`].
+ ///
+ /// [`args`]: Command::args
+ ///
+ /// Note that the argument is not passed through a shell, but given
+ /// literally to the program. This means that shell syntax like quotes,
+ /// escaped characters, word splitting, glob patterns, substitution, etc.
+ /// have no effect.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::Command;
+ ///
+ /// Command::new("ls")
+ /// .arg("-l")
+ /// .arg("-a")
+ /// .spawn()
+ /// .expect("ls command failed to start");
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command {
+ self.inner.arg(arg.as_ref());
+ self
+ }
+
+ /// Adds multiple arguments to pass to the program.
+ ///
+ /// To pass a single argument see [`arg`].
+ ///
+ /// [`arg`]: Command::arg
+ ///
+ /// Note that the arguments are not passed through a shell, but given
+ /// literally to the program. This means that shell syntax like quotes,
+ /// escaped characters, word splitting, glob patterns, substitution, etc.
+ /// have no effect.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::Command;
+ ///
+ /// Command::new("ls")
+ /// .args(["-l", "-a"])
+ /// .spawn()
+ /// .expect("ls command failed to start");
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn args<I, S>(&mut self, args: I) -> &mut Command
+ where
+ I: IntoIterator<Item = S>,
+ S: AsRef<OsStr>,
+ {
+ for arg in args {
+ self.arg(arg.as_ref());
+ }
+ self
+ }
+
+ /// Inserts or updates an environment variable mapping.
+ ///
+ /// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
+ /// and case-sensitive on all other platforms.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::Command;
+ ///
+ /// Command::new("ls")
+ /// .env("PATH", "/bin")
+ /// .spawn()
+ /// .expect("ls command failed to start");
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command
+ where
+ K: AsRef<OsStr>,
+ V: AsRef<OsStr>,
+ {
+ self.inner.env_mut().set(key.as_ref(), val.as_ref());
+ self
+ }
+
+ /// Adds or updates multiple environment variable mappings.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::{Command, Stdio};
+ /// use std::env;
+ /// use std::collections::HashMap;
+ ///
+ /// let filtered_env : HashMap<String, String> =
+ /// env::vars().filter(|&(ref k, _)|
+ /// k == "TERM" || k == "TZ" || k == "LANG" || k == "PATH"
+ /// ).collect();
+ ///
+ /// Command::new("printenv")
+ /// .stdin(Stdio::null())
+ /// .stdout(Stdio::inherit())
+ /// .env_clear()
+ /// .envs(&filtered_env)
+ /// .spawn()
+ /// .expect("printenv failed to start");
+ /// ```
+ #[stable(feature = "command_envs", since = "1.19.0")]
+ pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Command
+ where
+ I: IntoIterator<Item = (K, V)>,
+ K: AsRef<OsStr>,
+ V: AsRef<OsStr>,
+ {
+ for (ref key, ref val) in vars {
+ self.inner.env_mut().set(key.as_ref(), val.as_ref());
+ }
+ self
+ }
+
+ /// Removes an environment variable mapping.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::Command;
+ ///
+ /// Command::new("ls")
+ /// .env_remove("PATH")
+ /// .spawn()
+ /// .expect("ls command failed to start");
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command {
+ self.inner.env_mut().remove(key.as_ref());
+ self
+ }
+
+ /// Clears the entire environment map for the child process.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::Command;
+ ///
+ /// Command::new("ls")
+ /// .env_clear()
+ /// .spawn()
+ /// .expect("ls command failed to start");
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn env_clear(&mut self) -> &mut Command {
+ self.inner.env_mut().clear();
+ self
+ }
+
+ /// Sets the working directory for the child process.
+ ///
+ /// # Platform-specific behavior
+ ///
+ /// If the program path is relative (e.g., `"./script.sh"`), it's ambiguous
+ /// whether it should be interpreted relative to the parent's working
+ /// directory or relative to `current_dir`. The behavior in this case is
+ /// platform specific and unstable, and it's recommended to use
+ /// [`canonicalize`] to get an absolute program path instead.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::Command;
+ ///
+ /// Command::new("ls")
+ /// .current_dir("/bin")
+ /// .spawn()
+ /// .expect("ls command failed to start");
+ /// ```
+ ///
+ /// [`canonicalize`]: crate::fs::canonicalize
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn current_dir<P: AsRef<Path>>(&mut self, dir: P) -> &mut Command {
+ self.inner.cwd(dir.as_ref().as_ref());
+ self
+ }
+
+ /// Configuration for the child process's standard input (stdin) handle.
+ ///
+ /// Defaults to [`inherit`] when used with [`spawn`] or [`status`], and
+ /// defaults to [`piped`] when used with [`output`].
+ ///
+ /// [`inherit`]: Stdio::inherit
+ /// [`piped`]: Stdio::piped
+ /// [`spawn`]: Self::spawn
+ /// [`status`]: Self::status
+ /// [`output`]: Self::output
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::{Command, Stdio};
+ ///
+ /// Command::new("ls")
+ /// .stdin(Stdio::null())
+ /// .spawn()
+ /// .expect("ls command failed to start");
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn stdin<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
+ self.inner.stdin(cfg.into().0);
+ self
+ }
+
+ /// Configuration for the child process's standard output (stdout) handle.
+ ///
+ /// Defaults to [`inherit`] when used with [`spawn`] or [`status`], and
+ /// defaults to [`piped`] when used with [`output`].
+ ///
+ /// [`inherit`]: Stdio::inherit
+ /// [`piped`]: Stdio::piped
+ /// [`spawn`]: Self::spawn
+ /// [`status`]: Self::status
+ /// [`output`]: Self::output
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::{Command, Stdio};
+ ///
+ /// Command::new("ls")
+ /// .stdout(Stdio::null())
+ /// .spawn()
+ /// .expect("ls command failed to start");
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn stdout<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
+ self.inner.stdout(cfg.into().0);
+ self
+ }
+
+ /// Configuration for the child process's standard error (stderr) handle.
+ ///
+ /// Defaults to [`inherit`] when used with [`spawn`] or [`status`], and
+ /// defaults to [`piped`] when used with [`output`].
+ ///
+ /// [`inherit`]: Stdio::inherit
+ /// [`piped`]: Stdio::piped
+ /// [`spawn`]: Self::spawn
+ /// [`status`]: Self::status
+ /// [`output`]: Self::output
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::{Command, Stdio};
+ ///
+ /// Command::new("ls")
+ /// .stderr(Stdio::null())
+ /// .spawn()
+ /// .expect("ls command failed to start");
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn stderr<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
+ self.inner.stderr(cfg.into().0);
+ self
+ }
+
+ /// Executes the command as a child process, returning a handle to it.
+ ///
+ /// By default, stdin, stdout and stderr are inherited from the parent.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::Command;
+ ///
+ /// Command::new("ls")
+ /// .spawn()
+ /// .expect("ls command failed to start");
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn spawn(&mut self) -> io::Result<Child> {
+ self.inner.spawn(imp::Stdio::Inherit, true).map(Child::from_inner)
+ }
+
+ /// Executes the command as a child process, waiting for it to finish and
+ /// collecting all of its output.
+ ///
+ /// By default, stdout and stderr are captured (and used to provide the
+ /// resulting output). Stdin is not inherited from the parent and any
+ /// attempt by the child process to read from the stdin stream will result
+ /// in the stream immediately closing.
+ ///
+ /// # Examples
+ ///
+ /// ```should_panic
+ /// use std::process::Command;
+ /// use std::io::{self, Write};
+ /// let output = Command::new("/bin/cat")
+ /// .arg("file.txt")
+ /// .output()
+ /// .expect("failed to execute process");
+ ///
+ /// println!("status: {}", output.status);
+ /// io::stdout().write_all(&output.stdout).unwrap();
+ /// io::stderr().write_all(&output.stderr).unwrap();
+ ///
+ /// assert!(output.status.success());
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn output(&mut self) -> io::Result<Output> {
+ self.inner
+ .spawn(imp::Stdio::MakePipe, false)
+ .map(Child::from_inner)
+ .and_then(|p| p.wait_with_output())
+ }
+
+ /// Executes a command as a child process, waiting for it to finish and
+ /// collecting its status.
+ ///
+ /// By default, stdin, stdout and stderr are inherited from the parent.
+ ///
+ /// # Examples
+ ///
+ /// ```should_panic
+ /// use std::process::Command;
+ ///
+ /// let status = Command::new("/bin/cat")
+ /// .arg("file.txt")
+ /// .status()
+ /// .expect("failed to execute process");
+ ///
+ /// println!("process finished with: {status}");
+ ///
+ /// assert!(status.success());
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn status(&mut self) -> io::Result<ExitStatus> {
+ self.inner
+ .spawn(imp::Stdio::Inherit, true)
+ .map(Child::from_inner)
+ .and_then(|mut p| p.wait())
+ }
+
+ /// Returns the path to the program that was given to [`Command::new`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::process::Command;
+ ///
+ /// let cmd = Command::new("echo");
+ /// assert_eq!(cmd.get_program(), "echo");
+ /// ```
+ #[must_use]
+ #[stable(feature = "command_access", since = "1.57.0")]
+ pub fn get_program(&self) -> &OsStr {
+ self.inner.get_program()
+ }
+
+ /// Returns an iterator of the arguments that will be passed to the program.
+ ///
+ /// This does not include the path to the program as the first argument;
+ /// it only includes the arguments specified with [`Command::arg`] and
+ /// [`Command::args`].
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::OsStr;
+ /// use std::process::Command;
+ ///
+ /// let mut cmd = Command::new("echo");
+ /// cmd.arg("first").arg("second");
+ /// let args: Vec<&OsStr> = cmd.get_args().collect();
+ /// assert_eq!(args, &["first", "second"]);
+ /// ```
+ #[stable(feature = "command_access", since = "1.57.0")]
+ pub fn get_args(&self) -> CommandArgs<'_> {
+ CommandArgs { inner: self.inner.get_args() }
+ }
+
+ /// Returns an iterator of the environment variables that will be set when
+ /// the process is spawned.
+ ///
+ /// Each element is a tuple `(&OsStr, Option<&OsStr>)`, where the first
+ /// value is the key, and the second is the value, which is [`None`] if
+ /// the environment variable is to be explicitly removed.
+ ///
+ /// This only includes environment variables explicitly set with
+ /// [`Command::env`], [`Command::envs`], and [`Command::env_remove`]. It
+ /// does not include environment variables that will be inherited by the
+ /// child process.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::ffi::OsStr;
+ /// use std::process::Command;
+ ///
+ /// let mut cmd = Command::new("ls");
+ /// cmd.env("TERM", "dumb").env_remove("TZ");
+ /// let envs: Vec<(&OsStr, Option<&OsStr>)> = cmd.get_envs().collect();
+ /// assert_eq!(envs, &[
+ /// (OsStr::new("TERM"), Some(OsStr::new("dumb"))),
+ /// (OsStr::new("TZ"), None)
+ /// ]);
+ /// ```
+ #[stable(feature = "command_access", since = "1.57.0")]
+ pub fn get_envs(&self) -> CommandEnvs<'_> {
+ self.inner.get_envs()
+ }
+
+ /// Returns the working directory for the child process.
+ ///
+ /// This returns [`None`] if the working directory will not be changed.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::path::Path;
+ /// use std::process::Command;
+ ///
+ /// let mut cmd = Command::new("ls");
+ /// assert_eq!(cmd.get_current_dir(), None);
+ /// cmd.current_dir("/bin");
+ /// assert_eq!(cmd.get_current_dir(), Some(Path::new("/bin")));
+ /// ```
+ #[must_use]
+ #[stable(feature = "command_access", since = "1.57.0")]
+ pub fn get_current_dir(&self) -> Option<&Path> {
+ self.inner.get_current_dir()
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl fmt::Debug for Command {
+ /// Format the program and arguments of a Command for display. Any
+ /// non-utf8 data is lossily converted using the utf8 replacement
+ /// character.
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.inner.fmt(f)
+ }
+}
+
+impl AsInner<imp::Command> for Command {
+ fn as_inner(&self) -> &imp::Command {
+ &self.inner
+ }
+}
+
+impl AsInnerMut<imp::Command> for Command {
+ fn as_inner_mut(&mut self) -> &mut imp::Command {
+ &mut self.inner
+ }
+}
+
+/// An iterator over the command arguments.
+///
+/// This struct is created by [`Command::get_args`]. See its documentation for
+/// more.
+#[must_use = "iterators are lazy and do nothing unless consumed"]
+#[stable(feature = "command_access", since = "1.57.0")]
+#[derive(Debug)]
+pub struct CommandArgs<'a> {
+ inner: imp::CommandArgs<'a>,
+}
+
+#[stable(feature = "command_access", since = "1.57.0")]
+impl<'a> Iterator for CommandArgs<'a> {
+ type Item = &'a OsStr;
+ fn next(&mut self) -> Option<&'a OsStr> {
+ self.inner.next()
+ }
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.inner.size_hint()
+ }
+}
+
+#[stable(feature = "command_access", since = "1.57.0")]
+impl<'a> ExactSizeIterator for CommandArgs<'a> {
+ fn len(&self) -> usize {
+ self.inner.len()
+ }
+ fn is_empty(&self) -> bool {
+ self.inner.is_empty()
+ }
+}
+
+/// The output of a finished process.
+///
+/// This is returned in a Result by either the [`output`] method of a
+/// [`Command`], or the [`wait_with_output`] method of a [`Child`]
+/// process.
+///
+/// [`output`]: Command::output
+/// [`wait_with_output`]: Child::wait_with_output
+#[derive(PartialEq, Eq, Clone)]
+#[stable(feature = "process", since = "1.0.0")]
+pub struct Output {
+ /// The status (exit code) of the process.
+ #[stable(feature = "process", since = "1.0.0")]
+ pub status: ExitStatus,
+ /// The data that the process wrote to stdout.
+ #[stable(feature = "process", since = "1.0.0")]
+ pub stdout: Vec<u8>,
+ /// The data that the process wrote to stderr.
+ #[stable(feature = "process", since = "1.0.0")]
+ pub stderr: Vec<u8>,
+}
+
+// If either stderr or stdout are valid utf8 strings it prints the valid
+// strings, otherwise it prints the byte sequence instead
+#[stable(feature = "process_output_debug", since = "1.7.0")]
+impl fmt::Debug for Output {
+ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
+ let stdout_utf8 = str::from_utf8(&self.stdout);
+ let stdout_debug: &dyn fmt::Debug = match stdout_utf8 {
+ Ok(ref str) => str,
+ Err(_) => &self.stdout,
+ };
+
+ let stderr_utf8 = str::from_utf8(&self.stderr);
+ let stderr_debug: &dyn fmt::Debug = match stderr_utf8 {
+ Ok(ref str) => str,
+ Err(_) => &self.stderr,
+ };
+
+ fmt.debug_struct("Output")
+ .field("status", &self.status)
+ .field("stdout", stdout_debug)
+ .field("stderr", stderr_debug)
+ .finish()
+ }
+}
+
+/// Describes what to do with a standard I/O stream for a child process when
+/// passed to the [`stdin`], [`stdout`], and [`stderr`] methods of [`Command`].
+///
+/// [`stdin`]: Command::stdin
+/// [`stdout`]: Command::stdout
+/// [`stderr`]: Command::stderr
+#[stable(feature = "process", since = "1.0.0")]
+pub struct Stdio(imp::Stdio);
+
+impl Stdio {
+ /// A new pipe should be arranged to connect the parent and child processes.
+ ///
+ /// # Examples
+ ///
+ /// With stdout:
+ ///
+ /// ```no_run
+ /// use std::process::{Command, Stdio};
+ ///
+ /// let output = Command::new("echo")
+ /// .arg("Hello, world!")
+ /// .stdout(Stdio::piped())
+ /// .output()
+ /// .expect("Failed to execute command");
+ ///
+ /// assert_eq!(String::from_utf8_lossy(&output.stdout), "Hello, world!\n");
+ /// // Nothing echoed to console
+ /// ```
+ ///
+ /// With stdin:
+ ///
+ /// ```no_run
+ /// use std::io::Write;
+ /// use std::process::{Command, Stdio};
+ ///
+ /// let mut child = Command::new("rev")
+ /// .stdin(Stdio::piped())
+ /// .stdout(Stdio::piped())
+ /// .spawn()
+ /// .expect("Failed to spawn child process");
+ ///
+ /// let mut stdin = child.stdin.take().expect("Failed to open stdin");
+ /// std::thread::spawn(move || {
+ /// stdin.write_all("Hello, world!".as_bytes()).expect("Failed to write to stdin");
+ /// });
+ ///
+ /// let output = child.wait_with_output().expect("Failed to read stdout");
+ /// assert_eq!(String::from_utf8_lossy(&output.stdout), "!dlrow ,olleH");
+ /// ```
+ ///
+ /// Writing more than a pipe buffer's worth of input to stdin without also reading
+ /// stdout and stderr at the same time may cause a deadlock.
+ /// This is an issue when running any program that doesn't guarantee that it reads
+ /// its entire stdin before writing more than a pipe buffer's worth of output.
+ /// The size of a pipe buffer varies on different targets.
+ ///
+ #[must_use]
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn piped() -> Stdio {
+ Stdio(imp::Stdio::MakePipe)
+ }
+
+ /// The child inherits from the corresponding parent descriptor.
+ ///
+ /// # Examples
+ ///
+ /// With stdout:
+ ///
+ /// ```no_run
+ /// use std::process::{Command, Stdio};
+ ///
+ /// let output = Command::new("echo")
+ /// .arg("Hello, world!")
+ /// .stdout(Stdio::inherit())
+ /// .output()
+ /// .expect("Failed to execute command");
+ ///
+ /// assert_eq!(String::from_utf8_lossy(&output.stdout), "");
+ /// // "Hello, world!" echoed to console
+ /// ```
+ ///
+ /// With stdin:
+ ///
+ /// ```no_run
+ /// use std::process::{Command, Stdio};
+ /// use std::io::{self, Write};
+ ///
+ /// let output = Command::new("rev")
+ /// .stdin(Stdio::inherit())
+ /// .stdout(Stdio::piped())
+ /// .output()
+ /// .expect("Failed to execute command");
+ ///
+ /// print!("You piped in the reverse of: ");
+ /// io::stdout().write_all(&output.stdout).unwrap();
+ /// ```
+ #[must_use]
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn inherit() -> Stdio {
+ Stdio(imp::Stdio::Inherit)
+ }
+
+ /// This stream will be ignored. This is the equivalent of attaching the
+ /// stream to `/dev/null`.
+ ///
+ /// # Examples
+ ///
+ /// With stdout:
+ ///
+ /// ```no_run
+ /// use std::process::{Command, Stdio};
+ ///
+ /// let output = Command::new("echo")
+ /// .arg("Hello, world!")
+ /// .stdout(Stdio::null())
+ /// .output()
+ /// .expect("Failed to execute command");
+ ///
+ /// assert_eq!(String::from_utf8_lossy(&output.stdout), "");
+ /// // Nothing echoed to console
+ /// ```
+ ///
+ /// With stdin:
+ ///
+ /// ```no_run
+ /// use std::process::{Command, Stdio};
+ ///
+ /// let output = Command::new("rev")
+ /// .stdin(Stdio::null())
+ /// .stdout(Stdio::piped())
+ /// .output()
+ /// .expect("Failed to execute command");
+ ///
+ /// assert_eq!(String::from_utf8_lossy(&output.stdout), "");
+ /// // Ignores any piped-in input
+ /// ```
+ #[must_use]
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn null() -> Stdio {
+ Stdio(imp::Stdio::Null)
+ }
+
+ /// Returns `true` if this requires [`Command`] to create a new pipe.
+ ///
+ /// # Example
+ ///
+ /// ```
+ /// #![feature(stdio_makes_pipe)]
+ /// use std::process::Stdio;
+ ///
+ /// let io = Stdio::piped();
+ /// assert_eq!(io.makes_pipe(), true);
+ /// ```
+ #[unstable(feature = "stdio_makes_pipe", issue = "98288")]
+ pub fn makes_pipe(&self) -> bool {
+ matches!(self.0, imp::Stdio::MakePipe)
+ }
+}
+
+impl FromInner<imp::Stdio> for Stdio {
+ fn from_inner(inner: imp::Stdio) -> Stdio {
+ Stdio(inner)
+ }
+}
+
+#[stable(feature = "std_debug", since = "1.16.0")]
+impl fmt::Debug for Stdio {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("Stdio").finish_non_exhaustive()
+ }
+}
+
+#[stable(feature = "stdio_from", since = "1.20.0")]
+impl From<ChildStdin> for Stdio {
+ /// Converts a [`ChildStdin`] into a [`Stdio`].
+ ///
+ /// # Examples
+ ///
+ /// `ChildStdin` will be converted to `Stdio` using `Stdio::from` under the hood.
+ ///
+ /// ```rust,no_run
+ /// use std::process::{Command, Stdio};
+ ///
+ /// let reverse = Command::new("rev")
+ /// .stdin(Stdio::piped())
+ /// .spawn()
+ /// .expect("failed reverse command");
+ ///
+ /// let _echo = Command::new("echo")
+ /// .arg("Hello, world!")
+ /// .stdout(reverse.stdin.unwrap()) // Converted into a Stdio here
+ /// .output()
+ /// .expect("failed echo command");
+ ///
+ /// // "!dlrow ,olleH" echoed to console
+ /// ```
+ fn from(child: ChildStdin) -> Stdio {
+ Stdio::from_inner(child.into_inner().into())
+ }
+}
+
+#[stable(feature = "stdio_from", since = "1.20.0")]
+impl From<ChildStdout> for Stdio {
+ /// Converts a [`ChildStdout`] into a [`Stdio`].
+ ///
+ /// # Examples
+ ///
+ /// `ChildStdout` will be converted to `Stdio` using `Stdio::from` under the hood.
+ ///
+ /// ```rust,no_run
+ /// use std::process::{Command, Stdio};
+ ///
+ /// let hello = Command::new("echo")
+ /// .arg("Hello, world!")
+ /// .stdout(Stdio::piped())
+ /// .spawn()
+ /// .expect("failed echo command");
+ ///
+ /// let reverse = Command::new("rev")
+ /// .stdin(hello.stdout.unwrap()) // Converted into a Stdio here
+ /// .output()
+ /// .expect("failed reverse command");
+ ///
+ /// assert_eq!(reverse.stdout, b"!dlrow ,olleH\n");
+ /// ```
+ fn from(child: ChildStdout) -> Stdio {
+ Stdio::from_inner(child.into_inner().into())
+ }
+}
+
+#[stable(feature = "stdio_from", since = "1.20.0")]
+impl From<ChildStderr> for Stdio {
+ /// Converts a [`ChildStderr`] into a [`Stdio`].
+ ///
+ /// # Examples
+ ///
+ /// ```rust,no_run
+ /// use std::process::{Command, Stdio};
+ ///
+ /// let reverse = Command::new("rev")
+ /// .arg("non_existing_file.txt")
+ /// .stderr(Stdio::piped())
+ /// .spawn()
+ /// .expect("failed reverse command");
+ ///
+ /// let cat = Command::new("cat")
+ /// .arg("-")
+ /// .stdin(reverse.stderr.unwrap()) // Converted into a Stdio here
+ /// .output()
+ /// .expect("failed echo command");
+ ///
+ /// assert_eq!(
+ /// String::from_utf8_lossy(&cat.stdout),
+ /// "rev: cannot open non_existing_file.txt: No such file or directory\n"
+ /// );
+ /// ```
+ fn from(child: ChildStderr) -> Stdio {
+ Stdio::from_inner(child.into_inner().into())
+ }
+}
+
+#[stable(feature = "stdio_from", since = "1.20.0")]
+impl From<fs::File> for Stdio {
+ /// Converts a [`File`](fs::File) into a [`Stdio`].
+ ///
+ /// # Examples
+ ///
+ /// `File` will be converted to `Stdio` using `Stdio::from` under the hood.
+ ///
+ /// ```rust,no_run
+ /// use std::fs::File;
+ /// use std::process::Command;
+ ///
+ /// // With the `foo.txt` file containing `Hello, world!"
+ /// let file = File::open("foo.txt").unwrap();
+ ///
+ /// let reverse = Command::new("rev")
+ /// .stdin(file) // Implicit File conversion into a Stdio
+ /// .output()
+ /// .expect("failed reverse command");
+ ///
+ /// assert_eq!(reverse.stdout, b"!dlrow ,olleH");
+ /// ```
+ fn from(file: fs::File) -> Stdio {
+ Stdio::from_inner(file.into_inner().into())
+ }
+}
+
+/// Describes the result of a process after it has terminated.
+///
+/// This `struct` is used to represent the exit status or other termination of a child process.
+/// Child processes are created via the [`Command`] struct and their exit
+/// status is exposed through the [`status`] method, or the [`wait`] method
+/// of a [`Child`] process.
+///
+/// An `ExitStatus` represents every possible disposition of a process. On Unix this
+/// is the **wait status**. It is *not* simply an *exit status* (a value passed to `exit`).
+///
+/// For proper error reporting of failed processes, print the value of `ExitStatus` or
+/// `ExitStatusError` using their implementations of [`Display`](crate::fmt::Display).
+///
+/// # Differences from `ExitCode`
+///
+/// [`ExitCode`] is intended for terminating the currently running process, via
+/// the `Termination` trait, in contrast to `ExitStatus`, which represents the
+/// termination of a child process. These APIs are separate due to platform
+/// compatibility differences and their expected usage; it is not generally
+/// possible to exactly reproduce an `ExitStatus` from a child for the current
+/// process after the fact.
+///
+/// [`status`]: Command::status
+/// [`wait`]: Child::wait
+//
+// We speak slightly loosely (here and in various other places in the stdlib docs) about `exit`
+// vs `_exit`. Naming of Unix system calls is not standardised across Unices, so terminology is a
+// matter of convention and tradition. For clarity we usually speak of `exit`, even when we might
+// mean an underlying system call such as `_exit`.
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+#[stable(feature = "process", since = "1.0.0")]
+pub struct ExitStatus(imp::ExitStatus);
+
+/// Allows extension traits within `std`.
+#[unstable(feature = "sealed", issue = "none")]
+impl crate::sealed::Sealed for ExitStatus {}
+
+impl ExitStatus {
+ /// Was termination successful? Returns a `Result`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(exit_status_error)]
+ /// # if cfg!(unix) {
+ /// use std::process::Command;
+ ///
+ /// let status = Command::new("ls")
+ /// .arg("/dev/nonexistent")
+ /// .status()
+ /// .expect("ls could not be executed");
+ ///
+ /// println!("ls: {status}");
+ /// status.exit_ok().expect_err("/dev/nonexistent could be listed!");
+ /// # } // cfg!(unix)
+ /// ```
+ #[unstable(feature = "exit_status_error", issue = "84908")]
+ pub fn exit_ok(&self) -> Result<(), ExitStatusError> {
+ self.0.exit_ok().map_err(ExitStatusError)
+ }
+
+ /// Was termination successful? Signal termination is not considered a
+ /// success, and success is defined as a zero exit status.
+ ///
+ /// # Examples
+ ///
+ /// ```rust,no_run
+ /// use std::process::Command;
+ ///
+ /// let status = Command::new("mkdir")
+ /// .arg("projects")
+ /// .status()
+ /// .expect("failed to execute mkdir");
+ ///
+ /// if status.success() {
+ /// println!("'projects/' directory created");
+ /// } else {
+ /// println!("failed to create 'projects/' directory: {status}");
+ /// }
+ /// ```
+ #[must_use]
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn success(&self) -> bool {
+ self.0.exit_ok().is_ok()
+ }
+
+ /// Returns the exit code of the process, if any.
+ ///
+ /// In Unix terms the return value is the **exit status**: the value passed to `exit`, if the
+ /// process finished by calling `exit`. Note that on Unix the exit status is truncated to 8
+ /// bits, and that values that didn't come from a program's call to `exit` may be invented by the
+ /// runtime system (often, for example, 255, 254, 127 or 126).
+ ///
+ /// On Unix, this will return `None` if the process was terminated by a signal.
+ /// [`ExitStatusExt`](crate::os::unix::process::ExitStatusExt) is an
+ /// extension trait for extracting any such signal, and other details, from the `ExitStatus`.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// use std::process::Command;
+ ///
+ /// let status = Command::new("mkdir")
+ /// .arg("projects")
+ /// .status()
+ /// .expect("failed to execute mkdir");
+ ///
+ /// match status.code() {
+ /// Some(code) => println!("Exited with status code: {code}"),
+ /// None => println!("Process terminated by signal")
+ /// }
+ /// ```
+ #[must_use]
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn code(&self) -> Option<i32> {
+ self.0.code()
+ }
+}
+
+impl AsInner<imp::ExitStatus> for ExitStatus {
+ fn as_inner(&self) -> &imp::ExitStatus {
+ &self.0
+ }
+}
+
+impl FromInner<imp::ExitStatus> for ExitStatus {
+ fn from_inner(s: imp::ExitStatus) -> ExitStatus {
+ ExitStatus(s)
+ }
+}
+
+#[stable(feature = "process", since = "1.0.0")]
+impl fmt::Display for ExitStatus {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.0.fmt(f)
+ }
+}
+
+/// Allows extension traits within `std`.
+#[unstable(feature = "sealed", issue = "none")]
+impl crate::sealed::Sealed for ExitStatusError {}
+
+/// Describes the result of a process after it has failed
+///
+/// Produced by the [`.exit_ok`](ExitStatus::exit_ok) method on [`ExitStatus`].
+///
+/// # Examples
+///
+/// ```
+/// #![feature(exit_status_error)]
+/// # if cfg!(unix) {
+/// use std::process::{Command, ExitStatusError};
+///
+/// fn run(cmd: &str) -> Result<(),ExitStatusError> {
+/// Command::new(cmd).status().unwrap().exit_ok()?;
+/// Ok(())
+/// }
+///
+/// run("true").unwrap();
+/// run("false").unwrap_err();
+/// # } // cfg!(unix)
+/// ```
+#[derive(PartialEq, Eq, Clone, Copy, Debug)]
+#[unstable(feature = "exit_status_error", issue = "84908")]
+// The definition of imp::ExitStatusError should ideally be such that
+// Result<(), imp::ExitStatusError> has an identical representation to imp::ExitStatus.
+pub struct ExitStatusError(imp::ExitStatusError);
+
+#[unstable(feature = "exit_status_error", issue = "84908")]
+impl ExitStatusError {
+ /// Reports the exit code, if applicable, from an `ExitStatusError`.
+ ///
+ /// In Unix terms the return value is the **exit status**: the value passed to `exit`, if the
+ /// process finished by calling `exit`. Note that on Unix the exit status is truncated to 8
+ /// bits, and that values that didn't come from a program's call to `exit` may be invented by the
+ /// runtime system (often, for example, 255, 254, 127 or 126).
+ ///
+ /// On Unix, this will return `None` if the process was terminated by a signal. If you want to
+ /// handle such situations specially, consider using methods from
+ /// [`ExitStatusExt`](crate::os::unix::process::ExitStatusExt).
+ ///
+ /// If the process finished by calling `exit` with a nonzero value, this will return
+ /// that exit status.
+ ///
+ /// If the error was something else, it will return `None`.
+ ///
+ /// If the process exited successfully (ie, by calling `exit(0)`), there is no
+ /// `ExitStatusError`. So the return value from `ExitStatusError::code()` is always nonzero.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(exit_status_error)]
+ /// # #[cfg(unix)] {
+ /// use std::process::Command;
+ ///
+ /// let bad = Command::new("false").status().unwrap().exit_ok().unwrap_err();
+ /// assert_eq!(bad.code(), Some(1));
+ /// # } // #[cfg(unix)]
+ /// ```
+ #[must_use]
+ pub fn code(&self) -> Option<i32> {
+ self.code_nonzero().map(Into::into)
+ }
+
+ /// Reports the exit code, if applicable, from an `ExitStatusError`, as a `NonZero`
+ ///
+ /// This is exactly like [`code()`](Self::code), except that it returns a `NonZeroI32`.
+ ///
+ /// Plain `code`, returning a plain integer, is provided because is is often more convenient.
+ /// The returned value from `code()` is indeed also nonzero; use `code_nonzero()` when you want
+ /// a type-level guarantee of nonzeroness.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(exit_status_error)]
+ /// # if cfg!(unix) {
+ /// use std::num::NonZeroI32;
+ /// use std::process::Command;
+ ///
+ /// let bad = Command::new("false").status().unwrap().exit_ok().unwrap_err();
+ /// assert_eq!(bad.code_nonzero().unwrap(), NonZeroI32::try_from(1).unwrap());
+ /// # } // cfg!(unix)
+ /// ```
+ #[must_use]
+ pub fn code_nonzero(&self) -> Option<NonZeroI32> {
+ self.0.code()
+ }
+
+ /// Converts an `ExitStatusError` (back) to an `ExitStatus`.
+ #[must_use]
+ pub fn into_status(&self) -> ExitStatus {
+ ExitStatus(self.0.into())
+ }
+}
+
+#[unstable(feature = "exit_status_error", issue = "84908")]
+impl Into<ExitStatus> for ExitStatusError {
+ fn into(self) -> ExitStatus {
+ ExitStatus(self.0.into())
+ }
+}
+
+#[unstable(feature = "exit_status_error", issue = "84908")]
+impl fmt::Display for ExitStatusError {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "process exited unsuccessfully: {}", self.into_status())
+ }
+}
+
+#[unstable(feature = "exit_status_error", issue = "84908")]
+impl crate::error::Error for ExitStatusError {}
+
+/// This type represents the status code the current process can return
+/// to its parent under normal termination.
+///
+/// `ExitCode` is intended to be consumed only by the standard library (via
+/// [`Termination::report()`]), and intentionally does not provide accessors like
+/// `PartialEq`, `Eq`, or `Hash`. Instead the standard library provides the
+/// canonical `SUCCESS` and `FAILURE` exit codes as well as `From<u8> for
+/// ExitCode` for constructing other arbitrary exit codes.
+///
+/// # Portability
+///
+/// Numeric values used in this type don't have portable meanings, and
+/// different platforms may mask different amounts of them.
+///
+/// For the platform's canonical successful and unsuccessful codes, see
+/// the [`SUCCESS`] and [`FAILURE`] associated items.
+///
+/// [`SUCCESS`]: ExitCode::SUCCESS
+/// [`FAILURE`]: ExitCode::FAILURE
+///
+/// # Differences from `ExitStatus`
+///
+/// `ExitCode` is intended for terminating the currently running process, via
+/// the `Termination` trait, in contrast to [`ExitStatus`], which represents the
+/// termination of a child process. These APIs are separate due to platform
+/// compatibility differences and their expected usage; it is not generally
+/// possible to exactly reproduce an `ExitStatus` from a child for the current
+/// process after the fact.
+///
+/// # Examples
+///
+/// `ExitCode` can be returned from the `main` function of a crate, as it implements
+/// [`Termination`]:
+///
+/// ```
+/// use std::process::ExitCode;
+/// # fn check_foo() -> bool { true }
+///
+/// fn main() -> ExitCode {
+/// if !check_foo() {
+/// return ExitCode::from(42);
+/// }
+///
+/// ExitCode::SUCCESS
+/// }
+/// ```
+#[derive(Clone, Copy, Debug)]
+#[stable(feature = "process_exitcode", since = "1.61.0")]
+pub struct ExitCode(imp::ExitCode);
+
+/// Allows extension traits within `std`.
+#[unstable(feature = "sealed", issue = "none")]
+impl crate::sealed::Sealed for ExitCode {}
+
+#[stable(feature = "process_exitcode", since = "1.61.0")]
+impl ExitCode {
+ /// The canonical `ExitCode` for successful termination on this platform.
+ ///
+ /// Note that a `()`-returning `main` implicitly results in a successful
+ /// termination, so there's no need to return this from `main` unless
+ /// you're also returning other possible codes.
+ #[stable(feature = "process_exitcode", since = "1.61.0")]
+ pub const SUCCESS: ExitCode = ExitCode(imp::ExitCode::SUCCESS);
+
+ /// The canonical `ExitCode` for unsuccessful termination on this platform.
+ ///
+ /// If you're only returning this and `SUCCESS` from `main`, consider
+ /// instead returning `Err(_)` and `Ok(())` respectively, which will
+ /// return the same codes (but will also `eprintln!` the error).
+ #[stable(feature = "process_exitcode", since = "1.61.0")]
+ pub const FAILURE: ExitCode = ExitCode(imp::ExitCode::FAILURE);
+
+ /// Exit the current process with the given `ExitCode`.
+ ///
+ /// Note that this has the same caveats as [`process::exit()`][exit], namely that this function
+ /// terminates the process immediately, so no destructors on the current stack or any other
+ /// thread's stack will be run. If a clean shutdown is needed, it is recommended to simply
+ /// return this ExitCode from the `main` function, as demonstrated in the [type
+ /// documentation](#examples).
+ ///
+ /// # Differences from `process::exit()`
+ ///
+ /// `process::exit()` accepts any `i32` value as the exit code for the process; however, there
+ /// are platforms that only use a subset of that value (see [`process::exit` platform-specific
+ /// behavior][exit#platform-specific-behavior]). `ExitCode` exists because of this; only
+ /// `ExitCode`s that are supported by a majority of our platforms can be created, so those
+ /// problems don't exist (as much) with this method.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(exitcode_exit_method)]
+ /// # use std::process::ExitCode;
+ /// # use std::fmt;
+ /// # enum UhOhError { GenericProblem, Specific, WithCode { exit_code: ExitCode, _x: () } }
+ /// # impl fmt::Display for UhOhError {
+ /// # fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result { unimplemented!() }
+ /// # }
+ /// // there's no way to gracefully recover from an UhOhError, so we just
+ /// // print a message and exit
+ /// fn handle_unrecoverable_error(err: UhOhError) -> ! {
+ /// eprintln!("UH OH! {err}");
+ /// let code = match err {
+ /// UhOhError::GenericProblem => ExitCode::FAILURE,
+ /// UhOhError::Specific => ExitCode::from(3),
+ /// UhOhError::WithCode { exit_code, .. } => exit_code,
+ /// };
+ /// code.exit_process()
+ /// }
+ /// ```
+ #[unstable(feature = "exitcode_exit_method", issue = "97100")]
+ pub fn exit_process(self) -> ! {
+ exit(self.to_i32())
+ }
+}
+
+impl ExitCode {
+ // This is private/perma-unstable because ExitCode is opaque; we don't know that i32 will serve
+ // all usecases, for example windows seems to use u32, unix uses the 8-15th bits of an i32, we
+ // likely want to isolate users anything that could restrict the platform specific
+ // representation of an ExitCode
+ //
+ // More info: https://internals.rust-lang.org/t/mini-pre-rfc-redesigning-process-exitstatus/5426
+ /// Convert an `ExitCode` into an i32
+ #[unstable(
+ feature = "process_exitcode_internals",
+ reason = "exposed only for libstd",
+ issue = "none"
+ )]
+ #[inline]
+ #[doc(hidden)]
+ pub fn to_i32(self) -> i32 {
+ self.0.as_i32()
+ }
+}
+
+#[stable(feature = "process_exitcode", since = "1.61.0")]
+impl From<u8> for ExitCode {
+ /// Construct an `ExitCode` from an arbitrary u8 value.
+ fn from(code: u8) -> Self {
+ ExitCode(imp::ExitCode::from(code))
+ }
+}
+
+impl AsInner<imp::ExitCode> for ExitCode {
+ fn as_inner(&self) -> &imp::ExitCode {
+ &self.0
+ }
+}
+
+impl FromInner<imp::ExitCode> for ExitCode {
+ fn from_inner(s: imp::ExitCode) -> ExitCode {
+ ExitCode(s)
+ }
+}
+
+impl Child {
+ /// Forces the child process to exit. If the child has already exited, an [`InvalidInput`]
+ /// error is returned.
+ ///
+ /// The mapping to [`ErrorKind`]s is not part of the compatibility contract of the function.
+ ///
+ /// This is equivalent to sending a SIGKILL on Unix platforms.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::Command;
+ ///
+ /// let mut command = Command::new("yes");
+ /// if let Ok(mut child) = command.spawn() {
+ /// child.kill().expect("command wasn't running");
+ /// } else {
+ /// println!("yes command didn't start");
+ /// }
+ /// ```
+ ///
+ /// [`ErrorKind`]: io::ErrorKind
+ /// [`InvalidInput`]: io::ErrorKind::InvalidInput
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn kill(&mut self) -> io::Result<()> {
+ self.handle.kill()
+ }
+
+ /// Returns the OS-assigned process identifier associated with this child.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::Command;
+ ///
+ /// let mut command = Command::new("ls");
+ /// if let Ok(child) = command.spawn() {
+ /// println!("Child's ID is {}", child.id());
+ /// } else {
+ /// println!("ls command didn't start");
+ /// }
+ /// ```
+ #[must_use]
+ #[stable(feature = "process_id", since = "1.3.0")]
+ pub fn id(&self) -> u32 {
+ self.handle.id()
+ }
+
+ /// Waits for the child to exit completely, returning the status that it
+ /// exited with. This function will continue to have the same return value
+ /// after it has been called at least once.
+ ///
+ /// The stdin handle to the child process, if any, will be closed
+ /// before waiting. This helps avoid deadlock: it ensures that the
+ /// child does not block waiting for input from the parent, while
+ /// the parent waits for the child to exit.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::Command;
+ ///
+ /// let mut command = Command::new("ls");
+ /// if let Ok(mut child) = command.spawn() {
+ /// child.wait().expect("command wasn't running");
+ /// println!("Child has finished its execution!");
+ /// } else {
+ /// println!("ls command didn't start");
+ /// }
+ /// ```
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn wait(&mut self) -> io::Result<ExitStatus> {
+ drop(self.stdin.take());
+ self.handle.wait().map(ExitStatus)
+ }
+
+ /// Attempts to collect the exit status of the child if it has already
+ /// exited.
+ ///
+ /// This function will not block the calling thread and will only
+ /// check to see if the child process has exited or not. If the child has
+ /// exited then on Unix the process ID is reaped. This function is
+ /// guaranteed to repeatedly return a successful exit status so long as the
+ /// child has already exited.
+ ///
+ /// If the child has exited, then `Ok(Some(status))` is returned. If the
+ /// exit status is not available at this time then `Ok(None)` is returned.
+ /// If an error occurs, then that error is returned.
+ ///
+ /// Note that unlike `wait`, this function will not attempt to drop stdin.
+ ///
+ /// # Examples
+ ///
+ /// Basic usage:
+ ///
+ /// ```no_run
+ /// use std::process::Command;
+ ///
+ /// let mut child = Command::new("ls").spawn().unwrap();
+ ///
+ /// match child.try_wait() {
+ /// Ok(Some(status)) => println!("exited with: {status}"),
+ /// Ok(None) => {
+ /// println!("status not ready yet, let's really wait");
+ /// let res = child.wait();
+ /// println!("result: {res:?}");
+ /// }
+ /// Err(e) => println!("error attempting to wait: {e}"),
+ /// }
+ /// ```
+ #[stable(feature = "process_try_wait", since = "1.18.0")]
+ pub fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
+ Ok(self.handle.try_wait()?.map(ExitStatus))
+ }
+
+ /// Simultaneously waits for the child to exit and collect all remaining
+ /// output on the stdout/stderr handles, returning an `Output`
+ /// instance.
+ ///
+ /// The stdin handle to the child process, if any, will be closed
+ /// before waiting. This helps avoid deadlock: it ensures that the
+ /// child does not block waiting for input from the parent, while
+ /// the parent waits for the child to exit.
+ ///
+ /// By default, stdin, stdout and stderr are inherited from the parent.
+ /// In order to capture the output into this `Result<Output>` it is
+ /// necessary to create new pipes between parent and child. Use
+ /// `stdout(Stdio::piped())` or `stderr(Stdio::piped())`, respectively.
+ ///
+ /// # Examples
+ ///
+ /// ```should_panic
+ /// use std::process::{Command, Stdio};
+ ///
+ /// let child = Command::new("/bin/cat")
+ /// .arg("file.txt")
+ /// .stdout(Stdio::piped())
+ /// .spawn()
+ /// .expect("failed to execute child");
+ ///
+ /// let output = child
+ /// .wait_with_output()
+ /// .expect("failed to wait on child");
+ ///
+ /// assert!(output.status.success());
+ /// ```
+ ///
+ #[stable(feature = "process", since = "1.0.0")]
+ pub fn wait_with_output(mut self) -> io::Result<Output> {
+ drop(self.stdin.take());
+
+ let (mut stdout, mut stderr) = (Vec::new(), Vec::new());
+ match (self.stdout.take(), self.stderr.take()) {
+ (None, None) => {}
+ (Some(mut out), None) => {
+ let res = out.read_to_end(&mut stdout);
+ res.unwrap();
+ }
+ (None, Some(mut err)) => {
+ let res = err.read_to_end(&mut stderr);
+ res.unwrap();
+ }
+ (Some(out), Some(err)) => {
+ let res = read2(out.inner, &mut stdout, err.inner, &mut stderr);
+ res.unwrap();
+ }
+ }
+
+ let status = self.wait()?;
+ Ok(Output { status, stdout, stderr })
+ }
+}
+
+/// Terminates the current process with the specified exit code.
+///
+/// This function will never return and will immediately terminate the current
+/// process. The exit code is passed through to the underlying OS and will be
+/// available for consumption by another process.
+///
+/// Note that because this function never returns, and that it terminates the
+/// process, no destructors on the current stack or any other thread's stack
+/// will be run. If a clean shutdown is needed it is recommended to only call
+/// this function at a known point where there are no more destructors left
+/// to run; or, preferably, simply return a type implementing [`Termination`]
+/// (such as [`ExitCode`] or `Result`) from the `main` function and avoid this
+/// function altogether:
+///
+/// ```
+/// # use std::io::Error as MyError;
+/// fn main() -> Result<(), MyError> {
+/// // ...
+/// Ok(())
+/// }
+/// ```
+///
+/// ## Platform-specific behavior
+///
+/// **Unix**: On Unix-like platforms, it is unlikely that all 32 bits of `exit`
+/// will be visible to a parent process inspecting the exit code. On most
+/// Unix-like platforms, only the eight least-significant bits are considered.
+///
+/// For example, the exit code for this example will be `0` on Linux, but `256`
+/// on Windows:
+///
+/// ```no_run
+/// use std::process;
+///
+/// process::exit(0x0100);
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+pub fn exit(code: i32) -> ! {
+ crate::rt::cleanup();
+ crate::sys::os::exit(code)
+}
+
+/// Terminates the process in an abnormal fashion.
+///
+/// The function will never return and will immediately terminate the current
+/// process in a platform specific "abnormal" manner.
+///
+/// Note that because this function never returns, and that it terminates the
+/// process, no destructors on the current stack or any other thread's stack
+/// will be run.
+///
+/// Rust IO buffers (eg, from `BufWriter`) will not be flushed.
+/// Likewise, C stdio buffers will (on most platforms) not be flushed.
+///
+/// This is in contrast to the default behaviour of [`panic!`] which unwinds
+/// the current thread's stack and calls all destructors.
+/// When `panic="abort"` is set, either as an argument to `rustc` or in a
+/// crate's Cargo.toml, [`panic!`] and `abort` are similar. However,
+/// [`panic!`] will still call the [panic hook] while `abort` will not.
+///
+/// If a clean shutdown is needed it is recommended to only call
+/// this function at a known point where there are no more destructors left
+/// to run.
+///
+/// The process's termination will be similar to that from the C `abort()`
+/// function. On Unix, the process will terminate with signal `SIGABRT`, which
+/// typically means that the shell prints "Aborted".
+///
+/// # Examples
+///
+/// ```no_run
+/// use std::process;
+///
+/// fn main() {
+/// println!("aborting");
+///
+/// process::abort();
+///
+/// // execution never gets here
+/// }
+/// ```
+///
+/// The `abort` function terminates the process, so the destructor will not
+/// get run on the example below:
+///
+/// ```no_run
+/// use std::process;
+///
+/// struct HasDrop;
+///
+/// impl Drop for HasDrop {
+/// fn drop(&mut self) {
+/// println!("This will never be printed!");
+/// }
+/// }
+///
+/// fn main() {
+/// let _x = HasDrop;
+/// process::abort();
+/// // the destructor implemented for HasDrop will never get run
+/// }
+/// ```
+///
+/// [panic hook]: crate::panic::set_hook
+#[stable(feature = "process_abort", since = "1.17.0")]
+#[cold]
+pub fn abort() -> ! {
+ crate::sys::abort_internal();
+}
+
+/// Returns the OS-assigned process identifier associated with this process.
+///
+/// # Examples
+///
+/// Basic usage:
+///
+/// ```no_run
+/// use std::process;
+///
+/// println!("My pid is {}", process::id());
+/// ```
+///
+///
+#[must_use]
+#[stable(feature = "getpid", since = "1.26.0")]
+pub fn id() -> u32 {
+ crate::sys::os::getpid()
+}
+
+/// A trait for implementing arbitrary return types in the `main` function.
+///
+/// The C-main function only supports returning integers.
+/// So, every type implementing the `Termination` trait has to be converted
+/// to an integer.
+///
+/// The default implementations are returning `libc::EXIT_SUCCESS` to indicate
+/// a successful execution. In case of a failure, `libc::EXIT_FAILURE` is returned.
+///
+/// Because different runtimes have different specifications on the return value
+/// of the `main` function, this trait is likely to be available only on
+/// standard library's runtime for convenience. Other runtimes are not required
+/// to provide similar functionality.
+#[cfg_attr(not(test), lang = "termination")]
+#[stable(feature = "termination_trait_lib", since = "1.61.0")]
+#[rustc_on_unimplemented(
+ message = "`main` has invalid return type `{Self}`",
+ label = "`main` can only return types that implement `{Termination}`"
+)]
+pub trait Termination {
+ /// Is called to get the representation of the value as status code.
+ /// This status code is returned to the operating system.
+ #[stable(feature = "termination_trait_lib", since = "1.61.0")]
+ fn report(self) -> ExitCode;
+}
+
+#[stable(feature = "termination_trait_lib", since = "1.61.0")]
+impl Termination for () {
+ #[inline]
+ fn report(self) -> ExitCode {
+ ExitCode::SUCCESS
+ }
+}
+
+#[stable(feature = "termination_trait_lib", since = "1.61.0")]
+impl Termination for ! {
+ fn report(self) -> ExitCode {
+ self
+ }
+}
+
+#[stable(feature = "termination_trait_lib", since = "1.61.0")]
+impl Termination for Infallible {
+ fn report(self) -> ExitCode {
+ match self {}
+ }
+}
+
+#[stable(feature = "termination_trait_lib", since = "1.61.0")]
+impl Termination for ExitCode {
+ #[inline]
+ fn report(self) -> ExitCode {
+ self
+ }
+}
+
+#[stable(feature = "termination_trait_lib", since = "1.61.0")]
+impl<T: Termination, E: fmt::Debug> Termination for Result<T, E> {
+ fn report(self) -> ExitCode {
+ match self {
+ Ok(val) => val.report(),
+ Err(err) => {
+ // Ignore error if the write fails, for example because stderr is
+ // already closed. There is not much point panicking at this point.
+ let _ = writeln!(io::stderr(), "Error: {err:?}");
+ ExitCode::FAILURE
+ }
+ }
+ }
+}