summaryrefslogtreecommitdiffstats
path: root/library/std/src/sync/mutex.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /library/std/src/sync/mutex.rs
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'library/std/src/sync/mutex.rs')
-rw-r--r--library/std/src/sync/mutex.rs553
1 files changed, 553 insertions, 0 deletions
diff --git a/library/std/src/sync/mutex.rs b/library/std/src/sync/mutex.rs
new file mode 100644
index 000000000..e0d13cd64
--- /dev/null
+++ b/library/std/src/sync/mutex.rs
@@ -0,0 +1,553 @@
+#[cfg(all(test, not(target_os = "emscripten")))]
+mod tests;
+
+use crate::cell::UnsafeCell;
+use crate::fmt;
+use crate::ops::{Deref, DerefMut};
+use crate::sync::{poison, LockResult, TryLockError, TryLockResult};
+use crate::sys_common::mutex as sys;
+
+/// A mutual exclusion primitive useful for protecting shared data
+///
+/// This mutex will block threads waiting for the lock to become available. The
+/// mutex can be created via a [`new`] constructor. Each mutex has a type parameter
+/// which represents the data that it is protecting. The data can only be accessed
+/// through the RAII guards returned from [`lock`] and [`try_lock`], which
+/// guarantees that the data is only ever accessed when the mutex is locked.
+///
+/// # Poisoning
+///
+/// The mutexes in this module implement a strategy called "poisoning" where a
+/// mutex is considered poisoned whenever a thread panics while holding the
+/// mutex. Once a mutex is poisoned, all other threads are unable to access the
+/// data by default as it is likely tainted (some invariant is not being
+/// upheld).
+///
+/// For a mutex, this means that the [`lock`] and [`try_lock`] methods return a
+/// [`Result`] which indicates whether a mutex has been poisoned or not. Most
+/// usage of a mutex will simply [`unwrap()`] these results, propagating panics
+/// among threads to ensure that a possibly invalid invariant is not witnessed.
+///
+/// A poisoned mutex, however, does not prevent all access to the underlying
+/// data. The [`PoisonError`] type has an [`into_inner`] method which will return
+/// the guard that would have otherwise been returned on a successful lock. This
+/// allows access to the data, despite the lock being poisoned.
+///
+/// [`new`]: Self::new
+/// [`lock`]: Self::lock
+/// [`try_lock`]: Self::try_lock
+/// [`unwrap()`]: Result::unwrap
+/// [`PoisonError`]: super::PoisonError
+/// [`into_inner`]: super::PoisonError::into_inner
+///
+/// # Examples
+///
+/// ```
+/// use std::sync::{Arc, Mutex};
+/// use std::thread;
+/// use std::sync::mpsc::channel;
+///
+/// const N: usize = 10;
+///
+/// // Spawn a few threads to increment a shared variable (non-atomically), and
+/// // let the main thread know once all increments are done.
+/// //
+/// // Here we're using an Arc to share memory among threads, and the data inside
+/// // the Arc is protected with a mutex.
+/// let data = Arc::new(Mutex::new(0));
+///
+/// let (tx, rx) = channel();
+/// for _ in 0..N {
+/// let (data, tx) = (Arc::clone(&data), tx.clone());
+/// thread::spawn(move || {
+/// // The shared state can only be accessed once the lock is held.
+/// // Our non-atomic increment is safe because we're the only thread
+/// // which can access the shared state when the lock is held.
+/// //
+/// // We unwrap() the return value to assert that we are not expecting
+/// // threads to ever fail while holding the lock.
+/// let mut data = data.lock().unwrap();
+/// *data += 1;
+/// if *data == N {
+/// tx.send(()).unwrap();
+/// }
+/// // the lock is unlocked here when `data` goes out of scope.
+/// });
+/// }
+///
+/// rx.recv().unwrap();
+/// ```
+///
+/// To recover from a poisoned mutex:
+///
+/// ```
+/// use std::sync::{Arc, Mutex};
+/// use std::thread;
+///
+/// let lock = Arc::new(Mutex::new(0_u32));
+/// let lock2 = Arc::clone(&lock);
+///
+/// let _ = thread::spawn(move || -> () {
+/// // This thread will acquire the mutex first, unwrapping the result of
+/// // `lock` because the lock has not been poisoned.
+/// let _guard = lock2.lock().unwrap();
+///
+/// // This panic while holding the lock (`_guard` is in scope) will poison
+/// // the mutex.
+/// panic!();
+/// }).join();
+///
+/// // The lock is poisoned by this point, but the returned result can be
+/// // pattern matched on to return the underlying guard on both branches.
+/// let mut guard = match lock.lock() {
+/// Ok(guard) => guard,
+/// Err(poisoned) => poisoned.into_inner(),
+/// };
+///
+/// *guard += 1;
+/// ```
+///
+/// It is sometimes necessary to manually drop the mutex guard to unlock it
+/// sooner than the end of the enclosing scope.
+///
+/// ```
+/// use std::sync::{Arc, Mutex};
+/// use std::thread;
+///
+/// const N: usize = 3;
+///
+/// let data_mutex = Arc::new(Mutex::new(vec![1, 2, 3, 4]));
+/// let res_mutex = Arc::new(Mutex::new(0));
+///
+/// let mut threads = Vec::with_capacity(N);
+/// (0..N).for_each(|_| {
+/// let data_mutex_clone = Arc::clone(&data_mutex);
+/// let res_mutex_clone = Arc::clone(&res_mutex);
+///
+/// threads.push(thread::spawn(move || {
+/// let mut data = data_mutex_clone.lock().unwrap();
+/// // This is the result of some important and long-ish work.
+/// let result = data.iter().fold(0, |acc, x| acc + x * 2);
+/// data.push(result);
+/// drop(data);
+/// *res_mutex_clone.lock().unwrap() += result;
+/// }));
+/// });
+///
+/// let mut data = data_mutex.lock().unwrap();
+/// // This is the result of some important and long-ish work.
+/// let result = data.iter().fold(0, |acc, x| acc + x * 2);
+/// data.push(result);
+/// // We drop the `data` explicitly because it's not necessary anymore and the
+/// // thread still has work to do. This allow other threads to start working on
+/// // the data immediately, without waiting for the rest of the unrelated work
+/// // to be done here.
+/// //
+/// // It's even more important here than in the threads because we `.join` the
+/// // threads after that. If we had not dropped the mutex guard, a thread could
+/// // be waiting forever for it, causing a deadlock.
+/// drop(data);
+/// // Here the mutex guard is not assigned to a variable and so, even if the
+/// // scope does not end after this line, the mutex is still released: there is
+/// // no deadlock.
+/// *res_mutex.lock().unwrap() += result;
+///
+/// threads.into_iter().for_each(|thread| {
+/// thread
+/// .join()
+/// .expect("The thread creating or execution failed !")
+/// });
+///
+/// assert_eq!(*res_mutex.lock().unwrap(), 800);
+/// ```
+#[stable(feature = "rust1", since = "1.0.0")]
+#[cfg_attr(not(test), rustc_diagnostic_item = "Mutex")]
+pub struct Mutex<T: ?Sized> {
+ inner: sys::MovableMutex,
+ poison: poison::Flag,
+ data: UnsafeCell<T>,
+}
+
+// these are the only places where `T: Send` matters; all other
+// functionality works fine on a single thread.
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
+#[stable(feature = "rust1", since = "1.0.0")]
+unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
+
+/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
+/// dropped (falls out of scope), the lock will be unlocked.
+///
+/// The data protected by the mutex can be accessed through this guard via its
+/// [`Deref`] and [`DerefMut`] implementations.
+///
+/// This structure is created by the [`lock`] and [`try_lock`] methods on
+/// [`Mutex`].
+///
+/// [`lock`]: Mutex::lock
+/// [`try_lock`]: Mutex::try_lock
+#[must_use = "if unused the Mutex will immediately unlock"]
+#[must_not_suspend = "holding a MutexGuard across suspend \
+ points can cause deadlocks, delays, \
+ and cause Futures to not implement `Send`"]
+#[stable(feature = "rust1", since = "1.0.0")]
+#[clippy::has_significant_drop]
+pub struct MutexGuard<'a, T: ?Sized + 'a> {
+ lock: &'a Mutex<T>,
+ poison: poison::Guard,
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> !Send for MutexGuard<'_, T> {}
+#[stable(feature = "mutexguard", since = "1.19.0")]
+unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}
+
+impl<T> Mutex<T> {
+ /// Creates a new mutex in an unlocked state ready for use.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Mutex;
+ ///
+ /// let mutex = Mutex::new(0);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ #[rustc_const_stable(feature = "const_locks", since = "1.63.0")]
+ #[inline]
+ pub const fn new(t: T) -> Mutex<T> {
+ Mutex {
+ inner: sys::MovableMutex::new(),
+ poison: poison::Flag::new(),
+ data: UnsafeCell::new(t),
+ }
+ }
+}
+
+impl<T: ?Sized> Mutex<T> {
+ /// Acquires a mutex, blocking the current thread until it is able to do so.
+ ///
+ /// This function will block the local thread until it is available to acquire
+ /// the mutex. Upon returning, the thread is the only thread with the lock
+ /// held. An RAII guard is returned to allow scoped unlock of the lock. When
+ /// the guard goes out of scope, the mutex will be unlocked.
+ ///
+ /// The exact behavior on locking a mutex in the thread which already holds
+ /// the lock is left unspecified. However, this function will not return on
+ /// the second call (it might panic or deadlock, for example).
+ ///
+ /// # Errors
+ ///
+ /// If another user of this mutex panicked while holding the mutex, then
+ /// this call will return an error once the mutex is acquired.
+ ///
+ /// # Panics
+ ///
+ /// This function might panic when called if the lock is already held by
+ /// the current thread.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::{Arc, Mutex};
+ /// use std::thread;
+ ///
+ /// let mutex = Arc::new(Mutex::new(0));
+ /// let c_mutex = Arc::clone(&mutex);
+ ///
+ /// thread::spawn(move || {
+ /// *c_mutex.lock().unwrap() = 10;
+ /// }).join().expect("thread::spawn failed");
+ /// assert_eq!(*mutex.lock().unwrap(), 10);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn lock(&self) -> LockResult<MutexGuard<'_, T>> {
+ unsafe {
+ self.inner.raw_lock();
+ MutexGuard::new(self)
+ }
+ }
+
+ /// Attempts to acquire this lock.
+ ///
+ /// If the lock could not be acquired at this time, then [`Err`] is returned.
+ /// Otherwise, an RAII guard is returned. The lock will be unlocked when the
+ /// guard is dropped.
+ ///
+ /// This function does not block.
+ ///
+ /// # Errors
+ ///
+ /// If another user of this mutex panicked while holding the mutex, then
+ /// this call will return the [`Poisoned`] error if the mutex would
+ /// otherwise be acquired.
+ ///
+ /// If the mutex could not be acquired because it is already locked, then
+ /// this call will return the [`WouldBlock`] error.
+ ///
+ /// [`Poisoned`]: TryLockError::Poisoned
+ /// [`WouldBlock`]: TryLockError::WouldBlock
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::{Arc, Mutex};
+ /// use std::thread;
+ ///
+ /// let mutex = Arc::new(Mutex::new(0));
+ /// let c_mutex = Arc::clone(&mutex);
+ ///
+ /// thread::spawn(move || {
+ /// let mut lock = c_mutex.try_lock();
+ /// if let Ok(ref mut mutex) = lock {
+ /// **mutex = 10;
+ /// } else {
+ /// println!("try_lock failed");
+ /// }
+ /// }).join().expect("thread::spawn failed");
+ /// assert_eq!(*mutex.lock().unwrap(), 10);
+ /// ```
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> {
+ unsafe {
+ if self.inner.try_lock() {
+ Ok(MutexGuard::new(self)?)
+ } else {
+ Err(TryLockError::WouldBlock)
+ }
+ }
+ }
+
+ /// Immediately drops the guard, and consequently unlocks the mutex.
+ ///
+ /// This function is equivalent to calling [`drop`] on the guard but is more self-documenting.
+ /// Alternately, the guard will be automatically dropped when it goes out of scope.
+ ///
+ /// ```
+ /// #![feature(mutex_unlock)]
+ ///
+ /// use std::sync::Mutex;
+ /// let mutex = Mutex::new(0);
+ ///
+ /// let mut guard = mutex.lock().unwrap();
+ /// *guard += 20;
+ /// Mutex::unlock(guard);
+ /// ```
+ #[unstable(feature = "mutex_unlock", issue = "81872")]
+ pub fn unlock(guard: MutexGuard<'_, T>) {
+ drop(guard);
+ }
+
+ /// Determines whether the mutex is poisoned.
+ ///
+ /// If another thread is active, the mutex can still become poisoned at any
+ /// time. You should not trust a `false` value for program correctness
+ /// without additional synchronization.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::{Arc, Mutex};
+ /// use std::thread;
+ ///
+ /// let mutex = Arc::new(Mutex::new(0));
+ /// let c_mutex = Arc::clone(&mutex);
+ ///
+ /// let _ = thread::spawn(move || {
+ /// let _lock = c_mutex.lock().unwrap();
+ /// panic!(); // the mutex gets poisoned
+ /// }).join();
+ /// assert_eq!(mutex.is_poisoned(), true);
+ /// ```
+ #[inline]
+ #[stable(feature = "sync_poison", since = "1.2.0")]
+ pub fn is_poisoned(&self) -> bool {
+ self.poison.get()
+ }
+
+ /// Clear the poisoned state from a mutex
+ ///
+ /// If the mutex is poisoned, it will remain poisoned until this function is called. This
+ /// allows recovering from a poisoned state and marking that it has recovered. For example, if
+ /// the value is overwritten by a known-good value, then the mutex can be marked as
+ /// un-poisoned. Or possibly, the value could be inspected to determine if it is in a
+ /// consistent state, and if so the poison is removed.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// #![feature(mutex_unpoison)]
+ ///
+ /// use std::sync::{Arc, Mutex};
+ /// use std::thread;
+ ///
+ /// let mutex = Arc::new(Mutex::new(0));
+ /// let c_mutex = Arc::clone(&mutex);
+ ///
+ /// let _ = thread::spawn(move || {
+ /// let _lock = c_mutex.lock().unwrap();
+ /// panic!(); // the mutex gets poisoned
+ /// }).join();
+ ///
+ /// assert_eq!(mutex.is_poisoned(), true);
+ /// let x = mutex.lock().unwrap_or_else(|mut e| {
+ /// **e.get_mut() = 1;
+ /// mutex.clear_poison();
+ /// e.into_inner()
+ /// });
+ /// assert_eq!(mutex.is_poisoned(), false);
+ /// assert_eq!(*x, 1);
+ /// ```
+ #[inline]
+ #[unstable(feature = "mutex_unpoison", issue = "96469")]
+ pub fn clear_poison(&self) {
+ self.poison.clear();
+ }
+
+ /// Consumes this mutex, returning the underlying data.
+ ///
+ /// # Errors
+ ///
+ /// If another user of this mutex panicked while holding the mutex, then
+ /// this call will return an error instead.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Mutex;
+ ///
+ /// let mutex = Mutex::new(0);
+ /// assert_eq!(mutex.into_inner().unwrap(), 0);
+ /// ```
+ #[stable(feature = "mutex_into_inner", since = "1.6.0")]
+ pub fn into_inner(self) -> LockResult<T>
+ where
+ T: Sized,
+ {
+ let data = self.data.into_inner();
+ poison::map_result(self.poison.borrow(), |()| data)
+ }
+
+ /// Returns a mutable reference to the underlying data.
+ ///
+ /// Since this call borrows the `Mutex` mutably, no actual locking needs to
+ /// take place -- the mutable borrow statically guarantees no locks exist.
+ ///
+ /// # Errors
+ ///
+ /// If another user of this mutex panicked while holding the mutex, then
+ /// this call will return an error instead.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::sync::Mutex;
+ ///
+ /// let mut mutex = Mutex::new(0);
+ /// *mutex.get_mut().unwrap() = 10;
+ /// assert_eq!(*mutex.lock().unwrap(), 10);
+ /// ```
+ #[stable(feature = "mutex_get_mut", since = "1.6.0")]
+ pub fn get_mut(&mut self) -> LockResult<&mut T> {
+ let data = self.data.get_mut();
+ poison::map_result(self.poison.borrow(), |()| data)
+ }
+}
+
+#[stable(feature = "mutex_from", since = "1.24.0")]
+impl<T> From<T> for Mutex<T> {
+ /// Creates a new mutex in an unlocked state ready for use.
+ /// This is equivalent to [`Mutex::new`].
+ fn from(t: T) -> Self {
+ Mutex::new(t)
+ }
+}
+
+#[stable(feature = "mutex_default", since = "1.10.0")]
+impl<T: ?Sized + Default> Default for Mutex<T> {
+ /// Creates a `Mutex<T>`, with the `Default` value for T.
+ fn default() -> Mutex<T> {
+ Mutex::new(Default::default())
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for Mutex<T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ let mut d = f.debug_struct("Mutex");
+ match self.try_lock() {
+ Ok(guard) => {
+ d.field("data", &&*guard);
+ }
+ Err(TryLockError::Poisoned(err)) => {
+ d.field("data", &&**err.get_ref());
+ }
+ Err(TryLockError::WouldBlock) => {
+ struct LockedPlaceholder;
+ impl fmt::Debug for LockedPlaceholder {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.write_str("<locked>")
+ }
+ }
+ d.field("data", &LockedPlaceholder);
+ }
+ }
+ d.field("poisoned", &self.poison.get());
+ d.finish_non_exhaustive()
+ }
+}
+
+impl<'mutex, T: ?Sized> MutexGuard<'mutex, T> {
+ unsafe fn new(lock: &'mutex Mutex<T>) -> LockResult<MutexGuard<'mutex, T>> {
+ poison::map_result(lock.poison.guard(), |guard| MutexGuard { lock, poison: guard })
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Deref for MutexGuard<'_, T> {
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ unsafe { &*self.lock.data.get() }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
+ fn deref_mut(&mut self) -> &mut T {
+ unsafe { &mut *self.lock.data.get() }
+ }
+}
+
+#[stable(feature = "rust1", since = "1.0.0")]
+impl<T: ?Sized> Drop for MutexGuard<'_, T> {
+ #[inline]
+ fn drop(&mut self) {
+ unsafe {
+ self.lock.poison.done(&self.poison);
+ self.lock.inner.raw_unlock();
+ }
+ }
+}
+
+#[stable(feature = "std_debug", since = "1.16.0")]
+impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+#[stable(feature = "std_guard_impls", since = "1.20.0")]
+impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ (**self).fmt(f)
+ }
+}
+
+pub fn guard_lock<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a sys::MovableMutex {
+ &guard.lock.inner
+}
+
+pub fn guard_poison<'a, T: ?Sized>(guard: &MutexGuard<'a, T>) -> &'a poison::Flag {
+ &guard.lock.poison
+}