diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 12:02:58 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-17 12:02:58 +0000 |
commit | 698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch) | |
tree | 173a775858bd501c378080a10dca74132f05bc50 /vendor/chalk-engine | |
parent | Initial commit. (diff) | |
download | rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip |
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/chalk-engine')
-rw-r--r-- | vendor/chalk-engine/.cargo-checksum.json | 1 | ||||
-rw-r--r-- | vendor/chalk-engine/Cargo.toml | 40 | ||||
-rw-r--r-- | vendor/chalk-engine/README.md | 3 | ||||
-rw-r--r-- | vendor/chalk-engine/src/README.md | 405 | ||||
-rw-r--r-- | vendor/chalk-engine/src/context.rs | 72 | ||||
-rw-r--r-- | vendor/chalk-engine/src/derived.rs | 34 | ||||
-rw-r--r-- | vendor/chalk-engine/src/forest.rs | 116 | ||||
-rw-r--r-- | vendor/chalk-engine/src/lib.rs | 334 | ||||
-rw-r--r-- | vendor/chalk-engine/src/logic.rs | 1648 | ||||
-rw-r--r-- | vendor/chalk-engine/src/normalize_deep.rs | 172 | ||||
-rw-r--r-- | vendor/chalk-engine/src/simplify.rs | 141 | ||||
-rw-r--r-- | vendor/chalk-engine/src/slg.rs | 378 | ||||
-rw-r--r-- | vendor/chalk-engine/src/slg/aggregate.rs | 642 | ||||
-rw-r--r-- | vendor/chalk-engine/src/slg/resolvent.rs | 731 | ||||
-rw-r--r-- | vendor/chalk-engine/src/solve.rs | 89 | ||||
-rw-r--r-- | vendor/chalk-engine/src/stack.rs | 175 | ||||
-rw-r--r-- | vendor/chalk-engine/src/strand.rs | 51 | ||||
-rw-r--r-- | vendor/chalk-engine/src/table.rs | 173 | ||||
-rw-r--r-- | vendor/chalk-engine/src/tables.rs | 72 |
19 files changed, 5277 insertions, 0 deletions
diff --git a/vendor/chalk-engine/.cargo-checksum.json b/vendor/chalk-engine/.cargo-checksum.json new file mode 100644 index 000000000..93c5b694a --- /dev/null +++ b/vendor/chalk-engine/.cargo-checksum.json @@ -0,0 +1 @@ +{"files":{"Cargo.toml":"f0bf3c13da236bb4ee2b8f5f35ae43dbcc155258f2aeba875fc0891b90dcc822","README.md":"d8d9a21a6700b554e110030288fb94ca98fa6c6398fa6a5a1dafa52b3f7dd545","src/README.md":"6606b446db6a271e99f1019cd6e59a44af50e7b1ee995718d30fde11c09bbc80","src/context.rs":"89dcf1a74cb22604f32265bcce7f93376cf299101337368d0191f4d1cd598de7","src/derived.rs":"a59fe981325e664865bf21407e4a24e317b00cc2545b380d1140b4fddc86ede3","src/forest.rs":"d6d59557b8ff4fbdcdd3474d214b6e455993996224a14773929ee0e295c02984","src/lib.rs":"3c1a331575ede17623bbbb9eb4e6bb49497b41f805b317d91895718cb886fcaf","src/logic.rs":"45747ba7d9a7b14f8c652659ac2e31854f962c613346c23ba55b972fdd548c75","src/normalize_deep.rs":"d1663c7bb5fc16be8b414f188a982cd6b21ad7fa9185f72a0476dba9e4756472","src/simplify.rs":"fbc006c2974dfef17d8849b6cd21b9510805bafce1217721eb43479cf02572d1","src/slg.rs":"2fbdce2aaebe3342f3af5d7b4ccbdef969009c0e0d302c9201bf30b7efb1ae5f","src/slg/aggregate.rs":"52b51f86e837b8219bb84935f870d47f6c5c0c1765cfea3e32a75b1055fa0761","src/slg/resolvent.rs":"476b5efa99711fd1739e2e21ca6d7918c5546d849c96b26e4bd6260852ad1fc9","src/solve.rs":"ed054d4a9b132fa8c5a6ff1c8c4a435207412eaee30fc992ed0d4a668543584c","src/stack.rs":"0eb11b6f40575aff6784ab10d5f027a9e52ee05e818d7c77fdccf9a59fd18a60","src/strand.rs":"3006dab840a6a3cf48bf45a14fa9d117d06dfeb53d8e36301b5b43cef07b648e","src/table.rs":"253197ca4a700cdc8132e04171a00603c65d5db6794e7779073a8412131dd7cf","src/tables.rs":"c140ea3b7ada35c097f578dc81873164c2c36f41adfb5f7d0d71cd9978974a23"},"package":"c44ee96f2d67cb5193d1503f185db1abad9933a1c6e6b4169c176f90baecd393"}
\ No newline at end of file diff --git a/vendor/chalk-engine/Cargo.toml b/vendor/chalk-engine/Cargo.toml new file mode 100644 index 000000000..413af5387 --- /dev/null +++ b/vendor/chalk-engine/Cargo.toml @@ -0,0 +1,40 @@ +# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO +# +# When uploading crates to the registry Cargo will automatically +# "normalize" Cargo.toml files for maximal compatibility +# with all versions of Cargo and also rewrite `path` dependencies +# to registry (e.g., crates.io) dependencies. +# +# If you are reading this file be aware that the original Cargo.toml +# will likely look very different (and much more reasonable). +# See Cargo.toml.orig for the original contents. + +[package] +edition = "2018" +name = "chalk-engine" +version = "0.80.0" +authors = ["Rust Compiler Team", "Chalk developers"] +description = "Core trait engine from Chalk project" +readme = "README.md" +keywords = ["compiler", "traits", "prolog"] +license = "Apache-2.0/MIT" +repository = "https://github.com/rust-lang/chalk" +[dependencies.chalk-derive] +version = "=0.80.0" + +[dependencies.chalk-ir] +version = "=0.80.0" + +[dependencies.chalk-solve] +version = "=0.80.0" + +[dependencies.rustc-hash] +version = "1.1.0" + +[dependencies.tracing] +version = "0.1" + +[dev-dependencies] + +[features] +default = [] diff --git a/vendor/chalk-engine/README.md b/vendor/chalk-engine/README.md new file mode 100644 index 000000000..b396aa456 --- /dev/null +++ b/vendor/chalk-engine/README.md @@ -0,0 +1,3 @@ +The core crate for Chalk. + +See [Github](https://github.com/rust-lang/chalk) for up-to-date information. diff --git a/vendor/chalk-engine/src/README.md b/vendor/chalk-engine/src/README.md new file mode 100644 index 000000000..b7cf2d453 --- /dev/null +++ b/vendor/chalk-engine/src/README.md @@ -0,0 +1,405 @@ +# The on-demand SLG solver + +The basis of the solver is the `Forest` type. A *forest* stores a +collection of *tables* as well as a *stack*. Each *table* represents +the stored results of a particular query that is being performed, as +well as the various *strands*, which are basically suspended +computations that may be used to find more answers. Tables are +interdependent: solving one query may require solving others. + +## Walkthrough + +Perhaps the easiest way to explain how the solver works is to walk +through an example. Let's imagine that we have the following program: + +```rust +trait Debug { } + +struct u32 { } +impl Debug for u32 { } + +struct Rc<T> { } +impl<T: Debug> Debug for Rc<T> { } + +struct Vec<T> { } +impl<T: Debug> Debug for Vec<T> { } +``` + +Now imagine that we want to find answers for the query `exists<T> { +Rc<T>: Debug }`. The first step would be to u-canonicalize this query; this +is the act of giving canonical names to all the unbound inference variables based on the +order of their left-most appearance, as well as canonicalizing the universes of any +universally bound names (e.g., the `T` in `forall<T> { ... }`). In this case, there are no +universally bound names, but the canonical form Q of the query might look something like: + + Rc<?0>: Debug + +where `?0` is a variable in the root universe U0. We would then go and +look for a table with this as the key: since the forest is empty, this +lookup will fail, and we will create a new table T0, corresponding to +the u-canonical goal Q. + +### Ignoring negative reasoning and regions + +To start, we'll ignore the possibility of negative goals like `not { +Foo }`. We'll phase them in later, as they bring several +complications. + +### Creating a table + +When we first create a table, we also initialize it with a set of +*initial strands*. A "strand" is kind of like a "thread" for the +solver: it contains a particular way to produce an answer. The initial +set of strands for a goal like `Rc<?0>: Debug` (i.e., a "domain goal") +is determined by looking for *clauses* in the environment. In Rust, +these clauses derive from impls, but also from where-clauses that are +in scope. In the case of our example, there would be three clauses, +each coming from the program. Using a Prolog-like notation, these look +like: + +``` +(u32: Debug). +(Rc<T>: Debug) :- (T: Debug). +(Vec<T>: Debug) :- (T: Debug). +``` + +To create our initial strands, then, we will try to apply each of +these clauses to our goal of `Rc<?0>: Debug`. The first and third +clauses are inapplicable because `u32` and `Vec<?0>` cannot be unified +with `Rc<?0>`. The second clause, however, will work. + +### What is a strand? + +Let's talk a bit more about what a strand *is*. In the code, a strand +is the combination of an inference table, an X-clause, and (possibly) +a selected subgoal from that X-clause. But what is an X-clause +(`ExClause`, in the code)? An X-clause pulls together a few things: + +- The current state of the goal we are trying to prove; +- A set of subgoals that have yet to be proven; +- A set of floundered subgoals (see the section on floundering below); +- There are also a few things we're ignoring for now: + - delayed literals, region constraints + +The general form of an X-clause is written much like a Prolog clause, +but with somewhat different semantics. Since we're ignoring delayed +literals and region constraints, an X-clause just looks like this: + + G :- L + +where G is a goal and L is a set of subgoals that must be proven. +(The L stands for *literal* -- when we address negative reasoning, a +literal will be either a positive or negative subgoal.) The idea is +that if we are able to prove L then the goal G can be considered true. + +In the case of our example, we would wind up creating one strand, with +an X-clause like so: + + (Rc<?T>: Debug) :- (?T: Debug) + +Here, the `?T` refers to one of the inference variables created in the +inference table that accompanies the strand. (I'll use named variables +to refer to inference variables, and numbered variables like `?0` to +refer to variables in a canonicalized goal; in the code, however, they +are both represented with an index.) + +For each strand, we also optionally store a *selected subgoal*. This +is the subgoal after the turnstile (`:-`) that we are currently trying +to prove in this strand. Initially, when a strand is first created, +there is no selected subgoal. + +### Activating a strand + +Now that we have created the table T0 and initialized it with strands, +we have to actually try and produce an answer. We do this by invoking +the `ensure_answer` operation on the table: specifically, we say +`ensure_answer(T0, A0)`, meaning "ensure that there is a 0th answer". + +Remember that tables store not only strands, but also a vector of +cached answers. The first thing that `ensure_answer` does is to check +whether answer 0 is in this vector. If so, we can just return +immediately. In this case, the vector will be empty, and hence that +does not apply (this becomes important for cyclic checks later on). + +When there is no cached answer, `ensure_answer` will try to produce +one. It does this by selecting a strand from the set of active +strands -- the strands are stored in a `VecDeque` and hence processed +in a round-robin fashion. Right now, we have only one strand, storing +the following X-clause with no selected subgoal: + + (Rc<?T>: Debug) :- (?T: Debug) + +When we activate the strand, we see that we have no selected subgoal, +and so we first pick one of the subgoals to process. Here, there is only +one (`?T: Debug`), so that becomes the selected subgoal, changing +the state of the strand to: + + (Rc<?T>: Debug) :- selected(?T: Debug, A0) + +Here, we write `selected(L, An)` to indicate that (a) the literal `L` +is the selected subgoal and (b) which answer `An` we are looking for. We +start out looking for `A0`. + +### Processing the selected subgoal + +Next, we have to try and find an answer to this selected goal. To do +that, we will u-canonicalize it and try to find an associated +table. In this case, the u-canonical form of the subgoal is `?0: +Debug`: we don't have a table yet for that, so we can create a new +one, T1. As before, we'll initialize T1 with strands. In this case, +there will be three strands, because all the program clauses are +potentially applicable. Those three strands will be: + +- `(u32: Debug) :-`, derived from the program clause `(u32: Debug).`. + - Note: This strand has no subgoals. +- `(Vec<?U>: Debug) :- (?U: Debug)`, derived from the `Vec` impl. +- `(Rc<?U>: Debug) :- (?U: Debug)`, derived from the `Rc` impl. + +We can thus summarize the state of the whole forest at this point as +follows: + +``` +Table T0 [Rc<?0>: Debug] + Strands: + (Rc<?T>: Debug) :- selected(?T: Debug, A0) + +Table T1 [?0: Debug] + Strands: + (u32: Debug) :- + (Vec<?U>: Debug) :- (?U: Debug) + (Rc<?V>: Debug) :- (?V: Debug) +``` + +### Delegation between tables + +Now that the active strand from T0 has created the table T1, it can +try to extract an answer. It does this via that same `ensure_answer` +operation we saw before. In this case, the strand would invoke +`ensure_answer(T1, A0)`, since we will start with the first +answer. This will cause T1 to activate its first strand, `u32: Debug +:-`. + +This strand is somewhat special: it has no subgoals at all. This means +that the goal is proven. We can therefore add `u32: Debug` to the set +of *answers* for our table, calling it answer A0 (it is the first +answer). The strand is then removed from the list of strands. + +The state of table T1 is therefore: + +``` +Table T1 [?0: Debug] + Answers: + A0 = [?0 = u32] + Strand: + (Vec<?U>: Debug) :- (?U: Debug) + (Rc<?V>: Debug) :- (?V: Debug) +``` + +Note that I am writing out the answer A0 as a substitution that can be +applied to the table goal; actually, in the code, the goals for each +X-clause are also represented as substitutions, but in this exposition +I've chosen to write them as full goals, following NFTD. + +Since we now have an answer, `ensure_answer(T1, A0)` will return `Ok` +to the table T0, indicating that answer A0 is available. T0 now has +the job of incorporating that result into its active strand. It does +this in two ways. First, it creates a new strand that is looking for +the next possible answer of T1. Next, it incorporates the answer from +A0 and removes the subgoal. The resulting state of table T0 is: + +``` +Table T0 [Rc<?0>: Debug] + Strands: + (Rc<?T>: Debug) :- selected(?T: Debug, A1) + (Rc<u32>: Debug) :- +``` + +We then immediately activate the strand that incorporated the answer +(the `Rc<u32>: Debug` one). In this case, that strand has no further +subgoals, so it becomes an answer to the table T0. This answer can +then be returned up to our caller, and the whole forest goes quiescent +at this point (remember, we only do enough work to generate *one* +answer). The ending state of the forest at this point will be: + +``` +Table T0 [Rc<?0>: Debug] + Answer: + A0 = [?0 = u32] + Strands: + (Rc<?T>: Debug) :- selected(?T: Debug, A1) + +Table T1 [?0: Debug] + Answers: + A0 = [?0 = u32] + Strand: + (Vec<?U>: Debug) :- (?U: Debug) + (Rc<?V>: Debug) :- (?V: Debug) +``` + +Here you can see how the forest captures both the answers we have +created thus far *and* the strands that will let us try to produce +more answers later on. + +### Floundering + +The first thing we do when we create a table is to initialize it with +a set of strands. These strands represent all the ways that one can +solve the table's associated goal. For an ordinary trait, we would +effectively create one strand per "relevant impl". But sometimes the +goals are too vague for this to be possible; other times, it may be possible +but just really inefficient, since all of those strands must be explored. + +As an example of when it may not be possible, consider a goal like +`?T: Sized`. This goal can in principle enumerate **every sized type** +that exists -- that includes not only struct/enum types, but also +closure types, fn types with arbitrary arity, tuple types with +arbitrary arity, and so forth. In other words, there are not only an +infinite set of **answers** but actually an infinite set of +**strands**. The same applies to auto traits like `Send` as well as +"hybrid" traits like `Clone`, which contain *some* auto-generated sets +of impls. + +Another example of floundering comes from negative logic. In general, +we cannot process negative subgoals if they have unbound existential +variables, such as `not { Vec<?T>: Foo }`. This is because we can only +enumerate things that *do* match a given trait (or which *are* +provable, more generally). We cannot enumerate out possible types `?T` +that *are not* provable (there is an infinite set, to be sure). + +To handle this, we allow tables to enter a **floundered** state. This +state begins when we try to create the program clauses for a table -- +if that is not possible (e.g., in one of the cases above) then the +table enters a floundered state. Attempts to get an answer from a +floundered table result in an error (e.g., +`RecursiveSearchFail::Floundered`). + +Whenever a goal results in a floundered result, that goal is placed +into a distinct list (the "floundered subgoals"). We then go on and +process the rest of the subgoals. Once all the normal subgoals have +completed, floundered subgoals are removed from the floundered list +and re-attempted: the idea is that we may have accumulated more type +information in the meantime. If they continue to flounder, then we +stop. + +Let's look at an example. Imagine that we have: + +```rust +trait Foo { } +trait Bar { } + +impl<T: Send + Bar> Foo for T { } + +impl Bar for u32 { } +impl Bar for i32 { } +``` + +Now imagine we are trying to prove `?T: Foo`. There is only one impl, +so we will create a state like: + +``` +(?T: Foo) :- (?T: Send), (?T: Bar) +``` + +When we attempt to solve `?T: Send`, however, that subgoal will +flounder, because `Send` is an auto-trait. So it will be put into a +floundered list: + +``` +(?T: Foo) :- (?T: Bar) [ floundered: (?T: Send) ] +``` + +and we will go on to solve `?T: Bar`. `Bar` is an ordinary trait -- so +we can enumerate two strands (one for `u32` and one for `i32`). When +we process the first answer, we wind up with: + +``` +(u32: Foo) :- [ floundered: (u32: Send) ] +``` + +At this point we can move the floundered subgoal back into the main +list and process: + +``` +(u32: Foo) :- (u32: Send) +``` + +This time, the goal does not flounder. + +But how do we detect when it makes sense to move a floundered subgoal +into the main list? To handle this, we use a timestamp scheme. We +keep a counter as part of the strand -- each time we succeed in +solving some subgoal, we increment the counter, as that *may* have +provided more information about some type variables. When we move a +goal to the floundered list, we also track the current value of the +timestamp. Then, when it comes time to move things *from* the +floundered list, we can compare if the timestamp has been changed +since the goal was marked as floundering. If not, then no new +information can have been attempted, and we can mark the current table +as being floundered itself. + +This mechanism allows floundered to propagate up many levels, e.g. +in an example like this: + +```rust +trait Foo { } +trait Bar { } +trait Baz { } + +impl<T: Baz + Bar> Foo for T { } + +impl Bar for u32 { } +impl Bar for i32 { } + +impl<T: Sized> Baz for T { } +``` + +Here, solving `?T: Baz` will in turn invoke `?T: Sized` -- this +floundering state will be propagated up to the `?T: Foo` table. + +## Heritage and acronyms + +This solver implements the SLG solving technique, though extended to +accommodate hereditary harrop (HH) predicates, as well as the needs of +lazy normalization. + +Its design is kind of a fusion of [MiniKanren] and the following +papers, which I will refer to as EWFS and NTFD respectively: + +> Efficient Top-Down Computation of Queries Under the Well-formed Semantics +> (Chen, Swift, and Warren; Journal of Logic Programming '95) + +> A New Formulation of Tabled resolution With Delay +> (Swift; EPIA '99) + +[MiniKanren]: http://minikanren.org/ + +In addition, I incorporated extensions from the following papers, +which I will refer to as SA and RR respectively, that describes how to +do introduce approximation when processing subgoals and so forth: + +> Terminating Evaluation of Logic Programs with Finite Three-Valued Models +> Riguzzi and Swift; ACM Transactions on Computational Logic 2013 +> (Introduces "subgoal abstraction", hence the name SA) +> +> Radial Restraint +> Grosof and Swift; 2013 + +Another useful paper that gives a kind of high-level overview of +concepts at play is the following: + +> XSB: Extending Prolog with Tabled Logic Programming +> (Swift and Warren; Theory and Practice of Logic Programming '10) + +There are a places where I intentionally diverged from the semantics +as described in the papers -- e.g. by more aggressively approximating +-- which I marked them with a comment DIVERGENCE. Those places may +want to be evaluated in the future. + +A few other acronyms that I use: + +- WAM: Warren abstract machine, an efficient way to evaluate Prolog programs. + See <http://wambook.sourceforge.net/>. +- HH: Hereditary harrop predicates. What Chalk deals in. + Popularized by Lambda Prolog. + + diff --git a/vendor/chalk-engine/src/context.rs b/vendor/chalk-engine/src/context.rs new file mode 100644 index 000000000..fa418dfd4 --- /dev/null +++ b/vendor/chalk-engine/src/context.rs @@ -0,0 +1,72 @@ +//! Defines traits used to embed the chalk-engine in another crate. +//! +//! chalk and rustc both define types which implement the traits in this +//! module. This allows each user of chalk-engine to define their own +//! `DomainGoal` type, add arena lifetime parameters, and more. See +//! [`Context`] trait for a list of types. + +use crate::CompleteAnswer; +use chalk_ir::interner::Interner; +use chalk_ir::Substitution; +use std::fmt::Debug; + +pub enum AnswerResult<I: Interner> { + /// The next available answer. + Answer(CompleteAnswer<I>), + + /// No answer could be returned because there are no more solutions. + NoMoreSolutions, + + /// No answer could be returned because the goal has floundered. + Floundered, + + // No answer could be returned *yet*, because we exceeded our + // quantum (`should_continue` returned false). + QuantumExceeded, +} + +impl<I: Interner> AnswerResult<I> { + pub fn is_answer(&self) -> bool { + matches!(self, Self::Answer(_)) + } + + pub fn answer(self) -> CompleteAnswer<I> { + match self { + Self::Answer(answer) => answer, + _ => panic!("Not an answer."), + } + } + + pub fn is_no_more_solutions(&self) -> bool { + matches!(self, Self::NoMoreSolutions) + } + + pub fn is_quantum_exceeded(&self) -> bool { + matches!(self, Self::QuantumExceeded) + } +} + +impl<I: Interner> Debug for AnswerResult<I> { + fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { + match self { + AnswerResult::Answer(answer) => write!(fmt, "{:?}", answer), + AnswerResult::Floundered => write!(fmt, "Floundered"), + AnswerResult::NoMoreSolutions => write!(fmt, "None"), + AnswerResult::QuantumExceeded => write!(fmt, "QuantumExceeded"), + } + } +} + +pub trait AnswerStream<I: Interner> { + /// Gets the next answer for a given goal, but doesn't increment the answer index. + /// Calling this or `next_answer` again will give the same answer. + fn peek_answer(&mut self, should_continue: impl Fn() -> bool) -> AnswerResult<I>; + + /// Gets the next answer for a given goal, incrementing the answer index. + /// Calling this or `peek_answer` again will give the next answer. + fn next_answer(&mut self, should_continue: impl Fn() -> bool) -> AnswerResult<I>; + + /// Invokes `test` with each possible future answer, returning true immediately + /// if we find any answer for which `test` returns true. + fn any_future_answer(&self, test: impl Fn(&Substitution<I>) -> bool) -> bool; +} diff --git a/vendor/chalk-engine/src/derived.rs b/vendor/chalk-engine/src/derived.rs new file mode 100644 index 000000000..b3cdc3d0d --- /dev/null +++ b/vendor/chalk-engine/src/derived.rs @@ -0,0 +1,34 @@ +// These impls for PartialEq, Eq, etc are written by hand. This is +// because the `#[derive()]` would add requirements onto the context +// object that are not needed. + +use super::*; +use std::cmp::{Eq, PartialEq}; +use std::hash::{Hash, Hasher}; +use std::mem; + +/////////////////////////////////////////////////////////////////////////// + +impl<I: Interner> PartialEq for Literal<I> { + fn eq(&self, other: &Literal<I>) -> bool { + match (self, other) { + (Literal::Positive(goal1), Literal::Positive(goal2)) + | (Literal::Negative(goal1), Literal::Negative(goal2)) => goal1 == goal2, + + _ => false, + } + } +} + +impl<I: Interner> Eq for Literal<I> {} + +impl<I: Interner> Hash for Literal<I> { + fn hash<H: Hasher>(&self, state: &mut H) { + mem::discriminant(self).hash(state); + match self { + Literal::Positive(goal) | Literal::Negative(goal) => { + goal.hash(state); + } + } + } +} diff --git a/vendor/chalk-engine/src/forest.rs b/vendor/chalk-engine/src/forest.rs new file mode 100644 index 000000000..410b9cd0a --- /dev/null +++ b/vendor/chalk-engine/src/forest.rs @@ -0,0 +1,116 @@ +use crate::context::{AnswerResult, AnswerStream}; +use crate::logic::RootSearchFail; +use crate::slg::SlgContextOps; +use crate::table::AnswerIndex; +use crate::tables::Tables; +use crate::{TableIndex, TimeStamp}; + +use chalk_ir::interner::Interner; +use chalk_ir::{Goal, InEnvironment, Substitution, UCanonical}; +use tracing::debug; + +pub(crate) struct Forest<I: Interner> { + pub(crate) tables: Tables<I>, + + /// This is a clock which always increases. It is + /// incremented every time a new subgoal is followed. + /// This effectively gives us way to track what depth + /// and loop a table or strand was last followed. + pub(crate) clock: TimeStamp, +} + +impl<I: Interner> Forest<I> { + pub fn new() -> Self { + Forest { + tables: Tables::new(), + clock: TimeStamp::default(), + } + } + + // Gets the next clock TimeStamp. This will never decrease. + pub(crate) fn increment_clock(&mut self) -> TimeStamp { + self.clock.increment(); + self.clock + } + + /// Returns a "solver" for a given goal in the form of an + /// iterator. Each time you invoke `next`, it will do the work to + /// extract one more answer. These answers are cached in between + /// invocations. Invoking `next` fewer times is preferable =) + pub fn iter_answers<'f>( + &'f mut self, + context: &'f SlgContextOps<'f, I>, + goal: &UCanonical<InEnvironment<Goal<I>>>, + ) -> impl AnswerStream<I> + 'f { + let table = self.get_or_create_table_for_ucanonical_goal(context, goal.clone()); + let answer = AnswerIndex::ZERO; + ForestSolver { + forest: self, + context, + table, + answer, + } + } +} + +struct ForestSolver<'me, I: Interner> { + forest: &'me mut Forest<I>, + context: &'me SlgContextOps<'me, I>, + table: TableIndex, + answer: AnswerIndex, +} + +impl<'me, I: Interner> AnswerStream<I> for ForestSolver<'me, I> { + /// # Panics + /// + /// Panics if a negative cycle was detected. + fn peek_answer(&mut self, should_continue: impl Fn() -> bool) -> AnswerResult<I> { + loop { + match self + .forest + .root_answer(self.context, self.table, self.answer) + { + Ok(answer) => { + debug!(answer = ?(&answer)); + return AnswerResult::Answer(answer); + } + + Err(RootSearchFail::InvalidAnswer) => { + self.answer.increment(); + } + Err(RootSearchFail::Floundered) => { + return AnswerResult::Floundered; + } + + Err(RootSearchFail::NoMoreSolutions) => { + return AnswerResult::NoMoreSolutions; + } + + Err(RootSearchFail::QuantumExceeded) => { + if !should_continue() { + return AnswerResult::QuantumExceeded; + } + } + + Err(RootSearchFail::NegativeCycle) => { + // Negative cycles *ought* to be avoided by construction. Hence panic + // if we find one, as that likely indicates a problem in the chalk-solve + // lowering rules. (In principle, we could propagate this error out, + // and let chalk-solve do the asserting, but that seemed like it would + // complicate the function signature more than it's worth.) + panic!("negative cycle was detected"); + } + } + } + } + + fn next_answer(&mut self, should_continue: impl Fn() -> bool) -> AnswerResult<I> { + let answer = self.peek_answer(should_continue); + self.answer.increment(); + answer + } + + fn any_future_answer(&self, test: impl Fn(&Substitution<I>) -> bool) -> bool { + self.forest.any_future_answer(self.table, self.answer, test) + } +} diff --git a/vendor/chalk-engine/src/lib.rs b/vendor/chalk-engine/src/lib.rs new file mode 100644 index 000000000..499b33e4f --- /dev/null +++ b/vendor/chalk-engine/src/lib.rs @@ -0,0 +1,334 @@ +//! An alternative solver based around the SLG algorithm, which +//! implements the well-formed semantics. For an overview of how the solver +//! works, see [The On-Demand SLG Solver][guide] in the chalk book. +//! +//! [guide]: https://rust-lang.github.io/chalk/book/engine/slg.html +//! +//! This algorithm is very closed based on the description found in the +//! following paper, which I will refer to in the comments as EWFS: +//! +//! > Efficient Top-Down Computation of Queries Under the Well-founded Semantics +//! > (Chen, Swift, and Warren; Journal of Logic Programming '95) +//! +//! However, to understand that paper, I would recommend first +//! starting with the following paper, which I will refer to in the +//! comments as NFTD: +//! +//! > A New Formulation of Tabled resolution With Delay +//! > (Swift; EPIA '99) +//! +//! In addition, I incorporated extensions from the following papers, +//! which I will refer to as SA and RR respectively, that +//! describes how to do introduce approximation when processing +//! subgoals and so forth: +//! +//! > Terminating Evaluation of Logic Programs with Finite Three-Valued Models +//! > Riguzzi and Swift; ACM Transactions on Computational Logic 2013 +//! > (Introduces "subgoal abstraction", hence the name SA) +//! > +//! > Radial Restraint +//! > Grosof and Swift; 2013 +//! +//! Another useful paper that gives a kind of high-level overview of +//! concepts at play is the following, which I will refer to as XSB: +//! +//! > XSB: Extending Prolog with Tabled Logic Programming +//! > (Swift and Warren; Theory and Practice of Logic Programming '10) +//! +//! While this code is adapted from the algorithms described in those +//! papers, it is not the same. For one thing, the approaches there +//! had to be extended to our context, and in particular to coping +//! with hereditary harrop predicates and our version of unification +//! (which produces subgoals). I believe those to be largely faithful +//! extensions. However, there are some other places where I +//! intentionally diverged from the semantics as described in the +//! papers -- e.g. by more aggressively approximating -- which I +//! marked them with a comment DIVERGENCE. Those places may want to be +//! evaluated in the future. +//! +//! Glossary of other terms: +//! +//! - WAM: Warren abstract machine, an efficient way to evaluate Prolog programs. +//! See <http://wambook.sourceforge.net/>. +//! - HH: Hereditary harrop predicates. What Chalk deals in. +//! Popularized by Lambda Prolog. + +use std::cmp::min; +use std::usize; + +use chalk_derive::{Fold, HasInterner, Visit}; +use chalk_ir::interner::Interner; +use chalk_ir::{ + AnswerSubst, Canonical, ConstrainedSubst, Constraint, DebruijnIndex, Goal, InEnvironment, + Substitution, +}; +use std::ops::ControlFlow; + +pub mod context; +mod derived; +pub mod forest; +mod logic; +mod normalize_deep; +mod simplify; +pub mod slg; +pub mod solve; +mod stack; +mod strand; +mod table; +mod tables; + +index_struct! { + pub struct TableIndex { // FIXME: pub b/c Fold + value: usize, + } +} + +/// The paper describes these as `A :- D | G`. +#[derive(Clone, Debug, PartialEq, Eq, Hash, Fold, Visit, HasInterner)] +pub struct ExClause<I: Interner> { + /// The substitution which, applied to the goal of our table, + /// would yield A. + pub subst: Substitution<I>, + + /// True if any subgoals were depended upon negatively and + /// were not fully evaluated, or if we encountered a `CannotProve` + /// goal. (In the full SLG algorithm, we would use delayed literals here, + /// but we don't bother, as we don't need that support.) + pub ambiguous: bool, + + /// Region constraints we have accumulated. + pub constraints: Vec<InEnvironment<Constraint<I>>>, + + /// Subgoals: literals that must be proven + pub subgoals: Vec<Literal<I>>, + + /// We assume that negative literals cannot have coinductive cycles. + pub delayed_subgoals: Vec<InEnvironment<Goal<I>>>, + + /// Time stamp that is incremented each time we find an answer to + /// some subgoal. This is used to figure out whether any of the + /// floundered subgoals may no longer be floundered: we record the + /// current time when we add something to the list of floundered + /// subgoals, and then we can compare whether its value has + /// changed since then. This is not the same `TimeStamp` of + /// `Forest`'s clock. + pub answer_time: TimeStamp, + + /// List of subgoals that have floundered. See `FlounderedSubgoal` + /// for more information. + pub floundered_subgoals: Vec<FlounderedSubgoal<I>>, +} + +/// The "time stamp" is a simple clock that gets incremented each time +/// we encounter a positive answer in processing a particular +/// strand. This is used as an optimization to help us figure out when +/// we *may* have changed inference variables. +#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)] +pub struct TimeStamp { + clock: u64, +} + +impl TimeStamp { + const MAX: TimeStamp = TimeStamp { + clock: ::std::u64::MAX, + }; + + fn increment(&mut self) { + self.clock += 1; + } +} + +/// A "floundered" subgoal is one that contains unbound existential +/// variables for which it cannot produce a value. The classic example +/// of floundering is a negative subgoal: +/// +/// ```notrust +/// not { Implemented(?T: Foo) } +/// ``` +/// +/// The way the prolog solver works, it basically enumerates all the +/// ways that a given goal can be *true*. But we can't use this +/// technique to find all the ways that `?T: Foo` can be *false* -- so +/// we call it floundered. In other words, we can evaluate a negative +/// goal, but only if we know what `?T` is -- we can't use the +/// negative goal to help us figuring out `?T`. +/// +/// In addition to negative goals, we use floundering to prevent the +/// trait solver from trying to enumerate very large goals with tons +/// of answers. For example, we consider a goal like `?T: Sized` to +/// "flounder", since we can't hope to enumerate all types that are +/// `Sized`. The same is true for other special traits like `Clone`. +/// +/// Floundering can also occur indirectly. For example: +/// +/// ```notrust +/// trait Foo { } +/// impl<T> Foo for T { } +/// ``` +/// +/// trying to solve `?T: Foo` would immediately require solving `?T: +/// Sized`, and hence would flounder. +#[derive(Clone, Debug, PartialEq, Eq, Hash, Fold, Visit)] +pub struct FlounderedSubgoal<I: Interner> { + /// Literal that floundered. + pub floundered_literal: Literal<I>, + + /// Current value of the strand's clock at the time of + /// floundering. + pub floundered_time: TimeStamp, +} + +/// An "answer" in the on-demand solver corresponds to a fully solved +/// goal for a particular table (modulo delayed literals). It contains +/// a substitution +#[derive(Clone, Debug)] +pub struct Answer<I: Interner> { + /// Contains values for the unbound inference variables for which + /// the table is true, along with any delayed subgoals (Which must + /// still be proven) and region constrained (which must still be + /// proven, but not by chalk). + pub subst: Canonical<AnswerSubst<I>>, + + /// If this flag is set, then the answer could be neither proven + /// nor disproven. This could be the size of the answer exceeded + /// `max_size` or because of a negative loop (e.g., `P :- not { P }`). + pub ambiguous: bool, +} + +#[derive(Clone, Debug)] +pub struct CompleteAnswer<I: Interner> { + /// Contains values for the unbound inference variables for which + /// the table is true, along with any region constrained (which must still be + /// proven, but not by chalk). + pub subst: Canonical<ConstrainedSubst<I>>, + + /// If this flag is set, then the answer could be neither proven + /// nor disproven. This could be the size of the answer exceeded + /// `max_size` or because of a negative loop (e.g., `P :- not { P }`). + pub ambiguous: bool, +} + +/// Either `A` or `~A`, where `A` is a `Env |- Goal`. +#[derive(Clone, Debug, Fold, Visit)] +pub enum Literal<I: Interner> { + // FIXME: pub b/c fold + Positive(InEnvironment<Goal<I>>), + Negative(InEnvironment<Goal<I>>), +} + +/// The `Minimums` structure is used to track the dependencies between +/// some item E on the evaluation stack. In particular, it tracks +/// cases where the success of E depends (or may depend) on items +/// deeper in the stack than E (i.e., with lower DFNs). +/// +/// `positive` tracks the lowest index on the stack to which we had a +/// POSITIVE dependency (e.g. `foo(X) :- bar(X)`) -- meaning that in +/// order for E to succeed, the dependency must succeed. It is +/// initialized with the index of the predicate on the stack. So +/// imagine we have a stack like this: +/// +/// ```notrust +/// // 0 foo(X) <-- bottom of stack +/// // 1 bar(X) +/// // 2 baz(X) <-- top of stack +/// ``` +/// +/// In this case, `positive` would be initially 0, 1, and 2 for `foo`, +/// `bar`, and `baz` respectively. This reflects the fact that the +/// answers for `foo(X)` depend on the answers for `foo(X)`. =) +/// +/// Now imagine that we had a clause `baz(X) :- foo(X)`, inducing a +/// cycle. In this case, we would update `positive` for `baz(X)` to be +/// 0, reflecting the fact that its answers depend on the answers for +/// `foo(X)`. Similarly, the minimum for `bar` would (eventually) be +/// updated, since it too transitively depends on `foo`. `foo` is +/// unaffected. +/// +/// `negative` tracks the lowest index on the stack to which we had a +/// NEGATIVE dependency (e.g., `foo(X) :- not { bar(X) }`) -- meaning +/// that for E to succeed, the dependency must fail. This is initially +/// `usize::MAX`, reflecting the fact that the answers for `foo(X)` do +/// not depend on `not(foo(X))`. When negative cycles are encountered, +/// however, this value must be updated. +#[derive(Copy, Clone, Debug)] +struct Minimums { + positive: TimeStamp, + negative: TimeStamp, +} + +impl Minimums { + const MAX: Minimums = Minimums { + positive: TimeStamp::MAX, + negative: TimeStamp::MAX, + }; + + /// Update our fields to be the minimum of our current value + /// and the values from other. + fn take_minimums(&mut self, other: &Minimums) { + self.positive = min(self.positive, other.positive); + self.negative = min(self.negative, other.negative); + } + + fn minimum_of_pos_and_neg(&self) -> TimeStamp { + min(self.positive, self.negative) + } +} + +#[derive(Copy, Clone, Debug)] +pub(crate) enum AnswerMode { + Complete, + Ambiguous, +} + +chalk_ir::copy_fold!(TableIndex); +chalk_ir::copy_fold!(TimeStamp); + +chalk_ir::const_visit!(TableIndex); +chalk_ir::const_visit!(TimeStamp); + +#[macro_export] +macro_rules! index_struct { + ($(#[$m:meta])* $v:vis struct $n:ident { + $vf:vis value: usize, + }) => { + #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] + $(#[$m])* + $v struct $n { + $vf value: usize, + } + + impl $n { + // Not all index structs need this, so allow it to be dead + // code. + #[allow(dead_code)] + $v fn get_and_increment(&mut self) -> Self { + let old_value = *self; + self.increment(); + old_value + } + + #[allow(dead_code)] + $v fn increment(&mut self) { + self.value += 1; + } + + // TODO: Once the Step trait is stabilized (https://github.com/rust-lang/rust/issues/42168), instead implement it and use the Iterator implementation of Range + #[allow(dead_code)] + pub fn iterate_range(range: ::std::ops::Range<Self>) -> impl Iterator<Item = $n> { + (range.start.value..range.end.value).into_iter().map(|i| Self { value: i }) + } + } + + impl ::std::fmt::Debug for $n { + fn fmt(&self, fmt: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result { + write!(fmt, "{}({})", stringify!($n), self.value) + } + } + + impl From<usize> for $n { + fn from(value: usize) -> Self { + Self { value } + } + } + } +} diff --git a/vendor/chalk-engine/src/logic.rs b/vendor/chalk-engine/src/logic.rs new file mode 100644 index 000000000..681f6e7ed --- /dev/null +++ b/vendor/chalk-engine/src/logic.rs @@ -0,0 +1,1648 @@ +use crate::forest::Forest; +use crate::normalize_deep::DeepNormalizer; +use crate::slg::{ResolventOps, SlgContext, SlgContextOps}; +use crate::stack::{Stack, StackIndex}; +use crate::strand::{CanonicalStrand, SelectedSubgoal, Strand}; +use crate::table::{AnswerIndex, Table}; +use crate::{ + Answer, AnswerMode, CompleteAnswer, ExClause, FlounderedSubgoal, Literal, Minimums, TableIndex, + TimeStamp, +}; + +use chalk_ir::could_match::CouldMatch; +use chalk_ir::interner::Interner; +use chalk_ir::{ + AnswerSubst, Canonical, ConstrainedSubst, Constraints, FallibleOrFloundered, Floundered, Goal, + GoalData, InEnvironment, NoSolution, ProgramClause, Substitution, UCanonical, UniverseMap, +}; +use chalk_solve::clauses::program_clauses_that_could_match; +use chalk_solve::coinductive_goal::IsCoinductive; +use chalk_solve::infer::ucanonicalize::UCanonicalized; +use chalk_solve::infer::InferenceTable; +use chalk_solve::solve::truncate; +use tracing::{debug, debug_span, info, instrument}; + +type RootSearchResult<T> = Result<T, RootSearchFail>; + +/// The different ways that a *root* search (which potentially pursues +/// many strands) can fail. A root search is one that begins with an +/// empty stack. +#[derive(Debug)] +pub(super) enum RootSearchFail { + /// The table we were trying to solve cannot succeed. + NoMoreSolutions, + + /// The table cannot be solved without more type information. + Floundered, + + /// We did not find a solution, but we still have things to try. + /// Repeat the request, and we'll give one of those a spin. + /// + /// (In a purely depth-first-based solver, like Prolog, this + /// doesn't appear.) + QuantumExceeded, + + /// A negative cycle was found. This is fail-fast, so even if there was + /// possibly a solution (ambiguous or not), it may not have been found. + NegativeCycle, + + /// The current answer index is not useful. Currently, this is returned + /// because the current answer needs refining. + InvalidAnswer, +} + +/// This is returned when we try to select a subgoal for a strand. +#[derive(PartialEq)] +enum SubGoalSelection { + /// A subgoal was successfully selected. It has already been checked + /// to not be floundering. However, it may have an answer already, be + /// coinductive, or create a cycle. + Selected, + + /// This strand has no remaining subgoals, but there may still be + /// floundered subgoals. + NotSelected, +} + +/// This is returned `on_no_remaining_subgoals` +enum NoRemainingSubgoalsResult { + /// There is an answer available for the root table + RootAnswerAvailable, + + /// There was a `RootSearchFail` + RootSearchFail(RootSearchFail), + + // This was a success + Success, +} + +impl<I: Interner> Forest<I> { + /// Returns an answer with a given index for the given table. This + /// may require activating a strand and following it. It returns + /// `Ok(answer)` if they answer is available and otherwise a + /// `RootSearchFail` result. + pub(super) fn root_answer( + &mut self, + context: &SlgContextOps<I>, + table: TableIndex, + answer_index: AnswerIndex, + ) -> RootSearchResult<CompleteAnswer<I>> { + let stack = Stack::default(); + + let mut state = SolveState { + forest: self, + context, + stack, + }; + + match state.ensure_root_answer(table, answer_index) { + Ok(()) => { + assert!(state.stack.is_empty()); + let answer = state.forest.answer(table, answer_index); + if !answer.subst.value.delayed_subgoals.is_empty() { + return Err(RootSearchFail::InvalidAnswer); + } + Ok(CompleteAnswer { + subst: Canonical { + binders: answer.subst.binders.clone(), + value: ConstrainedSubst { + subst: answer.subst.value.subst.clone(), + constraints: answer.subst.value.constraints.clone(), + }, + }, + ambiguous: answer.ambiguous, + }) + } + Err(err) => Err(err), + } + } + + pub(super) fn any_future_answer( + &self, + table: TableIndex, + mut answer_index: AnswerIndex, + mut test: impl FnMut(&Substitution<I>) -> bool, + ) -> bool { + // Check any cached answers, starting at `answer_index`. + while let Some(answer) = self.tables[table].answer(answer_index) { + info!("answer cached = {:?}", answer); + if test(&answer.subst.value.subst) { + return true; + } + answer_index.increment(); + } + + // Check any unsolved strands, which may give further answers. + self.tables[table] + .strands() + .any(|strand| test(&strand.value.ex_clause.subst)) + } + + pub(crate) fn answer(&self, table: TableIndex, answer: AnswerIndex) -> &Answer<I> { + self.tables[table].answer(answer).unwrap() + } + + fn canonicalize_strand_from( + context: &SlgContextOps<I>, + infer: &mut InferenceTable<I>, + strand: &Strand<I>, + ) -> CanonicalStrand<I> { + infer + .canonicalize(context.program().interner(), strand.clone()) + .quantified + } + + /// Given a subgoal, converts the literal into u-canonical form + /// and searches for an existing table. If one is found, it is + /// returned, but otherwise a new table is created (and populated + /// with its initial set of strands). + /// + /// Returns `None` if the literal cannot be converted into a table + /// -- for example, this can occur when we have selected a + /// negative literal with free existential variables, in which + /// case the execution is said to "flounder". + /// + /// In terms of the NFTD paper, creating a new table corresponds + /// to the *New Subgoal* step as well as the *Program Clause + /// Resolution* steps. + #[instrument(level = "debug", skip(self, context, infer))] + fn get_or_create_table_for_subgoal( + &mut self, + context: &SlgContextOps<I>, + infer: &mut InferenceTable<I>, + subgoal: &Literal<I>, + ) -> Option<(TableIndex, UniverseMap)> { + // Subgoal abstraction: + let (ucanonical_subgoal, universe_map) = match subgoal { + Literal::Positive(subgoal) => { + Forest::abstract_positive_literal(context, infer, subgoal.clone())? + } + Literal::Negative(subgoal) => { + Forest::abstract_negative_literal(context, infer, subgoal.clone())? + } + }; + + debug!(?ucanonical_subgoal, ?universe_map); + + let table = self.get_or_create_table_for_ucanonical_goal(context, ucanonical_subgoal); + + Some((table, universe_map)) + } + + /// Given a u-canonical goal, searches for an existing table. If + /// one is found, it is returned, but otherwise a new table is + /// created (and populated with its initial set of strands). + /// + /// In terms of the NFTD paper, creating a new table corresponds + /// to the *New Subgoal* step as well as the *Program Clause + /// Resolution* steps. + #[instrument(level = "debug", skip(self, context))] + pub(crate) fn get_or_create_table_for_ucanonical_goal( + &mut self, + context: &SlgContextOps<I>, + goal: UCanonical<InEnvironment<Goal<I>>>, + ) -> TableIndex { + if let Some(table) = self.tables.index_of(&goal) { + debug!(?table, "found existing table"); + return table; + } + + info!( + table = ?self.tables.next_index(), + "creating new table with goal = {:#?}", + goal, + ); + let table = Self::build_table(context, self.tables.next_index(), goal); + self.tables.insert(table) + } + + /// When a table is first created, this function is invoked to + /// create the initial set of strands. If the table represents a + /// domain goal, these strands are created from the program + /// clauses as well as the clauses found in the environment. If + /// the table represents a non-domain goal, such as `for<T> G` + /// etc, then `simplify_goal` is invoked to create a strand + /// that breaks the goal down. + /// + /// In terms of the NFTD paper, this corresponds to the *Program + /// Clause Resolution* step being applied eagerly, as many times + /// as possible. + fn build_table( + context: &SlgContextOps<I>, + table_idx: TableIndex, + goal: UCanonical<InEnvironment<Goal<I>>>, + ) -> Table<I> { + let coinductive = goal.is_coinductive(context.program()); + let mut table = Table::new(goal.clone(), coinductive); + + let goal_data = goal.canonical.value.goal.data(context.program().interner()); + match goal_data { + GoalData::DomainGoal(domain_goal) => { + let canon_domain_goal = UCanonical { + canonical: Canonical { + binders: goal.canonical.binders, + value: InEnvironment::new( + &goal.canonical.value.environment, + domain_goal.clone(), + ), + }, + universes: goal.universes, + }; + + let db = context.program(); + let canon_goal = canon_domain_goal.canonical.value.goal.clone(); + let could_match = |c: &ProgramClause<I>| { + c.could_match(db.interner(), db.unification_database(), &canon_goal) + }; + + match program_clauses_that_could_match(db, &canon_domain_goal) { + Ok(mut clauses) => { + clauses.retain(could_match); + clauses.extend(db.custom_clauses().into_iter().filter(could_match)); + + let (infer, subst, goal) = + chalk_solve::infer::InferenceTable::from_canonical( + context.program().interner(), + canon_domain_goal.universes, + canon_domain_goal.canonical, + ); + + clauses.extend( + db.program_clauses_for_env(&goal.environment) + .iter(db.interner()) + .cloned() + .filter(could_match), + ); + + let InEnvironment { environment, goal } = goal; + + for clause in clauses { + info!("program clause = {:#?}", clause); + let mut infer = infer.clone(); + if let Ok(resolvent) = infer.resolvent_clause( + context.unification_database(), + context.program().interner(), + &environment, + &goal, + &subst, + &clause, + ) { + info!("pushing initial strand with ex-clause: {:#?}", &resolvent,); + let strand = Strand { + ex_clause: resolvent, + selected_subgoal: None, + last_pursued_time: TimeStamp::default(), + }; + let canonical_strand = + Self::canonicalize_strand_from(context, &mut infer, &strand); + table.enqueue_strand(canonical_strand); + } + } + } + Err(Floundered) => { + debug!( + table = ?table_idx, + "Marking table {:?} as floundered! (failed to create program clauses)", + table_idx + ); + table.mark_floundered(); + } + } + } + + _ => { + let (mut infer, subst, InEnvironment { environment, goal }) = + chalk_solve::infer::InferenceTable::from_canonical( + context.program().interner(), + goal.universes, + goal.canonical, + ); + // The goal for this table is not a domain goal, so we instead + // simplify it into a series of *literals*, all of which must be + // true. Thus, in EWFS terms, we are effectively creating a + // single child of the `A :- A` goal that is like `A :- B, C, D` + // where B, C, and D are the simplified subgoals. You can think + // of this as applying built-in "meta program clauses" that + // reduce goals into Domain goals. + match Self::simplify_goal(context, &mut infer, subst, environment, goal) { + FallibleOrFloundered::Ok(ex_clause) => { + info!( + ex_clause = ?DeepNormalizer::normalize_deep( + &mut infer, + context.program().interner(), + ex_clause.clone(), + ), + "pushing initial strand" + ); + let strand = Strand { + ex_clause, + selected_subgoal: None, + last_pursued_time: TimeStamp::default(), + }; + let canonical_strand = + Self::canonicalize_strand_from(context, &mut infer, &strand); + table.enqueue_strand(canonical_strand); + } + FallibleOrFloundered::NoSolution => {} + FallibleOrFloundered::Floundered => table.mark_floundered(), + } + } + } + + table + } + + /// Given a selected positive subgoal, applies the subgoal + /// abstraction function to yield the canonical form that will be + /// used to pick a table. Typically, this abstraction has no + /// effect, and hence we are simply returning the canonical form + /// of `subgoal`; but if the subgoal is getting too big, we return + /// `None`, which causes the subgoal to flounder. + fn abstract_positive_literal( + context: &SlgContextOps<I>, + infer: &mut InferenceTable<I>, + subgoal: InEnvironment<Goal<I>>, + ) -> Option<(UCanonical<InEnvironment<Goal<I>>>, UniverseMap)> { + if truncate::needs_truncation( + context.program().interner(), + infer, + context.max_size(), + &subgoal, + ) { + None + } else { + let canonicalized_goal = infer + .canonicalize(context.program().interner(), subgoal) + .quantified; + let UCanonicalized { + quantified, + universes, + } = InferenceTable::u_canonicalize(context.program().interner(), &canonicalized_goal); + Some((quantified, universes)) + } + } + + /// Given a selected negative subgoal, the subgoal is "inverted" + /// (see `InferenceTable<I, C>::invert`) and then potentially truncated + /// (see `abstract_positive_literal`). The result subgoal is + /// canonicalized. In some cases, this may return `None` and hence + /// fail to yield a useful result, for example if free existential + /// variables appear in `subgoal` (in which case the execution is + /// said to "flounder"). + fn abstract_negative_literal( + context: &SlgContextOps<I>, + infer: &mut InferenceTable<I>, + subgoal: InEnvironment<Goal<I>>, + ) -> Option<(UCanonical<InEnvironment<Goal<I>>>, UniverseMap)> { + // First, we have to check that the selected negative literal + // is ground, and invert any universally quantified variables. + // + // DIVERGENCE -- In the RR paper, to ensure completeness, they + // permit non-ground negative literals, but only consider + // them to succeed when the target table has no answers at + // all. This is equivalent inverting those free existentials + // into universals, as discussed in the comments of + // `invert`. This is clearly *sound*, but the completeness is + // a subtle point. In particular, it can cause **us** to reach + // false conclusions, because e.g. given a program like + // (selected left-to-right): + // + // not { ?T: Copy }, ?T = Vec<u32> + // + // we would select `not { ?T: Copy }` first. For this goal to + // succeed we would require that -- effectively -- `forall<T> + // { not { T: Copy } }`, which clearly doesn't hold. (In the + // terms of RR, we would require that the table for `?T: Copy` + // has failed before we can continue.) + // + // In the RR paper, this is acceptable because they assume all + // of their input programs are both **normal** (negative + // literals are selected after positive ones) and **safe** + // (all free variables in negative literals occur in positive + // literals). It is plausible for us to guarantee "normal" + // form, we can reorder clauses as we need. I suspect we can + // guarantee safety too, but I have to think about it. + // + // For now, we opt for the safer route of terming such + // executions as floundering, because I think our use of + // negative goals is sufficiently limited we can get away with + // it. The practical effect is that we will judge more + // executions as floundering than we ought to (i.e., where we + // could instead generate an (imprecise) result). As you can + // see a bit later, we also diverge in some other aspects that + // affect completeness when it comes to subgoal abstraction. + let inverted_subgoal = infer.invert(context.program().interner(), subgoal)?; + + if truncate::needs_truncation( + context.program().interner(), + infer, + context.max_size(), + &inverted_subgoal, + ) { + None + } else { + let canonicalized_goal = infer + .canonicalize(context.program().interner(), inverted_subgoal) + .quantified; + let UCanonicalized { + quantified, + universes, + } = InferenceTable::u_canonicalize(context.program().interner(), &canonicalized_goal); + Some((quantified, universes)) + } + } +} + +pub(crate) struct SolveState<'forest, I: Interner> { + forest: &'forest mut Forest<I>, + context: &'forest SlgContextOps<'forest, I>, + stack: Stack<I>, +} + +impl<'forest, I: Interner> Drop for SolveState<'forest, I> { + fn drop(&mut self) { + if !self.stack.is_empty() { + if let Some(active_strand) = self.stack.top().active_strand.take() { + let table = self.stack.top().table; + self.forest.tables[table].enqueue_strand(active_strand); + } + self.unwind_stack(); + } + } +} + +impl<'forest, I: Interner> SolveState<'forest, I> { + /// Ensures that answer with the given index is available from the + /// given table. Returns `Ok` if there is an answer. + /// + /// This function first attempts to fetch answer that is cached in + /// the table. If none is found, then it will recursively search + /// to find an answer. + #[instrument(level = "info", skip(self))] + fn ensure_root_answer( + &mut self, + initial_table: TableIndex, + initial_answer: AnswerIndex, + ) -> RootSearchResult<()> { + info!( + "table goal = {:#?}", + self.forest.tables[initial_table].table_goal + ); + // Check if this table has floundered. + if self.forest.tables[initial_table].is_floundered() { + return Err(RootSearchFail::Floundered); + } + // Check for a tabled answer. + if let Some(answer) = self.forest.tables[initial_table].answer(initial_answer) { + info!("answer cached = {:?}", answer); + return Ok(()); + } + + // If no tabled answer is present, we ought to be requesting + // the next available index. + assert_eq!( + self.forest.tables[initial_table].next_answer_index(), + initial_answer + ); + + self.stack + .push(initial_table, Minimums::MAX, self.forest.increment_clock()); + loop { + let clock = self.stack.top().clock; + // If we had an active strand, continue to pursue it + let table = self.stack.top().table; + let table_answer_mode = self.forest.tables[table].answer_mode; + + // We track when we last pursued each strand. If all the strands have been + // pursued at this depth, then that means they all encountered a cycle. + // We also know that if the first strand has been pursued at this depth, + // then all have. Otherwise, an answer to any strand would have provided an + // answer for the table. + let forest = &mut self.forest; + let next_strand = self.stack.top().active_strand.take().or_else(|| { + forest.tables[table].dequeue_next_strand_that(|strand| { + let time_eligble = strand.value.last_pursued_time < clock; + let mode_eligble = match (table_answer_mode, strand.value.ex_clause.ambiguous) { + (AnswerMode::Complete, false) => true, + (AnswerMode::Complete, true) => false, + (AnswerMode::Ambiguous, _) => true, + }; + time_eligble && mode_eligble + }) + }); + match next_strand { + Some(mut canonical_strand) => { + debug!("starting next strand = {:#?}", canonical_strand); + + canonical_strand.value.last_pursued_time = clock; + match self.select_subgoal(&mut canonical_strand) { + SubGoalSelection::Selected => { + // A subgoal has been selected. We now check this subgoal + // table for an existing answer or if it's in a cycle. + // If neither of those are the case, a strand is selected + // and the next loop iteration happens. + self.on_subgoal_selected(canonical_strand)?; + continue; + } + SubGoalSelection::NotSelected => { + match self.on_no_remaining_subgoals(canonical_strand) { + NoRemainingSubgoalsResult::RootAnswerAvailable => return Ok(()), + NoRemainingSubgoalsResult::RootSearchFail(e) => return Err(e), + NoRemainingSubgoalsResult::Success => continue, + }; + } + } + } + None => { + self.on_no_strands_left()?; + continue; + } + } + } + } + + /// This is called when an answer is available for the selected subgoal + /// of the strand. First, if the selected subgoal is a `Positive` subgoal, + /// it first clones the strand pursuing the next answer. Then, it merges the + /// answer into the provided `Strand`. + /// On success, `Ok` is returned and the `Strand` can be continued to process + /// On failure, `Err` is returned and the `Strand` should be discarded + fn merge_answer_into_strand( + &mut self, + infer: &mut InferenceTable<I>, + strand: &mut Strand<I>, + ) -> RootSearchResult<()> { + // At this point, we know we have an answer for + // the selected subgoal of the strand. + // Now, we have to unify that answer onto the strand. + + // If this answer is ambiguous and we don't want ambiguous answers + // yet, then we act like this is a floundered subgoal. + let ambiguous = { + let selected_subgoal = strand.selected_subgoal.as_ref().unwrap(); + let answer = self.forest.answer( + selected_subgoal.subgoal_table, + selected_subgoal.answer_index, + ); + answer.ambiguous + }; + if let AnswerMode::Complete = self.forest.tables[self.stack.top().table].answer_mode { + if ambiguous { + // FIXME: we could try to be a little bit smarter here. This can + // really be split into cases: + // 1) Cases where no amount of solving will cause this ambiguity to change. + // (e.g. `CannnotProve`) + // 2) Cases where we may be able to get a better answer if we + // solve other subgoals first. + // (e.g. the `non_enumerable_traits_reorder` test) + // We really only need to delay merging an ambiguous answer for + // case 2. Do note, though, that even if we *do* merge the answer + // case 1, we should stop solving this strand when in + // `AnswerMode::Complete` since we wouldn't use this answer yet + // *anyways*. + + // The selected subgoal returned an ambiguous answer, but we don't want that. + // So, we treat this subgoal as floundered. + let selected_subgoal = strand.selected_subgoal.take().unwrap(); + self.flounder_subgoal(&mut strand.ex_clause, selected_subgoal.subgoal_index); + return Ok(()); + } + } + + // If this subgoal was a `Positive` one, whichever way this + // particular answer turns out, there may yet be *more* answers, + // if this isn't a trivial substitution. + // Enqueue that alternative for later. + // NOTE: this is separate from the match below because we `take` the selected_subgoal + // below, but here we keep it for the new `Strand`. + let selected_subgoal = strand.selected_subgoal.as_ref().unwrap(); + if let Literal::Positive(_) = strand.ex_clause.subgoals[selected_subgoal.subgoal_index] { + let answer = self.forest.answer( + selected_subgoal.subgoal_table, + selected_subgoal.answer_index, + ); + if !self.forest.tables[selected_subgoal.subgoal_table] + .table_goal + .is_trivial_substitution(self.context.program().interner(), &answer.subst) + { + let mut next_subgoal = selected_subgoal.clone(); + next_subgoal.answer_index.increment(); + let next_strand = Strand { + ex_clause: strand.ex_clause.clone(), + selected_subgoal: Some(next_subgoal), + last_pursued_time: strand.last_pursued_time, + }; + let table = self.stack.top().table; + let canonical_next_strand = + Forest::canonicalize_strand_from(self.context, infer, &next_strand); + self.forest.tables[table].enqueue_strand(canonical_next_strand); + } + } + + // Deselect and remove the selected subgoal, now that we have an answer for it. + let selected_subgoal = strand.selected_subgoal.take().unwrap(); + let subgoal = strand + .ex_clause + .subgoals + .remove(selected_subgoal.subgoal_index); + match subgoal { + Literal::Positive(subgoal) => { + let SelectedSubgoal { + subgoal_index: _, + subgoal_table, + answer_index, + ref universe_map, + } = selected_subgoal; + use chalk_solve::infer::ucanonicalize::UniverseMapExt; + let table_goal = universe_map.map_from_canonical( + self.context.program().interner(), + &self.forest.tables[subgoal_table].table_goal.canonical, + ); + let answer_subst = universe_map.map_from_canonical( + self.context.program().interner(), + &self.forest.answer(subgoal_table, answer_index).subst, + ); + match infer.apply_answer_subst( + self.context.program().interner(), + self.context.unification_database(), + &mut strand.ex_clause, + &subgoal, + &table_goal, + answer_subst, + ) { + Ok(()) => { + let ex_clause = &mut strand.ex_clause; + + // If the answer had was ambiguous, we have to + // ensure that `ex_clause` is also ambiguous. This is + // the SLG FACTOR operation, though NFTD just makes it + // part of computing the SLG resolvent. + if self.forest.answer(subgoal_table, answer_index).ambiguous { + debug!("Marking Strand as ambiguous because answer to (positive) subgoal was ambiguous"); + ex_clause.ambiguous = true; + } + + // Increment the answer time for the `ex_clause`. Floundered + // subgoals may be eligble to be pursued again. + ex_clause.answer_time.increment(); + + // Ok, we've applied the answer to this Strand. + Ok(()) + } + + // This answer led nowhere. Give up for now, but of course + // there may still be other strands to pursue, so return + // `QuantumExceeded`. + Err(NoSolution) => { + info!("answer not unifiable -> NoSolution"); + // This strand as no solution. It is no longer active, + // so it dropped at the end of this scope. + + // Now we want to propogate back to the up with `QuantumExceeded` + self.unwind_stack(); + Err(RootSearchFail::QuantumExceeded) + } + } + } + Literal::Negative(_) => { + let SelectedSubgoal { + subgoal_index: _, + subgoal_table, + answer_index, + universe_map: _, + } = selected_subgoal; + // We got back an answer. This is bad, because we want + // to disprove the subgoal, but it may be + // "conditional" (maybe true, maybe not). + let answer = self.forest.answer(subgoal_table, answer_index); + + // By construction, we do not expect negative subgoals + // to have delayed subgoals. This is because we do not + // need to permit `not { L }` where `L` is a + // coinductive goal. We could improve this if needed, + // but it keeps things simple. + if !answer.subst.value.delayed_subgoals.is_empty() { + panic!("Negative subgoal had delayed_subgoals"); + } + + if !answer.ambiguous { + // We want to disproval the subgoal, but we + // have an unconditional answer for the subgoal, + // therefore we have failed to disprove it. + info!("found unconditional answer to neg literal -> NoSolution"); + + // This strand as no solution. By returning an Err, + // the caller should discard this `Strand`. + + // Now we want to propogate back to the up with `QuantumExceeded` + self.unwind_stack(); + return Err(RootSearchFail::QuantumExceeded); + } + + // Otherwise, the answer is ambiguous. We can keep going, + // but we have to mark our strand, too, as ambiguous. + // + // We want to disproval the subgoal, but we + // have an unconditional answer for the subgoal, + // therefore we have failed to disprove it. + debug!(?strand, "Marking Strand as ambiguous because answer to (negative) subgoal was ambiguous"); + strand.ex_clause.ambiguous = true; + + // Strand is ambigious. + Ok(()) + } + } + } + + /// This is called when the selected subgoal for a strand has floundered. + /// We have to decide what this means for the strand. + /// - If the strand was positively dependent on the subgoal, we flounder, + /// the subgoal, then return `false`. This strand may be able to be + /// retried later. + /// - If the strand was negatively dependent on the subgoal, then strand + /// has led nowhere of interest and we return `true`. This strand should + /// be discarded. + /// + /// In other words, we return whether this strand flounders. + fn propagate_floundered_subgoal(&mut self, strand: &mut CanonicalStrand<I>) -> bool { + // This subgoal selection for the strand is finished, so take it + let selected_subgoal = strand.value.selected_subgoal.take().unwrap(); + match strand.value.ex_clause.subgoals[selected_subgoal.subgoal_index] { + Literal::Positive(_) => { + // If this strand depends on this positively, then we can + // come back to it later. So, we mark that subgoal as + // floundered and yield `QuantumExceeded` up the stack + + // If this subgoal floundered, push it onto the + // floundered list, along with the time that it + // floundered. We'll try to solve some other subgoals + // and maybe come back to it. + self.flounder_subgoal(&mut strand.value.ex_clause, selected_subgoal.subgoal_index); + + false + } + Literal::Negative(_) => { + // Floundering on a negative literal isn't like a + // positive search: we only pursue negative literals + // when we already know precisely the type we are + // looking for. So there's no point waiting for other + // subgoals, we'll never recover more information. + // + // In fact, floundering on negative searches shouldn't + // normally happen, since there are no uninferred + // variables in the goal, but it can with forall + // goals: + // + // forall<T> { not { T: Debug } } + // + // Here, the table we will be searching for answers is + // `?T: Debug`, so it could well flounder. + + // This strand has no solution. It is no longer active, + // so it dropped at the end of this scope. + + true + } + } + } + + /// This is called if the selected subgoal for a `Strand` is + /// a coinductive cycle. + fn on_coinductive_subgoal( + &mut self, + mut canonical_strand: CanonicalStrand<I>, + ) -> Result<(), RootSearchFail> { + // This is a co-inductive cycle. That is, this table + // appears somewhere higher on the stack, and has now + // recursively requested an answer for itself. This + // means that we have to delay this subgoal until we + // reach a trivial self-cycle. + + // This subgoal selection for the strand is finished, so take it + let selected_subgoal = canonical_strand.value.selected_subgoal.take().unwrap(); + match canonical_strand + .value + .ex_clause + .subgoals + .remove(selected_subgoal.subgoal_index) + { + Literal::Positive(subgoal) => { + // We delay this subgoal + let table = self.stack.top().table; + assert!( + self.forest.tables[table].coinductive_goal + && self.forest.tables[selected_subgoal.subgoal_table].coinductive_goal + ); + + canonical_strand + .value + .ex_clause + .delayed_subgoals + .push(subgoal); + + self.stack.top().active_strand = Some(canonical_strand); + Ok(()) + } + Literal::Negative(_) => { + // We don't allow coinduction for negative literals + info!("found coinductive answer to negative literal"); + panic!("Coinductive cycle with negative literal"); + } + } + } + + /// This is called if the selected subgoal for `strand` is + /// a positive, non-coinductive cycle. + /// + /// # Parameters + /// + /// * `strand` the strand from the top of the stack we are pursuing + /// * `minimums` is the collected minimum clock times + fn on_positive_cycle( + &mut self, + canonical_strand: CanonicalStrand<I>, + minimums: Minimums, + ) -> Result<(), RootSearchFail> { + // We can't take this because we might need it later to clear the cycle + let selected_subgoal = canonical_strand.value.selected_subgoal.as_ref().unwrap(); + + match canonical_strand.value.ex_clause.subgoals[selected_subgoal.subgoal_index] { + Literal::Positive(_) => { + self.stack.top().cyclic_minimums.take_minimums(&minimums); + } + Literal::Negative(_) => { + // We depend on `not(subgoal)`. For us to continue, + // `subgoal` must be completely evaluated. Therefore, + // we depend (negatively) on the minimum link of + // `subgoal` as a whole -- it doesn't matter whether + // it's pos or neg. + let mins = Minimums { + positive: self.stack.top().clock, + negative: minimums.minimum_of_pos_and_neg(), + }; + self.stack.top().cyclic_minimums.take_minimums(&mins); + } + } + + // Ok, we've taken the minimums from this cycle above. Now, + // we just return the strand to the table. The table only + // pulls strands if they have not been checked at this + // depth. + // + // We also can't mark these and return early from this + // because the stack above us might change. + let table = self.stack.top().table; + self.forest.tables[table].enqueue_strand(canonical_strand); + + // The strand isn't active, but the table is, so just continue + Ok(()) + } + + /// Invoked after we've selected a (new) subgoal for the top-most + /// strand. Attempts to pursue this selected subgoal. + /// + /// Returns: + /// + /// * `Ok` if we should keep searching. + /// * `Err` if the subgoal failed in some way such that the strand can be abandoned. + fn on_subgoal_selected( + &mut self, + mut canonical_strand: CanonicalStrand<I>, + ) -> Result<(), RootSearchFail> { + // This may be a newly selected subgoal or an existing selected subgoal. + + let SelectedSubgoal { + subgoal_index: _, + subgoal_table, + answer_index, + universe_map: _, + } = *canonical_strand.value.selected_subgoal.as_ref().unwrap(); + + debug!( + ?subgoal_table, + goal = ?self.forest.tables[subgoal_table].table_goal, + "table selection {:?} with goal: {:?}", + subgoal_table, self.forest.tables[subgoal_table].table_goal + ); + + // This is checked inside select_subgoal + assert!(!self.forest.tables[subgoal_table].is_floundered()); + + // Check for a tabled answer. + if let Some(answer) = self.forest.tables[subgoal_table].answer(answer_index) { + info!("answer cached = {:?}", answer); + + // There was a previous answer available for this table + // We need to check if we can merge it into the current `Strand`. + let num_universes = self.forest.tables[self.stack.top().table] + .table_goal + .universes; + let (mut infer, _, mut strand) = chalk_solve::infer::InferenceTable::from_canonical( + self.context.program().interner(), + num_universes, + canonical_strand.clone(), + ); + match self.merge_answer_into_strand(&mut infer, &mut strand) { + Err(e) => { + debug!(?strand, "could not merge into current strand"); + drop(strand); + return Err(e); + } + Ok(_) => { + debug!(?strand, "merged answer into current strand"); + canonical_strand = + Forest::canonicalize_strand_from(self.context, &mut infer, &strand); + self.stack.top().active_strand = Some(canonical_strand); + return Ok(()); + } + } + } + + // If no tabled answer is present, we ought to be requesting + // the next available index. + assert_eq!( + self.forest.tables[subgoal_table].next_answer_index(), + answer_index + ); + + // Next, check if the table is already active. If so, then we + // have a recursive attempt. + if let Some(cyclic_depth) = self.stack.is_active(subgoal_table) { + info!("cycle detected at depth {:?}", cyclic_depth); + let minimums = Minimums { + positive: self.stack[cyclic_depth].clock, + negative: TimeStamp::MAX, + }; + + if self.top_of_stack_is_coinductive_from(cyclic_depth) { + debug!("table is coinductive"); + return self.on_coinductive_subgoal(canonical_strand); + } + + debug!("table encountered a positive cycle"); + return self.on_positive_cycle(canonical_strand, minimums); + } + + // We don't know anything about the selected subgoal table. + // Set this strand as active and push it onto the stack. + self.stack.top().active_strand = Some(canonical_strand); + + let cyclic_minimums = Minimums::MAX; + self.stack.push( + subgoal_table, + cyclic_minimums, + self.forest.increment_clock(), + ); + Ok(()) + } + + /// This is called when there are no remaining subgoals for a strand, so + /// it represents an answer. If the strand is ambiguous and we don't want + /// it yet, we just enqueue it again to pick it up later. Otherwise, we + /// add the answer from the strand onto the table. + fn on_no_remaining_subgoals( + &mut self, + canonical_strand: CanonicalStrand<I>, + ) -> NoRemainingSubgoalsResult { + let ambiguous = canonical_strand.value.ex_clause.ambiguous; + if let AnswerMode::Complete = self.forest.tables[self.stack.top().table].answer_mode { + if ambiguous { + // The strand can only return an ambiguous answer, but we don't + // want that right now, so requeue and we'll deal with it later. + self.forest.tables[self.stack.top().table].enqueue_strand(canonical_strand); + return NoRemainingSubgoalsResult::RootSearchFail(RootSearchFail::QuantumExceeded); + } + } + let floundered = !canonical_strand + .value + .ex_clause + .floundered_subgoals + .is_empty(); + if floundered { + debug!("all remaining subgoals floundered for the table"); + } else { + debug!("no remaining subgoals for the table"); + }; + match self.pursue_answer(canonical_strand) { + Some(answer_index) => { + debug!("answer is available"); + + // We found an answer for this strand, and therefore an + // answer for this table. Now, this table was either a + // subgoal for another strand, or was the root table. + let table = self.stack.top().table; + match self.stack.pop_and_take_caller_strand() { + Some(caller_strand) => { + self.stack.top().active_strand = Some(caller_strand); + NoRemainingSubgoalsResult::Success + } + None => { + // That was the root table, so we are done -- + // *well*, unless there were delayed + // subgoals. In that case, we want to evaluate + // those delayed subgoals to completion, so we + // have to create a fresh strand that will + // take them as goals. Note that we *still + // need the original answer in place*, because + // we might have to build on it (see the + // Delayed Trivial Self Cycle, Variant 3 + // example). + + let answer = self.forest.answer(table, answer_index); + if let Some(strand) = self.create_refinement_strand(table, answer) { + self.forest.tables[table].enqueue_strand(strand); + } + + NoRemainingSubgoalsResult::RootAnswerAvailable + } + } + } + None => { + debug!("answer is not available (or not new)"); + + // This strand led nowhere of interest. There might be *other* + // answers on this table, but we don't care right now, we'll + // try again at another time. + + // Now we yield with `QuantumExceeded` + self.unwind_stack(); + NoRemainingSubgoalsResult::RootSearchFail(RootSearchFail::QuantumExceeded) + } + } + } + + /// A "refinement" strand is used in coinduction. When the root + /// table on the stack publishes an answer has delayed subgoals, + /// we create a new strand that will attempt to prove out those + /// delayed subgoals (the root answer here is not *special* except + /// in so far as that there is nothing above it, and hence we know + /// that the delayed subgoals (which resulted in some cycle) must + /// be referring to a table that now has completed). + /// + /// Note that it is important for this to be a *refinement* strand + /// -- meaning that the answer with delayed subgoals has been + /// published. This is necessary because sometimes the strand must + /// build on that very answer that it is refining. See Delayed + /// Trivial Self Cycle, Variant 3. + fn create_refinement_strand( + &self, + table: TableIndex, + answer: &Answer<I>, + ) -> Option<CanonicalStrand<I>> { + // If there are no delayed subgoals, then there is no need for + // a refinement strand. + if answer.subst.value.delayed_subgoals.is_empty() { + return None; + } + + let num_universes = self.forest.tables[table].table_goal.universes; + let ( + mut infer, + _, + AnswerSubst { + subst, + constraints, + delayed_subgoals, + }, + ) = chalk_solve::infer::InferenceTable::from_canonical( + self.context.program().interner(), + num_universes, + answer.subst.clone(), + ); + + let delayed_subgoals = delayed_subgoals + .into_iter() + .map(Literal::Positive) + .collect(); + + let strand = Strand { + ex_clause: ExClause { + subst, + ambiguous: answer.ambiguous, + constraints: constraints + .as_slice(self.context.program().interner()) + .to_vec(), + subgoals: delayed_subgoals, + delayed_subgoals: Vec::new(), + answer_time: TimeStamp::default(), + floundered_subgoals: Vec::new(), + }, + selected_subgoal: None, + last_pursued_time: TimeStamp::default(), + }; + + Some(Forest::canonicalize_strand_from( + self.context, + &mut infer, + &strand, + )) + } + + fn on_no_strands_left(&mut self) -> Result<(), RootSearchFail> { + let table = self.stack.top().table; + debug!("no more strands available (or all cycles) for {:?}", table); + + // No more strands left to try! This is either because all + // strands have failed, because all strands encountered a + // cycle, or all strands have would give ambiguous answers. + + if self.forest.tables[table].strands_mut().count() == 0 { + // All strands for the table T on the top of the stack + // have **failed**. Hence we can pop it off the stack and + // check what this means for the table T' that was just + // below T on the stack (if any). + debug!("no more strands available"); + let caller_strand = match self.stack.pop_and_borrow_caller_strand() { + Some(s) => s, + None => { + // T was the root table, so we are done. + debug!("no more solutions"); + return Err(RootSearchFail::NoMoreSolutions); + } + }; + + // This subgoal selection for the strand is finished, so take it + let caller_selected_subgoal = caller_strand.value.selected_subgoal.take().unwrap(); + return match caller_strand.value.ex_clause.subgoals + [caller_selected_subgoal.subgoal_index] + { + // T' wanted an answer from T, but none is + // forthcoming. Therefore, the active strand from T' + // has failed and can be discarded. + Literal::Positive(_) => { + debug!("discarding strand because positive literal"); + self.stack.top().active_strand.take(); + self.unwind_stack(); + Err(RootSearchFail::QuantumExceeded) + } + + // T' wanted there to be no answer from T, but none is forthcoming. + Literal::Negative(_) => { + debug!("subgoal was proven because negative literal"); + + // There is no solution for this strand. But, this + // is what we want, so can remove this subgoal and + // keep going. + caller_strand + .value + .ex_clause + .subgoals + .remove(caller_selected_subgoal.subgoal_index); + + // This strand is still active, so continue + Ok(()) + } + }; + } + + // We can't consider this table as part of a cycle unless we've handled + // all strands, not just non-ambiguous ones. See chalk#571. + if let AnswerMode::Complete = self.forest.tables[table].answer_mode { + debug!("Allowing ambiguous answers."); + self.forest.tables[table].answer_mode = AnswerMode::Ambiguous; + return Err(RootSearchFail::QuantumExceeded); + } + + let clock = self.stack.top().clock; + let cyclic_minimums = self.stack.top().cyclic_minimums; + if cyclic_minimums.positive >= clock && cyclic_minimums.negative >= clock { + debug!("cycle with no new answers"); + + if cyclic_minimums.negative < TimeStamp::MAX { + // This is a negative cycle. + self.unwind_stack(); + return Err(RootSearchFail::NegativeCycle); + } + + // If all the things that we recursively depend on have + // positive dependencies on things below us in the stack, + // then no more answers are forthcoming. We can clear all + // the strands for those things recursively. + let table = self.stack.top().table; + let cyclic_strands = self.forest.tables[table].take_strands(); + self.clear_strands_after_cycle(cyclic_strands); + + // Now we yield with `QuantumExceeded` + self.unwind_stack(); + Err(RootSearchFail::QuantumExceeded) + } else { + debug!("table part of a cycle"); + + // This table resulted in a positive cycle, so we have + // to check what this means for the subgoal containing + // this strand + let caller_strand = match self.stack.pop_and_borrow_caller_strand() { + Some(s) => s, + None => { + panic!("nothing on the stack but cyclic result"); + } + }; + + // We can't take this because we might need it later to clear the cycle + let caller_selected_subgoal = caller_strand.value.selected_subgoal.as_ref().unwrap(); + match caller_strand.value.ex_clause.subgoals[caller_selected_subgoal.subgoal_index] { + Literal::Positive(_) => { + self.stack + .top() + .cyclic_minimums + .take_minimums(&cyclic_minimums); + } + Literal::Negative(_) => { + // We depend on `not(subgoal)`. For us to continue, + // `subgoal` must be completely evaluated. Therefore, + // we depend (negatively) on the minimum link of + // `subgoal` as a whole -- it doesn't matter whether + // it's pos or neg. + let mins = Minimums { + positive: self.stack.top().clock, + negative: cyclic_minimums.minimum_of_pos_and_neg(), + }; + self.stack.top().cyclic_minimums.take_minimums(&mins); + } + } + + // We can't pursue this strand anymore, so push it back onto the table + let active_strand = self.stack.top().active_strand.take().unwrap(); + let table = self.stack.top().table; + self.forest.tables[table].enqueue_strand(active_strand); + + // The strand isn't active, but the table is, so just continue + Ok(()) + } + } + + /// Unwinds the entire stack, returning all active strands back to + /// their tables (this time at the end of the queue). + fn unwind_stack(&mut self) { + loop { + match self.stack.pop_and_take_caller_strand() { + Some(active_strand) => { + let table = self.stack.top().table; + self.forest.tables[table].enqueue_strand(active_strand); + } + + None => return, + } + } + } + + /// Invoked after we have determined that every strand in `table` + /// encounters a cycle; `strands` is the set of strands (which + /// have been moved out of the table). This method then + /// recursively clears the active strands from the tables + /// referenced in `strands`, since all of them must encounter + /// cycles too. + fn clear_strands_after_cycle(&mut self, strands: impl IntoIterator<Item = CanonicalStrand<I>>) { + for strand in strands { + let selected_subgoal = strand.value.selected_subgoal; + let ex_clause = strand.value.ex_clause; + let selected_subgoal = selected_subgoal.unwrap_or_else(|| { + panic!( + "clear_strands_after_cycle invoked on strand in table \ + without a selected subgoal: {:?}", + ex_clause, + ) + }); + + let strand_table = selected_subgoal.subgoal_table; + let strands = self.forest.tables[strand_table].take_strands(); + self.clear_strands_after_cycle(strands); + } + } + + fn select_subgoal( + &mut self, + mut canonical_strand: &mut CanonicalStrand<I>, + ) -> SubGoalSelection { + loop { + while canonical_strand.value.selected_subgoal.is_none() { + if canonical_strand.value.ex_clause.subgoals.is_empty() { + if canonical_strand + .value + .ex_clause + .floundered_subgoals + .is_empty() + { + return SubGoalSelection::NotSelected; + } + + self.reconsider_floundered_subgoals(&mut canonical_strand.value.ex_clause); + + if canonical_strand.value.ex_clause.subgoals.is_empty() { + // All the subgoals of this strand floundered. We may be able + // to get helpful information from this strand still, but it + // will *always* be ambiguous, so mark it as so. + assert!(!canonical_strand + .value + .ex_clause + .floundered_subgoals + .is_empty()); + canonical_strand.value.ex_clause.ambiguous = true; + return SubGoalSelection::NotSelected; + } + + continue; + } + + let subgoal_index = + SlgContext::next_subgoal_index(&canonical_strand.value.ex_clause); + + // Get or create table for this subgoal. + let num_universes = self.forest.tables[self.stack.top().table] + .table_goal + .universes; + let (mut infer, _, strand) = chalk_solve::infer::InferenceTable::from_canonical( + self.context.program().interner(), + num_universes, + canonical_strand.clone(), + ); + match self.forest.get_or_create_table_for_subgoal( + self.context, + &mut infer, + &strand.ex_clause.subgoals[subgoal_index], + ) { + Some((subgoal_table, universe_map)) => { + canonical_strand.value.selected_subgoal = Some(SelectedSubgoal { + subgoal_index, + subgoal_table, + universe_map, + answer_index: AnswerIndex::ZERO, + }); + } + + None => { + // If we failed to create a table for the subgoal, + // that is because we have a floundered negative + // literal. + self.flounder_subgoal(&mut canonical_strand.value.ex_clause, subgoal_index); + } + } + } + + let selected_subgoal_table = canonical_strand + .value + .selected_subgoal + .as_ref() + .unwrap() + .subgoal_table; + if self.forest.tables[selected_subgoal_table].is_floundered() { + if self.propagate_floundered_subgoal(canonical_strand) { + // This strand will never lead anywhere of interest. + return SubGoalSelection::NotSelected; + } else { + // This subgoal has floundered and has been marked. + // We previously would immediately mark the table as + // floundered too, and maybe come back to it. Now, we + // try to see if any other subgoals can be pursued first. + continue; + } + } else { + return SubGoalSelection::Selected; + } + } + } + + /// Invoked when a strand represents an **answer**. This means + /// that the strand has no subgoals left. There are two possibilities: + /// + /// - the strand may represent an answer we have already found; in + /// that case, we can return `None`, as this + /// strand led nowhere of interest. + /// - the strand may represent a new answer, in which case it is + /// added to the table and `Some(())` is returned. + fn pursue_answer(&mut self, canonical_strand: CanonicalStrand<I>) -> Option<AnswerIndex> { + let table = self.stack.top().table; + let Canonical { + binders, + value: strand, + } = canonical_strand; + let ExClause { + subst, + constraints, + ambiguous, + subgoals, + delayed_subgoals, + answer_time: _, + floundered_subgoals, + } = strand.ex_clause; + // If there are subgoals left, they should be followed + assert!(subgoals.is_empty()); + // We can still try to get an ambiguous answer if there are floundered subgoals + let floundered = !floundered_subgoals.is_empty(); + // So let's make sure that it *really* is an ambiguous answer (this should be set previously) + assert!(!floundered || ambiguous); + + // FIXME: If there are floundered subgoals, we *could* potentially + // actually check if the partial answers to any of these subgoals + // conflict. But this requires that we think about whether they are + // positive or negative subgoals. This duplicates some of the logic + // in `merge_answer_into_strand`, so a bit of refactoring is needed. + + // If the answer gets too large, mark the table as floundered. + // This is the *most conservative* course. There are a few alternatives: + // 1) Replace the answer with a truncated version of it. (This was done + // previously, but turned out to be more complicated than we wanted and + // and a source of multiple bugs.) + // 2) Mark this *strand* as floundered. We don't currently have a mechanism + // for this (only floundered subgoals), so implementing this is more + // difficult because we don't want to just *remove* this strand from the + // table, because that might make the table give `NoMoreSolutions`, which + // is *wrong*. + // 3) Do something fancy with delayed subgoals, effectively delayed the + // truncated bits to a different strand (and a more "refined" answer). + // (This one probably needs more thought, but is here for "completeness") + // + // Ultimately, the current decision to flounder the entire table mostly boils + // down to "it works as we expect for the current tests". And, we likely don't + // even *need* the added complexity just for potentially more answers. + if truncate::needs_truncation( + self.context.program().interner(), + &mut InferenceTable::new(), + self.context.max_size(), + &subst, + ) { + self.forest.tables[table].mark_floundered(); + return None; + } + + let table_goal = &self.forest.tables[table].table_goal; + + let filtered_delayed_subgoals = delayed_subgoals + .into_iter() + .filter(|delayed_subgoal| { + let canonicalized = InferenceTable::u_canonicalize( + self.context.program().interner(), + &chalk_ir::Canonical { + binders: binders.clone(), + value: delayed_subgoal.clone(), + }, + ) + .quantified; + *table_goal != canonicalized + }) + .collect(); + + let subst = Canonical { + binders, + value: AnswerSubst { + subst, + constraints: Constraints::from_iter(self.context.program().interner(), constraints), + delayed_subgoals: filtered_delayed_subgoals, + }, + }; + debug!(?table, ?subst, ?floundered, "found answer"); + + let answer = Answer { subst, ambiguous }; + + // A "trivial" answer is one that is 'just true for all cases' + // -- in other words, it gives no information back to the + // caller. For example, `Vec<u32>: Sized` is "just true". + // Such answers are important because they are the most + // general case, and after we provide a trivial answer, no + // further answers are useful -- therefore we can clear any + // further pending strands (this is a "green cut", in + // Prolog parlance). + // + // This optimization is *crucial* for performance: for + // example, `projection_from_env_slow` fails miserably without + // it. The reason is that we wind up (thanks to implied bounds) + // with a clause like this: + // + // ```ignore + // forall<T> { (<T as SliceExt>::Item: Clone) :- WF(T: SliceExt) } + // ``` + // + // we then apply that clause to `!1: Clone`, resulting in the + // table goal `!1: Clone :- <?0 as SliceExt>::Item = !1, + // WF(?0: SliceExt)`. This causes us to **enumerate all types + // `?0` that where `Slice<?0>` normalizes to `!1` -- this is + // an infinite set of types, effectively. Interestingly, + // though, we only need one and we are done, because (if you + // look) our goal (`!1: Clone`) doesn't have any output + // parameters. + // + // This is actually a kind of general case. Due to Rust's rule + // about constrained impl type parameters, generally speaking + // when we have some free inference variable (like `?0`) + // within our clause, it must appear in the head of the + // clause. This means that the values we create for it will + // propagate up to the caller, and they will quickly surmise + // that there is ambiguity and stop requesting more answers. + // Indeed, the only exception to this rule about constrained + // type parameters if with associated type projections, as in + // the case above! + // + // (Actually, because of the trivial answer cut off rule, we + // never even get to the point of asking the query above in + // `projection_from_env_slow`.) + // + // However, there is one fly in the ointment: answers include + // region constraints, and you might imagine that we could + // find future answers that are also trivial but with distinct + // sets of region constraints. **For this reason, we only + // apply this green cut rule if the set of generated + // constraints is empty.** + // + // The limitation on region constraints is quite a drag! We + // can probably do better, though: for example, coherence + // guarantees that, for any given set of types, only a single + // impl ought to be applicable, and that impl can only impose + // one set of region constraints. However, it's not quite that + // simple, thanks to specialization as well as the possibility + // of proving things from the environment (though the latter + // is a *bit* suspect; e.g., those things in the environment + // must be backed by an impl *eventually*). + let is_trivial_answer = { + self.forest.tables[table] + .table_goal + .is_trivial_substitution(self.context.program().interner(), &answer.subst) + && answer + .subst + .value + .constraints + .is_empty(self.context.program().interner()) + }; + + if let Some(answer_index) = self.forest.tables[table].push_answer(answer) { + // See above, if we have a *complete* and trivial answer, we don't + // want to follow any more strands + if !ambiguous && is_trivial_answer { + self.forest.tables[table].take_strands(); + } + + Some(answer_index) + } else { + info!("answer: not a new answer, returning None"); + None + } + } + + fn reconsider_floundered_subgoals(&mut self, ex_clause: &mut ExClause<I>) { + info!("reconsider_floundered_subgoals(ex_clause={:#?})", ex_clause,); + let ExClause { + answer_time, + subgoals, + floundered_subgoals, + .. + } = ex_clause; + for i in (0..floundered_subgoals.len()).rev() { + if floundered_subgoals[i].floundered_time < *answer_time { + let floundered_subgoal = floundered_subgoals.swap_remove(i); + subgoals.push(floundered_subgoal.floundered_literal); + } + } + } + + /// Removes the subgoal at `subgoal_index` from the strand's + /// subgoal list and adds it to the strand's floundered subgoal + /// list. + fn flounder_subgoal(&self, ex_clause: &mut ExClause<I>, subgoal_index: usize) { + let _s = debug_span!( + "flounder_subgoal", + answer_time = ?ex_clause.answer_time, + subgoal = ?ex_clause.subgoals[subgoal_index], + ); + let _s = _s.enter(); + + let floundered_time = ex_clause.answer_time; + let floundered_literal = ex_clause.subgoals.remove(subgoal_index); + ex_clause.floundered_subgoals.push(FlounderedSubgoal { + floundered_literal, + floundered_time, + }); + debug!(?ex_clause); + } + + /// True if all the tables on the stack starting from `depth` and + /// continuing until the top of the stack are coinductive. + /// + /// Example: Given a program like: + /// + /// ```notrust + /// struct Foo { a: Option<Box<Bar>> } + /// struct Bar { a: Option<Box<Foo>> } + /// trait XXX { } + /// impl<T: Send> XXX for T { } + /// ``` + /// + /// and then a goal of `Foo: XXX`, we would eventually wind up + /// with a stack like this: + /// + /// | StackIndex | Table Goal | + /// | ---------- | ----------- | + /// | 0 | `Foo: XXX` | + /// | 1 | `Foo: Send` | + /// | 2 | `Bar: Send` | + /// + /// Here, the top of the stack is `Bar: Send`. And now we are + /// asking `top_of_stack_is_coinductive_from(1)` -- the answer + /// would be true, since `Send` is an auto trait, which yields a + /// coinductive goal. But `top_of_stack_is_coinductive_from(0)` is + /// false, since `XXX` is not an auto trait. + pub(super) fn top_of_stack_is_coinductive_from(&self, depth: StackIndex) -> bool { + StackIndex::iterate_range(self.stack.top_of_stack_from(depth)).all(|d| { + let table = self.stack[d].table; + self.forest.tables[table].coinductive_goal + }) + } +} diff --git a/vendor/chalk-engine/src/normalize_deep.rs b/vendor/chalk-engine/src/normalize_deep.rs new file mode 100644 index 000000000..0c4a01ccb --- /dev/null +++ b/vendor/chalk-engine/src/normalize_deep.rs @@ -0,0 +1,172 @@ +use chalk_ir::fold::shift::Shift; +use chalk_ir::fold::{Fold, Folder}; +use chalk_ir::interner::Interner; +use chalk_ir::*; +use chalk_solve::infer::InferenceTable; + +pub(crate) struct DeepNormalizer<'table, I: Interner> { + table: &'table mut InferenceTable<I>, + interner: I, +} + +impl<I: Interner> DeepNormalizer<'_, I> { + /// Given a value `value` with variables in it, replaces those variables + /// with their instantiated values (if any). Uninstantiated variables are + /// left as-is. + /// + /// This is mainly intended for getting final values to dump to + /// the user and its use should otherwise be avoided, particularly + /// given the possibility of snapshots and rollbacks. + /// + /// See also `InferenceTable::canonicalize`, which -- during real + /// processing -- is often used to capture the "current state" of + /// variables. + pub fn normalize_deep<T: Fold<I>>( + table: &mut InferenceTable<I>, + interner: I, + value: T, + ) -> T::Result { + value + .fold_with( + &mut DeepNormalizer { interner, table }, + DebruijnIndex::INNERMOST, + ) + .unwrap() + } +} + +impl<I: Interner> Folder<I> for DeepNormalizer<'_, I> { + type Error = NoSolution; + + fn as_dyn(&mut self) -> &mut dyn Folder<I, Error = Self::Error> { + self + } + + fn fold_inference_ty( + &mut self, + var: InferenceVar, + kind: TyVariableKind, + _outer_binder: DebruijnIndex, + ) -> Fallible<Ty<I>> { + let interner = self.interner; + match self.table.probe_var(var) { + Some(ty) => Ok(ty + .assert_ty_ref(interner) + .clone() + .fold_with(self, DebruijnIndex::INNERMOST)? + .shifted_in(interner)), // FIXME shift + None => { + // Normalize all inference vars which have been unified into a + // single variable. Ena calls this the "root" variable. + Ok(self.table.inference_var_root(var).to_ty(interner, kind)) + } + } + } + + fn fold_inference_lifetime( + &mut self, + var: InferenceVar, + _outer_binder: DebruijnIndex, + ) -> Fallible<Lifetime<I>> { + let interner = self.interner; + match self.table.probe_var(var) { + Some(l) => Ok(l + .assert_lifetime_ref(interner) + .clone() + .fold_with(self, DebruijnIndex::INNERMOST)? + .shifted_in(interner)), + None => Ok(var.to_lifetime(interner)), // FIXME shift + } + } + + fn fold_inference_const( + &mut self, + ty: Ty<I>, + var: InferenceVar, + _outer_binder: DebruijnIndex, + ) -> Fallible<Const<I>> { + let interner = self.interner; + match self.table.probe_var(var) { + Some(c) => Ok(c + .assert_const_ref(interner) + .clone() + .fold_with(self, DebruijnIndex::INNERMOST)? + .shifted_in(interner)), + None => Ok(var.to_const(interner, ty)), // FIXME shift + } + } + + fn forbid_free_vars(&self) -> bool { + true + } + + fn interner(&self) -> I { + self.interner + } +} + +#[cfg(test)] +mod test { + use super::*; + use chalk_integration::interner::ChalkIr; + use chalk_integration::{arg, ty}; + + const U0: UniverseIndex = UniverseIndex { counter: 0 }; + + // We just use a vec of 20 `Invariant`, since this is zipped and no substs are + // longer than this + #[derive(Debug)] + struct TestDatabase; + impl UnificationDatabase<ChalkIr> for TestDatabase { + fn fn_def_variance(&self, _fn_def_id: FnDefId<ChalkIr>) -> Variances<ChalkIr> { + Variances::from_iter(ChalkIr, [Variance::Invariant; 20].iter().copied()) + } + + fn adt_variance(&self, _adt_id: AdtId<ChalkIr>) -> Variances<ChalkIr> { + Variances::from_iter(ChalkIr, [Variance::Invariant; 20].iter().copied()) + } + } + + #[test] + fn infer() { + let interner = ChalkIr; + let mut table: InferenceTable<ChalkIr> = InferenceTable::new(); + let environment0 = Environment::new(interner); + let a = table.new_variable(U0).to_ty(interner); + let b = table.new_variable(U0).to_ty(interner); + table + .relate( + interner, + &TestDatabase, + &environment0, + Variance::Invariant, + &a, + &ty!(apply (item 0) (expr b)), + ) + .unwrap(); + // a is unified to Adt<#0>(c), where 'c' is a new inference var + // created by the generalizer to generalize 'b'. It then unifies 'b' + // and 'c', and when we normalize them, they'll both be output as + // the same "root" variable. However, there are no guarantees for + // _which_ of 'b' and 'c' becomes the root. We need to normalize + // "b" too, then, to ensure we get a consistent result. + assert_eq!( + DeepNormalizer::normalize_deep(&mut table, interner, a.clone()), + ty!(apply (item 0) (expr DeepNormalizer::normalize_deep(&mut table, interner, b.clone()))), + ); + table + .relate( + interner, + &TestDatabase, + &environment0, + Variance::Invariant, + &b, + &ty!(apply (item 1)), + ) + .unwrap(); + assert_eq!( + DeepNormalizer::normalize_deep(&mut table, interner, a), + ty!(apply (item 0) (apply (item 1))) + ); + } +} diff --git a/vendor/chalk-engine/src/simplify.rs b/vendor/chalk-engine/src/simplify.rs new file mode 100644 index 000000000..1c594af01 --- /dev/null +++ b/vendor/chalk-engine/src/simplify.rs @@ -0,0 +1,141 @@ +use crate::forest::Forest; +use crate::slg::SlgContextOps; +use crate::{ExClause, Literal, TimeStamp}; + +use chalk_ir::cast::{Cast, Caster}; +use chalk_ir::interner::Interner; +use chalk_ir::{ + Environment, FallibleOrFloundered, Goal, GoalData, InEnvironment, QuantifierKind, Substitution, + TyKind, TyVariableKind, Variance, +}; +use chalk_solve::infer::InferenceTable; +use tracing::debug; + +impl<I: Interner> Forest<I> { + /// Simplifies a goal into a series of positive domain goals + /// and negative goals. This operation may fail if the goal + /// includes unifications that cannot be completed. + pub(super) fn simplify_goal( + context: &SlgContextOps<I>, + infer: &mut InferenceTable<I>, + subst: Substitution<I>, + initial_environment: Environment<I>, + initial_goal: Goal<I>, + ) -> FallibleOrFloundered<ExClause<I>> { + let mut ex_clause = ExClause { + subst, + ambiguous: false, + constraints: vec![], + subgoals: vec![], + delayed_subgoals: vec![], + answer_time: TimeStamp::default(), + floundered_subgoals: vec![], + }; + + // A stack of higher-level goals to process. + let mut pending_goals = vec![(initial_environment, initial_goal)]; + + while let Some((environment, goal)) = pending_goals.pop() { + match goal.data(context.program().interner()) { + GoalData::Quantified(QuantifierKind::ForAll, subgoal) => { + let subgoal = infer.instantiate_binders_universally( + context.program().interner(), + subgoal.clone(), + ); + pending_goals.push((environment, subgoal.clone())); + } + GoalData::Quantified(QuantifierKind::Exists, subgoal) => { + let subgoal = infer.instantiate_binders_existentially( + context.program().interner(), + subgoal.clone(), + ); + pending_goals.push((environment, subgoal.clone())); + } + GoalData::Implies(wc, subgoal) => { + let new_environment = environment.add_clauses( + context.program().interner(), + wc.iter(context.program().interner()).cloned(), + ); + pending_goals.push((new_environment, subgoal.clone())); + } + GoalData::All(subgoals) => { + for subgoal in subgoals.iter(context.program().interner()) { + pending_goals.push((environment.clone(), subgoal.clone())); + } + } + GoalData::Not(subgoal) => { + ex_clause + .subgoals + .push(Literal::Negative(InEnvironment::new( + &environment, + subgoal.clone(), + ))); + } + GoalData::EqGoal(goal) => { + let interner = context.program().interner(); + let db = context.unification_database(); + let a = &goal.a; + let b = &goal.b; + + let result = + match infer.relate(interner, db, &environment, Variance::Invariant, a, b) { + Ok(r) => r, + Err(_) => return FallibleOrFloundered::NoSolution, + }; + ex_clause.subgoals.extend( + result + .goals + .into_iter() + .casted(interner) + .map(Literal::Positive), + ); + } + GoalData::SubtypeGoal(goal) => { + let interner = context.program().interner(); + let db = context.unification_database(); + let a_norm = infer.normalize_ty_shallow(interner, &goal.a); + let a = a_norm.as_ref().unwrap_or(&goal.a); + let b_norm = infer.normalize_ty_shallow(interner, &goal.b); + let b = b_norm.as_ref().unwrap_or(&goal.b); + + if matches!( + a.kind(interner), + TyKind::InferenceVar(_, TyVariableKind::General) + ) && matches!( + b.kind(interner), + TyKind::InferenceVar(_, TyVariableKind::General) + ) { + return FallibleOrFloundered::Floundered; + } + + let result = + match infer.relate(interner, db, &environment, Variance::Covariant, a, b) { + Ok(r) => r, + Err(_) => return FallibleOrFloundered::Floundered, + }; + ex_clause.subgoals.extend( + result + .goals + .into_iter() + .casted(interner) + .map(Literal::Positive), + ); + } + GoalData::DomainGoal(domain_goal) => { + ex_clause + .subgoals + .push(Literal::Positive(InEnvironment::new( + &environment, + domain_goal.clone().cast(context.program().interner()), + ))); + } + GoalData::CannotProve => { + debug!("Marking Strand as ambiguous because of a `CannotProve` subgoal"); + ex_clause.ambiguous = true; + } + } + } + + FallibleOrFloundered::Ok(ex_clause) + } +} diff --git a/vendor/chalk-engine/src/slg.rs b/vendor/chalk-engine/src/slg.rs new file mode 100644 index 000000000..f3522e777 --- /dev/null +++ b/vendor/chalk-engine/src/slg.rs @@ -0,0 +1,378 @@ +use crate::ExClause; + +use chalk_derive::HasInterner; +use chalk_ir::interner::Interner; +use chalk_ir::*; +use chalk_solve::infer::InferenceTable; +use chalk_solve::RustIrDatabase; + +use std::fmt::Debug; +use std::marker::PhantomData; + +pub(crate) mod aggregate; +mod resolvent; + +#[derive(Clone, Debug, HasInterner)] +pub(crate) struct SlgContext<I: Interner> { + phantom: PhantomData<I>, +} + +impl<I: Interner> SlgContext<I> { + pub(crate) fn next_subgoal_index(ex_clause: &ExClause<I>) -> usize { + // For now, we always pick the last subgoal in the + // list. + // + // FIXME(rust-lang-nursery/chalk#80) -- we should be more + // selective. For example, we don't want to pick a + // negative literal that will flounder, and we don't want + // to pick things like `?T: Sized` if we can help it. + ex_clause.subgoals.len() - 1 + } +} +#[derive(Clone, Debug)] +pub(crate) struct SlgContextOps<'me, I: Interner> { + program: &'me dyn RustIrDatabase<I>, + max_size: usize, + expected_answers: Option<usize>, +} + +impl<I: Interner> SlgContextOps<'_, I> { + pub(crate) fn new( + program: &dyn RustIrDatabase<I>, + max_size: usize, + expected_answers: Option<usize>, + ) -> SlgContextOps<'_, I> { + SlgContextOps { + program, + max_size, + expected_answers, + } + } + + fn identity_constrained_subst( + &self, + goal: &UCanonical<InEnvironment<Goal<I>>>, + ) -> Canonical<ConstrainedSubst<I>> { + let (mut infer, subst, _) = InferenceTable::from_canonical( + self.program.interner(), + goal.universes, + goal.canonical.clone(), + ); + infer + .canonicalize( + self.program.interner(), + ConstrainedSubst { + subst, + constraints: Constraints::empty(self.program.interner()), + }, + ) + .quantified + } + + pub(crate) fn program(&self) -> &dyn RustIrDatabase<I> { + self.program + } + + pub(crate) fn max_size(&self) -> usize { + self.max_size + } + + pub(crate) fn unification_database(&self) -> &dyn UnificationDatabase<I> { + self.program.unification_database() + } +} + +pub trait ResolventOps<I: Interner> { + /// Combines the `goal` (instantiated within `infer`) with the + /// given program clause to yield the start of a new strand (a + /// canonical ex-clause). + /// + /// The bindings in `infer` are unaffected by this operation. + fn resolvent_clause( + &mut self, + ops: &dyn UnificationDatabase<I>, + interner: I, + environment: &Environment<I>, + goal: &DomainGoal<I>, + subst: &Substitution<I>, + clause: &ProgramClause<I>, + ) -> Fallible<ExClause<I>>; + + fn apply_answer_subst( + &mut self, + interner: I, + unification_database: &dyn UnificationDatabase<I>, + ex_clause: &mut ExClause<I>, + selected_goal: &InEnvironment<Goal<I>>, + answer_table_goal: &Canonical<InEnvironment<Goal<I>>>, + canonical_answer_subst: Canonical<AnswerSubst<I>>, + ) -> Fallible<()>; +} + +trait SubstitutionExt<I: Interner> { + fn may_invalidate(&self, interner: I, subst: &Canonical<Substitution<I>>) -> bool; +} + +impl<I: Interner> SubstitutionExt<I> for Substitution<I> { + fn may_invalidate(&self, interner: I, subst: &Canonical<Substitution<I>>) -> bool { + self.iter(interner) + .zip(subst.value.iter(interner)) + .any(|(new, current)| MayInvalidate { interner }.aggregate_generic_args(new, current)) + } +} + +// This is a struct in case we need to add state at any point like in AntiUnifier +struct MayInvalidate<I> { + interner: I, +} + +impl<I: Interner> MayInvalidate<I> { + fn aggregate_generic_args(&mut self, new: &GenericArg<I>, current: &GenericArg<I>) -> bool { + let interner = self.interner; + match (new.data(interner), current.data(interner)) { + (GenericArgData::Ty(ty1), GenericArgData::Ty(ty2)) => self.aggregate_tys(ty1, ty2), + (GenericArgData::Lifetime(l1), GenericArgData::Lifetime(l2)) => { + self.aggregate_lifetimes(l1, l2) + } + (GenericArgData::Const(c1), GenericArgData::Const(c2)) => self.aggregate_consts(c1, c2), + (GenericArgData::Ty(_), _) + | (GenericArgData::Lifetime(_), _) + | (GenericArgData::Const(_), _) => panic!( + "mismatched parameter kinds: new={:?} current={:?}", + new, current + ), + } + } + + /// Returns true if the two types could be unequal. + fn aggregate_tys(&mut self, new: &Ty<I>, current: &Ty<I>) -> bool { + let interner = self.interner; + match (new.kind(interner), current.kind(interner)) { + (_, TyKind::BoundVar(_)) => { + // If the aggregate solution already has an inference + // variable here, then no matter what type we produce, + // the aggregate cannot get 'more generalized' than it + // already is. So return false, we cannot invalidate. + // + // (Note that "inference variables" show up as *bound + // variables* here, because we are looking at the + // canonical form.) + false + } + + (TyKind::BoundVar(_), _) => { + // If we see a type variable in the potential future + // solution, we have to be conservative. We don't know + // what type variable will wind up being! Remember + // that the future solution could be any instantiation + // of `ty0` -- or it could leave this variable + // unbound, if the result is true for all types. + // + // (Note that "inference variables" show up as *bound + // variables* here, because we are looking at the + // canonical form.) + true + } + + (TyKind::InferenceVar(_, _), _) | (_, TyKind::InferenceVar(_, _)) => { + panic!( + "unexpected free inference variable in may-invalidate: {:?} vs {:?}", + new, current, + ); + } + + (TyKind::Placeholder(p1), TyKind::Placeholder(p2)) => { + self.aggregate_placeholders(p1, p2) + } + + ( + TyKind::Alias(AliasTy::Projection(proj1)), + TyKind::Alias(AliasTy::Projection(proj2)), + ) => self.aggregate_projection_tys(proj1, proj2), + + ( + TyKind::Alias(AliasTy::Opaque(opaque_ty1)), + TyKind::Alias(AliasTy::Opaque(opaque_ty2)), + ) => self.aggregate_opaque_ty_tys(opaque_ty1, opaque_ty2), + + (TyKind::Adt(id_a, substitution_a), TyKind::Adt(id_b, substitution_b)) => { + self.aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b) + } + ( + TyKind::AssociatedType(id_a, substitution_a), + TyKind::AssociatedType(id_b, substitution_b), + ) => self.aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b), + (TyKind::Scalar(scalar_a), TyKind::Scalar(scalar_b)) => scalar_a != scalar_b, + (TyKind::Str, TyKind::Str) => false, + (TyKind::Tuple(arity_a, substitution_a), TyKind::Tuple(arity_b, substitution_b)) => { + self.aggregate_name_and_substs(arity_a, substitution_a, arity_b, substitution_b) + } + ( + TyKind::OpaqueType(id_a, substitution_a), + TyKind::OpaqueType(id_b, substitution_b), + ) => self.aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b), + (TyKind::Slice(ty_a), TyKind::Slice(ty_b)) => self.aggregate_tys(ty_a, ty_b), + (TyKind::FnDef(id_a, substitution_a), TyKind::FnDef(id_b, substitution_b)) => { + self.aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b) + } + (TyKind::Ref(id_a, lifetime_a, ty_a), TyKind::Ref(id_b, lifetime_b, ty_b)) => { + id_a != id_b + || self.aggregate_lifetimes(lifetime_a, lifetime_b) + || self.aggregate_tys(ty_a, ty_b) + } + (TyKind::Raw(id_a, ty_a), TyKind::Raw(id_b, ty_b)) => { + id_a != id_b || self.aggregate_tys(ty_a, ty_b) + } + (TyKind::Never, TyKind::Never) => false, + (TyKind::Array(ty_a, const_a), TyKind::Array(ty_b, const_b)) => { + self.aggregate_tys(ty_a, ty_b) || self.aggregate_consts(const_a, const_b) + } + (TyKind::Closure(id_a, substitution_a), TyKind::Closure(id_b, substitution_b)) => { + self.aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b) + } + (TyKind::Generator(id_a, substitution_a), TyKind::Generator(id_b, substitution_b)) => { + self.aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b) + } + ( + TyKind::GeneratorWitness(id_a, substitution_a), + TyKind::GeneratorWitness(id_b, substitution_b), + ) => self.aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b), + (TyKind::Foreign(id_a), TyKind::Foreign(id_b)) => id_a != id_b, + (TyKind::Error, TyKind::Error) => false, + + (_, _) => true, + } + } + + /// Returns true if the two consts could be unequal. + fn aggregate_lifetimes(&mut self, _: &Lifetime<I>, _: &Lifetime<I>) -> bool { + true + } + + /// Returns true if the two consts could be unequal. + fn aggregate_consts(&mut self, new: &Const<I>, current: &Const<I>) -> bool { + let interner = self.interner; + let ConstData { + ty: new_ty, + value: new_value, + } = new.data(interner); + let ConstData { + ty: current_ty, + value: current_value, + } = current.data(interner); + + if self.aggregate_tys(new_ty, current_ty) { + return true; + } + + match (new_value, current_value) { + (_, ConstValue::BoundVar(_)) => { + // see comment in aggregate_tys + false + } + + (ConstValue::BoundVar(_), _) => { + // see comment in aggregate_tys + true + } + + (ConstValue::InferenceVar(_), _) | (_, ConstValue::InferenceVar(_)) => { + panic!( + "unexpected free inference variable in may-invalidate: {:?} vs {:?}", + new, current, + ); + } + + (ConstValue::Placeholder(p1), ConstValue::Placeholder(p2)) => { + self.aggregate_placeholders(p1, p2) + } + + (ConstValue::Concrete(c1), ConstValue::Concrete(c2)) => { + !c1.const_eq(new_ty, c2, interner) + } + + // Only variants left are placeholder = concrete, which always fails + (ConstValue::Placeholder(_), _) | (ConstValue::Concrete(_), _) => true, + } + } + + fn aggregate_placeholders( + &mut self, + new: &PlaceholderIndex, + current: &PlaceholderIndex, + ) -> bool { + new != current + } + + fn aggregate_projection_tys( + &mut self, + new: &ProjectionTy<I>, + current: &ProjectionTy<I>, + ) -> bool { + let ProjectionTy { + associated_ty_id: new_name, + substitution: new_substitution, + } = new; + let ProjectionTy { + associated_ty_id: current_name, + substitution: current_substitution, + } = current; + + self.aggregate_name_and_substs( + new_name, + new_substitution, + current_name, + current_substitution, + ) + } + + fn aggregate_opaque_ty_tys(&mut self, new: &OpaqueTy<I>, current: &OpaqueTy<I>) -> bool { + let OpaqueTy { + opaque_ty_id: new_name, + substitution: new_substitution, + } = new; + let OpaqueTy { + opaque_ty_id: current_name, + substitution: current_substitution, + } = current; + + self.aggregate_name_and_substs( + new_name, + new_substitution, + current_name, + current_substitution, + ) + } + + fn aggregate_name_and_substs<N>( + &mut self, + new_name: N, + new_substitution: &Substitution<I>, + current_name: N, + current_substitution: &Substitution<I>, + ) -> bool + where + N: Copy + Eq + Debug, + { + let interner = self.interner; + if new_name != current_name { + return true; + } + + let name = new_name; + + assert_eq!( + new_substitution.len(interner), + current_substitution.len(interner), + "does {:?} take {} substitution or {}? can't both be right", + name, + new_substitution.len(interner), + current_substitution.len(interner) + ); + + new_substitution + .iter(interner) + .zip(current_substitution.iter(interner)) + .any(|(new, current)| self.aggregate_generic_args(new, current)) + } +} diff --git a/vendor/chalk-engine/src/slg/aggregate.rs b/vendor/chalk-engine/src/slg/aggregate.rs new file mode 100644 index 000000000..cce4e14dd --- /dev/null +++ b/vendor/chalk-engine/src/slg/aggregate.rs @@ -0,0 +1,642 @@ +use crate::context::{self, AnswerResult}; +use crate::slg::SlgContextOps; +use crate::slg::SubstitutionExt; +use crate::CompleteAnswer; +use chalk_ir::cast::Cast; +use chalk_ir::interner::Interner; +use chalk_ir::*; +use chalk_solve::ext::*; +use chalk_solve::infer::InferenceTable; +use chalk_solve::solve::{Guidance, Solution}; + +use std::fmt::Debug; + +/// Methods for combining solutions to yield an aggregate solution. +pub trait AggregateOps<I: Interner> { + fn make_solution( + &self, + root_goal: &UCanonical<InEnvironment<Goal<I>>>, + answers: impl context::AnswerStream<I>, + should_continue: impl std::ops::Fn() -> bool, + ) -> Option<Solution<I>>; +} + +/// Draws as many answers as it needs from `answers` (but +/// no more!) in order to come up with a solution. +impl<I: Interner> AggregateOps<I> for SlgContextOps<'_, I> { + fn make_solution( + &self, + root_goal: &UCanonical<InEnvironment<Goal<I>>>, + mut answers: impl context::AnswerStream<I>, + should_continue: impl std::ops::Fn() -> bool, + ) -> Option<Solution<I>> { + let interner = self.program.interner(); + let CompleteAnswer { subst, ambiguous } = match answers.next_answer(&should_continue) { + AnswerResult::NoMoreSolutions => { + // No answers at all + return None; + } + AnswerResult::Answer(answer) => answer, + AnswerResult::Floundered => CompleteAnswer { + subst: self.identity_constrained_subst(root_goal), + ambiguous: true, + }, + AnswerResult::QuantumExceeded => { + return Some(Solution::Ambig(Guidance::Unknown)); + } + }; + + // Exactly 1 unconditional answer? + let next_answer = answers.peek_answer(&should_continue); + if next_answer.is_quantum_exceeded() { + if subst.value.subst.is_identity_subst(interner) { + return Some(Solution::Ambig(Guidance::Unknown)); + } else { + return Some(Solution::Ambig(Guidance::Suggested( + subst.map(interner, |cs| cs.subst), + ))); + } + } + if next_answer.is_no_more_solutions() && !ambiguous { + return Some(Solution::Unique(subst)); + } + + // Otherwise, we either have >1 answer, or else we have + // ambiguity. Either way, we are only going to be giving back + // **guidance**, and with guidance, the caller doesn't get + // back any region constraints. So drop them from our `subst` + // variable. + // + // FIXME-- there is actually a 3rd possibility. We could have + // >1 answer where all the answers have the same substitution, + // but different region constraints. We should collapse those + // cases into an `OR` region constraint at some point, but I + // leave that for future work. This is basically + // rust-lang/rust#21974. + let mut subst = subst.map(interner, |cs| cs.subst); + + // Extract answers and merge them into `subst`. Stop once we have + // a trivial subst (or run out of answers). + let mut num_answers = 1; + let guidance = loop { + if subst.value.is_empty(interner) || is_trivial(interner, &subst) { + break Guidance::Unknown; + } + + if !answers + .any_future_answer(|ref mut new_subst| new_subst.may_invalidate(interner, &subst)) + { + break Guidance::Definite(subst); + } + + if let Some(expected_answers) = self.expected_answers { + if num_answers >= expected_answers { + panic!("Too many answers for solution."); + } + } + + let new_subst = match answers.next_answer(&should_continue) { + AnswerResult::Answer(answer1) => answer1.subst, + AnswerResult::Floundered => { + // FIXME: this doesn't trigger for any current tests + self.identity_constrained_subst(root_goal) + } + AnswerResult::NoMoreSolutions => { + break Guidance::Definite(subst); + } + AnswerResult::QuantumExceeded => { + break Guidance::Suggested(subst); + } + }; + subst = merge_into_guidance(interner, &root_goal.canonical, subst, &new_subst); + num_answers += 1; + }; + + if let Some(expected_answers) = self.expected_answers { + assert_eq!( + expected_answers, num_answers, + "Not enough answers for solution." + ); + } + Some(Solution::Ambig(guidance)) + } +} + +/// Given a current substitution used as guidance for `root_goal`, and +/// a new possible answer to `root_goal`, returns a new set of +/// guidance that encompasses both of them. This is often more general +/// than the old guidance. For example, if we had a guidance of `?0 = +/// u32` and the new answer is `?0 = i32`, then the guidance would +/// become `?0 = ?X` (where `?X` is some fresh variable). +fn merge_into_guidance<I: Interner>( + interner: I, + root_goal: &Canonical<InEnvironment<Goal<I>>>, + guidance: Canonical<Substitution<I>>, + answer: &Canonical<ConstrainedSubst<I>>, +) -> Canonical<Substitution<I>> { + let mut infer = InferenceTable::new(); + let Canonical { + value: ConstrainedSubst { + subst: subst1, + constraints: _, + }, + binders: _, + } = answer; + + // Collect the types that the two substitutions have in + // common. + let aggr_generic_args: Vec<_> = guidance + .value + .iter(interner) + .zip(subst1.iter(interner)) + .enumerate() + .map(|(index, (p1, p2))| { + // We have two values for some variable X that + // appears in the root goal. Find out the universe + // of X. + let universe = *root_goal.binders.as_slice(interner)[index].skip_kind(); + + match p1.data(interner) { + GenericArgData::Ty(_) => (), + GenericArgData::Lifetime(_) => { + // Ignore the lifetimes from the substitution: we're just + // creating guidance here anyway. + return infer + .new_variable(universe) + .to_lifetime(interner) + .cast(interner); + } + GenericArgData::Const(_) => (), + }; + + // Combine the two types into a new type. + let mut aggr = AntiUnifier { + infer: &mut infer, + universe, + interner, + }; + aggr.aggregate_generic_args(p1, p2) + }) + .collect(); + + let aggr_subst = Substitution::from_iter(interner, aggr_generic_args); + + infer.canonicalize(interner, aggr_subst).quantified +} + +fn is_trivial<I: Interner>(interner: I, subst: &Canonical<Substitution<I>>) -> bool { + // A subst is trivial if.. + subst + .value + .iter(interner) + .enumerate() + .all(|(index, parameter)| { + let is_trivial = |b: Option<BoundVar>| match b { + None => false, + Some(bound_var) => { + if let Some(index1) = bound_var.index_if_innermost() { + index == index1 + } else { + false + } + } + }; + + match parameter.data(interner) { + // All types and consts are mapped to distinct variables. Since this + // has been canonicalized, those will also be the first N + // variables. + GenericArgData::Ty(t) => is_trivial(t.bound_var(interner)), + GenericArgData::Const(t) => is_trivial(t.bound_var(interner)), + + // And no lifetime mappings. (This is too strict, but we never + // product substs with lifetimes.) + GenericArgData::Lifetime(_) => false, + } + }) +} + +/// [Anti-unification] is the act of taking two things that do not +/// unify and finding a minimal generalization of them. So for +/// example `Vec<u32>` anti-unified with `Vec<i32>` might be +/// `Vec<?X>`. This is a **very simplistic** anti-unifier. +/// +/// NOTE: The values here are canonicalized, but output is not, this means +/// that any escaping bound variables that we see have to be replaced with +/// inference variables. +/// +/// [Anti-unification]: https://en.wikipedia.org/wiki/Anti-unification_(computer_science) +struct AntiUnifier<'infer, I: Interner> { + infer: &'infer mut InferenceTable<I>, + universe: UniverseIndex, + interner: I, +} + +impl<I: Interner> AntiUnifier<'_, I> { + fn aggregate_tys(&mut self, ty0: &Ty<I>, ty1: &Ty<I>) -> Ty<I> { + let interner = self.interner; + match (ty0.kind(interner), ty1.kind(interner)) { + // If we see bound things on either side, just drop in a + // fresh variable. This means we will sometimes + // overgeneralize. So for example if we have two + // solutions that are both `(X, X)`, we just produce `(Y, + // Z)` in all cases. + (TyKind::InferenceVar(_, _), TyKind::InferenceVar(_, _)) => self.new_ty_variable(), + + // Ugh. Aggregating two types like `for<'a> fn(&'a u32, + // &'a u32)` and `for<'a, 'b> fn(&'a u32, &'b u32)` seems + // kinda hard. Don't try to be smart for now, just plop a + // variable in there and be done with it. + // This also ensures that any bound variables we do see + // were bound by `Canonical`. + (TyKind::BoundVar(_), TyKind::BoundVar(_)) + | (TyKind::Function(_), TyKind::Function(_)) + | (TyKind::Dyn(_), TyKind::Dyn(_)) => self.new_ty_variable(), + + ( + TyKind::Alias(AliasTy::Projection(proj1)), + TyKind::Alias(AliasTy::Projection(proj2)), + ) => self.aggregate_projection_tys(proj1, proj2), + + ( + TyKind::Alias(AliasTy::Opaque(opaque_ty1)), + TyKind::Alias(AliasTy::Opaque(opaque_ty2)), + ) => self.aggregate_opaque_ty_tys(opaque_ty1, opaque_ty2), + + (TyKind::Placeholder(placeholder1), TyKind::Placeholder(placeholder2)) => { + self.aggregate_placeholder_tys(placeholder1, placeholder2) + } + + (TyKind::Adt(id_a, substitution_a), TyKind::Adt(id_b, substitution_b)) => self + .aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b) + .map(|(&name, substitution)| TyKind::Adt(name, substitution).intern(interner)) + .unwrap_or_else(|| self.new_ty_variable()), + ( + TyKind::AssociatedType(id_a, substitution_a), + TyKind::AssociatedType(id_b, substitution_b), + ) => self + .aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b) + .map(|(&name, substitution)| { + TyKind::AssociatedType(name, substitution).intern(interner) + }) + .unwrap_or_else(|| self.new_ty_variable()), + (TyKind::Scalar(scalar_a), TyKind::Scalar(scalar_b)) => { + if scalar_a == scalar_b { + TyKind::Scalar(*scalar_a).intern(interner) + } else { + self.new_ty_variable() + } + } + (TyKind::Str, TyKind::Str) => TyKind::Str.intern(interner), + (TyKind::Tuple(arity_a, substitution_a), TyKind::Tuple(arity_b, substitution_b)) => { + self.aggregate_name_and_substs(arity_a, substitution_a, arity_b, substitution_b) + .map(|(&name, substitution)| TyKind::Tuple(name, substitution).intern(interner)) + .unwrap_or_else(|| self.new_ty_variable()) + } + ( + TyKind::OpaqueType(id_a, substitution_a), + TyKind::OpaqueType(id_b, substitution_b), + ) => self + .aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b) + .map(|(&name, substitution)| { + TyKind::OpaqueType(name, substitution).intern(interner) + }) + .unwrap_or_else(|| self.new_ty_variable()), + (TyKind::Slice(ty_a), TyKind::Slice(ty_b)) => { + TyKind::Slice(self.aggregate_tys(ty_a, ty_b)).intern(interner) + } + (TyKind::FnDef(id_a, substitution_a), TyKind::FnDef(id_b, substitution_b)) => self + .aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b) + .map(|(&name, substitution)| TyKind::FnDef(name, substitution).intern(interner)) + .unwrap_or_else(|| self.new_ty_variable()), + (TyKind::Ref(id_a, lifetime_a, ty_a), TyKind::Ref(id_b, lifetime_b, ty_b)) => { + if id_a == id_b { + TyKind::Ref( + *id_a, + self.aggregate_lifetimes(lifetime_a, lifetime_b), + self.aggregate_tys(ty_a, ty_b), + ) + .intern(interner) + } else { + self.new_ty_variable() + } + } + (TyKind::Raw(id_a, ty_a), TyKind::Raw(id_b, ty_b)) => { + if id_a == id_b { + TyKind::Raw(*id_a, self.aggregate_tys(ty_a, ty_b)).intern(interner) + } else { + self.new_ty_variable() + } + } + (TyKind::Never, TyKind::Never) => TyKind::Never.intern(interner), + (TyKind::Array(ty_a, const_a), TyKind::Array(ty_b, const_b)) => TyKind::Array( + self.aggregate_tys(ty_a, ty_b), + self.aggregate_consts(const_a, const_b), + ) + .intern(interner), + (TyKind::Closure(id_a, substitution_a), TyKind::Closure(id_b, substitution_b)) => self + .aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b) + .map(|(&name, substitution)| TyKind::Closure(name, substitution).intern(interner)) + .unwrap_or_else(|| self.new_ty_variable()), + (TyKind::Generator(id_a, substitution_a), TyKind::Generator(id_b, substitution_b)) => { + self.aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b) + .map(|(&name, substitution)| { + TyKind::Generator(name, substitution).intern(interner) + }) + .unwrap_or_else(|| self.new_ty_variable()) + } + ( + TyKind::GeneratorWitness(id_a, substitution_a), + TyKind::GeneratorWitness(id_b, substitution_b), + ) => self + .aggregate_name_and_substs(id_a, substitution_a, id_b, substitution_b) + .map(|(&name, substitution)| { + TyKind::GeneratorWitness(name, substitution).intern(interner) + }) + .unwrap_or_else(|| self.new_ty_variable()), + (TyKind::Foreign(id_a), TyKind::Foreign(id_b)) => { + if id_a == id_b { + TyKind::Foreign(*id_a).intern(interner) + } else { + self.new_ty_variable() + } + } + (TyKind::Error, TyKind::Error) => TyKind::Error.intern(interner), + + (_, _) => self.new_ty_variable(), + } + } + + fn aggregate_placeholder_tys( + &mut self, + index1: &PlaceholderIndex, + index2: &PlaceholderIndex, + ) -> Ty<I> { + let interner = self.interner; + if index1 != index2 { + self.new_ty_variable() + } else { + TyKind::Placeholder(*index1).intern(interner) + } + } + + fn aggregate_projection_tys( + &mut self, + proj1: &ProjectionTy<I>, + proj2: &ProjectionTy<I>, + ) -> Ty<I> { + let interner = self.interner; + let ProjectionTy { + associated_ty_id: name1, + substitution: substitution1, + } = proj1; + let ProjectionTy { + associated_ty_id: name2, + substitution: substitution2, + } = proj2; + + self.aggregate_name_and_substs(name1, substitution1, name2, substitution2) + .map(|(&associated_ty_id, substitution)| { + TyKind::Alias(AliasTy::Projection(ProjectionTy { + associated_ty_id, + substitution, + })) + .intern(interner) + }) + .unwrap_or_else(|| self.new_ty_variable()) + } + + fn aggregate_opaque_ty_tys( + &mut self, + opaque_ty1: &OpaqueTy<I>, + opaque_ty2: &OpaqueTy<I>, + ) -> Ty<I> { + let OpaqueTy { + opaque_ty_id: name1, + substitution: substitution1, + } = opaque_ty1; + let OpaqueTy { + opaque_ty_id: name2, + substitution: substitution2, + } = opaque_ty2; + + self.aggregate_name_and_substs(name1, substitution1, name2, substitution2) + .map(|(&opaque_ty_id, substitution)| { + TyKind::Alias(AliasTy::Opaque(OpaqueTy { + opaque_ty_id, + substitution, + })) + .intern(self.interner) + }) + .unwrap_or_else(|| self.new_ty_variable()) + } + + fn aggregate_name_and_substs<N>( + &mut self, + name1: N, + substitution1: &Substitution<I>, + name2: N, + substitution2: &Substitution<I>, + ) -> Option<(N, Substitution<I>)> + where + N: Copy + Eq + Debug, + { + let interner = self.interner; + if name1 != name2 { + return None; + } + + let name = name1; + + assert_eq!( + substitution1.len(interner), + substitution2.len(interner), + "does {:?} take {} substitution or {}? can't both be right", + name, + substitution1.len(interner), + substitution2.len(interner) + ); + + let substitution = Substitution::from_iter( + interner, + substitution1 + .iter(interner) + .zip(substitution2.iter(interner)) + .map(|(p1, p2)| self.aggregate_generic_args(p1, p2)), + ); + + Some((name, substitution)) + } + + fn aggregate_generic_args(&mut self, p1: &GenericArg<I>, p2: &GenericArg<I>) -> GenericArg<I> { + let interner = self.interner; + match (p1.data(interner), p2.data(interner)) { + (GenericArgData::Ty(ty1), GenericArgData::Ty(ty2)) => { + self.aggregate_tys(ty1, ty2).cast(interner) + } + (GenericArgData::Lifetime(l1), GenericArgData::Lifetime(l2)) => { + self.aggregate_lifetimes(l1, l2).cast(interner) + } + (GenericArgData::Const(c1), GenericArgData::Const(c2)) => { + self.aggregate_consts(c1, c2).cast(interner) + } + (GenericArgData::Ty(_), _) + | (GenericArgData::Lifetime(_), _) + | (GenericArgData::Const(_), _) => { + panic!("mismatched parameter kinds: p1={:?} p2={:?}", p1, p2) + } + } + } + + fn aggregate_lifetimes(&mut self, l1: &Lifetime<I>, l2: &Lifetime<I>) -> Lifetime<I> { + let interner = self.interner; + match (l1.data(interner), l2.data(interner)) { + (LifetimeData::Phantom(void, ..), _) | (_, LifetimeData::Phantom(void, ..)) => { + match *void {} + } + (LifetimeData::BoundVar(..), _) | (_, LifetimeData::BoundVar(..)) => { + self.new_lifetime_variable() + } + _ => { + if l1 == l2 { + l1.clone() + } else { + self.new_lifetime_variable() + } + } + } + } + + fn aggregate_consts(&mut self, c1: &Const<I>, c2: &Const<I>) -> Const<I> { + let interner = self.interner; + + // It would be nice to check that c1 and c2 have the same type, even though + // on this stage of solving they should already have the same type. + + let ConstData { + ty: c1_ty, + value: c1_value, + } = c1.data(interner); + let ConstData { + ty: _c2_ty, + value: c2_value, + } = c2.data(interner); + + let ty = c1_ty.clone(); + + match (c1_value, c2_value) { + (ConstValue::InferenceVar(_), _) | (_, ConstValue::InferenceVar(_)) => { + self.new_const_variable(ty) + } + + (ConstValue::BoundVar(_), _) | (_, ConstValue::BoundVar(_)) => { + self.new_const_variable(ty) + } + + (ConstValue::Placeholder(_), ConstValue::Placeholder(_)) => { + if c1 == c2 { + c1.clone() + } else { + self.new_const_variable(ty) + } + } + (ConstValue::Concrete(e1), ConstValue::Concrete(e2)) => { + if e1.const_eq(&ty, e2, interner) { + c1.clone() + } else { + self.new_const_variable(ty) + } + } + + (ConstValue::Placeholder(_), _) | (_, ConstValue::Placeholder(_)) => { + self.new_const_variable(ty) + } + } + } + + fn new_ty_variable(&mut self) -> Ty<I> { + let interner = self.interner; + self.infer.new_variable(self.universe).to_ty(interner) + } + + fn new_lifetime_variable(&mut self) -> Lifetime<I> { + let interner = self.interner; + self.infer.new_variable(self.universe).to_lifetime(interner) + } + + fn new_const_variable(&mut self, ty: Ty<I>) -> Const<I> { + let interner = self.interner; + self.infer + .new_variable(self.universe) + .to_const(interner, ty) + } +} + +#[cfg(test)] +mod test { + use crate::slg::aggregate::AntiUnifier; + use chalk_integration::{arg, ty}; + use chalk_ir::UniverseIndex; + use chalk_solve::infer::InferenceTable; + + /// Test the equivalent of `Vec<i32>` vs `Vec<u32>` + #[test] + fn vec_i32_vs_vec_u32() { + use chalk_integration::interner::ChalkIr; + let mut infer: InferenceTable<ChalkIr> = InferenceTable::new(); + let mut anti_unifier = AntiUnifier { + infer: &mut infer, + universe: UniverseIndex::root(), + interner: ChalkIr, + }; + + let ty = anti_unifier.aggregate_tys( + &ty!(apply (item 0) (apply (item 1))), + &ty!(apply (item 0) (apply (item 2))), + ); + assert_eq!(ty!(apply (item 0) (infer 0)), ty); + } + + /// Test the equivalent of `Vec<i32>` vs `Vec<i32>` + #[test] + fn vec_i32_vs_vec_i32() { + use chalk_integration::interner::ChalkIr; + let interner = ChalkIr; + let mut infer: InferenceTable<ChalkIr> = InferenceTable::new(); + let mut anti_unifier = AntiUnifier { + interner, + infer: &mut infer, + universe: UniverseIndex::root(), + }; + + let ty = anti_unifier.aggregate_tys( + &ty!(apply (item 0) (apply (item 1))), + &ty!(apply (item 0) (apply (item 1))), + ); + assert_eq!(ty!(apply (item 0) (apply (item 1))), ty); + } + + /// Test the equivalent of `Vec<X>` vs `Vec<Y>` + #[test] + fn vec_x_vs_vec_y() { + use chalk_integration::interner::ChalkIr; + let interner = ChalkIr; + let mut infer: InferenceTable<ChalkIr> = InferenceTable::new(); + let mut anti_unifier = AntiUnifier { + interner, + infer: &mut infer, + universe: UniverseIndex::root(), + }; + + // Note that the `var 0` and `var 1` in these types would be + // referring to canonicalized free variables, not variables in + // `infer`. + let ty = anti_unifier.aggregate_tys( + &ty!(apply (item 0) (infer 0)), + &ty!(apply (item 0) (infer 1)), + ); + + // But this `var 0` is from `infer. + assert_eq!(ty!(apply (item 0) (infer 0)), ty); + } +} diff --git a/vendor/chalk-engine/src/slg/resolvent.rs b/vendor/chalk-engine/src/slg/resolvent.rs new file mode 100644 index 000000000..c6d0f8d5c --- /dev/null +++ b/vendor/chalk-engine/src/slg/resolvent.rs @@ -0,0 +1,731 @@ +use crate::normalize_deep::DeepNormalizer; +use crate::slg::ResolventOps; +use crate::{ExClause, Literal, TimeStamp}; +use chalk_ir::cast::Caster; +use chalk_ir::fold::shift::Shift; +use chalk_ir::fold::Fold; +use chalk_ir::interner::{HasInterner, Interner}; +use chalk_ir::zip::{Zip, Zipper}; +use chalk_ir::*; +use chalk_solve::infer::InferenceTable; +use tracing::{debug, instrument}; + +/////////////////////////////////////////////////////////////////////////// +// SLG RESOLVENTS +// +// The "SLG Resolvent" is used to combine a *goal* G with some +// clause or answer *C*. It unifies the goal's selected literal +// with the clause and then inserts the clause's conditions into +// the goal's list of things to prove, basically. Although this is +// one operation in EWFS, we have specialized variants for merging +// a program clause and an answer (though they share some code in +// common). +// +// Terminology note: The NFTD and RR papers use the term +// "resolvent" to mean both the factor and the resolvent, but EWFS +// distinguishes the two. We follow EWFS here since -- in the code +// -- we tend to know whether there are delayed literals or not, +// and hence to know which code path we actually want. +// +// From EWFS: +// +// Let G be an X-clause A :- D | L1,...Ln, where N > 0, and Li be selected atom. +// +// Let C be an X-clause with no delayed literals. Let +// +// C' = A' :- L'1...L'm +// +// be a variant of C such that G and C' have no variables in +// common. +// +// Let Li and A' be unified with MGU S. +// +// Then: +// +// S(A :- D | L1...Li-1, L1'...L'm, Li+1...Ln) +// +// is the SLG resolvent of G with C. + +impl<I: Interner> ResolventOps<I> for InferenceTable<I> { + /// Applies the SLG resolvent algorithm to incorporate a program + /// clause into the main X-clause, producing a new X-clause that + /// must be solved. + /// + /// # Parameters + /// + /// - `goal` is the goal G that we are trying to solve + /// - `clause` is the program clause that may be useful to that end + #[instrument(level = "debug", skip(self, interner, environment, subst))] + fn resolvent_clause( + &mut self, + db: &dyn UnificationDatabase<I>, + interner: I, + environment: &Environment<I>, + goal: &DomainGoal<I>, + subst: &Substitution<I>, + clause: &ProgramClause<I>, + ) -> Fallible<ExClause<I>> { + // Relating the above description to our situation: + // + // - `goal` G, except with binders for any existential variables. + // - Also, we always select the first literal in `ex_clause.literals`, so `i` is 0. + // - `clause` is C, except with binders for any existential variables. + + // C' in the description above is `consequence :- conditions`. + // + // Note that G and C' have no variables in common. + let ProgramClauseImplication { + consequence, + conditions, + constraints, + priority: _, + } = { + let ProgramClauseData(implication) = clause.data(interner); + + self.instantiate_binders_existentially(interner, implication.clone()) + }; + debug!(?consequence, ?conditions, ?constraints); + + // Unify the selected literal Li with C'. + let unification_result = self.relate( + interner, + db, + environment, + Variance::Invariant, + goal, + &consequence, + )?; + + // Final X-clause that we will return. + let mut ex_clause = ExClause { + subst: subst.clone(), + ambiguous: false, + constraints: vec![], + subgoals: vec![], + delayed_subgoals: vec![], + answer_time: TimeStamp::default(), + floundered_subgoals: vec![], + }; + + // Add the subgoals/region-constraints that unification gave us. + ex_clause.subgoals.extend( + unification_result + .goals + .into_iter() + .casted(interner) + .map(Literal::Positive), + ); + + ex_clause + .constraints + .extend(constraints.as_slice(interner).to_owned()); + + // Add the `conditions` from the program clause into the result too. + ex_clause + .subgoals + .extend(conditions.iter(interner).map(|c| match c.data(interner) { + GoalData::Not(c1) => { + Literal::Negative(InEnvironment::new(environment, Goal::clone(c1))) + } + _ => Literal::Positive(InEnvironment::new(environment, Goal::clone(c))), + })); + + Ok(ex_clause) + } + + /////////////////////////////////////////////////////////////////////////// + // apply_answer_subst + // + // Apply answer subst has the job of "plugging in" the answer to a + // query into the pending ex-clause. To see how it works, it's worth stepping + // up one level. Imagine that first we are trying to prove a goal A: + // + // A :- T: Foo<Vec<?U>>, ?U: Bar + // + // this spawns a subgoal `T: Foo<Vec<?0>>`, and it's this subgoal that + // has now produced an answer `?0 = u32`. When the goal A spawned the + // subgoal, it will also have registered a `PendingExClause` with its + // current state. At the point where *this* method has been invoked, + // that pending ex-clause has been instantiated with fresh variables and setup, + // so we have four bits of incoming information: + // + // - `ex_clause`, which is the remaining stuff to prove for the goal A. + // Here, the inference variable `?U` has been instantiated with a fresh variable + // `?X`. + // - `A :- ?X: Bar` + // - `selected_goal`, which is the thing we were trying to prove when we + // spawned the subgoal. It shares inference variables with `ex_clause`. + // - `T: Foo<Vec<?X>>` + // - `answer_table_goal`, which is the subgoal in canonical form: + // - `for<type> T: Foo<Vec<?0>>` + // - `canonical_answer_subst`, which is an answer to `answer_table_goal`. + // - `[?0 = u32]` + // + // In this case, this function will (a) unify `u32` and `?X` and then + // (b) return `ex_clause` (extended possibly with new region constraints + // and subgoals). + // + // One way to do this would be to (a) substitute + // `canonical_answer_subst` into `answer_table_goal` (yielding `T: + // Foo<Vec<u32>>`) and then (b) instantiate the result with fresh + // variables (no effect in this instance) and then (c) unify that with + // `selected_goal` (yielding, indirectly, that `?X = u32`). But that + // is not what we do: it's inefficient, to start, but it also causes + // problems because unification of projections can make new + // sub-goals. That is, even if the answers don't involve any + // projections, the table goals might, and this can create an infinite + // loop (see also #74). + // + // What we do instead is to (a) instantiate the substitution, which + // may have free variables in it (in this case, it would not, and the + // instantiation would have no effect) and then (b) zip + // `answer_table_goal` and `selected_goal` without having done any + // substitution. After all, these ought to be basically the same, + // since `answer_table_goal` was created by canonicalizing (and + // possibly truncating, but we'll get to that later) + // `selected_goal`. Then, whenever we reach a "free variable" in + // `answer_table_goal`, say `?0`, we go to the instantiated answer + // substitution and lookup the result (in this case, `u32`). We take + // that result and unify it with whatever we find in `selected_goal` + // (in this case, `?X`). + // + // Let's cover then some corner cases. First off, what is this + // business of instantiating the answer? Well, the answer may not be a + // simple type like `u32`, it could be a "family" of types, like + // `for<type> Vec<?0>` -- i.e., `Vec<X>: Bar` for *any* `X`. In that + // case, the instantiation would produce a substitution `[?0 := + // Vec<?Y>]` (note that the key is not affected, just the value). So + // when we do the unification, instead of unifying `?X = u32`, we + // would unify `?X = Vec<?Y>`. + // + // Next, truncation. One key thing is that the `answer_table_goal` may + // not be *exactly* the same as the `selected_goal` -- we will + // truncate it if it gets too deep. so, in our example, it may be that + // instead of `answer_table_goal` being `for<type> T: Foo<Vec<?0>>`, + // it could have been truncated to `for<type> T: Foo<?0>` (which is a + // more general goal). In that case, let's say that the answer is + // still `[?0 = u32]`, meaning that `T: Foo<u32>` is true (which isn't + // actually interesting to our original goal). When we do the zip + // then, we will encounter `?0` in the `answer_table_goal` and pair + // that with `Vec<?X>` from the pending goal. We will attempt to unify + // `Vec<?X>` with `u32` (from the substitution), which will fail. That + // failure will get propagated back up. + + #[instrument(level = "debug", skip(self, interner))] + fn apply_answer_subst( + &mut self, + interner: I, + unification_database: &dyn UnificationDatabase<I>, + ex_clause: &mut ExClause<I>, + selected_goal: &InEnvironment<Goal<I>>, + answer_table_goal: &Canonical<InEnvironment<Goal<I>>>, + canonical_answer_subst: Canonical<AnswerSubst<I>>, + ) -> Fallible<()> { + debug!(selected_goal = ?DeepNormalizer::normalize_deep(self, interner, selected_goal.clone())); + + // C' is now `answer`. No variables in common with G. + let AnswerSubst { + subst: answer_subst, + + // Assuming unification succeeds, we incorporate the + // region constraints from the answer into the result; + // we'll need them if this answer (which is not yet known + // to be true) winds up being true, and otherwise (if the + // answer is false or unknown) it doesn't matter. + constraints: answer_constraints, + + delayed_subgoals, + } = self.instantiate_canonical(interner, canonical_answer_subst); + + AnswerSubstitutor::substitute( + interner, + unification_database, + self, + &selected_goal.environment, + &answer_subst, + ex_clause, + &answer_table_goal.value, + selected_goal, + )?; + ex_clause + .constraints + .extend(answer_constraints.as_slice(interner).to_vec()); + // at that point we should only have goals that stemmed + // from non trivial self cycles + ex_clause.delayed_subgoals.extend(delayed_subgoals); + Ok(()) + } +} + +struct AnswerSubstitutor<'t, I: Interner> { + table: &'t mut InferenceTable<I>, + environment: &'t Environment<I>, + answer_subst: &'t Substitution<I>, + + /// Tracks the debrujn index of the first binder that is outside + /// the term we are traversing. This starts as `DebruijnIndex::INNERMOST`, + /// since we have not yet traversed *any* binders, but when we visit + /// the inside of a binder, it would be incremented. + /// + /// Example: If we are visiting `(for<type> A, B, C, for<type> for<type> D)`, + /// then this would be: + /// + /// * `1`, when visiting `A`, + /// * `0`, when visiting `B` and `C`, + /// * `2`, when visiting `D`. + outer_binder: DebruijnIndex, + + ex_clause: &'t mut ExClause<I>, + interner: I, + unification_database: &'t dyn UnificationDatabase<I>, +} + +impl<I: Interner> AnswerSubstitutor<'_, I> { + fn substitute<T: Zip<I>>( + interner: I, + unification_database: &dyn UnificationDatabase<I>, + table: &mut InferenceTable<I>, + environment: &Environment<I>, + answer_subst: &Substitution<I>, + ex_clause: &mut ExClause<I>, + answer: &T, + pending: &T, + ) -> Fallible<()> { + let mut this = AnswerSubstitutor { + interner, + unification_database, + table, + environment, + answer_subst, + ex_clause, + outer_binder: DebruijnIndex::INNERMOST, + }; + Zip::zip_with(&mut this, Variance::Invariant, answer, pending)?; + Ok(()) + } + + fn unify_free_answer_var( + &mut self, + interner: I, + db: &dyn UnificationDatabase<I>, + variance: Variance, + answer_var: BoundVar, + pending: GenericArgData<I>, + ) -> Fallible<bool> { + let answer_index = match answer_var.index_if_bound_at(self.outer_binder) { + Some(index) => index, + + // This variable is bound in the answer, not free, so it + // doesn't represent a reference into the answer substitution. + None => return Ok(false), + }; + + let answer_param = self.answer_subst.at(interner, answer_index); + + let pending_shifted = pending + .shifted_out_to(interner, self.outer_binder) + .expect("truncate extracted a pending value that references internal binder"); + + let result = self.table.relate( + interner, + db, + self.environment, + variance, + answer_param, + &GenericArg::new(interner, pending_shifted), + )?; + + self.ex_clause.subgoals.extend( + result + .goals + .into_iter() + .casted(interner) + .map(Literal::Positive), + ); + + Ok(true) + } + + /// When we encounter a variable in the answer goal, we first try + /// `unify_free_answer_var`. Assuming that this fails, the + /// variable must be a bound variable in the answer goal -- in + /// that case, there should be a corresponding bound variable in + /// the pending goal. This bit of code just checks that latter + /// case. + fn assert_matching_vars( + &mut self, + answer_var: BoundVar, + pending_var: BoundVar, + ) -> Fallible<()> { + let BoundVar { + debruijn: answer_depth, + index: answer_index, + } = answer_var; + let BoundVar { + debruijn: pending_depth, + index: pending_index, + } = pending_var; + + // Both bound variables are bound within the term we are matching + assert!(answer_depth.within(self.outer_binder)); + + // They are bound at the same (relative) depth + assert_eq!(answer_depth, pending_depth); + + // They are bound at the same index within the binder + assert_eq!(answer_index, pending_index,); + + Ok(()) + } +} + +impl<'i, I: Interner> Zipper<I> for AnswerSubstitutor<'i, I> { + fn zip_tys(&mut self, variance: Variance, answer: &Ty<I>, pending: &Ty<I>) -> Fallible<()> { + let interner = self.interner; + + if let Some(pending) = self.table.normalize_ty_shallow(interner, pending) { + return Zip::zip_with(self, variance, answer, &pending); + } + + // If the answer has a variable here, then this is one of the + // "inputs" to the subgoal table. We need to extract the + // resulting answer that the subgoal found and unify it with + // the value from our "pending subgoal". + if let TyKind::BoundVar(answer_depth) = answer.kind(interner) { + if self.unify_free_answer_var( + interner, + self.unification_database, + variance, + *answer_depth, + GenericArgData::Ty(pending.clone()), + )? { + return Ok(()); + } + } + + // Otherwise, the answer and the selected subgoal ought to be a perfect match for + // one another. + match (answer.kind(interner), pending.kind(interner)) { + (TyKind::BoundVar(answer_depth), TyKind::BoundVar(pending_depth)) => { + self.assert_matching_vars(*answer_depth, *pending_depth) + } + + (TyKind::Dyn(answer), TyKind::Dyn(pending)) => { + Zip::zip_with(self, variance, answer, pending) + } + + (TyKind::Alias(answer), TyKind::Alias(pending)) => { + Zip::zip_with(self, variance, answer, pending) + } + + (TyKind::Placeholder(answer), TyKind::Placeholder(pending)) => { + Zip::zip_with(self, variance, answer, pending) + } + + (TyKind::Function(answer), TyKind::Function(pending)) => Zip::zip_with( + self, + variance, + &answer.clone().into_binders(interner), + &pending.clone().into_binders(interner), + ), + + (TyKind::InferenceVar(_, _), _) | (_, TyKind::InferenceVar(_, _)) => panic!( + "unexpected inference var in answer `{:?}` or pending goal `{:?}`", + answer, pending, + ), + + (TyKind::Adt(id_a, substitution_a), TyKind::Adt(id_b, substitution_b)) => { + if id_a != id_b { + return Err(NoSolution); + } + self.zip_substs( + variance, + Some(self.unification_database().adt_variance(*id_a)), + substitution_a.as_slice(interner), + substitution_b.as_slice(interner), + ) + } + ( + TyKind::AssociatedType(id_a, substitution_a), + TyKind::AssociatedType(id_b, substitution_b), + ) => { + if id_a != id_b { + return Err(NoSolution); + } + self.zip_substs( + variance, + None, + substitution_a.as_slice(interner), + substitution_b.as_slice(interner), + ) + } + (TyKind::Scalar(scalar_a), TyKind::Scalar(scalar_b)) => { + Zip::zip_with(self, variance, scalar_a, scalar_b) + } + (TyKind::Str, TyKind::Str) => Ok(()), + (TyKind::Tuple(arity_a, substitution_a), TyKind::Tuple(arity_b, substitution_b)) => { + if arity_a != arity_b { + return Err(NoSolution); + } + self.zip_substs( + variance, + None, + substitution_a.as_slice(interner), + substitution_b.as_slice(interner), + ) + } + ( + TyKind::OpaqueType(id_a, substitution_a), + TyKind::OpaqueType(id_b, substitution_b), + ) => { + if id_a != id_b { + return Err(NoSolution); + } + self.zip_substs( + variance, + None, + substitution_a.as_slice(interner), + substitution_b.as_slice(interner), + ) + } + (TyKind::Slice(ty_a), TyKind::Slice(ty_b)) => Zip::zip_with(self, variance, ty_a, ty_b), + (TyKind::FnDef(id_a, substitution_a), TyKind::FnDef(id_b, substitution_b)) => { + if id_a != id_b { + return Err(NoSolution); + } + self.zip_substs( + variance, + Some(self.unification_database().fn_def_variance(*id_a)), + substitution_a.as_slice(interner), + substitution_b.as_slice(interner), + ) + } + ( + TyKind::Ref(mutability_a, lifetime_a, ty_a), + TyKind::Ref(mutability_b, lifetime_b, ty_b), + ) => { + if mutability_a != mutability_b { + return Err(NoSolution); + } + // The lifetime is `Contravariant` + Zip::zip_with( + self, + variance.xform(Variance::Contravariant), + lifetime_a, + lifetime_b, + )?; + // The type is `Covariant` when not mut, `Invariant` otherwise + let output_variance = match mutability_a { + Mutability::Not => Variance::Covariant, + Mutability::Mut => Variance::Invariant, + }; + Zip::zip_with(self, variance.xform(output_variance), ty_a, ty_b) + } + (TyKind::Raw(mutability_a, ty_a), TyKind::Raw(mutability_b, ty_b)) => { + if mutability_a != mutability_b { + return Err(NoSolution); + } + let ty_variance = match mutability_a { + Mutability::Not => Variance::Covariant, + Mutability::Mut => Variance::Invariant, + }; + Zip::zip_with(self, variance.xform(ty_variance), ty_a, ty_b) + } + (TyKind::Never, TyKind::Never) => Ok(()), + (TyKind::Array(ty_a, const_a), TyKind::Array(ty_b, const_b)) => { + Zip::zip_with(self, variance, ty_a, ty_b)?; + Zip::zip_with(self, variance, const_a, const_b) + } + (TyKind::Closure(id_a, substitution_a), TyKind::Closure(id_b, substitution_b)) => { + if id_a != id_b { + return Err(NoSolution); + } + self.zip_substs( + variance, + None, + substitution_a.as_slice(interner), + substitution_b.as_slice(interner), + ) + } + (TyKind::Generator(id_a, substitution_a), TyKind::Generator(id_b, substitution_b)) => { + if id_a != id_b { + return Err(NoSolution); + } + self.zip_substs( + variance, + None, + substitution_a.as_slice(interner), + substitution_b.as_slice(interner), + ) + } + ( + TyKind::GeneratorWitness(id_a, substitution_a), + TyKind::GeneratorWitness(id_b, substitution_b), + ) => { + if id_a != id_b { + return Err(NoSolution); + } + self.zip_substs( + variance, + None, + substitution_a.as_slice(interner), + substitution_b.as_slice(interner), + ) + } + (TyKind::Foreign(id_a), TyKind::Foreign(id_b)) => { + Zip::zip_with(self, variance, id_a, id_b) + } + (TyKind::Error, TyKind::Error) => Ok(()), + + (_, _) => panic!( + "structural mismatch between answer `{:?}` and pending goal `{:?}`", + answer, pending, + ), + } + } + + fn zip_lifetimes( + &mut self, + variance: Variance, + answer: &Lifetime<I>, + pending: &Lifetime<I>, + ) -> Fallible<()> { + let interner = self.interner; + if let Some(pending) = self.table.normalize_lifetime_shallow(interner, pending) { + return Zip::zip_with(self, variance, answer, &pending); + } + + if let LifetimeData::BoundVar(answer_depth) = answer.data(interner) { + if self.unify_free_answer_var( + interner, + self.unification_database, + variance, + *answer_depth, + GenericArgData::Lifetime(pending.clone()), + )? { + return Ok(()); + } + } + + match (answer.data(interner), pending.data(interner)) { + (LifetimeData::BoundVar(answer_depth), LifetimeData::BoundVar(pending_depth)) => { + self.assert_matching_vars(*answer_depth, *pending_depth) + } + + (LifetimeData::Static, LifetimeData::Static) + | (LifetimeData::Placeholder(_), LifetimeData::Placeholder(_)) + | (LifetimeData::Erased, LifetimeData::Erased) + | (LifetimeData::Empty(_), LifetimeData::Empty(_)) => { + assert_eq!(answer, pending); + Ok(()) + } + + (LifetimeData::InferenceVar(_), _) | (_, LifetimeData::InferenceVar(_)) => panic!( + "unexpected inference var in answer `{:?}` or pending goal `{:?}`", + answer, pending, + ), + + (LifetimeData::Static, _) + | (LifetimeData::BoundVar(_), _) + | (LifetimeData::Placeholder(_), _) + | (LifetimeData::Erased, _) + | (LifetimeData::Empty(_), _) => panic!( + "structural mismatch between answer `{:?}` and pending goal `{:?}`", + answer, pending, + ), + + (LifetimeData::Phantom(void, _), _) => match *void {}, + } + } + + fn zip_consts( + &mut self, + variance: Variance, + answer: &Const<I>, + pending: &Const<I>, + ) -> Fallible<()> { + let interner = self.interner; + if let Some(pending) = self.table.normalize_const_shallow(interner, pending) { + return Zip::zip_with(self, variance, answer, &pending); + } + + let ConstData { + ty: answer_ty, + value: answer_value, + } = answer.data(interner); + let ConstData { + ty: pending_ty, + value: pending_value, + } = pending.data(interner); + + self.zip_tys(variance, answer_ty, pending_ty)?; + + if let ConstValue::BoundVar(answer_depth) = answer_value { + if self.unify_free_answer_var( + interner, + self.unification_database, + variance, + *answer_depth, + GenericArgData::Const(pending.clone()), + )? { + return Ok(()); + } + } + + match (answer_value, pending_value) { + (ConstValue::BoundVar(answer_depth), ConstValue::BoundVar(pending_depth)) => { + self.assert_matching_vars(*answer_depth, *pending_depth) + } + + (ConstValue::Placeholder(_), ConstValue::Placeholder(_)) => { + assert_eq!(answer, pending); + Ok(()) + } + + (ConstValue::Concrete(c1), ConstValue::Concrete(c2)) => { + assert!(c1.const_eq(answer_ty, c2, interner)); + Ok(()) + } + + (ConstValue::InferenceVar(_), _) | (_, ConstValue::InferenceVar(_)) => panic!( + "unexpected inference var in answer `{:?}` or pending goal `{:?}`", + answer, pending, + ), + + (ConstValue::BoundVar(_), _) + | (ConstValue::Placeholder(_), _) + | (ConstValue::Concrete(_), _) => panic!( + "structural mismatch between answer `{:?}` and pending goal `{:?}`", + answer, pending, + ), + } + } + + fn zip_binders<T>( + &mut self, + variance: Variance, + answer: &Binders<T>, + pending: &Binders<T>, + ) -> Fallible<()> + where + T: HasInterner<Interner = I> + Zip<I> + Fold<I, Result = T>, + { + self.outer_binder.shift_in(); + Zip::zip_with( + self, + variance, + answer.skip_binders(), + pending.skip_binders(), + )?; + self.outer_binder.shift_out(); + Ok(()) + } + + fn interner(&self) -> I { + self.interner + } + + fn unification_database(&self) -> &dyn UnificationDatabase<I> { + self.unification_database + } +} diff --git a/vendor/chalk-engine/src/solve.rs b/vendor/chalk-engine/src/solve.rs new file mode 100644 index 000000000..fc35adb66 --- /dev/null +++ b/vendor/chalk-engine/src/solve.rs @@ -0,0 +1,89 @@ +use crate::context::{AnswerResult, AnswerStream}; +use crate::forest::Forest; +use crate::slg::aggregate::AggregateOps; +use crate::slg::SlgContextOps; +use chalk_ir::interner::Interner; +use chalk_ir::{Canonical, ConstrainedSubst, Goal, InEnvironment, UCanonical}; +use chalk_solve::{RustIrDatabase, Solution, Solver, SubstitutionResult}; + +use std::fmt; + +pub struct SLGSolver<I: Interner> { + pub(crate) forest: Forest<I>, + pub(crate) max_size: usize, + pub(crate) expected_answers: Option<usize>, +} + +impl<I: Interner> SLGSolver<I> { + pub fn new(max_size: usize, expected_answers: Option<usize>) -> Self { + Self { + forest: Forest::new(), + max_size, + expected_answers, + } + } +} + +impl<I: Interner> fmt::Debug for SLGSolver<I> { + fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { + write!(fmt, "SLGSolver") + } +} + +impl<I: Interner> Solver<I> for SLGSolver<I> { + fn solve( + &mut self, + program: &dyn RustIrDatabase<I>, + goal: &UCanonical<InEnvironment<Goal<I>>>, + ) -> Option<Solution<I>> { + let ops = SlgContextOps::new(program, self.max_size, self.expected_answers); + ops.make_solution(goal, self.forest.iter_answers(&ops, goal), || true) + } + + fn solve_limited( + &mut self, + program: &dyn RustIrDatabase<I>, + goal: &UCanonical<InEnvironment<Goal<I>>>, + should_continue: &dyn std::ops::Fn() -> bool, + ) -> Option<Solution<I>> { + let ops = SlgContextOps::new(program, self.max_size, self.expected_answers); + ops.make_solution(goal, self.forest.iter_answers(&ops, goal), should_continue) + } + + fn solve_multiple( + &mut self, + program: &dyn RustIrDatabase<I>, + goal: &UCanonical<InEnvironment<Goal<I>>>, + f: &mut dyn FnMut(SubstitutionResult<Canonical<ConstrainedSubst<I>>>, bool) -> bool, + ) -> bool { + let ops = SlgContextOps::new(program, self.max_size, self.expected_answers); + let mut answers = self.forest.iter_answers(&ops, goal); + loop { + let subst = match answers.next_answer(|| true) { + AnswerResult::Answer(answer) => { + if !answer.ambiguous { + SubstitutionResult::Definite(answer.subst) + } else if answer + .subst + .value + .subst + .is_identity_subst(ops.program().interner()) + { + SubstitutionResult::Floundered + } else { + SubstitutionResult::Ambiguous(answer.subst) + } + } + AnswerResult::Floundered => SubstitutionResult::Floundered, + AnswerResult::NoMoreSolutions => { + return true; + } + AnswerResult::QuantumExceeded => continue, + }; + + if !f(subst, !answers.peek_answer(|| true).is_no_more_solutions()) { + return false; + } + } + } +} diff --git a/vendor/chalk-engine/src/stack.rs b/vendor/chalk-engine/src/stack.rs new file mode 100644 index 000000000..66b53fa58 --- /dev/null +++ b/vendor/chalk-engine/src/stack.rs @@ -0,0 +1,175 @@ +use crate::index_struct; +use crate::strand::CanonicalStrand; +use crate::tables::Tables; +use crate::{Minimums, TableIndex, TimeStamp}; +use std::fmt; +use std::ops::{Index, IndexMut, Range}; + +use chalk_ir::interner::Interner; + +/// See `Forest`. +#[derive(Debug)] +pub(crate) struct Stack<I: Interner> { + /// Stack: as described above, stores the in-progress goals. + stack: Vec<StackEntry<I>>, +} + +impl<I: Interner> Stack<I> { + // This isn't actually used, but it can be helpful when debugging stack issues + #[allow(dead_code)] + pub(crate) fn debug_with<'a>(&'a self, tables: &'a Tables<I>) -> StackDebug<'_, I> { + StackDebug { + stack: self, + tables, + } + } +} + +pub(crate) struct StackDebug<'a, I: Interner> { + stack: &'a Stack<I>, + tables: &'a Tables<I>, +} + +impl<I: Interner> fmt::Debug for StackDebug<'_, I> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + writeln!(f, "---- Stack ----")?; + for entry in self.stack.stack.iter() { + writeln!(f, " --- StackEntry ---")?; + writeln!( + f, + " Table {:?} with goal {:?}", + entry.table, self.tables[entry.table].table_goal + )?; + writeln!(f, " Active strand: {:#?}", entry.active_strand)?; + writeln!( + f, + " Additional strands: {:#?}", + self.tables[entry.table].strands().collect::<Vec<_>>() + )?; + } + write!(f, "---- End Stack ----")?; + Ok(()) + } +} + +impl<I: Interner> Default for Stack<I> { + fn default() -> Self { + Stack { stack: vec![] } + } +} + +index_struct! { + /// The StackIndex identifies the position of a table's goal in the + /// stack of goals that are actively being processed. Note that once a + /// table is completely evaluated, it may be popped from the stack, + /// and hence no longer have a stack index. + pub(crate) struct StackIndex { + value: usize, + } +} + +#[derive(Debug)] +pub(crate) struct StackEntry<I: Interner> { + /// The goal G from the stack entry `A :- G` represented here. + pub(super) table: TableIndex, + + /// The clock TimeStamp of this stack entry. + pub(super) clock: TimeStamp, + + pub(super) cyclic_minimums: Minimums, + + // FIXME: should store this as an index. + // This would mean that if we unwind, + // we don't need to worry about losing a strand + pub(super) active_strand: Option<CanonicalStrand<I>>, +} + +impl<I: Interner> Stack<I> { + pub(super) fn is_empty(&self) -> bool { + self.stack.is_empty() + } + + /// Searches the stack to see if `table` is active. If so, returns + /// its stack index. + pub(super) fn is_active(&self, table: TableIndex) -> Option<StackIndex> { + self.stack + .iter() + .enumerate() + .filter_map(|(index, stack_entry)| { + if stack_entry.table == table { + Some(StackIndex::from(index)) + } else { + None + } + }) + .next() + } + + pub(super) fn top_of_stack_from(&self, depth: StackIndex) -> Range<StackIndex> { + depth..StackIndex::from(self.stack.len()) + } + + pub(super) fn push( + &mut self, + table: TableIndex, + cyclic_minimums: Minimums, + clock: TimeStamp, + ) -> StackIndex { + let old_len = self.stack.len(); + self.stack.push(StackEntry { + table, + clock, + cyclic_minimums, + active_strand: None, + }); + StackIndex::from(old_len) + } + + /// Pops the top-most entry from the stack: + /// * If the stack is now empty, returns false. + /// * Otherwise, returns true. + fn pop_and_adjust_depth(&mut self) -> bool { + self.stack.pop(); + !self.stack.is_empty() + } + + /// Pops the top-most entry from the stack, which should have the depth `*depth`: + /// * If the stack is now empty, returns None. + /// * Otherwise, `take`s the active strand from the new top and returns it. + pub(super) fn pop_and_take_caller_strand(&mut self) -> Option<CanonicalStrand<I>> { + if self.pop_and_adjust_depth() { + Some(self.top().active_strand.take().unwrap()) + } else { + None + } + } + + /// Pops the top-most entry from the stack, which should have the depth `*depth`: + /// * If the stack is now empty, returns None. + /// * Otherwise, borrows the active strand (mutably) from the new top and returns it. + pub(super) fn pop_and_borrow_caller_strand(&mut self) -> Option<&mut CanonicalStrand<I>> { + if self.pop_and_adjust_depth() { + Some(self.top().active_strand.as_mut().unwrap()) + } else { + None + } + } + + pub(super) fn top(&mut self) -> &mut StackEntry<I> { + self.stack.last_mut().unwrap() + } +} + +impl<I: Interner> Index<StackIndex> for Stack<I> { + type Output = StackEntry<I>; + + fn index(&self, index: StackIndex) -> &StackEntry<I> { + &self.stack[index.value] + } +} + +impl<I: Interner> IndexMut<StackIndex> for Stack<I> { + fn index_mut(&mut self, index: StackIndex) -> &mut StackEntry<I> { + &mut self.stack[index.value] + } +} diff --git a/vendor/chalk-engine/src/strand.rs b/vendor/chalk-engine/src/strand.rs new file mode 100644 index 000000000..91196ec94 --- /dev/null +++ b/vendor/chalk-engine/src/strand.rs @@ -0,0 +1,51 @@ +use crate::table::AnswerIndex; +use crate::{ExClause, TableIndex, TimeStamp}; +use std::fmt::Debug; + +use chalk_derive::HasInterner; +use chalk_ir::fold::{Fold, Folder}; +use chalk_ir::interner::Interner; +use chalk_ir::{Canonical, DebruijnIndex, UniverseMap}; + +#[derive(Clone, Debug, HasInterner)] +pub(crate) struct Strand<I: Interner> { + pub(super) ex_clause: ExClause<I>, + + /// Index into `ex_clause.subgoals`. + pub(crate) selected_subgoal: Option<SelectedSubgoal>, + + pub(crate) last_pursued_time: TimeStamp, +} + +pub(crate) type CanonicalStrand<I> = Canonical<Strand<I>>; + +#[derive(Clone, Debug)] +pub(crate) struct SelectedSubgoal { + /// The index of the subgoal in `ex_clause.subgoals` + pub(crate) subgoal_index: usize, + + /// The index of the table that we created or found for this subgoal + pub(super) subgoal_table: TableIndex, + + /// Index of the answer we should request next from the table + pub(crate) answer_index: AnswerIndex, + + /// Maps the universes of the subgoal to the canonical universes + /// used in the table + pub(crate) universe_map: UniverseMap, +} + +impl<I: Interner> Fold<I> for Strand<I> { + type Result = Strand<I>; + fn fold_with<E>( + self, + folder: &mut dyn Folder<I, Error = E>, + outer_binder: DebruijnIndex, + ) -> Result<Self::Result, E> { + Ok(Strand { + ex_clause: self.ex_clause.fold_with(folder, outer_binder)?, + last_pursued_time: self.last_pursued_time, + selected_subgoal: self.selected_subgoal, + }) + } +} diff --git a/vendor/chalk-engine/src/table.rs b/vendor/chalk-engine/src/table.rs new file mode 100644 index 000000000..e883cad32 --- /dev/null +++ b/vendor/chalk-engine/src/table.rs @@ -0,0 +1,173 @@ +use crate::index_struct; +use crate::strand::CanonicalStrand; +use crate::{Answer, AnswerMode}; +use rustc_hash::FxHashMap; +use std::collections::hash_map::Entry; +use std::collections::VecDeque; +use std::mem; + +use chalk_ir::interner::Interner; +use chalk_ir::{AnswerSubst, Canonical, Goal, InEnvironment, UCanonical}; +use tracing::{debug, info, instrument}; + +#[derive(Debug)] +pub(crate) struct Table<I: Interner> { + /// The goal this table is trying to solve (also the key to look + /// it up). + pub(crate) table_goal: UCanonical<InEnvironment<Goal<I>>>, + + /// A goal is coinductive if it can assume itself to be true, more + /// or less. This is true for auto traits. + pub(crate) coinductive_goal: bool, + + /// True if this table is floundered, meaning that it doesn't have + /// enough types specified for us to solve. + floundered: bool, + + /// Stores the answers that we have found thus far. When we get a request + /// for an answer N, we will first check this vector. + answers: Vec<Answer<I>>, + + /// An alternative storage for the answers we have so far, used to + /// detect duplicates. Not every answer in `answers` will be + /// represented here -- we discard answers from `answers_hash` + /// (but not `answers`) when better answers arrive (in particular, + /// answers with no ambiguity). + /// + /// FIXME -- Ideally we would exclude the region constraints and + /// delayed subgoals from the hash, but that's a bit tricky to do + /// with the current canonicalization setup. It should be ok not + /// to do so though it can result in more answers than we need. + answers_hash: FxHashMap<Canonical<AnswerSubst<I>>, bool>, + + /// Stores the active strands that we can "pull on" to find more + /// answers. + strands: VecDeque<CanonicalStrand<I>>, + + pub(crate) answer_mode: AnswerMode, +} + +index_struct! { + pub(crate) struct AnswerIndex { + value: usize, + } +} + +impl<I: Interner> Table<I> { + pub(crate) fn new( + table_goal: UCanonical<InEnvironment<Goal<I>>>, + coinductive_goal: bool, + ) -> Table<I> { + Table { + table_goal, + coinductive_goal, + answers: Vec::new(), + floundered: false, + answers_hash: FxHashMap::default(), + strands: VecDeque::new(), + answer_mode: AnswerMode::Complete, + } + } + + /// Push a strand to the back of the queue of strands to be processed. + pub(crate) fn enqueue_strand(&mut self, strand: CanonicalStrand<I>) { + self.strands.push_back(strand); + } + + pub(crate) fn strands_mut(&mut self) -> impl Iterator<Item = &mut CanonicalStrand<I>> { + self.strands.iter_mut() + } + + pub(crate) fn strands(&self) -> impl Iterator<Item = &CanonicalStrand<I>> { + self.strands.iter() + } + + pub(crate) fn take_strands(&mut self) -> VecDeque<CanonicalStrand<I>> { + mem::take(&mut self.strands) + } + + /// Remove the next strand from the queue that meets the given criteria + pub(crate) fn dequeue_next_strand_that( + &mut self, + test: impl Fn(&CanonicalStrand<I>) -> bool, + ) -> Option<CanonicalStrand<I>> { + let first = self.strands.iter().position(test); + if let Some(first) = first { + self.strands.rotate_left(first); + self.strands.pop_front() + } else { + None + } + } + + /// Mark the table as floundered -- this also discards all pre-existing answers, + /// as they are no longer relevant. + pub(crate) fn mark_floundered(&mut self) { + self.floundered = true; + self.strands = Default::default(); + self.answers = Default::default(); + } + + /// Returns true if the table is floundered. + pub(crate) fn is_floundered(&self) -> bool { + self.floundered + } + + /// Adds `answer` to our list of answers, unless it is already present. + /// + /// Returns true if `answer` was added. + /// + /// # Panics + /// This will panic if a previous answer with the same substitution + /// was marked as ambgiuous, but the new answer is not. No current + /// tests trigger this case, and assumptions upstream assume that when + /// `true` is returned here, that a *new* answer was added (instead of an) + /// existing answer replaced. + #[instrument(level = "debug", skip(self))] + pub(super) fn push_answer(&mut self, answer: Answer<I>) -> Option<AnswerIndex> { + assert!(!self.floundered); + debug!( + "pre-existing entry: {:?}", + self.answers_hash.get(&answer.subst) + ); + + let added = match self.answers_hash.entry(answer.subst.clone()) { + Entry::Vacant(entry) => { + entry.insert(answer.ambiguous); + true + } + + Entry::Occupied(entry) => { + let was_ambiguous = entry.get(); + if *was_ambiguous && !answer.ambiguous { + panic!("New answer was not ambiguous whereas previous answer was."); + } + false + } + }; + + info!( + goal = ?self.table_goal, ?answer, + "new answer to table", + ); + if !added { + return None; + } + + let index = self.answers.len(); + self.answers.push(answer); + Some(AnswerIndex::from(index)) + } + + pub(super) fn answer(&self, index: AnswerIndex) -> Option<&Answer<I>> { + self.answers.get(index.value) + } + + pub(super) fn next_answer_index(&self) -> AnswerIndex { + AnswerIndex::from(self.answers.len()) + } +} + +impl AnswerIndex { + pub(crate) const ZERO: AnswerIndex = AnswerIndex { value: 0 }; +} diff --git a/vendor/chalk-engine/src/tables.rs b/vendor/chalk-engine/src/tables.rs new file mode 100644 index 000000000..76508eaa8 --- /dev/null +++ b/vendor/chalk-engine/src/tables.rs @@ -0,0 +1,72 @@ +use crate::table::Table; +use crate::TableIndex; +use rustc_hash::FxHashMap; +use std::ops::{Index, IndexMut}; + +use chalk_ir::interner::Interner; +use chalk_ir::{Goal, InEnvironment, UCanonical}; + +/// See `Forest`. +#[derive(Debug)] +pub(crate) struct Tables<I: Interner> { + /// Maps from a canonical goal to the index of its table. + table_indices: FxHashMap<UCanonical<InEnvironment<Goal<I>>>, TableIndex>, + + /// Table: as described above, stores the key information for each + /// tree in the forest. + tables: Vec<Table<I>>, +} + +impl<I: Interner> Tables<I> { + pub(crate) fn new() -> Tables<I> { + Tables { + table_indices: FxHashMap::default(), + tables: Vec::default(), + } + } + + /// The index that will be given to the next table to be inserted. + pub(super) fn next_index(&self) -> TableIndex { + TableIndex { + value: self.tables.len(), + } + } + + pub(super) fn insert(&mut self, table: Table<I>) -> TableIndex { + let goal = table.table_goal.clone(); + let index = self.next_index(); + self.tables.push(table); + self.table_indices.insert(goal, index); + index + } + + pub(super) fn index_of( + &self, + literal: &UCanonical<InEnvironment<Goal<I>>>, + ) -> Option<TableIndex> { + self.table_indices.get(literal).cloned() + } +} + +impl<I: Interner> Index<TableIndex> for Tables<I> { + type Output = Table<I>; + + fn index(&self, index: TableIndex) -> &Table<I> { + &self.tables[index.value] + } +} + +impl<I: Interner> IndexMut<TableIndex> for Tables<I> { + fn index_mut(&mut self, index: TableIndex) -> &mut Table<I> { + &mut self.tables[index.value] + } +} + +impl<'a, I: Interner> IntoIterator for &'a mut Tables<I> { + type IntoIter = <&'a mut Vec<Table<I>> as IntoIterator>::IntoIter; + type Item = <&'a mut Vec<Table<I>> as IntoIterator>::Item; + + fn into_iter(self) -> Self::IntoIter { + IntoIterator::into_iter(&mut self.tables) + } +} |