summaryrefslogtreecommitdiffstats
path: root/vendor/compiler_builtins/src/float/mul.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /vendor/compiler_builtins/src/float/mul.rs
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/compiler_builtins/src/float/mul.rs')
-rw-r--r--vendor/compiler_builtins/src/float/mul.rs209
1 files changed, 209 insertions, 0 deletions
diff --git a/vendor/compiler_builtins/src/float/mul.rs b/vendor/compiler_builtins/src/float/mul.rs
new file mode 100644
index 000000000..c89f22756
--- /dev/null
+++ b/vendor/compiler_builtins/src/float/mul.rs
@@ -0,0 +1,209 @@
+use float::Float;
+use int::{CastInto, DInt, HInt, Int};
+
+fn mul<F: Float>(a: F, b: F) -> F
+where
+ u32: CastInto<F::Int>,
+ F::Int: CastInto<u32>,
+ i32: CastInto<F::Int>,
+ F::Int: CastInto<i32>,
+ F::Int: HInt,
+{
+ let one = F::Int::ONE;
+ let zero = F::Int::ZERO;
+
+ let bits = F::BITS;
+ let significand_bits = F::SIGNIFICAND_BITS;
+ let max_exponent = F::EXPONENT_MAX;
+
+ let exponent_bias = F::EXPONENT_BIAS;
+
+ let implicit_bit = F::IMPLICIT_BIT;
+ let significand_mask = F::SIGNIFICAND_MASK;
+ let sign_bit = F::SIGN_MASK as F::Int;
+ let abs_mask = sign_bit - one;
+ let exponent_mask = F::EXPONENT_MASK;
+ let inf_rep = exponent_mask;
+ let quiet_bit = implicit_bit >> 1;
+ let qnan_rep = exponent_mask | quiet_bit;
+ let exponent_bits = F::EXPONENT_BITS;
+
+ let a_rep = a.repr();
+ let b_rep = b.repr();
+
+ let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
+ let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
+ let product_sign = (a_rep ^ b_rep) & sign_bit;
+
+ let mut a_significand = a_rep & significand_mask;
+ let mut b_significand = b_rep & significand_mask;
+ let mut scale = 0;
+
+ // Detect if a or b is zero, denormal, infinity, or NaN.
+ if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
+ || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
+ {
+ let a_abs = a_rep & abs_mask;
+ let b_abs = b_rep & abs_mask;
+
+ // NaN + anything = qNaN
+ if a_abs > inf_rep {
+ return F::from_repr(a_rep | quiet_bit);
+ }
+ // anything + NaN = qNaN
+ if b_abs > inf_rep {
+ return F::from_repr(b_rep | quiet_bit);
+ }
+
+ if a_abs == inf_rep {
+ if b_abs != zero {
+ // infinity * non-zero = +/- infinity
+ return F::from_repr(a_abs | product_sign);
+ } else {
+ // infinity * zero = NaN
+ return F::from_repr(qnan_rep);
+ }
+ }
+
+ if b_abs == inf_rep {
+ if a_abs != zero {
+ // infinity * non-zero = +/- infinity
+ return F::from_repr(b_abs | product_sign);
+ } else {
+ // infinity * zero = NaN
+ return F::from_repr(qnan_rep);
+ }
+ }
+
+ // zero * anything = +/- zero
+ if a_abs == zero {
+ return F::from_repr(product_sign);
+ }
+
+ // anything * zero = +/- zero
+ if b_abs == zero {
+ return F::from_repr(product_sign);
+ }
+
+ // one or both of a or b is denormal, the other (if applicable) is a
+ // normal number. Renormalize one or both of a and b, and set scale to
+ // include the necessary exponent adjustment.
+ if a_abs < implicit_bit {
+ let (exponent, significand) = F::normalize(a_significand);
+ scale += exponent;
+ a_significand = significand;
+ }
+
+ if b_abs < implicit_bit {
+ let (exponent, significand) = F::normalize(b_significand);
+ scale += exponent;
+ b_significand = significand;
+ }
+ }
+
+ // Or in the implicit significand bit. (If we fell through from the
+ // denormal path it was already set by normalize( ), but setting it twice
+ // won't hurt anything.)
+ a_significand |= implicit_bit;
+ b_significand |= implicit_bit;
+
+ // Get the significand of a*b. Before multiplying the significands, shift
+ // one of them left to left-align it in the field. Thus, the product will
+ // have (exponentBits + 2) integral digits, all but two of which must be
+ // zero. Normalizing this result is just a conditional left-shift by one
+ // and bumping the exponent accordingly.
+ let (mut product_low, mut product_high) = a_significand
+ .widen_mul(b_significand << exponent_bits)
+ .lo_hi();
+
+ let a_exponent_i32: i32 = a_exponent.cast();
+ let b_exponent_i32: i32 = b_exponent.cast();
+ let mut product_exponent: i32 = a_exponent_i32
+ .wrapping_add(b_exponent_i32)
+ .wrapping_add(scale)
+ .wrapping_sub(exponent_bias as i32);
+
+ // Normalize the significand, adjust exponent if needed.
+ if (product_high & implicit_bit) != zero {
+ product_exponent = product_exponent.wrapping_add(1);
+ } else {
+ product_high = (product_high << 1) | (product_low >> (bits - 1));
+ product_low <<= 1;
+ }
+
+ // If we have overflowed the type, return +/- infinity.
+ if product_exponent >= max_exponent as i32 {
+ return F::from_repr(inf_rep | product_sign);
+ }
+
+ if product_exponent <= 0 {
+ // Result is denormal before rounding
+ //
+ // If the result is so small that it just underflows to zero, return
+ // a zero of the appropriate sign. Mathematically there is no need to
+ // handle this case separately, but we make it a special case to
+ // simplify the shift logic.
+ let shift = one.wrapping_sub(product_exponent.cast()).cast();
+ if shift >= bits {
+ return F::from_repr(product_sign);
+ }
+
+ // Otherwise, shift the significand of the result so that the round
+ // bit is the high bit of productLo.
+ if shift < bits {
+ let sticky = product_low << (bits - shift);
+ product_low = product_high << (bits - shift) | product_low >> shift | sticky;
+ product_high >>= shift;
+ } else if shift < (2 * bits) {
+ let sticky = product_high << (2 * bits - shift) | product_low;
+ product_low = product_high >> (shift - bits) | sticky;
+ product_high = zero;
+ } else {
+ product_high = zero;
+ }
+ } else {
+ // Result is normal before rounding; insert the exponent.
+ product_high &= significand_mask;
+ product_high |= product_exponent.cast() << significand_bits;
+ }
+
+ // Insert the sign of the result:
+ product_high |= product_sign;
+
+ // Final rounding. The final result may overflow to infinity, or underflow
+ // to zero, but those are the correct results in those cases. We use the
+ // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
+ if product_low > sign_bit {
+ product_high += one;
+ }
+
+ if product_low == sign_bit {
+ product_high += product_high & one;
+ }
+
+ F::from_repr(product_high)
+}
+
+intrinsics! {
+ #[aapcs_on_arm]
+ #[arm_aeabi_alias = __aeabi_fmul]
+ pub extern "C" fn __mulsf3(a: f32, b: f32) -> f32 {
+ mul(a, b)
+ }
+
+ #[aapcs_on_arm]
+ #[arm_aeabi_alias = __aeabi_dmul]
+ pub extern "C" fn __muldf3(a: f64, b: f64) -> f64 {
+ mul(a, b)
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub extern "C" fn __mulsf3vfp(a: f32, b: f32) -> f32 {
+ a * b
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub extern "C" fn __muldf3vfp(a: f64, b: f64) -> f64 {
+ a * b
+ }
+}