summaryrefslogtreecommitdiffstats
path: root/vendor/compiler_builtins
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /vendor/compiler_builtins
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/compiler_builtins')
-rw-r--r--vendor/compiler_builtins/.cargo-checksum.json1
-rw-r--r--vendor/compiler_builtins/Cargo.lock23
-rw-r--r--vendor/compiler_builtins/Cargo.toml73
-rw-r--r--vendor/compiler_builtins/README.md398
-rw-r--r--vendor/compiler_builtins/build.rs579
-rw-r--r--vendor/compiler_builtins/examples/intrinsics.rs398
-rw-r--r--vendor/compiler_builtins/libm/src/math/acos.rs112
-rw-r--r--vendor/compiler_builtins/libm/src/math/acosf.rs79
-rw-r--r--vendor/compiler_builtins/libm/src/math/acosh.rs26
-rw-r--r--vendor/compiler_builtins/libm/src/math/acoshf.rs25
-rw-r--r--vendor/compiler_builtins/libm/src/math/asin.rs119
-rw-r--r--vendor/compiler_builtins/libm/src/math/asinf.rs72
-rw-r--r--vendor/compiler_builtins/libm/src/math/asinh.rs39
-rw-r--r--vendor/compiler_builtins/libm/src/math/asinhf.rs38
-rw-r--r--vendor/compiler_builtins/libm/src/math/atan.rs184
-rw-r--r--vendor/compiler_builtins/libm/src/math/atan2.rs126
-rw-r--r--vendor/compiler_builtins/libm/src/math/atan2f.rs91
-rw-r--r--vendor/compiler_builtins/libm/src/math/atanf.rs112
-rw-r--r--vendor/compiler_builtins/libm/src/math/atanh.rs36
-rw-r--r--vendor/compiler_builtins/libm/src/math/atanhf.rs36
-rw-r--r--vendor/compiler_builtins/libm/src/math/cbrt.rs113
-rw-r--r--vendor/compiler_builtins/libm/src/math/cbrtf.rs75
-rw-r--r--vendor/compiler_builtins/libm/src/math/ceil.rs82
-rw-r--r--vendor/compiler_builtins/libm/src/math/ceilf.rs65
-rw-r--r--vendor/compiler_builtins/libm/src/math/copysign.rs11
-rw-r--r--vendor/compiler_builtins/libm/src/math/copysignf.rs11
-rw-r--r--vendor/compiler_builtins/libm/src/math/cos.rs73
-rw-r--r--vendor/compiler_builtins/libm/src/math/cosf.rs83
-rw-r--r--vendor/compiler_builtins/libm/src/math/cosh.rs38
-rw-r--r--vendor/compiler_builtins/libm/src/math/coshf.rs38
-rw-r--r--vendor/compiler_builtins/libm/src/math/erf.rs317
-rw-r--r--vendor/compiler_builtins/libm/src/math/erff.rs229
-rw-r--r--vendor/compiler_builtins/libm/src/math/exp.rs154
-rw-r--r--vendor/compiler_builtins/libm/src/math/exp10.rs21
-rw-r--r--vendor/compiler_builtins/libm/src/math/exp10f.rs21
-rw-r--r--vendor/compiler_builtins/libm/src/math/exp2.rs394
-rw-r--r--vendor/compiler_builtins/libm/src/math/exp2f.rs135
-rw-r--r--vendor/compiler_builtins/libm/src/math/expf.rs101
-rw-r--r--vendor/compiler_builtins/libm/src/math/expm1.rs144
-rw-r--r--vendor/compiler_builtins/libm/src/math/expm1f.rs134
-rw-r--r--vendor/compiler_builtins/libm/src/math/expo2.rs14
-rw-r--r--vendor/compiler_builtins/libm/src/math/fabs.rs41
-rw-r--r--vendor/compiler_builtins/libm/src/math/fabsf.rs41
-rw-r--r--vendor/compiler_builtins/libm/src/math/fdim.rs22
-rw-r--r--vendor/compiler_builtins/libm/src/math/fdimf.rs22
-rw-r--r--vendor/compiler_builtins/libm/src/math/fenv.rs33
-rw-r--r--vendor/compiler_builtins/libm/src/math/floor.rs81
-rw-r--r--vendor/compiler_builtins/libm/src/math/floorf.rs66
-rw-r--r--vendor/compiler_builtins/libm/src/math/fma.rs235
-rw-r--r--vendor/compiler_builtins/libm/src/math/fmaf.rs106
-rw-r--r--vendor/compiler_builtins/libm/src/math/fmax.rs12
-rw-r--r--vendor/compiler_builtins/libm/src/math/fmaxf.rs12
-rw-r--r--vendor/compiler_builtins/libm/src/math/fmin.rs12
-rw-r--r--vendor/compiler_builtins/libm/src/math/fminf.rs12
-rw-r--r--vendor/compiler_builtins/libm/src/math/fmod.rs80
-rw-r--r--vendor/compiler_builtins/libm/src/math/fmodf.rs89
-rw-r--r--vendor/compiler_builtins/libm/src/math/frexp.rs20
-rw-r--r--vendor/compiler_builtins/libm/src/math/frexpf.rs21
-rw-r--r--vendor/compiler_builtins/libm/src/math/hypot.rs74
-rw-r--r--vendor/compiler_builtins/libm/src/math/hypotf.rs43
-rw-r--r--vendor/compiler_builtins/libm/src/math/ilogb.rs31
-rw-r--r--vendor/compiler_builtins/libm/src/math/ilogbf.rs31
-rw-r--r--vendor/compiler_builtins/libm/src/math/j0.rs422
-rw-r--r--vendor/compiler_builtins/libm/src/math/j0f.rs359
-rw-r--r--vendor/compiler_builtins/libm/src/math/j1.rs414
-rw-r--r--vendor/compiler_builtins/libm/src/math/j1f.rs380
-rw-r--r--vendor/compiler_builtins/libm/src/math/jn.rs343
-rw-r--r--vendor/compiler_builtins/libm/src/math/jnf.rs259
-rw-r--r--vendor/compiler_builtins/libm/src/math/k_cos.rs62
-rw-r--r--vendor/compiler_builtins/libm/src/math/k_cosf.rs29
-rw-r--r--vendor/compiler_builtins/libm/src/math/k_expo2.rs14
-rw-r--r--vendor/compiler_builtins/libm/src/math/k_expo2f.rs14
-rw-r--r--vendor/compiler_builtins/libm/src/math/k_sin.rs57
-rw-r--r--vendor/compiler_builtins/libm/src/math/k_sinf.rs30
-rw-r--r--vendor/compiler_builtins/libm/src/math/k_tan.rs105
-rw-r--r--vendor/compiler_builtins/libm/src/math/k_tanf.rs46
-rw-r--r--vendor/compiler_builtins/libm/src/math/ldexp.rs4
-rw-r--r--vendor/compiler_builtins/libm/src/math/ldexpf.rs4
-rw-r--r--vendor/compiler_builtins/libm/src/math/lgamma.rs5
-rw-r--r--vendor/compiler_builtins/libm/src/math/lgamma_r.rs319
-rw-r--r--vendor/compiler_builtins/libm/src/math/lgammaf.rs5
-rw-r--r--vendor/compiler_builtins/libm/src/math/lgammaf_r.rs254
-rw-r--r--vendor/compiler_builtins/libm/src/math/log.rs117
-rw-r--r--vendor/compiler_builtins/libm/src/math/log10.rs117
-rw-r--r--vendor/compiler_builtins/libm/src/math/log10f.rs91
-rw-r--r--vendor/compiler_builtins/libm/src/math/log1p.rs143
-rw-r--r--vendor/compiler_builtins/libm/src/math/log1pf.rs98
-rw-r--r--vendor/compiler_builtins/libm/src/math/log2.rs106
-rw-r--r--vendor/compiler_builtins/libm/src/math/log2f.rs87
-rw-r--r--vendor/compiler_builtins/libm/src/math/logf.rs65
-rw-r--r--vendor/compiler_builtins/libm/src/math/mod.rs366
-rw-r--r--vendor/compiler_builtins/libm/src/math/modf.rs34
-rw-r--r--vendor/compiler_builtins/libm/src/math/modff.rs33
-rw-r--r--vendor/compiler_builtins/libm/src/math/nextafter.rs37
-rw-r--r--vendor/compiler_builtins/libm/src/math/nextafterf.rs37
-rw-r--r--vendor/compiler_builtins/libm/src/math/pow.rs637
-rw-r--r--vendor/compiler_builtins/libm/src/math/powf.rs342
-rw-r--r--vendor/compiler_builtins/libm/src/math/rem_pio2.rs233
-rw-r--r--vendor/compiler_builtins/libm/src/math/rem_pio2_large.rs470
-rw-r--r--vendor/compiler_builtins/libm/src/math/rem_pio2f.rs67
-rw-r--r--vendor/compiler_builtins/libm/src/math/remainder.rs5
-rw-r--r--vendor/compiler_builtins/libm/src/math/remainderf.rs5
-rw-r--r--vendor/compiler_builtins/libm/src/math/remquo.rs110
-rw-r--r--vendor/compiler_builtins/libm/src/math/remquof.rs97
-rw-r--r--vendor/compiler_builtins/libm/src/math/round.rs28
-rw-r--r--vendor/compiler_builtins/libm/src/math/roundf.rs30
-rw-r--r--vendor/compiler_builtins/libm/src/math/scalbn.rs33
-rw-r--r--vendor/compiler_builtins/libm/src/math/scalbnf.rs29
-rw-r--r--vendor/compiler_builtins/libm/src/math/sin.rs88
-rw-r--r--vendor/compiler_builtins/libm/src/math/sincos.rs133
-rw-r--r--vendor/compiler_builtins/libm/src/math/sincosf.rs184
-rw-r--r--vendor/compiler_builtins/libm/src/math/sinf.rs93
-rw-r--r--vendor/compiler_builtins/libm/src/math/sinh.rs49
-rw-r--r--vendor/compiler_builtins/libm/src/math/sinhf.rs30
-rw-r--r--vendor/compiler_builtins/libm/src/math/sqrt.rs264
-rw-r--r--vendor/compiler_builtins/libm/src/math/sqrtf.rs154
-rw-r--r--vendor/compiler_builtins/libm/src/math/tan.rs70
-rw-r--r--vendor/compiler_builtins/libm/src/math/tanf.rs78
-rw-r--r--vendor/compiler_builtins/libm/src/math/tanh.rs53
-rw-r--r--vendor/compiler_builtins/libm/src/math/tanhf.rs39
-rw-r--r--vendor/compiler_builtins/libm/src/math/tgamma.rs207
-rw-r--r--vendor/compiler_builtins/libm/src/math/tgammaf.rs5
-rw-r--r--vendor/compiler_builtins/libm/src/math/trunc.rs40
-rw-r--r--vendor/compiler_builtins/libm/src/math/truncf.rs42
-rw-r--r--vendor/compiler_builtins/src/arm.rs183
-rw-r--r--vendor/compiler_builtins/src/arm_linux.rs214
-rw-r--r--vendor/compiler_builtins/src/float/add.rs213
-rw-r--r--vendor/compiler_builtins/src/float/cmp.rs253
-rw-r--r--vendor/compiler_builtins/src/float/conv.rs351
-rw-r--r--vendor/compiler_builtins/src/float/div.rs467
-rw-r--r--vendor/compiler_builtins/src/float/extend.rs83
-rw-r--r--vendor/compiler_builtins/src/float/mod.rs175
-rw-r--r--vendor/compiler_builtins/src/float/mul.rs209
-rw-r--r--vendor/compiler_builtins/src/float/pow.rs36
-rw-r--r--vendor/compiler_builtins/src/float/sub.rs25
-rw-r--r--vendor/compiler_builtins/src/float/trunc.rs125
-rw-r--r--vendor/compiler_builtins/src/int/addsub.rs96
-rw-r--r--vendor/compiler_builtins/src/int/leading_zeros.rs149
-rw-r--r--vendor/compiler_builtins/src/int/mod.rs390
-rw-r--r--vendor/compiler_builtins/src/int/mul.rs138
-rw-r--r--vendor/compiler_builtins/src/int/sdiv.rs169
-rw-r--r--vendor/compiler_builtins/src/int/shift.rs116
-rw-r--r--vendor/compiler_builtins/src/int/specialized_div_rem/asymmetric.rs69
-rw-r--r--vendor/compiler_builtins/src/int/specialized_div_rem/binary_long.rs548
-rw-r--r--vendor/compiler_builtins/src/int/specialized_div_rem/delegate.rs319
-rw-r--r--vendor/compiler_builtins/src/int/specialized_div_rem/mod.rs306
-rw-r--r--vendor/compiler_builtins/src/int/specialized_div_rem/norm_shift.rs106
-rw-r--r--vendor/compiler_builtins/src/int/specialized_div_rem/trifecta.rs386
-rw-r--r--vendor/compiler_builtins/src/int/udiv.rs106
-rw-r--r--vendor/compiler_builtins/src/lib.rs72
-rw-r--r--vendor/compiler_builtins/src/macros.rs448
-rw-r--r--vendor/compiler_builtins/src/math.rs117
-rw-r--r--vendor/compiler_builtins/src/mem/impls.rs267
-rw-r--r--vendor/compiler_builtins/src/mem/mod.rs211
-rw-r--r--vendor/compiler_builtins/src/mem/x86_64.rs100
-rw-r--r--vendor/compiler_builtins/src/probestack.rs350
-rw-r--r--vendor/compiler_builtins/src/riscv.rs34
-rw-r--r--vendor/compiler_builtins/src/x86.rs85
-rw-r--r--vendor/compiler_builtins/src/x86_64.rs94
159 files changed, 20985 insertions, 0 deletions
diff --git a/vendor/compiler_builtins/.cargo-checksum.json b/vendor/compiler_builtins/.cargo-checksum.json
new file mode 100644
index 000000000..9324f092f
--- /dev/null
+++ b/vendor/compiler_builtins/.cargo-checksum.json
@@ -0,0 +1 @@
+{"files":{"Cargo.lock":"b369bba03aca1dd529671fb54000fd8dfc0d4d5b5cfe1afe71294155c974bc34","Cargo.toml":"1f727cb37da8b846367a12e034c01aca729f745a695383dd596b05b7f86ba970","README.md":"5eb36fbab30693dbbe9f0de54749c95bd06fd6e42013b5b9eff3c062b9fdd34f","build.rs":"991919d9ab1eca85e87a85acafcb86d4880f1afe9fe35d6bd87039dcb1fa9aa7","examples/intrinsics.rs":"a7aa69c17af3aa8f6edff32c214e80827d3cbe3aea386a2be42244444752d253","libm/src/math/acos.rs":"fb066ba84aba1372d706425ec14f35ff8d971756d15eeebd22ecf42a716493bb","libm/src/math/acosf.rs":"a112b82309bba1d35c4e3d6ad4d6c21ef305343d9ab601ddf4bc61d43bc9f1af","libm/src/math/acosh.rs":"56dac8538e4350cd7cf001327c89f087b68abb2e6aaad58edba8a094b09f6b0f","libm/src/math/acoshf.rs":"df5b0c4d8e37e64cf5ff2d8328b28bc35c78e84060ff769e64523ea9ff9065c1","libm/src/math/asin.rs":"095a1e98996daff45df0b154ca0ec35bbf31db964ee9fdda0207308cb20df441","libm/src/math/asinf.rs":"49cccb4db2881982643a4a7d5453f4f8daf527711bbb67313607a3c178856d61","libm/src/math/asinh.rs":"e8fc94031015fddf35e9c26b94da9f6431ee17c81cd7bd37da8ffc98f7e0b32c","libm/src/math/asinhf.rs":"8a0b8933a98a17617a66fef4c7b89eba645fdf05302000babf4a5a5f45328430","libm/src/math/atan.rs":"d4fe46e1c5739dd09997869dcfbc3c85f03c534af52e700d6c6bcf9c3fedda07","libm/src/math/atan2.rs":"2623bc8ca707d13a7092ce49adf68e9cbf4452ad1bf4a861dc40ca858606a747","libm/src/math/atan2f.rs":"dd01943e0e1f1955912e5c3ffc9467529cf64bd02ac0a6ad5ab31dbe6657f05d","libm/src/math/atanf.rs":"e41b41569474a59c970ede3538e00bda4072cf4d90040017101cc79d7dc28caa","libm/src/math/atanh.rs":"5934dbd6b7395ca4f103ace7598da723a9270e1cf6b47e7f786debe4bb3651ff","libm/src/math/atanhf.rs":"8ba4711dda19ef2dc33622be65c1483902868083543198c6bbd040d4026293de","libm/src/math/cbrt.rs":"f2c45612d2eecd93cfcdd9ebf824c754fc8f8dfd6d16862c0b9c4ccea78c2a0f","libm/src/math/cbrtf.rs":"ad0b483854aa9f17a44d36c049bf0e8ebab34c27e90b787c05f45cc230ec7d19","libm/src/math/ceil.rs":"57ba5b6e207a0ccbd34190d1aa544389ca12126be23821dfb5746497f620ce03","libm/src/math/ceilf.rs":"c922a0475a599b9ea5473e615f74700b99707cebd6927f24ea59cb2a3cb3bbc3","libm/src/math/copysign.rs":"d80c880efaf0cdf2ce0a4d4f5a68dd6c36c88d46fa997ec8ac8604bfdb26fa33","libm/src/math/copysignf.rs":"1547116071e68a42b1605eb2fc722db6466a34517dc96b92de1f29a274c3d8e3","libm/src/math/cos.rs":"74babdc13ede78e400c5ca1854c3e22d2e08cbdc5618aefa5bba6f9303ef65b6","libm/src/math/cosf.rs":"09c40f93c445b741e22477ceedf163ca33b6a47f973f7c9876cfba2692edb29c","libm/src/math/cosh.rs":"0d0a7cef18577f321996b8b87561963139f754ad7f2ea0a3b3883811f3f0693a","libm/src/math/coshf.rs":"be8ca8739e4cf1978425b349f941cb4838bba8c10cb559c7940b9fd4fdde21ad","libm/src/math/erf.rs":"9c55fc6756ba816996f0b585e07ccfa4cd87575ad525cd30c4a968b30acffda3","libm/src/math/erff.rs":"cb020e8bada9a54573a11fe3271750d73f14fed3092a881a9ceaf98fe32fd5a6","libm/src/math/exp.rs":"ca7405ad0d1993fffcf9aae96f9256307bed3c4916545aaebd1cf1d2df1807fa","libm/src/math/exp10.rs":"2deb037f88feac87a0e924b69dd496f0dd3b5d35f2a58e09d4c5166b207e517b","libm/src/math/exp10f.rs":"6979464dfe3f4f2da1f9afc909646499c4bfaef15e10a039384750e2f1586fea","libm/src/math/exp2.rs":"94a9304a2ce3bc81f6d2aefd3cde6faa30f13260d46cb13692863cdea1c9a3a1","libm/src/math/exp2f.rs":"785f2630accd35118ec07bf60273e219ed91a215b956b1552eeea5bc2a708cc8","libm/src/math/expf.rs":"ec14c18f891a9e37735ec39e6fc2e9bf674a2c2e083f22e2533b481177359c98","libm/src/math/expm1.rs":"124069f456c8ad331f265c7509d9e223b2a300e461bbfd3d6adfdcdd2ee5b8ac","libm/src/math/expm1f.rs":"18e2116d31ea8410051cc709b9d04b754b0e3ba6758ee1bf0b48749f4999b840","libm/src/math/expo2.rs":"4f4f9fecfccb43f30c2784aa7c0bb656754a52b8ab431f7d1b551c673ab133f1","libm/src/math/fabs.rs":"e6c7db39f98508098cdf64ac0c2f53866c466149a7490afb9fe22b44c4dd81b3","libm/src/math/fabsf.rs":"83a1f5f4d9ca899ba2b701d7332e18b40258b83e111db4c5d8fab2cc1be58aa3","libm/src/math/fdim.rs":"8ec091996005207297c2389ae563e1b18dbc6a9eac951de29a976c5cd7bc32a7","libm/src/math/fdimf.rs":"c7f3f2269834d55be26b6580ddc07c42531577955fa4de35bad1e2a361085614","libm/src/math/fenv.rs":"8730d45aa4c591f91dccdcc1ce533fa23e9c6df0c38defb9c57f749cb25e1cd0","libm/src/math/floor.rs":"5050804cae173af6775c0678d6c1aafb5ca2b744bc8a2f50d9d03b95dcee1fb0","libm/src/math/floorf.rs":"c903e0c57bc60a888c513eb7a873a87a4759ba68fc791b6b931652f8ee74cc03","libm/src/math/fma.rs":"d88e01c2c2d11333dd49b61166caa036ff5f08f3a8c5973b9e3c9574bf2eb675","libm/src/math/fmaf.rs":"3e0f5727e56f31218f674b9b8975d7e67b3a24a097f06a2a3eca9723cd786213","libm/src/math/fmax.rs":"f6c8e96a8b1a170648d2fa3513e7b6b459085d708c839869f82e305fe58fac37","libm/src/math/fmaxf.rs":"dff0025433232e8a5ec7bd54d847ccf596d762ea4e35f5c54fbaac9404d732fd","libm/src/math/fmin.rs":"95b6cb66ca0e0e22276f0bf88dbe8fb69796a69a196a7491bd4802efbcf2e298","libm/src/math/fminf.rs":"304bc839b15ea3d84e68d2af9f40524ec120d30a36a667b22fcb98a6c258f4c7","libm/src/math/fmod.rs":"a1c0550fc7df8164733d914e222ff0966a2ab886d6e75a1098f24fe0283ae227","libm/src/math/fmodf.rs":"ee51ed092c0eeb8195f35735ff725cfd46612e0d689a7c483538bd92fbe61828","libm/src/math/frexp.rs":"28af70026922a8ab979744c7ad4d8faba6079c4743b7eeb6d14c983a982fbbcc","libm/src/math/frexpf.rs":"2e2593ae8002ba420809ebfaf737ef001cdc912354be3d978a8c0cb930350d4d","libm/src/math/hypot.rs":"841131c4a0cea75bc8a86e29f3f6d0815a61fc99731c9984651ce83d3050d218","libm/src/math/hypotf.rs":"5f317323edc2eb699580fe54b074b7e570a7734d51a0a149c0b49b54470a836c","libm/src/math/ilogb.rs":"813413bf6266d4fc40db9c5921af3cef4f892ba93e8f6d9efe62a449d1234532","libm/src/math/ilogbf.rs":"dec462780f46682e16cfaa733238bed3b692729e951f53a44726100b6c73a716","libm/src/math/j0.rs":"9572b6396c489927d332d0e717920e61ec0618e5e9c31f7eeeec70f5e4abab06","libm/src/math/j0f.rs":"802c8254bded9b3afb6eea8b9af240038a5a4a5d811396729f69ca509e3e7d87","libm/src/math/j1.rs":"97b1af1611fa3d110c2b349ee8e4176100132ea1391b619086b47ac063b81803","libm/src/math/j1f.rs":"9c9b128752e8ea2e7d81b637ba84907ab54a545e7602c49167b313743927930b","libm/src/math/jn.rs":"847d122334e5707ad9627146cddccc082a1f2f5bcd3e5ef54399013a7007ce88","libm/src/math/jnf.rs":"4045076f7d1a1b89882ed60d4dd60a4cbbc66b85cfb90491378c8015effcc476","libm/src/math/k_cos.rs":"f34a69e44d6b8901b03b578a75972f438ab20a7b98a0903fc1903d6fde3899be","libm/src/math/k_cosf.rs":"8f7117ff21cebf8e890a5bcfd7ea858a94172f4172b79a66d53824c2cb0888b1","libm/src/math/k_expo2.rs":"eb4ca9e6a525b7ea6da868c3cb136896682cc46f8396ba2a2ebc3ae9e9ba54b0","libm/src/math/k_expo2f.rs":"d51ad5df61cb5d1258bdb90c52bfed4572bb446a9337de9c04411ed9454ae0cb","libm/src/math/k_sin.rs":"14b2aba6ca07150c92768b5a72acaf5cde6a11d6619e14896512a7ba242e289a","libm/src/math/k_sinf.rs":"2775fcc710807164e6f37a4f8da3c8143cd5f16e19ce7c31c5591522151d7a96","libm/src/math/k_tan.rs":"a72beae4ccd9631eeeb61d6365bbeecae81c8411f3120a999c515cca0d5ea5c5","libm/src/math/k_tanf.rs":"6a794be56fa4b2f60452b9bab19af01c388f174560acbf829a351378ea39495d","libm/src/math/ldexp.rs":"b647f0096e80e4d926d8dd18d294c892ee2cb1778effe2c5e1b2664ae5cb1a4e","libm/src/math/ldexpf.rs":"98743fad2cd97a7be496f40ba3157ac1438fce0d0c25d5ab90c3b8c71c3fd0ed","libm/src/math/lgamma.rs":"498552658cc8106d7754f85ae8dbc3306ac2f0a9f7eb5a796be70c5beac92c41","libm/src/math/lgamma_r.rs":"77fb6442aeb5343926d8965e1549dde3e2cc4fd09555de6b56506001d956c344","libm/src/math/lgammaf.rs":"457105f53a4c8717e8f5a117d261dcf94e222e83981337fe23602abe883fe3f7","libm/src/math/lgammaf_r.rs":"44de75babbdd53c4a5879cd6f426e7311db82669def39df5f63914d67d6cc1b1","libm/src/math/log.rs":"b5e0c5f30d9e94351488732801be3107c12b854c3f95ad37e256dd88eeca408f","libm/src/math/log10.rs":"3425ff8be001fd1646ba15e254eb6ef4bdc6ccaf0cbee27ddf1fa84e04178b90","libm/src/math/log10f.rs":"fee4f71879bc4c99259e68c0c641364901629fb29a8ebddfcc0d090102cceddd","libm/src/math/log1p.rs":"9cf400852f165e6be19b97036ae9521fb9ca857d0a9a91c117d9123221622185","libm/src/math/log1pf.rs":"2716e6d2afa271996b7c8f47fd9e4952c88f4c1fd8c07c3e8ce8c62794bf71d8","libm/src/math/log2.rs":"dbbbfbaaa8aa6a4dbefea554ea3983090a9691228b011910c751f6adca912c40","libm/src/math/log2f.rs":"92a90350d8edce21c31c285c3e620fca7c62a2366008921715945c2c73b5b79f","libm/src/math/logf.rs":"845342cffc34d3db1f5ec12d8e5b773cd5a79056e28662fcb9bcd80207596f50","libm/src/math/mod.rs":"9de65aedb36910356bc47d25b1468b40ab63faf7e319e599e478a239681bdf9c","libm/src/math/modf.rs":"d012ed5a708ef52b6d1313c22a46cadaf5764dde1220816e3df2f03a0fcc60ae","libm/src/math/modff.rs":"f8f1e4c27a85d2cdb3c8e74439d59ef64aa543b948f22c23227d02d8388d61c2","libm/src/math/nextafter.rs":"3282e7eef214a32736fb6928d490198ad394b26b402b45495115b104839eebfe","libm/src/math/nextafterf.rs":"0937dc8a8155c19842c12181e741cec1f7df1f7a00cee81fcb2475e2842761b7","libm/src/math/pow.rs":"17c38297c5bf99accd915f292b777f8716ecf328916297c8bb9dfde6fd8ce522","libm/src/math/powf.rs":"2c423a0ea57fdc4e20f3533f744c6e6288c998b4de8f2914fafaa0e78be81b04","libm/src/math/rem_pio2.rs":"3e53234977daf61c89c29c940791714aad2f676a6f38188c7d17543a2aa8806f","libm/src/math/rem_pio2_large.rs":"21762d08d72dc6f2e313123a7311683000974a09b8fcae50994d9c39239721b1","libm/src/math/rem_pio2f.rs":"07fb48f6d5cbadfd32ce4124b2b74af98b8391a2a6f36ce2a7d32e4500cb65ac","libm/src/math/remainder.rs":"63865f4370853c476b45bb27a5c54a4072146aa4a626835ae5263871a4e7e5dc","libm/src/math/remainderf.rs":"dd3fa432dbda8f2135428198be7bd69c57f8d13df3f365b12f52bf6a82352ac4","libm/src/math/remquo.rs":"3cc0bf55069f165c4843f2c358b3a27279c01e8cdd99f9057a3f7f31f45408f2","libm/src/math/remquof.rs":"cc749e18ecb7e766b8b8eeabdbf89ac99087d3d587e71e30f690676a3d2c1f9b","libm/src/math/round.rs":"f10797ef15dd34a74e912ba8621d60bc0200c87b94308c9de3cc88d7aec4feb4","libm/src/math/roundf.rs":"27e37cfcf82373709e7debf9c0c18f7ed00ae0f5d97a214c388041f7a6996d35","libm/src/math/scalbn.rs":"b5c9d6d4177fe393cbfe1c634d75ce14b754f6cbce87c5bf979a9661491748a2","libm/src/math/scalbnf.rs":"4f198d06db1896386256fb9a5ac5b805b16b836226c18780a475cf18d7c1449c","libm/src/math/sin.rs":"bb483a2138ca779e03a191222636f0c60fd75a77a2a12f263bda4b6aa9136317","libm/src/math/sincos.rs":"55b7446984db26bc118eb3d9b01f4fd2594de06558e0f9b6dc936a57888ca9be","libm/src/math/sincosf.rs":"f7b18383b242dad59e6033240d0e4a0fd08a2633e5048eff27532085f1c67f87","libm/src/math/sinf.rs":"dcddac1d56b084cbb8d0e019433c9c5fe2201d9b257a7dcf2f85c9a8f14b79cf","libm/src/math/sinh.rs":"d8ee4c7af883a526f36c1a6da13bb81fba9181b477e2f2538161a2bee97edc35","libm/src/math/sinhf.rs":"d06eb030ba9dbf7094df127262bfe99f149b4db49fa8ab8c15499660f1e46b26","libm/src/math/sqrt.rs":"824570a631c2542ccee68b65e3eb08fe79c037a29bbaaf54da5367e7b236124a","libm/src/math/sqrtf.rs":"4cf418d74f7751d522a642a9a8d6b86ee3472c6aaef44f0eb1bc26f4d8a90985","libm/src/math/tan.rs":"930ecedaadc60f704c2dfa4e15186f59713c1ba7d948529d215223b424827db5","libm/src/math/tanf.rs":"894156a3b107aee08461eb4e7e412fc049aa237d176ae705c6e3e2d7060d94e3","libm/src/math/tanh.rs":"f1f08eb98ed959a17370a7aaf0177be36e3764543424e78feb033ed3f5e8ec98","libm/src/math/tanhf.rs":"74027b0c672a4e64bdef6d7a3069b90caec50e1e7dbb2c12d2828f310502f41e","libm/src/math/tgamma.rs":"a6aabb8365410af6611f19f58694ccb74e82bb9ba9e1cdec7e1af787cfa44815","libm/src/math/tgammaf.rs":"c95bd69957387533853532164f7e2251d2b04f5e775406b9e647226ae2bdd5ad","libm/src/math/trunc.rs":"642264897cc1505e720c8cf313be81aa9fd53aae866644a2e988d01dbc77fd8a","libm/src/math/truncf.rs":"dee3607baf1af0f01deae46e429e097234c50b268eaefebbe716f19f38597900","src/arm.rs":"8ccf47608cc7862d8d834ca292d0d3d97faaab6cc6f20ba59ccf2987ff0f3f77","src/arm_linux.rs":"87136556091817b2bded52c3ece101123aae84ff13ccaf13a196826b2e3fc297","src/float/add.rs":"3ec32ceaf470a89777b54f9cde61832fdadeade0f4894f268a949e968520bc57","src/float/cmp.rs":"79b1fdc8d5f943c4ad5ea4ad32623b18f63e17ac3852fbc64a4942228007e1fc","src/float/conv.rs":"55138604371e00ef14167894159156b68f939039b0e5b2b1f3db61456e3d3870","src/float/div.rs":"bc808a5372d041b96aa603ac814165e1e7dbd690e4ab9b026d9465c1cbc2c583","src/float/extend.rs":"180b2e791c58e0526de0a798845c580ce3222c8a15c8665e6e6a4bf5cf1a34aa","src/float/mod.rs":"48d76632575789a6ecf99213b1ed38c21c86ad5a5c3fa33ccb31f77829271b79","src/float/mul.rs":"0d0c1f0c28c149ecadeafd459d3c4c9327e4cfcae2cba479957bb8010ef51a01","src/float/pow.rs":"2ada190738731eb6f24104f8fb8c4d6f03cfb16451536dbee32f2b33db0c4b19","src/float/sub.rs":"c2a87f4628f51d5d908d0f25b5d51ce0599dc559d5a72b20e131261f484d5848","src/float/trunc.rs":"d21d2a2f9a1918b4bbb594691e397972a7c04b74b2acf04016c55693abf6d24b","src/int/addsub.rs":"7ec45ce1ba15b56a5b7129d3e5722c4db764c6545306d3fa9090983bcabd6f17","src/int/leading_zeros.rs":"ccf5e9d098c80034dcf6e38437c9a2eb670fa8043558bbfb574f2293164729a6","src/int/mod.rs":"bab1b77535ceebdebb89fd4e59e7105f8c45347bb638351a626615b24544a0b1","src/int/mul.rs":"bb48d8fd42d8f9f5fe9271d8d0f7a92dbae320bf4346e19d1071eb2093cb8ed9","src/int/sdiv.rs":"ace4cb0ec388a38834e01cab2c5bc87182d31588dfc0b1ae117c11ed0c4781cf","src/int/shift.rs":"3967c28a8d61279546e91958d64745fec63f15aee9175eb0602cc6353830da6c","src/int/specialized_div_rem/asymmetric.rs":"27f5bf70a35109f9d4e4e1ad1e8003aa17da5a1e436bf3e63a493d7528a3a566","src/int/specialized_div_rem/binary_long.rs":"9f1ced81a394f000a21a329683144d68ee431a954136a3634eb55b1ee2cf6d51","src/int/specialized_div_rem/delegate.rs":"9df141af98e391361e25d71ae38d5e845a91d896edd2c041132fd46af8268e85","src/int/specialized_div_rem/mod.rs":"c32a7c416f2c81d6368720053864c3e7082417bca983c329520a8e7dc8c34736","src/int/specialized_div_rem/norm_shift.rs":"3be7ee0dea545c1f702d9daf67dad2b624bf7b17b075c8b90d3d3f7b53df4c21","src/int/specialized_div_rem/trifecta.rs":"87eef69da255b809fd710b14f2eb3f9f59e3dac625f8564ebc8ba78f9763523b","src/int/udiv.rs":"3732b490a472505411577f008b92f489287745968ce6791665201201377d3475","src/lib.rs":"557cd24974b4be235d3cdc4846eeacd8e536330ff54d037b8d56b21d99f64b3c","src/macros.rs":"4e6c006a47d7437f91a92802ecdceea63c60f3924ec98a429a14506c41c5f5dc","src/math.rs":"48bb0d97a1b56d960c6b5130b9a62a1cb1e8e5d62a522163022b8ea24c6cfcca","src/mem/impls.rs":"4517ae10a8adc2b0527529a872d8a7f98627f166d9a18a7aed6fc774b18dd843","src/mem/mod.rs":"791fa5fab759060e966de994b637e88c3c329cf2c0343efccca1da9dc80fcb66","src/mem/x86_64.rs":"912d4e955440113b97bd7dc836697df01a692524edd48cafaf599783ae277b85","src/probestack.rs":"ef5c07e9b95de7b2b77a937789fcfefd9846274317489ad6d623e377c9888601","src/riscv.rs":"8aa8cde1106a179e9a37724193bc5cea5defe212eb38e3049c23b254578f78d4","src/x86.rs":"117b50d6725ee0af0a7b3d197ea580655561f66a870ebc450d96af22bf7f39f6","src/x86_64.rs":"4f16bc9fad7757d48a6da3a078c715dd3a22154aadb4f1998d4c1b5d91396f9e"},"package":"71b72fde1d7792ca3bd654f7c3ea4508f9e4d0c826e24179eabb7fcc97a90bc3"} \ No newline at end of file
diff --git a/vendor/compiler_builtins/Cargo.lock b/vendor/compiler_builtins/Cargo.lock
new file mode 100644
index 000000000..e184f7e20
--- /dev/null
+++ b/vendor/compiler_builtins/Cargo.lock
@@ -0,0 +1,23 @@
+# This file is automatically @generated by Cargo.
+# It is not intended for manual editing.
+version = 3
+
+[[package]]
+name = "cc"
+version = "1.0.70"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "d26a6ce4b6a484fa3edb70f7efa6fc430fd2b87285fe8b84304fd0936faa0dc0"
+
+[[package]]
+name = "compiler_builtins"
+version = "0.1.73"
+dependencies = [
+ "cc",
+ "rustc-std-workspace-core",
+]
+
+[[package]]
+name = "rustc-std-workspace-core"
+version = "1.0.0"
+source = "registry+https://github.com/rust-lang/crates.io-index"
+checksum = "1956f5517128a2b6f23ab2dadf1a976f4f5b27962e7724c2bf3d45e539ec098c"
diff --git a/vendor/compiler_builtins/Cargo.toml b/vendor/compiler_builtins/Cargo.toml
new file mode 100644
index 000000000..765e99f94
--- /dev/null
+++ b/vendor/compiler_builtins/Cargo.toml
@@ -0,0 +1,73 @@
+# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
+#
+# When uploading crates to the registry Cargo will automatically
+# "normalize" Cargo.toml files for maximal compatibility
+# with all versions of Cargo and also rewrite `path` dependencies
+# to registry (e.g., crates.io) dependencies.
+#
+# If you are reading this file be aware that the original Cargo.toml
+# will likely look very different (and much more reasonable).
+# See Cargo.toml.orig for the original contents.
+
+[package]
+name = "compiler_builtins"
+version = "0.1.73"
+authors = ["Jorge Aparicio <japaricious@gmail.com>"]
+links = "compiler-rt"
+include = [
+ "/Cargo.toml",
+ "/build.rs",
+ "/src/*",
+ "/examples/*",
+ "/LICENSE.txt",
+ "/README.md",
+ "/compiler-rt/*",
+ "/libm/src/math/*",
+]
+description = """
+Compiler intrinsics used by the Rust compiler. Also available for other targets
+if necessary!
+"""
+homepage = "https://github.com/rust-lang/compiler-builtins"
+documentation = "https://docs.rs/compiler_builtins"
+readme = "README.md"
+license = "MIT/Apache-2.0"
+repository = "https://github.com/rust-lang/compiler-builtins"
+
+[profile.dev]
+panic = "abort"
+
+[profile.release]
+panic = "abort"
+
+[lib]
+test = false
+
+[[example]]
+name = "intrinsics"
+required-features = ["compiler-builtins"]
+
+[dependencies.core]
+version = "1.0.0"
+optional = true
+package = "rustc-std-workspace-core"
+
+[dev-dependencies]
+
+[build-dependencies.cc]
+version = "1.0"
+optional = true
+
+[features]
+c = ["cc"]
+compiler-builtins = []
+default = ["compiler-builtins"]
+mangled-names = []
+mem = []
+no-asm = []
+no-lang-items = []
+public-test-deps = []
+rustc-dep-of-std = [
+ "compiler-builtins",
+ "core",
+]
diff --git a/vendor/compiler_builtins/README.md b/vendor/compiler_builtins/README.md
new file mode 100644
index 000000000..8b25558a8
--- /dev/null
+++ b/vendor/compiler_builtins/README.md
@@ -0,0 +1,398 @@
+# `compiler-builtins`
+
+> Porting `compiler-rt` intrinsics to Rust
+
+See [rust-lang/rust#35437][0].
+
+[0]: https://github.com/rust-lang/rust/issues/35437
+
+## When and how to use this crate?
+
+If you are working with a target that doesn't have binary releases of std
+available via rustup (this probably means you are building the core crate
+yourself) and need compiler-rt intrinsics (i.e. you are probably getting linker
+errors when building an executable: `undefined reference to __aeabi_memcpy`),
+you can use this crate to get those intrinsics and solve the linker errors. To
+do that, add this crate somewhere in the dependency graph of the crate you are
+building:
+
+``` toml
+# Cargo.toml
+[dependencies]
+compiler_builtins = { git = "https://github.com/rust-lang/compiler-builtins" }
+```
+
+``` rust
+extern crate compiler_builtins;
+
+// ...
+```
+
+If you still get an "undefined reference to $INTRINSIC" error after that change,
+that means that we haven't ported `$INTRINSIC` to Rust yet! Please open [an
+issue] with the name of the intrinsic and the LLVM triple (e.g.
+thumbv7m-none-eabi) of the target you are using. That way we can prioritize
+porting that particular intrinsic.
+
+If you've got a C compiler available for your target then while we implement
+this intrinsic you can temporarily enable a fallback to the actual compiler-rt
+implementation as well for unimplemented intrinsics:
+
+```toml
+[dependencies.compiler_builtins]
+git = "https://github.com/rust-lang/compiler-builtins"
+features = ["c"]
+```
+
+[an issue]: https://github.com/rust-lang/compiler-builtins/issues
+
+## Contributing
+
+1. Pick one or more intrinsics from the [pending list](#progress).
+2. Fork this repository.
+3. Port the intrinsic(s) and their corresponding [unit tests][1] from their
+ [C implementation][2] to Rust.
+4. Implement a [test generator][3] to compare the behavior of the ported intrinsic(s)
+ with their implementation on the testing host. Note that randomized compiler-builtin tests
+ should be run using `cargo test --features gen-tests`.
+4. Send a Pull Request (PR).
+5. Once the PR passes our extensive [testing infrastructure][4], we'll merge it!
+6. Celebrate :tada:
+
+[1]: https://github.com/rust-lang/compiler-rt/tree/8598065bd965d9713bfafb6c1e766d63a7b17b89/test/builtins/Unit
+[2]: https://github.com/rust-lang/compiler-rt/tree/8598065bd965d9713bfafb6c1e766d63a7b17b89/lib/builtins
+[3]: https://github.com/rust-lang/compiler-builtins/blob/0ba07e49264a54cb5bbd4856fcea083bb3fbec15/build.rs#L180-L265
+[4]: https://travis-ci.org/rust-lang/compiler-builtins
+
+### Porting Reminders
+
+1. [Rust][5a] and [C][5b] have slightly different operator precedence. C evaluates comparisons (`== !=`) before bitwise operations (`& | ^`), while Rust evaluates the other way.
+2. C assumes wrapping operations everywhere. Rust panics on overflow when in debug mode. Consider using the [Wrapping][6] type or the explicit [wrapping_*][7] functions where applicable.
+3. Note [C implicit casts][8], especially integer promotion. Rust is much more explicit about casting, so be sure that any cast which affects the output is ported to the Rust implementation.
+4. Rust has [many functions][9] for integer or floating point manipulation in the standard library. Consider using one of these functions rather than porting a new one.
+
+[5a]: https://doc.rust-lang.org/reference/expressions.html#expression-precedence
+[5b]: http://en.cppreference.com/w/c/language/operator_precedence
+[6]: https://doc.rust-lang.org/core/num/struct.Wrapping.html
+[7]: https://doc.rust-lang.org/std/primitive.i32.html#method.wrapping_add
+[8]: http://en.cppreference.com/w/cpp/language/implicit_conversion
+[9]: https://doc.rust-lang.org/std/primitive.i32.html
+
+## Progress
+
+- [x] adddf3.c
+- [x] addsf3.c
+- [x] arm/adddf3vfp.S
+- [x] arm/addsf3vfp.S
+- [x] arm/aeabi_dcmp.S
+- [x] arm/aeabi_fcmp.S
+- [x] arm/aeabi_idivmod.S
+- [x] arm/aeabi_ldivmod.S
+- [x] arm/aeabi_memcpy.S
+- [x] arm/aeabi_memmove.S
+- [x] arm/aeabi_memset.S
+- [x] arm/aeabi_uidivmod.S
+- [x] arm/aeabi_uldivmod.S
+- [x] arm/divdf3vfp.S
+- [ ] arm/divmodsi4.S (generic version is done)
+- [x] arm/divsf3vfp.S
+- [ ] arm/divsi3.S (generic version is done)
+- [x] arm/eqdf2vfp.S
+- [x] arm/eqsf2vfp.S
+- [x] arm/extendsfdf2vfp.S
+- [ ] arm/fixdfsivfp.S
+- [ ] arm/fixsfsivfp.S
+- [ ] arm/fixunsdfsivfp.S
+- [ ] arm/fixunssfsivfp.S
+- [ ] arm/floatsidfvfp.S
+- [ ] arm/floatsisfvfp.S
+- [ ] arm/floatunssidfvfp.S
+- [ ] arm/floatunssisfvfp.S
+- [x] arm/gedf2vfp.S
+- [x] arm/gesf2vfp.S
+- [x] arm/gtdf2vfp.S
+- [x] arm/gtsf2vfp.S
+- [x] arm/ledf2vfp.S
+- [x] arm/lesf2vfp.S
+- [x] arm/ltdf2vfp.S
+- [x] arm/ltsf2vfp.S
+- [ ] arm/modsi3.S (generic version is done)
+- [x] arm/muldf3vfp.S
+- [x] arm/mulsf3vfp.S
+- [x] arm/nedf2vfp.S
+- [ ] arm/negdf2vfp.S
+- [ ] arm/negsf2vfp.S
+- [x] arm/nesf2vfp.S
+- [x] arm/softfloat-alias.list
+- [x] arm/subdf3vfp.S
+- [x] arm/subsf3vfp.S
+- [x] arm/truncdfsf2vfp.S
+- [ ] arm/udivmodsi4.S (generic version is done)
+- [ ] arm/udivsi3.S (generic version is done)
+- [ ] arm/umodsi3.S (generic version is done)
+- [ ] arm/unorddf2vfp.S
+- [ ] arm/unordsf2vfp.S
+- [x] ashldi3.c
+- [x] ashrdi3.c
+- [x] comparedf2.c
+- [x] comparesf2.c
+- [x] divdf3.c
+- [x] divdi3.c
+- [x] divmoddi4.c
+- [x] divmodsi4.c
+- [x] divsf3.c
+- [x] divsi3.c
+- [ ] extendhfsf2.c
+- [x] extendsfdf2.c
+- [x] fixdfdi.c
+- [x] fixdfsi.c
+- [x] fixsfdi.c
+- [x] fixsfsi.c
+- [x] fixunsdfdi.c
+- [x] fixunsdfsi.c
+- [x] fixunssfdi.c
+- [x] fixunssfsi.c
+- [x] floatdidf.c
+- [x] floatdisf.c
+- [x] floatsidf.c
+- [x] floatsisf.c
+- [x] floatundidf.c
+- [x] floatundisf.c
+- [x] floatunsidf.c
+- [x] floatunsisf.c
+- [ ] i386/ashldi3.S
+- [ ] i386/ashrdi3.S
+- [x] i386/chkstk.S
+- [x] i386/chkstk2.S
+- [ ] i386/divdi3.S
+- [ ] i386/lshrdi3.S
+- [ ] i386/moddi3.S
+- [ ] i386/muldi3.S
+- [ ] i386/udivdi3.S
+- [ ] i386/umoddi3.S
+- [x] lshrdi3.c
+- [x] moddi3.c
+- [x] modsi3.c
+- [x] muldf3.c
+- [x] muldi3.c
+- [x] mulodi4.c
+- [x] mulosi4.c
+- [x] mulsf3.c
+- [x] powidf2.c
+- [x] powisf2.c
+- [x] subdf3.c
+- [x] subsf3.c
+- [ ] truncdfhf2.c
+- [x] truncdfsf2.c
+- [ ] truncsfhf2.c
+- [x] udivdi3.c
+- [x] udivmoddi4.c
+- [x] udivmodsi4.c
+- [x] udivsi3.c
+- [x] umoddi3.c
+- [x] umodsi3.c
+- [x] x86_64/chkstk.S
+- [x] x86_64/chkstk2.S
+
+These builtins are needed to support 128-bit integers, which are in the process of being added to Rust.
+
+- [x] ashlti3.c
+- [x] ashrti3.c
+- [x] divti3.c
+- [x] fixdfti.c
+- [x] fixsfti.c
+- [x] fixunsdfti.c
+- [x] fixunssfti.c
+- [x] floattidf.c
+- [x] floattisf.c
+- [x] floatuntidf.c
+- [x] floatuntisf.c
+- [x] lshrti3.c
+- [x] modti3.c
+- [x] muloti4.c
+- [x] multi3.c
+- [x] udivmodti4.c
+- [x] udivti3.c
+- [x] umodti3.c
+
+## Unimplemented functions
+
+These builtins involve floating-point types ("`f128`", "`f80`" and complex numbers) that are not supported by Rust.
+
+- ~~addtf3.c~~
+- ~~comparetf2.c~~
+- ~~divdc3.c~~
+- ~~divsc3.c~~
+- ~~divtc3.c~~
+- ~~divtf3.c~~
+- ~~divxc3.c~~
+- ~~extenddftf2.c~~
+- ~~extendsftf2.c~~
+- ~~fixtfdi.c~~
+- ~~fixtfsi.c~~
+- ~~fixtfti.c~~
+- ~~fixunstfdi.c~~
+- ~~fixunstfsi.c~~
+- ~~fixunstfti.c~~
+- ~~fixunsxfdi.c~~
+- ~~fixunsxfsi.c~~
+- ~~fixunsxfti.c~~
+- ~~fixxfdi.c~~
+- ~~fixxfti.c~~
+- ~~floatditf.c~~
+- ~~floatdixf.c~~
+- ~~floatsitf.c~~
+- ~~floattixf.c~~
+- ~~floatunditf.c~~
+- ~~floatundixf.c~~
+- ~~floatunsitf.c~~
+- ~~floatuntixf.c~~
+- ~~i386/floatdixf.S~~
+- ~~i386/floatundixf.S~~
+- ~~muldc3.c~~
+- ~~mulsc3.c~~
+- ~~multc3.c~~
+- ~~multf3.c~~
+- ~~mulxc3.c~~
+- ~~powitf2.c~~
+- ~~powixf2.c~~
+- ~~ppc/divtc3.c~~
+- ~~ppc/fixtfdi.c~~
+- ~~ppc/fixunstfdi.c~~
+- ~~ppc/floatditf.c~~
+- ~~ppc/floatunditf.c~~
+- ~~ppc/gcc_qadd.c~~
+- ~~ppc/gcc_qdiv.c~~
+- ~~ppc/gcc_qmul.c~~
+- ~~ppc/gcc_qsub.c~~
+- ~~ppc/multc3.c~~
+- ~~subtf3.c~~
+- ~~trunctfdf2.c~~
+- ~~trunctfsf2.c~~
+- ~~x86_64/floatdixf.c~~
+- ~~x86_64/floatundixf.S~~
+
+These builtins are never called by LLVM.
+
+- ~~absvdi2.c~~
+- ~~absvsi2.c~~
+- ~~absvti2.c~~
+- ~~addvdi3.c~~
+- ~~addvsi3.c~~
+- ~~addvti3.c~~
+- ~~arm/aeabi_cdcmp.S~~
+- ~~arm/aeabi_cdcmpeq_check_nan.c~~
+- ~~arm/aeabi_cfcmp.S~~
+- ~~arm/aeabi_cfcmpeq_check_nan.c~~
+- ~~arm/aeabi_div0.c~~
+- ~~arm/aeabi_drsub.c~~
+- ~~arm/aeabi_frsub.c~~
+- ~~arm/aeabi_memcmp.S~~
+- ~~arm/bswapdi2.S~~
+- ~~arm/bswapsi2.S~~
+- ~~arm/clzdi2.S~~
+- ~~arm/clzsi2.S~~
+- ~~arm/comparesf2.S~~
+- ~~arm/restore_vfp_d8_d15_regs.S~~
+- ~~arm/save_vfp_d8_d15_regs.S~~
+- ~~arm/switch16.S~~
+- ~~arm/switch32.S~~
+- ~~arm/switch8.S~~
+- ~~arm/switchu8.S~~
+- ~~clzdi2.c~~
+- ~~clzsi2.c~~
+- ~~clzti2.c~~
+- ~~cmpdi2.c~~
+- ~~cmpti2.c~~
+- ~~ctzdi2.c~~
+- ~~ctzsi2.c~~
+- ~~ctzti2.c~~
+- ~~ffsdi2.c~~ - this is [called by gcc][jemalloc-fail] though!
+- ~~ffsti2.c~~
+- ~~mulvdi3.c~~
+- ~~mulvsi3.c~~
+- ~~mulvti3.c~~
+- ~~negdf2.c~~
+- ~~negdi2.c~~
+- ~~negsf2.c~~
+- ~~negti2.c~~
+- ~~negvdi2.c~~
+- ~~negvsi2.c~~
+- ~~negvti2.c~~
+- ~~paritydi2.c~~
+- ~~paritysi2.c~~
+- ~~parityti2.c~~
+- ~~popcountdi2.c~~
+- ~~popcountsi2.c~~
+- ~~popcountti2.c~~
+- ~~ppc/restFP.S~~
+- ~~ppc/saveFP.S~~
+- ~~subvdi3.c~~
+- ~~subvsi3.c~~
+- ~~subvti3.c~~
+- ~~ucmpdi2.c~~
+- ~~ucmpti2.c~~
+- ~~udivmodti4.c~~
+
+[jemalloc-fail]: https://travis-ci.org/rust-lang/rust/jobs/249772758
+
+Rust only exposes atomic types on platforms that support them, and therefore does not need to fall back to software implementations.
+
+- ~~arm/sync_fetch_and_add_4.S~~
+- ~~arm/sync_fetch_and_add_8.S~~
+- ~~arm/sync_fetch_and_and_4.S~~
+- ~~arm/sync_fetch_and_and_8.S~~
+- ~~arm/sync_fetch_and_max_4.S~~
+- ~~arm/sync_fetch_and_max_8.S~~
+- ~~arm/sync_fetch_and_min_4.S~~
+- ~~arm/sync_fetch_and_min_8.S~~
+- ~~arm/sync_fetch_and_nand_4.S~~
+- ~~arm/sync_fetch_and_nand_8.S~~
+- ~~arm/sync_fetch_and_or_4.S~~
+- ~~arm/sync_fetch_and_or_8.S~~
+- ~~arm/sync_fetch_and_sub_4.S~~
+- ~~arm/sync_fetch_and_sub_8.S~~
+- ~~arm/sync_fetch_and_umax_4.S~~
+- ~~arm/sync_fetch_and_umax_8.S~~
+- ~~arm/sync_fetch_and_umin_4.S~~
+- ~~arm/sync_fetch_and_umin_8.S~~
+- ~~arm/sync_fetch_and_xor_4.S~~
+- ~~arm/sync_fetch_and_xor_8.S~~
+- ~~arm/sync_synchronize.S~~
+- ~~atomic.c~~
+- ~~atomic_flag_clear.c~~
+- ~~atomic_flag_clear_explicit.c~~
+- ~~atomic_flag_test_and_set.c~~
+- ~~atomic_flag_test_and_set_explicit.c~~
+- ~~atomic_signal_fence.c~~
+- ~~atomic_thread_fence.c~~
+
+Miscellaneous functionality that is not used by Rust.
+
+- ~~apple_versioning.c~~
+- ~~clear_cache.c~~
+- ~~emutls.c~~
+- ~~enable_execute_stack.c~~
+- ~~eprintf.c~~
+- ~~gcc_personality_v0.c~~
+- ~~trampoline_setup.c~~
+
+Floating-point implementations of builtins that are only called from soft-float code. It would be better to simply use the generic soft-float versions in this case.
+
+- ~~i386/floatdidf.S~~
+- ~~i386/floatdisf.S~~
+- ~~i386/floatundidf.S~~
+- ~~i386/floatundisf.S~~
+- ~~x86_64/floatundidf.S~~
+- ~~x86_64/floatundisf.S~~
+- ~~x86_64/floatdidf.c~~
+- ~~x86_64/floatdisf.c~~
+
+## License
+
+The compiler-builtins crate is dual licensed under both the University of
+Illinois "BSD-Like" license and the MIT license. As a user of this code you may
+choose to use it under either license. As a contributor, you agree to allow
+your code to be used under both.
+
+Full text of the relevant licenses is in LICENSE.TXT.
diff --git a/vendor/compiler_builtins/build.rs b/vendor/compiler_builtins/build.rs
new file mode 100644
index 000000000..11deffb9c
--- /dev/null
+++ b/vendor/compiler_builtins/build.rs
@@ -0,0 +1,579 @@
+use std::env;
+
+fn main() {
+ println!("cargo:rerun-if-changed=build.rs");
+
+ let target = env::var("TARGET").unwrap();
+ let cwd = env::current_dir().unwrap();
+
+ println!("cargo:compiler-rt={}", cwd.join("compiler-rt").display());
+
+ // Activate libm's unstable features to make full use of Nightly.
+ println!("cargo:rustc-cfg=feature=\"unstable\"");
+
+ // Emscripten's runtime includes all the builtins
+ if target.contains("emscripten") {
+ return;
+ }
+
+ // OpenBSD provides compiler_rt by default, use it instead of rebuilding it from source
+ if target.contains("openbsd") {
+ println!("cargo:rustc-link-search=native=/usr/lib");
+ println!("cargo:rustc-link-lib=compiler_rt");
+ return;
+ }
+
+ // Forcibly enable memory intrinsics on wasm & SGX as we don't have a libc to
+ // provide them.
+ if (target.contains("wasm") && !target.contains("wasi"))
+ || (target.contains("sgx") && target.contains("fortanix"))
+ || target.contains("-none")
+ || target.contains("nvptx")
+ {
+ println!("cargo:rustc-cfg=feature=\"mem\"");
+ }
+
+ // These targets have hardware unaligned access support.
+ if target.contains("x86_64")
+ || target.contains("i686")
+ || target.contains("aarch64")
+ || target.contains("bpf")
+ {
+ println!("cargo:rustc-cfg=feature=\"mem-unaligned\"");
+ }
+
+ // NOTE we are going to assume that llvm-target, what determines our codegen option, matches the
+ // target triple. This is usually correct for our built-in targets but can break in presence of
+ // custom targets, which can have arbitrary names.
+ let llvm_target = target.split('-').collect::<Vec<_>>();
+
+ // Build missing intrinsics from compiler-rt C source code. If we're
+ // mangling names though we assume that we're also in test mode so we don't
+ // build anything and we rely on the upstream implementation of compiler-rt
+ // functions
+ if !cfg!(feature = "mangled-names") && cfg!(feature = "c") {
+ // Don't use a C compiler for these targets:
+ //
+ // * wasm - clang for wasm is somewhat hard to come by and it's
+ // unlikely that the C is really that much better than our own Rust.
+ // * nvptx - everything is bitcode, not compatible with mixed C/Rust
+ // * riscv - the rust-lang/rust distribution container doesn't have a C
+ // compiler nor is cc-rs ready for compilation to riscv (at this
+ // time). This can probably be removed in the future
+ if !target.contains("wasm") && !target.contains("nvptx") && !target.starts_with("riscv") {
+ #[cfg(feature = "c")]
+ c::compile(&llvm_target, &target);
+ }
+ }
+
+ // To compile intrinsics.rs for thumb targets, where there is no libc
+ if llvm_target[0].starts_with("thumb") {
+ println!("cargo:rustc-cfg=thumb")
+ }
+
+ // compiler-rt `cfg`s away some intrinsics for thumbv6m and thumbv8m.base because
+ // these targets do not have full Thumb-2 support but only original Thumb-1.
+ // We have to cfg our code accordingly.
+ if llvm_target[0] == "thumbv6m" || llvm_target[0] == "thumbv8m.base" {
+ println!("cargo:rustc-cfg=thumb_1")
+ }
+
+ // Only emit the ARM Linux atomic emulation on pre-ARMv6 architectures. This
+ // includes the old androideabi. It is deprecated but it is available as a
+ // rustc target (arm-linux-androideabi).
+ if llvm_target[0] == "armv4t"
+ || llvm_target[0] == "armv5te"
+ || target == "arm-linux-androideabi"
+ {
+ println!("cargo:rustc-cfg=kernel_user_helpers")
+ }
+}
+
+#[cfg(feature = "c")]
+mod c {
+ extern crate cc;
+
+ use std::collections::{BTreeMap, HashSet};
+ use std::env;
+ use std::fs::File;
+ use std::io::Write;
+ use std::path::{Path, PathBuf};
+
+ struct Sources {
+ // SYMBOL -> PATH TO SOURCE
+ map: BTreeMap<&'static str, &'static str>,
+ }
+
+ impl Sources {
+ fn new() -> Sources {
+ Sources {
+ map: BTreeMap::new(),
+ }
+ }
+
+ fn extend(&mut self, sources: &[(&'static str, &'static str)]) {
+ // NOTE Some intrinsics have both a generic implementation (e.g.
+ // `floatdidf.c`) and an arch optimized implementation
+ // (`x86_64/floatdidf.c`). In those cases, we keep the arch optimized
+ // implementation and discard the generic implementation. If we don't
+ // and keep both implementations, the linker will yell at us about
+ // duplicate symbols!
+ for (symbol, src) in sources {
+ if src.contains("/") {
+ // Arch-optimized implementation (preferred)
+ self.map.insert(symbol, src);
+ } else {
+ // Generic implementation
+ if !self.map.contains_key(symbol) {
+ self.map.insert(symbol, src);
+ }
+ }
+ }
+ }
+
+ fn remove(&mut self, symbols: &[&str]) {
+ for symbol in symbols {
+ self.map.remove(*symbol).unwrap();
+ }
+ }
+ }
+
+ /// Compile intrinsics from the compiler-rt C source code
+ pub fn compile(llvm_target: &[&str], target: &String) {
+ let target_arch = env::var("CARGO_CFG_TARGET_ARCH").unwrap();
+ let target_env = env::var("CARGO_CFG_TARGET_ENV").unwrap();
+ let target_os = env::var("CARGO_CFG_TARGET_OS").unwrap();
+ let target_vendor = env::var("CARGO_CFG_TARGET_VENDOR").unwrap();
+ let mut consider_float_intrinsics = true;
+ let cfg = &mut cc::Build::new();
+
+ // AArch64 GCCs exit with an error condition when they encounter any kind of floating point
+ // code if the `nofp` and/or `nosimd` compiler flags have been set.
+ //
+ // Therefore, evaluate if those flags are present and set a boolean that causes any
+ // compiler-rt intrinsics that contain floating point source to be excluded for this target.
+ if target_arch == "aarch64" {
+ let cflags_key = String::from("CFLAGS_") + &(target.to_owned().replace("-", "_"));
+ if let Ok(cflags_value) = env::var(cflags_key) {
+ if cflags_value.contains("+nofp") || cflags_value.contains("+nosimd") {
+ consider_float_intrinsics = false;
+ }
+ }
+ }
+
+ cfg.warnings(false);
+
+ if target_env == "msvc" {
+ // Don't pull in extra libraries on MSVC
+ cfg.flag("/Zl");
+
+ // Emulate C99 and C++11's __func__ for MSVC prior to 2013 CTP
+ cfg.define("__func__", Some("__FUNCTION__"));
+ } else {
+ // Turn off various features of gcc and such, mostly copying
+ // compiler-rt's build system already
+ cfg.flag("-fno-builtin");
+ cfg.flag("-fvisibility=hidden");
+ cfg.flag("-ffreestanding");
+ // Avoid the following warning appearing once **per file**:
+ // clang: warning: optimization flag '-fomit-frame-pointer' is not supported for target 'armv7' [-Wignored-optimization-argument]
+ //
+ // Note that compiler-rt's build system also checks
+ //
+ // `check_cxx_compiler_flag(-fomit-frame-pointer COMPILER_RT_HAS_FOMIT_FRAME_POINTER_FLAG)`
+ //
+ // in https://github.com/rust-lang/compiler-rt/blob/c8fbcb3/cmake/config-ix.cmake#L19.
+ cfg.flag_if_supported("-fomit-frame-pointer");
+ cfg.define("VISIBILITY_HIDDEN", None);
+ }
+
+ let mut sources = Sources::new();
+ sources.extend(&[
+ ("__absvdi2", "absvdi2.c"),
+ ("__absvsi2", "absvsi2.c"),
+ ("__addvdi3", "addvdi3.c"),
+ ("__addvsi3", "addvsi3.c"),
+ ("__clzdi2", "clzdi2.c"),
+ ("__clzsi2", "clzsi2.c"),
+ ("__cmpdi2", "cmpdi2.c"),
+ ("__ctzdi2", "ctzdi2.c"),
+ ("__ctzsi2", "ctzsi2.c"),
+ ("__int_util", "int_util.c"),
+ ("__mulvdi3", "mulvdi3.c"),
+ ("__mulvsi3", "mulvsi3.c"),
+ ("__negdi2", "negdi2.c"),
+ ("__negvdi2", "negvdi2.c"),
+ ("__negvsi2", "negvsi2.c"),
+ ("__paritydi2", "paritydi2.c"),
+ ("__paritysi2", "paritysi2.c"),
+ ("__popcountdi2", "popcountdi2.c"),
+ ("__popcountsi2", "popcountsi2.c"),
+ ("__subvdi3", "subvdi3.c"),
+ ("__subvsi3", "subvsi3.c"),
+ ("__ucmpdi2", "ucmpdi2.c"),
+ ]);
+
+ if consider_float_intrinsics {
+ sources.extend(&[
+ ("__divdc3", "divdc3.c"),
+ ("__divsc3", "divsc3.c"),
+ ("__divxc3", "divxc3.c"),
+ ("__extendhfsf2", "extendhfsf2.c"),
+ ("__muldc3", "muldc3.c"),
+ ("__mulsc3", "mulsc3.c"),
+ ("__mulxc3", "mulxc3.c"),
+ ("__negdf2", "negdf2.c"),
+ ("__negsf2", "negsf2.c"),
+ ("__powixf2", "powixf2.c"),
+ ("__truncdfhf2", "truncdfhf2.c"),
+ ("__truncsfhf2", "truncsfhf2.c"),
+ ]);
+ }
+
+ // When compiling in rustbuild (the rust-lang/rust repo) this library
+ // also needs to satisfy intrinsics that jemalloc or C in general may
+ // need, so include a few more that aren't typically needed by
+ // LLVM/Rust.
+ if cfg!(feature = "rustbuild") {
+ sources.extend(&[("__ffsdi2", "ffsdi2.c")]);
+ }
+
+ // On iOS and 32-bit OSX these are all just empty intrinsics, no need to
+ // include them.
+ if target_os != "ios"
+ && target_os != "watchos"
+ && (target_vendor != "apple" || target_arch != "x86")
+ {
+ sources.extend(&[
+ ("__absvti2", "absvti2.c"),
+ ("__addvti3", "addvti3.c"),
+ ("__clzti2", "clzti2.c"),
+ ("__cmpti2", "cmpti2.c"),
+ ("__ctzti2", "ctzti2.c"),
+ ("__ffsti2", "ffsti2.c"),
+ ("__mulvti3", "mulvti3.c"),
+ ("__negti2", "negti2.c"),
+ ("__parityti2", "parityti2.c"),
+ ("__popcountti2", "popcountti2.c"),
+ ("__subvti3", "subvti3.c"),
+ ("__ucmpti2", "ucmpti2.c"),
+ ]);
+
+ if consider_float_intrinsics {
+ sources.extend(&[("__negvti2", "negvti2.c")]);
+ }
+ }
+
+ if target_vendor == "apple" {
+ sources.extend(&[
+ ("atomic_flag_clear", "atomic_flag_clear.c"),
+ ("atomic_flag_clear_explicit", "atomic_flag_clear_explicit.c"),
+ ("atomic_flag_test_and_set", "atomic_flag_test_and_set.c"),
+ (
+ "atomic_flag_test_and_set_explicit",
+ "atomic_flag_test_and_set_explicit.c",
+ ),
+ ("atomic_signal_fence", "atomic_signal_fence.c"),
+ ("atomic_thread_fence", "atomic_thread_fence.c"),
+ ]);
+ }
+
+ if target_env == "msvc" {
+ if target_arch == "x86_64" {
+ sources.extend(&[("__floatdixf", "x86_64/floatdixf.c")]);
+ }
+ } else {
+ // None of these seem to be used on x86_64 windows, and they've all
+ // got the wrong ABI anyway, so we want to avoid them.
+ if target_os != "windows" {
+ if target_arch == "x86_64" {
+ sources.extend(&[
+ ("__floatdixf", "x86_64/floatdixf.c"),
+ ("__floatundixf", "x86_64/floatundixf.S"),
+ ]);
+ }
+ }
+
+ if target_arch == "x86" {
+ sources.extend(&[
+ ("__ashldi3", "i386/ashldi3.S"),
+ ("__ashrdi3", "i386/ashrdi3.S"),
+ ("__divdi3", "i386/divdi3.S"),
+ ("__floatdixf", "i386/floatdixf.S"),
+ ("__floatundixf", "i386/floatundixf.S"),
+ ("__lshrdi3", "i386/lshrdi3.S"),
+ ("__moddi3", "i386/moddi3.S"),
+ ("__muldi3", "i386/muldi3.S"),
+ ("__udivdi3", "i386/udivdi3.S"),
+ ("__umoddi3", "i386/umoddi3.S"),
+ ]);
+ }
+ }
+
+ if target_arch == "arm"
+ && target_os != "ios"
+ && target_os != "watchos"
+ && target_env != "msvc"
+ {
+ sources.extend(&[
+ ("__aeabi_div0", "arm/aeabi_div0.c"),
+ ("__aeabi_drsub", "arm/aeabi_drsub.c"),
+ ("__aeabi_frsub", "arm/aeabi_frsub.c"),
+ ("__bswapdi2", "arm/bswapdi2.S"),
+ ("__bswapsi2", "arm/bswapsi2.S"),
+ ("__clzdi2", "arm/clzdi2.S"),
+ ("__clzsi2", "arm/clzsi2.S"),
+ ("__divmodsi4", "arm/divmodsi4.S"),
+ ("__divsi3", "arm/divsi3.S"),
+ ("__modsi3", "arm/modsi3.S"),
+ ("__switch16", "arm/switch16.S"),
+ ("__switch32", "arm/switch32.S"),
+ ("__switch8", "arm/switch8.S"),
+ ("__switchu8", "arm/switchu8.S"),
+ ("__sync_synchronize", "arm/sync_synchronize.S"),
+ ("__udivmodsi4", "arm/udivmodsi4.S"),
+ ("__udivsi3", "arm/udivsi3.S"),
+ ("__umodsi3", "arm/umodsi3.S"),
+ ]);
+
+ if target_os == "freebsd" {
+ sources.extend(&[("__clear_cache", "clear_cache.c")]);
+ }
+
+ // First of all aeabi_cdcmp and aeabi_cfcmp are never called by LLVM.
+ // Second are little-endian only, so build fail on big-endian targets.
+ // Temporally workaround: exclude these files for big-endian targets.
+ if !llvm_target[0].starts_with("thumbeb") && !llvm_target[0].starts_with("armeb") {
+ sources.extend(&[
+ ("__aeabi_cdcmp", "arm/aeabi_cdcmp.S"),
+ ("__aeabi_cdcmpeq_check_nan", "arm/aeabi_cdcmpeq_check_nan.c"),
+ ("__aeabi_cfcmp", "arm/aeabi_cfcmp.S"),
+ ("__aeabi_cfcmpeq_check_nan", "arm/aeabi_cfcmpeq_check_nan.c"),
+ ]);
+ }
+ }
+
+ if llvm_target[0] == "armv7" {
+ sources.extend(&[
+ ("__sync_fetch_and_add_4", "arm/sync_fetch_and_add_4.S"),
+ ("__sync_fetch_and_add_8", "arm/sync_fetch_and_add_8.S"),
+ ("__sync_fetch_and_and_4", "arm/sync_fetch_and_and_4.S"),
+ ("__sync_fetch_and_and_8", "arm/sync_fetch_and_and_8.S"),
+ ("__sync_fetch_and_max_4", "arm/sync_fetch_and_max_4.S"),
+ ("__sync_fetch_and_max_8", "arm/sync_fetch_and_max_8.S"),
+ ("__sync_fetch_and_min_4", "arm/sync_fetch_and_min_4.S"),
+ ("__sync_fetch_and_min_8", "arm/sync_fetch_and_min_8.S"),
+ ("__sync_fetch_and_nand_4", "arm/sync_fetch_and_nand_4.S"),
+ ("__sync_fetch_and_nand_8", "arm/sync_fetch_and_nand_8.S"),
+ ("__sync_fetch_and_or_4", "arm/sync_fetch_and_or_4.S"),
+ ("__sync_fetch_and_or_8", "arm/sync_fetch_and_or_8.S"),
+ ("__sync_fetch_and_sub_4", "arm/sync_fetch_and_sub_4.S"),
+ ("__sync_fetch_and_sub_8", "arm/sync_fetch_and_sub_8.S"),
+ ("__sync_fetch_and_umax_4", "arm/sync_fetch_and_umax_4.S"),
+ ("__sync_fetch_and_umax_8", "arm/sync_fetch_and_umax_8.S"),
+ ("__sync_fetch_and_umin_4", "arm/sync_fetch_and_umin_4.S"),
+ ("__sync_fetch_and_umin_8", "arm/sync_fetch_and_umin_8.S"),
+ ("__sync_fetch_and_xor_4", "arm/sync_fetch_and_xor_4.S"),
+ ("__sync_fetch_and_xor_8", "arm/sync_fetch_and_xor_8.S"),
+ ]);
+ }
+
+ if llvm_target.last().unwrap().ends_with("eabihf") {
+ if !llvm_target[0].starts_with("thumbv7em")
+ && !llvm_target[0].starts_with("thumbv8m.main")
+ {
+ // The FPU option chosen for these architectures in cc-rs, ie:
+ // -mfpu=fpv4-sp-d16 for thumbv7em
+ // -mfpu=fpv5-sp-d16 for thumbv8m.main
+ // do not support double precision floating points conversions so the files
+ // that include such instructions are not included for these targets.
+ sources.extend(&[
+ ("__fixdfsivfp", "arm/fixdfsivfp.S"),
+ ("__fixunsdfsivfp", "arm/fixunsdfsivfp.S"),
+ ("__floatsidfvfp", "arm/floatsidfvfp.S"),
+ ("__floatunssidfvfp", "arm/floatunssidfvfp.S"),
+ ]);
+ }
+
+ sources.extend(&[
+ ("__fixsfsivfp", "arm/fixsfsivfp.S"),
+ ("__fixunssfsivfp", "arm/fixunssfsivfp.S"),
+ ("__floatsisfvfp", "arm/floatsisfvfp.S"),
+ ("__floatunssisfvfp", "arm/floatunssisfvfp.S"),
+ ("__floatunssisfvfp", "arm/floatunssisfvfp.S"),
+ ("__restore_vfp_d8_d15_regs", "arm/restore_vfp_d8_d15_regs.S"),
+ ("__save_vfp_d8_d15_regs", "arm/save_vfp_d8_d15_regs.S"),
+ ("__negdf2vfp", "arm/negdf2vfp.S"),
+ ("__negsf2vfp", "arm/negsf2vfp.S"),
+ ]);
+ }
+
+ if target_arch == "aarch64" && consider_float_intrinsics {
+ sources.extend(&[
+ ("__comparetf2", "comparetf2.c"),
+ ("__extenddftf2", "extenddftf2.c"),
+ ("__extendsftf2", "extendsftf2.c"),
+ ("__fixtfdi", "fixtfdi.c"),
+ ("__fixtfsi", "fixtfsi.c"),
+ ("__fixtfti", "fixtfti.c"),
+ ("__fixunstfdi", "fixunstfdi.c"),
+ ("__fixunstfsi", "fixunstfsi.c"),
+ ("__fixunstfti", "fixunstfti.c"),
+ ("__floatditf", "floatditf.c"),
+ ("__floatsitf", "floatsitf.c"),
+ ("__floatunditf", "floatunditf.c"),
+ ("__floatunsitf", "floatunsitf.c"),
+ ("__trunctfdf2", "trunctfdf2.c"),
+ ("__trunctfsf2", "trunctfsf2.c"),
+ ("__addtf3", "addtf3.c"),
+ ("__multf3", "multf3.c"),
+ ("__subtf3", "subtf3.c"),
+ ("__divtf3", "divtf3.c"),
+ ("__powitf2", "powitf2.c"),
+ ("__fe_getround", "fp_mode.c"),
+ ("__fe_raise_inexact", "fp_mode.c"),
+ ]);
+
+ if target_os != "windows" {
+ sources.extend(&[("__multc3", "multc3.c")]);
+ }
+ }
+
+ if target_arch == "mips" {
+ sources.extend(&[("__bswapsi2", "bswapsi2.c")]);
+ }
+
+ if target_arch == "mips64" {
+ sources.extend(&[
+ ("__extenddftf2", "extenddftf2.c"),
+ ("__netf2", "comparetf2.c"),
+ ("__addtf3", "addtf3.c"),
+ ("__multf3", "multf3.c"),
+ ("__subtf3", "subtf3.c"),
+ ("__fixtfsi", "fixtfsi.c"),
+ ("__floatsitf", "floatsitf.c"),
+ ("__fixunstfsi", "fixunstfsi.c"),
+ ("__floatunsitf", "floatunsitf.c"),
+ ("__fe_getround", "fp_mode.c"),
+ ("__divtf3", "divtf3.c"),
+ ("__trunctfdf2", "trunctfdf2.c"),
+ ]);
+ }
+
+ // Remove the assembly implementations that won't compile for the target
+ if llvm_target[0] == "thumbv6m" || llvm_target[0] == "thumbv8m.base" {
+ let mut to_remove = Vec::new();
+ for (k, v) in sources.map.iter() {
+ if v.ends_with(".S") {
+ to_remove.push(*k);
+ }
+ }
+ sources.remove(&to_remove);
+
+ // But use some generic implementations where possible
+ sources.extend(&[("__clzdi2", "clzdi2.c"), ("__clzsi2", "clzsi2.c")])
+ }
+
+ if llvm_target[0] == "thumbv7m" || llvm_target[0] == "thumbv7em" {
+ sources.remove(&["__aeabi_cdcmp", "__aeabi_cfcmp"]);
+ }
+
+ // Android uses emulated TLS so we need a runtime support function.
+ if target_os == "android" {
+ sources.extend(&[("__emutls_get_address", "emutls.c")]);
+
+ // Work around a bug in the NDK headers (fixed in
+ // https://r.android.com/2038949 which will be released in a future
+ // NDK version) by providing a definition of LONG_BIT.
+ cfg.define("LONG_BIT", "(8 * sizeof(long))");
+ }
+
+ // When compiling the C code we require the user to tell us where the
+ // source code is, and this is largely done so when we're compiling as
+ // part of rust-lang/rust we can use the same llvm-project repository as
+ // rust-lang/rust.
+ let root = match env::var_os("RUST_COMPILER_RT_ROOT") {
+ Some(s) => PathBuf::from(s),
+ None => panic!("RUST_COMPILER_RT_ROOT is not set"),
+ };
+ if !root.exists() {
+ panic!("RUST_COMPILER_RT_ROOT={} does not exist", root.display());
+ }
+
+ // Support deterministic builds by remapping the __FILE__ prefix if the
+ // compiler supports it. This fixes the nondeterminism caused by the
+ // use of that macro in lib/builtins/int_util.h in compiler-rt.
+ cfg.flag_if_supported(&format!("-ffile-prefix-map={}=.", root.display()));
+
+ // Include out-of-line atomics for aarch64, which are all generated by supplying different
+ // sets of flags to the same source file.
+ // Note: Out-of-line aarch64 atomics are not supported by the msvc toolchain (#430).
+ let src_dir = root.join("lib/builtins");
+ if target_arch == "aarch64" && target_env != "msvc" {
+ // See below for why we're building these as separate libraries.
+ build_aarch64_out_of_line_atomics_libraries(&src_dir, cfg);
+
+ // Some run-time CPU feature detection is necessary, as well.
+ sources.extend(&[("__aarch64_have_lse_atomics", "cpu_model.c")]);
+ }
+
+ let mut added_sources = HashSet::new();
+ for (sym, src) in sources.map.iter() {
+ let src = src_dir.join(src);
+ if added_sources.insert(src.clone()) {
+ cfg.file(&src);
+ println!("cargo:rerun-if-changed={}", src.display());
+ }
+ println!("cargo:rustc-cfg={}=\"optimized-c\"", sym);
+ }
+
+ cfg.compile("libcompiler-rt.a");
+ }
+
+ fn build_aarch64_out_of_line_atomics_libraries(builtins_dir: &Path, cfg: &mut cc::Build) {
+ let out_dir = PathBuf::from(env::var("OUT_DIR").unwrap());
+ let outlined_atomics_file = builtins_dir.join("aarch64/lse.S");
+ println!("cargo:rerun-if-changed={}", outlined_atomics_file.display());
+
+ cfg.include(&builtins_dir);
+
+ for instruction_type in &["cas", "swp", "ldadd", "ldclr", "ldeor", "ldset"] {
+ for size in &[1, 2, 4, 8, 16] {
+ if *size == 16 && *instruction_type != "cas" {
+ continue;
+ }
+
+ for (model_number, model_name) in
+ &[(1, "relax"), (2, "acq"), (3, "rel"), (4, "acq_rel")]
+ {
+ // The original compiler-rt build system compiles the same
+ // source file multiple times with different compiler
+ // options. Here we do something slightly different: we
+ // create multiple .S files with the proper #defines and
+ // then include the original file.
+ //
+ // This is needed because the cc crate doesn't allow us to
+ // override the name of object files and libtool requires
+ // all objects in an archive to have unique names.
+ let path =
+ out_dir.join(format!("lse_{}{}_{}.S", instruction_type, size, model_name));
+ let mut file = File::create(&path).unwrap();
+ writeln!(file, "#define L_{}", instruction_type).unwrap();
+ writeln!(file, "#define SIZE {}", size).unwrap();
+ writeln!(file, "#define MODEL {}", model_number).unwrap();
+ writeln!(
+ file,
+ "#include \"{}\"",
+ outlined_atomics_file.canonicalize().unwrap().display()
+ )
+ .unwrap();
+ drop(file);
+ cfg.file(path);
+
+ let sym = format!("__aarch64_{}{}_{}", instruction_type, size, model_name);
+ println!("cargo:rustc-cfg={}=\"optimized-c\"", sym);
+ }
+ }
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/examples/intrinsics.rs b/vendor/compiler_builtins/examples/intrinsics.rs
new file mode 100644
index 000000000..0ca30c215
--- /dev/null
+++ b/vendor/compiler_builtins/examples/intrinsics.rs
@@ -0,0 +1,398 @@
+// By compiling this file we check that all the intrinsics we care about continue to be provided by
+// the `compiler_builtins` crate regardless of the changes we make to it. If we, by mistake, stop
+// compiling a C implementation and forget to implement that intrinsic in Rust, this file will fail
+// to link due to the missing intrinsic (symbol).
+
+#![allow(unused_features)]
+#![cfg_attr(thumb, no_main)]
+#![deny(dead_code)]
+#![feature(bench_black_box)]
+#![feature(lang_items)]
+#![feature(start)]
+#![feature(allocator_api)]
+#![no_std]
+
+extern crate panic_handler;
+
+#[cfg(all(not(thumb), not(windows), not(target_arch = "wasm32")))]
+#[link(name = "c")]
+extern "C" {}
+
+// Every function in this module maps will be lowered to an intrinsic by LLVM, if the platform
+// doesn't have native support for the operation used in the function. ARM has a naming convention
+// convention for its intrinsics that's different from other architectures; that's why some function
+// have an additional comment: the function name is the ARM name for the intrinsic and the comment
+// in the non-ARM name for the intrinsic.
+mod intrinsics {
+ // truncdfsf2
+ pub fn aeabi_d2f(x: f64) -> f32 {
+ x as f32
+ }
+
+ // fixdfsi
+ pub fn aeabi_d2i(x: f64) -> i32 {
+ x as i32
+ }
+
+ // fixdfdi
+ pub fn aeabi_d2l(x: f64) -> i64 {
+ x as i64
+ }
+
+ // fixunsdfsi
+ pub fn aeabi_d2uiz(x: f64) -> u32 {
+ x as u32
+ }
+
+ // fixunsdfdi
+ pub fn aeabi_d2ulz(x: f64) -> u64 {
+ x as u64
+ }
+
+ // adddf3
+ pub fn aeabi_dadd(a: f64, b: f64) -> f64 {
+ a + b
+ }
+
+ // eqdf2
+ pub fn aeabi_dcmpeq(a: f64, b: f64) -> bool {
+ a == b
+ }
+
+ // gtdf2
+ pub fn aeabi_dcmpgt(a: f64, b: f64) -> bool {
+ a > b
+ }
+
+ // ltdf2
+ pub fn aeabi_dcmplt(a: f64, b: f64) -> bool {
+ a < b
+ }
+
+ // divdf3
+ pub fn aeabi_ddiv(a: f64, b: f64) -> f64 {
+ a / b
+ }
+
+ // muldf3
+ pub fn aeabi_dmul(a: f64, b: f64) -> f64 {
+ a * b
+ }
+
+ // subdf3
+ pub fn aeabi_dsub(a: f64, b: f64) -> f64 {
+ a - b
+ }
+
+ // extendsfdf2
+ pub fn aeabi_f2d(x: f32) -> f64 {
+ x as f64
+ }
+
+ // fixsfsi
+ pub fn aeabi_f2iz(x: f32) -> i32 {
+ x as i32
+ }
+
+ // fixsfdi
+ pub fn aeabi_f2lz(x: f32) -> i64 {
+ x as i64
+ }
+
+ // fixunssfsi
+ pub fn aeabi_f2uiz(x: f32) -> u32 {
+ x as u32
+ }
+
+ // fixunssfdi
+ pub fn aeabi_f2ulz(x: f32) -> u64 {
+ x as u64
+ }
+
+ // addsf3
+ pub fn aeabi_fadd(a: f32, b: f32) -> f32 {
+ a + b
+ }
+
+ // eqsf2
+ pub fn aeabi_fcmpeq(a: f32, b: f32) -> bool {
+ a == b
+ }
+
+ // gtsf2
+ pub fn aeabi_fcmpgt(a: f32, b: f32) -> bool {
+ a > b
+ }
+
+ // ltsf2
+ pub fn aeabi_fcmplt(a: f32, b: f32) -> bool {
+ a < b
+ }
+
+ // divsf3
+ pub fn aeabi_fdiv(a: f32, b: f32) -> f32 {
+ a / b
+ }
+
+ // mulsf3
+ pub fn aeabi_fmul(a: f32, b: f32) -> f32 {
+ a * b
+ }
+
+ // subsf3
+ pub fn aeabi_fsub(a: f32, b: f32) -> f32 {
+ a - b
+ }
+
+ // floatsidf
+ pub fn aeabi_i2d(x: i32) -> f64 {
+ x as f64
+ }
+
+ // floatsisf
+ pub fn aeabi_i2f(x: i32) -> f32 {
+ x as f32
+ }
+
+ pub fn aeabi_idiv(a: i32, b: i32) -> i32 {
+ a.wrapping_div(b)
+ }
+
+ pub fn aeabi_idivmod(a: i32, b: i32) -> i32 {
+ a % b
+ }
+
+ // floatdidf
+ pub fn aeabi_l2d(x: i64) -> f64 {
+ x as f64
+ }
+
+ // floatdisf
+ pub fn aeabi_l2f(x: i64) -> f32 {
+ x as f32
+ }
+
+ // divdi3
+ pub fn aeabi_ldivmod(a: i64, b: i64) -> i64 {
+ a / b
+ }
+
+ // muldi3
+ pub fn aeabi_lmul(a: i64, b: i64) -> i64 {
+ a.wrapping_mul(b)
+ }
+
+ // floatunsidf
+ pub fn aeabi_ui2d(x: u32) -> f64 {
+ x as f64
+ }
+
+ // floatunsisf
+ pub fn aeabi_ui2f(x: u32) -> f32 {
+ x as f32
+ }
+
+ pub fn aeabi_uidiv(a: u32, b: u32) -> u32 {
+ a / b
+ }
+
+ pub fn aeabi_uidivmod(a: u32, b: u32) -> u32 {
+ a % b
+ }
+
+ // floatundidf
+ pub fn aeabi_ul2d(x: u64) -> f64 {
+ x as f64
+ }
+
+ // floatundisf
+ pub fn aeabi_ul2f(x: u64) -> f32 {
+ x as f32
+ }
+
+ // udivdi3
+ pub fn aeabi_uldivmod(a: u64, b: u64) -> u64 {
+ a * b
+ }
+
+ pub fn moddi3(a: i64, b: i64) -> i64 {
+ a % b
+ }
+
+ pub fn mulodi4(a: i64, b: i64) -> i64 {
+ a * b
+ }
+
+ pub fn umoddi3(a: u64, b: u64) -> u64 {
+ a % b
+ }
+
+ pub fn muloti4(a: u128, b: u128) -> Option<u128> {
+ a.checked_mul(b)
+ }
+
+ pub fn multi3(a: u128, b: u128) -> u128 {
+ a.wrapping_mul(b)
+ }
+
+ pub fn ashlti3(a: u128, b: usize) -> u128 {
+ a >> b
+ }
+
+ pub fn ashrti3(a: u128, b: usize) -> u128 {
+ a << b
+ }
+
+ pub fn lshrti3(a: i128, b: usize) -> i128 {
+ a >> b
+ }
+
+ pub fn udivti3(a: u128, b: u128) -> u128 {
+ a / b
+ }
+
+ pub fn umodti3(a: u128, b: u128) -> u128 {
+ a % b
+ }
+
+ pub fn divti3(a: i128, b: i128) -> i128 {
+ a / b
+ }
+
+ pub fn modti3(a: i128, b: i128) -> i128 {
+ a % b
+ }
+
+ pub fn udivsi3(a: u32, b: u32) -> u32 {
+ a / b
+ }
+}
+
+fn run() {
+ use core::hint::black_box as bb;
+ use intrinsics::*;
+
+ bb(aeabi_d2f(bb(2.)));
+ bb(aeabi_d2i(bb(2.)));
+ bb(aeabi_d2l(bb(2.)));
+ bb(aeabi_d2uiz(bb(2.)));
+ bb(aeabi_d2ulz(bb(2.)));
+ bb(aeabi_dadd(bb(2.), bb(3.)));
+ bb(aeabi_dcmpeq(bb(2.), bb(3.)));
+ bb(aeabi_dcmpgt(bb(2.), bb(3.)));
+ bb(aeabi_dcmplt(bb(2.), bb(3.)));
+ bb(aeabi_ddiv(bb(2.), bb(3.)));
+ bb(aeabi_dmul(bb(2.), bb(3.)));
+ bb(aeabi_dsub(bb(2.), bb(3.)));
+ bb(aeabi_f2d(bb(2.)));
+ bb(aeabi_f2iz(bb(2.)));
+ bb(aeabi_f2lz(bb(2.)));
+ bb(aeabi_f2uiz(bb(2.)));
+ bb(aeabi_f2ulz(bb(2.)));
+ bb(aeabi_fadd(bb(2.), bb(3.)));
+ bb(aeabi_fcmpeq(bb(2.), bb(3.)));
+ bb(aeabi_fcmpgt(bb(2.), bb(3.)));
+ bb(aeabi_fcmplt(bb(2.), bb(3.)));
+ bb(aeabi_fdiv(bb(2.), bb(3.)));
+ bb(aeabi_fmul(bb(2.), bb(3.)));
+ bb(aeabi_fsub(bb(2.), bb(3.)));
+ bb(aeabi_i2d(bb(2)));
+ bb(aeabi_i2f(bb(2)));
+ bb(aeabi_idiv(bb(2), bb(3)));
+ bb(aeabi_idivmod(bb(2), bb(3)));
+ bb(aeabi_l2d(bb(2)));
+ bb(aeabi_l2f(bb(2)));
+ bb(aeabi_ldivmod(bb(2), bb(3)));
+ bb(aeabi_lmul(bb(2), bb(3)));
+ bb(aeabi_ui2d(bb(2)));
+ bb(aeabi_ui2f(bb(2)));
+ bb(aeabi_uidiv(bb(2), bb(3)));
+ bb(aeabi_uidivmod(bb(2), bb(3)));
+ bb(aeabi_ul2d(bb(2)));
+ bb(aeabi_ul2f(bb(2)));
+ bb(aeabi_uldivmod(bb(2), bb(3)));
+ bb(moddi3(bb(2), bb(3)));
+ bb(mulodi4(bb(2), bb(3)));
+ bb(umoddi3(bb(2), bb(3)));
+ bb(muloti4(bb(2), bb(2)));
+ bb(multi3(bb(2), bb(2)));
+ bb(ashlti3(bb(2), bb(2)));
+ bb(ashrti3(bb(2), bb(2)));
+ bb(lshrti3(bb(2), bb(2)));
+ bb(udivti3(bb(2), bb(2)));
+ bb(umodti3(bb(2), bb(2)));
+ bb(divti3(bb(2), bb(2)));
+ bb(modti3(bb(2), bb(2)));
+ bb(udivsi3(bb(2), bb(2)));
+
+ something_with_a_dtor(&|| assert_eq!(bb(1), 1));
+
+ extern "C" {
+ fn rust_begin_unwind(x: usize);
+ }
+ // if bb(false) {
+ unsafe {
+ rust_begin_unwind(0);
+ }
+ // }
+}
+
+fn something_with_a_dtor(f: &dyn Fn()) {
+ struct A<'a>(&'a (dyn Fn() + 'a));
+
+ impl<'a> Drop for A<'a> {
+ fn drop(&mut self) {
+ (self.0)();
+ }
+ }
+ let _a = A(f);
+ f();
+}
+
+#[cfg(not(thumb))]
+#[start]
+fn main(_: isize, _: *const *const u8) -> isize {
+ run();
+ 0
+}
+
+#[cfg(thumb)]
+#[no_mangle]
+pub fn _start() -> ! {
+ run();
+ loop {}
+}
+
+#[cfg(windows)]
+#[link(name = "kernel32")]
+#[link(name = "msvcrt")]
+extern "C" {}
+
+// ARM targets need these symbols
+#[no_mangle]
+pub fn __aeabi_unwind_cpp_pr0() {}
+
+#[no_mangle]
+pub fn __aeabi_unwind_cpp_pr1() {}
+
+#[cfg(not(windows))]
+#[allow(non_snake_case)]
+#[no_mangle]
+pub fn _Unwind_Resume() {}
+
+#[cfg(not(windows))]
+#[lang = "eh_personality"]
+#[no_mangle]
+pub extern "C" fn eh_personality() {}
+
+#[cfg(all(windows, target_env = "gnu"))]
+mod mingw_unwinding {
+ #[no_mangle]
+ pub fn rust_eh_personality() {}
+ #[no_mangle]
+ pub fn rust_eh_unwind_resume() {}
+ #[no_mangle]
+ pub fn rust_eh_register_frames() {}
+ #[no_mangle]
+ pub fn rust_eh_unregister_frames() {}
+}
diff --git a/vendor/compiler_builtins/libm/src/math/acos.rs b/vendor/compiler_builtins/libm/src/math/acos.rs
new file mode 100644
index 000000000..23b13251e
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/acos.rs
@@ -0,0 +1,112 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_acos.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* acos(x)
+ * Method :
+ * acos(x) = pi/2 - asin(x)
+ * acos(-x) = pi/2 + asin(x)
+ * For |x|<=0.5
+ * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
+ * For x>0.5
+ * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
+ * = 2asin(sqrt((1-x)/2))
+ * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
+ * = 2f + (2c + 2s*z*R(z))
+ * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
+ * for f so that f+c ~ sqrt(z).
+ * For x<-0.5
+ * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
+ * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
+ *
+ * Special cases:
+ * if x is NaN, return x itself;
+ * if |x|>1, return NaN with invalid signal.
+ *
+ * Function needed: sqrt
+ */
+
+use super::sqrt;
+
+const PIO2_HI: f64 = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
+const PIO2_LO: f64 = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */
+const PS0: f64 = 1.66666666666666657415e-01; /* 0x3FC55555, 0x55555555 */
+const PS1: f64 = -3.25565818622400915405e-01; /* 0xBFD4D612, 0x03EB6F7D */
+const PS2: f64 = 2.01212532134862925881e-01; /* 0x3FC9C155, 0x0E884455 */
+const PS3: f64 = -4.00555345006794114027e-02; /* 0xBFA48228, 0xB5688F3B */
+const PS4: f64 = 7.91534994289814532176e-04; /* 0x3F49EFE0, 0x7501B288 */
+const PS5: f64 = 3.47933107596021167570e-05; /* 0x3F023DE1, 0x0DFDF709 */
+const QS1: f64 = -2.40339491173441421878e+00; /* 0xC0033A27, 0x1C8A2D4B */
+const QS2: f64 = 2.02094576023350569471e+00; /* 0x40002AE5, 0x9C598AC8 */
+const QS3: f64 = -6.88283971605453293030e-01; /* 0xBFE6066C, 0x1B8D0159 */
+const QS4: f64 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
+
+fn r(z: f64) -> f64 {
+ let p: f64 = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z * (PS4 + z * PS5)))));
+ let q: f64 = 1.0 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
+ p / q
+}
+
+/// Arccosine (f64)
+///
+/// Computes the inverse cosine (arc cosine) of the input value.
+/// Arguments must be in the range -1 to 1.
+/// Returns values in radians, in the range of 0 to pi.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn acos(x: f64) -> f64 {
+ let x1p_120f = f64::from_bits(0x3870000000000000); // 0x1p-120 === 2 ^ -120
+ let z: f64;
+ let w: f64;
+ let s: f64;
+ let c: f64;
+ let df: f64;
+ let hx: u32;
+ let ix: u32;
+
+ hx = (x.to_bits() >> 32) as u32;
+ ix = hx & 0x7fffffff;
+ /* |x| >= 1 or nan */
+ if ix >= 0x3ff00000 {
+ let lx: u32 = x.to_bits() as u32;
+
+ if ((ix - 0x3ff00000) | lx) == 0 {
+ /* acos(1)=0, acos(-1)=pi */
+ if (hx >> 31) != 0 {
+ return 2. * PIO2_HI + x1p_120f;
+ }
+ return 0.;
+ }
+ return 0. / (x - x);
+ }
+ /* |x| < 0.5 */
+ if ix < 0x3fe00000 {
+ if ix <= 0x3c600000 {
+ /* |x| < 2**-57 */
+ return PIO2_HI + x1p_120f;
+ }
+ return PIO2_HI - (x - (PIO2_LO - x * r(x * x)));
+ }
+ /* x < -0.5 */
+ if (hx >> 31) != 0 {
+ z = (1.0 + x) * 0.5;
+ s = sqrt(z);
+ w = r(z) * s - PIO2_LO;
+ return 2. * (PIO2_HI - (s + w));
+ }
+ /* x > 0.5 */
+ z = (1.0 - x) * 0.5;
+ s = sqrt(z);
+ // Set the low 4 bytes to zero
+ df = f64::from_bits(s.to_bits() & 0xff_ff_ff_ff_00_00_00_00);
+
+ c = (z - df * df) / (s + df);
+ w = r(z) * s + c;
+ 2. * (df + w)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/acosf.rs b/vendor/compiler_builtins/libm/src/math/acosf.rs
new file mode 100644
index 000000000..1a60479e3
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/acosf.rs
@@ -0,0 +1,79 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_acosf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::sqrtf::sqrtf;
+
+const PIO2_HI: f32 = 1.5707962513e+00; /* 0x3fc90fda */
+const PIO2_LO: f32 = 7.5497894159e-08; /* 0x33a22168 */
+const P_S0: f32 = 1.6666586697e-01;
+const P_S1: f32 = -4.2743422091e-02;
+const P_S2: f32 = -8.6563630030e-03;
+const Q_S1: f32 = -7.0662963390e-01;
+
+fn r(z: f32) -> f32 {
+ let p = z * (P_S0 + z * (P_S1 + z * P_S2));
+ let q = 1. + z * Q_S1;
+ p / q
+}
+
+/// Arccosine (f32)
+///
+/// Computes the inverse cosine (arc cosine) of the input value.
+/// Arguments must be in the range -1 to 1.
+/// Returns values in radians, in the range of 0 to pi.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn acosf(x: f32) -> f32 {
+ let x1p_120 = f32::from_bits(0x03800000); // 0x1p-120 === 2 ^ (-120)
+
+ let z: f32;
+ let w: f32;
+ let s: f32;
+
+ let mut hx = x.to_bits();
+ let ix = hx & 0x7fffffff;
+ /* |x| >= 1 or nan */
+ if ix >= 0x3f800000 {
+ if ix == 0x3f800000 {
+ if (hx >> 31) != 0 {
+ return 2. * PIO2_HI + x1p_120;
+ }
+ return 0.;
+ }
+ return 0. / (x - x);
+ }
+ /* |x| < 0.5 */
+ if ix < 0x3f000000 {
+ if ix <= 0x32800000 {
+ /* |x| < 2**-26 */
+ return PIO2_HI + x1p_120;
+ }
+ return PIO2_HI - (x - (PIO2_LO - x * r(x * x)));
+ }
+ /* x < -0.5 */
+ if (hx >> 31) != 0 {
+ z = (1. + x) * 0.5;
+ s = sqrtf(z);
+ w = r(z) * s - PIO2_LO;
+ return 2. * (PIO2_HI - (s + w));
+ }
+ /* x > 0.5 */
+ z = (1. - x) * 0.5;
+ s = sqrtf(z);
+ hx = s.to_bits();
+ let df = f32::from_bits(hx & 0xfffff000);
+ let c = (z - df * df) / (s + df);
+ w = r(z) * s + c;
+ 2. * (df + w)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/acosh.rs b/vendor/compiler_builtins/libm/src/math/acosh.rs
new file mode 100644
index 000000000..ac7a5f1c6
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/acosh.rs
@@ -0,0 +1,26 @@
+use super::{log, log1p, sqrt};
+
+const LN2: f64 = 0.693147180559945309417232121458176568; /* 0x3fe62e42, 0xfefa39ef*/
+
+/// Inverse hyperbolic cosine (f64)
+///
+/// Calculates the inverse hyperbolic cosine of `x`.
+/// Is defined as `log(x + sqrt(x*x-1))`.
+/// `x` must be a number greater than or equal to 1.
+pub fn acosh(x: f64) -> f64 {
+ let u = x.to_bits();
+ let e = ((u >> 52) as usize) & 0x7ff;
+
+ /* x < 1 domain error is handled in the called functions */
+
+ if e < 0x3ff + 1 {
+ /* |x| < 2, up to 2ulp error in [1,1.125] */
+ return log1p(x - 1.0 + sqrt((x - 1.0) * (x - 1.0) + 2.0 * (x - 1.0)));
+ }
+ if e < 0x3ff + 26 {
+ /* |x| < 0x1p26 */
+ return log(2.0 * x - 1.0 / (x + sqrt(x * x - 1.0)));
+ }
+ /* |x| >= 0x1p26 or nan */
+ return log(x) + LN2;
+}
diff --git a/vendor/compiler_builtins/libm/src/math/acoshf.rs b/vendor/compiler_builtins/libm/src/math/acoshf.rs
new file mode 100644
index 000000000..0879e1edb
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/acoshf.rs
@@ -0,0 +1,25 @@
+use super::{log1pf, logf, sqrtf};
+
+const LN2: f32 = 0.693147180559945309417232121458176568;
+
+/// Inverse hyperbolic cosine (f32)
+///
+/// Calculates the inverse hyperbolic cosine of `x`.
+/// Is defined as `log(x + sqrt(x*x-1))`.
+/// `x` must be a number greater than or equal to 1.
+pub fn acoshf(x: f32) -> f32 {
+ let u = x.to_bits();
+ let a = u & 0x7fffffff;
+
+ if a < 0x3f800000 + (1 << 23) {
+ /* |x| < 2, invalid if x < 1 or nan */
+ /* up to 2ulp error in [1,1.125] */
+ return log1pf(x - 1.0 + sqrtf((x - 1.0) * (x - 1.0) + 2.0 * (x - 1.0)));
+ }
+ if a < 0x3f800000 + (12 << 23) {
+ /* |x| < 0x1p12 */
+ return logf(2.0 * x - 1.0 / (x + sqrtf(x * x - 1.0)));
+ }
+ /* x >= 0x1p12 */
+ return logf(x) + LN2;
+}
diff --git a/vendor/compiler_builtins/libm/src/math/asin.rs b/vendor/compiler_builtins/libm/src/math/asin.rs
new file mode 100644
index 000000000..3e4b7c56e
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/asin.rs
@@ -0,0 +1,119 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* asin(x)
+ * Method :
+ * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
+ * we approximate asin(x) on [0,0.5] by
+ * asin(x) = x + x*x^2*R(x^2)
+ * where
+ * R(x^2) is a rational approximation of (asin(x)-x)/x^3
+ * and its remez error is bounded by
+ * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
+ *
+ * For x in [0.5,1]
+ * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
+ * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
+ * then for x>0.98
+ * asin(x) = pi/2 - 2*(s+s*z*R(z))
+ * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
+ * For x<=0.98, let pio4_hi = pio2_hi/2, then
+ * f = hi part of s;
+ * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
+ * and
+ * asin(x) = pi/2 - 2*(s+s*z*R(z))
+ * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
+ * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
+ *
+ * Special cases:
+ * if x is NaN, return x itself;
+ * if |x|>1, return NaN with invalid signal.
+ *
+ */
+
+use super::{fabs, get_high_word, get_low_word, sqrt, with_set_low_word};
+
+const PIO2_HI: f64 = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
+const PIO2_LO: f64 = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */
+/* coefficients for R(x^2) */
+const P_S0: f64 = 1.66666666666666657415e-01; /* 0x3FC55555, 0x55555555 */
+const P_S1: f64 = -3.25565818622400915405e-01; /* 0xBFD4D612, 0x03EB6F7D */
+const P_S2: f64 = 2.01212532134862925881e-01; /* 0x3FC9C155, 0x0E884455 */
+const P_S3: f64 = -4.00555345006794114027e-02; /* 0xBFA48228, 0xB5688F3B */
+const P_S4: f64 = 7.91534994289814532176e-04; /* 0x3F49EFE0, 0x7501B288 */
+const P_S5: f64 = 3.47933107596021167570e-05; /* 0x3F023DE1, 0x0DFDF709 */
+const Q_S1: f64 = -2.40339491173441421878e+00; /* 0xC0033A27, 0x1C8A2D4B */
+const Q_S2: f64 = 2.02094576023350569471e+00; /* 0x40002AE5, 0x9C598AC8 */
+const Q_S3: f64 = -6.88283971605453293030e-01; /* 0xBFE6066C, 0x1B8D0159 */
+const Q_S4: f64 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
+
+fn comp_r(z: f64) -> f64 {
+ let p = z * (P_S0 + z * (P_S1 + z * (P_S2 + z * (P_S3 + z * (P_S4 + z * P_S5)))));
+ let q = 1.0 + z * (Q_S1 + z * (Q_S2 + z * (Q_S3 + z * Q_S4)));
+ p / q
+}
+
+/// Arcsine (f64)
+///
+/// Computes the inverse sine (arc sine) of the argument `x`.
+/// Arguments to asin must be in the range -1 to 1.
+/// Returns values in radians, in the range of -pi/2 to pi/2.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn asin(mut x: f64) -> f64 {
+ let z: f64;
+ let r: f64;
+ let s: f64;
+ let hx: u32;
+ let ix: u32;
+
+ hx = get_high_word(x);
+ ix = hx & 0x7fffffff;
+ /* |x| >= 1 or nan */
+ if ix >= 0x3ff00000 {
+ let lx: u32;
+ lx = get_low_word(x);
+ if ((ix - 0x3ff00000) | lx) == 0 {
+ /* asin(1) = +-pi/2 with inexact */
+ return x * PIO2_HI + f64::from_bits(0x3870000000000000);
+ } else {
+ return 0.0 / (x - x);
+ }
+ }
+ /* |x| < 0.5 */
+ if ix < 0x3fe00000 {
+ /* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
+ if ix < 0x3e500000 && ix >= 0x00100000 {
+ return x;
+ } else {
+ return x + x * comp_r(x * x);
+ }
+ }
+ /* 1 > |x| >= 0.5 */
+ z = (1.0 - fabs(x)) * 0.5;
+ s = sqrt(z);
+ r = comp_r(z);
+ if ix >= 0x3fef3333 {
+ /* if |x| > 0.975 */
+ x = PIO2_HI - (2. * (s + s * r) - PIO2_LO);
+ } else {
+ let f: f64;
+ let c: f64;
+ /* f+c = sqrt(z) */
+ f = with_set_low_word(s, 0);
+ c = (z - f * f) / (s + f);
+ x = 0.5 * PIO2_HI - (2.0 * s * r - (PIO2_LO - 2.0 * c) - (0.5 * PIO2_HI - 2.0 * f));
+ }
+ if hx >> 31 != 0 {
+ -x
+ } else {
+ x
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/asinf.rs b/vendor/compiler_builtins/libm/src/math/asinf.rs
new file mode 100644
index 000000000..6ec61b629
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/asinf.rs
@@ -0,0 +1,72 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_asinf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::fabsf::fabsf;
+use super::sqrt::sqrt;
+
+const PIO2: f64 = 1.570796326794896558e+00;
+
+/* coefficients for R(x^2) */
+const P_S0: f32 = 1.6666586697e-01;
+const P_S1: f32 = -4.2743422091e-02;
+const P_S2: f32 = -8.6563630030e-03;
+const Q_S1: f32 = -7.0662963390e-01;
+
+fn r(z: f32) -> f32 {
+ let p = z * (P_S0 + z * (P_S1 + z * P_S2));
+ let q = 1. + z * Q_S1;
+ p / q
+}
+
+/// Arcsine (f32)
+///
+/// Computes the inverse sine (arc sine) of the argument `x`.
+/// Arguments to asin must be in the range -1 to 1.
+/// Returns values in radians, in the range of -pi/2 to pi/2.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn asinf(mut x: f32) -> f32 {
+ let x1p_120 = f64::from_bits(0x3870000000000000); // 0x1p-120 === 2 ^ (-120)
+
+ let hx = x.to_bits();
+ let ix = hx & 0x7fffffff;
+
+ if ix >= 0x3f800000 {
+ /* |x| >= 1 */
+ if ix == 0x3f800000 {
+ /* |x| == 1 */
+ return ((x as f64) * PIO2 + x1p_120) as f32; /* asin(+-1) = +-pi/2 with inexact */
+ }
+ return 0. / (x - x); /* asin(|x|>1) is NaN */
+ }
+
+ if ix < 0x3f000000 {
+ /* |x| < 0.5 */
+ /* if 0x1p-126 <= |x| < 0x1p-12, avoid raising underflow */
+ if (ix < 0x39800000) && (ix >= 0x00800000) {
+ return x;
+ }
+ return x + x * r(x * x);
+ }
+
+ /* 1 > |x| >= 0.5 */
+ let z = (1. - fabsf(x)) * 0.5;
+ let s = sqrt(z as f64);
+ x = (PIO2 - 2. * (s + s * (r(z) as f64))) as f32;
+ if (hx >> 31) != 0 {
+ -x
+ } else {
+ x
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/asinh.rs b/vendor/compiler_builtins/libm/src/math/asinh.rs
new file mode 100644
index 000000000..14295357a
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/asinh.rs
@@ -0,0 +1,39 @@
+use super::{log, log1p, sqrt};
+
+const LN2: f64 = 0.693147180559945309417232121458176568; /* 0x3fe62e42, 0xfefa39ef*/
+
+/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
+/// Inverse hyperbolic sine (f64)
+///
+/// Calculates the inverse hyperbolic sine of `x`.
+/// Is defined as `sgn(x)*log(|x|+sqrt(x*x+1))`.
+pub fn asinh(mut x: f64) -> f64 {
+ let mut u = x.to_bits();
+ let e = ((u >> 52) as usize) & 0x7ff;
+ let sign = (u >> 63) != 0;
+
+ /* |x| */
+ u &= (!0) >> 1;
+ x = f64::from_bits(u);
+
+ if e >= 0x3ff + 26 {
+ /* |x| >= 0x1p26 or inf or nan */
+ x = log(x) + LN2;
+ } else if e >= 0x3ff + 1 {
+ /* |x| >= 2 */
+ x = log(2.0 * x + 1.0 / (sqrt(x * x + 1.0) + x));
+ } else if e >= 0x3ff - 26 {
+ /* |x| >= 0x1p-26, up to 1.6ulp error in [0.125,0.5] */
+ x = log1p(x + x * x / (sqrt(x * x + 1.0) + 1.0));
+ } else {
+ /* |x| < 0x1p-26, raise inexact if x != 0 */
+ let x1p120 = f64::from_bits(0x4770000000000000);
+ force_eval!(x + x1p120);
+ }
+
+ if sign {
+ -x
+ } else {
+ x
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/asinhf.rs b/vendor/compiler_builtins/libm/src/math/asinhf.rs
new file mode 100644
index 000000000..e22a29132
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/asinhf.rs
@@ -0,0 +1,38 @@
+use super::{log1pf, logf, sqrtf};
+
+const LN2: f32 = 0.693147180559945309417232121458176568;
+
+/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
+/// Inverse hyperbolic sine (f32)
+///
+/// Calculates the inverse hyperbolic sine of `x`.
+/// Is defined as `sgn(x)*log(|x|+sqrt(x*x+1))`.
+pub fn asinhf(mut x: f32) -> f32 {
+ let u = x.to_bits();
+ let i = u & 0x7fffffff;
+ let sign = (u >> 31) != 0;
+
+ /* |x| */
+ x = f32::from_bits(i);
+
+ if i >= 0x3f800000 + (12 << 23) {
+ /* |x| >= 0x1p12 or inf or nan */
+ x = logf(x) + LN2;
+ } else if i >= 0x3f800000 + (1 << 23) {
+ /* |x| >= 2 */
+ x = logf(2.0 * x + 1.0 / (sqrtf(x * x + 1.0) + x));
+ } else if i >= 0x3f800000 - (12 << 23) {
+ /* |x| >= 0x1p-12, up to 1.6ulp error in [0.125,0.5] */
+ x = log1pf(x + x * x / (sqrtf(x * x + 1.0) + 1.0));
+ } else {
+ /* |x| < 0x1p-12, raise inexact if x!=0 */
+ let x1p120 = f32::from_bits(0x7b800000);
+ force_eval!(x + x1p120);
+ }
+
+ if sign {
+ -x
+ } else {
+ x
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/atan.rs b/vendor/compiler_builtins/libm/src/math/atan.rs
new file mode 100644
index 000000000..4259dc71a
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/atan.rs
@@ -0,0 +1,184 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* atan(x)
+ * Method
+ * 1. Reduce x to positive by atan(x) = -atan(-x).
+ * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
+ * is further reduced to one of the following intervals and the
+ * arctangent of t is evaluated by the corresponding formula:
+ *
+ * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
+ * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
+ * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
+ * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
+ * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+use super::fabs;
+use core::f64;
+
+const ATANHI: [f64; 4] = [
+ 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
+ 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
+ 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
+ 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
+];
+
+const ATANLO: [f64; 4] = [
+ 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
+ 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
+ 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
+ 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
+];
+
+const AT: [f64; 11] = [
+ 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
+ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
+ 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
+ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
+ 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
+ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
+ 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
+ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
+ 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
+ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
+ 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
+];
+
+/// Arctangent (f64)
+///
+/// Computes the inverse tangent (arc tangent) of the input value.
+/// Returns a value in radians, in the range of -pi/2 to pi/2.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn atan(x: f64) -> f64 {
+ let mut x = x;
+ let mut ix = (x.to_bits() >> 32) as u32;
+ let sign = ix >> 31;
+ ix &= 0x7fff_ffff;
+ if ix >= 0x4410_0000 {
+ if x.is_nan() {
+ return x;
+ }
+
+ let z = ATANHI[3] + f64::from_bits(0x0380_0000); // 0x1p-120f
+ return if sign != 0 { -z } else { z };
+ }
+
+ let id = if ix < 0x3fdc_0000 {
+ /* |x| < 0.4375 */
+ if ix < 0x3e40_0000 {
+ /* |x| < 2^-27 */
+ if ix < 0x0010_0000 {
+ /* raise underflow for subnormal x */
+ force_eval!(x as f32);
+ }
+
+ return x;
+ }
+
+ -1
+ } else {
+ x = fabs(x);
+ if ix < 0x3ff30000 {
+ /* |x| < 1.1875 */
+ if ix < 0x3fe60000 {
+ /* 7/16 <= |x| < 11/16 */
+ x = (2. * x - 1.) / (2. + x);
+ 0
+ } else {
+ /* 11/16 <= |x| < 19/16 */
+ x = (x - 1.) / (x + 1.);
+ 1
+ }
+ } else if ix < 0x40038000 {
+ /* |x| < 2.4375 */
+ x = (x - 1.5) / (1. + 1.5 * x);
+ 2
+ } else {
+ /* 2.4375 <= |x| < 2^66 */
+ x = -1. / x;
+ 3
+ }
+ };
+
+ let z = x * x;
+ let w = z * z;
+ /* break sum from i=0 to 10 AT[i]z**(i+1) into odd and even poly */
+ let s1 = z * (AT[0] + w * (AT[2] + w * (AT[4] + w * (AT[6] + w * (AT[8] + w * AT[10])))));
+ let s2 = w * (AT[1] + w * (AT[3] + w * (AT[5] + w * (AT[7] + w * AT[9]))));
+
+ if id < 0 {
+ return x - x * (s1 + s2);
+ }
+
+ let z = i!(ATANHI, id as usize) - (x * (s1 + s2) - i!(ATANLO, id as usize) - x);
+
+ if sign != 0 {
+ -z
+ } else {
+ z
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::atan;
+ use core::f64;
+
+ #[test]
+ fn sanity_check() {
+ for (input, answer) in [
+ (3.0_f64.sqrt() / 3.0, f64::consts::FRAC_PI_6),
+ (1.0, f64::consts::FRAC_PI_4),
+ (3.0_f64.sqrt(), f64::consts::FRAC_PI_3),
+ (-3.0_f64.sqrt() / 3.0, -f64::consts::FRAC_PI_6),
+ (-1.0, -f64::consts::FRAC_PI_4),
+ (-3.0_f64.sqrt(), -f64::consts::FRAC_PI_3),
+ ]
+ .iter()
+ {
+ assert!(
+ (atan(*input) - answer) / answer < 1e-5,
+ "\natan({:.4}/16) = {:.4}, actual: {}",
+ input * 16.0,
+ answer,
+ atan(*input)
+ );
+ }
+ }
+
+ #[test]
+ fn zero() {
+ assert_eq!(atan(0.0), 0.0);
+ }
+
+ #[test]
+ fn infinity() {
+ assert_eq!(atan(f64::INFINITY), f64::consts::FRAC_PI_2);
+ }
+
+ #[test]
+ fn minus_infinity() {
+ assert_eq!(atan(f64::NEG_INFINITY), -f64::consts::FRAC_PI_2);
+ }
+
+ #[test]
+ fn nan() {
+ assert!(atan(f64::NAN).is_nan());
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/atan2.rs b/vendor/compiler_builtins/libm/src/math/atan2.rs
new file mode 100644
index 000000000..fb2ea4eda
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/atan2.rs
@@ -0,0 +1,126 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ */
+/* atan2(y,x)
+ * Method :
+ * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
+ * 2. Reduce x to positive by (if x and y are unexceptional):
+ * ARG (x+iy) = arctan(y/x) ... if x > 0,
+ * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
+ *
+ * Special cases:
+ *
+ * ATAN2((anything), NaN ) is NaN;
+ * ATAN2(NAN , (anything) ) is NaN;
+ * ATAN2(+-0, +(anything but NaN)) is +-0 ;
+ * ATAN2(+-0, -(anything but NaN)) is +-pi ;
+ * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
+ * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
+ * ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
+ * ATAN2(+-INF,+INF ) is +-pi/4 ;
+ * ATAN2(+-INF,-INF ) is +-3pi/4;
+ * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+use super::atan;
+use super::fabs;
+
+const PI: f64 = 3.1415926535897931160E+00; /* 0x400921FB, 0x54442D18 */
+const PI_LO: f64 = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
+
+/// Arctangent of y/x (f64)
+///
+/// Computes the inverse tangent (arc tangent) of `y/x`.
+/// Produces the correct result even for angles near pi/2 or -pi/2 (that is, when `x` is near 0).
+/// Returns a value in radians, in the range of -pi to pi.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn atan2(y: f64, x: f64) -> f64 {
+ if x.is_nan() || y.is_nan() {
+ return x + y;
+ }
+ let mut ix = (x.to_bits() >> 32) as u32;
+ let lx = x.to_bits() as u32;
+ let mut iy = (y.to_bits() >> 32) as u32;
+ let ly = y.to_bits() as u32;
+ if ((ix.wrapping_sub(0x3ff00000)) | lx) == 0 {
+ /* x = 1.0 */
+ return atan(y);
+ }
+ let m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */
+ ix &= 0x7fffffff;
+ iy &= 0x7fffffff;
+
+ /* when y = 0 */
+ if (iy | ly) == 0 {
+ return match m {
+ 0 | 1 => y, /* atan(+-0,+anything)=+-0 */
+ 2 => PI, /* atan(+0,-anything) = PI */
+ _ => -PI, /* atan(-0,-anything) =-PI */
+ };
+ }
+ /* when x = 0 */
+ if (ix | lx) == 0 {
+ return if m & 1 != 0 { -PI / 2.0 } else { PI / 2.0 };
+ }
+ /* when x is INF */
+ if ix == 0x7ff00000 {
+ if iy == 0x7ff00000 {
+ return match m {
+ 0 => PI / 4.0, /* atan(+INF,+INF) */
+ 1 => -PI / 4.0, /* atan(-INF,+INF) */
+ 2 => 3.0 * PI / 4.0, /* atan(+INF,-INF) */
+ _ => -3.0 * PI / 4.0, /* atan(-INF,-INF) */
+ };
+ } else {
+ return match m {
+ 0 => 0.0, /* atan(+...,+INF) */
+ 1 => -0.0, /* atan(-...,+INF) */
+ 2 => PI, /* atan(+...,-INF) */
+ _ => -PI, /* atan(-...,-INF) */
+ };
+ }
+ }
+ /* |y/x| > 0x1p64 */
+ if ix.wrapping_add(64 << 20) < iy || iy == 0x7ff00000 {
+ return if m & 1 != 0 { -PI / 2.0 } else { PI / 2.0 };
+ }
+
+ /* z = atan(|y/x|) without spurious underflow */
+ let z = if (m & 2 != 0) && iy.wrapping_add(64 << 20) < ix {
+ /* |y/x| < 0x1p-64, x<0 */
+ 0.0
+ } else {
+ atan(fabs(y / x))
+ };
+ match m {
+ 0 => z, /* atan(+,+) */
+ 1 => -z, /* atan(-,+) */
+ 2 => PI - (z - PI_LO), /* atan(+,-) */
+ _ => (z - PI_LO) - PI, /* atan(-,-) */
+ }
+}
+
+#[test]
+fn sanity_check() {
+ assert_eq!(atan2(0.0, 1.0), 0.0);
+ assert_eq!(atan2(0.0, -1.0), PI);
+ assert_eq!(atan2(-0.0, -1.0), -PI);
+ assert_eq!(atan2(3.0, 2.0), atan(3.0 / 2.0));
+ assert_eq!(atan2(2.0, -1.0), atan(2.0 / -1.0) + PI);
+ assert_eq!(atan2(-2.0, -1.0), atan(-2.0 / -1.0) - PI);
+}
diff --git a/vendor/compiler_builtins/libm/src/math/atan2f.rs b/vendor/compiler_builtins/libm/src/math/atan2f.rs
new file mode 100644
index 000000000..eae3b002d
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/atan2f.rs
@@ -0,0 +1,91 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::atanf;
+use super::fabsf;
+
+const PI: f32 = 3.1415927410e+00; /* 0x40490fdb */
+const PI_LO: f32 = -8.7422776573e-08; /* 0xb3bbbd2e */
+
+/// Arctangent of y/x (f32)
+///
+/// Computes the inverse tangent (arc tangent) of `y/x`.
+/// Produces the correct result even for angles near pi/2 or -pi/2 (that is, when `x` is near 0).
+/// Returns a value in radians, in the range of -pi to pi.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn atan2f(y: f32, x: f32) -> f32 {
+ if x.is_nan() || y.is_nan() {
+ return x + y;
+ }
+ let mut ix = x.to_bits();
+ let mut iy = y.to_bits();
+
+ if ix == 0x3f800000 {
+ /* x=1.0 */
+ return atanf(y);
+ }
+ let m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */
+ ix &= 0x7fffffff;
+ iy &= 0x7fffffff;
+
+ /* when y = 0 */
+ if iy == 0 {
+ return match m {
+ 0 | 1 => y, /* atan(+-0,+anything)=+-0 */
+ 2 => PI, /* atan(+0,-anything) = pi */
+ 3 | _ => -PI, /* atan(-0,-anything) =-pi */
+ };
+ }
+ /* when x = 0 */
+ if ix == 0 {
+ return if m & 1 != 0 { -PI / 2. } else { PI / 2. };
+ }
+ /* when x is INF */
+ if ix == 0x7f800000 {
+ return if iy == 0x7f800000 {
+ match m {
+ 0 => PI / 4., /* atan(+INF,+INF) */
+ 1 => -PI / 4., /* atan(-INF,+INF) */
+ 2 => 3. * PI / 4., /* atan(+INF,-INF)*/
+ 3 | _ => -3. * PI / 4., /* atan(-INF,-INF)*/
+ }
+ } else {
+ match m {
+ 0 => 0., /* atan(+...,+INF) */
+ 1 => -0., /* atan(-...,+INF) */
+ 2 => PI, /* atan(+...,-INF) */
+ 3 | _ => -PI, /* atan(-...,-INF) */
+ }
+ };
+ }
+ /* |y/x| > 0x1p26 */
+ if (ix + (26 << 23) < iy) || (iy == 0x7f800000) {
+ return if m & 1 != 0 { -PI / 2. } else { PI / 2. };
+ }
+
+ /* z = atan(|y/x|) with correct underflow */
+ let z = if (m & 2 != 0) && (iy + (26 << 23) < ix) {
+ /*|y/x| < 0x1p-26, x < 0 */
+ 0.
+ } else {
+ atanf(fabsf(y / x))
+ };
+ match m {
+ 0 => z, /* atan(+,+) */
+ 1 => -z, /* atan(-,+) */
+ 2 => PI - (z - PI_LO), /* atan(+,-) */
+ _ => (z - PI_LO) - PI, /* case 3 */ /* atan(-,-) */
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/atanf.rs b/vendor/compiler_builtins/libm/src/math/atanf.rs
new file mode 100644
index 000000000..d042b3bc0
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/atanf.rs
@@ -0,0 +1,112 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_atanf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::fabsf;
+
+const ATAN_HI: [f32; 4] = [
+ 4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */
+ 7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */
+ 9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */
+ 1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */
+];
+
+const ATAN_LO: [f32; 4] = [
+ 5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */
+ 3.7748947079e-08, /* atan(1.0)lo 0x33222168 */
+ 3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */
+ 7.5497894159e-08, /* atan(inf)lo 0x33a22168 */
+];
+
+const A_T: [f32; 5] = [
+ 3.3333328366e-01,
+ -1.9999158382e-01,
+ 1.4253635705e-01,
+ -1.0648017377e-01,
+ 6.1687607318e-02,
+];
+
+/// Arctangent (f32)
+///
+/// Computes the inverse tangent (arc tangent) of the input value.
+/// Returns a value in radians, in the range of -pi/2 to pi/2.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn atanf(mut x: f32) -> f32 {
+ let x1p_120 = f32::from_bits(0x03800000); // 0x1p-120 === 2 ^ (-120)
+
+ let z: f32;
+
+ let mut ix = x.to_bits();
+ let sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+
+ if ix >= 0x4c800000 {
+ /* if |x| >= 2**26 */
+ if x.is_nan() {
+ return x;
+ }
+ z = i!(ATAN_HI, 3) + x1p_120;
+ return if sign { -z } else { z };
+ }
+ let id = if ix < 0x3ee00000 {
+ /* |x| < 0.4375 */
+ if ix < 0x39800000 {
+ /* |x| < 2**-12 */
+ if ix < 0x00800000 {
+ /* raise underflow for subnormal x */
+ force_eval!(x * x);
+ }
+ return x;
+ }
+ -1
+ } else {
+ x = fabsf(x);
+ if ix < 0x3f980000 {
+ /* |x| < 1.1875 */
+ if ix < 0x3f300000 {
+ /* 7/16 <= |x| < 11/16 */
+ x = (2. * x - 1.) / (2. + x);
+ 0
+ } else {
+ /* 11/16 <= |x| < 19/16 */
+ x = (x - 1.) / (x + 1.);
+ 1
+ }
+ } else if ix < 0x401c0000 {
+ /* |x| < 2.4375 */
+ x = (x - 1.5) / (1. + 1.5 * x);
+ 2
+ } else {
+ /* 2.4375 <= |x| < 2**26 */
+ x = -1. / x;
+ 3
+ }
+ };
+ /* end of argument reduction */
+ z = x * x;
+ let w = z * z;
+ /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
+ let s1 = z * (i!(A_T, 0) + w * (i!(A_T, 2) + w * i!(A_T, 4)));
+ let s2 = w * (i!(A_T, 1) + w * i!(A_T, 3));
+ if id < 0 {
+ return x - x * (s1 + s2);
+ }
+ let id = id as usize;
+ let z = i!(ATAN_HI, id) - ((x * (s1 + s2) - i!(ATAN_LO, id)) - x);
+ if sign {
+ -z
+ } else {
+ z
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/atanh.rs b/vendor/compiler_builtins/libm/src/math/atanh.rs
new file mode 100644
index 000000000..79a989c42
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/atanh.rs
@@ -0,0 +1,36 @@
+use super::log1p;
+
+/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
+/// Inverse hyperbolic tangent (f64)
+///
+/// Calculates the inverse hyperbolic tangent of `x`.
+/// Is defined as `log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2`.
+pub fn atanh(x: f64) -> f64 {
+ let u = x.to_bits();
+ let e = ((u >> 52) as usize) & 0x7ff;
+ let sign = (u >> 63) != 0;
+
+ /* |x| */
+ let mut y = f64::from_bits(u & 0x7fff_ffff_ffff_ffff);
+
+ if e < 0x3ff - 1 {
+ if e < 0x3ff - 32 {
+ /* handle underflow */
+ if e == 0 {
+ force_eval!(y as f32);
+ }
+ } else {
+ /* |x| < 0.5, up to 1.7ulp error */
+ y = 0.5 * log1p(2.0 * y + 2.0 * y * y / (1.0 - y));
+ }
+ } else {
+ /* avoid overflow */
+ y = 0.5 * log1p(2.0 * (y / (1.0 - y)));
+ }
+
+ if sign {
+ -y
+ } else {
+ y
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/atanhf.rs b/vendor/compiler_builtins/libm/src/math/atanhf.rs
new file mode 100644
index 000000000..7b2f34d97
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/atanhf.rs
@@ -0,0 +1,36 @@
+use super::log1pf;
+
+/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
+/// Inverse hyperbolic tangent (f32)
+///
+/// Calculates the inverse hyperbolic tangent of `x`.
+/// Is defined as `log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2`.
+pub fn atanhf(mut x: f32) -> f32 {
+ let mut u = x.to_bits();
+ let sign = (u >> 31) != 0;
+
+ /* |x| */
+ u &= 0x7fffffff;
+ x = f32::from_bits(u);
+
+ if u < 0x3f800000 - (1 << 23) {
+ if u < 0x3f800000 - (32 << 23) {
+ /* handle underflow */
+ if u < (1 << 23) {
+ force_eval!((x * x) as f32);
+ }
+ } else {
+ /* |x| < 0.5, up to 1.7ulp error */
+ x = 0.5 * log1pf(2.0 * x + 2.0 * x * x / (1.0 - x));
+ }
+ } else {
+ /* avoid overflow */
+ x = 0.5 * log1pf(2.0 * (x / (1.0 - x)));
+ }
+
+ if sign {
+ -x
+ } else {
+ x
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/cbrt.rs b/vendor/compiler_builtins/libm/src/math/cbrt.rs
new file mode 100644
index 000000000..b4e77eaa2
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/cbrt.rs
@@ -0,0 +1,113 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrt.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ * Optimized by Bruce D. Evans.
+ */
+/* cbrt(x)
+ * Return cube root of x
+ */
+
+use core::f64;
+
+const B1: u32 = 715094163; /* B1 = (1023-1023/3-0.03306235651)*2**20 */
+const B2: u32 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
+
+/* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
+const P0: f64 = 1.87595182427177009643; /* 0x3ffe03e6, 0x0f61e692 */
+const P1: f64 = -1.88497979543377169875; /* 0xbffe28e0, 0x92f02420 */
+const P2: f64 = 1.621429720105354466140; /* 0x3ff9f160, 0x4a49d6c2 */
+const P3: f64 = -0.758397934778766047437; /* 0xbfe844cb, 0xbee751d9 */
+const P4: f64 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
+
+// Cube root (f64)
+///
+/// Computes the cube root of the argument.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn cbrt(x: f64) -> f64 {
+ let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
+
+ let mut ui: u64 = x.to_bits();
+ let mut r: f64;
+ let s: f64;
+ let mut t: f64;
+ let w: f64;
+ let mut hx: u32 = (ui >> 32) as u32 & 0x7fffffff;
+
+ if hx >= 0x7ff00000 {
+ /* cbrt(NaN,INF) is itself */
+ return x + x;
+ }
+
+ /*
+ * Rough cbrt to 5 bits:
+ * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
+ * where e is integral and >= 0, m is real and in [0, 1), and "/" and
+ * "%" are integer division and modulus with rounding towards minus
+ * infinity. The RHS is always >= the LHS and has a maximum relative
+ * error of about 1 in 16. Adding a bias of -0.03306235651 to the
+ * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
+ * floating point representation, for finite positive normal values,
+ * ordinary integer divison of the value in bits magically gives
+ * almost exactly the RHS of the above provided we first subtract the
+ * exponent bias (1023 for doubles) and later add it back. We do the
+ * subtraction virtually to keep e >= 0 so that ordinary integer
+ * division rounds towards minus infinity; this is also efficient.
+ */
+ if hx < 0x00100000 {
+ /* zero or subnormal? */
+ ui = (x * x1p54).to_bits();
+ hx = (ui >> 32) as u32 & 0x7fffffff;
+ if hx == 0 {
+ return x; /* cbrt(0) is itself */
+ }
+ hx = hx / 3 + B2;
+ } else {
+ hx = hx / 3 + B1;
+ }
+ ui &= 1 << 63;
+ ui |= (hx as u64) << 32;
+ t = f64::from_bits(ui);
+
+ /*
+ * New cbrt to 23 bits:
+ * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
+ * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
+ * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
+ * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
+ * gives us bounds for r = t**3/x.
+ *
+ * Try to optimize for parallel evaluation as in __tanf.c.
+ */
+ r = (t * t) * (t / x);
+ t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4));
+
+ /*
+ * Round t away from zero to 23 bits (sloppily except for ensuring that
+ * the result is larger in magnitude than cbrt(x) but not much more than
+ * 2 23-bit ulps larger). With rounding towards zero, the error bound
+ * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
+ * in the rounded t, the infinite-precision error in the Newton
+ * approximation barely affects third digit in the final error
+ * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
+ * before the final error is larger than 0.667 ulps.
+ */
+ ui = t.to_bits();
+ ui = (ui + 0x80000000) & 0xffffffffc0000000;
+ t = f64::from_bits(ui);
+
+ /* one step Newton iteration to 53 bits with error < 0.667 ulps */
+ s = t * t; /* t*t is exact */
+ r = x / s; /* error <= 0.5 ulps; |r| < |t| */
+ w = t + t; /* t+t is exact */
+ r = (r - t) / (w + r); /* r-t is exact; w+r ~= 3*t */
+ t = t + t * r; /* error <= 0.5 + 0.5/3 + epsilon */
+ t
+}
diff --git a/vendor/compiler_builtins/libm/src/math/cbrtf.rs b/vendor/compiler_builtins/libm/src/math/cbrtf.rs
new file mode 100644
index 000000000..9d70305c6
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/cbrtf.rs
@@ -0,0 +1,75 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Debugged and optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* cbrtf(x)
+ * Return cube root of x
+ */
+
+use core::f32;
+
+const B1: u32 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */
+const B2: u32 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
+
+/// Cube root (f32)
+///
+/// Computes the cube root of the argument.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn cbrtf(x: f32) -> f32 {
+ let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24
+
+ let mut r: f64;
+ let mut t: f64;
+ let mut ui: u32 = x.to_bits();
+ let mut hx: u32 = ui & 0x7fffffff;
+
+ if hx >= 0x7f800000 {
+ /* cbrt(NaN,INF) is itself */
+ return x + x;
+ }
+
+ /* rough cbrt to 5 bits */
+ if hx < 0x00800000 {
+ /* zero or subnormal? */
+ if hx == 0 {
+ return x; /* cbrt(+-0) is itself */
+ }
+ ui = (x * x1p24).to_bits();
+ hx = ui & 0x7fffffff;
+ hx = hx / 3 + B2;
+ } else {
+ hx = hx / 3 + B1;
+ }
+ ui &= 0x80000000;
+ ui |= hx;
+
+ /*
+ * First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In
+ * double precision so that its terms can be arranged for efficiency
+ * without causing overflow or underflow.
+ */
+ t = f32::from_bits(ui) as f64;
+ r = t * t * t;
+ t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r);
+
+ /*
+ * Second step Newton iteration to 47 bits. In double precision for
+ * efficiency and accuracy.
+ */
+ r = t * t * t;
+ t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r);
+
+ /* rounding to 24 bits is perfect in round-to-nearest mode */
+ t as f32
+}
diff --git a/vendor/compiler_builtins/libm/src/math/ceil.rs b/vendor/compiler_builtins/libm/src/math/ceil.rs
new file mode 100644
index 000000000..22d892971
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/ceil.rs
@@ -0,0 +1,82 @@
+#![allow(unreachable_code)]
+use core::f64;
+
+const TOINT: f64 = 1. / f64::EPSILON;
+
+/// Ceil (f64)
+///
+/// Finds the nearest integer greater than or equal to `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ceil(x: f64) -> f64 {
+ // On wasm32 we know that LLVM's intrinsic will compile to an optimized
+ // `f64.ceil` native instruction, so we can leverage this for both code size
+ // and speed.
+ llvm_intrinsically_optimized! {
+ #[cfg(target_arch = "wasm32")] {
+ return unsafe { ::core::intrinsics::ceilf64(x) }
+ }
+ }
+ #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+ {
+ //use an alternative implementation on x86, because the
+ //main implementation fails with the x87 FPU used by
+ //debian i386, probablly due to excess precision issues.
+ //basic implementation taken from https://github.com/rust-lang/libm/issues/219
+ use super::fabs;
+ if fabs(x).to_bits() < 4503599627370496.0_f64.to_bits() {
+ let truncated = x as i64 as f64;
+ if truncated < x {
+ return truncated + 1.0;
+ } else {
+ return truncated;
+ }
+ } else {
+ return x;
+ }
+ }
+ let u: u64 = x.to_bits();
+ let e: i64 = (u >> 52 & 0x7ff) as i64;
+ let y: f64;
+
+ if e >= 0x3ff + 52 || x == 0. {
+ return x;
+ }
+ // y = int(x) - x, where int(x) is an integer neighbor of x
+ y = if (u >> 63) != 0 {
+ x - TOINT + TOINT - x
+ } else {
+ x + TOINT - TOINT - x
+ };
+ // special case because of non-nearest rounding modes
+ if e < 0x3ff {
+ force_eval!(y);
+ return if (u >> 63) != 0 { -0. } else { 1. };
+ }
+ if y < 0. {
+ x + y + 1.
+ } else {
+ x + y
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use core::f64::*;
+
+ #[test]
+ fn sanity_check() {
+ assert_eq!(ceil(1.1), 2.0);
+ assert_eq!(ceil(2.9), 3.0);
+ }
+
+ /// The spec: https://en.cppreference.com/w/cpp/numeric/math/ceil
+ #[test]
+ fn spec_tests() {
+ // Not Asserted: that the current rounding mode has no effect.
+ assert!(ceil(NAN).is_nan());
+ for f in [0.0, -0.0, INFINITY, NEG_INFINITY].iter().copied() {
+ assert_eq!(ceil(f), f);
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/ceilf.rs b/vendor/compiler_builtins/libm/src/math/ceilf.rs
new file mode 100644
index 000000000..7bcc647ca
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/ceilf.rs
@@ -0,0 +1,65 @@
+use core::f32;
+
+/// Ceil (f32)
+///
+/// Finds the nearest integer greater than or equal to `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ceilf(x: f32) -> f32 {
+ // On wasm32 we know that LLVM's intrinsic will compile to an optimized
+ // `f32.ceil` native instruction, so we can leverage this for both code size
+ // and speed.
+ llvm_intrinsically_optimized! {
+ #[cfg(target_arch = "wasm32")] {
+ return unsafe { ::core::intrinsics::ceilf32(x) }
+ }
+ }
+ let mut ui = x.to_bits();
+ let e = (((ui >> 23) & 0xff).wrapping_sub(0x7f)) as i32;
+
+ if e >= 23 {
+ return x;
+ }
+ if e >= 0 {
+ let m = 0x007fffff >> e;
+ if (ui & m) == 0 {
+ return x;
+ }
+ force_eval!(x + f32::from_bits(0x7b800000));
+ if ui >> 31 == 0 {
+ ui += m;
+ }
+ ui &= !m;
+ } else {
+ force_eval!(x + f32::from_bits(0x7b800000));
+ if ui >> 31 != 0 {
+ return -0.0;
+ } else if ui << 1 != 0 {
+ return 1.0;
+ }
+ }
+ f32::from_bits(ui)
+}
+
+// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
+#[cfg(not(target_arch = "powerpc64"))]
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use core::f32::*;
+
+ #[test]
+ fn sanity_check() {
+ assert_eq!(ceilf(1.1), 2.0);
+ assert_eq!(ceilf(2.9), 3.0);
+ }
+
+ /// The spec: https://en.cppreference.com/w/cpp/numeric/math/ceil
+ #[test]
+ fn spec_tests() {
+ // Not Asserted: that the current rounding mode has no effect.
+ assert!(ceilf(NAN).is_nan());
+ for f in [0.0, -0.0, INFINITY, NEG_INFINITY].iter().copied() {
+ assert_eq!(ceilf(f), f);
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/copysign.rs b/vendor/compiler_builtins/libm/src/math/copysign.rs
new file mode 100644
index 000000000..1527fb6ea
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/copysign.rs
@@ -0,0 +1,11 @@
+/// Sign of Y, magnitude of X (f64)
+///
+/// Constructs a number with the magnitude (absolute value) of its
+/// first argument, `x`, and the sign of its second argument, `y`.
+pub fn copysign(x: f64, y: f64) -> f64 {
+ let mut ux = x.to_bits();
+ let uy = y.to_bits();
+ ux &= (!0) >> 1;
+ ux |= uy & (1 << 63);
+ f64::from_bits(ux)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/copysignf.rs b/vendor/compiler_builtins/libm/src/math/copysignf.rs
new file mode 100644
index 000000000..35148561a
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/copysignf.rs
@@ -0,0 +1,11 @@
+/// Sign of Y, magnitude of X (f32)
+///
+/// Constructs a number with the magnitude (absolute value) of its
+/// first argument, `x`, and the sign of its second argument, `y`.
+pub fn copysignf(x: f32, y: f32) -> f32 {
+ let mut ux = x.to_bits();
+ let uy = y.to_bits();
+ ux &= 0x7fffffff;
+ ux |= uy & 0x80000000;
+ f32::from_bits(ux)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/cos.rs b/vendor/compiler_builtins/libm/src/math/cos.rs
new file mode 100644
index 000000000..db8bc4989
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/cos.rs
@@ -0,0 +1,73 @@
+// origin: FreeBSD /usr/src/lib/msun/src/s_cos.c */
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+
+use super::{k_cos, k_sin, rem_pio2};
+
+// cos(x)
+// Return cosine function of x.
+//
+// kernel function:
+// k_sin ... sine function on [-pi/4,pi/4]
+// k_cos ... cosine function on [-pi/4,pi/4]
+// rem_pio2 ... argument reduction routine
+//
+// Method.
+// Let S,C and T denote the sin, cos and tan respectively on
+// [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+// in [-pi/4 , +pi/4], and let n = k mod 4.
+// We have
+//
+// n sin(x) cos(x) tan(x)
+// ----------------------------------------------------------
+// 0 S C T
+// 1 C -S -1/T
+// 2 -S -C T
+// 3 -C S -1/T
+// ----------------------------------------------------------
+//
+// Special cases:
+// Let trig be any of sin, cos, or tan.
+// trig(+-INF) is NaN, with signals;
+// trig(NaN) is that NaN;
+//
+// Accuracy:
+// TRIG(x) returns trig(x) nearly rounded
+//
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn cos(x: f64) -> f64 {
+ let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff;
+
+ /* |x| ~< pi/4 */
+ if ix <= 0x3fe921fb {
+ if ix < 0x3e46a09e {
+ /* if x < 2**-27 * sqrt(2) */
+ /* raise inexact if x != 0 */
+ if x as i32 == 0 {
+ return 1.0;
+ }
+ }
+ return k_cos(x, 0.0);
+ }
+
+ /* cos(Inf or NaN) is NaN */
+ if ix >= 0x7ff00000 {
+ return x - x;
+ }
+
+ /* argument reduction needed */
+ let (n, y0, y1) = rem_pio2(x);
+ match n & 3 {
+ 0 => k_cos(y0, y1),
+ 1 => -k_sin(y0, y1, 1),
+ 2 => -k_cos(y0, y1),
+ _ => k_sin(y0, y1, 1),
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/cosf.rs b/vendor/compiler_builtins/libm/src/math/cosf.rs
new file mode 100644
index 000000000..424fa42ed
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/cosf.rs
@@ -0,0 +1,83 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_cosf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{k_cosf, k_sinf, rem_pio2f};
+
+use core::f64::consts::FRAC_PI_2;
+
+/* Small multiples of pi/2 rounded to double precision. */
+const C1_PIO2: f64 = 1. * FRAC_PI_2; /* 0x3FF921FB, 0x54442D18 */
+const C2_PIO2: f64 = 2. * FRAC_PI_2; /* 0x400921FB, 0x54442D18 */
+const C3_PIO2: f64 = 3. * FRAC_PI_2; /* 0x4012D97C, 0x7F3321D2 */
+const C4_PIO2: f64 = 4. * FRAC_PI_2; /* 0x401921FB, 0x54442D18 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn cosf(x: f32) -> f32 {
+ let x64 = x as f64;
+
+ let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
+
+ let mut ix = x.to_bits();
+ let sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+
+ if ix <= 0x3f490fda {
+ /* |x| ~<= pi/4 */
+ if ix < 0x39800000 {
+ /* |x| < 2**-12 */
+ /* raise inexact if x != 0 */
+ force_eval!(x + x1p120);
+ return 1.;
+ }
+ return k_cosf(x64);
+ }
+ if ix <= 0x407b53d1 {
+ /* |x| ~<= 5*pi/4 */
+ if ix > 0x4016cbe3 {
+ /* |x| ~> 3*pi/4 */
+ return -k_cosf(if sign { x64 + C2_PIO2 } else { x64 - C2_PIO2 });
+ } else if sign {
+ return k_sinf(x64 + C1_PIO2);
+ } else {
+ return k_sinf(C1_PIO2 - x64);
+ }
+ }
+ if ix <= 0x40e231d5 {
+ /* |x| ~<= 9*pi/4 */
+ if ix > 0x40afeddf {
+ /* |x| ~> 7*pi/4 */
+ return k_cosf(if sign { x64 + C4_PIO2 } else { x64 - C4_PIO2 });
+ } else if sign {
+ return k_sinf(-x64 - C3_PIO2);
+ } else {
+ return k_sinf(x64 - C3_PIO2);
+ }
+ }
+
+ /* cos(Inf or NaN) is NaN */
+ if ix >= 0x7f800000 {
+ return x - x;
+ }
+
+ /* general argument reduction needed */
+ let (n, y) = rem_pio2f(x);
+ match n & 3 {
+ 0 => k_cosf(y),
+ 1 => k_sinf(-y),
+ 2 => -k_cosf(y),
+ _ => k_sinf(y),
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/cosh.rs b/vendor/compiler_builtins/libm/src/math/cosh.rs
new file mode 100644
index 000000000..2fb568ab3
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/cosh.rs
@@ -0,0 +1,38 @@
+use super::exp;
+use super::expm1;
+use super::k_expo2;
+
+/// Hyperbolic cosine (f64)
+///
+/// Computes the hyperbolic cosine of the argument x.
+/// Is defined as `(exp(x) + exp(-x))/2`
+/// Angles are specified in radians.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn cosh(mut x: f64) -> f64 {
+ /* |x| */
+ let mut ix = x.to_bits();
+ ix &= 0x7fffffffffffffff;
+ x = f64::from_bits(ix);
+ let w = ix >> 32;
+
+ /* |x| < log(2) */
+ if w < 0x3fe62e42 {
+ if w < 0x3ff00000 - (26 << 20) {
+ let x1p120 = f64::from_bits(0x4770000000000000);
+ force_eval!(x + x1p120);
+ return 1.;
+ }
+ let t = expm1(x); // exponential minus 1
+ return 1. + t * t / (2. * (1. + t));
+ }
+
+ /* |x| < log(DBL_MAX) */
+ if w < 0x40862e42 {
+ let t = exp(x);
+ /* note: if x>log(0x1p26) then the 1/t is not needed */
+ return 0.5 * (t + 1. / t);
+ }
+
+ /* |x| > log(DBL_MAX) or nan */
+ k_expo2(x)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/coshf.rs b/vendor/compiler_builtins/libm/src/math/coshf.rs
new file mode 100644
index 000000000..e7b684587
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/coshf.rs
@@ -0,0 +1,38 @@
+use super::expf;
+use super::expm1f;
+use super::k_expo2f;
+
+/// Hyperbolic cosine (f64)
+///
+/// Computes the hyperbolic cosine of the argument x.
+/// Is defined as `(exp(x) + exp(-x))/2`
+/// Angles are specified in radians.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn coshf(mut x: f32) -> f32 {
+ let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
+
+ /* |x| */
+ let mut ix = x.to_bits();
+ ix &= 0x7fffffff;
+ x = f32::from_bits(ix);
+ let w = ix;
+
+ /* |x| < log(2) */
+ if w < 0x3f317217 {
+ if w < (0x3f800000 - (12 << 23)) {
+ force_eval!(x + x1p120);
+ return 1.;
+ }
+ let t = expm1f(x);
+ return 1. + t * t / (2. * (1. + t));
+ }
+
+ /* |x| < log(FLT_MAX) */
+ if w < 0x42b17217 {
+ let t = expf(x);
+ return 0.5 * (t + 1. / t);
+ }
+
+ /* |x| > log(FLT_MAX) or nan */
+ k_expo2f(x)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/erf.rs b/vendor/compiler_builtins/libm/src/math/erf.rs
new file mode 100644
index 000000000..a2c617d34
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/erf.rs
@@ -0,0 +1,317 @@
+use super::{exp, fabs, get_high_word, with_set_low_word};
+/* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* double erf(double x)
+ * double erfc(double x)
+ * x
+ * 2 |\
+ * erf(x) = --------- | exp(-t*t)dt
+ * sqrt(pi) \|
+ * 0
+ *
+ * erfc(x) = 1-erf(x)
+ * Note that
+ * erf(-x) = -erf(x)
+ * erfc(-x) = 2 - erfc(x)
+ *
+ * Method:
+ * 1. For |x| in [0, 0.84375]
+ * erf(x) = x + x*R(x^2)
+ * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
+ * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
+ * where R = P/Q where P is an odd poly of degree 8 and
+ * Q is an odd poly of degree 10.
+ * -57.90
+ * | R - (erf(x)-x)/x | <= 2
+ *
+ *
+ * Remark. The formula is derived by noting
+ * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
+ * and that
+ * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
+ * is close to one. The interval is chosen because the fix
+ * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
+ * near 0.6174), and by some experiment, 0.84375 is chosen to
+ * guarantee the error is less than one ulp for erf.
+ *
+ * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
+ * c = 0.84506291151 rounded to single (24 bits)
+ * erf(x) = sign(x) * (c + P1(s)/Q1(s))
+ * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
+ * 1+(c+P1(s)/Q1(s)) if x < 0
+ * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
+ * Remark: here we use the taylor series expansion at x=1.
+ * erf(1+s) = erf(1) + s*Poly(s)
+ * = 0.845.. + P1(s)/Q1(s)
+ * That is, we use rational approximation to approximate
+ * erf(1+s) - (c = (single)0.84506291151)
+ * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
+ * where
+ * P1(s) = degree 6 poly in s
+ * Q1(s) = degree 6 poly in s
+ *
+ * 3. For x in [1.25,1/0.35(~2.857143)],
+ * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
+ * erf(x) = 1 - erfc(x)
+ * where
+ * R1(z) = degree 7 poly in z, (z=1/x^2)
+ * S1(z) = degree 8 poly in z
+ *
+ * 4. For x in [1/0.35,28]
+ * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
+ * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
+ * = 2.0 - tiny (if x <= -6)
+ * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
+ * erf(x) = sign(x)*(1.0 - tiny)
+ * where
+ * R2(z) = degree 6 poly in z, (z=1/x^2)
+ * S2(z) = degree 7 poly in z
+ *
+ * Note1:
+ * To compute exp(-x*x-0.5625+R/S), let s be a single
+ * precision number and s := x; then
+ * -x*x = -s*s + (s-x)*(s+x)
+ * exp(-x*x-0.5626+R/S) =
+ * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
+ * Note2:
+ * Here 4 and 5 make use of the asymptotic series
+ * exp(-x*x)
+ * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
+ * x*sqrt(pi)
+ * We use rational approximation to approximate
+ * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
+ * Here is the error bound for R1/S1 and R2/S2
+ * |R1/S1 - f(x)| < 2**(-62.57)
+ * |R2/S2 - f(x)| < 2**(-61.52)
+ *
+ * 5. For inf > x >= 28
+ * erf(x) = sign(x) *(1 - tiny) (raise inexact)
+ * erfc(x) = tiny*tiny (raise underflow) if x > 0
+ * = 2 - tiny if x<0
+ *
+ * 7. Special case:
+ * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
+ * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
+ * erfc/erf(NaN) is NaN
+ */
+
+const ERX: f64 = 8.45062911510467529297e-01; /* 0x3FEB0AC1, 0x60000000 */
+/*
+ * Coefficients for approximation to erf on [0,0.84375]
+ */
+const EFX8: f64 = 1.02703333676410069053e+00; /* 0x3FF06EBA, 0x8214DB69 */
+const PP0: f64 = 1.28379167095512558561e-01; /* 0x3FC06EBA, 0x8214DB68 */
+const PP1: f64 = -3.25042107247001499370e-01; /* 0xBFD4CD7D, 0x691CB913 */
+const PP2: f64 = -2.84817495755985104766e-02; /* 0xBF9D2A51, 0xDBD7194F */
+const PP3: f64 = -5.77027029648944159157e-03; /* 0xBF77A291, 0x236668E4 */
+const PP4: f64 = -2.37630166566501626084e-05; /* 0xBEF8EAD6, 0x120016AC */
+const QQ1: f64 = 3.97917223959155352819e-01; /* 0x3FD97779, 0xCDDADC09 */
+const QQ2: f64 = 6.50222499887672944485e-02; /* 0x3FB0A54C, 0x5536CEBA */
+const QQ3: f64 = 5.08130628187576562776e-03; /* 0x3F74D022, 0xC4D36B0F */
+const QQ4: f64 = 1.32494738004321644526e-04; /* 0x3F215DC9, 0x221C1A10 */
+const QQ5: f64 = -3.96022827877536812320e-06; /* 0xBED09C43, 0x42A26120 */
+/*
+ * Coefficients for approximation to erf in [0.84375,1.25]
+ */
+const PA0: f64 = -2.36211856075265944077e-03; /* 0xBF6359B8, 0xBEF77538 */
+const PA1: f64 = 4.14856118683748331666e-01; /* 0x3FDA8D00, 0xAD92B34D */
+const PA2: f64 = -3.72207876035701323847e-01; /* 0xBFD7D240, 0xFBB8C3F1 */
+const PA3: f64 = 3.18346619901161753674e-01; /* 0x3FD45FCA, 0x805120E4 */
+const PA4: f64 = -1.10894694282396677476e-01; /* 0xBFBC6398, 0x3D3E28EC */
+const PA5: f64 = 3.54783043256182359371e-02; /* 0x3FA22A36, 0x599795EB */
+const PA6: f64 = -2.16637559486879084300e-03; /* 0xBF61BF38, 0x0A96073F */
+const QA1: f64 = 1.06420880400844228286e-01; /* 0x3FBB3E66, 0x18EEE323 */
+const QA2: f64 = 5.40397917702171048937e-01; /* 0x3FE14AF0, 0x92EB6F33 */
+const QA3: f64 = 7.18286544141962662868e-02; /* 0x3FB2635C, 0xD99FE9A7 */
+const QA4: f64 = 1.26171219808761642112e-01; /* 0x3FC02660, 0xE763351F */
+const QA5: f64 = 1.36370839120290507362e-02; /* 0x3F8BEDC2, 0x6B51DD1C */
+const QA6: f64 = 1.19844998467991074170e-02; /* 0x3F888B54, 0x5735151D */
+/*
+ * Coefficients for approximation to erfc in [1.25,1/0.35]
+ */
+const RA0: f64 = -9.86494403484714822705e-03; /* 0xBF843412, 0x600D6435 */
+const RA1: f64 = -6.93858572707181764372e-01; /* 0xBFE63416, 0xE4BA7360 */
+const RA2: f64 = -1.05586262253232909814e+01; /* 0xC0251E04, 0x41B0E726 */
+const RA3: f64 = -6.23753324503260060396e+01; /* 0xC04F300A, 0xE4CBA38D */
+const RA4: f64 = -1.62396669462573470355e+02; /* 0xC0644CB1, 0x84282266 */
+const RA5: f64 = -1.84605092906711035994e+02; /* 0xC067135C, 0xEBCCABB2 */
+const RA6: f64 = -8.12874355063065934246e+01; /* 0xC0545265, 0x57E4D2F2 */
+const RA7: f64 = -9.81432934416914548592e+00; /* 0xC023A0EF, 0xC69AC25C */
+const SA1: f64 = 1.96512716674392571292e+01; /* 0x4033A6B9, 0xBD707687 */
+const SA2: f64 = 1.37657754143519042600e+02; /* 0x4061350C, 0x526AE721 */
+const SA3: f64 = 4.34565877475229228821e+02; /* 0x407B290D, 0xD58A1A71 */
+const SA4: f64 = 6.45387271733267880336e+02; /* 0x40842B19, 0x21EC2868 */
+const SA5: f64 = 4.29008140027567833386e+02; /* 0x407AD021, 0x57700314 */
+const SA6: f64 = 1.08635005541779435134e+02; /* 0x405B28A3, 0xEE48AE2C */
+const SA7: f64 = 6.57024977031928170135e+00; /* 0x401A47EF, 0x8E484A93 */
+const SA8: f64 = -6.04244152148580987438e-02; /* 0xBFAEEFF2, 0xEE749A62 */
+/*
+ * Coefficients for approximation to erfc in [1/.35,28]
+ */
+const RB0: f64 = -9.86494292470009928597e-03; /* 0xBF843412, 0x39E86F4A */
+const RB1: f64 = -7.99283237680523006574e-01; /* 0xBFE993BA, 0x70C285DE */
+const RB2: f64 = -1.77579549177547519889e+01; /* 0xC031C209, 0x555F995A */
+const RB3: f64 = -1.60636384855821916062e+02; /* 0xC064145D, 0x43C5ED98 */
+const RB4: f64 = -6.37566443368389627722e+02; /* 0xC083EC88, 0x1375F228 */
+const RB5: f64 = -1.02509513161107724954e+03; /* 0xC0900461, 0x6A2E5992 */
+const RB6: f64 = -4.83519191608651397019e+02; /* 0xC07E384E, 0x9BDC383F */
+const SB1: f64 = 3.03380607434824582924e+01; /* 0x403E568B, 0x261D5190 */
+const SB2: f64 = 3.25792512996573918826e+02; /* 0x40745CAE, 0x221B9F0A */
+const SB3: f64 = 1.53672958608443695994e+03; /* 0x409802EB, 0x189D5118 */
+const SB4: f64 = 3.19985821950859553908e+03; /* 0x40A8FFB7, 0x688C246A */
+const SB5: f64 = 2.55305040643316442583e+03; /* 0x40A3F219, 0xCEDF3BE6 */
+const SB6: f64 = 4.74528541206955367215e+02; /* 0x407DA874, 0xE79FE763 */
+const SB7: f64 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
+
+fn erfc1(x: f64) -> f64 {
+ let s: f64;
+ let p: f64;
+ let q: f64;
+
+ s = fabs(x) - 1.0;
+ p = PA0 + s * (PA1 + s * (PA2 + s * (PA3 + s * (PA4 + s * (PA5 + s * PA6)))));
+ q = 1.0 + s * (QA1 + s * (QA2 + s * (QA3 + s * (QA4 + s * (QA5 + s * QA6)))));
+
+ 1.0 - ERX - p / q
+}
+
+fn erfc2(ix: u32, mut x: f64) -> f64 {
+ let s: f64;
+ let r: f64;
+ let big_s: f64;
+ let z: f64;
+
+ if ix < 0x3ff40000 {
+ /* |x| < 1.25 */
+ return erfc1(x);
+ }
+
+ x = fabs(x);
+ s = 1.0 / (x * x);
+ if ix < 0x4006db6d {
+ /* |x| < 1/.35 ~ 2.85714 */
+ r = RA0 + s * (RA1 + s * (RA2 + s * (RA3 + s * (RA4 + s * (RA5 + s * (RA6 + s * RA7))))));
+ big_s = 1.0
+ + s * (SA1
+ + s * (SA2 + s * (SA3 + s * (SA4 + s * (SA5 + s * (SA6 + s * (SA7 + s * SA8)))))));
+ } else {
+ /* |x| > 1/.35 */
+ r = RB0 + s * (RB1 + s * (RB2 + s * (RB3 + s * (RB4 + s * (RB5 + s * RB6)))));
+ big_s =
+ 1.0 + s * (SB1 + s * (SB2 + s * (SB3 + s * (SB4 + s * (SB5 + s * (SB6 + s * SB7))))));
+ }
+ z = with_set_low_word(x, 0);
+
+ exp(-z * z - 0.5625) * exp((z - x) * (z + x) + r / big_s) / x
+}
+
+/// Error function (f64)
+///
+/// Calculates an approximation to the ā€œerror functionā€, which estimates
+/// the probability that an observation will fall within x standard
+/// deviations of the mean (assuming a normal distribution).
+pub fn erf(x: f64) -> f64 {
+ let r: f64;
+ let s: f64;
+ let z: f64;
+ let y: f64;
+ let mut ix: u32;
+ let sign: usize;
+
+ ix = get_high_word(x);
+ sign = (ix >> 31) as usize;
+ ix &= 0x7fffffff;
+ if ix >= 0x7ff00000 {
+ /* erf(nan)=nan, erf(+-inf)=+-1 */
+ return 1.0 - 2.0 * (sign as f64) + 1.0 / x;
+ }
+ if ix < 0x3feb0000 {
+ /* |x| < 0.84375 */
+ if ix < 0x3e300000 {
+ /* |x| < 2**-28 */
+ /* avoid underflow */
+ return 0.125 * (8.0 * x + EFX8 * x);
+ }
+ z = x * x;
+ r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
+ s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
+ y = r / s;
+ return x + x * y;
+ }
+ if ix < 0x40180000 {
+ /* 0.84375 <= |x| < 6 */
+ y = 1.0 - erfc2(ix, x);
+ } else {
+ let x1p_1022 = f64::from_bits(0x0010000000000000);
+ y = 1.0 - x1p_1022;
+ }
+
+ if sign != 0 {
+ -y
+ } else {
+ y
+ }
+}
+
+/// Error function (f64)
+///
+/// Calculates the complementary probability.
+/// Is `1 - erf(x)`. Is computed directly, so that you can use it to avoid
+/// the loss of precision that would result from subtracting
+/// large probabilities (on large `x`) from 1.
+pub fn erfc(x: f64) -> f64 {
+ let r: f64;
+ let s: f64;
+ let z: f64;
+ let y: f64;
+ let mut ix: u32;
+ let sign: usize;
+
+ ix = get_high_word(x);
+ sign = (ix >> 31) as usize;
+ ix &= 0x7fffffff;
+ if ix >= 0x7ff00000 {
+ /* erfc(nan)=nan, erfc(+-inf)=0,2 */
+ return 2.0 * (sign as f64) + 1.0 / x;
+ }
+ if ix < 0x3feb0000 {
+ /* |x| < 0.84375 */
+ if ix < 0x3c700000 {
+ /* |x| < 2**-56 */
+ return 1.0 - x;
+ }
+ z = x * x;
+ r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
+ s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
+ y = r / s;
+ if sign != 0 || ix < 0x3fd00000 {
+ /* x < 1/4 */
+ return 1.0 - (x + x * y);
+ }
+ return 0.5 - (x - 0.5 + x * y);
+ }
+ if ix < 0x403c0000 {
+ /* 0.84375 <= |x| < 28 */
+ if sign != 0 {
+ return 2.0 - erfc2(ix, x);
+ } else {
+ return erfc2(ix, x);
+ }
+ }
+
+ let x1p_1022 = f64::from_bits(0x0010000000000000);
+ if sign != 0 {
+ 2.0 - x1p_1022
+ } else {
+ x1p_1022 * x1p_1022
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/erff.rs b/vendor/compiler_builtins/libm/src/math/erff.rs
new file mode 100644
index 000000000..384052293
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/erff.rs
@@ -0,0 +1,229 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_erff.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{expf, fabsf};
+
+const ERX: f32 = 8.4506291151e-01; /* 0x3f58560b */
+/*
+ * Coefficients for approximation to erf on [0,0.84375]
+ */
+const EFX8: f32 = 1.0270333290e+00; /* 0x3f8375d4 */
+const PP0: f32 = 1.2837916613e-01; /* 0x3e0375d4 */
+const PP1: f32 = -3.2504209876e-01; /* 0xbea66beb */
+const PP2: f32 = -2.8481749818e-02; /* 0xbce9528f */
+const PP3: f32 = -5.7702702470e-03; /* 0xbbbd1489 */
+const PP4: f32 = -2.3763017452e-05; /* 0xb7c756b1 */
+const QQ1: f32 = 3.9791721106e-01; /* 0x3ecbbbce */
+const QQ2: f32 = 6.5022252500e-02; /* 0x3d852a63 */
+const QQ3: f32 = 5.0813062117e-03; /* 0x3ba68116 */
+const QQ4: f32 = 1.3249473704e-04; /* 0x390aee49 */
+const QQ5: f32 = -3.9602282413e-06; /* 0xb684e21a */
+/*
+ * Coefficients for approximation to erf in [0.84375,1.25]
+ */
+const PA0: f32 = -2.3621185683e-03; /* 0xbb1acdc6 */
+const PA1: f32 = 4.1485610604e-01; /* 0x3ed46805 */
+const PA2: f32 = -3.7220788002e-01; /* 0xbebe9208 */
+const PA3: f32 = 3.1834661961e-01; /* 0x3ea2fe54 */
+const PA4: f32 = -1.1089469492e-01; /* 0xbde31cc2 */
+const PA5: f32 = 3.5478305072e-02; /* 0x3d1151b3 */
+const PA6: f32 = -2.1663755178e-03; /* 0xbb0df9c0 */
+const QA1: f32 = 1.0642088205e-01; /* 0x3dd9f331 */
+const QA2: f32 = 5.4039794207e-01; /* 0x3f0a5785 */
+const QA3: f32 = 7.1828655899e-02; /* 0x3d931ae7 */
+const QA4: f32 = 1.2617121637e-01; /* 0x3e013307 */
+const QA5: f32 = 1.3637083583e-02; /* 0x3c5f6e13 */
+const QA6: f32 = 1.1984500103e-02; /* 0x3c445aa3 */
+/*
+ * Coefficients for approximation to erfc in [1.25,1/0.35]
+ */
+const RA0: f32 = -9.8649440333e-03; /* 0xbc21a093 */
+const RA1: f32 = -6.9385856390e-01; /* 0xbf31a0b7 */
+const RA2: f32 = -1.0558626175e+01; /* 0xc128f022 */
+const RA3: f32 = -6.2375331879e+01; /* 0xc2798057 */
+const RA4: f32 = -1.6239666748e+02; /* 0xc322658c */
+const RA5: f32 = -1.8460508728e+02; /* 0xc3389ae7 */
+const RA6: f32 = -8.1287437439e+01; /* 0xc2a2932b */
+const RA7: f32 = -9.8143291473e+00; /* 0xc11d077e */
+const SA1: f32 = 1.9651271820e+01; /* 0x419d35ce */
+const SA2: f32 = 1.3765776062e+02; /* 0x4309a863 */
+const SA3: f32 = 4.3456588745e+02; /* 0x43d9486f */
+const SA4: f32 = 6.4538726807e+02; /* 0x442158c9 */
+const SA5: f32 = 4.2900814819e+02; /* 0x43d6810b */
+const SA6: f32 = 1.0863500214e+02; /* 0x42d9451f */
+const SA7: f32 = 6.5702495575e+00; /* 0x40d23f7c */
+const SA8: f32 = -6.0424413532e-02; /* 0xbd777f97 */
+/*
+ * Coefficients for approximation to erfc in [1/.35,28]
+ */
+const RB0: f32 = -9.8649431020e-03; /* 0xbc21a092 */
+const RB1: f32 = -7.9928326607e-01; /* 0xbf4c9dd4 */
+const RB2: f32 = -1.7757955551e+01; /* 0xc18e104b */
+const RB3: f32 = -1.6063638306e+02; /* 0xc320a2ea */
+const RB4: f32 = -6.3756646729e+02; /* 0xc41f6441 */
+const RB5: f32 = -1.0250950928e+03; /* 0xc480230b */
+const RB6: f32 = -4.8351919556e+02; /* 0xc3f1c275 */
+const SB1: f32 = 3.0338060379e+01; /* 0x41f2b459 */
+const SB2: f32 = 3.2579251099e+02; /* 0x43a2e571 */
+const SB3: f32 = 1.5367296143e+03; /* 0x44c01759 */
+const SB4: f32 = 3.1998581543e+03; /* 0x4547fdbb */
+const SB5: f32 = 2.5530502930e+03; /* 0x451f90ce */
+const SB6: f32 = 4.7452853394e+02; /* 0x43ed43a7 */
+const SB7: f32 = -2.2440952301e+01; /* 0xc1b38712 */
+
+fn erfc1(x: f32) -> f32 {
+ let s: f32;
+ let p: f32;
+ let q: f32;
+
+ s = fabsf(x) - 1.0;
+ p = PA0 + s * (PA1 + s * (PA2 + s * (PA3 + s * (PA4 + s * (PA5 + s * PA6)))));
+ q = 1.0 + s * (QA1 + s * (QA2 + s * (QA3 + s * (QA4 + s * (QA5 + s * QA6)))));
+ return 1.0 - ERX - p / q;
+}
+
+fn erfc2(mut ix: u32, mut x: f32) -> f32 {
+ let s: f32;
+ let r: f32;
+ let big_s: f32;
+ let z: f32;
+
+ if ix < 0x3fa00000 {
+ /* |x| < 1.25 */
+ return erfc1(x);
+ }
+
+ x = fabsf(x);
+ s = 1.0 / (x * x);
+ if ix < 0x4036db6d {
+ /* |x| < 1/0.35 */
+ r = RA0 + s * (RA1 + s * (RA2 + s * (RA3 + s * (RA4 + s * (RA5 + s * (RA6 + s * RA7))))));
+ big_s = 1.0
+ + s * (SA1
+ + s * (SA2 + s * (SA3 + s * (SA4 + s * (SA5 + s * (SA6 + s * (SA7 + s * SA8)))))));
+ } else {
+ /* |x| >= 1/0.35 */
+ r = RB0 + s * (RB1 + s * (RB2 + s * (RB3 + s * (RB4 + s * (RB5 + s * RB6)))));
+ big_s =
+ 1.0 + s * (SB1 + s * (SB2 + s * (SB3 + s * (SB4 + s * (SB5 + s * (SB6 + s * SB7))))));
+ }
+ ix = x.to_bits();
+ z = f32::from_bits(ix & 0xffffe000);
+
+ expf(-z * z - 0.5625) * expf((z - x) * (z + x) + r / big_s) / x
+}
+
+/// Error function (f32)
+///
+/// Calculates an approximation to the ā€œerror functionā€, which estimates
+/// the probability that an observation will fall within x standard
+/// deviations of the mean (assuming a normal distribution).
+pub fn erff(x: f32) -> f32 {
+ let r: f32;
+ let s: f32;
+ let z: f32;
+ let y: f32;
+ let mut ix: u32;
+ let sign: usize;
+
+ ix = x.to_bits();
+ sign = (ix >> 31) as usize;
+ ix &= 0x7fffffff;
+ if ix >= 0x7f800000 {
+ /* erf(nan)=nan, erf(+-inf)=+-1 */
+ return 1.0 - 2.0 * (sign as f32) + 1.0 / x;
+ }
+ if ix < 0x3f580000 {
+ /* |x| < 0.84375 */
+ if ix < 0x31800000 {
+ /* |x| < 2**-28 */
+ /*avoid underflow */
+ return 0.125 * (8.0 * x + EFX8 * x);
+ }
+ z = x * x;
+ r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
+ s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
+ y = r / s;
+ return x + x * y;
+ }
+ if ix < 0x40c00000 {
+ /* |x| < 6 */
+ y = 1.0 - erfc2(ix, x);
+ } else {
+ let x1p_120 = f32::from_bits(0x03800000);
+ y = 1.0 - x1p_120;
+ }
+
+ if sign != 0 {
+ -y
+ } else {
+ y
+ }
+}
+
+/// Error function (f32)
+///
+/// Calculates the complementary probability.
+/// Is `1 - erf(x)`. Is computed directly, so that you can use it to avoid
+/// the loss of precision that would result from subtracting
+/// large probabilities (on large `x`) from 1.
+pub fn erfcf(x: f32) -> f32 {
+ let r: f32;
+ let s: f32;
+ let z: f32;
+ let y: f32;
+ let mut ix: u32;
+ let sign: usize;
+
+ ix = x.to_bits();
+ sign = (ix >> 31) as usize;
+ ix &= 0x7fffffff;
+ if ix >= 0x7f800000 {
+ /* erfc(nan)=nan, erfc(+-inf)=0,2 */
+ return 2.0 * (sign as f32) + 1.0 / x;
+ }
+
+ if ix < 0x3f580000 {
+ /* |x| < 0.84375 */
+ if ix < 0x23800000 {
+ /* |x| < 2**-56 */
+ return 1.0 - x;
+ }
+ z = x * x;
+ r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
+ s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
+ y = r / s;
+ if sign != 0 || ix < 0x3e800000 {
+ /* x < 1/4 */
+ return 1.0 - (x + x * y);
+ }
+ return 0.5 - (x - 0.5 + x * y);
+ }
+ if ix < 0x41e00000 {
+ /* |x| < 28 */
+ if sign != 0 {
+ return 2.0 - erfc2(ix, x);
+ } else {
+ return erfc2(ix, x);
+ }
+ }
+
+ let x1p_120 = f32::from_bits(0x03800000);
+ if sign != 0 {
+ 2.0 - x1p_120
+ } else {
+ x1p_120 * x1p_120
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/exp.rs b/vendor/compiler_builtins/libm/src/math/exp.rs
new file mode 100644
index 000000000..d4994277f
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/exp.rs
@@ -0,0 +1,154 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */
+/*
+ * ====================================================
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* exp(x)
+ * Returns the exponential of x.
+ *
+ * Method
+ * 1. Argument reduction:
+ * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+ * Given x, find r and integer k such that
+ *
+ * x = k*ln2 + r, |r| <= 0.5*ln2.
+ *
+ * Here r will be represented as r = hi-lo for better
+ * accuracy.
+ *
+ * 2. Approximation of exp(r) by a special rational function on
+ * the interval [0,0.34658]:
+ * Write
+ * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+ * We use a special Remez algorithm on [0,0.34658] to generate
+ * a polynomial of degree 5 to approximate R. The maximum error
+ * of this polynomial approximation is bounded by 2**-59. In
+ * other words,
+ * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+ * (where z=r*r, and the values of P1 to P5 are listed below)
+ * and
+ * | 5 | -59
+ * | 2.0+P1*z+...+P5*z - R(z) | <= 2
+ * | |
+ * The computation of exp(r) thus becomes
+ * 2*r
+ * exp(r) = 1 + ----------
+ * R(r) - r
+ * r*c(r)
+ * = 1 + r + ----------- (for better accuracy)
+ * 2 - c(r)
+ * where
+ * 2 4 10
+ * c(r) = r - (P1*r + P2*r + ... + P5*r ).
+ *
+ * 3. Scale back to obtain exp(x):
+ * From step 1, we have
+ * exp(x) = 2^k * exp(r)
+ *
+ * Special cases:
+ * exp(INF) is INF, exp(NaN) is NaN;
+ * exp(-INF) is 0, and
+ * for finite argument, only exp(0)=1 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For IEEE double
+ * if x > 709.782712893383973096 then exp(x) overflows
+ * if x < -745.133219101941108420 then exp(x) underflows
+ */
+
+use super::scalbn;
+
+const HALF: [f64; 2] = [0.5, -0.5];
+const LN2HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
+const LN2LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
+const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
+const P1: f64 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */
+const P2: f64 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */
+const P3: f64 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */
+const P4: f64 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */
+const P5: f64 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
+
+/// Exponential, base *e* (f64)
+///
+/// Calculate the exponential of `x`, that is, *e* raised to the power `x`
+/// (where *e* is the base of the natural system of logarithms, approximately 2.71828).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn exp(mut x: f64) -> f64 {
+ let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023
+ let x1p_149 = f64::from_bits(0x36a0000000000000); // 0x1p-149 === 2 ^ -149
+
+ let hi: f64;
+ let lo: f64;
+ let c: f64;
+ let xx: f64;
+ let y: f64;
+ let k: i32;
+ let sign: i32;
+ let mut hx: u32;
+
+ hx = (x.to_bits() >> 32) as u32;
+ sign = (hx >> 31) as i32;
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* special cases */
+ if hx >= 0x4086232b {
+ /* if |x| >= 708.39... */
+ if x.is_nan() {
+ return x;
+ }
+ if x > 709.782712893383973096 {
+ /* overflow if x!=inf */
+ x *= x1p1023;
+ return x;
+ }
+ if x < -708.39641853226410622 {
+ /* underflow if x!=-inf */
+ force_eval!((-x1p_149 / x) as f32);
+ if x < -745.13321910194110842 {
+ return 0.;
+ }
+ }
+ }
+
+ /* argument reduction */
+ if hx > 0x3fd62e42 {
+ /* if |x| > 0.5 ln2 */
+ if hx >= 0x3ff0a2b2 {
+ /* if |x| >= 1.5 ln2 */
+ k = (INVLN2 * x + i!(HALF, sign as usize)) as i32;
+ } else {
+ k = 1 - sign - sign;
+ }
+ hi = x - k as f64 * LN2HI; /* k*ln2hi is exact here */
+ lo = k as f64 * LN2LO;
+ x = hi - lo;
+ } else if hx > 0x3e300000 {
+ /* if |x| > 2**-28 */
+ k = 0;
+ hi = x;
+ lo = 0.;
+ } else {
+ /* inexact if x!=0 */
+ force_eval!(x1p1023 + x);
+ return 1. + x;
+ }
+
+ /* x is now in primary range */
+ xx = x * x;
+ c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5))));
+ y = 1. + (x * c / (2. - c) - lo + hi);
+ if k == 0 {
+ y
+ } else {
+ scalbn(y, k)
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/exp10.rs b/vendor/compiler_builtins/libm/src/math/exp10.rs
new file mode 100644
index 000000000..9537f76f1
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/exp10.rs
@@ -0,0 +1,21 @@
+use super::{exp2, modf, pow};
+
+const LN10: f64 = 3.32192809488736234787031942948939;
+const P10: &[f64] = &[
+ 1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1,
+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15,
+];
+
+pub fn exp10(x: f64) -> f64 {
+ let (mut y, n) = modf(x);
+ let u: u64 = n.to_bits();
+ /* fabs(n) < 16 without raising invalid on nan */
+ if (u >> 52 & 0x7ff) < 0x3ff + 4 {
+ if y == 0.0 {
+ return P10[((n as isize) + 15) as usize];
+ }
+ y = exp2(LN10 * y);
+ return y * P10[((n as isize) + 15) as usize];
+ }
+ return pow(10.0, x);
+}
diff --git a/vendor/compiler_builtins/libm/src/math/exp10f.rs b/vendor/compiler_builtins/libm/src/math/exp10f.rs
new file mode 100644
index 000000000..d45fff36e
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/exp10f.rs
@@ -0,0 +1,21 @@
+use super::{exp2, exp2f, modff};
+
+const LN10_F32: f32 = 3.32192809488736234787031942948939;
+const LN10_F64: f64 = 3.32192809488736234787031942948939;
+const P10: &[f32] = &[
+ 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7,
+];
+
+pub fn exp10f(x: f32) -> f32 {
+ let (mut y, n) = modff(x);
+ let u = n.to_bits();
+ /* fabsf(n) < 8 without raising invalid on nan */
+ if (u >> 23 & 0xff) < 0x7f + 3 {
+ if y == 0.0 {
+ return P10[((n as isize) + 7) as usize];
+ }
+ y = exp2f(LN10_F32 * y);
+ return y * P10[((n as isize) + 7) as usize];
+ }
+ return exp2(LN10_F64 * (x as f64)) as f32;
+}
diff --git a/vendor/compiler_builtins/libm/src/math/exp2.rs b/vendor/compiler_builtins/libm/src/math/exp2.rs
new file mode 100644
index 000000000..e0e385df2
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/exp2.rs
@@ -0,0 +1,394 @@
+// origin: FreeBSD /usr/src/lib/msun/src/s_exp2.c */
+//-
+// Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+// 1. Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// 2. Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+// SUCH DAMAGE.
+
+use super::scalbn;
+
+const TBLSIZE: usize = 256;
+
+#[cfg_attr(rustfmt, rustfmt_skip)]
+static TBL: [u64; TBLSIZE * 2] = [
+ // exp2(z + eps) eps
+ 0x3fe6a09e667f3d5d, 0x3d39880000000000,
+ 0x3fe6b052fa751744, 0x3cd8000000000000,
+ 0x3fe6c012750bd9fe, 0xbd28780000000000,
+ 0x3fe6cfdcddd476bf, 0x3d1ec00000000000,
+ 0x3fe6dfb23c651a29, 0xbcd8000000000000,
+ 0x3fe6ef9298593ae3, 0xbcbc000000000000,
+ 0x3fe6ff7df9519386, 0xbd2fd80000000000,
+ 0x3fe70f7466f42da3, 0xbd2c880000000000,
+ 0x3fe71f75e8ec5fc3, 0x3d13c00000000000,
+ 0x3fe72f8286eacf05, 0xbd38300000000000,
+ 0x3fe73f9a48a58152, 0xbd00c00000000000,
+ 0x3fe74fbd35d7ccfc, 0x3d2f880000000000,
+ 0x3fe75feb564267f1, 0x3d03e00000000000,
+ 0x3fe77024b1ab6d48, 0xbd27d00000000000,
+ 0x3fe780694fde5d38, 0xbcdd000000000000,
+ 0x3fe790b938ac1d00, 0x3ce3000000000000,
+ 0x3fe7a11473eb0178, 0xbced000000000000,
+ 0x3fe7b17b0976d060, 0x3d20400000000000,
+ 0x3fe7c1ed0130c133, 0x3ca0000000000000,
+ 0x3fe7d26a62ff8636, 0xbd26900000000000,
+ 0x3fe7e2f336cf4e3b, 0xbd02e00000000000,
+ 0x3fe7f3878491c3e8, 0xbd24580000000000,
+ 0x3fe80427543e1b4e, 0x3d33000000000000,
+ 0x3fe814d2add1071a, 0x3d0f000000000000,
+ 0x3fe82589994ccd7e, 0xbd21c00000000000,
+ 0x3fe8364c1eb942d0, 0x3d29d00000000000,
+ 0x3fe8471a4623cab5, 0x3d47100000000000,
+ 0x3fe857f4179f5bbc, 0x3d22600000000000,
+ 0x3fe868d99b4491af, 0xbd32c40000000000,
+ 0x3fe879cad931a395, 0xbd23000000000000,
+ 0x3fe88ac7d98a65b8, 0xbd2a800000000000,
+ 0x3fe89bd0a4785800, 0xbced000000000000,
+ 0x3fe8ace5422aa223, 0x3d33280000000000,
+ 0x3fe8be05bad619fa, 0x3d42b40000000000,
+ 0x3fe8cf3216b54383, 0xbd2ed00000000000,
+ 0x3fe8e06a5e08664c, 0xbd20500000000000,
+ 0x3fe8f1ae99157807, 0x3d28280000000000,
+ 0x3fe902fed0282c0e, 0xbd1cb00000000000,
+ 0x3fe9145b0b91ff96, 0xbd05e00000000000,
+ 0x3fe925c353aa2ff9, 0x3cf5400000000000,
+ 0x3fe93737b0cdc64a, 0x3d17200000000000,
+ 0x3fe948b82b5f98ae, 0xbd09000000000000,
+ 0x3fe95a44cbc852cb, 0x3d25680000000000,
+ 0x3fe96bdd9a766f21, 0xbd36d00000000000,
+ 0x3fe97d829fde4e2a, 0xbd01000000000000,
+ 0x3fe98f33e47a23a3, 0x3d2d000000000000,
+ 0x3fe9a0f170ca0604, 0xbd38a40000000000,
+ 0x3fe9b2bb4d53ff89, 0x3d355c0000000000,
+ 0x3fe9c49182a3f15b, 0x3d26b80000000000,
+ 0x3fe9d674194bb8c5, 0xbcec000000000000,
+ 0x3fe9e86319e3238e, 0x3d17d00000000000,
+ 0x3fe9fa5e8d07f302, 0x3d16400000000000,
+ 0x3fea0c667b5de54d, 0xbcf5000000000000,
+ 0x3fea1e7aed8eb8f6, 0x3d09e00000000000,
+ 0x3fea309bec4a2e27, 0x3d2ad80000000000,
+ 0x3fea42c980460a5d, 0xbd1af00000000000,
+ 0x3fea5503b23e259b, 0x3d0b600000000000,
+ 0x3fea674a8af46213, 0x3d38880000000000,
+ 0x3fea799e1330b3a7, 0x3d11200000000000,
+ 0x3fea8bfe53c12e8d, 0x3d06c00000000000,
+ 0x3fea9e6b5579fcd2, 0xbd29b80000000000,
+ 0x3feab0e521356fb8, 0x3d2b700000000000,
+ 0x3feac36bbfd3f381, 0x3cd9000000000000,
+ 0x3fead5ff3a3c2780, 0x3ce4000000000000,
+ 0x3feae89f995ad2a3, 0xbd2c900000000000,
+ 0x3feafb4ce622f367, 0x3d16500000000000,
+ 0x3feb0e07298db790, 0x3d2fd40000000000,
+ 0x3feb20ce6c9a89a9, 0x3d12700000000000,
+ 0x3feb33a2b84f1a4b, 0x3d4d470000000000,
+ 0x3feb468415b747e7, 0xbd38380000000000,
+ 0x3feb59728de5593a, 0x3c98000000000000,
+ 0x3feb6c6e29f1c56a, 0x3d0ad00000000000,
+ 0x3feb7f76f2fb5e50, 0x3cde800000000000,
+ 0x3feb928cf22749b2, 0xbd04c00000000000,
+ 0x3feba5b030a10603, 0xbd0d700000000000,
+ 0x3febb8e0b79a6f66, 0x3d0d900000000000,
+ 0x3febcc1e904bc1ff, 0x3d02a00000000000,
+ 0x3febdf69c3f3a16f, 0xbd1f780000000000,
+ 0x3febf2c25bd71db8, 0xbd10a00000000000,
+ 0x3fec06286141b2e9, 0xbd11400000000000,
+ 0x3fec199bdd8552e0, 0x3d0be00000000000,
+ 0x3fec2d1cd9fa64ee, 0xbd09400000000000,
+ 0x3fec40ab5fffd02f, 0xbd0ed00000000000,
+ 0x3fec544778fafd15, 0x3d39660000000000,
+ 0x3fec67f12e57d0cb, 0xbd1a100000000000,
+ 0x3fec7ba88988c1b6, 0xbd58458000000000,
+ 0x3fec8f6d9406e733, 0xbd1a480000000000,
+ 0x3feca3405751c4df, 0x3ccb000000000000,
+ 0x3fecb720dcef9094, 0x3d01400000000000,
+ 0x3feccb0f2e6d1689, 0x3cf0200000000000,
+ 0x3fecdf0b555dc412, 0x3cf3600000000000,
+ 0x3fecf3155b5bab3b, 0xbd06900000000000,
+ 0x3fed072d4a0789bc, 0x3d09a00000000000,
+ 0x3fed1b532b08c8fa, 0xbd15e00000000000,
+ 0x3fed2f87080d8a85, 0x3d1d280000000000,
+ 0x3fed43c8eacaa203, 0x3d01a00000000000,
+ 0x3fed5818dcfba491, 0x3cdf000000000000,
+ 0x3fed6c76e862e6a1, 0xbd03a00000000000,
+ 0x3fed80e316c9834e, 0xbd0cd80000000000,
+ 0x3fed955d71ff6090, 0x3cf4c00000000000,
+ 0x3feda9e603db32ae, 0x3cff900000000000,
+ 0x3fedbe7cd63a8325, 0x3ce9800000000000,
+ 0x3fedd321f301b445, 0xbcf5200000000000,
+ 0x3fede7d5641c05bf, 0xbd1d700000000000,
+ 0x3fedfc97337b9aec, 0xbd16140000000000,
+ 0x3fee11676b197d5e, 0x3d0b480000000000,
+ 0x3fee264614f5a3e7, 0x3d40ce0000000000,
+ 0x3fee3b333b16ee5c, 0x3d0c680000000000,
+ 0x3fee502ee78b3fb4, 0xbd09300000000000,
+ 0x3fee653924676d68, 0xbce5000000000000,
+ 0x3fee7a51fbc74c44, 0xbd07f80000000000,
+ 0x3fee8f7977cdb726, 0xbcf3700000000000,
+ 0x3feea4afa2a490e8, 0x3ce5d00000000000,
+ 0x3feeb9f4867ccae4, 0x3d161a0000000000,
+ 0x3feecf482d8e680d, 0x3cf5500000000000,
+ 0x3feee4aaa2188514, 0x3cc6400000000000,
+ 0x3feefa1bee615a13, 0xbcee800000000000,
+ 0x3fef0f9c1cb64106, 0xbcfa880000000000,
+ 0x3fef252b376bb963, 0xbd2c900000000000,
+ 0x3fef3ac948dd7275, 0x3caa000000000000,
+ 0x3fef50765b6e4524, 0xbcf4f00000000000,
+ 0x3fef6632798844fd, 0x3cca800000000000,
+ 0x3fef7bfdad9cbe38, 0x3cfabc0000000000,
+ 0x3fef91d802243c82, 0xbcd4600000000000,
+ 0x3fefa7c1819e908e, 0xbd0b0c0000000000,
+ 0x3fefbdba3692d511, 0xbcc0e00000000000,
+ 0x3fefd3c22b8f7194, 0xbd10de8000000000,
+ 0x3fefe9d96b2a23ee, 0x3cee430000000000,
+ 0x3ff0000000000000, 0x0,
+ 0x3ff00b1afa5abcbe, 0xbcb3400000000000,
+ 0x3ff0163da9fb3303, 0xbd12170000000000,
+ 0x3ff02168143b0282, 0x3cba400000000000,
+ 0x3ff02c9a3e77806c, 0x3cef980000000000,
+ 0x3ff037d42e11bbca, 0xbcc7400000000000,
+ 0x3ff04315e86e7f89, 0x3cd8300000000000,
+ 0x3ff04e5f72f65467, 0xbd1a3f0000000000,
+ 0x3ff059b0d315855a, 0xbd02840000000000,
+ 0x3ff0650a0e3c1f95, 0x3cf1600000000000,
+ 0x3ff0706b29ddf71a, 0x3d15240000000000,
+ 0x3ff07bd42b72a82d, 0xbce9a00000000000,
+ 0x3ff0874518759bd0, 0x3ce6400000000000,
+ 0x3ff092bdf66607c8, 0xbd00780000000000,
+ 0x3ff09e3ecac6f383, 0xbc98000000000000,
+ 0x3ff0a9c79b1f3930, 0x3cffa00000000000,
+ 0x3ff0b5586cf988fc, 0xbcfac80000000000,
+ 0x3ff0c0f145e46c8a, 0x3cd9c00000000000,
+ 0x3ff0cc922b724816, 0x3d05200000000000,
+ 0x3ff0d83b23395dd8, 0xbcfad00000000000,
+ 0x3ff0e3ec32d3d1f3, 0x3d1bac0000000000,
+ 0x3ff0efa55fdfa9a6, 0xbd04e80000000000,
+ 0x3ff0fb66affed2f0, 0xbd0d300000000000,
+ 0x3ff1073028d7234b, 0x3cf1500000000000,
+ 0x3ff11301d0125b5b, 0x3cec000000000000,
+ 0x3ff11edbab5e2af9, 0x3d16bc0000000000,
+ 0x3ff12abdc06c31d5, 0x3ce8400000000000,
+ 0x3ff136a814f2047d, 0xbd0ed00000000000,
+ 0x3ff1429aaea92de9, 0x3ce8e00000000000,
+ 0x3ff14e95934f3138, 0x3ceb400000000000,
+ 0x3ff15a98c8a58e71, 0x3d05300000000000,
+ 0x3ff166a45471c3df, 0x3d03380000000000,
+ 0x3ff172b83c7d5211, 0x3d28d40000000000,
+ 0x3ff17ed48695bb9f, 0xbd05d00000000000,
+ 0x3ff18af9388c8d93, 0xbd1c880000000000,
+ 0x3ff1972658375d66, 0x3d11f00000000000,
+ 0x3ff1a35beb6fcba7, 0x3d10480000000000,
+ 0x3ff1af99f81387e3, 0xbd47390000000000,
+ 0x3ff1bbe084045d54, 0x3d24e40000000000,
+ 0x3ff1c82f95281c43, 0xbd0a200000000000,
+ 0x3ff1d4873168b9b2, 0x3ce3800000000000,
+ 0x3ff1e0e75eb44031, 0x3ceac00000000000,
+ 0x3ff1ed5022fcd938, 0x3d01900000000000,
+ 0x3ff1f9c18438cdf7, 0xbd1b780000000000,
+ 0x3ff2063b88628d8f, 0x3d2d940000000000,
+ 0x3ff212be3578a81e, 0x3cd8000000000000,
+ 0x3ff21f49917ddd41, 0x3d2b340000000000,
+ 0x3ff22bdda2791323, 0x3d19f80000000000,
+ 0x3ff2387a6e7561e7, 0xbd19c80000000000,
+ 0x3ff2451ffb821427, 0x3d02300000000000,
+ 0x3ff251ce4fb2a602, 0xbd13480000000000,
+ 0x3ff25e85711eceb0, 0x3d12700000000000,
+ 0x3ff26b4565e27d16, 0x3d11d00000000000,
+ 0x3ff2780e341de00f, 0x3d31ee0000000000,
+ 0x3ff284dfe1f5633e, 0xbd14c00000000000,
+ 0x3ff291ba7591bb30, 0xbd13d80000000000,
+ 0x3ff29e9df51fdf09, 0x3d08b00000000000,
+ 0x3ff2ab8a66d10e9b, 0xbd227c0000000000,
+ 0x3ff2b87fd0dada3a, 0x3d2a340000000000,
+ 0x3ff2c57e39771af9, 0xbd10800000000000,
+ 0x3ff2d285a6e402d9, 0xbd0ed00000000000,
+ 0x3ff2df961f641579, 0xbcf4200000000000,
+ 0x3ff2ecafa93e2ecf, 0xbd24980000000000,
+ 0x3ff2f9d24abd8822, 0xbd16300000000000,
+ 0x3ff306fe0a31b625, 0xbd32360000000000,
+ 0x3ff31432edeea50b, 0xbd70df8000000000,
+ 0x3ff32170fc4cd7b8, 0xbd22480000000000,
+ 0x3ff32eb83ba8e9a2, 0xbd25980000000000,
+ 0x3ff33c08b2641766, 0x3d1ed00000000000,
+ 0x3ff3496266e3fa27, 0xbcdc000000000000,
+ 0x3ff356c55f929f0f, 0xbd30d80000000000,
+ 0x3ff36431a2de88b9, 0x3d22c80000000000,
+ 0x3ff371a7373aaa39, 0x3d20600000000000,
+ 0x3ff37f26231e74fe, 0xbd16600000000000,
+ 0x3ff38cae6d05d838, 0xbd0ae00000000000,
+ 0x3ff39a401b713ec3, 0xbd44720000000000,
+ 0x3ff3a7db34e5a020, 0x3d08200000000000,
+ 0x3ff3b57fbfec6e95, 0x3d3e800000000000,
+ 0x3ff3c32dc313a8f2, 0x3cef800000000000,
+ 0x3ff3d0e544ede122, 0xbd17a00000000000,
+ 0x3ff3dea64c1234bb, 0x3d26300000000000,
+ 0x3ff3ec70df1c4ecc, 0xbd48a60000000000,
+ 0x3ff3fa4504ac7e8c, 0xbd3cdc0000000000,
+ 0x3ff40822c367a0bb, 0x3d25b80000000000,
+ 0x3ff4160a21f72e95, 0x3d1ec00000000000,
+ 0x3ff423fb27094646, 0xbd13600000000000,
+ 0x3ff431f5d950a920, 0x3d23980000000000,
+ 0x3ff43ffa3f84b9eb, 0x3cfa000000000000,
+ 0x3ff44e0860618919, 0xbcf6c00000000000,
+ 0x3ff45c2042a7d201, 0xbd0bc00000000000,
+ 0x3ff46a41ed1d0016, 0xbd12800000000000,
+ 0x3ff4786d668b3326, 0x3d30e00000000000,
+ 0x3ff486a2b5c13c00, 0xbd2d400000000000,
+ 0x3ff494e1e192af04, 0x3d0c200000000000,
+ 0x3ff4a32af0d7d372, 0xbd1e500000000000,
+ 0x3ff4b17dea6db801, 0x3d07800000000000,
+ 0x3ff4bfdad53629e1, 0xbd13800000000000,
+ 0x3ff4ce41b817c132, 0x3d00800000000000,
+ 0x3ff4dcb299fddddb, 0x3d2c700000000000,
+ 0x3ff4eb2d81d8ab96, 0xbd1ce00000000000,
+ 0x3ff4f9b2769d2d02, 0x3d19200000000000,
+ 0x3ff508417f4531c1, 0xbd08c00000000000,
+ 0x3ff516daa2cf662a, 0xbcfa000000000000,
+ 0x3ff5257de83f51ea, 0x3d4a080000000000,
+ 0x3ff5342b569d4eda, 0xbd26d80000000000,
+ 0x3ff542e2f4f6ac1a, 0xbd32440000000000,
+ 0x3ff551a4ca5d94db, 0x3d483c0000000000,
+ 0x3ff56070dde9116b, 0x3d24b00000000000,
+ 0x3ff56f4736b529de, 0x3d415a0000000000,
+ 0x3ff57e27dbe2c40e, 0xbd29e00000000000,
+ 0x3ff58d12d497c76f, 0xbd23080000000000,
+ 0x3ff59c0827ff0b4c, 0x3d4dec0000000000,
+ 0x3ff5ab07dd485427, 0xbcc4000000000000,
+ 0x3ff5ba11fba87af4, 0x3d30080000000000,
+ 0x3ff5c9268a59460b, 0xbd26c80000000000,
+ 0x3ff5d84590998e3f, 0x3d469a0000000000,
+ 0x3ff5e76f15ad20e1, 0xbd1b400000000000,
+ 0x3ff5f6a320dcebca, 0x3d17700000000000,
+ 0x3ff605e1b976dcb8, 0x3d26f80000000000,
+ 0x3ff6152ae6cdf715, 0x3d01000000000000,
+ 0x3ff6247eb03a5531, 0xbd15d00000000000,
+ 0x3ff633dd1d1929b5, 0xbd12d00000000000,
+ 0x3ff6434634ccc313, 0xbcea800000000000,
+ 0x3ff652b9febc8efa, 0xbd28600000000000,
+ 0x3ff6623882553397, 0x3d71fe0000000000,
+ 0x3ff671c1c708328e, 0xbd37200000000000,
+ 0x3ff68155d44ca97e, 0x3ce6800000000000,
+ 0x3ff690f4b19e9471, 0xbd29780000000000,
+];
+
+// exp2(x): compute the base 2 exponential of x
+//
+// Accuracy: Peak error < 0.503 ulp for normalized results.
+//
+// Method: (accurate tables)
+//
+// Reduce x:
+// x = k + y, for integer k and |y| <= 1/2.
+// Thus we have exp2(x) = 2**k * exp2(y).
+//
+// Reduce y:
+// y = i/TBLSIZE + z - eps[i] for integer i near y * TBLSIZE.
+// Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z - eps[i]),
+// with |z - eps[i]| <= 2**-9 + 2**-39 for the table used.
+//
+// We compute exp2(i/TBLSIZE) via table lookup and exp2(z - eps[i]) via
+// a degree-5 minimax polynomial with maximum error under 1.3 * 2**-61.
+// The values in exp2t[] and eps[] are chosen such that
+// exp2t[i] = exp2(i/TBLSIZE + eps[i]), and eps[i] is a small offset such
+// that exp2t[i] is accurate to 2**-64.
+//
+// Note that the range of i is +-TBLSIZE/2, so we actually index the tables
+// by i0 = i + TBLSIZE/2. For cache efficiency, exp2t[] and eps[] are
+// virtual tables, interleaved in the real table tbl[].
+//
+// This method is due to Gal, with many details due to Gal and Bachelis:
+//
+// Gal, S. and Bachelis, B. An Accurate Elementary Mathematical Library
+// for the IEEE Floating Point Standard. TOMS 17(1), 26-46 (1991).
+
+/// Exponential, base 2 (f64)
+///
+/// Calculate `2^x`, that is, 2 raised to the power `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn exp2(mut x: f64) -> f64 {
+ let redux = f64::from_bits(0x4338000000000000) / TBLSIZE as f64;
+ let p1 = f64::from_bits(0x3fe62e42fefa39ef);
+ let p2 = f64::from_bits(0x3fcebfbdff82c575);
+ let p3 = f64::from_bits(0x3fac6b08d704a0a6);
+ let p4 = f64::from_bits(0x3f83b2ab88f70400);
+ let p5 = f64::from_bits(0x3f55d88003875c74);
+
+ // double_t r, t, z;
+ // uint32_t ix, i0;
+ // union {double f; uint64_t i;} u = {x};
+ // union {uint32_t u; int32_t i;} k;
+ let x1p1023 = f64::from_bits(0x7fe0000000000000);
+ let x1p52 = f64::from_bits(0x4330000000000000);
+ let _0x1p_149 = f64::from_bits(0xb6a0000000000000);
+
+ /* Filter out exceptional cases. */
+ let ui = f64::to_bits(x);
+ let ix = ui >> 32 & 0x7fffffff;
+ if ix >= 0x408ff000 {
+ /* |x| >= 1022 or nan */
+ if ix >= 0x40900000 && ui >> 63 == 0 {
+ /* x >= 1024 or nan */
+ /* overflow */
+ x *= x1p1023;
+ return x;
+ }
+ if ix >= 0x7ff00000 {
+ /* -inf or -nan */
+ return -1.0 / x;
+ }
+ if ui >> 63 != 0 {
+ /* x <= -1022 */
+ /* underflow */
+ if x <= -1075.0 || x - x1p52 + x1p52 != x {
+ force_eval!((_0x1p_149 / x) as f32);
+ }
+ if x <= -1075.0 {
+ return 0.0;
+ }
+ }
+ } else if ix < 0x3c900000 {
+ /* |x| < 0x1p-54 */
+ return 1.0 + x;
+ }
+
+ /* Reduce x, computing z, i0, and k. */
+ let ui = f64::to_bits(x + redux);
+ let mut i0 = ui as u32;
+ i0 = i0.wrapping_add(TBLSIZE as u32 / 2);
+ let ku = i0 / TBLSIZE as u32 * TBLSIZE as u32;
+ let ki = div!(ku as i32, TBLSIZE as i32);
+ i0 %= TBLSIZE as u32;
+ let uf = f64::from_bits(ui) - redux;
+ let mut z = x - uf;
+
+ /* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */
+ let t = f64::from_bits(i!(TBL, 2 * i0 as usize)); /* exp2t[i0] */
+ z -= f64::from_bits(i!(TBL, 2 * i0 as usize + 1)); /* eps[i0] */
+ let r = t + t * z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * p5))));
+
+ scalbn(r, ki)
+}
+
+#[test]
+fn i0_wrap_test() {
+ let x = -3.0 / 256.0;
+ assert_eq!(exp2(x), f64::from_bits(0x3fefbdba3692d514));
+}
diff --git a/vendor/compiler_builtins/libm/src/math/exp2f.rs b/vendor/compiler_builtins/libm/src/math/exp2f.rs
new file mode 100644
index 000000000..f4867b80e
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/exp2f.rs
@@ -0,0 +1,135 @@
+// origin: FreeBSD /usr/src/lib/msun/src/s_exp2f.c
+//-
+// Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+// 1. Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// 2. Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+// SUCH DAMAGE.
+
+const TBLSIZE: usize = 16;
+
+static EXP2FT: [u64; TBLSIZE] = [
+ 0x3fe6a09e667f3bcd,
+ 0x3fe7a11473eb0187,
+ 0x3fe8ace5422aa0db,
+ 0x3fe9c49182a3f090,
+ 0x3feae89f995ad3ad,
+ 0x3fec199bdd85529c,
+ 0x3fed5818dcfba487,
+ 0x3feea4afa2a490da,
+ 0x3ff0000000000000,
+ 0x3ff0b5586cf9890f,
+ 0x3ff172b83c7d517b,
+ 0x3ff2387a6e756238,
+ 0x3ff306fe0a31b715,
+ 0x3ff3dea64c123422,
+ 0x3ff4bfdad5362a27,
+ 0x3ff5ab07dd485429,
+];
+
+// exp2f(x): compute the base 2 exponential of x
+//
+// Accuracy: Peak error < 0.501 ulp; location of peak: -0.030110927.
+//
+// Method: (equally-spaced tables)
+//
+// Reduce x:
+// x = k + y, for integer k and |y| <= 1/2.
+// Thus we have exp2f(x) = 2**k * exp2(y).
+//
+// Reduce y:
+// y = i/TBLSIZE + z for integer i near y * TBLSIZE.
+// Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z),
+// with |z| <= 2**-(TBLSIZE+1).
+//
+// We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a
+// degree-4 minimax polynomial with maximum error under 1.4 * 2**-33.
+// Using double precision for everything except the reduction makes
+// roundoff error insignificant and simplifies the scaling step.
+//
+// This method is due to Tang, but I do not use his suggested parameters:
+//
+// Tang, P. Table-driven Implementation of the Exponential Function
+// in IEEE Floating-Point Arithmetic. TOMS 15(2), 144-157 (1989).
+
+/// Exponential, base 2 (f32)
+///
+/// Calculate `2^x`, that is, 2 raised to the power `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn exp2f(mut x: f32) -> f32 {
+ let redux = f32::from_bits(0x4b400000) / TBLSIZE as f32;
+ let p1 = f32::from_bits(0x3f317218);
+ let p2 = f32::from_bits(0x3e75fdf0);
+ let p3 = f32::from_bits(0x3d6359a4);
+ let p4 = f32::from_bits(0x3c1d964e);
+
+ // double_t t, r, z;
+ // uint32_t ix, i0, k;
+
+ let x1p127 = f32::from_bits(0x7f000000);
+
+ /* Filter out exceptional cases. */
+ let ui = f32::to_bits(x);
+ let ix = ui & 0x7fffffff;
+ if ix > 0x42fc0000 {
+ /* |x| > 126 */
+ if ix > 0x7f800000 {
+ /* NaN */
+ return x;
+ }
+ if ui >= 0x43000000 && ui < 0x80000000 {
+ /* x >= 128 */
+ x *= x1p127;
+ return x;
+ }
+ if ui >= 0x80000000 {
+ /* x < -126 */
+ if ui >= 0xc3160000 || (ui & 0x0000ffff != 0) {
+ force_eval!(f32::from_bits(0x80000001) / x);
+ }
+ if ui >= 0xc3160000 {
+ /* x <= -150 */
+ return 0.0;
+ }
+ }
+ } else if ix <= 0x33000000 {
+ /* |x| <= 0x1p-25 */
+ return 1.0 + x;
+ }
+
+ /* Reduce x, computing z, i0, and k. */
+ let ui = f32::to_bits(x + redux);
+ let mut i0 = ui;
+ i0 += TBLSIZE as u32 / 2;
+ let k = i0 / TBLSIZE as u32;
+ let ukf = f64::from_bits(((0x3ff + k) as u64) << 52);
+ i0 &= TBLSIZE as u32 - 1;
+ let mut uf = f32::from_bits(ui);
+ uf -= redux;
+ let z: f64 = (x - uf) as f64;
+ /* Compute r = exp2(y) = exp2ft[i0] * p(z). */
+ let r: f64 = f64::from_bits(i!(EXP2FT, i0 as usize));
+ let t: f64 = r as f64 * z;
+ let r: f64 = r + t * (p1 as f64 + z * p2 as f64) + t * (z * z) * (p3 as f64 + z * p4 as f64);
+
+ /* Scale by 2**k */
+ (r * ukf) as f32
+}
diff --git a/vendor/compiler_builtins/libm/src/math/expf.rs b/vendor/compiler_builtins/libm/src/math/expf.rs
new file mode 100644
index 000000000..a53aa90a6
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/expf.rs
@@ -0,0 +1,101 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_expf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::scalbnf;
+
+const HALF: [f32; 2] = [0.5, -0.5];
+const LN2_HI: f32 = 6.9314575195e-01; /* 0x3f317200 */
+const LN2_LO: f32 = 1.4286067653e-06; /* 0x35bfbe8e */
+const INV_LN2: f32 = 1.4426950216e+00; /* 0x3fb8aa3b */
+/*
+ * Domain [-0.34568, 0.34568], range ~[-4.278e-9, 4.447e-9]:
+ * |x*(exp(x)+1)/(exp(x)-1) - p(x)| < 2**-27.74
+ */
+const P1: f32 = 1.6666625440e-1; /* 0xaaaa8f.0p-26 */
+const P2: f32 = -2.7667332906e-3; /* -0xb55215.0p-32 */
+
+/// Exponential, base *e* (f32)
+///
+/// Calculate the exponential of `x`, that is, *e* raised to the power `x`
+/// (where *e* is the base of the natural system of logarithms, approximately 2.71828).
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn expf(mut x: f32) -> f32 {
+ let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127
+ let x1p_126 = f32::from_bits(0x800000); // 0x1p-126f === 2 ^ -126 /*original 0x1p-149f ??????????? */
+ let mut hx = x.to_bits();
+ let sign = (hx >> 31) as i32; /* sign bit of x */
+ let signb: bool = sign != 0;
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* special cases */
+ if hx >= 0x42aeac50 {
+ /* if |x| >= -87.33655f or NaN */
+ if hx > 0x7f800000 {
+ /* NaN */
+ return x;
+ }
+ if (hx >= 0x42b17218) && (!signb) {
+ /* x >= 88.722839f */
+ /* overflow */
+ x *= x1p127;
+ return x;
+ }
+ if signb {
+ /* underflow */
+ force_eval!(-x1p_126 / x);
+ if hx >= 0x42cff1b5 {
+ /* x <= -103.972084f */
+ return 0.;
+ }
+ }
+ }
+
+ /* argument reduction */
+ let k: i32;
+ let hi: f32;
+ let lo: f32;
+ if hx > 0x3eb17218 {
+ /* if |x| > 0.5 ln2 */
+ if hx > 0x3f851592 {
+ /* if |x| > 1.5 ln2 */
+ k = (INV_LN2 * x + i!(HALF, sign as usize)) as i32;
+ } else {
+ k = 1 - sign - sign;
+ }
+ let kf = k as f32;
+ hi = x - kf * LN2_HI; /* k*ln2hi is exact here */
+ lo = kf * LN2_LO;
+ x = hi - lo;
+ } else if hx > 0x39000000 {
+ /* |x| > 2**-14 */
+ k = 0;
+ hi = x;
+ lo = 0.;
+ } else {
+ /* raise inexact */
+ force_eval!(x1p127 + x);
+ return 1. + x;
+ }
+
+ /* x is now in primary range */
+ let xx = x * x;
+ let c = x - xx * (P1 + xx * P2);
+ let y = 1. + (x * c / (2. - c) - lo + hi);
+ if k == 0 {
+ y
+ } else {
+ scalbnf(y, k)
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/expm1.rs b/vendor/compiler_builtins/libm/src/math/expm1.rs
new file mode 100644
index 000000000..42608509a
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/expm1.rs
@@ -0,0 +1,144 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use core::f64;
+
+const O_THRESHOLD: f64 = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
+const LN2_HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
+const LN2_LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
+const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
+/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
+const Q1: f64 = -3.33333333333331316428e-02; /* BFA11111 111110F4 */
+const Q2: f64 = 1.58730158725481460165e-03; /* 3F5A01A0 19FE5585 */
+const Q3: f64 = -7.93650757867487942473e-05; /* BF14CE19 9EAADBB7 */
+const Q4: f64 = 4.00821782732936239552e-06; /* 3ED0CFCA 86E65239 */
+const Q5: f64 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
+
+/// Exponential, base *e*, of x-1 (f64)
+///
+/// Calculates the exponential of `x` and subtract 1, that is, *e* raised
+/// to the power `x` minus 1 (where *e* is the base of the natural
+/// system of logarithms, approximately 2.71828).
+/// The result is accurate even for small values of `x`,
+/// where using `exp(x)-1` would lose many significant digits.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn expm1(mut x: f64) -> f64 {
+ let hi: f64;
+ let lo: f64;
+ let k: i32;
+ let c: f64;
+ let mut t: f64;
+ let mut y: f64;
+
+ let mut ui = x.to_bits();
+ let hx = ((ui >> 32) & 0x7fffffff) as u32;
+ let sign = (ui >> 63) as i32;
+
+ /* filter out huge and non-finite argument */
+ if hx >= 0x4043687A {
+ /* if |x|>=56*ln2 */
+ if x.is_nan() {
+ return x;
+ }
+ if sign != 0 {
+ return -1.0;
+ }
+ if x > O_THRESHOLD {
+ x *= f64::from_bits(0x7fe0000000000000);
+ return x;
+ }
+ }
+
+ /* argument reduction */
+ if hx > 0x3fd62e42 {
+ /* if |x| > 0.5 ln2 */
+ if hx < 0x3FF0A2B2 {
+ /* and |x| < 1.5 ln2 */
+ if sign == 0 {
+ hi = x - LN2_HI;
+ lo = LN2_LO;
+ k = 1;
+ } else {
+ hi = x + LN2_HI;
+ lo = -LN2_LO;
+ k = -1;
+ }
+ } else {
+ k = (INVLN2 * x + if sign != 0 { -0.5 } else { 0.5 }) as i32;
+ t = k as f64;
+ hi = x - t * LN2_HI; /* t*ln2_hi is exact here */
+ lo = t * LN2_LO;
+ }
+ x = hi - lo;
+ c = (hi - x) - lo;
+ } else if hx < 0x3c900000 {
+ /* |x| < 2**-54, return x */
+ if hx < 0x00100000 {
+ force_eval!(x);
+ }
+ return x;
+ } else {
+ c = 0.0;
+ k = 0;
+ }
+
+ /* x is now in primary range */
+ let hfx = 0.5 * x;
+ let hxs = x * hfx;
+ let r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
+ t = 3.0 - r1 * hfx;
+ let mut e = hxs * ((r1 - t) / (6.0 - x * t));
+ if k == 0 {
+ /* c is 0 */
+ return x - (x * e - hxs);
+ }
+ e = x * (e - c) - c;
+ e -= hxs;
+ /* exp(x) ~ 2^k (x_reduced - e + 1) */
+ if k == -1 {
+ return 0.5 * (x - e) - 0.5;
+ }
+ if k == 1 {
+ if x < -0.25 {
+ return -2.0 * (e - (x + 0.5));
+ }
+ return 1.0 + 2.0 * (x - e);
+ }
+ ui = ((0x3ff + k) as u64) << 52; /* 2^k */
+ let twopk = f64::from_bits(ui);
+ if k < 0 || k > 56 {
+ /* suffice to return exp(x)-1 */
+ y = x - e + 1.0;
+ if k == 1024 {
+ y = y * 2.0 * f64::from_bits(0x7fe0000000000000);
+ } else {
+ y = y * twopk;
+ }
+ return y - 1.0;
+ }
+ ui = ((0x3ff - k) as u64) << 52; /* 2^-k */
+ let uf = f64::from_bits(ui);
+ if k < 20 {
+ y = (x - e + (1.0 - uf)) * twopk;
+ } else {
+ y = (x - (e + uf) + 1.0) * twopk;
+ }
+ y
+}
+
+#[cfg(test)]
+mod tests {
+ #[test]
+ fn sanity_check() {
+ assert_eq!(super::expm1(1.1), 2.0041660239464334);
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/expm1f.rs b/vendor/compiler_builtins/libm/src/math/expm1f.rs
new file mode 100644
index 000000000..3fc2a247b
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/expm1f.rs
@@ -0,0 +1,134 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+const O_THRESHOLD: f32 = 8.8721679688e+01; /* 0x42b17180 */
+const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
+const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
+const INV_LN2: f32 = 1.4426950216e+00; /* 0x3fb8aa3b */
+/*
+ * Domain [-0.34568, 0.34568], range ~[-6.694e-10, 6.696e-10]:
+ * |6 / x * (1 + 2 * (1 / (exp(x) - 1) - 1 / x)) - q(x)| < 2**-30.04
+ * Scaled coefficients: Qn_here = 2**n * Qn_for_q (see s_expm1.c):
+ */
+const Q1: f32 = -3.3333212137e-2; /* -0x888868.0p-28 */
+const Q2: f32 = 1.5807170421e-3; /* 0xcf3010.0p-33 */
+
+/// Exponential, base *e*, of x-1 (f32)
+///
+/// Calculates the exponential of `x` and subtract 1, that is, *e* raised
+/// to the power `x` minus 1 (where *e* is the base of the natural
+/// system of logarithms, approximately 2.71828).
+/// The result is accurate even for small values of `x`,
+/// where using `exp(x)-1` would lose many significant digits.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn expm1f(mut x: f32) -> f32 {
+ let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127
+
+ let mut hx = x.to_bits();
+ let sign = (hx >> 31) != 0;
+ hx &= 0x7fffffff;
+
+ /* filter out huge and non-finite argument */
+ if hx >= 0x4195b844 {
+ /* if |x|>=27*ln2 */
+ if hx > 0x7f800000 {
+ /* NaN */
+ return x;
+ }
+ if sign {
+ return -1.;
+ }
+ if x > O_THRESHOLD {
+ x *= x1p127;
+ return x;
+ }
+ }
+
+ let k: i32;
+ let hi: f32;
+ let lo: f32;
+ let mut c = 0f32;
+ /* argument reduction */
+ if hx > 0x3eb17218 {
+ /* if |x| > 0.5 ln2 */
+ if hx < 0x3F851592 {
+ /* and |x| < 1.5 ln2 */
+ if !sign {
+ hi = x - LN2_HI;
+ lo = LN2_LO;
+ k = 1;
+ } else {
+ hi = x + LN2_HI;
+ lo = -LN2_LO;
+ k = -1;
+ }
+ } else {
+ k = (INV_LN2 * x + (if sign { -0.5 } else { 0.5 })) as i32;
+ let t = k as f32;
+ hi = x - t * LN2_HI; /* t*ln2_hi is exact here */
+ lo = t * LN2_LO;
+ }
+ x = hi - lo;
+ c = (hi - x) - lo;
+ } else if hx < 0x33000000 {
+ /* when |x|<2**-25, return x */
+ if hx < 0x00800000 {
+ force_eval!(x * x);
+ }
+ return x;
+ } else {
+ k = 0;
+ }
+
+ /* x is now in primary range */
+ let hfx = 0.5 * x;
+ let hxs = x * hfx;
+ let r1 = 1. + hxs * (Q1 + hxs * Q2);
+ let t = 3. - r1 * hfx;
+ let mut e = hxs * ((r1 - t) / (6. - x * t));
+ if k == 0 {
+ /* c is 0 */
+ return x - (x * e - hxs);
+ }
+ e = x * (e - c) - c;
+ e -= hxs;
+ /* exp(x) ~ 2^k (x_reduced - e + 1) */
+ if k == -1 {
+ return 0.5 * (x - e) - 0.5;
+ }
+ if k == 1 {
+ if x < -0.25 {
+ return -2. * (e - (x + 0.5));
+ }
+ return 1. + 2. * (x - e);
+ }
+ let twopk = f32::from_bits(((0x7f + k) << 23) as u32); /* 2^k */
+ if (k < 0) || (k > 56) {
+ /* suffice to return exp(x)-1 */
+ let mut y = x - e + 1.;
+ if k == 128 {
+ y = y * 2. * x1p127;
+ } else {
+ y = y * twopk;
+ }
+ return y - 1.;
+ }
+ let uf = f32::from_bits(((0x7f - k) << 23) as u32); /* 2^-k */
+ if k < 23 {
+ (x - e + (1. - uf)) * twopk
+ } else {
+ (x - (e + uf) + 1.) * twopk
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/expo2.rs b/vendor/compiler_builtins/libm/src/math/expo2.rs
new file mode 100644
index 000000000..82e9b360a
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/expo2.rs
@@ -0,0 +1,14 @@
+use super::{combine_words, exp};
+
+/* exp(x)/2 for x >= log(DBL_MAX), slightly better than 0.5*exp(x/2)*exp(x/2) */
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn expo2(x: f64) -> f64 {
+ /* k is such that k*ln2 has minimal relative error and x - kln2 > log(DBL_MIN) */
+ const K: i32 = 2043;
+ let kln2 = f64::from_bits(0x40962066151add8b);
+
+ /* note that k is odd and scale*scale overflows */
+ let scale = combine_words(((0x3ff + K / 2) as u32) << 20, 0);
+ /* exp(x - k ln2) * 2**(k-1) */
+ exp(x - kln2) * scale * scale
+}
diff --git a/vendor/compiler_builtins/libm/src/math/fabs.rs b/vendor/compiler_builtins/libm/src/math/fabs.rs
new file mode 100644
index 000000000..b2255ad32
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/fabs.rs
@@ -0,0 +1,41 @@
+use core::u64;
+
+/// Absolute value (magnitude) (f64)
+/// Calculates the absolute value (magnitude) of the argument `x`,
+/// by direct manipulation of the bit representation of `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fabs(x: f64) -> f64 {
+ // On wasm32 we know that LLVM's intrinsic will compile to an optimized
+ // `f64.abs` native instruction, so we can leverage this for both code size
+ // and speed.
+ llvm_intrinsically_optimized! {
+ #[cfg(target_arch = "wasm32")] {
+ return unsafe { ::core::intrinsics::fabsf64(x) }
+ }
+ }
+ f64::from_bits(x.to_bits() & (u64::MAX / 2))
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use core::f64::*;
+
+ #[test]
+ fn sanity_check() {
+ assert_eq!(fabs(-1.0), 1.0);
+ assert_eq!(fabs(2.8), 2.8);
+ }
+
+ /// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs
+ #[test]
+ fn spec_tests() {
+ assert!(fabs(NAN).is_nan());
+ for f in [0.0, -0.0].iter().copied() {
+ assert_eq!(fabs(f), 0.0);
+ }
+ for f in [INFINITY, NEG_INFINITY].iter().copied() {
+ assert_eq!(fabs(f), INFINITY);
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/fabsf.rs b/vendor/compiler_builtins/libm/src/math/fabsf.rs
new file mode 100644
index 000000000..23f3646dc
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/fabsf.rs
@@ -0,0 +1,41 @@
+/// Absolute value (magnitude) (f32)
+/// Calculates the absolute value (magnitude) of the argument `x`,
+/// by direct manipulation of the bit representation of `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fabsf(x: f32) -> f32 {
+ // On wasm32 we know that LLVM's intrinsic will compile to an optimized
+ // `f32.abs` native instruction, so we can leverage this for both code size
+ // and speed.
+ llvm_intrinsically_optimized! {
+ #[cfg(target_arch = "wasm32")] {
+ return unsafe { ::core::intrinsics::fabsf32(x) }
+ }
+ }
+ f32::from_bits(x.to_bits() & 0x7fffffff)
+}
+
+// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
+#[cfg(not(target_arch = "powerpc64"))]
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use core::f32::*;
+
+ #[test]
+ fn sanity_check() {
+ assert_eq!(fabsf(-1.0), 1.0);
+ assert_eq!(fabsf(2.8), 2.8);
+ }
+
+ /// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs
+ #[test]
+ fn spec_tests() {
+ assert!(fabsf(NAN).is_nan());
+ for f in [0.0, -0.0].iter().copied() {
+ assert_eq!(fabsf(f), 0.0);
+ }
+ for f in [INFINITY, NEG_INFINITY].iter().copied() {
+ assert_eq!(fabsf(f), INFINITY);
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/fdim.rs b/vendor/compiler_builtins/libm/src/math/fdim.rs
new file mode 100644
index 000000000..014930097
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/fdim.rs
@@ -0,0 +1,22 @@
+use core::f64;
+
+/// Positive difference (f64)
+///
+/// Determines the positive difference between arguments, returning:
+/// * x - y if x > y, or
+/// * +0 if x <= y, or
+/// * NAN if either argument is NAN.
+///
+/// A range error may occur.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fdim(x: f64, y: f64) -> f64 {
+ if x.is_nan() {
+ x
+ } else if y.is_nan() {
+ y
+ } else if x > y {
+ x - y
+ } else {
+ 0.0
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/fdimf.rs b/vendor/compiler_builtins/libm/src/math/fdimf.rs
new file mode 100644
index 000000000..ea0b592d7
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/fdimf.rs
@@ -0,0 +1,22 @@
+use core::f32;
+
+/// Positive difference (f32)
+///
+/// Determines the positive difference between arguments, returning:
+/// * x - y if x > y, or
+/// * +0 if x <= y, or
+/// * NAN if either argument is NAN.
+///
+/// A range error may occur.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fdimf(x: f32, y: f32) -> f32 {
+ if x.is_nan() {
+ x
+ } else if y.is_nan() {
+ y
+ } else if x > y {
+ x - y
+ } else {
+ 0.0
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/fenv.rs b/vendor/compiler_builtins/libm/src/math/fenv.rs
new file mode 100644
index 000000000..652e60324
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/fenv.rs
@@ -0,0 +1,33 @@
+// src: musl/src/fenv/fenv.c
+/* Dummy functions for archs lacking fenv implementation */
+
+pub(crate) const FE_UNDERFLOW: i32 = 0;
+pub(crate) const FE_INEXACT: i32 = 0;
+
+pub(crate) const FE_TONEAREST: i32 = 0;
+pub(crate) const FE_TOWARDZERO: i32 = 0;
+
+#[inline]
+pub(crate) fn feclearexcept(_mask: i32) -> i32 {
+ 0
+}
+
+#[inline]
+pub(crate) fn feraiseexcept(_mask: i32) -> i32 {
+ 0
+}
+
+#[inline]
+pub(crate) fn fetestexcept(_mask: i32) -> i32 {
+ 0
+}
+
+#[inline]
+pub(crate) fn fegetround() -> i32 {
+ FE_TONEAREST
+}
+
+#[inline]
+pub(crate) fn fesetround(_r: i32) -> i32 {
+ 0
+}
diff --git a/vendor/compiler_builtins/libm/src/math/floor.rs b/vendor/compiler_builtins/libm/src/math/floor.rs
new file mode 100644
index 000000000..d09f9a1a1
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/floor.rs
@@ -0,0 +1,81 @@
+#![allow(unreachable_code)]
+use core::f64;
+
+const TOINT: f64 = 1. / f64::EPSILON;
+
+/// Floor (f64)
+///
+/// Finds the nearest integer less than or equal to `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn floor(x: f64) -> f64 {
+ // On wasm32 we know that LLVM's intrinsic will compile to an optimized
+ // `f64.floor` native instruction, so we can leverage this for both code size
+ // and speed.
+ llvm_intrinsically_optimized! {
+ #[cfg(target_arch = "wasm32")] {
+ return unsafe { ::core::intrinsics::floorf64(x) }
+ }
+ }
+ #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+ {
+ //use an alternative implementation on x86, because the
+ //main implementation fails with the x87 FPU used by
+ //debian i386, probablly due to excess precision issues.
+ //basic implementation taken from https://github.com/rust-lang/libm/issues/219
+ use super::fabs;
+ if fabs(x).to_bits() < 4503599627370496.0_f64.to_bits() {
+ let truncated = x as i64 as f64;
+ if truncated > x {
+ return truncated - 1.0;
+ } else {
+ return truncated;
+ }
+ } else {
+ return x;
+ }
+ }
+ let ui = x.to_bits();
+ let e = ((ui >> 52) & 0x7ff) as i32;
+
+ if (e >= 0x3ff + 52) || (x == 0.) {
+ return x;
+ }
+ /* y = int(x) - x, where int(x) is an integer neighbor of x */
+ let y = if (ui >> 63) != 0 {
+ x - TOINT + TOINT - x
+ } else {
+ x + TOINT - TOINT - x
+ };
+ /* special case because of non-nearest rounding modes */
+ if e < 0x3ff {
+ force_eval!(y);
+ return if (ui >> 63) != 0 { -1. } else { 0. };
+ }
+ if y > 0. {
+ x + y - 1.
+ } else {
+ x + y
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use core::f64::*;
+
+ #[test]
+ fn sanity_check() {
+ assert_eq!(floor(1.1), 1.0);
+ assert_eq!(floor(2.9), 2.0);
+ }
+
+ /// The spec: https://en.cppreference.com/w/cpp/numeric/math/floor
+ #[test]
+ fn spec_tests() {
+ // Not Asserted: that the current rounding mode has no effect.
+ assert!(floor(NAN).is_nan());
+ for f in [0.0, -0.0, INFINITY, NEG_INFINITY].iter().copied() {
+ assert_eq!(floor(f), f);
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/floorf.rs b/vendor/compiler_builtins/libm/src/math/floorf.rs
new file mode 100644
index 000000000..dfdab91a0
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/floorf.rs
@@ -0,0 +1,66 @@
+use core::f32;
+
+/// Floor (f32)
+///
+/// Finds the nearest integer less than or equal to `x`.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn floorf(x: f32) -> f32 {
+ // On wasm32 we know that LLVM's intrinsic will compile to an optimized
+ // `f32.floor` native instruction, so we can leverage this for both code size
+ // and speed.
+ llvm_intrinsically_optimized! {
+ #[cfg(target_arch = "wasm32")] {
+ return unsafe { ::core::intrinsics::floorf32(x) }
+ }
+ }
+ let mut ui = x.to_bits();
+ let e = (((ui >> 23) as i32) & 0xff) - 0x7f;
+
+ if e >= 23 {
+ return x;
+ }
+ if e >= 0 {
+ let m: u32 = 0x007fffff >> e;
+ if (ui & m) == 0 {
+ return x;
+ }
+ force_eval!(x + f32::from_bits(0x7b800000));
+ if ui >> 31 != 0 {
+ ui += m;
+ }
+ ui &= !m;
+ } else {
+ force_eval!(x + f32::from_bits(0x7b800000));
+ if ui >> 31 == 0 {
+ ui = 0;
+ } else if ui << 1 != 0 {
+ return -1.0;
+ }
+ }
+ f32::from_bits(ui)
+}
+
+// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
+#[cfg(not(target_arch = "powerpc64"))]
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use core::f32::*;
+
+ #[test]
+ fn sanity_check() {
+ assert_eq!(floorf(0.5), 0.0);
+ assert_eq!(floorf(1.1), 1.0);
+ assert_eq!(floorf(2.9), 2.0);
+ }
+
+ /// The spec: https://en.cppreference.com/w/cpp/numeric/math/floor
+ #[test]
+ fn spec_tests() {
+ // Not Asserted: that the current rounding mode has no effect.
+ assert!(floorf(NAN).is_nan());
+ for f in [0.0, -0.0, INFINITY, NEG_INFINITY].iter().copied() {
+ assert_eq!(floorf(f), f);
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/fma.rs b/vendor/compiler_builtins/libm/src/math/fma.rs
new file mode 100644
index 000000000..516f9ad3a
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/fma.rs
@@ -0,0 +1,235 @@
+use core::{f32, f64};
+
+use super::scalbn;
+
+const ZEROINFNAN: i32 = 0x7ff - 0x3ff - 52 - 1;
+
+struct Num {
+ m: u64,
+ e: i32,
+ sign: i32,
+}
+
+fn normalize(x: f64) -> Num {
+ let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63
+
+ let mut ix: u64 = x.to_bits();
+ let mut e: i32 = (ix >> 52) as i32;
+ let sign: i32 = e & 0x800;
+ e &= 0x7ff;
+ if e == 0 {
+ ix = (x * x1p63).to_bits();
+ e = (ix >> 52) as i32 & 0x7ff;
+ e = if e != 0 { e - 63 } else { 0x800 };
+ }
+ ix &= (1 << 52) - 1;
+ ix |= 1 << 52;
+ ix <<= 1;
+ e -= 0x3ff + 52 + 1;
+ Num { m: ix, e, sign }
+}
+
+fn mul(x: u64, y: u64) -> (u64, u64) {
+ let t1: u64;
+ let t2: u64;
+ let t3: u64;
+ let xlo: u64 = x as u32 as u64;
+ let xhi: u64 = x >> 32;
+ let ylo: u64 = y as u32 as u64;
+ let yhi: u64 = y >> 32;
+
+ t1 = xlo * ylo;
+ t2 = xlo * yhi + xhi * ylo;
+ t3 = xhi * yhi;
+ let lo = t1.wrapping_add(t2 << 32);
+ let hi = t3 + (t2 >> 32) + (t1 > lo) as u64;
+ (hi, lo)
+}
+
+/// Floating multiply add (f64)
+///
+/// Computes `(x*y)+z`, rounded as one ternary operation:
+/// Computes the value (as if) to infinite precision and rounds once to the result format,
+/// according to the rounding mode characterized by the value of FLT_ROUNDS.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fma(x: f64, y: f64, z: f64) -> f64 {
+ let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63
+ let x0_ffffff8p_63 = f64::from_bits(0x3bfffffff0000000); // 0x0.ffffff8p-63
+
+ /* normalize so top 10bits and last bit are 0 */
+ let nx = normalize(x);
+ let ny = normalize(y);
+ let nz = normalize(z);
+
+ if nx.e >= ZEROINFNAN || ny.e >= ZEROINFNAN {
+ return x * y + z;
+ }
+ if nz.e >= ZEROINFNAN {
+ if nz.e > ZEROINFNAN {
+ /* z==0 */
+ return x * y + z;
+ }
+ return z;
+ }
+
+ /* mul: r = x*y */
+ let zhi: u64;
+ let zlo: u64;
+ let (mut rhi, mut rlo) = mul(nx.m, ny.m);
+ /* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */
+
+ /* align exponents */
+ let mut e: i32 = nx.e + ny.e;
+ let mut d: i32 = nz.e - e;
+ /* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */
+ if d > 0 {
+ if d < 64 {
+ zlo = nz.m << d;
+ zhi = nz.m >> (64 - d);
+ } else {
+ zlo = 0;
+ zhi = nz.m;
+ e = nz.e - 64;
+ d -= 64;
+ if d == 0 {
+ } else if d < 64 {
+ rlo = rhi << (64 - d) | rlo >> d | ((rlo << (64 - d)) != 0) as u64;
+ rhi = rhi >> d;
+ } else {
+ rlo = 1;
+ rhi = 0;
+ }
+ }
+ } else {
+ zhi = 0;
+ d = -d;
+ if d == 0 {
+ zlo = nz.m;
+ } else if d < 64 {
+ zlo = nz.m >> d | ((nz.m << (64 - d)) != 0) as u64;
+ } else {
+ zlo = 1;
+ }
+ }
+
+ /* add */
+ let mut sign: i32 = nx.sign ^ ny.sign;
+ let samesign: bool = (sign ^ nz.sign) == 0;
+ let mut nonzero: i32 = 1;
+ if samesign {
+ /* r += z */
+ rlo = rlo.wrapping_add(zlo);
+ rhi += zhi + (rlo < zlo) as u64;
+ } else {
+ /* r -= z */
+ let (res, borrow) = rlo.overflowing_sub(zlo);
+ rlo = res;
+ rhi = rhi.wrapping_sub(zhi.wrapping_add(borrow as u64));
+ if (rhi >> 63) != 0 {
+ rlo = (-(rlo as i64)) as u64;
+ rhi = (-(rhi as i64)) as u64 - (rlo != 0) as u64;
+ sign = (sign == 0) as i32;
+ }
+ nonzero = (rhi != 0) as i32;
+ }
+
+ /* set rhi to top 63bit of the result (last bit is sticky) */
+ if nonzero != 0 {
+ e += 64;
+ d = rhi.leading_zeros() as i32 - 1;
+ /* note: d > 0 */
+ rhi = rhi << d | rlo >> (64 - d) | ((rlo << d) != 0) as u64;
+ } else if rlo != 0 {
+ d = rlo.leading_zeros() as i32 - 1;
+ if d < 0 {
+ rhi = rlo >> 1 | (rlo & 1);
+ } else {
+ rhi = rlo << d;
+ }
+ } else {
+ /* exact +-0 */
+ return x * y + z;
+ }
+ e -= d;
+
+ /* convert to double */
+ let mut i: i64 = rhi as i64; /* i is in [1<<62,(1<<63)-1] */
+ if sign != 0 {
+ i = -i;
+ }
+ let mut r: f64 = i as f64; /* |r| is in [0x1p62,0x1p63] */
+
+ if e < -1022 - 62 {
+ /* result is subnormal before rounding */
+ if e == -1022 - 63 {
+ let mut c: f64 = x1p63;
+ if sign != 0 {
+ c = -c;
+ }
+ if r == c {
+ /* min normal after rounding, underflow depends
+ on arch behaviour which can be imitated by
+ a double to float conversion */
+ let fltmin: f32 = (x0_ffffff8p_63 * f32::MIN_POSITIVE as f64 * r) as f32;
+ return f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * fltmin as f64;
+ }
+ /* one bit is lost when scaled, add another top bit to
+ only round once at conversion if it is inexact */
+ if (rhi << 53) != 0 {
+ i = (rhi >> 1 | (rhi & 1) | 1 << 62) as i64;
+ if sign != 0 {
+ i = -i;
+ }
+ r = i as f64;
+ r = 2. * r - c; /* remove top bit */
+
+ /* raise underflow portably, such that it
+ cannot be optimized away */
+ {
+ let tiny: f64 = f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * r;
+ r += (tiny * tiny) * (r - r);
+ }
+ }
+ } else {
+ /* only round once when scaled */
+ d = 10;
+ i = ((rhi >> d | ((rhi << (64 - d)) != 0) as u64) << d) as i64;
+ if sign != 0 {
+ i = -i;
+ }
+ r = i as f64;
+ }
+ }
+ scalbn(r, e)
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ #[test]
+ fn fma_segfault() {
+ // These two inputs cause fma to segfault on release due to overflow:
+ assert_eq!(
+ fma(
+ -0.0000000000000002220446049250313,
+ -0.0000000000000002220446049250313,
+ -0.0000000000000002220446049250313
+ ),
+ -0.00000000000000022204460492503126,
+ );
+
+ let result = fma(-0.992, -0.992, -0.992);
+ //force rounding to storage format on x87 to prevent superious errors.
+ #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+ let result = force_eval!(result);
+ assert_eq!(result, -0.007936000000000007,);
+ }
+
+ #[test]
+ fn fma_sbb() {
+ assert_eq!(
+ fma(-(1.0 - f64::EPSILON), f64::MIN, f64::MIN),
+ -3991680619069439e277
+ );
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/fmaf.rs b/vendor/compiler_builtins/libm/src/math/fmaf.rs
new file mode 100644
index 000000000..03d371c55
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/fmaf.rs
@@ -0,0 +1,106 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_fmaf.c */
+/*-
+ * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+use core::f32;
+use core::ptr::read_volatile;
+
+use super::fenv::{
+ feclearexcept, fegetround, feraiseexcept, fesetround, fetestexcept, FE_INEXACT, FE_TONEAREST,
+ FE_TOWARDZERO, FE_UNDERFLOW,
+};
+
+/*
+ * Fused multiply-add: Compute x * y + z with a single rounding error.
+ *
+ * A double has more than twice as much precision than a float, so
+ * direct double-precision arithmetic suffices, except where double
+ * rounding occurs.
+ */
+
+/// Floating multiply add (f32)
+///
+/// Computes `(x*y)+z`, rounded as one ternary operation:
+/// Computes the value (as if) to infinite precision and rounds once to the result format,
+/// according to the rounding mode characterized by the value of FLT_ROUNDS.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaf(x: f32, y: f32, mut z: f32) -> f32 {
+ let xy: f64;
+ let mut result: f64;
+ let mut ui: u64;
+ let e: i32;
+
+ xy = x as f64 * y as f64;
+ result = xy + z as f64;
+ ui = result.to_bits();
+ e = (ui >> 52) as i32 & 0x7ff;
+ /* Common case: The double precision result is fine. */
+ if (
+ /* not a halfway case */
+ ui & 0x1fffffff) != 0x10000000 ||
+ /* NaN */
+ e == 0x7ff ||
+ /* exact */
+ (result - xy == z as f64 && result - z as f64 == xy) ||
+ /* not round-to-nearest */
+ fegetround() != FE_TONEAREST
+ {
+ /*
+ underflow may not be raised correctly, example:
+ fmaf(0x1p-120f, 0x1p-120f, 0x1p-149f)
+ */
+ if e < 0x3ff - 126 && e >= 0x3ff - 149 && fetestexcept(FE_INEXACT) != 0 {
+ feclearexcept(FE_INEXACT);
+ // prevent `xy + vz` from being CSE'd with `xy + z` above
+ let vz: f32 = unsafe { read_volatile(&z) };
+ result = xy + vz as f64;
+ if fetestexcept(FE_INEXACT) != 0 {
+ feraiseexcept(FE_UNDERFLOW);
+ } else {
+ feraiseexcept(FE_INEXACT);
+ }
+ }
+ z = result as f32;
+ return z;
+ }
+
+ /*
+ * If result is inexact, and exactly halfway between two float values,
+ * we need to adjust the low-order bit in the direction of the error.
+ */
+ fesetround(FE_TOWARDZERO);
+ // prevent `vxy + z` from being CSE'd with `xy + z` above
+ let vxy: f64 = unsafe { read_volatile(&xy) };
+ let mut adjusted_result: f64 = vxy + z as f64;
+ fesetround(FE_TONEAREST);
+ if result == adjusted_result {
+ ui = adjusted_result.to_bits();
+ ui += 1;
+ adjusted_result = f64::from_bits(ui);
+ }
+ z = adjusted_result as f32;
+ z
+}
diff --git a/vendor/compiler_builtins/libm/src/math/fmax.rs b/vendor/compiler_builtins/libm/src/math/fmax.rs
new file mode 100644
index 000000000..93c97bc61
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/fmax.rs
@@ -0,0 +1,12 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmax(x: f64, y: f64) -> f64 {
+ // IEEE754 says: maxNum(x, y) is the canonicalized number y if x < y, x if y < x, the
+ // canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
+ // is either x or y, canonicalized (this means results might differ among implementations).
+ // When either x or y is a signalingNaN, then the result is according to 6.2.
+ //
+ // Since we do not support sNaN in Rust yet, we do not need to handle them.
+ // FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
+ // multiplying by 1.0. Should switch to the `canonicalize` when it works.
+ (if x.is_nan() || x < y { y } else { x }) * 1.0
+}
diff --git a/vendor/compiler_builtins/libm/src/math/fmaxf.rs b/vendor/compiler_builtins/libm/src/math/fmaxf.rs
new file mode 100644
index 000000000..607746647
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/fmaxf.rs
@@ -0,0 +1,12 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmaxf(x: f32, y: f32) -> f32 {
+ // IEEE754 says: maxNum(x, y) is the canonicalized number y if x < y, x if y < x, the
+ // canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
+ // is either x or y, canonicalized (this means results might differ among implementations).
+ // When either x or y is a signalingNaN, then the result is according to 6.2.
+ //
+ // Since we do not support sNaN in Rust yet, we do not need to handle them.
+ // FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
+ // multiplying by 1.0. Should switch to the `canonicalize` when it works.
+ (if x.is_nan() || x < y { y } else { x }) * 1.0
+}
diff --git a/vendor/compiler_builtins/libm/src/math/fmin.rs b/vendor/compiler_builtins/libm/src/math/fmin.rs
new file mode 100644
index 000000000..ab1509f34
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/fmin.rs
@@ -0,0 +1,12 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmin(x: f64, y: f64) -> f64 {
+ // IEEE754 says: minNum(x, y) is the canonicalized number x if x < y, y if y < x, the
+ // canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
+ // is either x or y, canonicalized (this means results might differ among implementations).
+ // When either x or y is a signalingNaN, then the result is according to 6.2.
+ //
+ // Since we do not support sNaN in Rust yet, we do not need to handle them.
+ // FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
+ // multiplying by 1.0. Should switch to the `canonicalize` when it works.
+ (if y.is_nan() || x < y { x } else { y }) * 1.0
+}
diff --git a/vendor/compiler_builtins/libm/src/math/fminf.rs b/vendor/compiler_builtins/libm/src/math/fminf.rs
new file mode 100644
index 000000000..0049e7117
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/fminf.rs
@@ -0,0 +1,12 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fminf(x: f32, y: f32) -> f32 {
+ // IEEE754 says: minNum(x, y) is the canonicalized number x if x < y, y if y < x, the
+ // canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
+ // is either x or y, canonicalized (this means results might differ among implementations).
+ // When either x or y is a signalingNaN, then the result is according to 6.2.
+ //
+ // Since we do not support sNaN in Rust yet, we do not need to handle them.
+ // FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
+ // multiplying by 1.0. Should switch to the `canonicalize` when it works.
+ (if y.is_nan() || x < y { x } else { y }) * 1.0
+}
diff --git a/vendor/compiler_builtins/libm/src/math/fmod.rs b/vendor/compiler_builtins/libm/src/math/fmod.rs
new file mode 100644
index 000000000..d892ffd8b
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/fmod.rs
@@ -0,0 +1,80 @@
+use core::u64;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmod(x: f64, y: f64) -> f64 {
+ let mut uxi = x.to_bits();
+ let mut uyi = y.to_bits();
+ let mut ex = (uxi >> 52 & 0x7ff) as i64;
+ let mut ey = (uyi >> 52 & 0x7ff) as i64;
+ let sx = uxi >> 63;
+ let mut i;
+
+ if uyi << 1 == 0 || y.is_nan() || ex == 0x7ff {
+ return (x * y) / (x * y);
+ }
+ if uxi << 1 <= uyi << 1 {
+ if uxi << 1 == uyi << 1 {
+ return 0.0 * x;
+ }
+ return x;
+ }
+
+ /* normalize x and y */
+ if ex == 0 {
+ i = uxi << 12;
+ while i >> 63 == 0 {
+ ex -= 1;
+ i <<= 1;
+ }
+ uxi <<= -ex + 1;
+ } else {
+ uxi &= u64::MAX >> 12;
+ uxi |= 1 << 52;
+ }
+ if ey == 0 {
+ i = uyi << 12;
+ while i >> 63 == 0 {
+ ey -= 1;
+ i <<= 1;
+ }
+ uyi <<= -ey + 1;
+ } else {
+ uyi &= u64::MAX >> 12;
+ uyi |= 1 << 52;
+ }
+
+ /* x mod y */
+ while ex > ey {
+ i = uxi.wrapping_sub(uyi);
+ if i >> 63 == 0 {
+ if i == 0 {
+ return 0.0 * x;
+ }
+ uxi = i;
+ }
+ uxi <<= 1;
+ ex -= 1;
+ }
+ i = uxi.wrapping_sub(uyi);
+ if i >> 63 == 0 {
+ if i == 0 {
+ return 0.0 * x;
+ }
+ uxi = i;
+ }
+ while uxi >> 52 == 0 {
+ uxi <<= 1;
+ ex -= 1;
+ }
+
+ /* scale result */
+ if ex > 0 {
+ uxi -= 1 << 52;
+ uxi |= (ex as u64) << 52;
+ } else {
+ uxi >>= -ex + 1;
+ }
+ uxi |= (sx as u64) << 63;
+
+ f64::from_bits(uxi)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/fmodf.rs b/vendor/compiler_builtins/libm/src/math/fmodf.rs
new file mode 100644
index 000000000..c53dc186a
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/fmodf.rs
@@ -0,0 +1,89 @@
+use core::f32;
+use core::u32;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn fmodf(x: f32, y: f32) -> f32 {
+ let mut uxi = x.to_bits();
+ let mut uyi = y.to_bits();
+ let mut ex = (uxi >> 23 & 0xff) as i32;
+ let mut ey = (uyi >> 23 & 0xff) as i32;
+ let sx = uxi & 0x80000000;
+ let mut i;
+
+ if uyi << 1 == 0 || y.is_nan() || ex == 0xff {
+ return (x * y) / (x * y);
+ }
+
+ if uxi << 1 <= uyi << 1 {
+ if uxi << 1 == uyi << 1 {
+ return 0.0 * x;
+ }
+
+ return x;
+ }
+
+ /* normalize x and y */
+ if ex == 0 {
+ i = uxi << 9;
+ while i >> 31 == 0 {
+ ex -= 1;
+ i <<= 1;
+ }
+
+ uxi <<= -ex + 1;
+ } else {
+ uxi &= u32::MAX >> 9;
+ uxi |= 1 << 23;
+ }
+
+ if ey == 0 {
+ i = uyi << 9;
+ while i >> 31 == 0 {
+ ey -= 1;
+ i <<= 1;
+ }
+
+ uyi <<= -ey + 1;
+ } else {
+ uyi &= u32::MAX >> 9;
+ uyi |= 1 << 23;
+ }
+
+ /* x mod y */
+ while ex > ey {
+ i = uxi.wrapping_sub(uyi);
+ if i >> 31 == 0 {
+ if i == 0 {
+ return 0.0 * x;
+ }
+ uxi = i;
+ }
+ uxi <<= 1;
+
+ ex -= 1;
+ }
+
+ i = uxi.wrapping_sub(uyi);
+ if i >> 31 == 0 {
+ if i == 0 {
+ return 0.0 * x;
+ }
+ uxi = i;
+ }
+
+ while uxi >> 23 == 0 {
+ uxi <<= 1;
+ ex -= 1;
+ }
+
+ /* scale result up */
+ if ex > 0 {
+ uxi -= 1 << 23;
+ uxi |= (ex as u32) << 23;
+ } else {
+ uxi >>= -ex + 1;
+ }
+ uxi |= sx;
+
+ f32::from_bits(uxi)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/frexp.rs b/vendor/compiler_builtins/libm/src/math/frexp.rs
new file mode 100644
index 000000000..badad786a
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/frexp.rs
@@ -0,0 +1,20 @@
+pub fn frexp(x: f64) -> (f64, i32) {
+ let mut y = x.to_bits();
+ let ee = ((y >> 52) & 0x7ff) as i32;
+
+ if ee == 0 {
+ if x != 0.0 {
+ let x1p64 = f64::from_bits(0x43f0000000000000);
+ let (x, e) = frexp(x * x1p64);
+ return (x, e - 64);
+ }
+ return (x, 0);
+ } else if ee == 0x7ff {
+ return (x, 0);
+ }
+
+ let e = ee - 0x3fe;
+ y &= 0x800fffffffffffff;
+ y |= 0x3fe0000000000000;
+ return (f64::from_bits(y), e);
+}
diff --git a/vendor/compiler_builtins/libm/src/math/frexpf.rs b/vendor/compiler_builtins/libm/src/math/frexpf.rs
new file mode 100644
index 000000000..2919c0ab0
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/frexpf.rs
@@ -0,0 +1,21 @@
+pub fn frexpf(x: f32) -> (f32, i32) {
+ let mut y = x.to_bits();
+ let ee: i32 = ((y >> 23) & 0xff) as i32;
+
+ if ee == 0 {
+ if x != 0.0 {
+ let x1p64 = f32::from_bits(0x5f800000);
+ let (x, e) = frexpf(x * x1p64);
+ return (x, e - 64);
+ } else {
+ return (x, 0);
+ }
+ } else if ee == 0xff {
+ return (x, 0);
+ }
+
+ let e = ee - 0x7e;
+ y &= 0x807fffff;
+ y |= 0x3f000000;
+ (f32::from_bits(y), e)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/hypot.rs b/vendor/compiler_builtins/libm/src/math/hypot.rs
new file mode 100644
index 000000000..da458ea1d
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/hypot.rs
@@ -0,0 +1,74 @@
+use core::f64;
+
+use super::sqrt;
+
+const SPLIT: f64 = 134217728. + 1.; // 0x1p27 + 1 === (2 ^ 27) + 1
+
+fn sq(x: f64) -> (f64, f64) {
+ let xh: f64;
+ let xl: f64;
+ let xc: f64;
+
+ xc = x * SPLIT;
+ xh = x - xc + xc;
+ xl = x - xh;
+ let hi = x * x;
+ let lo = xh * xh - hi + 2. * xh * xl + xl * xl;
+ (hi, lo)
+}
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn hypot(mut x: f64, mut y: f64) -> f64 {
+ let x1p700 = f64::from_bits(0x6bb0000000000000); // 0x1p700 === 2 ^ 700
+ let x1p_700 = f64::from_bits(0x1430000000000000); // 0x1p-700 === 2 ^ -700
+
+ let mut uxi = x.to_bits();
+ let mut uyi = y.to_bits();
+ let uti;
+ let ex: i64;
+ let ey: i64;
+ let mut z: f64;
+
+ /* arrange |x| >= |y| */
+ uxi &= -1i64 as u64 >> 1;
+ uyi &= -1i64 as u64 >> 1;
+ if uxi < uyi {
+ uti = uxi;
+ uxi = uyi;
+ uyi = uti;
+ }
+
+ /* special cases */
+ ex = (uxi >> 52) as i64;
+ ey = (uyi >> 52) as i64;
+ x = f64::from_bits(uxi);
+ y = f64::from_bits(uyi);
+ /* note: hypot(inf,nan) == inf */
+ if ey == 0x7ff {
+ return y;
+ }
+ if ex == 0x7ff || uyi == 0 {
+ return x;
+ }
+ /* note: hypot(x,y) ~= x + y*y/x/2 with inexact for small y/x */
+ /* 64 difference is enough for ld80 double_t */
+ if ex - ey > 64 {
+ return x + y;
+ }
+
+ /* precise sqrt argument in nearest rounding mode without overflow */
+ /* xh*xh must not overflow and xl*xl must not underflow in sq */
+ z = 1.;
+ if ex > 0x3ff + 510 {
+ z = x1p700;
+ x *= x1p_700;
+ y *= x1p_700;
+ } else if ey < 0x3ff - 450 {
+ z = x1p_700;
+ x *= x1p700;
+ y *= x1p700;
+ }
+ let (hx, lx) = sq(x);
+ let (hy, ly) = sq(y);
+ z * sqrt(ly + lx + hy + hx)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/hypotf.rs b/vendor/compiler_builtins/libm/src/math/hypotf.rs
new file mode 100644
index 000000000..576eebb33
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/hypotf.rs
@@ -0,0 +1,43 @@
+use core::f32;
+
+use super::sqrtf;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn hypotf(mut x: f32, mut y: f32) -> f32 {
+ let x1p90 = f32::from_bits(0x6c800000); // 0x1p90f === 2 ^ 90
+ let x1p_90 = f32::from_bits(0x12800000); // 0x1p-90f === 2 ^ -90
+
+ let mut uxi = x.to_bits();
+ let mut uyi = y.to_bits();
+ let uti;
+ let mut z: f32;
+
+ uxi &= -1i32 as u32 >> 1;
+ uyi &= -1i32 as u32 >> 1;
+ if uxi < uyi {
+ uti = uxi;
+ uxi = uyi;
+ uyi = uti;
+ }
+
+ x = f32::from_bits(uxi);
+ y = f32::from_bits(uyi);
+ if uyi == 0xff << 23 {
+ return y;
+ }
+ if uxi >= 0xff << 23 || uyi == 0 || uxi - uyi >= 25 << 23 {
+ return x + y;
+ }
+
+ z = 1.;
+ if uxi >= (0x7f + 60) << 23 {
+ z = x1p90;
+ x *= x1p_90;
+ y *= x1p_90;
+ } else if uyi < (0x7f - 60) << 23 {
+ z = x1p_90;
+ x *= x1p90;
+ y *= x1p90;
+ }
+ z * sqrtf((x as f64 * x as f64 + y as f64 * y as f64) as f32)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/ilogb.rs b/vendor/compiler_builtins/libm/src/math/ilogb.rs
new file mode 100644
index 000000000..0a380b7ef
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/ilogb.rs
@@ -0,0 +1,31 @@
+const FP_ILOGBNAN: i32 = -1 - 0x7fffffff;
+const FP_ILOGB0: i32 = FP_ILOGBNAN;
+
+pub fn ilogb(x: f64) -> i32 {
+ let mut i: u64 = x.to_bits();
+ let e = ((i >> 52) & 0x7ff) as i32;
+
+ if e == 0 {
+ i <<= 12;
+ if i == 0 {
+ force_eval!(0.0 / 0.0);
+ return FP_ILOGB0;
+ }
+ /* subnormal x */
+ let mut e = -0x3ff;
+ while (i >> 63) == 0 {
+ e -= 1;
+ i <<= 1;
+ }
+ e
+ } else if e == 0x7ff {
+ force_eval!(0.0 / 0.0);
+ if (i << 12) != 0 {
+ FP_ILOGBNAN
+ } else {
+ i32::max_value()
+ }
+ } else {
+ e - 0x3ff
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/ilogbf.rs b/vendor/compiler_builtins/libm/src/math/ilogbf.rs
new file mode 100644
index 000000000..b384fa4b2
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/ilogbf.rs
@@ -0,0 +1,31 @@
+const FP_ILOGBNAN: i32 = -1 - 0x7fffffff;
+const FP_ILOGB0: i32 = FP_ILOGBNAN;
+
+pub fn ilogbf(x: f32) -> i32 {
+ let mut i = x.to_bits();
+ let e = ((i >> 23) & 0xff) as i32;
+
+ if e == 0 {
+ i <<= 9;
+ if i == 0 {
+ force_eval!(0.0 / 0.0);
+ return FP_ILOGB0;
+ }
+ /* subnormal x */
+ let mut e = -0x7f;
+ while (i >> 31) == 0 {
+ e -= 1;
+ i <<= 1;
+ }
+ e
+ } else if e == 0xff {
+ force_eval!(0.0 / 0.0);
+ if (i << 9) != 0 {
+ FP_ILOGBNAN
+ } else {
+ i32::max_value()
+ }
+ } else {
+ e - 0x7f
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/j0.rs b/vendor/compiler_builtins/libm/src/math/j0.rs
new file mode 100644
index 000000000..c4258ccca
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/j0.rs
@@ -0,0 +1,422 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_j0.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* j0(x), y0(x)
+ * Bessel function of the first and second kinds of order zero.
+ * Method -- j0(x):
+ * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
+ * 2. Reduce x to |x| since j0(x)=j0(-x), and
+ * for x in (0,2)
+ * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
+ * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
+ * for x in (2,inf)
+ * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
+ * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ * as follow:
+ * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+ * = 1/sqrt(2) * (cos(x) + sin(x))
+ * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
+ * = 1/sqrt(2) * (sin(x) - cos(x))
+ * (To avoid cancellation, use
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * to compute the worse one.)
+ *
+ * 3 Special cases
+ * j0(nan)= nan
+ * j0(0) = 1
+ * j0(inf) = 0
+ *
+ * Method -- y0(x):
+ * 1. For x<2.
+ * Since
+ * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
+ * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
+ * We use the following function to approximate y0,
+ * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
+ * where
+ * U(z) = u00 + u01*z + ... + u06*z^6
+ * V(z) = 1 + v01*z + ... + v04*z^4
+ * with absolute approximation error bounded by 2**-72.
+ * Note: For tiny x, U/V = u0 and j0(x)~1, hence
+ * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
+ * 2. For x>=2.
+ * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
+ * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ * by the method mentioned above.
+ * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
+ */
+
+use super::{cos, fabs, get_high_word, get_low_word, log, sin, sqrt};
+const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
+const TPI: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
+
+/* common method when |x|>=2 */
+fn common(ix: u32, x: f64, y0: bool) -> f64 {
+ let s: f64;
+ let mut c: f64;
+ let mut ss: f64;
+ let mut cc: f64;
+ let z: f64;
+
+ /*
+ * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4))
+ * y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4))
+ *
+ * sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2)
+ * cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2)
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ */
+ s = sin(x);
+ c = cos(x);
+ if y0 {
+ c = -c;
+ }
+ cc = s + c;
+ /* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */
+ if ix < 0x7fe00000 {
+ ss = s - c;
+ z = -cos(2.0 * x);
+ if s * c < 0.0 {
+ cc = z / ss;
+ } else {
+ ss = z / cc;
+ }
+ if ix < 0x48000000 {
+ if y0 {
+ ss = -ss;
+ }
+ cc = pzero(x) * cc - qzero(x) * ss;
+ }
+ }
+ return INVSQRTPI * cc / sqrt(x);
+}
+
+/* R0/S0 on [0, 2.00] */
+const R02: f64 = 1.56249999999999947958e-02; /* 0x3F8FFFFF, 0xFFFFFFFD */
+const R03: f64 = -1.89979294238854721751e-04; /* 0xBF28E6A5, 0xB61AC6E9 */
+const R04: f64 = 1.82954049532700665670e-06; /* 0x3EBEB1D1, 0x0C503919 */
+const R05: f64 = -4.61832688532103189199e-09; /* 0xBE33D5E7, 0x73D63FCE */
+const S01: f64 = 1.56191029464890010492e-02; /* 0x3F8FFCE8, 0x82C8C2A4 */
+const S02: f64 = 1.16926784663337450260e-04; /* 0x3F1EA6D2, 0xDD57DBF4 */
+const S03: f64 = 5.13546550207318111446e-07; /* 0x3EA13B54, 0xCE84D5A9 */
+const S04: f64 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
+
+pub fn j0(mut x: f64) -> f64 {
+ let z: f64;
+ let r: f64;
+ let s: f64;
+ let mut ix: u32;
+
+ ix = get_high_word(x);
+ ix &= 0x7fffffff;
+
+ /* j0(+-inf)=0, j0(nan)=nan */
+ if ix >= 0x7ff00000 {
+ return 1.0 / (x * x);
+ }
+ x = fabs(x);
+
+ if ix >= 0x40000000 {
+ /* |x| >= 2 */
+ /* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */
+ return common(ix, x, false);
+ }
+
+ /* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */
+ if ix >= 0x3f200000 {
+ /* |x| >= 2**-13 */
+ /* up to 4ulp error close to 2 */
+ z = x * x;
+ r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
+ s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
+ return (1.0 + x / 2.0) * (1.0 - x / 2.0) + z * (r / s);
+ }
+
+ /* 1 - x*x/4 */
+ /* prevent underflow */
+ /* inexact should be raised when x!=0, this is not done correctly */
+ if ix >= 0x38000000 {
+ /* |x| >= 2**-127 */
+ x = 0.25 * x * x;
+ }
+ return 1.0 - x;
+}
+
+const U00: f64 = -7.38042951086872317523e-02; /* 0xBFB2E4D6, 0x99CBD01F */
+const U01: f64 = 1.76666452509181115538e-01; /* 0x3FC69D01, 0x9DE9E3FC */
+const U02: f64 = -1.38185671945596898896e-02; /* 0xBF8C4CE8, 0xB16CFA97 */
+const U03: f64 = 3.47453432093683650238e-04; /* 0x3F36C54D, 0x20B29B6B */
+const U04: f64 = -3.81407053724364161125e-06; /* 0xBECFFEA7, 0x73D25CAD */
+const U05: f64 = 1.95590137035022920206e-08; /* 0x3E550057, 0x3B4EABD4 */
+const U06: f64 = -3.98205194132103398453e-11; /* 0xBDC5E43D, 0x693FB3C8 */
+const V01: f64 = 1.27304834834123699328e-02; /* 0x3F8A1270, 0x91C9C71A */
+const V02: f64 = 7.60068627350353253702e-05; /* 0x3F13ECBB, 0xF578C6C1 */
+const V03: f64 = 2.59150851840457805467e-07; /* 0x3E91642D, 0x7FF202FD */
+const V04: f64 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
+
+pub fn y0(x: f64) -> f64 {
+ let z: f64;
+ let u: f64;
+ let v: f64;
+ let ix: u32;
+ let lx: u32;
+
+ ix = get_high_word(x);
+ lx = get_low_word(x);
+
+ /* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */
+ if ((ix << 1) | lx) == 0 {
+ return -1.0 / 0.0;
+ }
+ if (ix >> 31) != 0 {
+ return 0.0 / 0.0;
+ }
+ if ix >= 0x7ff00000 {
+ return 1.0 / x;
+ }
+
+ if ix >= 0x40000000 {
+ /* x >= 2 */
+ /* large ulp errors near zeros: 3.958, 7.086,.. */
+ return common(ix, x, true);
+ }
+
+ /* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */
+ if ix >= 0x3e400000 {
+ /* x >= 2**-27 */
+ /* large ulp error near the first zero, x ~= 0.89 */
+ z = x * x;
+ u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06)))));
+ v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04)));
+ return u / v + TPI * (j0(x) * log(x));
+ }
+ return U00 + TPI * log(x);
+}
+
+/* The asymptotic expansions of pzero is
+ * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ * pzero(x) = 1 + (R/S)
+ * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
+ * S = 1 + pS0*s^2 + ... + pS4*s^10
+ * and
+ * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
+ */
+const PR8: [f64; 6] = [
+ /* for x in [inf, 8]=1/[0,0.125] */
+ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
+ -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
+ -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
+ -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
+ -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
+];
+const PS8: [f64; 5] = [
+ 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
+ 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
+ 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
+ 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
+ 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
+];
+
+const PR5: [f64; 6] = [
+ /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
+ -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
+ -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
+ -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
+ -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
+ -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
+];
+const PS5: [f64; 5] = [
+ 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
+ 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
+ 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
+ 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
+ 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
+];
+
+const PR3: [f64; 6] = [
+ /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
+ -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
+ -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
+ -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
+ -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
+ -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
+];
+const PS3: [f64; 5] = [
+ 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
+ 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
+ 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
+ 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
+ 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
+];
+
+const PR2: [f64; 6] = [
+ /* for x in [2.8570,2]=1/[0.3499,0.5] */
+ -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
+ -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
+ -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
+ -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
+ -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
+ -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
+];
+const PS2: [f64; 5] = [
+ 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
+ 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
+ 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
+ 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
+ 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
+];
+
+fn pzero(x: f64) -> f64 {
+ let p: &[f64; 6];
+ let q: &[f64; 5];
+ let z: f64;
+ let r: f64;
+ let s: f64;
+ let mut ix: u32;
+
+ ix = get_high_word(x);
+ ix &= 0x7fffffff;
+ if ix >= 0x40200000 {
+ p = &PR8;
+ q = &PS8;
+ } else if ix >= 0x40122E8B {
+ p = &PR5;
+ q = &PS5;
+ } else if ix >= 0x4006DB6D {
+ p = &PR3;
+ q = &PS3;
+ } else
+ /*ix >= 0x40000000*/
+ {
+ p = &PR2;
+ q = &PS2;
+ }
+ z = 1.0 / (x * x);
+ r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+ s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
+ return 1.0 + r / s;
+}
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ * qzero(x) = s*(-1.25 + (R/S))
+ * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
+ * S = 1 + qS0*s^2 + ... + qS5*s^12
+ * and
+ * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
+ */
+const QR8: [f64; 6] = [
+ /* for x in [inf, 8]=1/[0,0.125] */
+ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
+ 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
+ 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
+ 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
+ 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
+];
+const QS8: [f64; 6] = [
+ 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
+ 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
+ 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
+ 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
+ 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
+ -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
+];
+
+const QR5: [f64; 6] = [
+ /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
+ 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
+ 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
+ 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
+ 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
+ 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
+];
+const QS5: [f64; 6] = [
+ 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
+ 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
+ 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
+ 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
+ 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
+ -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
+];
+
+const QR3: [f64; 6] = [
+ /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
+ 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
+ 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
+ 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
+ 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
+ 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
+];
+const QS3: [f64; 6] = [
+ 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
+ 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
+ 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
+ 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
+ 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
+ -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
+];
+
+const QR2: [f64; 6] = [
+ /* for x in [2.8570,2]=1/[0.3499,0.5] */
+ 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
+ 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
+ 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
+ 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
+ 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
+ 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
+];
+const QS2: [f64; 6] = [
+ 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
+ 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
+ 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
+ 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
+ 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
+ -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
+];
+
+fn qzero(x: f64) -> f64 {
+ let p: &[f64; 6];
+ let q: &[f64; 6];
+ let s: f64;
+ let r: f64;
+ let z: f64;
+ let mut ix: u32;
+
+ ix = get_high_word(x);
+ ix &= 0x7fffffff;
+ if ix >= 0x40200000 {
+ p = &QR8;
+ q = &QS8;
+ } else if ix >= 0x40122E8B {
+ p = &QR5;
+ q = &QS5;
+ } else if ix >= 0x4006DB6D {
+ p = &QR3;
+ q = &QS3;
+ } else
+ /*ix >= 0x40000000*/
+ {
+ p = &QR2;
+ q = &QS2;
+ }
+ z = 1.0 / (x * x);
+ r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+ s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
+ return (-0.125 + r / s) / x;
+}
diff --git a/vendor/compiler_builtins/libm/src/math/j0f.rs b/vendor/compiler_builtins/libm/src/math/j0f.rs
new file mode 100644
index 000000000..91c03dbbc
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/j0f.rs
@@ -0,0 +1,359 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_j0f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{cosf, fabsf, logf, sinf, sqrtf};
+
+const INVSQRTPI: f32 = 5.6418961287e-01; /* 0x3f106ebb */
+const TPI: f32 = 6.3661974669e-01; /* 0x3f22f983 */
+
+fn common(ix: u32, x: f32, y0: bool) -> f32 {
+ let z: f32;
+ let s: f32;
+ let mut c: f32;
+ let mut ss: f32;
+ let mut cc: f32;
+ /*
+ * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+ * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+ */
+ s = sinf(x);
+ c = cosf(x);
+ if y0 {
+ c = -c;
+ }
+ cc = s + c;
+ if ix < 0x7f000000 {
+ ss = s - c;
+ z = -cosf(2.0 * x);
+ if s * c < 0.0 {
+ cc = z / ss;
+ } else {
+ ss = z / cc;
+ }
+ if ix < 0x58800000 {
+ if y0 {
+ ss = -ss;
+ }
+ cc = pzerof(x) * cc - qzerof(x) * ss;
+ }
+ }
+ return INVSQRTPI * cc / sqrtf(x);
+}
+
+/* R0/S0 on [0, 2.00] */
+const R02: f32 = 1.5625000000e-02; /* 0x3c800000 */
+const R03: f32 = -1.8997929874e-04; /* 0xb947352e */
+const R04: f32 = 1.8295404516e-06; /* 0x35f58e88 */
+const R05: f32 = -4.6183270541e-09; /* 0xb19eaf3c */
+const S01: f32 = 1.5619102865e-02; /* 0x3c7fe744 */
+const S02: f32 = 1.1692678527e-04; /* 0x38f53697 */
+const S03: f32 = 5.1354652442e-07; /* 0x3509daa6 */
+const S04: f32 = 1.1661400734e-09; /* 0x30a045e8 */
+
+pub fn j0f(mut x: f32) -> f32 {
+ let z: f32;
+ let r: f32;
+ let s: f32;
+ let mut ix: u32;
+
+ ix = x.to_bits();
+ ix &= 0x7fffffff;
+ if ix >= 0x7f800000 {
+ return 1.0 / (x * x);
+ }
+ x = fabsf(x);
+
+ if ix >= 0x40000000 {
+ /* |x| >= 2 */
+ /* large ulp error near zeros */
+ return common(ix, x, false);
+ }
+ if ix >= 0x3a000000 {
+ /* |x| >= 2**-11 */
+ /* up to 4ulp error near 2 */
+ z = x * x;
+ r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
+ s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
+ return (1.0 + x / 2.0) * (1.0 - x / 2.0) + z * (r / s);
+ }
+ if ix >= 0x21800000 {
+ /* |x| >= 2**-60 */
+ x = 0.25 * x * x;
+ }
+ return 1.0 - x;
+}
+
+const U00: f32 = -7.3804296553e-02; /* 0xbd9726b5 */
+const U01: f32 = 1.7666645348e-01; /* 0x3e34e80d */
+const U02: f32 = -1.3818567619e-02; /* 0xbc626746 */
+const U03: f32 = 3.4745343146e-04; /* 0x39b62a69 */
+const U04: f32 = -3.8140706238e-06; /* 0xb67ff53c */
+const U05: f32 = 1.9559013964e-08; /* 0x32a802ba */
+const U06: f32 = -3.9820518410e-11; /* 0xae2f21eb */
+const V01: f32 = 1.2730483897e-02; /* 0x3c509385 */
+const V02: f32 = 7.6006865129e-05; /* 0x389f65e0 */
+const V03: f32 = 2.5915085189e-07; /* 0x348b216c */
+const V04: f32 = 4.4111031494e-10; /* 0x2ff280c2 */
+
+pub fn y0f(x: f32) -> f32 {
+ let z: f32;
+ let u: f32;
+ let v: f32;
+ let ix: u32;
+
+ ix = x.to_bits();
+ if (ix & 0x7fffffff) == 0 {
+ return -1.0 / 0.0;
+ }
+ if (ix >> 31) != 0 {
+ return 0.0 / 0.0;
+ }
+ if ix >= 0x7f800000 {
+ return 1.0 / x;
+ }
+ if ix >= 0x40000000 {
+ /* |x| >= 2.0 */
+ /* large ulp error near zeros */
+ return common(ix, x, true);
+ }
+ if ix >= 0x39000000 {
+ /* x >= 2**-13 */
+ /* large ulp error at x ~= 0.89 */
+ z = x * x;
+ u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06)))));
+ v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04)));
+ return u / v + TPI * (j0f(x) * logf(x));
+ }
+ return U00 + TPI * logf(x);
+}
+
+/* The asymptotic expansions of pzero is
+ * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ * pzero(x) = 1 + (R/S)
+ * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
+ * S = 1 + pS0*s^2 + ... + pS4*s^10
+ * and
+ * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
+ */
+const PR8: [f32; 6] = [
+ /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0000000000e+00, /* 0x00000000 */
+ -7.0312500000e-02, /* 0xbd900000 */
+ -8.0816707611e+00, /* 0xc1014e86 */
+ -2.5706311035e+02, /* 0xc3808814 */
+ -2.4852163086e+03, /* 0xc51b5376 */
+ -5.2530439453e+03, /* 0xc5a4285a */
+];
+const PS8: [f32; 5] = [
+ 1.1653436279e+02, /* 0x42e91198 */
+ 3.8337448730e+03, /* 0x456f9beb */
+ 4.0597855469e+04, /* 0x471e95db */
+ 1.1675296875e+05, /* 0x47e4087c */
+ 4.7627726562e+04, /* 0x473a0bba */
+];
+const PR5: [f32; 6] = [
+ /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ -1.1412546255e-11, /* 0xad48c58a */
+ -7.0312492549e-02, /* 0xbd8fffff */
+ -4.1596107483e+00, /* 0xc0851b88 */
+ -6.7674766541e+01, /* 0xc287597b */
+ -3.3123129272e+02, /* 0xc3a59d9b */
+ -3.4643338013e+02, /* 0xc3ad3779 */
+];
+const PS5: [f32; 5] = [
+ 6.0753936768e+01, /* 0x42730408 */
+ 1.0512523193e+03, /* 0x44836813 */
+ 5.9789707031e+03, /* 0x45bad7c4 */
+ 9.6254453125e+03, /* 0x461665c8 */
+ 2.4060581055e+03, /* 0x451660ee */
+];
+
+const PR3: [f32; 6] = [
+ /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ -2.5470459075e-09, /* 0xb12f081b */
+ -7.0311963558e-02, /* 0xbd8fffb8 */
+ -2.4090321064e+00, /* 0xc01a2d95 */
+ -2.1965976715e+01, /* 0xc1afba52 */
+ -5.8079170227e+01, /* 0xc2685112 */
+ -3.1447946548e+01, /* 0xc1fb9565 */
+];
+const PS3: [f32; 5] = [
+ 3.5856033325e+01, /* 0x420f6c94 */
+ 3.6151397705e+02, /* 0x43b4c1ca */
+ 1.1936077881e+03, /* 0x44953373 */
+ 1.1279968262e+03, /* 0x448cffe6 */
+ 1.7358093262e+02, /* 0x432d94b8 */
+];
+
+const PR2: [f32; 6] = [
+ /* for x in [2.8570,2]=1/[0.3499,0.5] */
+ -8.8753431271e-08, /* 0xb3be98b7 */
+ -7.0303097367e-02, /* 0xbd8ffb12 */
+ -1.4507384300e+00, /* 0xbfb9b1cc */
+ -7.6356959343e+00, /* 0xc0f4579f */
+ -1.1193166733e+01, /* 0xc1331736 */
+ -3.2336456776e+00, /* 0xc04ef40d */
+];
+const PS2: [f32; 5] = [
+ 2.2220300674e+01, /* 0x41b1c32d */
+ 1.3620678711e+02, /* 0x430834f0 */
+ 2.7047027588e+02, /* 0x43873c32 */
+ 1.5387539673e+02, /* 0x4319e01a */
+ 1.4657617569e+01, /* 0x416a859a */
+];
+
+fn pzerof(x: f32) -> f32 {
+ let p: &[f32; 6];
+ let q: &[f32; 5];
+ let z: f32;
+ let r: f32;
+ let s: f32;
+ let mut ix: u32;
+
+ ix = x.to_bits();
+ ix &= 0x7fffffff;
+ if ix >= 0x41000000 {
+ p = &PR8;
+ q = &PS8;
+ } else if ix >= 0x409173eb {
+ p = &PR5;
+ q = &PS5;
+ } else if ix >= 0x4036d917 {
+ p = &PR3;
+ q = &PS3;
+ } else
+ /*ix >= 0x40000000*/
+ {
+ p = &PR2;
+ q = &PS2;
+ }
+ z = 1.0 / (x * x);
+ r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+ s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
+ return 1.0 + r / s;
+}
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ * qzero(x) = s*(-1.25 + (R/S))
+ * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
+ * S = 1 + qS0*s^2 + ... + qS5*s^12
+ * and
+ * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
+ */
+const QR8: [f32; 6] = [
+ /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0000000000e+00, /* 0x00000000 */
+ 7.3242187500e-02, /* 0x3d960000 */
+ 1.1768206596e+01, /* 0x413c4a93 */
+ 5.5767340088e+02, /* 0x440b6b19 */
+ 8.8591972656e+03, /* 0x460a6cca */
+ 3.7014625000e+04, /* 0x471096a0 */
+];
+const QS8: [f32; 6] = [
+ 1.6377603149e+02, /* 0x4323c6aa */
+ 8.0983447266e+03, /* 0x45fd12c2 */
+ 1.4253829688e+05, /* 0x480b3293 */
+ 8.0330925000e+05, /* 0x49441ed4 */
+ 8.4050156250e+05, /* 0x494d3359 */
+ -3.4389928125e+05, /* 0xc8a7eb69 */
+];
+
+const QR5: [f32; 6] = [
+ /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ 1.8408595828e-11, /* 0x2da1ec79 */
+ 7.3242180049e-02, /* 0x3d95ffff */
+ 5.8356351852e+00, /* 0x40babd86 */
+ 1.3511157227e+02, /* 0x43071c90 */
+ 1.0272437744e+03, /* 0x448067cd */
+ 1.9899779053e+03, /* 0x44f8bf4b */
+];
+const QS5: [f32; 6] = [
+ 8.2776611328e+01, /* 0x42a58da0 */
+ 2.0778142090e+03, /* 0x4501dd07 */
+ 1.8847289062e+04, /* 0x46933e94 */
+ 5.6751113281e+04, /* 0x475daf1d */
+ 3.5976753906e+04, /* 0x470c88c1 */
+ -5.3543427734e+03, /* 0xc5a752be */
+];
+
+const QR3: [f32; 6] = [
+ /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+ 4.3774099900e-09, /* 0x3196681b */
+ 7.3241114616e-02, /* 0x3d95ff70 */
+ 3.3442313671e+00, /* 0x405607e3 */
+ 4.2621845245e+01, /* 0x422a7cc5 */
+ 1.7080809021e+02, /* 0x432acedf */
+ 1.6673394775e+02, /* 0x4326bbe4 */
+];
+const QS3: [f32; 6] = [
+ 4.8758872986e+01, /* 0x42430916 */
+ 7.0968920898e+02, /* 0x44316c1c */
+ 3.7041481934e+03, /* 0x4567825f */
+ 6.4604252930e+03, /* 0x45c9e367 */
+ 2.5163337402e+03, /* 0x451d4557 */
+ -1.4924745178e+02, /* 0xc3153f59 */
+];
+
+const QR2: [f32; 6] = [
+ /* for x in [2.8570,2]=1/[0.3499,0.5] */
+ 1.5044444979e-07, /* 0x342189db */
+ 7.3223426938e-02, /* 0x3d95f62a */
+ 1.9981917143e+00, /* 0x3fffc4bf */
+ 1.4495602608e+01, /* 0x4167edfd */
+ 3.1666231155e+01, /* 0x41fd5471 */
+ 1.6252708435e+01, /* 0x4182058c */
+];
+const QS2: [f32; 6] = [
+ 3.0365585327e+01, /* 0x41f2ecb8 */
+ 2.6934811401e+02, /* 0x4386ac8f */
+ 8.4478375244e+02, /* 0x44533229 */
+ 8.8293585205e+02, /* 0x445cbbe5 */
+ 2.1266638184e+02, /* 0x4354aa98 */
+ -5.3109550476e+00, /* 0xc0a9f358 */
+];
+
+fn qzerof(x: f32) -> f32 {
+ let p: &[f32; 6];
+ let q: &[f32; 6];
+ let s: f32;
+ let r: f32;
+ let z: f32;
+ let mut ix: u32;
+
+ ix = x.to_bits();
+ ix &= 0x7fffffff;
+ if ix >= 0x41000000 {
+ p = &QR8;
+ q = &QS8;
+ } else if ix >= 0x409173eb {
+ p = &QR5;
+ q = &QS5;
+ } else if ix >= 0x4036d917 {
+ p = &QR3;
+ q = &QS3;
+ } else
+ /*ix >= 0x40000000*/
+ {
+ p = &QR2;
+ q = &QS2;
+ }
+ z = 1.0 / (x * x);
+ r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+ s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
+ return (-0.125 + r / s) / x;
+}
diff --git a/vendor/compiler_builtins/libm/src/math/j1.rs b/vendor/compiler_builtins/libm/src/math/j1.rs
new file mode 100644
index 000000000..02a65ca5a
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/j1.rs
@@ -0,0 +1,414 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_j1.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* j1(x), y1(x)
+ * Bessel function of the first and second kinds of order zero.
+ * Method -- j1(x):
+ * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
+ * 2. Reduce x to |x| since j1(x)=-j1(-x), and
+ * for x in (0,2)
+ * j1(x) = x/2 + x*z*R0/S0, where z = x*x;
+ * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
+ * for x in (2,inf)
+ * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
+ * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ * as follow:
+ * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+ * = 1/sqrt(2) * (sin(x) - cos(x))
+ * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+ * = -1/sqrt(2) * (sin(x) + cos(x))
+ * (To avoid cancellation, use
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * to compute the worse one.)
+ *
+ * 3 Special cases
+ * j1(nan)= nan
+ * j1(0) = 0
+ * j1(inf) = 0
+ *
+ * Method -- y1(x):
+ * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
+ * 2. For x<2.
+ * Since
+ * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
+ * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
+ * We use the following function to approximate y1,
+ * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
+ * where for x in [0,2] (abs err less than 2**-65.89)
+ * U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
+ * V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
+ * Note: For tiny x, 1/x dominate y1 and hence
+ * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
+ * 3. For x>=2.
+ * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ * by method mentioned above.
+ */
+
+use super::{cos, fabs, get_high_word, get_low_word, log, sin, sqrt};
+
+const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
+const TPI: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
+
+fn common(ix: u32, x: f64, y1: bool, sign: bool) -> f64 {
+ let z: f64;
+ let mut s: f64;
+ let c: f64;
+ let mut ss: f64;
+ let mut cc: f64;
+
+ /*
+ * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x-3pi/4)-q1(x)*sin(x-3pi/4))
+ * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x-3pi/4)+q1(x)*cos(x-3pi/4))
+ *
+ * sin(x-3pi/4) = -(sin(x) + cos(x))/sqrt(2)
+ * cos(x-3pi/4) = (sin(x) - cos(x))/sqrt(2)
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ */
+ s = sin(x);
+ if y1 {
+ s = -s;
+ }
+ c = cos(x);
+ cc = s - c;
+ if ix < 0x7fe00000 {
+ /* avoid overflow in 2*x */
+ ss = -s - c;
+ z = cos(2.0 * x);
+ if s * c > 0.0 {
+ cc = z / ss;
+ } else {
+ ss = z / cc;
+ }
+ if ix < 0x48000000 {
+ if y1 {
+ ss = -ss;
+ }
+ cc = pone(x) * cc - qone(x) * ss;
+ }
+ }
+ if sign {
+ cc = -cc;
+ }
+ return INVSQRTPI * cc / sqrt(x);
+}
+
+/* R0/S0 on [0,2] */
+const R00: f64 = -6.25000000000000000000e-02; /* 0xBFB00000, 0x00000000 */
+const R01: f64 = 1.40705666955189706048e-03; /* 0x3F570D9F, 0x98472C61 */
+const R02: f64 = -1.59955631084035597520e-05; /* 0xBEF0C5C6, 0xBA169668 */
+const R03: f64 = 4.96727999609584448412e-08; /* 0x3E6AAAFA, 0x46CA0BD9 */
+const S01: f64 = 1.91537599538363460805e-02; /* 0x3F939D0B, 0x12637E53 */
+const S02: f64 = 1.85946785588630915560e-04; /* 0x3F285F56, 0xB9CDF664 */
+const S03: f64 = 1.17718464042623683263e-06; /* 0x3EB3BFF8, 0x333F8498 */
+const S04: f64 = 5.04636257076217042715e-09; /* 0x3E35AC88, 0xC97DFF2C */
+const S05: f64 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
+
+pub fn j1(x: f64) -> f64 {
+ let mut z: f64;
+ let r: f64;
+ let s: f64;
+ let mut ix: u32;
+ let sign: bool;
+
+ ix = get_high_word(x);
+ sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+ if ix >= 0x7ff00000 {
+ return 1.0 / (x * x);
+ }
+ if ix >= 0x40000000 {
+ /* |x| >= 2 */
+ return common(ix, fabs(x), false, sign);
+ }
+ if ix >= 0x38000000 {
+ /* |x| >= 2**-127 */
+ z = x * x;
+ r = z * (R00 + z * (R01 + z * (R02 + z * R03)));
+ s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05))));
+ z = r / s;
+ } else {
+ /* avoid underflow, raise inexact if x!=0 */
+ z = x;
+ }
+ return (0.5 + z) * x;
+}
+
+const U0: [f64; 5] = [
+ -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
+ 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
+ -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
+ 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
+ -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
+];
+const V0: [f64; 5] = [
+ 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
+ 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
+ 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
+ 6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
+ 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
+];
+
+pub fn y1(x: f64) -> f64 {
+ let z: f64;
+ let u: f64;
+ let v: f64;
+ let ix: u32;
+ let lx: u32;
+
+ ix = get_high_word(x);
+ lx = get_low_word(x);
+
+ /* y1(nan)=nan, y1(<0)=nan, y1(0)=-inf, y1(inf)=0 */
+ if (ix << 1 | lx) == 0 {
+ return -1.0 / 0.0;
+ }
+ if (ix >> 31) != 0 {
+ return 0.0 / 0.0;
+ }
+ if ix >= 0x7ff00000 {
+ return 1.0 / x;
+ }
+
+ if ix >= 0x40000000 {
+ /* x >= 2 */
+ return common(ix, x, true, false);
+ }
+ if ix < 0x3c900000 {
+ /* x < 2**-54 */
+ return -TPI / x;
+ }
+ z = x * x;
+ u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4])));
+ v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4]))));
+ return x * (u / v) + TPI * (j1(x) * log(x) - 1.0 / x);
+}
+
+/* For x >= 8, the asymptotic expansions of pone is
+ * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
+ * We approximate pone by
+ * pone(x) = 1 + (R/S)
+ * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
+ * S = 1 + ps0*s^2 + ... + ps4*s^10
+ * and
+ * | pone(x)-1-R/S | <= 2 ** ( -60.06)
+ */
+
+const PR8: [f64; 6] = [
+ /* for x in [inf, 8]=1/[0,0.125] */
+ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
+ 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
+ 4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
+ 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
+ 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
+];
+const PS8: [f64; 5] = [
+ 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
+ 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
+ 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
+ 9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
+ 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
+];
+
+const PR5: [f64; 6] = [
+ /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
+ 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
+ 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
+ 1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
+ 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
+ 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
+];
+const PS5: [f64; 5] = [
+ 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
+ 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
+ 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
+ 7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
+ 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
+];
+
+const PR3: [f64; 6] = [
+ 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
+ 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
+ 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
+ 3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
+ 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
+ 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
+];
+const PS3: [f64; 5] = [
+ 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
+ 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
+ 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
+ 8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
+ 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
+];
+
+const PR2: [f64; 6] = [
+ /* for x in [2.8570,2]=1/[0.3499,0.5] */
+ 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
+ 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
+ 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
+ 1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
+ 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
+ 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
+];
+const PS2: [f64; 5] = [
+ 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
+ 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
+ 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
+ 1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
+ 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
+];
+
+fn pone(x: f64) -> f64 {
+ let p: &[f64; 6];
+ let q: &[f64; 5];
+ let z: f64;
+ let r: f64;
+ let s: f64;
+ let mut ix: u32;
+
+ ix = get_high_word(x);
+ ix &= 0x7fffffff;
+ if ix >= 0x40200000 {
+ p = &PR8;
+ q = &PS8;
+ } else if ix >= 0x40122E8B {
+ p = &PR5;
+ q = &PS5;
+ } else if ix >= 0x4006DB6D {
+ p = &PR3;
+ q = &PS3;
+ } else
+ /*ix >= 0x40000000*/
+ {
+ p = &PR2;
+ q = &PS2;
+ }
+ z = 1.0 / (x * x);
+ r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+ s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
+ return 1.0 + r / s;
+}
+
+/* For x >= 8, the asymptotic expansions of qone is
+ * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
+ * We approximate pone by
+ * qone(x) = s*(0.375 + (R/S))
+ * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
+ * S = 1 + qs1*s^2 + ... + qs6*s^12
+ * and
+ * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
+ */
+
+const QR8: [f64; 6] = [
+ /* for x in [inf, 8]=1/[0,0.125] */
+ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
+ -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
+ -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
+ -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
+ -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
+];
+const QS8: [f64; 6] = [
+ 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
+ 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
+ 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
+ 7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
+ 6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
+ -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
+];
+
+const QR5: [f64; 6] = [
+ /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
+ -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
+ -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
+ -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
+ -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
+ -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
+];
+const QS5: [f64; 6] = [
+ 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
+ 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
+ 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
+ 4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
+ 2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
+ -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
+];
+
+const QR3: [f64; 6] = [
+ -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
+ -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
+ -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
+ -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
+ -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
+ -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
+];
+const QS3: [f64; 6] = [
+ 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
+ 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
+ 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
+ 5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
+ 1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
+ -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
+];
+
+const QR2: [f64; 6] = [
+ /* for x in [2.8570,2]=1/[0.3499,0.5] */
+ -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
+ -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
+ -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
+ -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
+ -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
+ -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
+];
+const QS2: [f64; 6] = [
+ 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
+ 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
+ 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
+ 7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
+ 1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
+ -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
+];
+
+fn qone(x: f64) -> f64 {
+ let p: &[f64; 6];
+ let q: &[f64; 6];
+ let s: f64;
+ let r: f64;
+ let z: f64;
+ let mut ix: u32;
+
+ ix = get_high_word(x);
+ ix &= 0x7fffffff;
+ if ix >= 0x40200000 {
+ p = &QR8;
+ q = &QS8;
+ } else if ix >= 0x40122E8B {
+ p = &QR5;
+ q = &QS5;
+ } else if ix >= 0x4006DB6D {
+ p = &QR3;
+ q = &QS3;
+ } else
+ /*ix >= 0x40000000*/
+ {
+ p = &QR2;
+ q = &QS2;
+ }
+ z = 1.0 / (x * x);
+ r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+ s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
+ return (0.375 + r / s) / x;
+}
diff --git a/vendor/compiler_builtins/libm/src/math/j1f.rs b/vendor/compiler_builtins/libm/src/math/j1f.rs
new file mode 100644
index 000000000..c39f8ff7e
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/j1f.rs
@@ -0,0 +1,380 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_j1f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{cosf, fabsf, logf, sinf, sqrtf};
+
+const INVSQRTPI: f32 = 5.6418961287e-01; /* 0x3f106ebb */
+const TPI: f32 = 6.3661974669e-01; /* 0x3f22f983 */
+
+fn common(ix: u32, x: f32, y1: bool, sign: bool) -> f32 {
+ let z: f64;
+ let mut s: f64;
+ let c: f64;
+ let mut ss: f64;
+ let mut cc: f64;
+
+ s = sinf(x) as f64;
+ if y1 {
+ s = -s;
+ }
+ c = cosf(x) as f64;
+ cc = s - c;
+ if ix < 0x7f000000 {
+ ss = -s - c;
+ z = cosf(2.0 * x) as f64;
+ if s * c > 0.0 {
+ cc = z / ss;
+ } else {
+ ss = z / cc;
+ }
+ if ix < 0x58800000 {
+ if y1 {
+ ss = -ss;
+ }
+ cc = (ponef(x) as f64) * cc - (qonef(x) as f64) * ss;
+ }
+ }
+ if sign {
+ cc = -cc;
+ }
+ return (((INVSQRTPI as f64) * cc) / (sqrtf(x) as f64)) as f32;
+}
+
+/* R0/S0 on [0,2] */
+const R00: f32 = -6.2500000000e-02; /* 0xbd800000 */
+const R01: f32 = 1.4070566976e-03; /* 0x3ab86cfd */
+const R02: f32 = -1.5995563444e-05; /* 0xb7862e36 */
+const R03: f32 = 4.9672799207e-08; /* 0x335557d2 */
+const S01: f32 = 1.9153760746e-02; /* 0x3c9ce859 */
+const S02: f32 = 1.8594678841e-04; /* 0x3942fab6 */
+const S03: f32 = 1.1771846857e-06; /* 0x359dffc2 */
+const S04: f32 = 5.0463624390e-09; /* 0x31ad6446 */
+const S05: f32 = 1.2354227016e-11; /* 0x2d59567e */
+
+pub fn j1f(x: f32) -> f32 {
+ let mut z: f32;
+ let r: f32;
+ let s: f32;
+ let mut ix: u32;
+ let sign: bool;
+
+ ix = x.to_bits();
+ sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+ if ix >= 0x7f800000 {
+ return 1.0 / (x * x);
+ }
+ if ix >= 0x40000000 {
+ /* |x| >= 2 */
+ return common(ix, fabsf(x), false, sign);
+ }
+ if ix >= 0x39000000 {
+ /* |x| >= 2**-13 */
+ z = x * x;
+ r = z * (R00 + z * (R01 + z * (R02 + z * R03)));
+ s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05))));
+ z = 0.5 + r / s;
+ } else {
+ z = 0.5;
+ }
+ return z * x;
+}
+
+const U0: [f32; 5] = [
+ -1.9605709612e-01, /* 0xbe48c331 */
+ 5.0443872809e-02, /* 0x3d4e9e3c */
+ -1.9125689287e-03, /* 0xbafaaf2a */
+ 2.3525259166e-05, /* 0x37c5581c */
+ -9.1909917899e-08, /* 0xb3c56003 */
+];
+const V0: [f32; 5] = [
+ 1.9916731864e-02, /* 0x3ca3286a */
+ 2.0255257550e-04, /* 0x3954644b */
+ 1.3560879779e-06, /* 0x35b602d4 */
+ 6.2274145840e-09, /* 0x31d5f8eb */
+ 1.6655924903e-11, /* 0x2d9281cf */
+];
+
+pub fn y1f(x: f32) -> f32 {
+ let z: f32;
+ let u: f32;
+ let v: f32;
+ let ix: u32;
+
+ ix = x.to_bits();
+ if (ix & 0x7fffffff) == 0 {
+ return -1.0 / 0.0;
+ }
+ if (ix >> 31) != 0 {
+ return 0.0 / 0.0;
+ }
+ if ix >= 0x7f800000 {
+ return 1.0 / x;
+ }
+ if ix >= 0x40000000 {
+ /* |x| >= 2.0 */
+ return common(ix, x, true, false);
+ }
+ if ix < 0x33000000 {
+ /* x < 2**-25 */
+ return -TPI / x;
+ }
+ z = x * x;
+ u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4])));
+ v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4]))));
+ return x * (u / v) + TPI * (j1f(x) * logf(x) - 1.0 / x);
+}
+
+/* For x >= 8, the asymptotic expansions of pone is
+ * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
+ * We approximate pone by
+ * pone(x) = 1 + (R/S)
+ * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
+ * S = 1 + ps0*s^2 + ... + ps4*s^10
+ * and
+ * | pone(x)-1-R/S | <= 2 ** ( -60.06)
+ */
+
+const PR8: [f32; 6] = [
+ /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0000000000e+00, /* 0x00000000 */
+ 1.1718750000e-01, /* 0x3df00000 */
+ 1.3239480972e+01, /* 0x4153d4ea */
+ 4.1205184937e+02, /* 0x43ce06a3 */
+ 3.8747453613e+03, /* 0x45722bed */
+ 7.9144794922e+03, /* 0x45f753d6 */
+];
+const PS8: [f32; 5] = [
+ 1.1420736694e+02, /* 0x42e46a2c */
+ 3.6509309082e+03, /* 0x45642ee5 */
+ 3.6956207031e+04, /* 0x47105c35 */
+ 9.7602796875e+04, /* 0x47bea166 */
+ 3.0804271484e+04, /* 0x46f0a88b */
+];
+
+const PR5: [f32; 6] = [
+ /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ 1.3199052094e-11, /* 0x2d68333f */
+ 1.1718749255e-01, /* 0x3defffff */
+ 6.8027510643e+00, /* 0x40d9b023 */
+ 1.0830818176e+02, /* 0x42d89dca */
+ 5.1763616943e+02, /* 0x440168b7 */
+ 5.2871520996e+02, /* 0x44042dc6 */
+];
+const PS5: [f32; 5] = [
+ 5.9280597687e+01, /* 0x426d1f55 */
+ 9.9140142822e+02, /* 0x4477d9b1 */
+ 5.3532670898e+03, /* 0x45a74a23 */
+ 7.8446904297e+03, /* 0x45f52586 */
+ 1.5040468750e+03, /* 0x44bc0180 */
+];
+
+const PR3: [f32; 6] = [
+ 3.0250391081e-09, /* 0x314fe10d */
+ 1.1718686670e-01, /* 0x3defffab */
+ 3.9329774380e+00, /* 0x407bb5e7 */
+ 3.5119403839e+01, /* 0x420c7a45 */
+ 9.1055007935e+01, /* 0x42b61c2a */
+ 4.8559066772e+01, /* 0x42423c7c */
+];
+const PS3: [f32; 5] = [
+ 3.4791309357e+01, /* 0x420b2a4d */
+ 3.3676245117e+02, /* 0x43a86198 */
+ 1.0468714600e+03, /* 0x4482dbe3 */
+ 8.9081134033e+02, /* 0x445eb3ed */
+ 1.0378793335e+02, /* 0x42cf936c */
+];
+
+const PR2: [f32; 6] = [
+ /* for x in [2.8570,2]=1/[0.3499,0.5] */
+ 1.0771083225e-07, /* 0x33e74ea8 */
+ 1.1717621982e-01, /* 0x3deffa16 */
+ 2.3685150146e+00, /* 0x401795c0 */
+ 1.2242610931e+01, /* 0x4143e1bc */
+ 1.7693971634e+01, /* 0x418d8d41 */
+ 5.0735230446e+00, /* 0x40a25a4d */
+];
+const PS2: [f32; 5] = [
+ 2.1436485291e+01, /* 0x41ab7dec */
+ 1.2529022980e+02, /* 0x42fa9499 */
+ 2.3227647400e+02, /* 0x436846c7 */
+ 1.1767937469e+02, /* 0x42eb5bd7 */
+ 8.3646392822e+00, /* 0x4105d590 */
+];
+
+fn ponef(x: f32) -> f32 {
+ let p: &[f32; 6];
+ let q: &[f32; 5];
+ let z: f32;
+ let r: f32;
+ let s: f32;
+ let mut ix: u32;
+
+ ix = x.to_bits();
+ ix &= 0x7fffffff;
+ if ix >= 0x41000000 {
+ p = &PR8;
+ q = &PS8;
+ } else if ix >= 0x409173eb {
+ p = &PR5;
+ q = &PS5;
+ } else if ix >= 0x4036d917 {
+ p = &PR3;
+ q = &PS3;
+ } else
+ /*ix >= 0x40000000*/
+ {
+ p = &PR2;
+ q = &PS2;
+ }
+ z = 1.0 / (x * x);
+ r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+ s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
+ return 1.0 + r / s;
+}
+
+/* For x >= 8, the asymptotic expansions of qone is
+ * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
+ * We approximate pone by
+ * qone(x) = s*(0.375 + (R/S))
+ * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
+ * S = 1 + qs1*s^2 + ... + qs6*s^12
+ * and
+ * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
+ */
+
+const QR8: [f32; 6] = [
+ /* for x in [inf, 8]=1/[0,0.125] */
+ 0.0000000000e+00, /* 0x00000000 */
+ -1.0253906250e-01, /* 0xbdd20000 */
+ -1.6271753311e+01, /* 0xc1822c8d */
+ -7.5960174561e+02, /* 0xc43de683 */
+ -1.1849806641e+04, /* 0xc639273a */
+ -4.8438511719e+04, /* 0xc73d3683 */
+];
+const QS8: [f32; 6] = [
+ 1.6139537048e+02, /* 0x43216537 */
+ 7.8253862305e+03, /* 0x45f48b17 */
+ 1.3387534375e+05, /* 0x4802bcd6 */
+ 7.1965775000e+05, /* 0x492fb29c */
+ 6.6660125000e+05, /* 0x4922be94 */
+ -2.9449025000e+05, /* 0xc88fcb48 */
+];
+
+const QR5: [f32; 6] = [
+ /* for x in [8,4.5454]=1/[0.125,0.22001] */
+ -2.0897993405e-11, /* 0xadb7d219 */
+ -1.0253904760e-01, /* 0xbdd1fffe */
+ -8.0564479828e+00, /* 0xc100e736 */
+ -1.8366960144e+02, /* 0xc337ab6b */
+ -1.3731937256e+03, /* 0xc4aba633 */
+ -2.6124443359e+03, /* 0xc523471c */
+];
+const QS5: [f32; 6] = [
+ 8.1276550293e+01, /* 0x42a28d98 */
+ 1.9917987061e+03, /* 0x44f8f98f */
+ 1.7468484375e+04, /* 0x468878f8 */
+ 4.9851425781e+04, /* 0x4742bb6d */
+ 2.7948074219e+04, /* 0x46da5826 */
+ -4.7191835938e+03, /* 0xc5937978 */
+];
+
+const QR3: [f32; 6] = [
+ -5.0783124372e-09, /* 0xb1ae7d4f */
+ -1.0253783315e-01, /* 0xbdd1ff5b */
+ -4.6101160049e+00, /* 0xc0938612 */
+ -5.7847221375e+01, /* 0xc267638e */
+ -2.2824453735e+02, /* 0xc3643e9a */
+ -2.1921012878e+02, /* 0xc35b35cb */
+];
+const QS3: [f32; 6] = [
+ 4.7665153503e+01, /* 0x423ea91e */
+ 6.7386511230e+02, /* 0x4428775e */
+ 3.3801528320e+03, /* 0x45534272 */
+ 5.5477290039e+03, /* 0x45ad5dd5 */
+ 1.9031191406e+03, /* 0x44ede3d0 */
+ -1.3520118713e+02, /* 0xc3073381 */
+];
+
+const QR2: [f32; 6] = [
+ /* for x in [2.8570,2]=1/[0.3499,0.5] */
+ -1.7838172539e-07, /* 0xb43f8932 */
+ -1.0251704603e-01, /* 0xbdd1f475 */
+ -2.7522056103e+00, /* 0xc0302423 */
+ -1.9663616180e+01, /* 0xc19d4f16 */
+ -4.2325313568e+01, /* 0xc2294d1f */
+ -2.1371921539e+01, /* 0xc1aaf9b2 */
+];
+const QS2: [f32; 6] = [
+ 2.9533363342e+01, /* 0x41ec4454 */
+ 2.5298155212e+02, /* 0x437cfb47 */
+ 7.5750280762e+02, /* 0x443d602e */
+ 7.3939318848e+02, /* 0x4438d92a */
+ 1.5594900513e+02, /* 0x431bf2f2 */
+ -4.9594988823e+00, /* 0xc09eb437 */
+];
+
+fn qonef(x: f32) -> f32 {
+ let p: &[f32; 6];
+ let q: &[f32; 6];
+ let s: f32;
+ let r: f32;
+ let z: f32;
+ let mut ix: u32;
+
+ ix = x.to_bits();
+ ix &= 0x7fffffff;
+ if ix >= 0x41000000 {
+ p = &QR8;
+ q = &QS8;
+ } else if ix >= 0x409173eb {
+ p = &QR5;
+ q = &QS5;
+ } else if ix >= 0x4036d917 {
+ p = &QR3;
+ q = &QS3;
+ } else
+ /*ix >= 0x40000000*/
+ {
+ p = &QR2;
+ q = &QS2;
+ }
+ z = 1.0 / (x * x);
+ r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+ s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
+ return (0.375 + r / s) / x;
+}
+
+// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
+#[cfg(not(target_arch = "powerpc64"))]
+#[cfg(test)]
+mod tests {
+ use super::{j1f, y1f};
+ #[test]
+ fn test_j1f_2488() {
+ // 0x401F3E49
+ assert_eq!(j1f(2.4881766_f32), 0.49999475_f32);
+ }
+ #[test]
+ fn test_y1f_2002() {
+ //allow slightly different result on x87
+ let res = y1f(2.0000002_f32);
+ if cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) && (res == -0.10703231_f32)
+ {
+ return;
+ }
+ assert_eq!(res, -0.10703229_f32);
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/jn.rs b/vendor/compiler_builtins/libm/src/math/jn.rs
new file mode 100644
index 000000000..1be167f84
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/jn.rs
@@ -0,0 +1,343 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * jn(n, x), yn(n, x)
+ * floating point Bessel's function of the 1st and 2nd kind
+ * of order n
+ *
+ * Special cases:
+ * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
+ * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
+ * Note 2. About jn(n,x), yn(n,x)
+ * For n=0, j0(x) is called,
+ * for n=1, j1(x) is called,
+ * for n<=x, forward recursion is used starting
+ * from values of j0(x) and j1(x).
+ * for n>x, a continued fraction approximation to
+ * j(n,x)/j(n-1,x) is evaluated and then backward
+ * recursion is used starting from a supposed value
+ * for j(n,x). The resulting value of j(0,x) is
+ * compared with the actual value to correct the
+ * supposed value of j(n,x).
+ *
+ * yn(n,x) is similar in all respects, except
+ * that forward recursion is used for all
+ * values of n>1.
+ */
+
+use super::{cos, fabs, get_high_word, get_low_word, j0, j1, log, sin, sqrt, y0, y1};
+
+const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
+
+pub fn jn(n: i32, mut x: f64) -> f64 {
+ let mut ix: u32;
+ let lx: u32;
+ let nm1: i32;
+ let mut i: i32;
+ let mut sign: bool;
+ let mut a: f64;
+ let mut b: f64;
+ let mut temp: f64;
+
+ ix = get_high_word(x);
+ lx = get_low_word(x);
+ sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+
+ // -lx == !lx + 1
+ if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
+ /* nan */
+ return x;
+ }
+
+ /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
+ * Thus, J(-n,x) = J(n,-x)
+ */
+ /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
+ if n == 0 {
+ return j0(x);
+ }
+ if n < 0 {
+ nm1 = -(n + 1);
+ x = -x;
+ sign = !sign;
+ } else {
+ nm1 = n - 1;
+ }
+ if nm1 == 0 {
+ return j1(x);
+ }
+
+ sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
+ x = fabs(x);
+ if (ix | lx) == 0 || ix == 0x7ff00000 {
+ /* if x is 0 or inf */
+ b = 0.0;
+ } else if (nm1 as f64) < x {
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+ if ix >= 0x52d00000 {
+ /* x > 2**302 */
+ /* (x >> n**2)
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ temp = match nm1 & 3 {
+ 0 => -cos(x) + sin(x),
+ 1 => -cos(x) - sin(x),
+ 2 => cos(x) - sin(x),
+ 3 | _ => cos(x) + sin(x),
+ };
+ b = INVSQRTPI * temp / sqrt(x);
+ } else {
+ a = j0(x);
+ b = j1(x);
+ i = 0;
+ while i < nm1 {
+ i += 1;
+ temp = b;
+ b = b * (2.0 * (i as f64) / x) - a; /* avoid underflow */
+ a = temp;
+ }
+ }
+ } else {
+ if ix < 0x3e100000 {
+ /* x < 2**-29 */
+ /* x is tiny, return the first Taylor expansion of J(n,x)
+ * J(n,x) = 1/n!*(x/2)^n - ...
+ */
+ if nm1 > 32 {
+ /* underflow */
+ b = 0.0;
+ } else {
+ temp = x * 0.5;
+ b = temp;
+ a = 1.0;
+ i = 2;
+ while i <= nm1 + 1 {
+ a *= i as f64; /* a = n! */
+ b *= temp; /* b = (x/2)^n */
+ i += 1;
+ }
+ b = b / a;
+ }
+ } else {
+ /* use backward recurrence */
+ /* x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h=2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
+ */
+ /* determine k */
+ let mut t: f64;
+ let mut q0: f64;
+ let mut q1: f64;
+ let mut w: f64;
+ let h: f64;
+ let mut z: f64;
+ let mut tmp: f64;
+ let nf: f64;
+
+ let mut k: i32;
+
+ nf = (nm1 as f64) + 1.0;
+ w = 2.0 * nf / x;
+ h = 2.0 / x;
+ z = w + h;
+ q0 = w;
+ q1 = w * z - 1.0;
+ k = 1;
+ while q1 < 1.0e9 {
+ k += 1;
+ z += h;
+ tmp = z * q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ t = 0.0;
+ i = k;
+ while i >= 0 {
+ t = 1.0 / (2.0 * ((i as f64) + nf) / x - t);
+ i -= 1;
+ }
+ a = t;
+ b = 1.0;
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * Hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result is
+ * likely underflow to zero
+ */
+ tmp = nf * log(fabs(w));
+ if tmp < 7.09782712893383973096e+02 {
+ i = nm1;
+ while i > 0 {
+ temp = b;
+ b = b * (2.0 * (i as f64)) / x - a;
+ a = temp;
+ i -= 1;
+ }
+ } else {
+ i = nm1;
+ while i > 0 {
+ temp = b;
+ b = b * (2.0 * (i as f64)) / x - a;
+ a = temp;
+ /* scale b to avoid spurious overflow */
+ let x1p500 = f64::from_bits(0x5f30000000000000); // 0x1p500 == 2^500
+ if b > x1p500 {
+ a /= b;
+ t /= b;
+ b = 1.0;
+ }
+ i -= 1;
+ }
+ }
+ z = j0(x);
+ w = j1(x);
+ if fabs(z) >= fabs(w) {
+ b = t * z / b;
+ } else {
+ b = t * w / a;
+ }
+ }
+ }
+
+ if sign {
+ -b
+ } else {
+ b
+ }
+}
+
+pub fn yn(n: i32, x: f64) -> f64 {
+ let mut ix: u32;
+ let lx: u32;
+ let mut ib: u32;
+ let nm1: i32;
+ let mut sign: bool;
+ let mut i: i32;
+ let mut a: f64;
+ let mut b: f64;
+ let mut temp: f64;
+
+ ix = get_high_word(x);
+ lx = get_low_word(x);
+ sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+
+ // -lx == !lx + 1
+ if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
+ /* nan */
+ return x;
+ }
+ if sign && (ix | lx) != 0 {
+ /* x < 0 */
+ return 0.0 / 0.0;
+ }
+ if ix == 0x7ff00000 {
+ return 0.0;
+ }
+
+ if n == 0 {
+ return y0(x);
+ }
+ if n < 0 {
+ nm1 = -(n + 1);
+ sign = (n & 1) != 0;
+ } else {
+ nm1 = n - 1;
+ sign = false;
+ }
+ if nm1 == 0 {
+ if sign {
+ return -y1(x);
+ } else {
+ return y1(x);
+ }
+ }
+
+ if ix >= 0x52d00000 {
+ /* x > 2**302 */
+ /* (x >> n**2)
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ temp = match nm1 & 3 {
+ 0 => -sin(x) - cos(x),
+ 1 => -sin(x) + cos(x),
+ 2 => sin(x) + cos(x),
+ 3 | _ => sin(x) - cos(x),
+ };
+ b = INVSQRTPI * temp / sqrt(x);
+ } else {
+ a = y0(x);
+ b = y1(x);
+ /* quit if b is -inf */
+ ib = get_high_word(b);
+ i = 0;
+ while i < nm1 && ib != 0xfff00000 {
+ i += 1;
+ temp = b;
+ b = (2.0 * (i as f64) / x) * b - a;
+ ib = get_high_word(b);
+ a = temp;
+ }
+ }
+
+ if sign {
+ -b
+ } else {
+ b
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/jnf.rs b/vendor/compiler_builtins/libm/src/math/jnf.rs
new file mode 100644
index 000000000..360f62e20
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/jnf.rs
@@ -0,0 +1,259 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{fabsf, j0f, j1f, logf, y0f, y1f};
+
+pub fn jnf(n: i32, mut x: f32) -> f32 {
+ let mut ix: u32;
+ let mut nm1: i32;
+ let mut sign: bool;
+ let mut i: i32;
+ let mut a: f32;
+ let mut b: f32;
+ let mut temp: f32;
+
+ ix = x.to_bits();
+ sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+ if ix > 0x7f800000 {
+ /* nan */
+ return x;
+ }
+
+ /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
+ if n == 0 {
+ return j0f(x);
+ }
+ if n < 0 {
+ nm1 = -(n + 1);
+ x = -x;
+ sign = !sign;
+ } else {
+ nm1 = n - 1;
+ }
+ if nm1 == 0 {
+ return j1f(x);
+ }
+
+ sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
+ x = fabsf(x);
+ if ix == 0 || ix == 0x7f800000 {
+ /* if x is 0 or inf */
+ b = 0.0;
+ } else if (nm1 as f32) < x {
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+ a = j0f(x);
+ b = j1f(x);
+ i = 0;
+ while i < nm1 {
+ i += 1;
+ temp = b;
+ b = b * (2.0 * (i as f32) / x) - a;
+ a = temp;
+ }
+ } else {
+ if ix < 0x35800000 {
+ /* x < 2**-20 */
+ /* x is tiny, return the first Taylor expansion of J(n,x)
+ * J(n,x) = 1/n!*(x/2)^n - ...
+ */
+ if nm1 > 8 {
+ /* underflow */
+ nm1 = 8;
+ }
+ temp = 0.5 * x;
+ b = temp;
+ a = 1.0;
+ i = 2;
+ while i <= nm1 + 1 {
+ a *= i as f32; /* a = n! */
+ b *= temp; /* b = (x/2)^n */
+ i += 1;
+ }
+ b = b / a;
+ } else {
+ /* use backward recurrence */
+ /* x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h=2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
+ */
+ /* determine k */
+ let mut t: f32;
+ let mut q0: f32;
+ let mut q1: f32;
+ let mut w: f32;
+ let h: f32;
+ let mut z: f32;
+ let mut tmp: f32;
+ let nf: f32;
+ let mut k: i32;
+
+ nf = (nm1 as f32) + 1.0;
+ w = 2.0 * (nf as f32) / x;
+ h = 2.0 / x;
+ z = w + h;
+ q0 = w;
+ q1 = w * z - 1.0;
+ k = 1;
+ while q1 < 1.0e4 {
+ k += 1;
+ z += h;
+ tmp = z * q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ t = 0.0;
+ i = k;
+ while i >= 0 {
+ t = 1.0 / (2.0 * ((i as f32) + nf) / x - t);
+ i -= 1;
+ }
+ a = t;
+ b = 1.0;
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * Hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result is
+ * likely underflow to zero
+ */
+ tmp = nf * logf(fabsf(w));
+ if tmp < 88.721679688 {
+ i = nm1;
+ while i > 0 {
+ temp = b;
+ b = 2.0 * (i as f32) * b / x - a;
+ a = temp;
+ i -= 1;
+ }
+ } else {
+ i = nm1;
+ while i > 0 {
+ temp = b;
+ b = 2.0 * (i as f32) * b / x - a;
+ a = temp;
+ /* scale b to avoid spurious overflow */
+ let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60
+ if b > x1p60 {
+ a /= b;
+ t /= b;
+ b = 1.0;
+ }
+ i -= 1;
+ }
+ }
+ z = j0f(x);
+ w = j1f(x);
+ if fabsf(z) >= fabsf(w) {
+ b = t * z / b;
+ } else {
+ b = t * w / a;
+ }
+ }
+ }
+
+ if sign {
+ -b
+ } else {
+ b
+ }
+}
+
+pub fn ynf(n: i32, x: f32) -> f32 {
+ let mut ix: u32;
+ let mut ib: u32;
+ let nm1: i32;
+ let mut sign: bool;
+ let mut i: i32;
+ let mut a: f32;
+ let mut b: f32;
+ let mut temp: f32;
+
+ ix = x.to_bits();
+ sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+ if ix > 0x7f800000 {
+ /* nan */
+ return x;
+ }
+ if sign && ix != 0 {
+ /* x < 0 */
+ return 0.0 / 0.0;
+ }
+ if ix == 0x7f800000 {
+ return 0.0;
+ }
+
+ if n == 0 {
+ return y0f(x);
+ }
+ if n < 0 {
+ nm1 = -(n + 1);
+ sign = (n & 1) != 0;
+ } else {
+ nm1 = n - 1;
+ sign = false;
+ }
+ if nm1 == 0 {
+ if sign {
+ return -y1f(x);
+ } else {
+ return y1f(x);
+ }
+ }
+
+ a = y0f(x);
+ b = y1f(x);
+ /* quit if b is -inf */
+ ib = b.to_bits();
+ i = 0;
+ while i < nm1 && ib != 0xff800000 {
+ i += 1;
+ temp = b;
+ b = (2.0 * (i as f32) / x) * b - a;
+ ib = b.to_bits();
+ a = temp;
+ }
+
+ if sign {
+ -b
+ } else {
+ b
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/k_cos.rs b/vendor/compiler_builtins/libm/src/math/k_cos.rs
new file mode 100644
index 000000000..49b2fc64d
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/k_cos.rs
@@ -0,0 +1,62 @@
+// origin: FreeBSD /usr/src/lib/msun/src/k_cos.c
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunSoft, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+
+const C1: f64 = 4.16666666666666019037e-02; /* 0x3FA55555, 0x5555554C */
+const C2: f64 = -1.38888888888741095749e-03; /* 0xBF56C16C, 0x16C15177 */
+const C3: f64 = 2.48015872894767294178e-05; /* 0x3EFA01A0, 0x19CB1590 */
+const C4: f64 = -2.75573143513906633035e-07; /* 0xBE927E4F, 0x809C52AD */
+const C5: f64 = 2.08757232129817482790e-09; /* 0x3E21EE9E, 0xBDB4B1C4 */
+const C6: f64 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
+
+// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
+// Input x is assumed to be bounded by ~pi/4 in magnitude.
+// Input y is the tail of x.
+//
+// Algorithm
+// 1. Since cos(-x) = cos(x), we need only to consider positive x.
+// 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
+// 3. cos(x) is approximated by a polynomial of degree 14 on
+// [0,pi/4]
+// 4 14
+// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
+// where the remez error is
+//
+// | 2 4 6 8 10 12 14 | -58
+// |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
+// | |
+//
+// 4 6 8 10 12 14
+// 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
+// cos(x) ~ 1 - x*x/2 + r
+// since cos(x+y) ~ cos(x) - sin(x)*y
+// ~ cos(x) - x*y,
+// a correction term is necessary in cos(x) and hence
+// cos(x+y) = 1 - (x*x/2 - (r - x*y))
+// For better accuracy, rearrange to
+// cos(x+y) ~ w + (tmp + (r-x*y))
+// where w = 1 - x*x/2 and tmp is a tiny correction term
+// (1 - x*x/2 == w + tmp exactly in infinite precision).
+// The exactness of w + tmp in infinite precision depends on w
+// and tmp having the same precision as x. If they have extra
+// precision due to compiler bugs, then the extra precision is
+// only good provided it is retained in all terms of the final
+// expression for cos(). Retention happens in all cases tested
+// under FreeBSD, so don't pessimize things by forcibly clipping
+// any extra precision in w.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_cos(x: f64, y: f64) -> f64 {
+ let z = x * x;
+ let w = z * z;
+ let r = z * (C1 + z * (C2 + z * C3)) + w * w * (C4 + z * (C5 + z * C6));
+ let hz = 0.5 * z;
+ let w = 1.0 - hz;
+ w + (((1.0 - w) - hz) + (z * r - x * y))
+}
diff --git a/vendor/compiler_builtins/libm/src/math/k_cosf.rs b/vendor/compiler_builtins/libm/src/math/k_cosf.rs
new file mode 100644
index 000000000..e99f2348c
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/k_cosf.rs
@@ -0,0 +1,29 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_cosf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Debugged and optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). */
+const C0: f64 = -0.499999997251031003120; /* -0x1ffffffd0c5e81.0p-54 */
+const C1: f64 = 0.0416666233237390631894; /* 0x155553e1053a42.0p-57 */
+const C2: f64 = -0.00138867637746099294692; /* -0x16c087e80f1e27.0p-62 */
+const C3: f64 = 0.0000243904487962774090654; /* 0x199342e0ee5069.0p-68 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_cosf(x: f64) -> f32 {
+ let z = x * x;
+ let w = z * z;
+ let r = C2 + z * C3;
+ (((1.0 + z * C0) + w * C1) + (w * z) * r) as f32
+}
diff --git a/vendor/compiler_builtins/libm/src/math/k_expo2.rs b/vendor/compiler_builtins/libm/src/math/k_expo2.rs
new file mode 100644
index 000000000..7345075f3
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/k_expo2.rs
@@ -0,0 +1,14 @@
+use super::exp;
+
+/* k is such that k*ln2 has minimal relative error and x - kln2 > log(FLT_MIN) */
+const K: i32 = 2043;
+
+/* expf(x)/2 for x >= log(FLT_MAX), slightly better than 0.5f*expf(x/2)*expf(x/2) */
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_expo2(x: f64) -> f64 {
+ let k_ln2 = f64::from_bits(0x40962066151add8b);
+ /* note that k is odd and scale*scale overflows */
+ let scale = f64::from_bits(((((0x3ff + K / 2) as u32) << 20) as u64) << 32);
+ /* exp(x - k ln2) * 2**(k-1) */
+ exp(x - k_ln2) * scale * scale
+}
diff --git a/vendor/compiler_builtins/libm/src/math/k_expo2f.rs b/vendor/compiler_builtins/libm/src/math/k_expo2f.rs
new file mode 100644
index 000000000..fbd7b27d5
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/k_expo2f.rs
@@ -0,0 +1,14 @@
+use super::expf;
+
+/* k is such that k*ln2 has minimal relative error and x - kln2 > log(FLT_MIN) */
+const K: i32 = 235;
+
+/* expf(x)/2 for x >= log(FLT_MAX), slightly better than 0.5f*expf(x/2)*expf(x/2) */
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_expo2f(x: f32) -> f32 {
+ let k_ln2 = f32::from_bits(0x4322e3bc);
+ /* note that k is odd and scale*scale overflows */
+ let scale = f32::from_bits(((0x7f + K / 2) as u32) << 23);
+ /* exp(x - k ln2) * 2**(k-1) */
+ expf(x - k_ln2) * scale * scale
+}
diff --git a/vendor/compiler_builtins/libm/src/math/k_sin.rs b/vendor/compiler_builtins/libm/src/math/k_sin.rs
new file mode 100644
index 000000000..9dd96c944
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/k_sin.rs
@@ -0,0 +1,57 @@
+// origin: FreeBSD /usr/src/lib/msun/src/k_sin.c
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunSoft, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+
+const S1: f64 = -1.66666666666666324348e-01; /* 0xBFC55555, 0x55555549 */
+const S2: f64 = 8.33333333332248946124e-03; /* 0x3F811111, 0x1110F8A6 */
+const S3: f64 = -1.98412698298579493134e-04; /* 0xBF2A01A0, 0x19C161D5 */
+const S4: f64 = 2.75573137070700676789e-06; /* 0x3EC71DE3, 0x57B1FE7D */
+const S5: f64 = -2.50507602534068634195e-08; /* 0xBE5AE5E6, 0x8A2B9CEB */
+const S6: f64 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
+
+// kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
+// Input x is assumed to be bounded by ~pi/4 in magnitude.
+// Input y is the tail of x.
+// Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
+//
+// Algorithm
+// 1. Since sin(-x) = -sin(x), we need only to consider positive x.
+// 2. Callers must return sin(-0) = -0 without calling here since our
+// odd polynomial is not evaluated in a way that preserves -0.
+// Callers may do the optimization sin(x) ~ x for tiny x.
+// 3. sin(x) is approximated by a polynomial of degree 13 on
+// [0,pi/4]
+// 3 13
+// sin(x) ~ x + S1*x + ... + S6*x
+// where
+//
+// |sin(x) 2 4 6 8 10 12 | -58
+// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
+// | x |
+//
+// 4. sin(x+y) = sin(x) + sin'(x')*y
+// ~ sin(x) + (1-x*x/2)*y
+// For better accuracy, let
+// 3 2 2 2 2
+// r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
+// then 3 2
+// sin(x) = x + (S1*x + (x *(r-y/2)+y))
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_sin(x: f64, y: f64, iy: i32) -> f64 {
+ let z = x * x;
+ let w = z * z;
+ let r = S2 + z * (S3 + z * S4) + z * w * (S5 + z * S6);
+ let v = z * x;
+ if iy == 0 {
+ x + v * (S1 + z * r)
+ } else {
+ x - ((z * (0.5 * y - v * r) - y) - v * S1)
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/k_sinf.rs b/vendor/compiler_builtins/libm/src/math/k_sinf.rs
new file mode 100644
index 000000000..88d10caba
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/k_sinf.rs
@@ -0,0 +1,30 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_sinf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). */
+const S1: f64 = -0.166666666416265235595; /* -0x15555554cbac77.0p-55 */
+const S2: f64 = 0.0083333293858894631756; /* 0x111110896efbb2.0p-59 */
+const S3: f64 = -0.000198393348360966317347; /* -0x1a00f9e2cae774.0p-65 */
+const S4: f64 = 0.0000027183114939898219064; /* 0x16cd878c3b46a7.0p-71 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_sinf(x: f64) -> f32 {
+ let z = x * x;
+ let w = z * z;
+ let r = S3 + z * S4;
+ let s = z * x;
+ ((x + s * (S1 + z * S2)) + s * w * r) as f32
+}
diff --git a/vendor/compiler_builtins/libm/src/math/k_tan.rs b/vendor/compiler_builtins/libm/src/math/k_tan.rs
new file mode 100644
index 000000000..d177010bb
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/k_tan.rs
@@ -0,0 +1,105 @@
+// origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
+//
+// ====================================================
+// Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
+//
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+
+// kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
+// Input x is assumed to be bounded by ~pi/4 in magnitude.
+// Input y is the tail of x.
+// Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
+//
+// Algorithm
+// 1. Since tan(-x) = -tan(x), we need only to consider positive x.
+// 2. Callers must return tan(-0) = -0 without calling here since our
+// odd polynomial is not evaluated in a way that preserves -0.
+// Callers may do the optimization tan(x) ~ x for tiny x.
+// 3. tan(x) is approximated by a odd polynomial of degree 27 on
+// [0,0.67434]
+// 3 27
+// tan(x) ~ x + T1*x + ... + T13*x
+// where
+//
+// |tan(x) 2 4 26 | -59.2
+// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
+// | x |
+//
+// Note: tan(x+y) = tan(x) + tan'(x)*y
+// ~ tan(x) + (1+x*x)*y
+// Therefore, for better accuracy in computing tan(x+y), let
+// 3 2 2 2 2
+// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
+// then
+// 3 2
+// tan(x+y) = x + (T1*x + (x *(r+y)+y))
+//
+// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
+// tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
+// = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
+static T: [f64; 13] = [
+ 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
+ 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
+ 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
+ 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
+ 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
+ 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
+ 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
+ 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
+ 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
+ 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
+ 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
+ -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
+ 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
+];
+const PIO4: f64 = 7.85398163397448278999e-01; /* 3FE921FB, 54442D18 */
+const PIO4_LO: f64 = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_tan(mut x: f64, mut y: f64, odd: i32) -> f64 {
+ let hx = (f64::to_bits(x) >> 32) as u32;
+ let big = (hx & 0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
+ if big {
+ let sign = hx >> 31;
+ if sign != 0 {
+ x = -x;
+ y = -y;
+ }
+ x = (PIO4 - x) + (PIO4_LO - y);
+ y = 0.0;
+ }
+ let z = x * x;
+ let w = z * z;
+ /*
+ * Break x^5*(T[1]+x^2*T[2]+...) into
+ * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
+ * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
+ */
+ let r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11]))));
+ let v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12])))));
+ let s = z * x;
+ let r = y + z * (s * (r + v) + y) + s * T[0];
+ let w = x + r;
+ if big {
+ let sign = hx >> 31;
+ let s = 1.0 - 2.0 * odd as f64;
+ let v = s - 2.0 * (x + (r - w * w / (w + s)));
+ return if sign != 0 { -v } else { v };
+ }
+ if odd == 0 {
+ return w;
+ }
+ /* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
+ let w0 = zero_low_word(w);
+ let v = r - (w0 - x); /* w0+v = r+x */
+ let a = -1.0 / w;
+ let a0 = zero_low_word(a);
+ a0 + a * (1.0 + a0 * w0 + a0 * v)
+}
+
+fn zero_low_word(x: f64) -> f64 {
+ f64::from_bits(f64::to_bits(x) & 0xFFFF_FFFF_0000_0000)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/k_tanf.rs b/vendor/compiler_builtins/libm/src/math/k_tanf.rs
new file mode 100644
index 000000000..af8db539d
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/k_tanf.rs
@@ -0,0 +1,46 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
+/*
+ * ====================================================
+ * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
+const T: [f64; 6] = [
+ 0.333331395030791399758, /* 0x15554d3418c99f.0p-54 */
+ 0.133392002712976742718, /* 0x1112fd38999f72.0p-55 */
+ 0.0533812378445670393523, /* 0x1b54c91d865afe.0p-57 */
+ 0.0245283181166547278873, /* 0x191df3908c33ce.0p-58 */
+ 0.00297435743359967304927, /* 0x185dadfcecf44e.0p-61 */
+ 0.00946564784943673166728, /* 0x1362b9bf971bcd.0p-59 */
+];
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn k_tanf(x: f64, odd: bool) -> f32 {
+ let z = x * x;
+ /*
+ * Split up the polynomial into small independent terms to give
+ * opportunities for parallel evaluation. The chosen splitting is
+ * micro-optimized for Athlons (XP, X64). It costs 2 multiplications
+ * relative to Horner's method on sequential machines.
+ *
+ * We add the small terms from lowest degree up for efficiency on
+ * non-sequential machines (the lowest degree terms tend to be ready
+ * earlier). Apart from this, we don't care about order of
+ * operations, and don't need to to care since we have precision to
+ * spare. However, the chosen splitting is good for accuracy too,
+ * and would give results as accurate as Horner's method if the
+ * small terms were added from highest degree down.
+ */
+ let mut r = T[4] + z * T[5];
+ let t = T[2] + z * T[3];
+ let w = z * z;
+ let s = z * x;
+ let u = T[0] + z * T[1];
+ r = (x + s * u) + (s * w) * (t + w * r);
+ (if odd { -1. / r } else { r }) as f32
+}
diff --git a/vendor/compiler_builtins/libm/src/math/ldexp.rs b/vendor/compiler_builtins/libm/src/math/ldexp.rs
new file mode 100644
index 000000000..e46242e55
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/ldexp.rs
@@ -0,0 +1,4 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ldexp(x: f64, n: i32) -> f64 {
+ super::scalbn(x, n)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/ldexpf.rs b/vendor/compiler_builtins/libm/src/math/ldexpf.rs
new file mode 100644
index 000000000..95b27fc49
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/ldexpf.rs
@@ -0,0 +1,4 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn ldexpf(x: f32, n: i32) -> f32 {
+ super::scalbnf(x, n)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/lgamma.rs b/vendor/compiler_builtins/libm/src/math/lgamma.rs
new file mode 100644
index 000000000..5bc87e85e
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/lgamma.rs
@@ -0,0 +1,5 @@
+use super::lgamma_r;
+
+pub fn lgamma(x: f64) -> f64 {
+ lgamma_r(x).0
+}
diff --git a/vendor/compiler_builtins/libm/src/math/lgamma_r.rs b/vendor/compiler_builtins/libm/src/math/lgamma_r.rs
new file mode 100644
index 000000000..9533e882c
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/lgamma_r.rs
@@ -0,0 +1,319 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ */
+/* lgamma_r(x, signgamp)
+ * Reentrant version of the logarithm of the Gamma function
+ * with user provide pointer for the sign of Gamma(x).
+ *
+ * Method:
+ * 1. Argument Reduction for 0 < x <= 8
+ * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
+ * reduce x to a number in [1.5,2.5] by
+ * lgamma(1+s) = log(s) + lgamma(s)
+ * for example,
+ * lgamma(7.3) = log(6.3) + lgamma(6.3)
+ * = log(6.3*5.3) + lgamma(5.3)
+ * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
+ * 2. Polynomial approximation of lgamma around its
+ * minimun ymin=1.461632144968362245 to maintain monotonicity.
+ * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
+ * Let z = x-ymin;
+ * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
+ * where
+ * poly(z) is a 14 degree polynomial.
+ * 2. Rational approximation in the primary interval [2,3]
+ * We use the following approximation:
+ * s = x-2.0;
+ * lgamma(x) = 0.5*s + s*P(s)/Q(s)
+ * with accuracy
+ * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
+ * Our algorithms are based on the following observation
+ *
+ * zeta(2)-1 2 zeta(3)-1 3
+ * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
+ * 2 3
+ *
+ * where Euler = 0.5771... is the Euler constant, which is very
+ * close to 0.5.
+ *
+ * 3. For x>=8, we have
+ * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
+ * (better formula:
+ * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
+ * Let z = 1/x, then we approximation
+ * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
+ * by
+ * 3 5 11
+ * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
+ * where
+ * |w - f(z)| < 2**-58.74
+ *
+ * 4. For negative x, since (G is gamma function)
+ * -x*G(-x)*G(x) = PI/sin(PI*x),
+ * we have
+ * G(x) = PI/(sin(PI*x)*(-x)*G(-x))
+ * since G(-x) is positive, sign(G(x)) = sign(sin(PI*x)) for x<0
+ * Hence, for x<0, signgam = sign(sin(PI*x)) and
+ * lgamma(x) = log(|Gamma(x)|)
+ * = log(PI/(|x*sin(PI*x)|)) - lgamma(-x);
+ * Note: one should avoid compute PI*(-x) directly in the
+ * computation of sin(PI*(-x)).
+ *
+ * 5. Special Cases
+ * lgamma(2+s) ~ s*(1-Euler) for tiny s
+ * lgamma(1) = lgamma(2) = 0
+ * lgamma(x) ~ -log(|x|) for tiny x
+ * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
+ * lgamma(inf) = inf
+ * lgamma(-inf) = inf (bug for bug compatible with C99!?)
+ *
+ */
+
+use super::{floor, k_cos, k_sin, log};
+
+const PI: f64 = 3.14159265358979311600e+00; /* 0x400921FB, 0x54442D18 */
+const A0: f64 = 7.72156649015328655494e-02; /* 0x3FB3C467, 0xE37DB0C8 */
+const A1: f64 = 3.22467033424113591611e-01; /* 0x3FD4A34C, 0xC4A60FAD */
+const A2: f64 = 6.73523010531292681824e-02; /* 0x3FB13E00, 0x1A5562A7 */
+const A3: f64 = 2.05808084325167332806e-02; /* 0x3F951322, 0xAC92547B */
+const A4: f64 = 7.38555086081402883957e-03; /* 0x3F7E404F, 0xB68FEFE8 */
+const A5: f64 = 2.89051383673415629091e-03; /* 0x3F67ADD8, 0xCCB7926B */
+const A6: f64 = 1.19270763183362067845e-03; /* 0x3F538A94, 0x116F3F5D */
+const A7: f64 = 5.10069792153511336608e-04; /* 0x3F40B6C6, 0x89B99C00 */
+const A8: f64 = 2.20862790713908385557e-04; /* 0x3F2CF2EC, 0xED10E54D */
+const A9: f64 = 1.08011567247583939954e-04; /* 0x3F1C5088, 0x987DFB07 */
+const A10: f64 = 2.52144565451257326939e-05; /* 0x3EFA7074, 0x428CFA52 */
+const A11: f64 = 4.48640949618915160150e-05; /* 0x3F07858E, 0x90A45837 */
+const TC: f64 = 1.46163214496836224576e+00; /* 0x3FF762D8, 0x6356BE3F */
+const TF: f64 = -1.21486290535849611461e-01; /* 0xBFBF19B9, 0xBCC38A42 */
+/* tt = -(tail of TF) */
+const TT: f64 = -3.63867699703950536541e-18; /* 0xBC50C7CA, 0xA48A971F */
+const T0: f64 = 4.83836122723810047042e-01; /* 0x3FDEF72B, 0xC8EE38A2 */
+const T1: f64 = -1.47587722994593911752e-01; /* 0xBFC2E427, 0x8DC6C509 */
+const T2: f64 = 6.46249402391333854778e-02; /* 0x3FB08B42, 0x94D5419B */
+const T3: f64 = -3.27885410759859649565e-02; /* 0xBFA0C9A8, 0xDF35B713 */
+const T4: f64 = 1.79706750811820387126e-02; /* 0x3F9266E7, 0x970AF9EC */
+const T5: f64 = -1.03142241298341437450e-02; /* 0xBF851F9F, 0xBA91EC6A */
+const T6: f64 = 6.10053870246291332635e-03; /* 0x3F78FCE0, 0xE370E344 */
+const T7: f64 = -3.68452016781138256760e-03; /* 0xBF6E2EFF, 0xB3E914D7 */
+const T8: f64 = 2.25964780900612472250e-03; /* 0x3F6282D3, 0x2E15C915 */
+const T9: f64 = -1.40346469989232843813e-03; /* 0xBF56FE8E, 0xBF2D1AF1 */
+const T10: f64 = 8.81081882437654011382e-04; /* 0x3F4CDF0C, 0xEF61A8E9 */
+const T11: f64 = -5.38595305356740546715e-04; /* 0xBF41A610, 0x9C73E0EC */
+const T12: f64 = 3.15632070903625950361e-04; /* 0x3F34AF6D, 0x6C0EBBF7 */
+const T13: f64 = -3.12754168375120860518e-04; /* 0xBF347F24, 0xECC38C38 */
+const T14: f64 = 3.35529192635519073543e-04; /* 0x3F35FD3E, 0xE8C2D3F4 */
+const U0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */
+const U1: f64 = 6.32827064025093366517e-01; /* 0x3FE4401E, 0x8B005DFF */
+const U2: f64 = 1.45492250137234768737e+00; /* 0x3FF7475C, 0xD119BD6F */
+const U3: f64 = 9.77717527963372745603e-01; /* 0x3FEF4976, 0x44EA8450 */
+const U4: f64 = 2.28963728064692451092e-01; /* 0x3FCD4EAE, 0xF6010924 */
+const U5: f64 = 1.33810918536787660377e-02; /* 0x3F8B678B, 0xBF2BAB09 */
+const V1: f64 = 2.45597793713041134822e+00; /* 0x4003A5D7, 0xC2BD619C */
+const V2: f64 = 2.12848976379893395361e+00; /* 0x40010725, 0xA42B18F5 */
+const V3: f64 = 7.69285150456672783825e-01; /* 0x3FE89DFB, 0xE45050AF */
+const V4: f64 = 1.04222645593369134254e-01; /* 0x3FBAAE55, 0xD6537C88 */
+const V5: f64 = 3.21709242282423911810e-03; /* 0x3F6A5ABB, 0x57D0CF61 */
+const S0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */
+const S1: f64 = 2.14982415960608852501e-01; /* 0x3FCB848B, 0x36E20878 */
+const S2: f64 = 3.25778796408930981787e-01; /* 0x3FD4D98F, 0x4F139F59 */
+const S3: f64 = 1.46350472652464452805e-01; /* 0x3FC2BB9C, 0xBEE5F2F7 */
+const S4: f64 = 2.66422703033638609560e-02; /* 0x3F9B481C, 0x7E939961 */
+const S5: f64 = 1.84028451407337715652e-03; /* 0x3F5E26B6, 0x7368F239 */
+const S6: f64 = 3.19475326584100867617e-05; /* 0x3F00BFEC, 0xDD17E945 */
+const R1: f64 = 1.39200533467621045958e+00; /* 0x3FF645A7, 0x62C4AB74 */
+const R2: f64 = 7.21935547567138069525e-01; /* 0x3FE71A18, 0x93D3DCDC */
+const R3: f64 = 1.71933865632803078993e-01; /* 0x3FC601ED, 0xCCFBDF27 */
+const R4: f64 = 1.86459191715652901344e-02; /* 0x3F9317EA, 0x742ED475 */
+const R5: f64 = 7.77942496381893596434e-04; /* 0x3F497DDA, 0xCA41A95B */
+const R6: f64 = 7.32668430744625636189e-06; /* 0x3EDEBAF7, 0xA5B38140 */
+const W0: f64 = 4.18938533204672725052e-01; /* 0x3FDACFE3, 0x90C97D69 */
+const W1: f64 = 8.33333333333329678849e-02; /* 0x3FB55555, 0x5555553B */
+const W2: f64 = -2.77777777728775536470e-03; /* 0xBF66C16C, 0x16B02E5C */
+const W3: f64 = 7.93650558643019558500e-04; /* 0x3F4A019F, 0x98CF38B6 */
+const W4: f64 = -5.95187557450339963135e-04; /* 0xBF4380CB, 0x8C0FE741 */
+const W5: f64 = 8.36339918996282139126e-04; /* 0x3F4B67BA, 0x4CDAD5D1 */
+const W6: f64 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
+
+/* sin(PI*x) assuming x > 2^-100, if sin(PI*x)==0 the sign is arbitrary */
+fn sin_pi(mut x: f64) -> f64 {
+ let mut n: i32;
+
+ /* spurious inexact if odd int */
+ x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */
+
+ n = (x * 4.0) as i32;
+ n = (n + 1) / 2;
+ x -= (n as f64) * 0.5;
+ x *= PI;
+
+ match n {
+ 1 => k_cos(x, 0.0),
+ 2 => k_sin(-x, 0.0, 0),
+ 3 => -k_cos(x, 0.0),
+ 0 | _ => k_sin(x, 0.0, 0),
+ }
+}
+
+pub fn lgamma_r(mut x: f64) -> (f64, i32) {
+ let u: u64 = x.to_bits();
+ let mut t: f64;
+ let y: f64;
+ let mut z: f64;
+ let nadj: f64;
+ let p: f64;
+ let p1: f64;
+ let p2: f64;
+ let p3: f64;
+ let q: f64;
+ let mut r: f64;
+ let w: f64;
+ let ix: u32;
+ let sign: bool;
+ let i: i32;
+ let mut signgam: i32;
+
+ /* purge off +-inf, NaN, +-0, tiny and negative arguments */
+ signgam = 1;
+ sign = (u >> 63) != 0;
+ ix = ((u >> 32) as u32) & 0x7fffffff;
+ if ix >= 0x7ff00000 {
+ return (x * x, signgam);
+ }
+ if ix < (0x3ff - 70) << 20 {
+ /* |x|<2**-70, return -log(|x|) */
+ if sign {
+ x = -x;
+ signgam = -1;
+ }
+ return (-log(x), signgam);
+ }
+ if sign {
+ x = -x;
+ t = sin_pi(x);
+ if t == 0.0 {
+ /* -integer */
+ return (1.0 / (x - x), signgam);
+ }
+ if t > 0.0 {
+ signgam = -1;
+ } else {
+ t = -t;
+ }
+ nadj = log(PI / (t * x));
+ } else {
+ nadj = 0.0;
+ }
+
+ /* purge off 1 and 2 */
+ if (ix == 0x3ff00000 || ix == 0x40000000) && (u & 0xffffffff) == 0 {
+ r = 0.0;
+ }
+ /* for x < 2.0 */
+ else if ix < 0x40000000 {
+ if ix <= 0x3feccccc {
+ /* lgamma(x) = lgamma(x+1)-log(x) */
+ r = -log(x);
+ if ix >= 0x3FE76944 {
+ y = 1.0 - x;
+ i = 0;
+ } else if ix >= 0x3FCDA661 {
+ y = x - (TC - 1.0);
+ i = 1;
+ } else {
+ y = x;
+ i = 2;
+ }
+ } else {
+ r = 0.0;
+ if ix >= 0x3FFBB4C3 {
+ /* [1.7316,2] */
+ y = 2.0 - x;
+ i = 0;
+ } else if ix >= 0x3FF3B4C4 {
+ /* [1.23,1.73] */
+ y = x - TC;
+ i = 1;
+ } else {
+ y = x - 1.0;
+ i = 2;
+ }
+ }
+ match i {
+ 0 => {
+ z = y * y;
+ p1 = A0 + z * (A2 + z * (A4 + z * (A6 + z * (A8 + z * A10))));
+ p2 = z * (A1 + z * (A3 + z * (A5 + z * (A7 + z * (A9 + z * A11)))));
+ p = y * p1 + p2;
+ r += p - 0.5 * y;
+ }
+ 1 => {
+ z = y * y;
+ w = z * y;
+ p1 = T0 + w * (T3 + w * (T6 + w * (T9 + w * T12))); /* parallel comp */
+ p2 = T1 + w * (T4 + w * (T7 + w * (T10 + w * T13)));
+ p3 = T2 + w * (T5 + w * (T8 + w * (T11 + w * T14)));
+ p = z * p1 - (TT - w * (p2 + y * p3));
+ r += TF + p;
+ }
+ 2 => {
+ p1 = y * (U0 + y * (U1 + y * (U2 + y * (U3 + y * (U4 + y * U5)))));
+ p2 = 1.0 + y * (V1 + y * (V2 + y * (V3 + y * (V4 + y * V5))));
+ r += -0.5 * y + p1 / p2;
+ }
+ #[cfg(debug_assertions)]
+ _ => unreachable!(),
+ #[cfg(not(debug_assertions))]
+ _ => {}
+ }
+ } else if ix < 0x40200000 {
+ /* x < 8.0 */
+ i = x as i32;
+ y = x - (i as f64);
+ p = y * (S0 + y * (S1 + y * (S2 + y * (S3 + y * (S4 + y * (S5 + y * S6))))));
+ q = 1.0 + y * (R1 + y * (R2 + y * (R3 + y * (R4 + y * (R5 + y * R6)))));
+ r = 0.5 * y + p / q;
+ z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
+ // TODO: In C, this was implemented using switch jumps with fallthrough.
+ // Does this implementation have performance problems?
+ if i >= 7 {
+ z *= y + 6.0;
+ }
+ if i >= 6 {
+ z *= y + 5.0;
+ }
+ if i >= 5 {
+ z *= y + 4.0;
+ }
+ if i >= 4 {
+ z *= y + 3.0;
+ }
+ if i >= 3 {
+ z *= y + 2.0;
+ r += log(z);
+ }
+ } else if ix < 0x43900000 {
+ /* 8.0 <= x < 2**58 */
+ t = log(x);
+ z = 1.0 / x;
+ y = z * z;
+ w = W0 + z * (W1 + y * (W2 + y * (W3 + y * (W4 + y * (W5 + y * W6)))));
+ r = (x - 0.5) * (t - 1.0) + w;
+ } else {
+ /* 2**58 <= x <= inf */
+ r = x * (log(x) - 1.0);
+ }
+ if sign {
+ r = nadj - r;
+ }
+ return (r, signgam);
+}
diff --git a/vendor/compiler_builtins/libm/src/math/lgammaf.rs b/vendor/compiler_builtins/libm/src/math/lgammaf.rs
new file mode 100644
index 000000000..dfdc87f96
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/lgammaf.rs
@@ -0,0 +1,5 @@
+use super::lgammaf_r;
+
+pub fn lgammaf(x: f32) -> f32 {
+ lgammaf_r(x).0
+}
diff --git a/vendor/compiler_builtins/libm/src/math/lgammaf_r.rs b/vendor/compiler_builtins/libm/src/math/lgammaf_r.rs
new file mode 100644
index 000000000..c5e559f46
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/lgammaf_r.rs
@@ -0,0 +1,254 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_lgammaf_r.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{floorf, k_cosf, k_sinf, logf};
+
+const PI: f32 = 3.1415927410e+00; /* 0x40490fdb */
+const A0: f32 = 7.7215664089e-02; /* 0x3d9e233f */
+const A1: f32 = 3.2246702909e-01; /* 0x3ea51a66 */
+const A2: f32 = 6.7352302372e-02; /* 0x3d89f001 */
+const A3: f32 = 2.0580807701e-02; /* 0x3ca89915 */
+const A4: f32 = 7.3855509982e-03; /* 0x3bf2027e */
+const A5: f32 = 2.8905137442e-03; /* 0x3b3d6ec6 */
+const A6: f32 = 1.1927076848e-03; /* 0x3a9c54a1 */
+const A7: f32 = 5.1006977446e-04; /* 0x3a05b634 */
+const A8: f32 = 2.2086278477e-04; /* 0x39679767 */
+const A9: f32 = 1.0801156895e-04; /* 0x38e28445 */
+const A10: f32 = 2.5214456400e-05; /* 0x37d383a2 */
+const A11: f32 = 4.4864096708e-05; /* 0x383c2c75 */
+const TC: f32 = 1.4616321325e+00; /* 0x3fbb16c3 */
+const TF: f32 = -1.2148628384e-01; /* 0xbdf8cdcd */
+/* TT = -(tail of TF) */
+const TT: f32 = 6.6971006518e-09; /* 0x31e61c52 */
+const T0: f32 = 4.8383611441e-01; /* 0x3ef7b95e */
+const T1: f32 = -1.4758771658e-01; /* 0xbe17213c */
+const T2: f32 = 6.4624942839e-02; /* 0x3d845a15 */
+const T3: f32 = -3.2788541168e-02; /* 0xbd064d47 */
+const T4: f32 = 1.7970675603e-02; /* 0x3c93373d */
+const T5: f32 = -1.0314224288e-02; /* 0xbc28fcfe */
+const T6: f32 = 6.1005386524e-03; /* 0x3bc7e707 */
+const T7: f32 = -3.6845202558e-03; /* 0xbb7177fe */
+const T8: f32 = 2.2596477065e-03; /* 0x3b141699 */
+const T9: f32 = -1.4034647029e-03; /* 0xbab7f476 */
+const T10: f32 = 8.8108185446e-04; /* 0x3a66f867 */
+const T11: f32 = -5.3859531181e-04; /* 0xba0d3085 */
+const T12: f32 = 3.1563205994e-04; /* 0x39a57b6b */
+const T13: f32 = -3.1275415677e-04; /* 0xb9a3f927 */
+const T14: f32 = 3.3552918467e-04; /* 0x39afe9f7 */
+const U0: f32 = -7.7215664089e-02; /* 0xbd9e233f */
+const U1: f32 = 6.3282704353e-01; /* 0x3f2200f4 */
+const U2: f32 = 1.4549225569e+00; /* 0x3fba3ae7 */
+const U3: f32 = 9.7771751881e-01; /* 0x3f7a4bb2 */
+const U4: f32 = 2.2896373272e-01; /* 0x3e6a7578 */
+const U5: f32 = 1.3381091878e-02; /* 0x3c5b3c5e */
+const V1: f32 = 2.4559779167e+00; /* 0x401d2ebe */
+const V2: f32 = 2.1284897327e+00; /* 0x4008392d */
+const V3: f32 = 7.6928514242e-01; /* 0x3f44efdf */
+const V4: f32 = 1.0422264785e-01; /* 0x3dd572af */
+const V5: f32 = 3.2170924824e-03; /* 0x3b52d5db */
+const S0: f32 = -7.7215664089e-02; /* 0xbd9e233f */
+const S1: f32 = 2.1498242021e-01; /* 0x3e5c245a */
+const S2: f32 = 3.2577878237e-01; /* 0x3ea6cc7a */
+const S3: f32 = 1.4635047317e-01; /* 0x3e15dce6 */
+const S4: f32 = 2.6642270386e-02; /* 0x3cda40e4 */
+const S5: f32 = 1.8402845599e-03; /* 0x3af135b4 */
+const S6: f32 = 3.1947532989e-05; /* 0x3805ff67 */
+const R1: f32 = 1.3920053244e+00; /* 0x3fb22d3b */
+const R2: f32 = 7.2193557024e-01; /* 0x3f38d0c5 */
+const R3: f32 = 1.7193385959e-01; /* 0x3e300f6e */
+const R4: f32 = 1.8645919859e-02; /* 0x3c98bf54 */
+const R5: f32 = 7.7794247773e-04; /* 0x3a4beed6 */
+const R6: f32 = 7.3266842264e-06; /* 0x36f5d7bd */
+const W0: f32 = 4.1893854737e-01; /* 0x3ed67f1d */
+const W1: f32 = 8.3333335817e-02; /* 0x3daaaaab */
+const W2: f32 = -2.7777778450e-03; /* 0xbb360b61 */
+const W3: f32 = 7.9365057172e-04; /* 0x3a500cfd */
+const W4: f32 = -5.9518753551e-04; /* 0xba1c065c */
+const W5: f32 = 8.3633989561e-04; /* 0x3a5b3dd2 */
+const W6: f32 = -1.6309292987e-03; /* 0xbad5c4e8 */
+
+/* sin(PI*x) assuming x > 2^-100, if sin(PI*x)==0 the sign is arbitrary */
+fn sin_pi(mut x: f32) -> f32 {
+ let mut y: f64;
+ let mut n: isize;
+
+ /* spurious inexact if odd int */
+ x = 2.0 * (x * 0.5 - floorf(x * 0.5)); /* x mod 2.0 */
+
+ n = (x * 4.0) as isize;
+ n = (n + 1) / 2;
+ y = (x as f64) - (n as f64) * 0.5;
+ y *= 3.14159265358979323846;
+ match n {
+ 1 => k_cosf(y),
+ 2 => k_sinf(-y),
+ 3 => -k_cosf(y),
+ 0 | _ => k_sinf(y),
+ }
+}
+
+pub fn lgammaf_r(mut x: f32) -> (f32, i32) {
+ let u = x.to_bits();
+ let mut t: f32;
+ let y: f32;
+ let mut z: f32;
+ let nadj: f32;
+ let p: f32;
+ let p1: f32;
+ let p2: f32;
+ let p3: f32;
+ let q: f32;
+ let mut r: f32;
+ let w: f32;
+ let ix: u32;
+ let i: i32;
+ let sign: bool;
+ let mut signgam: i32;
+
+ /* purge off +-inf, NaN, +-0, tiny and negative arguments */
+ signgam = 1;
+ sign = (u >> 31) != 0;
+ ix = u & 0x7fffffff;
+ if ix >= 0x7f800000 {
+ return (x * x, signgam);
+ }
+ if ix < 0x35000000 {
+ /* |x| < 2**-21, return -log(|x|) */
+ if sign {
+ signgam = -1;
+ x = -x;
+ }
+ return (-logf(x), signgam);
+ }
+ if sign {
+ x = -x;
+ t = sin_pi(x);
+ if t == 0.0 {
+ /* -integer */
+ return (1.0 / (x - x), signgam);
+ }
+ if t > 0.0 {
+ signgam = -1;
+ } else {
+ t = -t;
+ }
+ nadj = logf(PI / (t * x));
+ } else {
+ nadj = 0.0;
+ }
+
+ /* purge off 1 and 2 */
+ if ix == 0x3f800000 || ix == 0x40000000 {
+ r = 0.0;
+ }
+ /* for x < 2.0 */
+ else if ix < 0x40000000 {
+ if ix <= 0x3f666666 {
+ /* lgamma(x) = lgamma(x+1)-log(x) */
+ r = -logf(x);
+ if ix >= 0x3f3b4a20 {
+ y = 1.0 - x;
+ i = 0;
+ } else if ix >= 0x3e6d3308 {
+ y = x - (TC - 1.0);
+ i = 1;
+ } else {
+ y = x;
+ i = 2;
+ }
+ } else {
+ r = 0.0;
+ if ix >= 0x3fdda618 {
+ /* [1.7316,2] */
+ y = 2.0 - x;
+ i = 0;
+ } else if ix >= 0x3F9da620 {
+ /* [1.23,1.73] */
+ y = x - TC;
+ i = 1;
+ } else {
+ y = x - 1.0;
+ i = 2;
+ }
+ }
+ match i {
+ 0 => {
+ z = y * y;
+ p1 = A0 + z * (A2 + z * (A4 + z * (A6 + z * (A8 + z * A10))));
+ p2 = z * (A1 + z * (A3 + z * (A5 + z * (A7 + z * (A9 + z * A11)))));
+ p = y * p1 + p2;
+ r += p - 0.5 * y;
+ }
+ 1 => {
+ z = y * y;
+ w = z * y;
+ p1 = T0 + w * (T3 + w * (T6 + w * (T9 + w * T12))); /* parallel comp */
+ p2 = T1 + w * (T4 + w * (T7 + w * (T10 + w * T13)));
+ p3 = T2 + w * (T5 + w * (T8 + w * (T11 + w * T14)));
+ p = z * p1 - (TT - w * (p2 + y * p3));
+ r += TF + p;
+ }
+ 2 => {
+ p1 = y * (U0 + y * (U1 + y * (U2 + y * (U3 + y * (U4 + y * U5)))));
+ p2 = 1.0 + y * (V1 + y * (V2 + y * (V3 + y * (V4 + y * V5))));
+ r += -0.5 * y + p1 / p2;
+ }
+ #[cfg(debug_assertions)]
+ _ => unreachable!(),
+ #[cfg(not(debug_assertions))]
+ _ => {}
+ }
+ } else if ix < 0x41000000 {
+ /* x < 8.0 */
+ i = x as i32;
+ y = x - (i as f32);
+ p = y * (S0 + y * (S1 + y * (S2 + y * (S3 + y * (S4 + y * (S5 + y * S6))))));
+ q = 1.0 + y * (R1 + y * (R2 + y * (R3 + y * (R4 + y * (R5 + y * R6)))));
+ r = 0.5 * y + p / q;
+ z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
+ // TODO: In C, this was implemented using switch jumps with fallthrough.
+ // Does this implementation have performance problems?
+ if i >= 7 {
+ z *= y + 6.0;
+ }
+ if i >= 6 {
+ z *= y + 5.0;
+ }
+ if i >= 5 {
+ z *= y + 4.0;
+ }
+ if i >= 4 {
+ z *= y + 3.0;
+ }
+ if i >= 3 {
+ z *= y + 2.0;
+ r += logf(z);
+ }
+ } else if ix < 0x5c800000 {
+ /* 8.0 <= x < 2**58 */
+ t = logf(x);
+ z = 1.0 / x;
+ y = z * z;
+ w = W0 + z * (W1 + y * (W2 + y * (W3 + y * (W4 + y * (W5 + y * W6)))));
+ r = (x - 0.5) * (t - 1.0) + w;
+ } else {
+ /* 2**58 <= x <= inf */
+ r = x * (logf(x) - 1.0);
+ }
+ if sign {
+ r = nadj - r;
+ }
+ return (r, signgam);
+}
diff --git a/vendor/compiler_builtins/libm/src/math/log.rs b/vendor/compiler_builtins/libm/src/math/log.rs
new file mode 100644
index 000000000..27a26da60
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/log.rs
@@ -0,0 +1,117 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* log(x)
+ * Return the logarithm of x
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * 2. Approximation of log(1+f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Remez algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
+ * (the values of Lg1 to Lg7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lg1*s +...+Lg7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log(1+f) = f - s*(f - R) (if f is not too large)
+ * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
+ *
+ * 3. Finally, log(x) = k*ln2 + log(1+f).
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ * Here ln2 is split into two floating point number:
+ * ln2_hi + ln2_lo,
+ * where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ * log(x) is NaN with signal if x < 0 (including -INF) ;
+ * log(+INF) is +INF; log(0) is -INF with signal;
+ * log(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
+const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
+const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
+const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
+const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
+const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
+const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
+const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
+const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log(mut x: f64) -> f64 {
+ let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
+
+ let mut ui = x.to_bits();
+ let mut hx: u32 = (ui >> 32) as u32;
+ let mut k: i32 = 0;
+
+ if (hx < 0x00100000) || ((hx >> 31) != 0) {
+ /* x < 2**-126 */
+ if ui << 1 == 0 {
+ return -1. / (x * x); /* log(+-0)=-inf */
+ }
+ if hx >> 31 != 0 {
+ return (x - x) / 0.0; /* log(-#) = NaN */
+ }
+ /* subnormal number, scale x up */
+ k -= 54;
+ x *= x1p54;
+ ui = x.to_bits();
+ hx = (ui >> 32) as u32;
+ } else if hx >= 0x7ff00000 {
+ return x;
+ } else if hx == 0x3ff00000 && ui << 32 == 0 {
+ return 0.;
+ }
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ hx += 0x3ff00000 - 0x3fe6a09e;
+ k += ((hx >> 20) as i32) - 0x3ff;
+ hx = (hx & 0x000fffff) + 0x3fe6a09e;
+ ui = ((hx as u64) << 32) | (ui & 0xffffffff);
+ x = f64::from_bits(ui);
+
+ let f: f64 = x - 1.0;
+ let hfsq: f64 = 0.5 * f * f;
+ let s: f64 = f / (2.0 + f);
+ let z: f64 = s * s;
+ let w: f64 = z * z;
+ let t1: f64 = w * (LG2 + w * (LG4 + w * LG6));
+ let t2: f64 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
+ let r: f64 = t2 + t1;
+ let dk: f64 = k as f64;
+ s * (hfsq + r) + dk * LN2_LO - hfsq + f + dk * LN2_HI
+}
diff --git a/vendor/compiler_builtins/libm/src/math/log10.rs b/vendor/compiler_builtins/libm/src/math/log10.rs
new file mode 100644
index 000000000..40dacf2c9
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/log10.rs
@@ -0,0 +1,117 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * Return the base 10 logarithm of x. See log.c for most comments.
+ *
+ * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
+ * as in log.c, then combine and scale in extra precision:
+ * log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2)
+ */
+
+use core::f64;
+
+const IVLN10HI: f64 = 4.34294481878168880939e-01; /* 0x3fdbcb7b, 0x15200000 */
+const IVLN10LO: f64 = 2.50829467116452752298e-11; /* 0x3dbb9438, 0xca9aadd5 */
+const LOG10_2HI: f64 = 3.01029995663611771306e-01; /* 0x3FD34413, 0x509F6000 */
+const LOG10_2LO: f64 = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
+const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
+const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
+const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
+const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
+const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
+const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
+const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log10(mut x: f64) -> f64 {
+ let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
+
+ let mut ui: u64 = x.to_bits();
+ let hfsq: f64;
+ let f: f64;
+ let s: f64;
+ let z: f64;
+ let r: f64;
+ let mut w: f64;
+ let t1: f64;
+ let t2: f64;
+ let dk: f64;
+ let y: f64;
+ let mut hi: f64;
+ let lo: f64;
+ let mut val_hi: f64;
+ let mut val_lo: f64;
+ let mut hx: u32;
+ let mut k: i32;
+
+ hx = (ui >> 32) as u32;
+ k = 0;
+ if hx < 0x00100000 || (hx >> 31) > 0 {
+ if ui << 1 == 0 {
+ return -1. / (x * x); /* log(+-0)=-inf */
+ }
+ if (hx >> 31) > 0 {
+ return (x - x) / 0.0; /* log(-#) = NaN */
+ }
+ /* subnormal number, scale x up */
+ k -= 54;
+ x *= x1p54;
+ ui = x.to_bits();
+ hx = (ui >> 32) as u32;
+ } else if hx >= 0x7ff00000 {
+ return x;
+ } else if hx == 0x3ff00000 && ui << 32 == 0 {
+ return 0.;
+ }
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ hx += 0x3ff00000 - 0x3fe6a09e;
+ k += (hx >> 20) as i32 - 0x3ff;
+ hx = (hx & 0x000fffff) + 0x3fe6a09e;
+ ui = (hx as u64) << 32 | (ui & 0xffffffff);
+ x = f64::from_bits(ui);
+
+ f = x - 1.0;
+ hfsq = 0.5 * f * f;
+ s = f / (2.0 + f);
+ z = s * s;
+ w = z * z;
+ t1 = w * (LG2 + w * (LG4 + w * LG6));
+ t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
+ r = t2 + t1;
+
+ /* See log2.c for details. */
+ /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
+ hi = f - hfsq;
+ ui = hi.to_bits();
+ ui &= (-1i64 as u64) << 32;
+ hi = f64::from_bits(ui);
+ lo = f - hi - hfsq + s * (hfsq + r);
+
+ /* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
+ val_hi = hi * IVLN10HI;
+ dk = k as f64;
+ y = dk * LOG10_2HI;
+ val_lo = dk * LOG10_2LO + (lo + hi) * IVLN10LO + lo * IVLN10HI;
+
+ /*
+ * Extra precision in for adding y is not strictly needed
+ * since there is no very large cancellation near x = sqrt(2) or
+ * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
+ * with some parallelism and it reduces the error for many args.
+ */
+ w = y + val_hi;
+ val_lo += (y - w) + val_hi;
+ val_hi = w;
+
+ val_lo + val_hi
+}
diff --git a/vendor/compiler_builtins/libm/src/math/log10f.rs b/vendor/compiler_builtins/libm/src/math/log10f.rs
new file mode 100644
index 000000000..108dfa8b5
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/log10f.rs
@@ -0,0 +1,91 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log10f.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * See comments in log10.c.
+ */
+
+use core::f32;
+
+const IVLN10HI: f32 = 4.3432617188e-01; /* 0x3ede6000 */
+const IVLN10LO: f32 = -3.1689971365e-05; /* 0xb804ead9 */
+const LOG10_2HI: f32 = 3.0102920532e-01; /* 0x3e9a2080 */
+const LOG10_2LO: f32 = 7.9034151668e-07; /* 0x355427db */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
+const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
+const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
+const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log10f(mut x: f32) -> f32 {
+ let x1p25f = f32::from_bits(0x4c000000); // 0x1p25f === 2 ^ 25
+
+ let mut ui: u32 = x.to_bits();
+ let hfsq: f32;
+ let f: f32;
+ let s: f32;
+ let z: f32;
+ let r: f32;
+ let w: f32;
+ let t1: f32;
+ let t2: f32;
+ let dk: f32;
+ let mut hi: f32;
+ let lo: f32;
+ let mut ix: u32;
+ let mut k: i32;
+
+ ix = ui;
+ k = 0;
+ if ix < 0x00800000 || (ix >> 31) > 0 {
+ /* x < 2**-126 */
+ if ix << 1 == 0 {
+ return -1. / (x * x); /* log(+-0)=-inf */
+ }
+ if (ix >> 31) > 0 {
+ return (x - x) / 0.0; /* log(-#) = NaN */
+ }
+ /* subnormal number, scale up x */
+ k -= 25;
+ x *= x1p25f;
+ ui = x.to_bits();
+ ix = ui;
+ } else if ix >= 0x7f800000 {
+ return x;
+ } else if ix == 0x3f800000 {
+ return 0.;
+ }
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ ix += 0x3f800000 - 0x3f3504f3;
+ k += (ix >> 23) as i32 - 0x7f;
+ ix = (ix & 0x007fffff) + 0x3f3504f3;
+ ui = ix;
+ x = f32::from_bits(ui);
+
+ f = x - 1.0;
+ s = f / (2.0 + f);
+ z = s * s;
+ w = z * z;
+ t1 = w * (LG2 + w * LG4);
+ t2 = z * (LG1 + w * LG3);
+ r = t2 + t1;
+ hfsq = 0.5 * f * f;
+
+ hi = f - hfsq;
+ ui = hi.to_bits();
+ ui &= 0xfffff000;
+ hi = f32::from_bits(ui);
+ lo = f - hi - hfsq + s * (hfsq + r);
+ dk = k as f32;
+ dk * LOG10_2LO + (lo + hi) * IVLN10LO + lo * IVLN10HI + hi * IVLN10HI + dk * LOG10_2HI
+}
diff --git a/vendor/compiler_builtins/libm/src/math/log1p.rs b/vendor/compiler_builtins/libm/src/math/log1p.rs
new file mode 100644
index 000000000..4fd1c73eb
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/log1p.rs
@@ -0,0 +1,143 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* double log1p(double x)
+ * Return the natural logarithm of 1+x.
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * 1+x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * Note. If k=0, then f=x is exact. However, if k!=0, then f
+ * may not be representable exactly. In that case, a correction
+ * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
+ * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
+ * and add back the correction term c/u.
+ * (Note: when x > 2**53, one can simply return log(x))
+ *
+ * 2. Approximation of log(1+f): See log.c
+ *
+ * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
+ *
+ * Special cases:
+ * log1p(x) is NaN with signal if x < -1 (including -INF) ;
+ * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
+ * log1p(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ *
+ * Note: Assuming log() return accurate answer, the following
+ * algorithm can be used to compute log1p(x) to within a few ULP:
+ *
+ * u = 1+x;
+ * if(u==1.0) return x ; else
+ * return log(u)*(x/(u-1.0));
+ *
+ * See HP-15C Advanced Functions Handbook, p.193.
+ */
+
+use core::f64;
+
+const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
+const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
+const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
+const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
+const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
+const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
+const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
+const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
+const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log1p(x: f64) -> f64 {
+ let mut ui: u64 = x.to_bits();
+ let hfsq: f64;
+ let mut f: f64 = 0.;
+ let mut c: f64 = 0.;
+ let s: f64;
+ let z: f64;
+ let r: f64;
+ let w: f64;
+ let t1: f64;
+ let t2: f64;
+ let dk: f64;
+ let hx: u32;
+ let mut hu: u32;
+ let mut k: i32;
+
+ hx = (ui >> 32) as u32;
+ k = 1;
+ if hx < 0x3fda827a || (hx >> 31) > 0 {
+ /* 1+x < sqrt(2)+ */
+ if hx >= 0xbff00000 {
+ /* x <= -1.0 */
+ if x == -1. {
+ return x / 0.0; /* log1p(-1) = -inf */
+ }
+ return (x - x) / 0.0; /* log1p(x<-1) = NaN */
+ }
+ if hx << 1 < 0x3ca00000 << 1 {
+ /* |x| < 2**-53 */
+ /* underflow if subnormal */
+ if (hx & 0x7ff00000) == 0 {
+ force_eval!(x as f32);
+ }
+ return x;
+ }
+ if hx <= 0xbfd2bec4 {
+ /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
+ k = 0;
+ c = 0.;
+ f = x;
+ }
+ } else if hx >= 0x7ff00000 {
+ return x;
+ }
+ if k > 0 {
+ ui = (1. + x).to_bits();
+ hu = (ui >> 32) as u32;
+ hu += 0x3ff00000 - 0x3fe6a09e;
+ k = (hu >> 20) as i32 - 0x3ff;
+ /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
+ if k < 54 {
+ c = if k >= 2 {
+ 1. - (f64::from_bits(ui) - x)
+ } else {
+ x - (f64::from_bits(ui) - 1.)
+ };
+ c /= f64::from_bits(ui);
+ } else {
+ c = 0.;
+ }
+ /* reduce u into [sqrt(2)/2, sqrt(2)] */
+ hu = (hu & 0x000fffff) + 0x3fe6a09e;
+ ui = (hu as u64) << 32 | (ui & 0xffffffff);
+ f = f64::from_bits(ui) - 1.;
+ }
+ hfsq = 0.5 * f * f;
+ s = f / (2.0 + f);
+ z = s * s;
+ w = z * z;
+ t1 = w * (LG2 + w * (LG4 + w * LG6));
+ t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
+ r = t2 + t1;
+ dk = k as f64;
+ s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
+}
diff --git a/vendor/compiler_builtins/libm/src/math/log1pf.rs b/vendor/compiler_builtins/libm/src/math/log1pf.rs
new file mode 100644
index 000000000..500e8eeaa
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/log1pf.rs
@@ -0,0 +1,98 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use core::f32;
+
+const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
+const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
+const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
+const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
+const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log1pf(x: f32) -> f32 {
+ let mut ui: u32 = x.to_bits();
+ let hfsq: f32;
+ let mut f: f32 = 0.;
+ let mut c: f32 = 0.;
+ let s: f32;
+ let z: f32;
+ let r: f32;
+ let w: f32;
+ let t1: f32;
+ let t2: f32;
+ let dk: f32;
+ let ix: u32;
+ let mut iu: u32;
+ let mut k: i32;
+
+ ix = ui;
+ k = 1;
+ if ix < 0x3ed413d0 || (ix >> 31) > 0 {
+ /* 1+x < sqrt(2)+ */
+ if ix >= 0xbf800000 {
+ /* x <= -1.0 */
+ if x == -1. {
+ return x / 0.0; /* log1p(-1)=+inf */
+ }
+ return (x - x) / 0.0; /* log1p(x<-1)=NaN */
+ }
+ if ix << 1 < 0x33800000 << 1 {
+ /* |x| < 2**-24 */
+ /* underflow if subnormal */
+ if (ix & 0x7f800000) == 0 {
+ force_eval!(x * x);
+ }
+ return x;
+ }
+ if ix <= 0xbe95f619 {
+ /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
+ k = 0;
+ c = 0.;
+ f = x;
+ }
+ } else if ix >= 0x7f800000 {
+ return x;
+ }
+ if k > 0 {
+ ui = (1. + x).to_bits();
+ iu = ui;
+ iu += 0x3f800000 - 0x3f3504f3;
+ k = (iu >> 23) as i32 - 0x7f;
+ /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
+ if k < 25 {
+ c = if k >= 2 {
+ 1. - (f32::from_bits(ui) - x)
+ } else {
+ x - (f32::from_bits(ui) - 1.)
+ };
+ c /= f32::from_bits(ui);
+ } else {
+ c = 0.;
+ }
+ /* reduce u into [sqrt(2)/2, sqrt(2)] */
+ iu = (iu & 0x007fffff) + 0x3f3504f3;
+ ui = iu;
+ f = f32::from_bits(ui) - 1.;
+ }
+ s = f / (2.0 + f);
+ z = s * s;
+ w = z * z;
+ t1 = w * (LG2 + w * LG4);
+ t2 = z * (LG1 + w * LG3);
+ r = t2 + t1;
+ hfsq = 0.5 * f * f;
+ dk = k as f32;
+ s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
+}
diff --git a/vendor/compiler_builtins/libm/src/math/log2.rs b/vendor/compiler_builtins/libm/src/math/log2.rs
new file mode 100644
index 000000000..83da3a193
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/log2.rs
@@ -0,0 +1,106 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log2.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * Return the base 2 logarithm of x. See log.c for most comments.
+ *
+ * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
+ * as in log.c, then combine and scale in extra precision:
+ * log2(x) = (f - f*f/2 + r)/log(2) + k
+ */
+
+use core::f64;
+
+const IVLN2HI: f64 = 1.44269504072144627571e+00; /* 0x3ff71547, 0x65200000 */
+const IVLN2LO: f64 = 1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */
+const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
+const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
+const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
+const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
+const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
+const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
+const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log2(mut x: f64) -> f64 {
+ let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
+
+ let mut ui: u64 = x.to_bits();
+ let hfsq: f64;
+ let f: f64;
+ let s: f64;
+ let z: f64;
+ let r: f64;
+ let mut w: f64;
+ let t1: f64;
+ let t2: f64;
+ let y: f64;
+ let mut hi: f64;
+ let lo: f64;
+ let mut val_hi: f64;
+ let mut val_lo: f64;
+ let mut hx: u32;
+ let mut k: i32;
+
+ hx = (ui >> 32) as u32;
+ k = 0;
+ if hx < 0x00100000 || (hx >> 31) > 0 {
+ if ui << 1 == 0 {
+ return -1. / (x * x); /* log(+-0)=-inf */
+ }
+ if (hx >> 31) > 0 {
+ return (x - x) / 0.0; /* log(-#) = NaN */
+ }
+ /* subnormal number, scale x up */
+ k -= 54;
+ x *= x1p54;
+ ui = x.to_bits();
+ hx = (ui >> 32) as u32;
+ } else if hx >= 0x7ff00000 {
+ return x;
+ } else if hx == 0x3ff00000 && ui << 32 == 0 {
+ return 0.;
+ }
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ hx += 0x3ff00000 - 0x3fe6a09e;
+ k += (hx >> 20) as i32 - 0x3ff;
+ hx = (hx & 0x000fffff) + 0x3fe6a09e;
+ ui = (hx as u64) << 32 | (ui & 0xffffffff);
+ x = f64::from_bits(ui);
+
+ f = x - 1.0;
+ hfsq = 0.5 * f * f;
+ s = f / (2.0 + f);
+ z = s * s;
+ w = z * z;
+ t1 = w * (LG2 + w * (LG4 + w * LG6));
+ t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
+ r = t2 + t1;
+
+ /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
+ hi = f - hfsq;
+ ui = hi.to_bits();
+ ui &= (-1i64 as u64) << 32;
+ hi = f64::from_bits(ui);
+ lo = f - hi - hfsq + s * (hfsq + r);
+
+ val_hi = hi * IVLN2HI;
+ val_lo = (lo + hi) * IVLN2LO + lo * IVLN2HI;
+
+ /* spadd(val_hi, val_lo, y), except for not using double_t: */
+ y = k.into();
+ w = y + val_hi;
+ val_lo += (y - w) + val_hi;
+ val_hi = w;
+
+ val_lo + val_hi
+}
diff --git a/vendor/compiler_builtins/libm/src/math/log2f.rs b/vendor/compiler_builtins/libm/src/math/log2f.rs
new file mode 100644
index 000000000..3a20fb15b
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/log2f.rs
@@ -0,0 +1,87 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log2f.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/*
+ * See comments in log2.c.
+ */
+
+use core::f32;
+
+const IVLN2HI: f32 = 1.4428710938e+00; /* 0x3fb8b000 */
+const IVLN2LO: f32 = -1.7605285393e-04; /* 0xb9389ad4 */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
+const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
+const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
+const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn log2f(mut x: f32) -> f32 {
+ let x1p25f = f32::from_bits(0x4c000000); // 0x1p25f === 2 ^ 25
+
+ let mut ui: u32 = x.to_bits();
+ let hfsq: f32;
+ let f: f32;
+ let s: f32;
+ let z: f32;
+ let r: f32;
+ let w: f32;
+ let t1: f32;
+ let t2: f32;
+ let mut hi: f32;
+ let lo: f32;
+ let mut ix: u32;
+ let mut k: i32;
+
+ ix = ui;
+ k = 0;
+ if ix < 0x00800000 || (ix >> 31) > 0 {
+ /* x < 2**-126 */
+ if ix << 1 == 0 {
+ return -1. / (x * x); /* log(+-0)=-inf */
+ }
+ if (ix >> 31) > 0 {
+ return (x - x) / 0.0; /* log(-#) = NaN */
+ }
+ /* subnormal number, scale up x */
+ k -= 25;
+ x *= x1p25f;
+ ui = x.to_bits();
+ ix = ui;
+ } else if ix >= 0x7f800000 {
+ return x;
+ } else if ix == 0x3f800000 {
+ return 0.;
+ }
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ ix += 0x3f800000 - 0x3f3504f3;
+ k += (ix >> 23) as i32 - 0x7f;
+ ix = (ix & 0x007fffff) + 0x3f3504f3;
+ ui = ix;
+ x = f32::from_bits(ui);
+
+ f = x - 1.0;
+ s = f / (2.0 + f);
+ z = s * s;
+ w = z * z;
+ t1 = w * (LG2 + w * LG4);
+ t2 = z * (LG1 + w * LG3);
+ r = t2 + t1;
+ hfsq = 0.5 * f * f;
+
+ hi = f - hfsq;
+ ui = hi.to_bits();
+ ui &= 0xfffff000;
+ hi = f32::from_bits(ui);
+ lo = f - hi - hfsq + s * (hfsq + r);
+ (lo + hi) * IVLN2LO + lo * IVLN2HI + hi * IVLN2HI + k as f32
+}
diff --git a/vendor/compiler_builtins/libm/src/math/logf.rs b/vendor/compiler_builtins/libm/src/math/logf.rs
new file mode 100644
index 000000000..2b57b934f
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/logf.rs
@@ -0,0 +1,65 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_logf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
+const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24*/
+const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
+const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
+const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn logf(mut x: f32) -> f32 {
+ let x1p25 = f32::from_bits(0x4c000000); // 0x1p25f === 2 ^ 25
+
+ let mut ix = x.to_bits();
+ let mut k = 0i32;
+
+ if (ix < 0x00800000) || ((ix >> 31) != 0) {
+ /* x < 2**-126 */
+ if ix << 1 == 0 {
+ return -1. / (x * x); /* log(+-0)=-inf */
+ }
+ if (ix >> 31) != 0 {
+ return (x - x) / 0.; /* log(-#) = NaN */
+ }
+ /* subnormal number, scale up x */
+ k -= 25;
+ x *= x1p25;
+ ix = x.to_bits();
+ } else if ix >= 0x7f800000 {
+ return x;
+ } else if ix == 0x3f800000 {
+ return 0.;
+ }
+
+ /* reduce x into [sqrt(2)/2, sqrt(2)] */
+ ix += 0x3f800000 - 0x3f3504f3;
+ k += ((ix >> 23) as i32) - 0x7f;
+ ix = (ix & 0x007fffff) + 0x3f3504f3;
+ x = f32::from_bits(ix);
+
+ let f = x - 1.;
+ let s = f / (2. + f);
+ let z = s * s;
+ let w = z * z;
+ let t1 = w * (LG2 + w * LG4);
+ let t2 = z * (LG1 + w * LG3);
+ let r = t2 + t1;
+ let hfsq = 0.5 * f * f;
+ let dk = k as f32;
+ s * (hfsq + r) + dk * LN2_LO - hfsq + f + dk * LN2_HI
+}
diff --git a/vendor/compiler_builtins/libm/src/math/mod.rs b/vendor/compiler_builtins/libm/src/math/mod.rs
new file mode 100644
index 000000000..81bfc53ed
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/mod.rs
@@ -0,0 +1,366 @@
+macro_rules! force_eval {
+ ($e:expr) => {
+ unsafe { ::core::ptr::read_volatile(&$e) }
+ };
+}
+
+#[cfg(not(debug_assertions))]
+macro_rules! i {
+ ($array:expr, $index:expr) => {
+ unsafe { *$array.get_unchecked($index) }
+ };
+ ($array:expr, $index:expr, = , $rhs:expr) => {
+ unsafe {
+ *$array.get_unchecked_mut($index) = $rhs;
+ }
+ };
+ ($array:expr, $index:expr, += , $rhs:expr) => {
+ unsafe {
+ *$array.get_unchecked_mut($index) += $rhs;
+ }
+ };
+ ($array:expr, $index:expr, -= , $rhs:expr) => {
+ unsafe {
+ *$array.get_unchecked_mut($index) -= $rhs;
+ }
+ };
+ ($array:expr, $index:expr, &= , $rhs:expr) => {
+ unsafe {
+ *$array.get_unchecked_mut($index) &= $rhs;
+ }
+ };
+ ($array:expr, $index:expr, == , $rhs:expr) => {
+ unsafe { *$array.get_unchecked_mut($index) == $rhs }
+ };
+}
+
+#[cfg(debug_assertions)]
+macro_rules! i {
+ ($array:expr, $index:expr) => {
+ *$array.get($index).unwrap()
+ };
+ ($array:expr, $index:expr, = , $rhs:expr) => {
+ *$array.get_mut($index).unwrap() = $rhs;
+ };
+ ($array:expr, $index:expr, -= , $rhs:expr) => {
+ *$array.get_mut($index).unwrap() -= $rhs;
+ };
+ ($array:expr, $index:expr, += , $rhs:expr) => {
+ *$array.get_mut($index).unwrap() += $rhs;
+ };
+ ($array:expr, $index:expr, &= , $rhs:expr) => {
+ *$array.get_mut($index).unwrap() &= $rhs;
+ };
+ ($array:expr, $index:expr, == , $rhs:expr) => {
+ *$array.get_mut($index).unwrap() == $rhs
+ };
+}
+
+// Temporary macro to avoid panic codegen for division (in debug mode too). At
+// the time of this writing this is only used in a few places, and once
+// rust-lang/rust#72751 is fixed then this macro will no longer be necessary and
+// the native `/` operator can be used and panics won't be codegen'd.
+#[cfg(any(debug_assertions, not(feature = "unstable")))]
+macro_rules! div {
+ ($a:expr, $b:expr) => {
+ $a / $b
+ };
+}
+
+#[cfg(all(not(debug_assertions), feature = "unstable"))]
+macro_rules! div {
+ ($a:expr, $b:expr) => {
+ unsafe { core::intrinsics::unchecked_div($a, $b) }
+ };
+}
+
+macro_rules! llvm_intrinsically_optimized {
+ (#[cfg($($clause:tt)*)] $e:expr) => {
+ #[cfg(all(feature = "unstable", $($clause)*))]
+ {
+ if true { // thwart the dead code lint
+ $e
+ }
+ }
+ };
+}
+
+// Public modules
+mod acos;
+mod acosf;
+mod acosh;
+mod acoshf;
+mod asin;
+mod asinf;
+mod asinh;
+mod asinhf;
+mod atan;
+mod atan2;
+mod atan2f;
+mod atanf;
+mod atanh;
+mod atanhf;
+mod cbrt;
+mod cbrtf;
+mod ceil;
+mod ceilf;
+mod copysign;
+mod copysignf;
+mod cos;
+mod cosf;
+mod cosh;
+mod coshf;
+mod erf;
+mod erff;
+mod exp;
+mod exp10;
+mod exp10f;
+mod exp2;
+mod exp2f;
+mod expf;
+mod expm1;
+mod expm1f;
+mod fabs;
+mod fabsf;
+mod fdim;
+mod fdimf;
+mod floor;
+mod floorf;
+mod fma;
+mod fmaf;
+mod fmax;
+mod fmaxf;
+mod fmin;
+mod fminf;
+mod fmod;
+mod fmodf;
+mod frexp;
+mod frexpf;
+mod hypot;
+mod hypotf;
+mod ilogb;
+mod ilogbf;
+mod j0;
+mod j0f;
+mod j1;
+mod j1f;
+mod jn;
+mod jnf;
+mod ldexp;
+mod ldexpf;
+mod lgamma;
+mod lgamma_r;
+mod lgammaf;
+mod lgammaf_r;
+mod log;
+mod log10;
+mod log10f;
+mod log1p;
+mod log1pf;
+mod log2;
+mod log2f;
+mod logf;
+mod modf;
+mod modff;
+mod nextafter;
+mod nextafterf;
+mod pow;
+mod powf;
+mod remainder;
+mod remainderf;
+mod remquo;
+mod remquof;
+mod round;
+mod roundf;
+mod scalbn;
+mod scalbnf;
+mod sin;
+mod sincos;
+mod sincosf;
+mod sinf;
+mod sinh;
+mod sinhf;
+mod sqrt;
+mod sqrtf;
+mod tan;
+mod tanf;
+mod tanh;
+mod tanhf;
+mod tgamma;
+mod tgammaf;
+mod trunc;
+mod truncf;
+
+// Use separated imports instead of {}-grouped imports for easier merging.
+pub use self::acos::acos;
+pub use self::acosf::acosf;
+pub use self::acosh::acosh;
+pub use self::acoshf::acoshf;
+pub use self::asin::asin;
+pub use self::asinf::asinf;
+pub use self::asinh::asinh;
+pub use self::asinhf::asinhf;
+pub use self::atan::atan;
+pub use self::atan2::atan2;
+pub use self::atan2f::atan2f;
+pub use self::atanf::atanf;
+pub use self::atanh::atanh;
+pub use self::atanhf::atanhf;
+pub use self::cbrt::cbrt;
+pub use self::cbrtf::cbrtf;
+pub use self::ceil::ceil;
+pub use self::ceilf::ceilf;
+pub use self::copysign::copysign;
+pub use self::copysignf::copysignf;
+pub use self::cos::cos;
+pub use self::cosf::cosf;
+pub use self::cosh::cosh;
+pub use self::coshf::coshf;
+pub use self::erf::erf;
+pub use self::erf::erfc;
+pub use self::erff::erfcf;
+pub use self::erff::erff;
+pub use self::exp::exp;
+pub use self::exp10::exp10;
+pub use self::exp10f::exp10f;
+pub use self::exp2::exp2;
+pub use self::exp2f::exp2f;
+pub use self::expf::expf;
+pub use self::expm1::expm1;
+pub use self::expm1f::expm1f;
+pub use self::fabs::fabs;
+pub use self::fabsf::fabsf;
+pub use self::fdim::fdim;
+pub use self::fdimf::fdimf;
+pub use self::floor::floor;
+pub use self::floorf::floorf;
+pub use self::fma::fma;
+pub use self::fmaf::fmaf;
+pub use self::fmax::fmax;
+pub use self::fmaxf::fmaxf;
+pub use self::fmin::fmin;
+pub use self::fminf::fminf;
+pub use self::fmod::fmod;
+pub use self::fmodf::fmodf;
+pub use self::frexp::frexp;
+pub use self::frexpf::frexpf;
+pub use self::hypot::hypot;
+pub use self::hypotf::hypotf;
+pub use self::ilogb::ilogb;
+pub use self::ilogbf::ilogbf;
+pub use self::j0::j0;
+pub use self::j0::y0;
+pub use self::j0f::j0f;
+pub use self::j0f::y0f;
+pub use self::j1::j1;
+pub use self::j1::y1;
+pub use self::j1f::j1f;
+pub use self::j1f::y1f;
+pub use self::jn::jn;
+pub use self::jn::yn;
+pub use self::jnf::jnf;
+pub use self::jnf::ynf;
+pub use self::ldexp::ldexp;
+pub use self::ldexpf::ldexpf;
+pub use self::lgamma::lgamma;
+pub use self::lgamma_r::lgamma_r;
+pub use self::lgammaf::lgammaf;
+pub use self::lgammaf_r::lgammaf_r;
+pub use self::log::log;
+pub use self::log10::log10;
+pub use self::log10f::log10f;
+pub use self::log1p::log1p;
+pub use self::log1pf::log1pf;
+pub use self::log2::log2;
+pub use self::log2f::log2f;
+pub use self::logf::logf;
+pub use self::modf::modf;
+pub use self::modff::modff;
+pub use self::nextafter::nextafter;
+pub use self::nextafterf::nextafterf;
+pub use self::pow::pow;
+pub use self::powf::powf;
+pub use self::remainder::remainder;
+pub use self::remainderf::remainderf;
+pub use self::remquo::remquo;
+pub use self::remquof::remquof;
+pub use self::round::round;
+pub use self::roundf::roundf;
+pub use self::scalbn::scalbn;
+pub use self::scalbnf::scalbnf;
+pub use self::sin::sin;
+pub use self::sincos::sincos;
+pub use self::sincosf::sincosf;
+pub use self::sinf::sinf;
+pub use self::sinh::sinh;
+pub use self::sinhf::sinhf;
+pub use self::sqrt::sqrt;
+pub use self::sqrtf::sqrtf;
+pub use self::tan::tan;
+pub use self::tanf::tanf;
+pub use self::tanh::tanh;
+pub use self::tanhf::tanhf;
+pub use self::tgamma::tgamma;
+pub use self::tgammaf::tgammaf;
+pub use self::trunc::trunc;
+pub use self::truncf::truncf;
+
+// Private modules
+mod expo2;
+mod fenv;
+mod k_cos;
+mod k_cosf;
+mod k_expo2;
+mod k_expo2f;
+mod k_sin;
+mod k_sinf;
+mod k_tan;
+mod k_tanf;
+mod rem_pio2;
+mod rem_pio2_large;
+mod rem_pio2f;
+
+// Private re-imports
+use self::expo2::expo2;
+use self::k_cos::k_cos;
+use self::k_cosf::k_cosf;
+use self::k_expo2::k_expo2;
+use self::k_expo2f::k_expo2f;
+use self::k_sin::k_sin;
+use self::k_sinf::k_sinf;
+use self::k_tan::k_tan;
+use self::k_tanf::k_tanf;
+use self::rem_pio2::rem_pio2;
+use self::rem_pio2_large::rem_pio2_large;
+use self::rem_pio2f::rem_pio2f;
+
+#[inline]
+fn get_high_word(x: f64) -> u32 {
+ (x.to_bits() >> 32) as u32
+}
+
+#[inline]
+fn get_low_word(x: f64) -> u32 {
+ x.to_bits() as u32
+}
+
+#[inline]
+fn with_set_high_word(f: f64, hi: u32) -> f64 {
+ let mut tmp = f.to_bits();
+ tmp &= 0x00000000_ffffffff;
+ tmp |= (hi as u64) << 32;
+ f64::from_bits(tmp)
+}
+
+#[inline]
+fn with_set_low_word(f: f64, lo: u32) -> f64 {
+ let mut tmp = f.to_bits();
+ tmp &= 0xffffffff_00000000;
+ tmp |= lo as u64;
+ f64::from_bits(tmp)
+}
+
+#[inline]
+fn combine_words(hi: u32, lo: u32) -> f64 {
+ f64::from_bits((hi as u64) << 32 | lo as u64)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/modf.rs b/vendor/compiler_builtins/libm/src/math/modf.rs
new file mode 100644
index 000000000..bcab33a81
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/modf.rs
@@ -0,0 +1,34 @@
+pub fn modf(x: f64) -> (f64, f64) {
+ let rv2: f64;
+ let mut u = x.to_bits();
+ let mask: u64;
+ let e = ((u >> 52 & 0x7ff) as i32) - 0x3ff;
+
+ /* no fractional part */
+ if e >= 52 {
+ rv2 = x;
+ if e == 0x400 && (u << 12) != 0 {
+ /* nan */
+ return (x, rv2);
+ }
+ u &= 1 << 63;
+ return (f64::from_bits(u), rv2);
+ }
+
+ /* no integral part*/
+ if e < 0 {
+ u &= 1 << 63;
+ rv2 = f64::from_bits(u);
+ return (x, rv2);
+ }
+
+ mask = ((!0) >> 12) >> e;
+ if (u & mask) == 0 {
+ rv2 = x;
+ u &= 1 << 63;
+ return (f64::from_bits(u), rv2);
+ }
+ u &= !mask;
+ rv2 = f64::from_bits(u);
+ return (x - rv2, rv2);
+}
diff --git a/vendor/compiler_builtins/libm/src/math/modff.rs b/vendor/compiler_builtins/libm/src/math/modff.rs
new file mode 100644
index 000000000..56ece12e3
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/modff.rs
@@ -0,0 +1,33 @@
+pub fn modff(x: f32) -> (f32, f32) {
+ let rv2: f32;
+ let mut u: u32 = x.to_bits();
+ let mask: u32;
+ let e = ((u >> 23 & 0xff) as i32) - 0x7f;
+
+ /* no fractional part */
+ if e >= 23 {
+ rv2 = x;
+ if e == 0x80 && (u << 9) != 0 {
+ /* nan */
+ return (x, rv2);
+ }
+ u &= 0x80000000;
+ return (f32::from_bits(u), rv2);
+ }
+ /* no integral part */
+ if e < 0 {
+ u &= 0x80000000;
+ rv2 = f32::from_bits(u);
+ return (x, rv2);
+ }
+
+ mask = 0x007fffff >> e;
+ if (u & mask) == 0 {
+ rv2 = x;
+ u &= 0x80000000;
+ return (f32::from_bits(u), rv2);
+ }
+ u &= !mask;
+ rv2 = f32::from_bits(u);
+ return (x - rv2, rv2);
+}
diff --git a/vendor/compiler_builtins/libm/src/math/nextafter.rs b/vendor/compiler_builtins/libm/src/math/nextafter.rs
new file mode 100644
index 000000000..13094a17c
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/nextafter.rs
@@ -0,0 +1,37 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn nextafter(x: f64, y: f64) -> f64 {
+ if x.is_nan() || y.is_nan() {
+ return x + y;
+ }
+
+ let mut ux_i = x.to_bits();
+ let uy_i = y.to_bits();
+ if ux_i == uy_i {
+ return y;
+ }
+
+ let ax = ux_i & !1_u64 / 2;
+ let ay = uy_i & !1_u64 / 2;
+ if ax == 0 {
+ if ay == 0 {
+ return y;
+ }
+ ux_i = (uy_i & 1_u64 << 63) | 1;
+ } else if ax > ay || ((ux_i ^ uy_i) & 1_u64 << 63) != 0 {
+ ux_i -= 1;
+ } else {
+ ux_i += 1;
+ }
+
+ let e = ux_i.wrapping_shr(52 & 0x7ff);
+ // raise overflow if ux.f is infinite and x is finite
+ if e == 0x7ff {
+ force_eval!(x + x);
+ }
+ let ux_f = f64::from_bits(ux_i);
+ // raise underflow if ux.f is subnormal or zero
+ if e == 0 {
+ force_eval!(x * x + ux_f * ux_f);
+ }
+ ux_f
+}
diff --git a/vendor/compiler_builtins/libm/src/math/nextafterf.rs b/vendor/compiler_builtins/libm/src/math/nextafterf.rs
new file mode 100644
index 000000000..df9b10829
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/nextafterf.rs
@@ -0,0 +1,37 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn nextafterf(x: f32, y: f32) -> f32 {
+ if x.is_nan() || y.is_nan() {
+ return x + y;
+ }
+
+ let mut ux_i = x.to_bits();
+ let uy_i = y.to_bits();
+ if ux_i == uy_i {
+ return y;
+ }
+
+ let ax = ux_i & 0x7fff_ffff_u32;
+ let ay = uy_i & 0x7fff_ffff_u32;
+ if ax == 0 {
+ if ay == 0 {
+ return y;
+ }
+ ux_i = (uy_i & 0x8000_0000_u32) | 1;
+ } else if ax > ay || ((ux_i ^ uy_i) & 0x8000_0000_u32) != 0 {
+ ux_i -= 1;
+ } else {
+ ux_i += 1;
+ }
+
+ let e = ux_i.wrapping_shr(0x7f80_0000_u32);
+ // raise overflow if ux_f is infinite and x is finite
+ if e == 0x7f80_0000_u32 {
+ force_eval!(x + x);
+ }
+ let ux_f = f32::from_bits(ux_i);
+ // raise underflow if ux_f is subnormal or zero
+ if e == 0 {
+ force_eval!(x * x + ux_f * ux_f);
+ }
+ ux_f
+}
diff --git a/vendor/compiler_builtins/libm/src/math/pow.rs b/vendor/compiler_builtins/libm/src/math/pow.rs
new file mode 100644
index 000000000..6a19ae601
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/pow.rs
@@ -0,0 +1,637 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
+/*
+ * ====================================================
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+// pow(x,y) return x**y
+//
+// n
+// Method: Let x = 2 * (1+f)
+// 1. Compute and return log2(x) in two pieces:
+// log2(x) = w1 + w2,
+// where w1 has 53-24 = 29 bit trailing zeros.
+// 2. Perform y*log2(x) = n+y' by simulating muti-precision
+// arithmetic, where |y'|<=0.5.
+// 3. Return x**y = 2**n*exp(y'*log2)
+//
+// Special cases:
+// 1. (anything) ** 0 is 1
+// 2. 1 ** (anything) is 1
+// 3. (anything except 1) ** NAN is NAN
+// 4. NAN ** (anything except 0) is NAN
+// 5. +-(|x| > 1) ** +INF is +INF
+// 6. +-(|x| > 1) ** -INF is +0
+// 7. +-(|x| < 1) ** +INF is +0
+// 8. +-(|x| < 1) ** -INF is +INF
+// 9. -1 ** +-INF is 1
+// 10. +0 ** (+anything except 0, NAN) is +0
+// 11. -0 ** (+anything except 0, NAN, odd integer) is +0
+// 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero
+// 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero
+// 14. -0 ** (+odd integer) is -0
+// 15. -0 ** (-odd integer) is -INF, raise divbyzero
+// 16. +INF ** (+anything except 0,NAN) is +INF
+// 17. +INF ** (-anything except 0,NAN) is +0
+// 18. -INF ** (+odd integer) is -INF
+// 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
+// 20. (anything) ** 1 is (anything)
+// 21. (anything) ** -1 is 1/(anything)
+// 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
+// 23. (-anything except 0 and inf) ** (non-integer) is NAN
+//
+// Accuracy:
+// pow(x,y) returns x**y nearly rounded. In particular
+// pow(integer,integer)
+// always returns the correct integer provided it is
+// representable.
+//
+// Constants :
+// The hexadecimal values are the intended ones for the following
+// constants. The decimal values may be used, provided that the
+// compiler will convert from decimal to binary accurately enough
+// to produce the hexadecimal values shown.
+//
+use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word};
+
+const BP: [f64; 2] = [1.0, 1.5];
+const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */
+const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */
+const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */
+const HUGE: f64 = 1.0e300;
+const TINY: f64 = 1.0e-300;
+
+// poly coefs for (3/2)*(log(x)-2s-2/3*s**3:
+const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */
+const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */
+const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */
+const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */
+const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */
+const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */
+const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */
+const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */
+const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */
+const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */
+const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */
+const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */
+const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */
+const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */
+const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */
+const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */
+const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */
+const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/
+const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */
+const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/
+const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn pow(x: f64, y: f64) -> f64 {
+ let t1: f64;
+ let t2: f64;
+
+ let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32);
+ let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32);
+
+ let mut ix: i32 = (hx & 0x7fffffff) as i32;
+ let iy: i32 = (hy & 0x7fffffff) as i32;
+
+ /* x**0 = 1, even if x is NaN */
+ if ((iy as u32) | ly) == 0 {
+ return 1.0;
+ }
+
+ /* 1**y = 1, even if y is NaN */
+ if hx == 0x3ff00000 && lx == 0 {
+ return 1.0;
+ }
+
+ /* NaN if either arg is NaN */
+ if ix > 0x7ff00000
+ || (ix == 0x7ff00000 && lx != 0)
+ || iy > 0x7ff00000
+ || (iy == 0x7ff00000 && ly != 0)
+ {
+ return x + y;
+ }
+
+ /* determine if y is an odd int when x < 0
+ * yisint = 0 ... y is not an integer
+ * yisint = 1 ... y is an odd int
+ * yisint = 2 ... y is an even int
+ */
+ let mut yisint: i32 = 0;
+ let mut k: i32;
+ let mut j: i32;
+ if hx < 0 {
+ if iy >= 0x43400000 {
+ yisint = 2; /* even integer y */
+ } else if iy >= 0x3ff00000 {
+ k = (iy >> 20) - 0x3ff; /* exponent */
+
+ if k > 20 {
+ j = (ly >> (52 - k)) as i32;
+
+ if (j << (52 - k)) == (ly as i32) {
+ yisint = 2 - (j & 1);
+ }
+ } else if ly == 0 {
+ j = iy >> (20 - k);
+
+ if (j << (20 - k)) == iy {
+ yisint = 2 - (j & 1);
+ }
+ }
+ }
+ }
+
+ if ly == 0 {
+ /* special value of y */
+ if iy == 0x7ff00000 {
+ /* y is +-inf */
+
+ return if ((ix - 0x3ff00000) | (lx as i32)) == 0 {
+ /* (-1)**+-inf is 1 */
+ 1.0
+ } else if ix >= 0x3ff00000 {
+ /* (|x|>1)**+-inf = inf,0 */
+ if hy >= 0 {
+ y
+ } else {
+ 0.0
+ }
+ } else {
+ /* (|x|<1)**+-inf = 0,inf */
+ if hy >= 0 {
+ 0.0
+ } else {
+ -y
+ }
+ };
+ }
+
+ if iy == 0x3ff00000 {
+ /* y is +-1 */
+ return if hy >= 0 { x } else { 1.0 / x };
+ }
+
+ if hy == 0x40000000 {
+ /* y is 2 */
+ return x * x;
+ }
+
+ if hy == 0x3fe00000 {
+ /* y is 0.5 */
+ if hx >= 0 {
+ /* x >= +0 */
+ return sqrt(x);
+ }
+ }
+ }
+
+ let mut ax: f64 = fabs(x);
+ if lx == 0 {
+ /* special value of x */
+ if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 {
+ /* x is +-0,+-inf,+-1 */
+ let mut z: f64 = ax;
+
+ if hy < 0 {
+ /* z = (1/|x|) */
+ z = 1.0 / z;
+ }
+
+ if hx < 0 {
+ if ((ix - 0x3ff00000) | yisint) == 0 {
+ z = (z - z) / (z - z); /* (-1)**non-int is NaN */
+ } else if yisint == 1 {
+ z = -z; /* (x<0)**odd = -(|x|**odd) */
+ }
+ }
+
+ return z;
+ }
+ }
+
+ let mut s: f64 = 1.0; /* sign of result */
+ if hx < 0 {
+ if yisint == 0 {
+ /* (x<0)**(non-int) is NaN */
+ return (x - x) / (x - x);
+ }
+
+ if yisint == 1 {
+ /* (x<0)**(odd int) */
+ s = -1.0;
+ }
+ }
+
+ /* |y| is HUGE */
+ if iy > 0x41e00000 {
+ /* if |y| > 2**31 */
+ if iy > 0x43f00000 {
+ /* if |y| > 2**64, must o/uflow */
+ if ix <= 0x3fefffff {
+ return if hy < 0 { HUGE * HUGE } else { TINY * TINY };
+ }
+
+ if ix >= 0x3ff00000 {
+ return if hy > 0 { HUGE * HUGE } else { TINY * TINY };
+ }
+ }
+
+ /* over/underflow if x is not close to one */
+ if ix < 0x3fefffff {
+ return if hy < 0 {
+ s * HUGE * HUGE
+ } else {
+ s * TINY * TINY
+ };
+ }
+ if ix > 0x3ff00000 {
+ return if hy > 0 {
+ s * HUGE * HUGE
+ } else {
+ s * TINY * TINY
+ };
+ }
+
+ /* now |1-x| is TINY <= 2**-20, suffice to compute
+ log(x) by x-x^2/2+x^3/3-x^4/4 */
+ let t: f64 = ax - 1.0; /* t has 20 trailing zeros */
+ let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
+ let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */
+ let v: f64 = t * IVLN2_L - w * IVLN2;
+ t1 = with_set_low_word(u + v, 0);
+ t2 = v - (t1 - u);
+ } else {
+ // double ss,s2,s_h,s_l,t_h,t_l;
+ let mut n: i32 = 0;
+
+ if ix < 0x00100000 {
+ /* take care subnormal number */
+ ax *= TWO53;
+ n -= 53;
+ ix = get_high_word(ax) as i32;
+ }
+
+ n += (ix >> 20) - 0x3ff;
+ j = ix & 0x000fffff;
+
+ /* determine interval */
+ let k: i32;
+ ix = j | 0x3ff00000; /* normalize ix */
+ if j <= 0x3988E {
+ /* |x|<sqrt(3/2) */
+ k = 0;
+ } else if j < 0xBB67A {
+ /* |x|<sqrt(3) */
+ k = 1;
+ } else {
+ k = 0;
+ n += 1;
+ ix -= 0x00100000;
+ }
+ ax = with_set_high_word(ax, ix as u32);
+
+ /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
+ let v: f64 = 1.0 / (ax + i!(BP, k as usize));
+ let ss: f64 = u * v;
+ let s_h = with_set_low_word(ss, 0);
+
+ /* t_h=ax+bp[k] High */
+ let t_h: f64 = with_set_high_word(
+ 0.0,
+ ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18),
+ );
+ let t_l: f64 = ax - (t_h - i!(BP, k as usize));
+ let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l);
+
+ /* compute log(ax) */
+ let s2: f64 = ss * ss;
+ let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
+ r += s_l * (s_h + ss);
+ let s2: f64 = s_h * s_h;
+ let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0);
+ let t_l: f64 = r - ((t_h - 3.0) - s2);
+
+ /* u+v = ss*(1+...) */
+ let u: f64 = s_h * t_h;
+ let v: f64 = s_l * t_h + t_l * ss;
+
+ /* 2/(3log2)*(ss+...) */
+ let p_h: f64 = with_set_low_word(u + v, 0);
+ let p_l = v - (p_h - u);
+ let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
+ let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
+
+ /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ let t: f64 = n as f64;
+ t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0);
+ t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
+ }
+
+ /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+ let y1: f64 = with_set_low_word(y, 0);
+ let p_l: f64 = (y - y1) * t1 + y * t2;
+ let mut p_h: f64 = y1 * t1;
+ let z: f64 = p_l + p_h;
+ let mut j: i32 = (z.to_bits() >> 32) as i32;
+ let i: i32 = z.to_bits() as i32;
+ // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32);
+
+ if j >= 0x40900000 {
+ /* z >= 1024 */
+ if (j - 0x40900000) | i != 0 {
+ /* if z > 1024 */
+ return s * HUGE * HUGE; /* overflow */
+ }
+
+ if p_l + OVT > z - p_h {
+ return s * HUGE * HUGE; /* overflow */
+ }
+ } else if (j & 0x7fffffff) >= 0x4090cc00 {
+ /* z <= -1075 */
+ // FIXME: instead of abs(j) use unsigned j
+
+ if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 {
+ /* z < -1075 */
+ return s * TINY * TINY; /* underflow */
+ }
+
+ if p_l <= z - p_h {
+ return s * TINY * TINY; /* underflow */
+ }
+ }
+
+ /* compute 2**(p_h+p_l) */
+ let i: i32 = j & (0x7fffffff as i32);
+ k = (i >> 20) - 0x3ff;
+ let mut n: i32 = 0;
+
+ if i > 0x3fe00000 {
+ /* if |z| > 0.5, set n = [z+0.5] */
+ n = j + (0x00100000 >> (k + 1));
+ k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
+ let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32);
+ n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
+ if j < 0 {
+ n = -n;
+ }
+ p_h -= t;
+ }
+
+ let t: f64 = with_set_low_word(p_l + p_h, 0);
+ let u: f64 = t * LG2_H;
+ let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L;
+ let mut z: f64 = u + v;
+ let w: f64 = v - (z - u);
+ let t: f64 = z * z;
+ let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+ let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w);
+ z = 1.0 - (r - z);
+ j = get_high_word(z) as i32;
+ j += n << 20;
+
+ if (j >> 20) <= 0 {
+ /* subnormal output */
+ z = scalbn(z, n);
+ } else {
+ z = with_set_high_word(z, j as u32);
+ }
+
+ s * z
+}
+
+#[cfg(test)]
+mod tests {
+ extern crate core;
+
+ use self::core::f64::consts::{E, PI};
+ use self::core::f64::{EPSILON, INFINITY, MAX, MIN, MIN_POSITIVE, NAN, NEG_INFINITY};
+ use super::pow;
+
+ const POS_ZERO: &[f64] = &[0.0];
+ const NEG_ZERO: &[f64] = &[-0.0];
+ const POS_ONE: &[f64] = &[1.0];
+ const NEG_ONE: &[f64] = &[-1.0];
+ const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI];
+ const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI];
+ const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), MIN_POSITIVE, EPSILON];
+ const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -MIN_POSITIVE, -EPSILON];
+ const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, MAX];
+ const NEG_EVENS: &[f64] = &[MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0];
+ const POS_ODDS: &[f64] = &[3.0, 7.0];
+ const NEG_ODDS: &[f64] = &[-7.0, -3.0];
+ const NANS: &[f64] = &[NAN];
+ const POS_INF: &[f64] = &[INFINITY];
+ const NEG_INF: &[f64] = &[NEG_INFINITY];
+
+ const ALL: &[&[f64]] = &[
+ POS_ZERO,
+ NEG_ZERO,
+ NANS,
+ NEG_SMALL_FLOATS,
+ POS_SMALL_FLOATS,
+ NEG_FLOATS,
+ POS_FLOATS,
+ NEG_EVENS,
+ POS_EVENS,
+ NEG_ODDS,
+ POS_ODDS,
+ NEG_INF,
+ POS_INF,
+ NEG_ONE,
+ POS_ONE,
+ ];
+ const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF];
+ const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF];
+
+ fn pow_test(base: f64, exponent: f64, expected: f64) {
+ let res = pow(base, exponent);
+ assert!(
+ if expected.is_nan() {
+ res.is_nan()
+ } else {
+ pow(base, exponent) == expected
+ },
+ "{} ** {} was {} instead of {}",
+ base,
+ exponent,
+ res,
+ expected
+ );
+ }
+
+ fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) {
+ sets.iter()
+ .for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected)));
+ }
+
+ fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) {
+ sets.iter()
+ .for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected)));
+ }
+
+ fn test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) {
+ sets.iter().for_each(|s| {
+ s.iter().for_each(|val| {
+ let exp = expected(*val);
+ let res = computed(*val);
+
+ #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+ let exp = force_eval!(exp);
+ #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+ let res = force_eval!(res);
+ assert!(
+ if exp.is_nan() {
+ res.is_nan()
+ } else {
+ exp == res
+ },
+ "test for {} was {} instead of {}",
+ val,
+ res,
+ exp
+ );
+ })
+ });
+ }
+
+ #[test]
+ fn zero_as_exponent() {
+ test_sets_as_base(ALL, 0.0, 1.0);
+ test_sets_as_base(ALL, -0.0, 1.0);
+ }
+
+ #[test]
+ fn one_as_base() {
+ test_sets_as_exponent(1.0, ALL, 1.0);
+ }
+
+ #[test]
+ fn nan_inputs() {
+ // NAN as the base:
+ // (NAN ^ anything *but 0* should be NAN)
+ test_sets_as_exponent(NAN, &ALL[2..], NAN);
+
+ // NAN as the exponent:
+ // (anything *but 1* ^ NAN should be NAN)
+ test_sets_as_base(&ALL[..(ALL.len() - 2)], NAN, NAN);
+ }
+
+ #[test]
+ fn infinity_as_base() {
+ // Positive Infinity as the base:
+ // (+Infinity ^ positive anything but 0 and NAN should be +Infinity)
+ test_sets_as_exponent(INFINITY, &POS[1..], INFINITY);
+
+ // (+Infinity ^ negative anything except 0 and NAN should be 0.0)
+ test_sets_as_exponent(INFINITY, &NEG[1..], 0.0);
+
+ // Negative Infinity as the base:
+ // (-Infinity ^ positive odd ints should be -Infinity)
+ test_sets_as_exponent(NEG_INFINITY, &[POS_ODDS], NEG_INFINITY);
+
+ // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything))
+ // We can lump in pos/neg odd ints here because they don't seem to
+ // cause panics (div by zero) in release mode (I think).
+ test_sets(ALL, &|v: f64| pow(NEG_INFINITY, v), &|v: f64| pow(-0.0, -v));
+ }
+
+ #[test]
+ fn infinity_as_exponent() {
+ // Positive/Negative base greater than 1:
+ // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes NAN as the base)
+ test_sets_as_base(&ALL[5..(ALL.len() - 2)], INFINITY, INFINITY);
+
+ // (pos/neg > 1 ^ -Infinity should be 0.0)
+ test_sets_as_base(&ALL[5..ALL.len() - 2], NEG_INFINITY, 0.0);
+
+ // Positive/Negative base less than 1:
+ let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS];
+
+ // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes NAN as the base)
+ test_sets_as_base(base_below_one, INFINITY, 0.0);
+
+ // (pos/neg < 1 ^ -Infinity should be Infinity)
+ test_sets_as_base(base_below_one, NEG_INFINITY, INFINITY);
+
+ // Positive/Negative 1 as the base:
+ // (pos/neg 1 ^ Infinity should be 1)
+ test_sets_as_base(&[NEG_ONE, POS_ONE], INFINITY, 1.0);
+
+ // (pos/neg 1 ^ -Infinity should be 1)
+ test_sets_as_base(&[NEG_ONE, POS_ONE], NEG_INFINITY, 1.0);
+ }
+
+ #[test]
+ fn zero_as_base() {
+ // Positive Zero as the base:
+ // (+0 ^ anything positive but 0 and NAN should be +0)
+ test_sets_as_exponent(0.0, &POS[1..], 0.0);
+
+ // (+0 ^ anything negative but 0 and NAN should be Infinity)
+ // (this should panic because we're dividing by zero)
+ test_sets_as_exponent(0.0, &NEG[1..], INFINITY);
+
+ // Negative Zero as the base:
+ // (-0 ^ anything positive but 0, NAN, and odd ints should be +0)
+ test_sets_as_exponent(-0.0, &POS[3..], 0.0);
+
+ // (-0 ^ anything negative but 0, NAN, and odd ints should be Infinity)
+ // (should panic because of divide by zero)
+ test_sets_as_exponent(-0.0, &NEG[3..], INFINITY);
+
+ // (-0 ^ positive odd ints should be -0)
+ test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0);
+
+ // (-0 ^ negative odd ints should be -Infinity)
+ // (should panic because of divide by zero)
+ test_sets_as_exponent(-0.0, &[NEG_ODDS], NEG_INFINITY);
+ }
+
+ #[test]
+ fn special_cases() {
+ // One as the exponent:
+ // (anything ^ 1 should be anything - i.e. the base)
+ test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v);
+
+ // Negative One as the exponent:
+ // (anything ^ -1 should be 1/anything)
+ test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v);
+
+ // Factoring -1 out:
+ // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer))
+ (&[POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS])
+ .iter()
+ .for_each(|int_set| {
+ int_set.iter().for_each(|int| {
+ test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| {
+ pow(-1.0, *int) * pow(v, *int)
+ });
+ })
+ });
+
+ // Negative base (imaginary results):
+ // (-anything except 0 and Infinity ^ non-integer should be NAN)
+ (&NEG[1..(NEG.len() - 1)]).iter().for_each(|set| {
+ set.iter().for_each(|val| {
+ test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| NAN);
+ })
+ });
+ }
+
+ #[test]
+ fn normal_cases() {
+ assert_eq!(pow(2.0, 20.0), (1 << 20) as f64);
+ assert_eq!(pow(-1.0, 9.0), -1.0);
+ assert!(pow(-1.0, 2.2).is_nan());
+ assert!(pow(-1.0, -1.14).is_nan());
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/powf.rs b/vendor/compiler_builtins/libm/src/math/powf.rs
new file mode 100644
index 000000000..68d2083bb
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/powf.rs
@@ -0,0 +1,342 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_powf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{fabsf, scalbnf, sqrtf};
+
+const BP: [f32; 2] = [1.0, 1.5];
+const DP_H: [f32; 2] = [0.0, 5.84960938e-01]; /* 0x3f15c000 */
+const DP_L: [f32; 2] = [0.0, 1.56322085e-06]; /* 0x35d1cfdc */
+const TWO24: f32 = 16777216.0; /* 0x4b800000 */
+const HUGE: f32 = 1.0e30;
+const TINY: f32 = 1.0e-30;
+const L1: f32 = 6.0000002384e-01; /* 0x3f19999a */
+const L2: f32 = 4.2857143283e-01; /* 0x3edb6db7 */
+const L3: f32 = 3.3333334327e-01; /* 0x3eaaaaab */
+const L4: f32 = 2.7272811532e-01; /* 0x3e8ba305 */
+const L5: f32 = 2.3066075146e-01; /* 0x3e6c3255 */
+const L6: f32 = 2.0697501302e-01; /* 0x3e53f142 */
+const P1: f32 = 1.6666667163e-01; /* 0x3e2aaaab */
+const P2: f32 = -2.7777778450e-03; /* 0xbb360b61 */
+const P3: f32 = 6.6137559770e-05; /* 0x388ab355 */
+const P4: f32 = -1.6533901999e-06; /* 0xb5ddea0e */
+const P5: f32 = 4.1381369442e-08; /* 0x3331bb4c */
+const LG2: f32 = 6.9314718246e-01; /* 0x3f317218 */
+const LG2_H: f32 = 6.93145752e-01; /* 0x3f317200 */
+const LG2_L: f32 = 1.42860654e-06; /* 0x35bfbe8c */
+const OVT: f32 = 4.2995665694e-08; /* -(128-log2(ovfl+.5ulp)) */
+const CP: f32 = 9.6179670095e-01; /* 0x3f76384f =2/(3ln2) */
+const CP_H: f32 = 9.6191406250e-01; /* 0x3f764000 =12b cp */
+const CP_L: f32 = -1.1736857402e-04; /* 0xb8f623c6 =tail of cp_h */
+const IVLN2: f32 = 1.4426950216e+00;
+const IVLN2_H: f32 = 1.4426879883e+00;
+const IVLN2_L: f32 = 7.0526075433e-06;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn powf(x: f32, y: f32) -> f32 {
+ let mut z: f32;
+ let mut ax: f32;
+ let z_h: f32;
+ let z_l: f32;
+ let mut p_h: f32;
+ let mut p_l: f32;
+ let y1: f32;
+ let mut t1: f32;
+ let t2: f32;
+ let mut r: f32;
+ let s: f32;
+ let mut sn: f32;
+ let mut t: f32;
+ let mut u: f32;
+ let mut v: f32;
+ let mut w: f32;
+ let i: i32;
+ let mut j: i32;
+ let mut k: i32;
+ let mut yisint: i32;
+ let mut n: i32;
+ let hx: i32;
+ let hy: i32;
+ let mut ix: i32;
+ let iy: i32;
+ let mut is: i32;
+
+ hx = x.to_bits() as i32;
+ hy = y.to_bits() as i32;
+
+ ix = hx & 0x7fffffff;
+ iy = hy & 0x7fffffff;
+
+ /* x**0 = 1, even if x is NaN */
+ if iy == 0 {
+ return 1.0;
+ }
+
+ /* 1**y = 1, even if y is NaN */
+ if hx == 0x3f800000 {
+ return 1.0;
+ }
+
+ /* NaN if either arg is NaN */
+ if ix > 0x7f800000 || iy > 0x7f800000 {
+ return x + y;
+ }
+
+ /* determine if y is an odd int when x < 0
+ * yisint = 0 ... y is not an integer
+ * yisint = 1 ... y is an odd int
+ * yisint = 2 ... y is an even int
+ */
+ yisint = 0;
+ if hx < 0 {
+ if iy >= 0x4b800000 {
+ yisint = 2; /* even integer y */
+ } else if iy >= 0x3f800000 {
+ k = (iy >> 23) - 0x7f; /* exponent */
+ j = iy >> (23 - k);
+ if (j << (23 - k)) == iy {
+ yisint = 2 - (j & 1);
+ }
+ }
+ }
+
+ /* special value of y */
+ if iy == 0x7f800000 {
+ /* y is +-inf */
+ if ix == 0x3f800000 {
+ /* (-1)**+-inf is 1 */
+ return 1.0;
+ } else if ix > 0x3f800000 {
+ /* (|x|>1)**+-inf = inf,0 */
+ return if hy >= 0 { y } else { 0.0 };
+ } else {
+ /* (|x|<1)**+-inf = 0,inf */
+ return if hy >= 0 { 0.0 } else { -y };
+ }
+ }
+ if iy == 0x3f800000 {
+ /* y is +-1 */
+ return if hy >= 0 { x } else { 1.0 / x };
+ }
+
+ if hy == 0x40000000 {
+ /* y is 2 */
+ return x * x;
+ }
+
+ if hy == 0x3f000000
+ /* y is 0.5 */
+ && hx >= 0
+ {
+ /* x >= +0 */
+ return sqrtf(x);
+ }
+
+ ax = fabsf(x);
+ /* special value of x */
+ if ix == 0x7f800000 || ix == 0 || ix == 0x3f800000 {
+ /* x is +-0,+-inf,+-1 */
+ z = ax;
+ if hy < 0 {
+ /* z = (1/|x|) */
+ z = 1.0 / z;
+ }
+
+ if hx < 0 {
+ if ((ix - 0x3f800000) | yisint) == 0 {
+ z = (z - z) / (z - z); /* (-1)**non-int is NaN */
+ } else if yisint == 1 {
+ z = -z; /* (x<0)**odd = -(|x|**odd) */
+ }
+ }
+ return z;
+ }
+
+ sn = 1.0; /* sign of result */
+ if hx < 0 {
+ if yisint == 0 {
+ /* (x<0)**(non-int) is NaN */
+ return (x - x) / (x - x);
+ }
+
+ if yisint == 1 {
+ /* (x<0)**(odd int) */
+ sn = -1.0;
+ }
+ }
+
+ /* |y| is HUGE */
+ if iy > 0x4d000000 {
+ /* if |y| > 2**27 */
+ /* over/underflow if x is not close to one */
+ if ix < 0x3f7ffff8 {
+ return if hy < 0 {
+ sn * HUGE * HUGE
+ } else {
+ sn * TINY * TINY
+ };
+ }
+
+ if ix > 0x3f800007 {
+ return if hy > 0 {
+ sn * HUGE * HUGE
+ } else {
+ sn * TINY * TINY
+ };
+ }
+
+ /* now |1-x| is TINY <= 2**-20, suffice to compute
+ log(x) by x-x^2/2+x^3/3-x^4/4 */
+ t = ax - 1.; /* t has 20 trailing zeros */
+ w = (t * t) * (0.5 - t * (0.333333333333 - t * 0.25));
+ u = IVLN2_H * t; /* IVLN2_H has 16 sig. bits */
+ v = t * IVLN2_L - w * IVLN2;
+ t1 = u + v;
+ is = t1.to_bits() as i32;
+ t1 = f32::from_bits(is as u32 & 0xfffff000);
+ t2 = v - (t1 - u);
+ } else {
+ let mut s2: f32;
+ let mut s_h: f32;
+ let s_l: f32;
+ let mut t_h: f32;
+ let mut t_l: f32;
+
+ n = 0;
+ /* take care subnormal number */
+ if ix < 0x00800000 {
+ ax *= TWO24;
+ n -= 24;
+ ix = ax.to_bits() as i32;
+ }
+ n += ((ix) >> 23) - 0x7f;
+ j = ix & 0x007fffff;
+ /* determine interval */
+ ix = j | 0x3f800000; /* normalize ix */
+ if j <= 0x1cc471 {
+ /* |x|<sqrt(3/2) */
+ k = 0;
+ } else if j < 0x5db3d7 {
+ /* |x|<sqrt(3) */
+ k = 1;
+ } else {
+ k = 0;
+ n += 1;
+ ix -= 0x00800000;
+ }
+ ax = f32::from_bits(ix as u32);
+
+ /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ u = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
+ v = 1.0 / (ax + i!(BP, k as usize));
+ s = u * v;
+ s_h = s;
+ is = s_h.to_bits() as i32;
+ s_h = f32::from_bits(is as u32 & 0xfffff000);
+ /* t_h=ax+bp[k] High */
+ is = (((ix as u32 >> 1) & 0xfffff000) | 0x20000000) as i32;
+ t_h = f32::from_bits(is as u32 + 0x00400000 + ((k as u32) << 21));
+ t_l = ax - (t_h - i!(BP, k as usize));
+ s_l = v * ((u - s_h * t_h) - s_h * t_l);
+ /* compute log(ax) */
+ s2 = s * s;
+ r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
+ r += s_l * (s_h + s);
+ s2 = s_h * s_h;
+ t_h = 3.0 + s2 + r;
+ is = t_h.to_bits() as i32;
+ t_h = f32::from_bits(is as u32 & 0xfffff000);
+ t_l = r - ((t_h - 3.0) - s2);
+ /* u+v = s*(1+...) */
+ u = s_h * t_h;
+ v = s_l * t_h + t_l * s;
+ /* 2/(3log2)*(s+...) */
+ p_h = u + v;
+ is = p_h.to_bits() as i32;
+ p_h = f32::from_bits(is as u32 & 0xfffff000);
+ p_l = v - (p_h - u);
+ z_h = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
+ z_l = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
+ /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ t = n as f32;
+ t1 = ((z_h + z_l) + i!(DP_H, k as usize)) + t;
+ is = t1.to_bits() as i32;
+ t1 = f32::from_bits(is as u32 & 0xfffff000);
+ t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
+ };
+
+ /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+ is = y.to_bits() as i32;
+ y1 = f32::from_bits(is as u32 & 0xfffff000);
+ p_l = (y - y1) * t1 + y * t2;
+ p_h = y1 * t1;
+ z = p_l + p_h;
+ j = z.to_bits() as i32;
+ if j > 0x43000000 {
+ /* if z > 128 */
+ return sn * HUGE * HUGE; /* overflow */
+ } else if j == 0x43000000 {
+ /* if z == 128 */
+ if p_l + OVT > z - p_h {
+ return sn * HUGE * HUGE; /* overflow */
+ }
+ } else if (j & 0x7fffffff) > 0x43160000 {
+ /* z < -150 */
+ // FIXME: check should be (uint32_t)j > 0xc3160000
+ return sn * TINY * TINY; /* underflow */
+ } else if j as u32 == 0xc3160000
+ /* z == -150 */
+ && p_l <= z - p_h
+ {
+ return sn * TINY * TINY; /* underflow */
+ }
+
+ /*
+ * compute 2**(p_h+p_l)
+ */
+ i = j & 0x7fffffff;
+ k = (i >> 23) - 0x7f;
+ n = 0;
+ if i > 0x3f000000 {
+ /* if |z| > 0.5, set n = [z+0.5] */
+ n = j + (0x00800000 >> (k + 1));
+ k = ((n & 0x7fffffff) >> 23) - 0x7f; /* new k for n */
+ t = f32::from_bits(n as u32 & !(0x007fffff >> k));
+ n = ((n & 0x007fffff) | 0x00800000) >> (23 - k);
+ if j < 0 {
+ n = -n;
+ }
+ p_h -= t;
+ }
+ t = p_l + p_h;
+ is = t.to_bits() as i32;
+ t = f32::from_bits(is as u32 & 0xffff8000);
+ u = t * LG2_H;
+ v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
+ z = u + v;
+ w = v - (z - u);
+ t = z * z;
+ t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+ r = (z * t1) / (t1 - 2.0) - (w + z * w);
+ z = 1.0 - (r - z);
+ j = z.to_bits() as i32;
+ j += n << 23;
+ if (j >> 23) <= 0 {
+ /* subnormal output */
+ z = scalbnf(z, n);
+ } else {
+ z = f32::from_bits(j as u32);
+ }
+ sn * z
+}
diff --git a/vendor/compiler_builtins/libm/src/math/rem_pio2.rs b/vendor/compiler_builtins/libm/src/math/rem_pio2.rs
new file mode 100644
index 000000000..644616f2d
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/rem_pio2.rs
@@ -0,0 +1,233 @@
+// origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2.c
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// Optimized by Bruce D. Evans. */
+use super::rem_pio2_large;
+
+// #if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+// #define EPS DBL_EPSILON
+const EPS: f64 = 2.2204460492503131e-16;
+// #elif FLT_EVAL_METHOD==2
+// #define EPS LDBL_EPSILON
+// #endif
+
+// TODO: Support FLT_EVAL_METHOD?
+
+const TO_INT: f64 = 1.5 / EPS;
+/// 53 bits of 2/pi
+const INV_PIO2: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
+/// first 33 bits of pi/2
+const PIO2_1: f64 = 1.57079632673412561417e+00; /* 0x3FF921FB, 0x54400000 */
+/// pi/2 - PIO2_1
+const PIO2_1T: f64 = 6.07710050650619224932e-11; /* 0x3DD0B461, 0x1A626331 */
+/// second 33 bits of pi/2
+const PIO2_2: f64 = 6.07710050630396597660e-11; /* 0x3DD0B461, 0x1A600000 */
+/// pi/2 - (PIO2_1+PIO2_2)
+const PIO2_2T: f64 = 2.02226624879595063154e-21; /* 0x3BA3198A, 0x2E037073 */
+/// third 33 bits of pi/2
+const PIO2_3: f64 = 2.02226624871116645580e-21; /* 0x3BA3198A, 0x2E000000 */
+/// pi/2 - (PIO2_1+PIO2_2+PIO2_3)
+const PIO2_3T: f64 = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
+
+// return the remainder of x rem pi/2 in y[0]+y[1]
+// use rem_pio2_large() for large x
+//
+// caller must handle the case when reduction is not needed: |x| ~<= pi/4 */
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn rem_pio2(x: f64) -> (i32, f64, f64) {
+ let x1p24 = f64::from_bits(0x4170000000000000);
+
+ let sign = (f64::to_bits(x) >> 63) as i32;
+ let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff;
+
+ fn medium(x: f64, ix: u32) -> (i32, f64, f64) {
+ /* rint(x/(pi/2)), Assume round-to-nearest. */
+ let tmp = x as f64 * INV_PIO2 + TO_INT;
+ // force rounding of tmp to it's storage format on x87 to avoid
+ // excess precision issues.
+ #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+ let tmp = force_eval!(tmp);
+ let f_n = tmp - TO_INT;
+ let n = f_n as i32;
+ let mut r = x - f_n * PIO2_1;
+ let mut w = f_n * PIO2_1T; /* 1st round, good to 85 bits */
+ let mut y0 = r - w;
+ let ui = f64::to_bits(y0);
+ let ey = (ui >> 52) as i32 & 0x7ff;
+ let ex = (ix >> 20) as i32;
+ if ex - ey > 16 {
+ /* 2nd round, good to 118 bits */
+ let t = r;
+ w = f_n * PIO2_2;
+ r = t - w;
+ w = f_n * PIO2_2T - ((t - r) - w);
+ y0 = r - w;
+ let ey = (f64::to_bits(y0) >> 52) as i32 & 0x7ff;
+ if ex - ey > 49 {
+ /* 3rd round, good to 151 bits, covers all cases */
+ let t = r;
+ w = f_n * PIO2_3;
+ r = t - w;
+ w = f_n * PIO2_3T - ((t - r) - w);
+ y0 = r - w;
+ }
+ }
+ let y1 = (r - y0) - w;
+ (n, y0, y1)
+ }
+
+ if ix <= 0x400f6a7a {
+ /* |x| ~<= 5pi/4 */
+ if (ix & 0xfffff) == 0x921fb {
+ /* |x| ~= pi/2 or 2pi/2 */
+ return medium(x, ix); /* cancellation -- use medium case */
+ }
+ if ix <= 0x4002d97c {
+ /* |x| ~<= 3pi/4 */
+ if sign == 0 {
+ let z = x - PIO2_1; /* one round good to 85 bits */
+ let y0 = z - PIO2_1T;
+ let y1 = (z - y0) - PIO2_1T;
+ return (1, y0, y1);
+ } else {
+ let z = x + PIO2_1;
+ let y0 = z + PIO2_1T;
+ let y1 = (z - y0) + PIO2_1T;
+ return (-1, y0, y1);
+ }
+ } else if sign == 0 {
+ let z = x - 2.0 * PIO2_1;
+ let y0 = z - 2.0 * PIO2_1T;
+ let y1 = (z - y0) - 2.0 * PIO2_1T;
+ return (2, y0, y1);
+ } else {
+ let z = x + 2.0 * PIO2_1;
+ let y0 = z + 2.0 * PIO2_1T;
+ let y1 = (z - y0) + 2.0 * PIO2_1T;
+ return (-2, y0, y1);
+ }
+ }
+ if ix <= 0x401c463b {
+ /* |x| ~<= 9pi/4 */
+ if ix <= 0x4015fdbc {
+ /* |x| ~<= 7pi/4 */
+ if ix == 0x4012d97c {
+ /* |x| ~= 3pi/2 */
+ return medium(x, ix);
+ }
+ if sign == 0 {
+ let z = x - 3.0 * PIO2_1;
+ let y0 = z - 3.0 * PIO2_1T;
+ let y1 = (z - y0) - 3.0 * PIO2_1T;
+ return (3, y0, y1);
+ } else {
+ let z = x + 3.0 * PIO2_1;
+ let y0 = z + 3.0 * PIO2_1T;
+ let y1 = (z - y0) + 3.0 * PIO2_1T;
+ return (-3, y0, y1);
+ }
+ } else {
+ if ix == 0x401921fb {
+ /* |x| ~= 4pi/2 */
+ return medium(x, ix);
+ }
+ if sign == 0 {
+ let z = x - 4.0 * PIO2_1;
+ let y0 = z - 4.0 * PIO2_1T;
+ let y1 = (z - y0) - 4.0 * PIO2_1T;
+ return (4, y0, y1);
+ } else {
+ let z = x + 4.0 * PIO2_1;
+ let y0 = z + 4.0 * PIO2_1T;
+ let y1 = (z - y0) + 4.0 * PIO2_1T;
+ return (-4, y0, y1);
+ }
+ }
+ }
+ if ix < 0x413921fb {
+ /* |x| ~< 2^20*(pi/2), medium size */
+ return medium(x, ix);
+ }
+ /*
+ * all other (large) arguments
+ */
+ if ix >= 0x7ff00000 {
+ /* x is inf or NaN */
+ let y0 = x - x;
+ let y1 = y0;
+ return (0, y0, y1);
+ }
+ /* set z = scalbn(|x|,-ilogb(x)+23) */
+ let mut ui = f64::to_bits(x);
+ ui &= (!1) >> 12;
+ ui |= (0x3ff + 23) << 52;
+ let mut z = f64::from_bits(ui);
+ let mut tx = [0.0; 3];
+ for i in 0..2 {
+ i!(tx,i, =, z as i32 as f64);
+ z = (z - i!(tx, i)) * x1p24;
+ }
+ i!(tx,2, =, z);
+ /* skip zero terms, first term is non-zero */
+ let mut i = 2;
+ while i != 0 && i!(tx, i) == 0.0 {
+ i -= 1;
+ }
+ let mut ty = [0.0; 3];
+ let n = rem_pio2_large(&tx[..=i], &mut ty, ((ix as i32) >> 20) - (0x3ff + 23), 1);
+ if sign != 0 {
+ return (-n, -i!(ty, 0), -i!(ty, 1));
+ }
+ (n, i!(ty, 0), i!(ty, 1))
+}
+
+#[cfg(test)]
+mod tests {
+ use super::rem_pio2;
+
+ #[test]
+ fn test_near_pi() {
+ let arg = 3.141592025756836;
+ let arg = force_eval!(arg);
+ assert_eq!(
+ rem_pio2(arg),
+ (2, -6.278329573009626e-7, -2.1125998133974653e-23)
+ );
+ let arg = 3.141592033207416;
+ let arg = force_eval!(arg);
+ assert_eq!(
+ rem_pio2(arg),
+ (2, -6.20382377148128e-7, -2.1125998133974653e-23)
+ );
+ let arg = 3.141592144966125;
+ let arg = force_eval!(arg);
+ assert_eq!(
+ rem_pio2(arg),
+ (2, -5.086236681942706e-7, -2.1125998133974653e-23)
+ );
+ let arg = 3.141592979431152;
+ let arg = force_eval!(arg);
+ assert_eq!(
+ rem_pio2(arg),
+ (2, 3.2584135866119817e-7, -2.1125998133974653e-23)
+ );
+ }
+
+ #[test]
+ fn test_overflow_b9b847() {
+ let _ = rem_pio2(-3054214.5490637687);
+ }
+
+ #[test]
+ fn test_overflow_4747b9() {
+ let _ = rem_pio2(917340800458.2274);
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/rem_pio2_large.rs b/vendor/compiler_builtins/libm/src/math/rem_pio2_large.rs
new file mode 100644
index 000000000..65473f0ab
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/rem_pio2_large.rs
@@ -0,0 +1,470 @@
+#![allow(unused_unsafe)]
+/* origin: FreeBSD /usr/src/lib/msun/src/k_rem_pio2.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::floor;
+use super::scalbn;
+
+// initial value for jk
+const INIT_JK: [usize; 4] = [3, 4, 4, 6];
+
+// Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
+//
+// integer array, contains the (24*i)-th to (24*i+23)-th
+// bit of 2/pi after binary point. The corresponding
+// floating value is
+//
+// ipio2[i] * 2^(-24(i+1)).
+//
+// NB: This table must have at least (e0-3)/24 + jk terms.
+// For quad precision (e0 <= 16360, jk = 6), this is 686.
+#[cfg(target_pointer_width = "32")]
+const IPIO2: [i32; 66] = [
+ 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163,
+ 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
+ 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C,
+ 0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
+ 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292,
+ 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
+ 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
+ 0x73A8C9, 0x60E27B, 0xC08C6B,
+];
+
+#[cfg(target_pointer_width = "64")]
+const IPIO2: [i32; 690] = [
+ 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163,
+ 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
+ 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C,
+ 0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
+ 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292,
+ 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
+ 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
+ 0x73A8C9, 0x60E27B, 0xC08C6B, 0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
+ 0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2, 0xDE4F98, 0x327DBB, 0xC33D26,
+ 0xEF6B1E, 0x5EF89F, 0x3A1F35, 0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
+ 0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C, 0x467D86, 0x2D71E3, 0x9AC69B,
+ 0x006233, 0x7CD2B4, 0x97A7B4, 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
+ 0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7, 0xCB2324, 0x778AD6, 0x23545A,
+ 0xB91F00, 0x1B0AF1, 0xDFCE19, 0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
+ 0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16, 0xDE3B58, 0x929BDE, 0x2822D2,
+ 0xE88628, 0x4D58E2, 0x32CAC6, 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
+ 0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48, 0xD36710, 0xD8DDAA, 0x425FAE,
+ 0xCE616A, 0xA4280A, 0xB499D3, 0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
+ 0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55, 0x36D9CA, 0xD2A828, 0x8D61C2,
+ 0x77C912, 0x142604, 0x9B4612, 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
+ 0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC, 0xC3E7B3, 0x28F8C7, 0x940593,
+ 0x3E71C1, 0xB3092E, 0xF3450B, 0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
+ 0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4, 0x9794E8, 0x84E6E2, 0x973199,
+ 0x6BED88, 0x365F5F, 0x0EFDBB, 0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
+ 0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C, 0x90AA47, 0x02E774, 0x24D6BD,
+ 0xA67DF7, 0x72486E, 0xEF169F, 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
+ 0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437, 0x10D86D, 0x324832, 0x754C5B,
+ 0xD4714E, 0x6E5445, 0xC1090B, 0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
+ 0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD, 0x6AE290, 0x89D988, 0x50722C,
+ 0xBEA404, 0x940777, 0x7030F3, 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
+ 0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717, 0x3BDF08, 0x2B3715, 0xA0805C,
+ 0x93805A, 0x921110, 0xD8E80F, 0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
+ 0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB, 0xAA140A, 0x2F2689, 0x768364,
+ 0x333B09, 0x1A940E, 0xAA3A51, 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
+ 0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C, 0x5BC3D8, 0xC492F5, 0x4BADC6,
+ 0xA5CA4E, 0xCD37A7, 0x36A9E6, 0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
+ 0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED, 0x306529, 0xBF5657, 0x3AFF47,
+ 0xB9F96A, 0xF3BE75, 0xDF9328, 0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
+ 0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0, 0xA8654F, 0xA5C1D2, 0x0F3F0B,
+ 0xCD785B, 0x76F923, 0x048B7B, 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
+ 0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3, 0xDA4886, 0xA05DF7, 0xF480C6,
+ 0x2FF0AC, 0x9AECDD, 0xBC5C3F, 0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
+ 0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B, 0x2A1216, 0x2DB7DC, 0xFDE5FA,
+ 0xFEDB89, 0xFDBE89, 0x6C76E4, 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
+ 0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31, 0x48D784, 0x16DF30, 0x432DC7,
+ 0x356125, 0xCE70C9, 0xB8CB30, 0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
+ 0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E, 0xC4F133, 0x5F6E13, 0xE4305D,
+ 0xA92E85, 0xC3B21D, 0x3632A1, 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
+ 0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4, 0xCBDA11, 0xD0BE7D, 0xC1DB9B,
+ 0xBD17AB, 0x81A2CA, 0x5C6A08, 0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
+ 0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9, 0x4F6A68, 0xA82A4A, 0x5AC44F,
+ 0xBCF82D, 0x985AD7, 0x95C7F4, 0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
+ 0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C, 0xD0C0B2, 0x485551, 0x0EFB1E,
+ 0xC37295, 0x3B06A3, 0x3540C0, 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
+ 0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0, 0x3C3ABA, 0x461846, 0x5F7555,
+ 0xF5BDD2, 0xC6926E, 0x5D2EAC, 0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
+ 0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893, 0x745D7C, 0xB2AD6B, 0x9D6ECD,
+ 0x7B723E, 0x6A11C6, 0xA9CFF7, 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
+ 0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F, 0xBEFDFD, 0xEF4556, 0x367ED9,
+ 0x13D9EC, 0xB9BA8B, 0xFC97C4, 0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
+ 0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B, 0x9C2A3E, 0xCC5F11, 0x4A0BFD,
+ 0xFBF4E1, 0x6D3B8E, 0x2C86E2, 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
+ 0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E, 0xCC2254, 0xDC552A, 0xD6C6C0,
+ 0x96190B, 0xB8701A, 0x649569, 0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
+ 0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9, 0x9B5861, 0xBC57E1, 0xC68351,
+ 0x103ED8, 0x4871DD, 0xDD1C2D, 0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
+ 0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855, 0x382682, 0x9BE7CA, 0xA40D51,
+ 0xB13399, 0x0ED7A9, 0x480569, 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
+ 0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE, 0x5FD45E, 0xA4677B, 0x7AACBA,
+ 0xA2F655, 0x23882B, 0x55BA41, 0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
+ 0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F, 0xAE5ADB, 0x86C547, 0x624385,
+ 0x3B8621, 0x94792C, 0x876110, 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
+ 0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365, 0xB1933D, 0x0B7CBD, 0xDC51A4,
+ 0x63DD27, 0xDDE169, 0x19949A, 0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
+ 0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5, 0x4D7E6F, 0x5119A5, 0xABF9B5,
+ 0xD6DF82, 0x61DD96, 0x023616, 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
+ 0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
+];
+
+const PIO2: [f64; 8] = [
+ 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
+ 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
+ 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
+ 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
+ 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
+ 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
+ 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
+ 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
+];
+
+// fn rem_pio2_large(x : &[f64], y : &mut [f64], e0 : i32, prec : usize) -> i32
+//
+// Input parameters:
+// x[] The input value (must be positive) is broken into nx
+// pieces of 24-bit integers in double precision format.
+// x[i] will be the i-th 24 bit of x. The scaled exponent
+// of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
+// match x's up to 24 bits.
+//
+// Example of breaking a double positive z into x[0]+x[1]+x[2]:
+// e0 = ilogb(z)-23
+// z = scalbn(z,-e0)
+// for i = 0,1,2
+// x[i] = floor(z)
+// z = (z-x[i])*2**24
+//
+// y[] ouput result in an array of double precision numbers.
+// The dimension of y[] is:
+// 24-bit precision 1
+// 53-bit precision 2
+// 64-bit precision 2
+// 113-bit precision 3
+// The actual value is the sum of them. Thus for 113-bit
+// precison, one may have to do something like:
+//
+// long double t,w,r_head, r_tail;
+// t = (long double)y[2] + (long double)y[1];
+// w = (long double)y[0];
+// r_head = t+w;
+// r_tail = w - (r_head - t);
+//
+// e0 The exponent of x[0]. Must be <= 16360 or you need to
+// expand the ipio2 table.
+//
+// prec an integer indicating the precision:
+// 0 24 bits (single)
+// 1 53 bits (double)
+// 2 64 bits (extended)
+// 3 113 bits (quad)
+//
+// Here is the description of some local variables:
+//
+// jk jk+1 is the initial number of terms of ipio2[] needed
+// in the computation. The minimum and recommended value
+// for jk is 3,4,4,6 for single, double, extended, and quad.
+// jk+1 must be 2 larger than you might expect so that our
+// recomputation test works. (Up to 24 bits in the integer
+// part (the 24 bits of it that we compute) and 23 bits in
+// the fraction part may be lost to cancelation before we
+// recompute.)
+//
+// jz local integer variable indicating the number of
+// terms of ipio2[] used.
+//
+// jx nx - 1
+//
+// jv index for pointing to the suitable ipio2[] for the
+// computation. In general, we want
+// ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
+// is an integer. Thus
+// e0-3-24*jv >= 0 or (e0-3)/24 >= jv
+// Hence jv = max(0,(e0-3)/24).
+//
+// jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
+//
+// q[] double array with integral value, representing the
+// 24-bits chunk of the product of x and 2/pi.
+//
+// q0 the corresponding exponent of q[0]. Note that the
+// exponent for q[i] would be q0-24*i.
+//
+// PIo2[] double precision array, obtained by cutting pi/2
+// into 24 bits chunks.
+//
+// f[] ipio2[] in floating point
+//
+// iq[] integer array by breaking up q[] in 24-bits chunk.
+//
+// fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
+//
+// ih integer. If >0 it indicates q[] is >= 0.5, hence
+// it also indicates the *sign* of the result.
+
+/// Return the last three digits of N with y = x - N*pi/2
+/// so that |y| < pi/2.
+///
+/// The method is to compute the integer (mod 8) and fraction parts of
+/// (2/pi)*x without doing the full multiplication. In general we
+/// skip the part of the product that are known to be a huge integer (
+/// more accurately, = 0 mod 8 ). Thus the number of operations are
+/// independent of the exponent of the input.
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn rem_pio2_large(x: &[f64], y: &mut [f64], e0: i32, prec: usize) -> i32 {
+ let x1p24 = f64::from_bits(0x4170000000000000); // 0x1p24 === 2 ^ 24
+ let x1p_24 = f64::from_bits(0x3e70000000000000); // 0x1p_24 === 2 ^ (-24)
+
+ #[cfg(all(target_pointer_width = "64", feature = "checked"))]
+ assert!(e0 <= 16360);
+
+ let nx = x.len();
+
+ let mut fw: f64;
+ let mut n: i32;
+ let mut ih: i32;
+ let mut z: f64;
+ let mut f: [f64; 20] = [0.; 20];
+ let mut fq: [f64; 20] = [0.; 20];
+ let mut q: [f64; 20] = [0.; 20];
+ let mut iq: [i32; 20] = [0; 20];
+
+ /* initialize jk*/
+ let jk = i!(INIT_JK, prec);
+ let jp = jk;
+
+ /* determine jx,jv,q0, note that 3>q0 */
+ let jx = nx - 1;
+ let mut jv = div!(e0 - 3, 24);
+ if jv < 0 {
+ jv = 0;
+ }
+ let mut q0 = e0 - 24 * (jv + 1);
+ let jv = jv as usize;
+
+ /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
+ let mut j = (jv as i32) - (jx as i32);
+ let m = jx + jk;
+ for i in 0..=m {
+ i!(f, i, =, if j < 0 {
+ 0.
+ } else {
+ i!(IPIO2, j as usize) as f64
+ });
+ j += 1;
+ }
+
+ /* compute q[0],q[1],...q[jk] */
+ for i in 0..=jk {
+ fw = 0f64;
+ for j in 0..=jx {
+ fw += i!(x, j) * i!(f, jx + i - j);
+ }
+ i!(q, i, =, fw);
+ }
+
+ let mut jz = jk;
+
+ 'recompute: loop {
+ /* distill q[] into iq[] reversingly */
+ let mut i = 0i32;
+ z = i!(q, jz);
+ for j in (1..=jz).rev() {
+ fw = (x1p_24 * z) as i32 as f64;
+ i!(iq, i as usize, =, (z - x1p24 * fw) as i32);
+ z = i!(q, j - 1) + fw;
+ i += 1;
+ }
+
+ /* compute n */
+ z = scalbn(z, q0); /* actual value of z */
+ z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */
+ n = z as i32;
+ z -= n as f64;
+ ih = 0;
+ if q0 > 0 {
+ /* need iq[jz-1] to determine n */
+ i = i!(iq, jz - 1) >> (24 - q0);
+ n += i;
+ i!(iq, jz - 1, -=, i << (24 - q0));
+ ih = i!(iq, jz - 1) >> (23 - q0);
+ } else if q0 == 0 {
+ ih = i!(iq, jz - 1) >> 23;
+ } else if z >= 0.5 {
+ ih = 2;
+ }
+
+ if ih > 0 {
+ /* q > 0.5 */
+ n += 1;
+ let mut carry = 0i32;
+ for i in 0..jz {
+ /* compute 1-q */
+ let j = i!(iq, i);
+ if carry == 0 {
+ if j != 0 {
+ carry = 1;
+ i!(iq, i, =, 0x1000000 - j);
+ }
+ } else {
+ i!(iq, i, =, 0xffffff - j);
+ }
+ }
+ if q0 > 0 {
+ /* rare case: chance is 1 in 12 */
+ match q0 {
+ 1 => {
+ i!(iq, jz - 1, &=, 0x7fffff);
+ }
+ 2 => {
+ i!(iq, jz - 1, &=, 0x3fffff);
+ }
+ _ => {}
+ }
+ }
+ if ih == 2 {
+ z = 1. - z;
+ if carry != 0 {
+ z -= scalbn(1., q0);
+ }
+ }
+ }
+
+ /* check if recomputation is needed */
+ if z == 0. {
+ let mut j = 0;
+ for i in (jk..=jz - 1).rev() {
+ j |= i!(iq, i);
+ }
+ if j == 0 {
+ /* need recomputation */
+ let mut k = 1;
+ while i!(iq, jk - k, ==, 0) {
+ k += 1; /* k = no. of terms needed */
+ }
+
+ for i in (jz + 1)..=(jz + k) {
+ /* add q[jz+1] to q[jz+k] */
+ i!(f, jx + i, =, i!(IPIO2, jv + i) as f64);
+ fw = 0f64;
+ for j in 0..=jx {
+ fw += i!(x, j) * i!(f, jx + i - j);
+ }
+ i!(q, i, =, fw);
+ }
+ jz += k;
+ continue 'recompute;
+ }
+ }
+
+ break;
+ }
+
+ /* chop off zero terms */
+ if z == 0. {
+ jz -= 1;
+ q0 -= 24;
+ while i!(iq, jz) == 0 {
+ jz -= 1;
+ q0 -= 24;
+ }
+ } else {
+ /* break z into 24-bit if necessary */
+ z = scalbn(z, -q0);
+ if z >= x1p24 {
+ fw = (x1p_24 * z) as i32 as f64;
+ i!(iq, jz, =, (z - x1p24 * fw) as i32);
+ jz += 1;
+ q0 += 24;
+ i!(iq, jz, =, fw as i32);
+ } else {
+ i!(iq, jz, =, z as i32);
+ }
+ }
+
+ /* convert integer "bit" chunk to floating-point value */
+ fw = scalbn(1., q0);
+ for i in (0..=jz).rev() {
+ i!(q, i, =, fw * (i!(iq, i) as f64));
+ fw *= x1p_24;
+ }
+
+ /* compute PIo2[0,...,jp]*q[jz,...,0] */
+ for i in (0..=jz).rev() {
+ fw = 0f64;
+ let mut k = 0;
+ while (k <= jp) && (k <= jz - i) {
+ fw += i!(PIO2, k) * i!(q, i + k);
+ k += 1;
+ }
+ i!(fq, jz - i, =, fw);
+ }
+
+ /* compress fq[] into y[] */
+ match prec {
+ 0 => {
+ fw = 0f64;
+ for i in (0..=jz).rev() {
+ fw += i!(fq, i);
+ }
+ i!(y, 0, =, if ih == 0 { fw } else { -fw });
+ }
+ 1 | 2 => {
+ fw = 0f64;
+ for i in (0..=jz).rev() {
+ fw += i!(fq, i);
+ }
+ // TODO: drop excess precision here once double_t is used
+ fw = fw as f64;
+ i!(y, 0, =, if ih == 0 { fw } else { -fw });
+ fw = i!(fq, 0) - fw;
+ for i in 1..=jz {
+ fw += i!(fq, i);
+ }
+ i!(y, 1, =, if ih == 0 { fw } else { -fw });
+ }
+ 3 => {
+ /* painful */
+ for i in (1..=jz).rev() {
+ fw = i!(fq, i - 1) + i!(fq, i);
+ i!(fq, i, +=, i!(fq, i - 1) - fw);
+ i!(fq, i - 1, =, fw);
+ }
+ for i in (2..=jz).rev() {
+ fw = i!(fq, i - 1) + i!(fq, i);
+ i!(fq, i, +=, i!(fq, i - 1) - fw);
+ i!(fq, i - 1, =, fw);
+ }
+ fw = 0f64;
+ for i in (2..=jz).rev() {
+ fw += i!(fq, i);
+ }
+ if ih == 0 {
+ i!(y, 0, =, i!(fq, 0));
+ i!(y, 1, =, i!(fq, 1));
+ i!(y, 2, =, fw);
+ } else {
+ i!(y, 0, =, -i!(fq, 0));
+ i!(y, 1, =, -i!(fq, 1));
+ i!(y, 2, =, -fw);
+ }
+ }
+ #[cfg(debug_assertions)]
+ _ => unreachable!(),
+ #[cfg(not(debug_assertions))]
+ _ => {}
+ }
+ n & 7
+}
diff --git a/vendor/compiler_builtins/libm/src/math/rem_pio2f.rs b/vendor/compiler_builtins/libm/src/math/rem_pio2f.rs
new file mode 100644
index 000000000..775f5d750
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/rem_pio2f.rs
@@ -0,0 +1,67 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2f.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Debugged and optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::rem_pio2_large;
+
+use core::f64;
+
+const TOINT: f64 = 1.5 / f64::EPSILON;
+
+/// 53 bits of 2/pi
+const INV_PIO2: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
+/// first 25 bits of pi/2
+const PIO2_1: f64 = 1.57079631090164184570e+00; /* 0x3FF921FB, 0x50000000 */
+/// pi/2 - pio2_1
+const PIO2_1T: f64 = 1.58932547735281966916e-08; /* 0x3E5110b4, 0x611A6263 */
+
+/// Return the remainder of x rem pi/2 in *y
+///
+/// use double precision for everything except passing x
+/// use __rem_pio2_large() for large x
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub(crate) fn rem_pio2f(x: f32) -> (i32, f64) {
+ let x64 = x as f64;
+
+ let mut tx: [f64; 1] = [0.];
+ let mut ty: [f64; 1] = [0.];
+
+ let ix = x.to_bits() & 0x7fffffff;
+ /* 25+53 bit pi is good enough for medium size */
+ if ix < 0x4dc90fdb {
+ /* |x| ~< 2^28*(pi/2), medium size */
+ /* Use a specialized rint() to get fn. Assume round-to-nearest. */
+ let tmp = x64 * INV_PIO2 + TOINT;
+ // force rounding of tmp to it's storage format on x87 to avoid
+ // excess precision issues.
+ #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+ let tmp = force_eval!(tmp);
+ let f_n = tmp - TOINT;
+ return (f_n as i32, x64 - f_n * PIO2_1 - f_n * PIO2_1T);
+ }
+ if ix >= 0x7f800000 {
+ /* x is inf or NaN */
+ return (0, x64 - x64);
+ }
+ /* scale x into [2^23, 2^24-1] */
+ let sign = (x.to_bits() >> 31) != 0;
+ let e0 = ((ix >> 23) - (0x7f + 23)) as i32; /* e0 = ilogb(|x|)-23, positive */
+ tx[0] = f32::from_bits(ix - (e0 << 23) as u32) as f64;
+ let n = rem_pio2_large(&tx, &mut ty, e0, 0);
+ if sign {
+ return (-n, -ty[0]);
+ }
+ (n, ty[0])
+}
diff --git a/vendor/compiler_builtins/libm/src/math/remainder.rs b/vendor/compiler_builtins/libm/src/math/remainder.rs
new file mode 100644
index 000000000..9e966c9ed
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/remainder.rs
@@ -0,0 +1,5 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn remainder(x: f64, y: f64) -> f64 {
+ let (result, _) = super::remquo(x, y);
+ result
+}
diff --git a/vendor/compiler_builtins/libm/src/math/remainderf.rs b/vendor/compiler_builtins/libm/src/math/remainderf.rs
new file mode 100644
index 000000000..b1407cf2a
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/remainderf.rs
@@ -0,0 +1,5 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn remainderf(x: f32, y: f32) -> f32 {
+ let (result, _) = super::remquof(x, y);
+ result
+}
diff --git a/vendor/compiler_builtins/libm/src/math/remquo.rs b/vendor/compiler_builtins/libm/src/math/remquo.rs
new file mode 100644
index 000000000..0afd1f7f5
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/remquo.rs
@@ -0,0 +1,110 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn remquo(mut x: f64, mut y: f64) -> (f64, i32) {
+ let ux: u64 = x.to_bits();
+ let mut uy: u64 = y.to_bits();
+ let mut ex = ((ux >> 52) & 0x7ff) as i32;
+ let mut ey = ((uy >> 52) & 0x7ff) as i32;
+ let sx = (ux >> 63) != 0;
+ let sy = (uy >> 63) != 0;
+ let mut q: u32;
+ let mut i: u64;
+ let mut uxi: u64 = ux;
+
+ if (uy << 1) == 0 || y.is_nan() || ex == 0x7ff {
+ return ((x * y) / (x * y), 0);
+ }
+ if (ux << 1) == 0 {
+ return (x, 0);
+ }
+
+ /* normalize x and y */
+ if ex == 0 {
+ i = uxi << 12;
+ while (i >> 63) == 0 {
+ ex -= 1;
+ i <<= 1;
+ }
+ uxi <<= -ex + 1;
+ } else {
+ uxi &= (!0) >> 12;
+ uxi |= 1 << 52;
+ }
+ if ey == 0 {
+ i = uy << 12;
+ while (i >> 63) == 0 {
+ ey -= 1;
+ i <<= 1;
+ }
+ uy <<= -ey + 1;
+ } else {
+ uy &= (!0) >> 12;
+ uy |= 1 << 52;
+ }
+
+ q = 0;
+
+ if ex + 1 != ey {
+ if ex < ey {
+ return (x, 0);
+ }
+ /* x mod y */
+ while ex > ey {
+ i = uxi.wrapping_sub(uy);
+ if (i >> 63) == 0 {
+ uxi = i;
+ q += 1;
+ }
+ uxi <<= 1;
+ q <<= 1;
+ ex -= 1;
+ }
+ i = uxi.wrapping_sub(uy);
+ if (i >> 63) == 0 {
+ uxi = i;
+ q += 1;
+ }
+ if uxi == 0 {
+ ex = -60;
+ } else {
+ while (uxi >> 52) == 0 {
+ uxi <<= 1;
+ ex -= 1;
+ }
+ }
+ }
+
+ /* scale result and decide between |x| and |x|-|y| */
+ if ex > 0 {
+ uxi -= 1 << 52;
+ uxi |= (ex as u64) << 52;
+ } else {
+ uxi >>= -ex + 1;
+ }
+ x = f64::from_bits(uxi);
+ if sy {
+ y = -y;
+ }
+ if ex == ey || (ex + 1 == ey && (2.0 * x > y || (2.0 * x == y && (q % 2) != 0))) {
+ x -= y;
+ // TODO: this matches musl behavior, but it is incorrect
+ q = q.wrapping_add(1);
+ }
+ q &= 0x7fffffff;
+ let quo = if sx ^ sy { -(q as i32) } else { q as i32 };
+ if sx {
+ (-x, quo)
+ } else {
+ (x, quo)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::remquo;
+
+ #[test]
+ fn test_q_overflow() {
+ // 0xc000000000000001, 0x04c0000000000004
+ let _ = remquo(-2.0000000000000004, 8.406091369059082e-286);
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/remquof.rs b/vendor/compiler_builtins/libm/src/math/remquof.rs
new file mode 100644
index 000000000..d71bd38e3
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/remquof.rs
@@ -0,0 +1,97 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn remquof(mut x: f32, mut y: f32) -> (f32, i32) {
+ let ux: u32 = x.to_bits();
+ let mut uy: u32 = y.to_bits();
+ let mut ex = ((ux >> 23) & 0xff) as i32;
+ let mut ey = ((uy >> 23) & 0xff) as i32;
+ let sx = (ux >> 31) != 0;
+ let sy = (uy >> 31) != 0;
+ let mut q: u32;
+ let mut i: u32;
+ let mut uxi: u32 = ux;
+
+ if (uy << 1) == 0 || y.is_nan() || ex == 0xff {
+ return ((x * y) / (x * y), 0);
+ }
+ if (ux << 1) == 0 {
+ return (x, 0);
+ }
+
+ /* normalize x and y */
+ if ex == 0 {
+ i = uxi << 9;
+ while (i >> 31) == 0 {
+ ex -= 1;
+ i <<= 1;
+ }
+ uxi <<= -ex + 1;
+ } else {
+ uxi &= (!0) >> 9;
+ uxi |= 1 << 23;
+ }
+ if ey == 0 {
+ i = uy << 9;
+ while (i >> 31) == 0 {
+ ey -= 1;
+ i <<= 1;
+ }
+ uy <<= -ey + 1;
+ } else {
+ uy &= (!0) >> 9;
+ uy |= 1 << 23;
+ }
+
+ q = 0;
+ if ex + 1 != ey {
+ if ex < ey {
+ return (x, 0);
+ }
+ /* x mod y */
+ while ex > ey {
+ i = uxi.wrapping_sub(uy);
+ if (i >> 31) == 0 {
+ uxi = i;
+ q += 1;
+ }
+ uxi <<= 1;
+ q <<= 1;
+ ex -= 1;
+ }
+ i = uxi.wrapping_sub(uy);
+ if (i >> 31) == 0 {
+ uxi = i;
+ q += 1;
+ }
+ if uxi == 0 {
+ ex = -30;
+ } else {
+ while (uxi >> 23) == 0 {
+ uxi <<= 1;
+ ex -= 1;
+ }
+ }
+ }
+
+ /* scale result and decide between |x| and |x|-|y| */
+ if ex > 0 {
+ uxi -= 1 << 23;
+ uxi |= (ex as u32) << 23;
+ } else {
+ uxi >>= -ex + 1;
+ }
+ x = f32::from_bits(uxi);
+ if sy {
+ y = -y;
+ }
+ if ex == ey || (ex + 1 == ey && (2.0 * x > y || (2.0 * x == y && (q % 2) != 0))) {
+ x -= y;
+ q += 1;
+ }
+ q &= 0x7fffffff;
+ let quo = if sx ^ sy { -(q as i32) } else { q as i32 };
+ if sx {
+ (-x, quo)
+ } else {
+ (x, quo)
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/round.rs b/vendor/compiler_builtins/libm/src/math/round.rs
new file mode 100644
index 000000000..46fabc90f
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/round.rs
@@ -0,0 +1,28 @@
+use super::copysign;
+use super::trunc;
+use core::f64;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn round(x: f64) -> f64 {
+ trunc(x + copysign(0.5 - 0.25 * f64::EPSILON, x))
+}
+
+#[cfg(test)]
+mod tests {
+ use super::round;
+
+ #[test]
+ fn negative_zero() {
+ assert_eq!(round(-0.0_f64).to_bits(), (-0.0_f64).to_bits());
+ }
+
+ #[test]
+ fn sanity_check() {
+ assert_eq!(round(-1.0), -1.0);
+ assert_eq!(round(2.8), 3.0);
+ assert_eq!(round(-0.5), -1.0);
+ assert_eq!(round(0.5), 1.0);
+ assert_eq!(round(-1.5), -2.0);
+ assert_eq!(round(1.5), 2.0);
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/roundf.rs b/vendor/compiler_builtins/libm/src/math/roundf.rs
new file mode 100644
index 000000000..becdb5620
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/roundf.rs
@@ -0,0 +1,30 @@
+use super::copysignf;
+use super::truncf;
+use core::f32;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn roundf(x: f32) -> f32 {
+ truncf(x + copysignf(0.5 - 0.25 * f32::EPSILON, x))
+}
+
+// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
+#[cfg(not(target_arch = "powerpc64"))]
+#[cfg(test)]
+mod tests {
+ use super::roundf;
+
+ #[test]
+ fn negative_zero() {
+ assert_eq!(roundf(-0.0_f32).to_bits(), (-0.0_f32).to_bits());
+ }
+
+ #[test]
+ fn sanity_check() {
+ assert_eq!(roundf(-1.0), -1.0);
+ assert_eq!(roundf(2.8), 3.0);
+ assert_eq!(roundf(-0.5), -1.0);
+ assert_eq!(roundf(0.5), 1.0);
+ assert_eq!(roundf(-1.5), -2.0);
+ assert_eq!(roundf(1.5), 2.0);
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/scalbn.rs b/vendor/compiler_builtins/libm/src/math/scalbn.rs
new file mode 100644
index 000000000..00c455a10
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/scalbn.rs
@@ -0,0 +1,33 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn scalbn(x: f64, mut n: i32) -> f64 {
+ let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023
+ let x1p53 = f64::from_bits(0x4340000000000000); // 0x1p53 === 2 ^ 53
+ let x1p_1022 = f64::from_bits(0x0010000000000000); // 0x1p-1022 === 2 ^ (-1022)
+
+ let mut y = x;
+
+ if n > 1023 {
+ y *= x1p1023;
+ n -= 1023;
+ if n > 1023 {
+ y *= x1p1023;
+ n -= 1023;
+ if n > 1023 {
+ n = 1023;
+ }
+ }
+ } else if n < -1022 {
+ /* make sure final n < -53 to avoid double
+ rounding in the subnormal range */
+ y *= x1p_1022 * x1p53;
+ n += 1022 - 53;
+ if n < -1022 {
+ y *= x1p_1022 * x1p53;
+ n += 1022 - 53;
+ if n < -1022 {
+ n = -1022;
+ }
+ }
+ }
+ y * f64::from_bits(((0x3ff + n) as u64) << 52)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/scalbnf.rs b/vendor/compiler_builtins/libm/src/math/scalbnf.rs
new file mode 100644
index 000000000..73f4bb57a
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/scalbnf.rs
@@ -0,0 +1,29 @@
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn scalbnf(mut x: f32, mut n: i32) -> f32 {
+ let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127
+ let x1p_126 = f32::from_bits(0x800000); // 0x1p-126f === 2 ^ -126
+ let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24
+
+ if n > 127 {
+ x *= x1p127;
+ n -= 127;
+ if n > 127 {
+ x *= x1p127;
+ n -= 127;
+ if n > 127 {
+ n = 127;
+ }
+ }
+ } else if n < -126 {
+ x *= x1p_126 * x1p24;
+ n += 126 - 24;
+ if n < -126 {
+ x *= x1p_126 * x1p24;
+ n += 126 - 24;
+ if n < -126 {
+ n = -126;
+ }
+ }
+ }
+ x * f32::from_bits(((0x7f + n) as u32) << 23)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/sin.rs b/vendor/compiler_builtins/libm/src/math/sin.rs
new file mode 100644
index 000000000..a53843dcd
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/sin.rs
@@ -0,0 +1,88 @@
+// origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+
+use super::{k_cos, k_sin, rem_pio2};
+
+// sin(x)
+// Return sine function of x.
+//
+// kernel function:
+// k_sin ... sine function on [-pi/4,pi/4]
+// k_cos ... cose function on [-pi/4,pi/4]
+// rem_pio2 ... argument reduction routine
+//
+// Method.
+// Let S,C and T denote the sin, cos and tan respectively on
+// [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+// in [-pi/4 , +pi/4], and let n = k mod 4.
+// We have
+//
+// n sin(x) cos(x) tan(x)
+// ----------------------------------------------------------
+// 0 S C T
+// 1 C -S -1/T
+// 2 -S -C T
+// 3 -C S -1/T
+// ----------------------------------------------------------
+//
+// Special cases:
+// Let trig be any of sin, cos, or tan.
+// trig(+-INF) is NaN, with signals;
+// trig(NaN) is that NaN;
+//
+// Accuracy:
+// TRIG(x) returns trig(x) nearly rounded
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sin(x: f64) -> f64 {
+ let x1p120 = f64::from_bits(0x4770000000000000); // 0x1p120f === 2 ^ 120
+
+ /* High word of x. */
+ let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff;
+
+ /* |x| ~< pi/4 */
+ if ix <= 0x3fe921fb {
+ if ix < 0x3e500000 {
+ /* |x| < 2**-26 */
+ /* raise inexact if x != 0 and underflow if subnormal*/
+ if ix < 0x00100000 {
+ force_eval!(x / x1p120);
+ } else {
+ force_eval!(x + x1p120);
+ }
+ return x;
+ }
+ return k_sin(x, 0.0, 0);
+ }
+
+ /* sin(Inf or NaN) is NaN */
+ if ix >= 0x7ff00000 {
+ return x - x;
+ }
+
+ /* argument reduction needed */
+ let (n, y0, y1) = rem_pio2(x);
+ match n & 3 {
+ 0 => k_sin(y0, y1, 1),
+ 1 => k_cos(y0, y1),
+ 2 => -k_sin(y0, y1, 1),
+ _ => -k_cos(y0, y1),
+ }
+}
+
+#[test]
+fn test_near_pi() {
+ let x = f64::from_bits(0x400921fb000FD5DD); // 3.141592026217707
+ let sx = f64::from_bits(0x3ea50d15ced1a4a2); // 6.273720864039205e-7
+ let result = sin(x);
+ #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
+ let result = force_eval!(result);
+ assert_eq!(result, sx);
+}
diff --git a/vendor/compiler_builtins/libm/src/math/sincos.rs b/vendor/compiler_builtins/libm/src/math/sincos.rs
new file mode 100644
index 000000000..4ab588412
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/sincos.rs
@@ -0,0 +1,133 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{get_high_word, k_cos, k_sin, rem_pio2};
+
+pub fn sincos(x: f64) -> (f64, f64) {
+ let s: f64;
+ let c: f64;
+ let mut ix: u32;
+
+ ix = get_high_word(x);
+ ix &= 0x7fffffff;
+
+ /* |x| ~< pi/4 */
+ if ix <= 0x3fe921fb {
+ /* if |x| < 2**-27 * sqrt(2) */
+ if ix < 0x3e46a09e {
+ /* raise inexact if x!=0 and underflow if subnormal */
+ let x1p120 = f64::from_bits(0x4770000000000000); // 0x1p120 == 2^120
+ if ix < 0x00100000 {
+ force_eval!(x / x1p120);
+ } else {
+ force_eval!(x + x1p120);
+ }
+ return (x, 1.0);
+ }
+ return (k_sin(x, 0.0, 0), k_cos(x, 0.0));
+ }
+
+ /* sincos(Inf or NaN) is NaN */
+ if ix >= 0x7ff00000 {
+ let rv = x - x;
+ return (rv, rv);
+ }
+
+ /* argument reduction needed */
+ let (n, y0, y1) = rem_pio2(x);
+ s = k_sin(y0, y1, 1);
+ c = k_cos(y0, y1);
+ match n & 3 {
+ 0 => (s, c),
+ 1 => (c, -s),
+ 2 => (-s, -c),
+ 3 => (-c, s),
+ #[cfg(debug_assertions)]
+ _ => unreachable!(),
+ #[cfg(not(debug_assertions))]
+ _ => (0.0, 1.0),
+ }
+}
+
+// These tests are based on those from sincosf.rs
+#[cfg(test)]
+mod tests {
+ use super::sincos;
+
+ const TOLERANCE: f64 = 1e-6;
+
+ #[test]
+ fn with_pi() {
+ let (s, c) = sincos(core::f64::consts::PI);
+ assert!(
+ (s - 0.0).abs() < TOLERANCE,
+ "|{} - {}| = {} >= {}",
+ s,
+ 0.0,
+ (s - 0.0).abs(),
+ TOLERANCE
+ );
+ assert!(
+ (c + 1.0).abs() < TOLERANCE,
+ "|{} + {}| = {} >= {}",
+ c,
+ 1.0,
+ (s + 1.0).abs(),
+ TOLERANCE
+ );
+ }
+
+ #[test]
+ fn rotational_symmetry() {
+ use core::f64::consts::PI;
+ const N: usize = 24;
+ for n in 0..N {
+ let theta = 2. * PI * (n as f64) / (N as f64);
+ let (s, c) = sincos(theta);
+ let (s_plus, c_plus) = sincos(theta + 2. * PI);
+ let (s_minus, c_minus) = sincos(theta - 2. * PI);
+
+ assert!(
+ (s - s_plus).abs() < TOLERANCE,
+ "|{} - {}| = {} >= {}",
+ s,
+ s_plus,
+ (s - s_plus).abs(),
+ TOLERANCE
+ );
+ assert!(
+ (s - s_minus).abs() < TOLERANCE,
+ "|{} - {}| = {} >= {}",
+ s,
+ s_minus,
+ (s - s_minus).abs(),
+ TOLERANCE
+ );
+ assert!(
+ (c - c_plus).abs() < TOLERANCE,
+ "|{} - {}| = {} >= {}",
+ c,
+ c_plus,
+ (c - c_plus).abs(),
+ TOLERANCE
+ );
+ assert!(
+ (c - c_minus).abs() < TOLERANCE,
+ "|{} - {}| = {} >= {}",
+ c,
+ c_minus,
+ (c - c_minus).abs(),
+ TOLERANCE
+ );
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/sincosf.rs b/vendor/compiler_builtins/libm/src/math/sincosf.rs
new file mode 100644
index 000000000..5304e8ca0
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/sincosf.rs
@@ -0,0 +1,184 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_sinf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{k_cosf, k_sinf, rem_pio2f};
+
+/* Small multiples of pi/2 rounded to double precision. */
+const PI_2: f32 = 0.5 * 3.1415926535897931160E+00;
+const S1PIO2: f32 = 1.0 * PI_2; /* 0x3FF921FB, 0x54442D18 */
+const S2PIO2: f32 = 2.0 * PI_2; /* 0x400921FB, 0x54442D18 */
+const S3PIO2: f32 = 3.0 * PI_2; /* 0x4012D97C, 0x7F3321D2 */
+const S4PIO2: f32 = 4.0 * PI_2; /* 0x401921FB, 0x54442D18 */
+
+pub fn sincosf(x: f32) -> (f32, f32) {
+ let s: f32;
+ let c: f32;
+ let mut ix: u32;
+ let sign: bool;
+
+ ix = x.to_bits();
+ sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+
+ /* |x| ~<= pi/4 */
+ if ix <= 0x3f490fda {
+ /* |x| < 2**-12 */
+ if ix < 0x39800000 {
+ /* raise inexact if x!=0 and underflow if subnormal */
+
+ let x1p120 = f32::from_bits(0x7b800000); // 0x1p120 == 2^120
+ if ix < 0x00100000 {
+ force_eval!(x / x1p120);
+ } else {
+ force_eval!(x + x1p120);
+ }
+ return (x, 1.0);
+ }
+ return (k_sinf(x as f64), k_cosf(x as f64));
+ }
+
+ /* |x| ~<= 5*pi/4 */
+ if ix <= 0x407b53d1 {
+ if ix <= 0x4016cbe3 {
+ /* |x| ~<= 3pi/4 */
+ if sign {
+ s = -k_cosf((x + S1PIO2) as f64);
+ c = k_sinf((x + S1PIO2) as f64);
+ } else {
+ s = k_cosf((S1PIO2 - x) as f64);
+ c = k_sinf((S1PIO2 - x) as f64);
+ }
+ }
+ /* -sin(x+c) is not correct if x+c could be 0: -0 vs +0 */
+ else {
+ if sign {
+ s = -k_sinf((x + S2PIO2) as f64);
+ c = -k_cosf((x + S2PIO2) as f64);
+ } else {
+ s = -k_sinf((x - S2PIO2) as f64);
+ c = -k_cosf((x - S2PIO2) as f64);
+ }
+ }
+
+ return (s, c);
+ }
+
+ /* |x| ~<= 9*pi/4 */
+ if ix <= 0x40e231d5 {
+ if ix <= 0x40afeddf {
+ /* |x| ~<= 7*pi/4 */
+ if sign {
+ s = k_cosf((x + S3PIO2) as f64);
+ c = -k_sinf((x + S3PIO2) as f64);
+ } else {
+ s = -k_cosf((x - S3PIO2) as f64);
+ c = k_sinf((x - S3PIO2) as f64);
+ }
+ } else {
+ if sign {
+ s = k_sinf((x + S4PIO2) as f64);
+ c = k_cosf((x + S4PIO2) as f64);
+ } else {
+ s = k_sinf((x - S4PIO2) as f64);
+ c = k_cosf((x - S4PIO2) as f64);
+ }
+ }
+
+ return (s, c);
+ }
+
+ /* sin(Inf or NaN) is NaN */
+ if ix >= 0x7f800000 {
+ let rv = x - x;
+ return (rv, rv);
+ }
+
+ /* general argument reduction needed */
+ let (n, y) = rem_pio2f(x);
+ s = k_sinf(y);
+ c = k_cosf(y);
+ match n & 3 {
+ 0 => (s, c),
+ 1 => (c, -s),
+ 2 => (-s, -c),
+ 3 => (-c, s),
+ #[cfg(debug_assertions)]
+ _ => unreachable!(),
+ #[cfg(not(debug_assertions))]
+ _ => (0.0, 1.0),
+ }
+}
+
+// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
+#[cfg(not(target_arch = "powerpc64"))]
+#[cfg(test)]
+mod tests {
+ use super::sincosf;
+ use crate::_eqf;
+
+ #[test]
+ fn with_pi() {
+ let (s, c) = sincosf(core::f32::consts::PI);
+ _eqf(s.abs(), 0.0).unwrap();
+ _eqf(c, -1.0).unwrap();
+ }
+
+ #[test]
+ fn rotational_symmetry() {
+ use core::f32::consts::PI;
+ const N: usize = 24;
+ for n in 0..N {
+ let theta = 2. * PI * (n as f32) / (N as f32);
+ let (s, c) = sincosf(theta);
+ let (s_plus, c_plus) = sincosf(theta + 2. * PI);
+ let (s_minus, c_minus) = sincosf(theta - 2. * PI);
+
+ const TOLERANCE: f32 = 1e-6;
+ assert!(
+ (s - s_plus).abs() < TOLERANCE,
+ "|{} - {}| = {} >= {}",
+ s,
+ s_plus,
+ (s - s_plus).abs(),
+ TOLERANCE
+ );
+ assert!(
+ (s - s_minus).abs() < TOLERANCE,
+ "|{} - {}| = {} >= {}",
+ s,
+ s_minus,
+ (s - s_minus).abs(),
+ TOLERANCE
+ );
+ assert!(
+ (c - c_plus).abs() < TOLERANCE,
+ "|{} - {}| = {} >= {}",
+ c,
+ c_plus,
+ (c - c_plus).abs(),
+ TOLERANCE
+ );
+ assert!(
+ (c - c_minus).abs() < TOLERANCE,
+ "|{} - {}| = {} >= {}",
+ c,
+ c_minus,
+ (c - c_minus).abs(),
+ TOLERANCE
+ );
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/sinf.rs b/vendor/compiler_builtins/libm/src/math/sinf.rs
new file mode 100644
index 000000000..6e20be2ae
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/sinf.rs
@@ -0,0 +1,93 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_sinf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{k_cosf, k_sinf, rem_pio2f};
+
+use core::f64::consts::FRAC_PI_2;
+
+/* Small multiples of pi/2 rounded to double precision. */
+const S1_PIO2: f64 = 1. * FRAC_PI_2; /* 0x3FF921FB, 0x54442D18 */
+const S2_PIO2: f64 = 2. * FRAC_PI_2; /* 0x400921FB, 0x54442D18 */
+const S3_PIO2: f64 = 3. * FRAC_PI_2; /* 0x4012D97C, 0x7F3321D2 */
+const S4_PIO2: f64 = 4. * FRAC_PI_2; /* 0x401921FB, 0x54442D18 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sinf(x: f32) -> f32 {
+ let x64 = x as f64;
+
+ let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
+
+ let mut ix = x.to_bits();
+ let sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+
+ if ix <= 0x3f490fda {
+ /* |x| ~<= pi/4 */
+ if ix < 0x39800000 {
+ /* |x| < 2**-12 */
+ /* raise inexact if x!=0 and underflow if subnormal */
+ force_eval!(if ix < 0x00800000 {
+ x / x1p120
+ } else {
+ x + x1p120
+ });
+ return x;
+ }
+ return k_sinf(x64);
+ }
+ if ix <= 0x407b53d1 {
+ /* |x| ~<= 5*pi/4 */
+ if ix <= 0x4016cbe3 {
+ /* |x| ~<= 3pi/4 */
+ if sign {
+ return -k_cosf(x64 + S1_PIO2);
+ } else {
+ return k_cosf(x64 - S1_PIO2);
+ }
+ }
+ return k_sinf(if sign {
+ -(x64 + S2_PIO2)
+ } else {
+ -(x64 - S2_PIO2)
+ });
+ }
+ if ix <= 0x40e231d5 {
+ /* |x| ~<= 9*pi/4 */
+ if ix <= 0x40afeddf {
+ /* |x| ~<= 7*pi/4 */
+ if sign {
+ return k_cosf(x64 + S3_PIO2);
+ } else {
+ return -k_cosf(x64 - S3_PIO2);
+ }
+ }
+ return k_sinf(if sign { x64 + S4_PIO2 } else { x64 - S4_PIO2 });
+ }
+
+ /* sin(Inf or NaN) is NaN */
+ if ix >= 0x7f800000 {
+ return x - x;
+ }
+
+ /* general argument reduction needed */
+ let (n, y) = rem_pio2f(x);
+ match n & 3 {
+ 0 => k_sinf(y),
+ 1 => k_cosf(y),
+ 2 => k_sinf(-y),
+ _ => -k_cosf(y),
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/sinh.rs b/vendor/compiler_builtins/libm/src/math/sinh.rs
new file mode 100644
index 000000000..fd24fd20c
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/sinh.rs
@@ -0,0 +1,49 @@
+use super::{expm1, expo2};
+
+// sinh(x) = (exp(x) - 1/exp(x))/2
+// = (exp(x)-1 + (exp(x)-1)/exp(x))/2
+// = x + x^3/6 + o(x^5)
+//
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sinh(x: f64) -> f64 {
+ // union {double f; uint64_t i;} u = {.f = x};
+ // uint32_t w;
+ // double t, h, absx;
+
+ let mut uf: f64 = x;
+ let mut ui: u64 = f64::to_bits(uf);
+ let w: u32;
+ let t: f64;
+ let mut h: f64;
+ let absx: f64;
+
+ h = 0.5;
+ if ui >> 63 != 0 {
+ h = -h;
+ }
+ /* |x| */
+ ui &= !1 / 2;
+ uf = f64::from_bits(ui);
+ absx = uf;
+ w = (ui >> 32) as u32;
+
+ /* |x| < log(DBL_MAX) */
+ if w < 0x40862e42 {
+ t = expm1(absx);
+ if w < 0x3ff00000 {
+ if w < 0x3ff00000 - (26 << 20) {
+ /* note: inexact and underflow are raised by expm1 */
+ /* note: this branch avoids spurious underflow */
+ return x;
+ }
+ return h * (2.0 * t - t * t / (t + 1.0));
+ }
+ /* note: |x|>log(0x1p26)+eps could be just h*exp(x) */
+ return h * (t + t / (t + 1.0));
+ }
+
+ /* |x| > log(DBL_MAX) or nan */
+ /* note: the result is stored to handle overflow */
+ t = 2.0 * h * expo2(absx);
+ t
+}
diff --git a/vendor/compiler_builtins/libm/src/math/sinhf.rs b/vendor/compiler_builtins/libm/src/math/sinhf.rs
new file mode 100644
index 000000000..24f863c44
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/sinhf.rs
@@ -0,0 +1,30 @@
+use super::expm1f;
+use super::k_expo2f;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sinhf(x: f32) -> f32 {
+ let mut h = 0.5f32;
+ let mut ix = x.to_bits();
+ if (ix >> 31) != 0 {
+ h = -h;
+ }
+ /* |x| */
+ ix &= 0x7fffffff;
+ let absx = f32::from_bits(ix);
+ let w = ix;
+
+ /* |x| < log(FLT_MAX) */
+ if w < 0x42b17217 {
+ let t = expm1f(absx);
+ if w < 0x3f800000 {
+ if w < (0x3f800000 - (12 << 23)) {
+ return x;
+ }
+ return h * (2. * t - t * t / (t + 1.));
+ }
+ return h * (t + t / (t + 1.));
+ }
+
+ /* |x| > logf(FLT_MAX) or nan */
+ 2. * h * k_expo2f(absx)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/sqrt.rs b/vendor/compiler_builtins/libm/src/math/sqrt.rs
new file mode 100644
index 000000000..f06b209a4
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/sqrt.rs
@@ -0,0 +1,264 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* sqrt(x)
+ * Return correctly rounded sqrt.
+ * ------------------------------------------
+ * | Use the hardware sqrt if you have one |
+ * ------------------------------------------
+ * Method:
+ * Bit by bit method using integer arithmetic. (Slow, but portable)
+ * 1. Normalization
+ * Scale x to y in [1,4) with even powers of 2:
+ * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
+ * sqrt(x) = 2^k * sqrt(y)
+ * 2. Bit by bit computation
+ * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
+ * i 0
+ * i+1 2
+ * s = 2*q , and y = 2 * ( y - q ). (1)
+ * i i i i
+ *
+ * To compute q from q , one checks whether
+ * i+1 i
+ *
+ * -(i+1) 2
+ * (q + 2 ) <= y. (2)
+ * i
+ * -(i+1)
+ * If (2) is false, then q = q ; otherwise q = q + 2 .
+ * i+1 i i+1 i
+ *
+ * With some algebraic manipulation, it is not difficult to see
+ * that (2) is equivalent to
+ * -(i+1)
+ * s + 2 <= y (3)
+ * i i
+ *
+ * The advantage of (3) is that s and y can be computed by
+ * i i
+ * the following recurrence formula:
+ * if (3) is false
+ *
+ * s = s , y = y ; (4)
+ * i+1 i i+1 i
+ *
+ * otherwise,
+ * -i -(i+1)
+ * s = s + 2 , y = y - s - 2 (5)
+ * i+1 i i+1 i i
+ *
+ * One may easily use induction to prove (4) and (5).
+ * Note. Since the left hand side of (3) contain only i+2 bits,
+ * it does not necessary to do a full (53-bit) comparison
+ * in (3).
+ * 3. Final rounding
+ * After generating the 53 bits result, we compute one more bit.
+ * Together with the remainder, we can decide whether the
+ * result is exact, bigger than 1/2ulp, or less than 1/2ulp
+ * (it will never equal to 1/2ulp).
+ * The rounding mode can be detected by checking whether
+ * huge + tiny is equal to huge, and whether huge - tiny is
+ * equal to huge for some floating point number "huge" and "tiny".
+ *
+ * Special cases:
+ * sqrt(+-0) = +-0 ... exact
+ * sqrt(inf) = inf
+ * sqrt(-ve) = NaN ... with invalid signal
+ * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
+ */
+
+use core::f64;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sqrt(x: f64) -> f64 {
+ // On wasm32 we know that LLVM's intrinsic will compile to an optimized
+ // `f64.sqrt` native instruction, so we can leverage this for both code size
+ // and speed.
+ llvm_intrinsically_optimized! {
+ #[cfg(target_arch = "wasm32")] {
+ return if x < 0.0 {
+ f64::NAN
+ } else {
+ unsafe { ::core::intrinsics::sqrtf64(x) }
+ }
+ }
+ }
+ #[cfg(target_feature = "sse2")]
+ {
+ // Note: This path is unlikely since LLVM will usually have already
+ // optimized sqrt calls into hardware instructions if sse2 is available,
+ // but if someone does end up here they'll apprected the speed increase.
+ #[cfg(target_arch = "x86")]
+ use core::arch::x86::*;
+ #[cfg(target_arch = "x86_64")]
+ use core::arch::x86_64::*;
+ unsafe {
+ let m = _mm_set_sd(x);
+ let m_sqrt = _mm_sqrt_pd(m);
+ _mm_cvtsd_f64(m_sqrt)
+ }
+ }
+ #[cfg(not(target_feature = "sse2"))]
+ {
+ use core::num::Wrapping;
+
+ const TINY: f64 = 1.0e-300;
+
+ let mut z: f64;
+ let sign: Wrapping<u32> = Wrapping(0x80000000);
+ let mut ix0: i32;
+ let mut s0: i32;
+ let mut q: i32;
+ let mut m: i32;
+ let mut t: i32;
+ let mut i: i32;
+ let mut r: Wrapping<u32>;
+ let mut t1: Wrapping<u32>;
+ let mut s1: Wrapping<u32>;
+ let mut ix1: Wrapping<u32>;
+ let mut q1: Wrapping<u32>;
+
+ ix0 = (x.to_bits() >> 32) as i32;
+ ix1 = Wrapping(x.to_bits() as u32);
+
+ /* take care of Inf and NaN */
+ if (ix0 & 0x7ff00000) == 0x7ff00000 {
+ return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
+ }
+ /* take care of zero */
+ if ix0 <= 0 {
+ if ((ix0 & !(sign.0 as i32)) | ix1.0 as i32) == 0 {
+ return x; /* sqrt(+-0) = +-0 */
+ }
+ if ix0 < 0 {
+ return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
+ }
+ }
+ /* normalize x */
+ m = ix0 >> 20;
+ if m == 0 {
+ /* subnormal x */
+ while ix0 == 0 {
+ m -= 21;
+ ix0 |= (ix1 >> 11).0 as i32;
+ ix1 <<= 21;
+ }
+ i = 0;
+ while (ix0 & 0x00100000) == 0 {
+ i += 1;
+ ix0 <<= 1;
+ }
+ m -= i - 1;
+ ix0 |= (ix1 >> (32 - i) as usize).0 as i32;
+ ix1 = ix1 << i as usize;
+ }
+ m -= 1023; /* unbias exponent */
+ ix0 = (ix0 & 0x000fffff) | 0x00100000;
+ if (m & 1) == 1 {
+ /* odd m, double x to make it even */
+ ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
+ ix1 += ix1;
+ }
+ m >>= 1; /* m = [m/2] */
+
+ /* generate sqrt(x) bit by bit */
+ ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
+ ix1 += ix1;
+ q = 0; /* [q,q1] = sqrt(x) */
+ q1 = Wrapping(0);
+ s0 = 0;
+ s1 = Wrapping(0);
+ r = Wrapping(0x00200000); /* r = moving bit from right to left */
+
+ while r != Wrapping(0) {
+ t = s0 + r.0 as i32;
+ if t <= ix0 {
+ s0 = t + r.0 as i32;
+ ix0 -= t;
+ q += r.0 as i32;
+ }
+ ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
+ ix1 += ix1;
+ r >>= 1;
+ }
+
+ r = sign;
+ while r != Wrapping(0) {
+ t1 = s1 + r;
+ t = s0;
+ if t < ix0 || (t == ix0 && t1 <= ix1) {
+ s1 = t1 + r;
+ if (t1 & sign) == sign && (s1 & sign) == Wrapping(0) {
+ s0 += 1;
+ }
+ ix0 -= t;
+ if ix1 < t1 {
+ ix0 -= 1;
+ }
+ ix1 -= t1;
+ q1 += r;
+ }
+ ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
+ ix1 += ix1;
+ r >>= 1;
+ }
+
+ /* use floating add to find out rounding direction */
+ if (ix0 as u32 | ix1.0) != 0 {
+ z = 1.0 - TINY; /* raise inexact flag */
+ if z >= 1.0 {
+ z = 1.0 + TINY;
+ if q1.0 == 0xffffffff {
+ q1 = Wrapping(0);
+ q += 1;
+ } else if z > 1.0 {
+ if q1.0 == 0xfffffffe {
+ q += 1;
+ }
+ q1 += Wrapping(2);
+ } else {
+ q1 += q1 & Wrapping(1);
+ }
+ }
+ }
+ ix0 = (q >> 1) + 0x3fe00000;
+ ix1 = q1 >> 1;
+ if (q & 1) == 1 {
+ ix1 |= sign;
+ }
+ ix0 += m << 20;
+ f64::from_bits((ix0 as u64) << 32 | ix1.0 as u64)
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use core::f64::*;
+
+ #[test]
+ fn sanity_check() {
+ assert_eq!(sqrt(100.0), 10.0);
+ assert_eq!(sqrt(4.0), 2.0);
+ }
+
+ /// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt
+ #[test]
+ fn spec_tests() {
+ // Not Asserted: FE_INVALID exception is raised if argument is negative.
+ assert!(sqrt(-1.0).is_nan());
+ assert!(sqrt(NAN).is_nan());
+ for f in [0.0, -0.0, INFINITY].iter().copied() {
+ assert_eq!(sqrt(f), f);
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/sqrtf.rs b/vendor/compiler_builtins/libm/src/math/sqrtf.rs
new file mode 100644
index 000000000..00b20e578
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/sqrtf.rs
@@ -0,0 +1,154 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrtf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn sqrtf(x: f32) -> f32 {
+ // On wasm32 we know that LLVM's intrinsic will compile to an optimized
+ // `f32.sqrt` native instruction, so we can leverage this for both code size
+ // and speed.
+ llvm_intrinsically_optimized! {
+ #[cfg(target_arch = "wasm32")] {
+ return if x < 0.0 {
+ ::core::f32::NAN
+ } else {
+ unsafe { ::core::intrinsics::sqrtf32(x) }
+ }
+ }
+ }
+ #[cfg(target_feature = "sse")]
+ {
+ // Note: This path is unlikely since LLVM will usually have already
+ // optimized sqrt calls into hardware instructions if sse is available,
+ // but if someone does end up here they'll apprected the speed increase.
+ #[cfg(target_arch = "x86")]
+ use core::arch::x86::*;
+ #[cfg(target_arch = "x86_64")]
+ use core::arch::x86_64::*;
+ unsafe {
+ let m = _mm_set_ss(x);
+ let m_sqrt = _mm_sqrt_ss(m);
+ _mm_cvtss_f32(m_sqrt)
+ }
+ }
+ #[cfg(not(target_feature = "sse"))]
+ {
+ const TINY: f32 = 1.0e-30;
+
+ let mut z: f32;
+ let sign: i32 = 0x80000000u32 as i32;
+ let mut ix: i32;
+ let mut s: i32;
+ let mut q: i32;
+ let mut m: i32;
+ let mut t: i32;
+ let mut i: i32;
+ let mut r: u32;
+
+ ix = x.to_bits() as i32;
+
+ /* take care of Inf and NaN */
+ if (ix as u32 & 0x7f800000) == 0x7f800000 {
+ return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
+ }
+
+ /* take care of zero */
+ if ix <= 0 {
+ if (ix & !sign) == 0 {
+ return x; /* sqrt(+-0) = +-0 */
+ }
+ if ix < 0 {
+ return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
+ }
+ }
+
+ /* normalize x */
+ m = ix >> 23;
+ if m == 0 {
+ /* subnormal x */
+ i = 0;
+ while ix & 0x00800000 == 0 {
+ ix <<= 1;
+ i = i + 1;
+ }
+ m -= i - 1;
+ }
+ m -= 127; /* unbias exponent */
+ ix = (ix & 0x007fffff) | 0x00800000;
+ if m & 1 == 1 {
+ /* odd m, double x to make it even */
+ ix += ix;
+ }
+ m >>= 1; /* m = [m/2] */
+
+ /* generate sqrt(x) bit by bit */
+ ix += ix;
+ q = 0;
+ s = 0;
+ r = 0x01000000; /* r = moving bit from right to left */
+
+ while r != 0 {
+ t = s + r as i32;
+ if t <= ix {
+ s = t + r as i32;
+ ix -= t;
+ q += r as i32;
+ }
+ ix += ix;
+ r >>= 1;
+ }
+
+ /* use floating add to find out rounding direction */
+ if ix != 0 {
+ z = 1.0 - TINY; /* raise inexact flag */
+ if z >= 1.0 {
+ z = 1.0 + TINY;
+ if z > 1.0 {
+ q += 2;
+ } else {
+ q += q & 1;
+ }
+ }
+ }
+
+ ix = (q >> 1) + 0x3f000000;
+ ix += m << 23;
+ f32::from_bits(ix as u32)
+ }
+}
+
+// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
+#[cfg(not(target_arch = "powerpc64"))]
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use core::f32::*;
+
+ #[test]
+ fn sanity_check() {
+ assert_eq!(sqrtf(100.0), 10.0);
+ assert_eq!(sqrtf(4.0), 2.0);
+ }
+
+ /// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt
+ #[test]
+ fn spec_tests() {
+ // Not Asserted: FE_INVALID exception is raised if argument is negative.
+ assert!(sqrtf(-1.0).is_nan());
+ assert!(sqrtf(NAN).is_nan());
+ for f in [0.0, -0.0, INFINITY].iter().copied() {
+ assert_eq!(sqrtf(f), f);
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/tan.rs b/vendor/compiler_builtins/libm/src/math/tan.rs
new file mode 100644
index 000000000..5a72f6801
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/tan.rs
@@ -0,0 +1,70 @@
+// origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+
+use super::{k_tan, rem_pio2};
+
+// tan(x)
+// Return tangent function of x.
+//
+// kernel function:
+// k_tan ... tangent function on [-pi/4,pi/4]
+// rem_pio2 ... argument reduction routine
+//
+// Method.
+// Let S,C and T denote the sin, cos and tan respectively on
+// [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+// in [-pi/4 , +pi/4], and let n = k mod 4.
+// We have
+//
+// n sin(x) cos(x) tan(x)
+// ----------------------------------------------------------
+// 0 S C T
+// 1 C -S -1/T
+// 2 -S -C T
+// 3 -C S -1/T
+// ----------------------------------------------------------
+//
+// Special cases:
+// Let trig be any of sin, cos, or tan.
+// trig(+-INF) is NaN, with signals;
+// trig(NaN) is that NaN;
+//
+// Accuracy:
+// TRIG(x) returns trig(x) nearly rounded
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn tan(x: f64) -> f64 {
+ let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
+
+ let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff;
+ /* |x| ~< pi/4 */
+ if ix <= 0x3fe921fb {
+ if ix < 0x3e400000 {
+ /* |x| < 2**-27 */
+ /* raise inexact if x!=0 and underflow if subnormal */
+ force_eval!(if ix < 0x00100000 {
+ x / x1p120 as f64
+ } else {
+ x + x1p120 as f64
+ });
+ return x;
+ }
+ return k_tan(x, 0.0, 0);
+ }
+
+ /* tan(Inf or NaN) is NaN */
+ if ix >= 0x7ff00000 {
+ return x - x;
+ }
+
+ /* argument reduction */
+ let (n, y0, y1) = rem_pio2(x);
+ k_tan(y0, y1, n & 1)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/tanf.rs b/vendor/compiler_builtins/libm/src/math/tanf.rs
new file mode 100644
index 000000000..10de59c39
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/tanf.rs
@@ -0,0 +1,78 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/s_tanf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ * Optimized by Bruce D. Evans.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+use super::{k_tanf, rem_pio2f};
+
+use core::f64::consts::FRAC_PI_2;
+
+/* Small multiples of pi/2 rounded to double precision. */
+const T1_PIO2: f64 = 1. * FRAC_PI_2; /* 0x3FF921FB, 0x54442D18 */
+const T2_PIO2: f64 = 2. * FRAC_PI_2; /* 0x400921FB, 0x54442D18 */
+const T3_PIO2: f64 = 3. * FRAC_PI_2; /* 0x4012D97C, 0x7F3321D2 */
+const T4_PIO2: f64 = 4. * FRAC_PI_2; /* 0x401921FB, 0x54442D18 */
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn tanf(x: f32) -> f32 {
+ let x64 = x as f64;
+
+ let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
+
+ let mut ix = x.to_bits();
+ let sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+
+ if ix <= 0x3f490fda {
+ /* |x| ~<= pi/4 */
+ if ix < 0x39800000 {
+ /* |x| < 2**-12 */
+ /* raise inexact if x!=0 and underflow if subnormal */
+ force_eval!(if ix < 0x00800000 {
+ x / x1p120
+ } else {
+ x + x1p120
+ });
+ return x;
+ }
+ return k_tanf(x64, false);
+ }
+ if ix <= 0x407b53d1 {
+ /* |x| ~<= 5*pi/4 */
+ if ix <= 0x4016cbe3 {
+ /* |x| ~<= 3pi/4 */
+ return k_tanf(if sign { x64 + T1_PIO2 } else { x64 - T1_PIO2 }, true);
+ } else {
+ return k_tanf(if sign { x64 + T2_PIO2 } else { x64 - T2_PIO2 }, false);
+ }
+ }
+ if ix <= 0x40e231d5 {
+ /* |x| ~<= 9*pi/4 */
+ if ix <= 0x40afeddf {
+ /* |x| ~<= 7*pi/4 */
+ return k_tanf(if sign { x64 + T3_PIO2 } else { x64 - T3_PIO2 }, true);
+ } else {
+ return k_tanf(if sign { x64 + T4_PIO2 } else { x64 - T4_PIO2 }, false);
+ }
+ }
+
+ /* tan(Inf or NaN) is NaN */
+ if ix >= 0x7f800000 {
+ return x - x;
+ }
+
+ /* argument reduction */
+ let (n, y) = rem_pio2f(x);
+ k_tanf(y, n & 1 != 0)
+}
diff --git a/vendor/compiler_builtins/libm/src/math/tanh.rs b/vendor/compiler_builtins/libm/src/math/tanh.rs
new file mode 100644
index 000000000..980c68554
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/tanh.rs
@@ -0,0 +1,53 @@
+use super::expm1;
+
+/* tanh(x) = (exp(x) - exp(-x))/(exp(x) + exp(-x))
+ * = (exp(2*x) - 1)/(exp(2*x) - 1 + 2)
+ * = (1 - exp(-2*x))/(exp(-2*x) - 1 + 2)
+ */
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn tanh(mut x: f64) -> f64 {
+ let mut uf: f64 = x;
+ let mut ui: u64 = f64::to_bits(uf);
+
+ let w: u32;
+ let sign: bool;
+ let mut t: f64;
+
+ /* x = |x| */
+ sign = ui >> 63 != 0;
+ ui &= !1 / 2;
+ uf = f64::from_bits(ui);
+ x = uf;
+ w = (ui >> 32) as u32;
+
+ if w > 0x3fe193ea {
+ /* |x| > log(3)/2 ~= 0.5493 or nan */
+ if w > 0x40340000 {
+ /* |x| > 20 or nan */
+ /* note: this branch avoids raising overflow */
+ t = 1.0 - 0.0 / x;
+ } else {
+ t = expm1(2.0 * x);
+ t = 1.0 - 2.0 / (t + 2.0);
+ }
+ } else if w > 0x3fd058ae {
+ /* |x| > log(5/3)/2 ~= 0.2554 */
+ t = expm1(2.0 * x);
+ t = t / (t + 2.0);
+ } else if w >= 0x00100000 {
+ /* |x| >= 0x1p-1022, up to 2ulp error in [0.1,0.2554] */
+ t = expm1(-2.0 * x);
+ t = -t / (t + 2.0);
+ } else {
+ /* |x| is subnormal */
+ /* note: the branch above would not raise underflow in [0x1p-1023,0x1p-1022) */
+ force_eval!(x as f32);
+ t = x;
+ }
+
+ if sign {
+ -t
+ } else {
+ t
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/tanhf.rs b/vendor/compiler_builtins/libm/src/math/tanhf.rs
new file mode 100644
index 000000000..fc94e3ddd
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/tanhf.rs
@@ -0,0 +1,39 @@
+use super::expm1f;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn tanhf(mut x: f32) -> f32 {
+ /* x = |x| */
+ let mut ix = x.to_bits();
+ let sign = (ix >> 31) != 0;
+ ix &= 0x7fffffff;
+ x = f32::from_bits(ix);
+ let w = ix;
+
+ let tt = if w > 0x3f0c9f54 {
+ /* |x| > log(3)/2 ~= 0.5493 or nan */
+ if w > 0x41200000 {
+ /* |x| > 10 */
+ 1. + 0. / x
+ } else {
+ let t = expm1f(2. * x);
+ 1. - 2. / (t + 2.)
+ }
+ } else if w > 0x3e82c578 {
+ /* |x| > log(5/3)/2 ~= 0.2554 */
+ let t = expm1f(2. * x);
+ t / (t + 2.)
+ } else if w >= 0x00800000 {
+ /* |x| >= 0x1p-126 */
+ let t = expm1f(-2. * x);
+ -t / (t + 2.)
+ } else {
+ /* |x| is subnormal */
+ force_eval!(x * x);
+ x
+ };
+ if sign {
+ -tt
+ } else {
+ tt
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/tgamma.rs b/vendor/compiler_builtins/libm/src/math/tgamma.rs
new file mode 100644
index 000000000..f8ccf669a
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/tgamma.rs
@@ -0,0 +1,207 @@
+/*
+"A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964)
+"Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001)
+"An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004)
+
+approximation method:
+
+ (x - 0.5) S(x)
+Gamma(x) = (x + g - 0.5) * ----------------
+ exp(x + g - 0.5)
+
+with
+ a1 a2 a3 aN
+S(x) ~= [ a0 + ----- + ----- + ----- + ... + ----- ]
+ x + 1 x + 2 x + 3 x + N
+
+with a0, a1, a2, a3,.. aN constants which depend on g.
+
+for x < 0 the following reflection formula is used:
+
+Gamma(x)*Gamma(-x) = -pi/(x sin(pi x))
+
+most ideas and constants are from boost and python
+*/
+extern crate core;
+use super::{exp, floor, k_cos, k_sin, pow};
+
+const PI: f64 = 3.141592653589793238462643383279502884;
+
+/* sin(pi x) with x > 0x1p-100, if sin(pi*x)==0 the sign is arbitrary */
+fn sinpi(mut x: f64) -> f64 {
+ let mut n: isize;
+
+ /* argument reduction: x = |x| mod 2 */
+ /* spurious inexact when x is odd int */
+ x = x * 0.5;
+ x = 2.0 * (x - floor(x));
+
+ /* reduce x into [-.25,.25] */
+ n = (4.0 * x) as isize;
+ n = (n + 1) / 2;
+ x -= (n as f64) * 0.5;
+
+ x *= PI;
+ match n {
+ 1 => k_cos(x, 0.0),
+ 2 => k_sin(-x, 0.0, 0),
+ 3 => -k_cos(x, 0.0),
+ 0 | _ => k_sin(x, 0.0, 0),
+ }
+}
+
+const N: usize = 12;
+//static const double g = 6.024680040776729583740234375;
+const GMHALF: f64 = 5.524680040776729583740234375;
+const SNUM: [f64; N + 1] = [
+ 23531376880.410759688572007674451636754734846804940,
+ 42919803642.649098768957899047001988850926355848959,
+ 35711959237.355668049440185451547166705960488635843,
+ 17921034426.037209699919755754458931112671403265390,
+ 6039542586.3520280050642916443072979210699388420708,
+ 1439720407.3117216736632230727949123939715485786772,
+ 248874557.86205415651146038641322942321632125127801,
+ 31426415.585400194380614231628318205362874684987640,
+ 2876370.6289353724412254090516208496135991145378768,
+ 186056.26539522349504029498971604569928220784236328,
+ 8071.6720023658162106380029022722506138218516325024,
+ 210.82427775157934587250973392071336271166969580291,
+ 2.5066282746310002701649081771338373386264310793408,
+];
+const SDEN: [f64; N + 1] = [
+ 0.0,
+ 39916800.0,
+ 120543840.0,
+ 150917976.0,
+ 105258076.0,
+ 45995730.0,
+ 13339535.0,
+ 2637558.0,
+ 357423.0,
+ 32670.0,
+ 1925.0,
+ 66.0,
+ 1.0,
+];
+/* n! for small integer n */
+const FACT: [f64; 23] = [
+ 1.0,
+ 1.0,
+ 2.0,
+ 6.0,
+ 24.0,
+ 120.0,
+ 720.0,
+ 5040.0,
+ 40320.0,
+ 362880.0,
+ 3628800.0,
+ 39916800.0,
+ 479001600.0,
+ 6227020800.0,
+ 87178291200.0,
+ 1307674368000.0,
+ 20922789888000.0,
+ 355687428096000.0,
+ 6402373705728000.0,
+ 121645100408832000.0,
+ 2432902008176640000.0,
+ 51090942171709440000.0,
+ 1124000727777607680000.0,
+];
+
+/* S(x) rational function for positive x */
+fn s(x: f64) -> f64 {
+ let mut num: f64 = 0.0;
+ let mut den: f64 = 0.0;
+
+ /* to avoid overflow handle large x differently */
+ if x < 8.0 {
+ for i in (0..=N).rev() {
+ num = num * x + SNUM[i];
+ den = den * x + SDEN[i];
+ }
+ } else {
+ for i in 0..=N {
+ num = num / x + SNUM[i];
+ den = den / x + SDEN[i];
+ }
+ }
+ return num / den;
+}
+
+pub fn tgamma(mut x: f64) -> f64 {
+ let u: u64 = x.to_bits();
+ let absx: f64;
+ let mut y: f64;
+ let mut dy: f64;
+ let mut z: f64;
+ let mut r: f64;
+ let ix: u32 = ((u >> 32) as u32) & 0x7fffffff;
+ let sign: bool = (u >> 63) != 0;
+
+ /* special cases */
+ if ix >= 0x7ff00000 {
+ /* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */
+ return x + core::f64::INFINITY;
+ }
+ if ix < ((0x3ff - 54) << 20) {
+ /* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */
+ return 1.0 / x;
+ }
+
+ /* integer arguments */
+ /* raise inexact when non-integer */
+ if x == floor(x) {
+ if sign {
+ return 0.0 / 0.0;
+ }
+ if x <= FACT.len() as f64 {
+ return FACT[(x as usize) - 1];
+ }
+ }
+
+ /* x >= 172: tgamma(x)=inf with overflow */
+ /* x =< -184: tgamma(x)=+-0 with underflow */
+ if ix >= 0x40670000 {
+ /* |x| >= 184 */
+ if sign {
+ let x1p_126 = f64::from_bits(0x3810000000000000); // 0x1p-126 == 2^-126
+ force_eval!((x1p_126 / x) as f32);
+ if floor(x) * 0.5 == floor(x * 0.5) {
+ return 0.0;
+ } else {
+ return -0.0;
+ }
+ }
+ let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 == 2^1023
+ x *= x1p1023;
+ return x;
+ }
+
+ absx = if sign { -x } else { x };
+
+ /* handle the error of x + g - 0.5 */
+ y = absx + GMHALF;
+ if absx > GMHALF {
+ dy = y - absx;
+ dy -= GMHALF;
+ } else {
+ dy = y - GMHALF;
+ dy -= absx;
+ }
+
+ z = absx - 0.5;
+ r = s(absx) * exp(-y);
+ if x < 0.0 {
+ /* reflection formula for negative x */
+ /* sinpi(absx) is not 0, integers are already handled */
+ r = -PI / (sinpi(absx) * absx * r);
+ dy = -dy;
+ z = -z;
+ }
+ r += dy * (GMHALF + 0.5) * r / y;
+ z = pow(y, 0.5 * z);
+ y = r * z * z;
+ return y;
+}
diff --git a/vendor/compiler_builtins/libm/src/math/tgammaf.rs b/vendor/compiler_builtins/libm/src/math/tgammaf.rs
new file mode 100644
index 000000000..a8f161f0c
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/tgammaf.rs
@@ -0,0 +1,5 @@
+use super::tgamma;
+
+pub fn tgammaf(x: f32) -> f32 {
+ tgamma(x as f64) as f32
+}
diff --git a/vendor/compiler_builtins/libm/src/math/trunc.rs b/vendor/compiler_builtins/libm/src/math/trunc.rs
new file mode 100644
index 000000000..f7892a2c5
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/trunc.rs
@@ -0,0 +1,40 @@
+use core::f64;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn trunc(x: f64) -> f64 {
+ // On wasm32 we know that LLVM's intrinsic will compile to an optimized
+ // `f64.trunc` native instruction, so we can leverage this for both code size
+ // and speed.
+ llvm_intrinsically_optimized! {
+ #[cfg(target_arch = "wasm32")] {
+ return unsafe { ::core::intrinsics::truncf64(x) }
+ }
+ }
+ let x1p120 = f64::from_bits(0x4770000000000000); // 0x1p120f === 2 ^ 120
+
+ let mut i: u64 = x.to_bits();
+ let mut e: i64 = (i >> 52 & 0x7ff) as i64 - 0x3ff + 12;
+ let m: u64;
+
+ if e >= 52 + 12 {
+ return x;
+ }
+ if e < 12 {
+ e = 1;
+ }
+ m = -1i64 as u64 >> e;
+ if (i & m) == 0 {
+ return x;
+ }
+ force_eval!(x + x1p120);
+ i &= !m;
+ f64::from_bits(i)
+}
+
+#[cfg(test)]
+mod tests {
+ #[test]
+ fn sanity_check() {
+ assert_eq!(super::trunc(1.1), 1.0);
+ }
+}
diff --git a/vendor/compiler_builtins/libm/src/math/truncf.rs b/vendor/compiler_builtins/libm/src/math/truncf.rs
new file mode 100644
index 000000000..20d5b73bd
--- /dev/null
+++ b/vendor/compiler_builtins/libm/src/math/truncf.rs
@@ -0,0 +1,42 @@
+use core::f32;
+
+#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
+pub fn truncf(x: f32) -> f32 {
+ // On wasm32 we know that LLVM's intrinsic will compile to an optimized
+ // `f32.trunc` native instruction, so we can leverage this for both code size
+ // and speed.
+ llvm_intrinsically_optimized! {
+ #[cfg(target_arch = "wasm32")] {
+ return unsafe { ::core::intrinsics::truncf32(x) }
+ }
+ }
+ let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
+
+ let mut i: u32 = x.to_bits();
+ let mut e: i32 = (i >> 23 & 0xff) as i32 - 0x7f + 9;
+ let m: u32;
+
+ if e >= 23 + 9 {
+ return x;
+ }
+ if e < 9 {
+ e = 1;
+ }
+ m = -1i32 as u32 >> e;
+ if (i & m) == 0 {
+ return x;
+ }
+ force_eval!(x + x1p120);
+ i &= !m;
+ f32::from_bits(i)
+}
+
+// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
+#[cfg(not(target_arch = "powerpc64"))]
+#[cfg(test)]
+mod tests {
+ #[test]
+ fn sanity_check() {
+ assert_eq!(super::truncf(1.1), 1.0);
+ }
+}
diff --git a/vendor/compiler_builtins/src/arm.rs b/vendor/compiler_builtins/src/arm.rs
new file mode 100644
index 000000000..9c1b6ad12
--- /dev/null
+++ b/vendor/compiler_builtins/src/arm.rs
@@ -0,0 +1,183 @@
+#![cfg(not(feature = "no-asm"))]
+#![allow(unused_imports)]
+
+use core::intrinsics;
+
+// iOS symbols have a leading underscore.
+#[cfg(target_os = "ios")]
+macro_rules! bl {
+ ($func:literal) => {
+ concat!("bl _", $func)
+ };
+}
+#[cfg(not(target_os = "ios"))]
+macro_rules! bl {
+ ($func:literal) => {
+ concat!("bl ", $func)
+ };
+}
+
+intrinsics! {
+ // NOTE This function and the ones below are implemented using assembly because they are using a
+ // custom calling convention which can't be implemented using a normal Rust function.
+ #[naked]
+ #[cfg(not(target_env = "msvc"))]
+ pub unsafe extern "C" fn __aeabi_uidivmod() {
+ core::arch::asm!(
+ "push {{lr}}",
+ "sub sp, sp, #4",
+ "mov r2, sp",
+ bl!("__udivmodsi4"),
+ "ldr r1, [sp]",
+ "add sp, sp, #4",
+ "pop {{pc}}",
+ options(noreturn)
+ );
+ }
+
+ #[naked]
+ pub unsafe extern "C" fn __aeabi_uldivmod() {
+ core::arch::asm!(
+ "push {{r4, lr}}",
+ "sub sp, sp, #16",
+ "add r4, sp, #8",
+ "str r4, [sp]",
+ bl!("__udivmoddi4"),
+ "ldr r2, [sp, #8]",
+ "ldr r3, [sp, #12]",
+ "add sp, sp, #16",
+ "pop {{r4, pc}}",
+ options(noreturn)
+ );
+ }
+
+ #[naked]
+ pub unsafe extern "C" fn __aeabi_idivmod() {
+ core::arch::asm!(
+ "push {{r0, r1, r4, lr}}",
+ bl!("__aeabi_idiv"),
+ "pop {{r1, r2}}",
+ "muls r2, r2, r0",
+ "subs r1, r1, r2",
+ "pop {{r4, pc}}",
+ options(noreturn)
+ );
+ }
+
+ #[naked]
+ pub unsafe extern "C" fn __aeabi_ldivmod() {
+ core::arch::asm!(
+ "push {{r4, lr}}",
+ "sub sp, sp, #16",
+ "add r4, sp, #8",
+ "str r4, [sp]",
+ bl!("__divmoddi4"),
+ "ldr r2, [sp, #8]",
+ "ldr r3, [sp, #12]",
+ "add sp, sp, #16",
+ "pop {{r4, pc}}",
+ options(noreturn)
+ );
+ }
+
+ // The following functions use weak linkage to allow users to override
+ // with custom implementation.
+ // FIXME: The `*4` and `*8` variants should be defined as aliases.
+
+ #[cfg(not(target_os = "ios"))]
+ #[linkage = "weak"]
+ pub unsafe extern "aapcs" fn __aeabi_memcpy(dest: *mut u8, src: *const u8, n: usize) {
+ ::mem::memcpy(dest, src, n);
+ }
+
+ #[cfg(not(target_os = "ios"))]
+ #[linkage = "weak"]
+ pub unsafe extern "aapcs" fn __aeabi_memcpy4(dest: *mut u8, src: *const u8, n: usize) {
+ // We are guaranteed 4-alignment, so accessing at u32 is okay.
+ let mut dest = dest as *mut u32;
+ let mut src = src as *mut u32;
+ let mut n = n;
+
+ while n >= 4 {
+ *dest = *src;
+ dest = dest.offset(1);
+ src = src.offset(1);
+ n -= 4;
+ }
+
+ __aeabi_memcpy(dest as *mut u8, src as *const u8, n);
+ }
+
+ #[cfg(not(target_os = "ios"))]
+ #[linkage = "weak"]
+ pub unsafe extern "aapcs" fn __aeabi_memcpy8(dest: *mut u8, src: *const u8, n: usize) {
+ __aeabi_memcpy4(dest, src, n);
+ }
+
+ #[cfg(not(target_os = "ios"))]
+ #[linkage = "weak"]
+ pub unsafe extern "aapcs" fn __aeabi_memmove(dest: *mut u8, src: *const u8, n: usize) {
+ ::mem::memmove(dest, src, n);
+ }
+
+ #[cfg(not(any(target_os = "ios", target_env = "msvc")))]
+ #[linkage = "weak"]
+ pub unsafe extern "aapcs" fn __aeabi_memmove4(dest: *mut u8, src: *const u8, n: usize) {
+ __aeabi_memmove(dest, src, n);
+ }
+
+ #[cfg(not(any(target_os = "ios", target_env = "msvc")))]
+ #[linkage = "weak"]
+ pub unsafe extern "aapcs" fn __aeabi_memmove8(dest: *mut u8, src: *const u8, n: usize) {
+ __aeabi_memmove(dest, src, n);
+ }
+
+ #[cfg(not(target_os = "ios"))]
+ #[linkage = "weak"]
+ pub unsafe extern "aapcs" fn __aeabi_memset(dest: *mut u8, n: usize, c: i32) {
+ // Note the different argument order
+ ::mem::memset(dest, c, n);
+ }
+
+ #[cfg(not(target_os = "ios"))]
+ #[linkage = "weak"]
+ pub unsafe extern "aapcs" fn __aeabi_memset4(dest: *mut u8, n: usize, c: i32) {
+ let mut dest = dest as *mut u32;
+ let mut n = n;
+
+ let byte = (c as u32) & 0xff;
+ let c = (byte << 24) | (byte << 16) | (byte << 8) | byte;
+
+ while n >= 4 {
+ *dest = c;
+ dest = dest.offset(1);
+ n -= 4;
+ }
+
+ __aeabi_memset(dest as *mut u8, n, byte as i32);
+ }
+
+ #[cfg(not(target_os = "ios"))]
+ #[linkage = "weak"]
+ pub unsafe extern "aapcs" fn __aeabi_memset8(dest: *mut u8, n: usize, c: i32) {
+ __aeabi_memset4(dest, n, c);
+ }
+
+ #[cfg(not(target_os = "ios"))]
+ #[linkage = "weak"]
+ pub unsafe extern "aapcs" fn __aeabi_memclr(dest: *mut u8, n: usize) {
+ __aeabi_memset(dest, n, 0);
+ }
+
+ #[cfg(not(any(target_os = "ios", target_env = "msvc")))]
+ #[linkage = "weak"]
+ pub unsafe extern "aapcs" fn __aeabi_memclr4(dest: *mut u8, n: usize) {
+ __aeabi_memset4(dest, n, 0);
+ }
+
+ #[cfg(not(any(target_os = "ios", target_env = "msvc")))]
+ #[linkage = "weak"]
+ pub unsafe extern "aapcs" fn __aeabi_memclr8(dest: *mut u8, n: usize) {
+ __aeabi_memset4(dest, n, 0);
+ }
+}
diff --git a/vendor/compiler_builtins/src/arm_linux.rs b/vendor/compiler_builtins/src/arm_linux.rs
new file mode 100644
index 000000000..8fe09485b
--- /dev/null
+++ b/vendor/compiler_builtins/src/arm_linux.rs
@@ -0,0 +1,214 @@
+use core::intrinsics;
+use core::mem;
+
+// Kernel-provided user-mode helper functions:
+// https://www.kernel.org/doc/Documentation/arm/kernel_user_helpers.txt
+unsafe fn __kuser_cmpxchg(oldval: u32, newval: u32, ptr: *mut u32) -> bool {
+ let f: extern "C" fn(u32, u32, *mut u32) -> u32 = mem::transmute(0xffff0fc0usize as *const ());
+ f(oldval, newval, ptr) == 0
+}
+unsafe fn __kuser_memory_barrier() {
+ let f: extern "C" fn() = mem::transmute(0xffff0fa0usize as *const ());
+ f();
+}
+
+// Word-align a pointer
+fn align_ptr<T>(ptr: *mut T) -> *mut u32 {
+ // This gives us a mask of 0 when T == u32 since the pointer is already
+ // supposed to be aligned, which avoids any masking in that case.
+ let ptr_mask = 3 & (4 - mem::size_of::<T>());
+ (ptr as usize & !ptr_mask) as *mut u32
+}
+
+// Calculate the shift and mask of a value inside an aligned word
+fn get_shift_mask<T>(ptr: *mut T) -> (u32, u32) {
+ // Mask to get the low byte/halfword/word
+ let mask = match mem::size_of::<T>() {
+ 1 => 0xff,
+ 2 => 0xffff,
+ 4 => 0xffffffff,
+ _ => unreachable!(),
+ };
+
+ // If we are on big-endian then we need to adjust the shift accordingly
+ let endian_adjust = if cfg!(target_endian = "little") {
+ 0
+ } else {
+ 4 - mem::size_of::<T>() as u32
+ };
+
+ // Shift to get the desired element in the word
+ let ptr_mask = 3 & (4 - mem::size_of::<T>());
+ let shift = ((ptr as usize & ptr_mask) as u32 ^ endian_adjust) * 8;
+
+ (shift, mask)
+}
+
+// Extract a value from an aligned word
+fn extract_aligned(aligned: u32, shift: u32, mask: u32) -> u32 {
+ (aligned >> shift) & mask
+}
+
+// Insert a value into an aligned word
+fn insert_aligned(aligned: u32, val: u32, shift: u32, mask: u32) -> u32 {
+ (aligned & !(mask << shift)) | ((val & mask) << shift)
+}
+
+// Generic atomic read-modify-write operation
+unsafe fn atomic_rmw<T, F: Fn(u32) -> u32>(ptr: *mut T, f: F) -> u32 {
+ let aligned_ptr = align_ptr(ptr);
+ let (shift, mask) = get_shift_mask(ptr);
+
+ loop {
+ let curval_aligned = intrinsics::atomic_load_unordered(aligned_ptr);
+ let curval = extract_aligned(curval_aligned, shift, mask);
+ let newval = f(curval);
+ let newval_aligned = insert_aligned(curval_aligned, newval, shift, mask);
+ if __kuser_cmpxchg(curval_aligned, newval_aligned, aligned_ptr) {
+ return curval;
+ }
+ }
+}
+
+// Generic atomic compare-exchange operation
+unsafe fn atomic_cmpxchg<T>(ptr: *mut T, oldval: u32, newval: u32) -> u32 {
+ let aligned_ptr = align_ptr(ptr);
+ let (shift, mask) = get_shift_mask(ptr);
+
+ loop {
+ let curval_aligned = intrinsics::atomic_load_unordered(aligned_ptr);
+ let curval = extract_aligned(curval_aligned, shift, mask);
+ if curval != oldval {
+ return curval;
+ }
+ let newval_aligned = insert_aligned(curval_aligned, newval, shift, mask);
+ if __kuser_cmpxchg(curval_aligned, newval_aligned, aligned_ptr) {
+ return oldval;
+ }
+ }
+}
+
+macro_rules! atomic_rmw {
+ ($name:ident, $ty:ty, $op:expr) => {
+ intrinsics! {
+ pub unsafe extern "C" fn $name(ptr: *mut $ty, val: $ty) -> $ty {
+ atomic_rmw(ptr, |x| $op(x as $ty, val) as u32) as $ty
+ }
+ }
+ };
+}
+macro_rules! atomic_cmpxchg {
+ ($name:ident, $ty:ty) => {
+ intrinsics! {
+ pub unsafe extern "C" fn $name(ptr: *mut $ty, oldval: $ty, newval: $ty) -> $ty {
+ atomic_cmpxchg(ptr, oldval as u32, newval as u32) as $ty
+ }
+ }
+ };
+}
+
+atomic_rmw!(__sync_fetch_and_add_1, u8, |a: u8, b: u8| a.wrapping_add(b));
+atomic_rmw!(__sync_fetch_and_add_2, u16, |a: u16, b: u16| a
+ .wrapping_add(b));
+atomic_rmw!(__sync_fetch_and_add_4, u32, |a: u32, b: u32| a
+ .wrapping_add(b));
+
+atomic_rmw!(__sync_fetch_and_sub_1, u8, |a: u8, b: u8| a.wrapping_sub(b));
+atomic_rmw!(__sync_fetch_and_sub_2, u16, |a: u16, b: u16| a
+ .wrapping_sub(b));
+atomic_rmw!(__sync_fetch_and_sub_4, u32, |a: u32, b: u32| a
+ .wrapping_sub(b));
+
+atomic_rmw!(__sync_fetch_and_and_1, u8, |a: u8, b: u8| a & b);
+atomic_rmw!(__sync_fetch_and_and_2, u16, |a: u16, b: u16| a & b);
+atomic_rmw!(__sync_fetch_and_and_4, u32, |a: u32, b: u32| a & b);
+
+atomic_rmw!(__sync_fetch_and_or_1, u8, |a: u8, b: u8| a | b);
+atomic_rmw!(__sync_fetch_and_or_2, u16, |a: u16, b: u16| a | b);
+atomic_rmw!(__sync_fetch_and_or_4, u32, |a: u32, b: u32| a | b);
+
+atomic_rmw!(__sync_fetch_and_xor_1, u8, |a: u8, b: u8| a ^ b);
+atomic_rmw!(__sync_fetch_and_xor_2, u16, |a: u16, b: u16| a ^ b);
+atomic_rmw!(__sync_fetch_and_xor_4, u32, |a: u32, b: u32| a ^ b);
+
+atomic_rmw!(__sync_fetch_and_nand_1, u8, |a: u8, b: u8| !(a & b));
+atomic_rmw!(__sync_fetch_and_nand_2, u16, |a: u16, b: u16| !(a & b));
+atomic_rmw!(__sync_fetch_and_nand_4, u32, |a: u32, b: u32| !(a & b));
+
+atomic_rmw!(__sync_fetch_and_max_1, i8, |a: i8, b: i8| if a > b {
+ a
+} else {
+ b
+});
+atomic_rmw!(__sync_fetch_and_max_2, i16, |a: i16, b: i16| if a > b {
+ a
+} else {
+ b
+});
+atomic_rmw!(__sync_fetch_and_max_4, i32, |a: i32, b: i32| if a > b {
+ a
+} else {
+ b
+});
+
+atomic_rmw!(__sync_fetch_and_umax_1, u8, |a: u8, b: u8| if a > b {
+ a
+} else {
+ b
+});
+atomic_rmw!(__sync_fetch_and_umax_2, u16, |a: u16, b: u16| if a > b {
+ a
+} else {
+ b
+});
+atomic_rmw!(__sync_fetch_and_umax_4, u32, |a: u32, b: u32| if a > b {
+ a
+} else {
+ b
+});
+
+atomic_rmw!(__sync_fetch_and_min_1, i8, |a: i8, b: i8| if a < b {
+ a
+} else {
+ b
+});
+atomic_rmw!(__sync_fetch_and_min_2, i16, |a: i16, b: i16| if a < b {
+ a
+} else {
+ b
+});
+atomic_rmw!(__sync_fetch_and_min_4, i32, |a: i32, b: i32| if a < b {
+ a
+} else {
+ b
+});
+
+atomic_rmw!(__sync_fetch_and_umin_1, u8, |a: u8, b: u8| if a < b {
+ a
+} else {
+ b
+});
+atomic_rmw!(__sync_fetch_and_umin_2, u16, |a: u16, b: u16| if a < b {
+ a
+} else {
+ b
+});
+atomic_rmw!(__sync_fetch_and_umin_4, u32, |a: u32, b: u32| if a < b {
+ a
+} else {
+ b
+});
+
+atomic_rmw!(__sync_lock_test_and_set_1, u8, |_: u8, b: u8| b);
+atomic_rmw!(__sync_lock_test_and_set_2, u16, |_: u16, b: u16| b);
+atomic_rmw!(__sync_lock_test_and_set_4, u32, |_: u32, b: u32| b);
+
+atomic_cmpxchg!(__sync_val_compare_and_swap_1, u8);
+atomic_cmpxchg!(__sync_val_compare_and_swap_2, u16);
+atomic_cmpxchg!(__sync_val_compare_and_swap_4, u32);
+
+intrinsics! {
+ pub unsafe extern "C" fn __sync_synchronize() {
+ __kuser_memory_barrier();
+ }
+}
diff --git a/vendor/compiler_builtins/src/float/add.rs b/vendor/compiler_builtins/src/float/add.rs
new file mode 100644
index 000000000..67f6c2c14
--- /dev/null
+++ b/vendor/compiler_builtins/src/float/add.rs
@@ -0,0 +1,213 @@
+use float::Float;
+use int::{CastInto, Int};
+
+/// Returns `a + b`
+fn add<F: Float>(a: F, b: F) -> F
+where
+ u32: CastInto<F::Int>,
+ F::Int: CastInto<u32>,
+ i32: CastInto<F::Int>,
+ F::Int: CastInto<i32>,
+{
+ let one = F::Int::ONE;
+ let zero = F::Int::ZERO;
+
+ let bits = F::BITS.cast();
+ let significand_bits = F::SIGNIFICAND_BITS;
+ let max_exponent = F::EXPONENT_MAX;
+
+ let implicit_bit = F::IMPLICIT_BIT;
+ let significand_mask = F::SIGNIFICAND_MASK;
+ let sign_bit = F::SIGN_MASK as F::Int;
+ let abs_mask = sign_bit - one;
+ let exponent_mask = F::EXPONENT_MASK;
+ let inf_rep = exponent_mask;
+ let quiet_bit = implicit_bit >> 1;
+ let qnan_rep = exponent_mask | quiet_bit;
+
+ let mut a_rep = a.repr();
+ let mut b_rep = b.repr();
+ let a_abs = a_rep & abs_mask;
+ let b_abs = b_rep & abs_mask;
+
+ // Detect if a or b is zero, infinity, or NaN.
+ if a_abs.wrapping_sub(one) >= inf_rep - one || b_abs.wrapping_sub(one) >= inf_rep - one {
+ // NaN + anything = qNaN
+ if a_abs > inf_rep {
+ return F::from_repr(a_abs | quiet_bit);
+ }
+ // anything + NaN = qNaN
+ if b_abs > inf_rep {
+ return F::from_repr(b_abs | quiet_bit);
+ }
+
+ if a_abs == inf_rep {
+ // +/-infinity + -/+infinity = qNaN
+ if (a.repr() ^ b.repr()) == sign_bit {
+ return F::from_repr(qnan_rep);
+ } else {
+ // +/-infinity + anything remaining = +/- infinity
+ return a;
+ }
+ }
+
+ // anything remaining + +/-infinity = +/-infinity
+ if b_abs == inf_rep {
+ return b;
+ }
+
+ // zero + anything = anything
+ if a_abs == Int::ZERO {
+ // but we need to get the sign right for zero + zero
+ if b_abs == Int::ZERO {
+ return F::from_repr(a.repr() & b.repr());
+ } else {
+ return b;
+ }
+ }
+
+ // anything + zero = anything
+ if b_abs == Int::ZERO {
+ return a;
+ }
+ }
+
+ // Swap a and b if necessary so that a has the larger absolute value.
+ if b_abs > a_abs {
+ // Don't use mem::swap because it may generate references to memcpy in unoptimized code.
+ let tmp = a_rep;
+ a_rep = b_rep;
+ b_rep = tmp;
+ }
+
+ // Extract the exponent and significand from the (possibly swapped) a and b.
+ let mut a_exponent: i32 = ((a_rep & exponent_mask) >> significand_bits).cast();
+ let mut b_exponent: i32 = ((b_rep & exponent_mask) >> significand_bits).cast();
+ let mut a_significand = a_rep & significand_mask;
+ let mut b_significand = b_rep & significand_mask;
+
+ // normalize any denormals, and adjust the exponent accordingly.
+ if a_exponent == 0 {
+ let (exponent, significand) = F::normalize(a_significand);
+ a_exponent = exponent;
+ a_significand = significand;
+ }
+ if b_exponent == 0 {
+ let (exponent, significand) = F::normalize(b_significand);
+ b_exponent = exponent;
+ b_significand = significand;
+ }
+
+ // The sign of the result is the sign of the larger operand, a. If they
+ // have opposite signs, we are performing a subtraction; otherwise addition.
+ let result_sign = a_rep & sign_bit;
+ let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;
+
+ // Shift the significands to give us round, guard and sticky, and or in the
+ // implicit significand bit. (If we fell through from the denormal path it
+ // was already set by normalize(), but setting it twice won't hurt
+ // anything.)
+ a_significand = (a_significand | implicit_bit) << 3;
+ b_significand = (b_significand | implicit_bit) << 3;
+
+ // Shift the significand of b by the difference in exponents, with a sticky
+ // bottom bit to get rounding correct.
+ let align = a_exponent.wrapping_sub(b_exponent).cast();
+ if align != Int::ZERO {
+ if align < bits {
+ let sticky =
+ F::Int::from_bool(b_significand << bits.wrapping_sub(align).cast() != Int::ZERO);
+ b_significand = (b_significand >> align.cast()) | sticky;
+ } else {
+ b_significand = one; // sticky; b is known to be non-zero.
+ }
+ }
+ if subtraction {
+ a_significand = a_significand.wrapping_sub(b_significand);
+ // If a == -b, return +zero.
+ if a_significand == Int::ZERO {
+ return F::from_repr(Int::ZERO);
+ }
+
+ // If partial cancellation occured, we need to left-shift the result
+ // and adjust the exponent:
+ if a_significand < implicit_bit << 3 {
+ let shift =
+ a_significand.leading_zeros() as i32 - (implicit_bit << 3).leading_zeros() as i32;
+ a_significand <<= shift;
+ a_exponent -= shift;
+ }
+ } else {
+ // addition
+ a_significand += b_significand;
+
+ // If the addition carried up, we need to right-shift the result and
+ // adjust the exponent:
+ if a_significand & implicit_bit << 4 != Int::ZERO {
+ let sticky = F::Int::from_bool(a_significand & one != Int::ZERO);
+ a_significand = a_significand >> 1 | sticky;
+ a_exponent += 1;
+ }
+ }
+
+ // If we have overflowed the type, return +/- infinity:
+ if a_exponent >= max_exponent as i32 {
+ return F::from_repr(inf_rep | result_sign);
+ }
+
+ if a_exponent <= 0 {
+ // Result is denormal before rounding; the exponent is zero and we
+ // need to shift the significand.
+ let shift = (1 - a_exponent).cast();
+ let sticky =
+ F::Int::from_bool((a_significand << bits.wrapping_sub(shift).cast()) != Int::ZERO);
+ a_significand = a_significand >> shift.cast() | sticky;
+ a_exponent = 0;
+ }
+
+ // Low three bits are round, guard, and sticky.
+ let a_significand_i32: i32 = a_significand.cast();
+ let round_guard_sticky: i32 = a_significand_i32 & 0x7;
+
+ // Shift the significand into place, and mask off the implicit bit.
+ let mut result = a_significand >> 3 & significand_mask;
+
+ // Insert the exponent and sign.
+ result |= a_exponent.cast() << significand_bits;
+ result |= result_sign;
+
+ // Final rounding. The result may overflow to infinity, but that is the
+ // correct result in that case.
+ if round_guard_sticky > 0x4 {
+ result += one;
+ }
+ if round_guard_sticky == 0x4 {
+ result += result & one;
+ }
+
+ F::from_repr(result)
+}
+
+intrinsics! {
+ #[aapcs_on_arm]
+ #[arm_aeabi_alias = __aeabi_fadd]
+ pub extern "C" fn __addsf3(a: f32, b: f32) -> f32 {
+ add(a, b)
+ }
+
+ #[aapcs_on_arm]
+ #[arm_aeabi_alias = __aeabi_dadd]
+ pub extern "C" fn __adddf3(a: f64, b: f64) -> f64 {
+ add(a, b)
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub extern "C" fn __addsf3vfp(a: f32, b: f32) -> f32 {
+ a + b
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub extern "C" fn __adddf3vfp(a: f64, b: f64) -> f64 {
+ a + b
+ }
+}
diff --git a/vendor/compiler_builtins/src/float/cmp.rs b/vendor/compiler_builtins/src/float/cmp.rs
new file mode 100644
index 000000000..1d4e38433
--- /dev/null
+++ b/vendor/compiler_builtins/src/float/cmp.rs
@@ -0,0 +1,253 @@
+#![allow(unreachable_code)]
+
+use float::Float;
+use int::Int;
+
+#[derive(Clone, Copy)]
+enum Result {
+ Less,
+ Equal,
+ Greater,
+ Unordered,
+}
+
+impl Result {
+ fn to_le_abi(self) -> i32 {
+ match self {
+ Result::Less => -1,
+ Result::Equal => 0,
+ Result::Greater => 1,
+ Result::Unordered => 1,
+ }
+ }
+
+ fn to_ge_abi(self) -> i32 {
+ match self {
+ Result::Less => -1,
+ Result::Equal => 0,
+ Result::Greater => 1,
+ Result::Unordered => -1,
+ }
+ }
+}
+
+fn cmp<F: Float>(a: F, b: F) -> Result {
+ let one = F::Int::ONE;
+ let zero = F::Int::ZERO;
+ let szero = F::SignedInt::ZERO;
+
+ let sign_bit = F::SIGN_MASK as F::Int;
+ let abs_mask = sign_bit - one;
+ let exponent_mask = F::EXPONENT_MASK;
+ let inf_rep = exponent_mask;
+
+ let a_rep = a.repr();
+ let b_rep = b.repr();
+ let a_abs = a_rep & abs_mask;
+ let b_abs = b_rep & abs_mask;
+
+ // If either a or b is NaN, they are unordered.
+ if a_abs > inf_rep || b_abs > inf_rep {
+ return Result::Unordered;
+ }
+
+ // If a and b are both zeros, they are equal.
+ if a_abs | b_abs == zero {
+ return Result::Equal;
+ }
+
+ let a_srep = a.signed_repr();
+ let b_srep = b.signed_repr();
+
+ // If at least one of a and b is positive, we get the same result comparing
+ // a and b as signed integers as we would with a fp_ting-point compare.
+ if a_srep & b_srep >= szero {
+ if a_srep < b_srep {
+ Result::Less
+ } else if a_srep == b_srep {
+ Result::Equal
+ } else {
+ Result::Greater
+ }
+ // Otherwise, both are negative, so we need to flip the sense of the
+ // comparison to get the correct result. (This assumes a twos- or ones-
+ // complement integer representation; if integers are represented in a
+ // sign-magnitude representation, then this flip is incorrect).
+ } else if a_srep > b_srep {
+ Result::Less
+ } else if a_srep == b_srep {
+ Result::Equal
+ } else {
+ Result::Greater
+ }
+}
+
+fn unord<F: Float>(a: F, b: F) -> bool {
+ let one = F::Int::ONE;
+
+ let sign_bit = F::SIGN_MASK as F::Int;
+ let abs_mask = sign_bit - one;
+ let exponent_mask = F::EXPONENT_MASK;
+ let inf_rep = exponent_mask;
+
+ let a_rep = a.repr();
+ let b_rep = b.repr();
+ let a_abs = a_rep & abs_mask;
+ let b_abs = b_rep & abs_mask;
+
+ a_abs > inf_rep || b_abs > inf_rep
+}
+
+intrinsics! {
+ pub extern "C" fn __lesf2(a: f32, b: f32) -> i32 {
+ cmp(a, b).to_le_abi()
+ }
+
+ pub extern "C" fn __gesf2(a: f32, b: f32) -> i32 {
+ cmp(a, b).to_ge_abi()
+ }
+
+ #[arm_aeabi_alias = __aeabi_fcmpun]
+ pub extern "C" fn __unordsf2(a: f32, b: f32) -> i32 {
+ unord(a, b) as i32
+ }
+
+ pub extern "C" fn __eqsf2(a: f32, b: f32) -> i32 {
+ cmp(a, b).to_le_abi()
+ }
+
+ pub extern "C" fn __ltsf2(a: f32, b: f32) -> i32 {
+ cmp(a, b).to_le_abi()
+ }
+
+ pub extern "C" fn __nesf2(a: f32, b: f32) -> i32 {
+ cmp(a, b).to_le_abi()
+ }
+
+ pub extern "C" fn __gtsf2(a: f32, b: f32) -> i32 {
+ cmp(a, b).to_ge_abi()
+ }
+
+ pub extern "C" fn __ledf2(a: f64, b: f64) -> i32 {
+ cmp(a, b).to_le_abi()
+ }
+
+ pub extern "C" fn __gedf2(a: f64, b: f64) -> i32 {
+ cmp(a, b).to_ge_abi()
+ }
+
+ #[arm_aeabi_alias = __aeabi_dcmpun]
+ pub extern "C" fn __unorddf2(a: f64, b: f64) -> i32 {
+ unord(a, b) as i32
+ }
+
+ pub extern "C" fn __eqdf2(a: f64, b: f64) -> i32 {
+ cmp(a, b).to_le_abi()
+ }
+
+ pub extern "C" fn __ltdf2(a: f64, b: f64) -> i32 {
+ cmp(a, b).to_le_abi()
+ }
+
+ pub extern "C" fn __nedf2(a: f64, b: f64) -> i32 {
+ cmp(a, b).to_le_abi()
+ }
+
+ pub extern "C" fn __gtdf2(a: f64, b: f64) -> i32 {
+ cmp(a, b).to_ge_abi()
+ }
+}
+
+#[cfg(target_arch = "arm")]
+intrinsics! {
+ pub extern "aapcs" fn __aeabi_fcmple(a: f32, b: f32) -> i32 {
+ (__lesf2(a, b) <= 0) as i32
+ }
+
+ pub extern "aapcs" fn __aeabi_fcmpge(a: f32, b: f32) -> i32 {
+ (__gesf2(a, b) >= 0) as i32
+ }
+
+ pub extern "aapcs" fn __aeabi_fcmpeq(a: f32, b: f32) -> i32 {
+ (__eqsf2(a, b) == 0) as i32
+ }
+
+ pub extern "aapcs" fn __aeabi_fcmplt(a: f32, b: f32) -> i32 {
+ (__ltsf2(a, b) < 0) as i32
+ }
+
+ pub extern "aapcs" fn __aeabi_fcmpgt(a: f32, b: f32) -> i32 {
+ (__gtsf2(a, b) > 0) as i32
+ }
+
+ pub extern "aapcs" fn __aeabi_dcmple(a: f64, b: f64) -> i32 {
+ (__ledf2(a, b) <= 0) as i32
+ }
+
+ pub extern "aapcs" fn __aeabi_dcmpge(a: f64, b: f64) -> i32 {
+ (__gedf2(a, b) >= 0) as i32
+ }
+
+ pub extern "aapcs" fn __aeabi_dcmpeq(a: f64, b: f64) -> i32 {
+ (__eqdf2(a, b) == 0) as i32
+ }
+
+ pub extern "aapcs" fn __aeabi_dcmplt(a: f64, b: f64) -> i32 {
+ (__ltdf2(a, b) < 0) as i32
+ }
+
+ pub extern "aapcs" fn __aeabi_dcmpgt(a: f64, b: f64) -> i32 {
+ (__gtdf2(a, b) > 0) as i32
+ }
+
+ // On hard-float targets LLVM will use native instructions
+ // for all VFP intrinsics below
+
+ pub extern "C" fn __gesf2vfp(a: f32, b: f32) -> i32 {
+ (a >= b) as i32
+ }
+
+ pub extern "C" fn __gedf2vfp(a: f64, b: f64) -> i32 {
+ (a >= b) as i32
+ }
+
+ pub extern "C" fn __gtsf2vfp(a: f32, b: f32) -> i32 {
+ (a > b) as i32
+ }
+
+ pub extern "C" fn __gtdf2vfp(a: f64, b: f64) -> i32 {
+ (a > b) as i32
+ }
+
+ pub extern "C" fn __ltsf2vfp(a: f32, b: f32) -> i32 {
+ (a < b) as i32
+ }
+
+ pub extern "C" fn __ltdf2vfp(a: f64, b: f64) -> i32 {
+ (a < b) as i32
+ }
+
+ pub extern "C" fn __lesf2vfp(a: f32, b: f32) -> i32 {
+ (a <= b) as i32
+ }
+
+ pub extern "C" fn __ledf2vfp(a: f64, b: f64) -> i32 {
+ (a <= b) as i32
+ }
+
+ pub extern "C" fn __nesf2vfp(a: f32, b: f32) -> i32 {
+ (a != b) as i32
+ }
+
+ pub extern "C" fn __nedf2vfp(a: f64, b: f64) -> i32 {
+ (a != b) as i32
+ }
+
+ pub extern "C" fn __eqsf2vfp(a: f32, b: f32) -> i32 {
+ (a == b) as i32
+ }
+
+ pub extern "C" fn __eqdf2vfp(a: f64, b: f64) -> i32 {
+ (a == b) as i32
+ }
+}
diff --git a/vendor/compiler_builtins/src/float/conv.rs b/vendor/compiler_builtins/src/float/conv.rs
new file mode 100644
index 000000000..07b58f3d2
--- /dev/null
+++ b/vendor/compiler_builtins/src/float/conv.rs
@@ -0,0 +1,351 @@
+/// Conversions from integers to floats.
+///
+/// These are hand-optimized bit twiddling code,
+/// which unfortunately isn't the easiest kind of code to read.
+///
+/// The algorithm is explained here: https://blog.m-ou.se/floats/
+mod int_to_float {
+ pub fn u32_to_f32_bits(i: u32) -> u32 {
+ if i == 0 {
+ return 0;
+ }
+ let n = i.leading_zeros();
+ let a = (i << n) >> 8; // Significant bits, with bit 24 still in tact.
+ let b = (i << n) << 24; // Insignificant bits, only relevant for rounding.
+ let m = a + ((b - (b >> 31 & !a)) >> 31); // Add one when we need to round up. Break ties to even.
+ let e = 157 - n as u32; // Exponent plus 127, minus one.
+ (e << 23) + m // + not |, so the mantissa can overflow into the exponent.
+ }
+
+ pub fn u32_to_f64_bits(i: u32) -> u64 {
+ if i == 0 {
+ return 0;
+ }
+ let n = i.leading_zeros();
+ let m = (i as u64) << (21 + n); // Significant bits, with bit 53 still in tact.
+ let e = 1053 - n as u64; // Exponent plus 1023, minus one.
+ (e << 52) + m // Bit 53 of m will overflow into e.
+ }
+
+ pub fn u64_to_f32_bits(i: u64) -> u32 {
+ let n = i.leading_zeros();
+ let y = i.wrapping_shl(n);
+ let a = (y >> 40) as u32; // Significant bits, with bit 24 still in tact.
+ let b = (y >> 8 | y & 0xFFFF) as u32; // Insignificant bits, only relevant for rounding.
+ let m = a + ((b - (b >> 31 & !a)) >> 31); // Add one when we need to round up. Break ties to even.
+ let e = if i == 0 { 0 } else { 189 - n }; // Exponent plus 127, minus one, except for zero.
+ (e << 23) + m // + not |, so the mantissa can overflow into the exponent.
+ }
+
+ pub fn u64_to_f64_bits(i: u64) -> u64 {
+ if i == 0 {
+ return 0;
+ }
+ let n = i.leading_zeros();
+ let a = ((i << n) >> 11) as u64; // Significant bits, with bit 53 still in tact.
+ let b = ((i << n) << 53) as u64; // Insignificant bits, only relevant for rounding.
+ let m = a + ((b - (b >> 63 & !a)) >> 63); // Add one when we need to round up. Break ties to even.
+ let e = 1085 - n as u64; // Exponent plus 1023, minus one.
+ (e << 52) + m // + not |, so the mantissa can overflow into the exponent.
+ }
+
+ pub fn u128_to_f32_bits(i: u128) -> u32 {
+ let n = i.leading_zeros();
+ let y = i.wrapping_shl(n);
+ let a = (y >> 104) as u32; // Significant bits, with bit 24 still in tact.
+ let b = (y >> 72) as u32 | ((y << 32) >> 32 != 0) as u32; // Insignificant bits, only relevant for rounding.
+ let m = a + ((b - (b >> 31 & !a)) >> 31); // Add one when we need to round up. Break ties to even.
+ let e = if i == 0 { 0 } else { 253 - n }; // Exponent plus 127, minus one, except for zero.
+ (e << 23) + m // + not |, so the mantissa can overflow into the exponent.
+ }
+
+ pub fn u128_to_f64_bits(i: u128) -> u64 {
+ let n = i.leading_zeros();
+ let y = i.wrapping_shl(n);
+ let a = (y >> 75) as u64; // Significant bits, with bit 53 still in tact.
+ let b = (y >> 11 | y & 0xFFFF_FFFF) as u64; // Insignificant bits, only relevant for rounding.
+ let m = a + ((b - (b >> 63 & !a)) >> 63); // Add one when we need to round up. Break ties to even.
+ let e = if i == 0 { 0 } else { 1149 - n as u64 }; // Exponent plus 1023, minus one, except for zero.
+ (e << 52) + m // + not |, so the mantissa can overflow into the exponent.
+ }
+}
+
+// Conversions from unsigned integers to floats.
+intrinsics! {
+ #[arm_aeabi_alias = __aeabi_ui2f]
+ pub extern "C" fn __floatunsisf(i: u32) -> f32 {
+ f32::from_bits(int_to_float::u32_to_f32_bits(i))
+ }
+
+ #[arm_aeabi_alias = __aeabi_ui2d]
+ pub extern "C" fn __floatunsidf(i: u32) -> f64 {
+ f64::from_bits(int_to_float::u32_to_f64_bits(i))
+ }
+
+ #[arm_aeabi_alias = __aeabi_ul2f]
+ pub extern "C" fn __floatundisf(i: u64) -> f32 {
+ f32::from_bits(int_to_float::u64_to_f32_bits(i))
+ }
+
+ #[arm_aeabi_alias = __aeabi_ul2d]
+ pub extern "C" fn __floatundidf(i: u64) -> f64 {
+ f64::from_bits(int_to_float::u64_to_f64_bits(i))
+ }
+
+ #[cfg_attr(not(target_feature = "llvm14-builtins-abi"), unadjusted_on_win64)]
+ pub extern "C" fn __floatuntisf(i: u128) -> f32 {
+ f32::from_bits(int_to_float::u128_to_f32_bits(i))
+ }
+
+ #[cfg_attr(not(target_feature = "llvm14-builtins-abi"), unadjusted_on_win64)]
+ pub extern "C" fn __floatuntidf(i: u128) -> f64 {
+ f64::from_bits(int_to_float::u128_to_f64_bits(i))
+ }
+}
+
+// Conversions from signed integers to floats.
+intrinsics! {
+ #[arm_aeabi_alias = __aeabi_i2f]
+ pub extern "C" fn __floatsisf(i: i32) -> f32 {
+ let sign_bit = ((i >> 31) as u32) << 31;
+ f32::from_bits(int_to_float::u32_to_f32_bits(i.unsigned_abs()) | sign_bit)
+ }
+
+ #[arm_aeabi_alias = __aeabi_i2d]
+ pub extern "C" fn __floatsidf(i: i32) -> f64 {
+ let sign_bit = ((i >> 31) as u64) << 63;
+ f64::from_bits(int_to_float::u32_to_f64_bits(i.unsigned_abs()) | sign_bit)
+ }
+
+ #[arm_aeabi_alias = __aeabi_l2f]
+ pub extern "C" fn __floatdisf(i: i64) -> f32 {
+ let sign_bit = ((i >> 63) as u32) << 31;
+ f32::from_bits(int_to_float::u64_to_f32_bits(i.unsigned_abs()) | sign_bit)
+ }
+
+ #[arm_aeabi_alias = __aeabi_l2d]
+ pub extern "C" fn __floatdidf(i: i64) -> f64 {
+ let sign_bit = ((i >> 63) as u64) << 63;
+ f64::from_bits(int_to_float::u64_to_f64_bits(i.unsigned_abs()) | sign_bit)
+ }
+
+ #[cfg_attr(not(target_feature = "llvm14-builtins-abi"), unadjusted_on_win64)]
+ pub extern "C" fn __floattisf(i: i128) -> f32 {
+ let sign_bit = ((i >> 127) as u32) << 31;
+ f32::from_bits(int_to_float::u128_to_f32_bits(i.unsigned_abs()) | sign_bit)
+ }
+
+ #[cfg_attr(not(target_feature = "llvm14-builtins-abi"), unadjusted_on_win64)]
+ pub extern "C" fn __floattidf(i: i128) -> f64 {
+ let sign_bit = ((i >> 127) as u64) << 63;
+ f64::from_bits(int_to_float::u128_to_f64_bits(i.unsigned_abs()) | sign_bit)
+ }
+}
+
+// Conversions from floats to unsigned integers.
+intrinsics! {
+ #[arm_aeabi_alias = __aeabi_f2uiz]
+ pub extern "C" fn __fixunssfsi(f: f32) -> u32 {
+ let fbits = f.to_bits();
+ if fbits < 127 << 23 { // >= 0, < 1
+ 0
+ } else if fbits < 159 << 23 { // >= 1, < max
+ let m = 1 << 31 | fbits << 8; // Mantissa and the implicit 1-bit.
+ let s = 158 - (fbits >> 23); // Shift based on the exponent and bias.
+ m >> s
+ } else if fbits <= 255 << 23 { // >= max (incl. inf)
+ u32::MAX
+ } else { // Negative or NaN
+ 0
+ }
+ }
+
+ #[arm_aeabi_alias = __aeabi_f2ulz]
+ pub extern "C" fn __fixunssfdi(f: f32) -> u64 {
+ let fbits = f.to_bits();
+ if fbits < 127 << 23 { // >= 0, < 1
+ 0
+ } else if fbits < 191 << 23 { // >= 1, < max
+ let m = 1 << 63 | (fbits as u64) << 40; // Mantissa and the implicit 1-bit.
+ let s = 190 - (fbits >> 23); // Shift based on the exponent and bias.
+ m >> s
+ } else if fbits <= 255 << 23 { // >= max (incl. inf)
+ u64::MAX
+ } else { // Negative or NaN
+ 0
+ }
+ }
+
+ #[cfg_attr(target_feature = "llvm14-builtins-abi", win64_128bit_abi_hack)]
+ #[cfg_attr(not(target_feature = "llvm14-builtins-abi"), unadjusted_on_win64)]
+ pub extern "C" fn __fixunssfti(f: f32) -> u128 {
+ let fbits = f.to_bits();
+ if fbits < 127 << 23 { // >= 0, < 1
+ 0
+ } else if fbits < 255 << 23 { // >= 1, < inf
+ let m = 1 << 127 | (fbits as u128) << 104; // Mantissa and the implicit 1-bit.
+ let s = 254 - (fbits >> 23); // Shift based on the exponent and bias.
+ m >> s
+ } else if fbits == 255 << 23 { // == inf
+ u128::MAX
+ } else { // Negative or NaN
+ 0
+ }
+ }
+
+ #[arm_aeabi_alias = __aeabi_d2uiz]
+ pub extern "C" fn __fixunsdfsi(f: f64) -> u32 {
+ let fbits = f.to_bits();
+ if fbits < 1023 << 52 { // >= 0, < 1
+ 0
+ } else if fbits < 1055 << 52 { // >= 1, < max
+ let m = 1 << 31 | (fbits >> 21) as u32; // Mantissa and the implicit 1-bit.
+ let s = 1054 - (fbits >> 52); // Shift based on the exponent and bias.
+ m >> s
+ } else if fbits <= 2047 << 52 { // >= max (incl. inf)
+ u32::MAX
+ } else { // Negative or NaN
+ 0
+ }
+ }
+
+ #[arm_aeabi_alias = __aeabi_d2ulz]
+ pub extern "C" fn __fixunsdfdi(f: f64) -> u64 {
+ let fbits = f.to_bits();
+ if fbits < 1023 << 52 { // >= 0, < 1
+ 0
+ } else if fbits < 1087 << 52 { // >= 1, < max
+ let m = 1 << 63 | fbits << 11; // Mantissa and the implicit 1-bit.
+ let s = 1086 - (fbits >> 52); // Shift based on the exponent and bias.
+ m >> s
+ } else if fbits <= 2047 << 52 { // >= max (incl. inf)
+ u64::MAX
+ } else { // Negative or NaN
+ 0
+ }
+ }
+
+ #[cfg_attr(target_feature = "llvm14-builtins-abi", win64_128bit_abi_hack)]
+ #[cfg_attr(not(target_feature = "llvm14-builtins-abi"), unadjusted_on_win64)]
+ pub extern "C" fn __fixunsdfti(f: f64) -> u128 {
+ let fbits = f.to_bits();
+ if fbits < 1023 << 52 { // >= 0, < 1
+ 0
+ } else if fbits < 1151 << 52 { // >= 1, < max
+ let m = 1 << 127 | (fbits as u128) << 75; // Mantissa and the implicit 1-bit.
+ let s = 1150 - (fbits >> 52); // Shift based on the exponent and bias.
+ m >> s
+ } else if fbits <= 2047 << 52 { // >= max (incl. inf)
+ u128::MAX
+ } else { // Negative or NaN
+ 0
+ }
+ }
+}
+
+// Conversions from floats to signed integers.
+intrinsics! {
+ #[arm_aeabi_alias = __aeabi_f2iz]
+ pub extern "C" fn __fixsfsi(f: f32) -> i32 {
+ let fbits = f.to_bits() & !0 >> 1; // Remove sign bit.
+ if fbits < 127 << 23 { // >= 0, < 1
+ 0
+ } else if fbits < 158 << 23 { // >= 1, < max
+ let m = 1 << 31 | fbits << 8; // Mantissa and the implicit 1-bit.
+ let s = 158 - (fbits >> 23); // Shift based on the exponent and bias.
+ let u = (m >> s) as i32; // Unsigned result.
+ if f.is_sign_negative() { -u } else { u }
+ } else if fbits <= 255 << 23 { // >= max (incl. inf)
+ if f.is_sign_negative() { i32::MIN } else { i32::MAX }
+ } else { // NaN
+ 0
+ }
+ }
+
+ #[arm_aeabi_alias = __aeabi_f2lz]
+ pub extern "C" fn __fixsfdi(f: f32) -> i64 {
+ let fbits = f.to_bits() & !0 >> 1; // Remove sign bit.
+ if fbits < 127 << 23 { // >= 0, < 1
+ 0
+ } else if fbits < 190 << 23 { // >= 1, < max
+ let m = 1 << 63 | (fbits as u64) << 40; // Mantissa and the implicit 1-bit.
+ let s = 190 - (fbits >> 23); // Shift based on the exponent and bias.
+ let u = (m >> s) as i64; // Unsigned result.
+ if f.is_sign_negative() { -u } else { u }
+ } else if fbits <= 255 << 23 { // >= max (incl. inf)
+ if f.is_sign_negative() { i64::MIN } else { i64::MAX }
+ } else { // NaN
+ 0
+ }
+ }
+
+ #[cfg_attr(target_feature = "llvm14-builtins-abi", win64_128bit_abi_hack)]
+ #[cfg_attr(not(target_feature = "llvm14-builtins-abi"), unadjusted_on_win64)]
+ pub extern "C" fn __fixsfti(f: f32) -> i128 {
+ let fbits = f.to_bits() & !0 >> 1; // Remove sign bit.
+ if fbits < 127 << 23 { // >= 0, < 1
+ 0
+ } else if fbits < 254 << 23 { // >= 1, < max
+ let m = 1 << 127 | (fbits as u128) << 104; // Mantissa and the implicit 1-bit.
+ let s = 254 - (fbits >> 23); // Shift based on the exponent and bias.
+ let u = (m >> s) as i128; // Unsigned result.
+ if f.is_sign_negative() { -u } else { u }
+ } else if fbits <= 255 << 23 { // >= max (incl. inf)
+ if f.is_sign_negative() { i128::MIN } else { i128::MAX }
+ } else { // NaN
+ 0
+ }
+ }
+
+ #[arm_aeabi_alias = __aeabi_d2iz]
+ pub extern "C" fn __fixdfsi(f: f64) -> i32 {
+ let fbits = f.to_bits() & !0 >> 1; // Remove sign bit.
+ if fbits < 1023 << 52 { // >= 0, < 1
+ 0
+ } else if fbits < 1054 << 52 { // >= 1, < max
+ let m = 1 << 31 | (fbits >> 21) as u32; // Mantissa and the implicit 1-bit.
+ let s = 1054 - (fbits >> 52); // Shift based on the exponent and bias.
+ let u = (m >> s) as i32; // Unsigned result.
+ if f.is_sign_negative() { -u } else { u }
+ } else if fbits <= 2047 << 52 { // >= max (incl. inf)
+ if f.is_sign_negative() { i32::MIN } else { i32::MAX }
+ } else { // NaN
+ 0
+ }
+ }
+
+ #[arm_aeabi_alias = __aeabi_d2lz]
+ pub extern "C" fn __fixdfdi(f: f64) -> i64 {
+ let fbits = f.to_bits() & !0 >> 1; // Remove sign bit.
+ if fbits < 1023 << 52 { // >= 0, < 1
+ 0
+ } else if fbits < 1086 << 52 { // >= 1, < max
+ let m = 1 << 63 | fbits << 11; // Mantissa and the implicit 1-bit.
+ let s = 1086 - (fbits >> 52); // Shift based on the exponent and bias.
+ let u = (m >> s) as i64; // Unsigned result.
+ if f.is_sign_negative() { -u } else { u }
+ } else if fbits <= 2047 << 52 { // >= max (incl. inf)
+ if f.is_sign_negative() { i64::MIN } else { i64::MAX }
+ } else { // NaN
+ 0
+ }
+ }
+
+ #[cfg_attr(target_feature = "llvm14-builtins-abi", win64_128bit_abi_hack)]
+ #[cfg_attr(not(target_feature = "llvm14-builtins-abi"), unadjusted_on_win64)]
+ pub extern "C" fn __fixdfti(f: f64) -> i128 {
+ let fbits = f.to_bits() & !0 >> 1; // Remove sign bit.
+ if fbits < 1023 << 52 { // >= 0, < 1
+ 0
+ } else if fbits < 1150 << 52 { // >= 1, < max
+ let m = 1 << 127 | (fbits as u128) << 75; // Mantissa and the implicit 1-bit.
+ let s = 1150 - (fbits >> 52); // Shift based on the exponent and bias.
+ let u = (m >> s) as i128; // Unsigned result.
+ if f.is_sign_negative() { -u } else { u }
+ } else if fbits <= 2047 << 52 { // >= max (incl. inf)
+ if f.is_sign_negative() { i128::MIN } else { i128::MAX }
+ } else { // NaN
+ 0
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/src/float/div.rs b/vendor/compiler_builtins/src/float/div.rs
new file mode 100644
index 000000000..528a8368d
--- /dev/null
+++ b/vendor/compiler_builtins/src/float/div.rs
@@ -0,0 +1,467 @@
+// The functions are complex with many branches, and explicit
+// `return`s makes it clear where function exit points are
+#![allow(clippy::needless_return)]
+
+use float::Float;
+use int::{CastInto, DInt, HInt, Int};
+
+fn div32<F: Float>(a: F, b: F) -> F
+where
+ u32: CastInto<F::Int>,
+ F::Int: CastInto<u32>,
+ i32: CastInto<F::Int>,
+ F::Int: CastInto<i32>,
+ F::Int: HInt,
+{
+ let one = F::Int::ONE;
+ let zero = F::Int::ZERO;
+
+ // let bits = F::BITS;
+ let significand_bits = F::SIGNIFICAND_BITS;
+ let max_exponent = F::EXPONENT_MAX;
+
+ let exponent_bias = F::EXPONENT_BIAS;
+
+ let implicit_bit = F::IMPLICIT_BIT;
+ let significand_mask = F::SIGNIFICAND_MASK;
+ let sign_bit = F::SIGN_MASK as F::Int;
+ let abs_mask = sign_bit - one;
+ let exponent_mask = F::EXPONENT_MASK;
+ let inf_rep = exponent_mask;
+ let quiet_bit = implicit_bit >> 1;
+ let qnan_rep = exponent_mask | quiet_bit;
+
+ #[inline(always)]
+ fn negate_u32(a: u32) -> u32 {
+ (<i32>::wrapping_neg(a as i32)) as u32
+ }
+
+ let a_rep = a.repr();
+ let b_rep = b.repr();
+
+ let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
+ let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
+ let quotient_sign = (a_rep ^ b_rep) & sign_bit;
+
+ let mut a_significand = a_rep & significand_mask;
+ let mut b_significand = b_rep & significand_mask;
+ let mut scale = 0;
+
+ // Detect if a or b is zero, denormal, infinity, or NaN.
+ if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
+ || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
+ {
+ let a_abs = a_rep & abs_mask;
+ let b_abs = b_rep & abs_mask;
+
+ // NaN / anything = qNaN
+ if a_abs > inf_rep {
+ return F::from_repr(a_rep | quiet_bit);
+ }
+ // anything / NaN = qNaN
+ if b_abs > inf_rep {
+ return F::from_repr(b_rep | quiet_bit);
+ }
+
+ if a_abs == inf_rep {
+ if b_abs == inf_rep {
+ // infinity / infinity = NaN
+ return F::from_repr(qnan_rep);
+ } else {
+ // infinity / anything else = +/- infinity
+ return F::from_repr(a_abs | quotient_sign);
+ }
+ }
+
+ // anything else / infinity = +/- 0
+ if b_abs == inf_rep {
+ return F::from_repr(quotient_sign);
+ }
+
+ if a_abs == zero {
+ if b_abs == zero {
+ // zero / zero = NaN
+ return F::from_repr(qnan_rep);
+ } else {
+ // zero / anything else = +/- zero
+ return F::from_repr(quotient_sign);
+ }
+ }
+
+ // anything else / zero = +/- infinity
+ if b_abs == zero {
+ return F::from_repr(inf_rep | quotient_sign);
+ }
+
+ // one or both of a or b is denormal, the other (if applicable) is a
+ // normal number. Renormalize one or both of a and b, and set scale to
+ // include the necessary exponent adjustment.
+ if a_abs < implicit_bit {
+ let (exponent, significand) = F::normalize(a_significand);
+ scale += exponent;
+ a_significand = significand;
+ }
+
+ if b_abs < implicit_bit {
+ let (exponent, significand) = F::normalize(b_significand);
+ scale -= exponent;
+ b_significand = significand;
+ }
+ }
+
+ // Or in the implicit significand bit. (If we fell through from the
+ // denormal path it was already set by normalize( ), but setting it twice
+ // won't hurt anything.)
+ a_significand |= implicit_bit;
+ b_significand |= implicit_bit;
+ let mut quotient_exponent: i32 = CastInto::<i32>::cast(a_exponent)
+ .wrapping_sub(CastInto::<i32>::cast(b_exponent))
+ .wrapping_add(scale);
+
+ // Align the significand of b as a Q31 fixed-point number in the range
+ // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
+ // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
+ // is accurate to about 3.5 binary digits.
+ let q31b = CastInto::<u32>::cast(b_significand << 8.cast());
+ let mut reciprocal = (0x7504f333u32).wrapping_sub(q31b);
+
+ // Now refine the reciprocal estimate using a Newton-Raphson iteration:
+ //
+ // x1 = x0 * (2 - x0 * b)
+ //
+ // This doubles the number of correct binary digits in the approximation
+ // with each iteration, so after three iterations, we have about 28 binary
+ // digits of accuracy.
+
+ let mut correction: u32 =
+ negate_u32(((reciprocal as u64).wrapping_mul(q31b as u64) >> 32) as u32);
+ reciprocal = ((reciprocal as u64).wrapping_mul(correction as u64) as u64 >> 31) as u32;
+ correction = negate_u32(((reciprocal as u64).wrapping_mul(q31b as u64) >> 32) as u32);
+ reciprocal = ((reciprocal as u64).wrapping_mul(correction as u64) as u64 >> 31) as u32;
+ correction = negate_u32(((reciprocal as u64).wrapping_mul(q31b as u64) >> 32) as u32);
+ reciprocal = ((reciprocal as u64).wrapping_mul(correction as u64) as u64 >> 31) as u32;
+
+ // Exhaustive testing shows that the error in reciprocal after three steps
+ // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
+ // expectations. We bump the reciprocal by a tiny value to force the error
+ // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
+ // be specific). This also causes 1/1 to give a sensible approximation
+ // instead of zero (due to overflow).
+ reciprocal = reciprocal.wrapping_sub(2);
+
+ // The numerical reciprocal is accurate to within 2^-28, lies in the
+ // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
+ // than the true reciprocal of b. Multiplying a by this reciprocal thus
+ // gives a numerical q = a/b in Q24 with the following properties:
+ //
+ // 1. q < a/b
+ // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
+ // 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
+ // from the fact that we truncate the product, and the 2^27 term
+ // is the error in the reciprocal of b scaled by the maximum
+ // possible value of a. As a consequence of this error bound,
+ // either q or nextafter(q) is the correctly rounded
+ let mut quotient = (a_significand << 1).widen_mul(reciprocal.cast()).hi();
+
+ // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
+ // In either case, we are going to compute a residual of the form
+ //
+ // r = a - q*b
+ //
+ // We know from the construction of q that r satisfies:
+ //
+ // 0 <= r < ulp(q)*b
+ //
+ // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
+ // already have the correct result. The exact halfway case cannot occur.
+ // We also take this time to right shift quotient if it falls in the [1,2)
+ // range and adjust the exponent accordingly.
+ let residual = if quotient < (implicit_bit << 1) {
+ quotient_exponent = quotient_exponent.wrapping_sub(1);
+ (a_significand << (significand_bits + 1)).wrapping_sub(quotient.wrapping_mul(b_significand))
+ } else {
+ quotient >>= 1;
+ (a_significand << significand_bits).wrapping_sub(quotient.wrapping_mul(b_significand))
+ };
+
+ let written_exponent = quotient_exponent.wrapping_add(exponent_bias as i32);
+
+ if written_exponent >= max_exponent as i32 {
+ // If we have overflowed the exponent, return infinity.
+ return F::from_repr(inf_rep | quotient_sign);
+ } else if written_exponent < 1 {
+ // Flush denormals to zero. In the future, it would be nice to add
+ // code to round them correctly.
+ return F::from_repr(quotient_sign);
+ } else {
+ let round = ((residual << 1) > b_significand) as u32;
+ // Clear the implicit bits
+ let mut abs_result = quotient & significand_mask;
+ // Insert the exponent
+ abs_result |= written_exponent.cast() << significand_bits;
+ // Round
+ abs_result = abs_result.wrapping_add(round.cast());
+ // Insert the sign and return
+ return F::from_repr(abs_result | quotient_sign);
+ }
+}
+
+fn div64<F: Float>(a: F, b: F) -> F
+where
+ u32: CastInto<F::Int>,
+ F::Int: CastInto<u32>,
+ i32: CastInto<F::Int>,
+ F::Int: CastInto<i32>,
+ u64: CastInto<F::Int>,
+ F::Int: CastInto<u64>,
+ i64: CastInto<F::Int>,
+ F::Int: CastInto<i64>,
+ F::Int: HInt,
+{
+ let one = F::Int::ONE;
+ let zero = F::Int::ZERO;
+
+ // let bits = F::BITS;
+ let significand_bits = F::SIGNIFICAND_BITS;
+ let max_exponent = F::EXPONENT_MAX;
+
+ let exponent_bias = F::EXPONENT_BIAS;
+
+ let implicit_bit = F::IMPLICIT_BIT;
+ let significand_mask = F::SIGNIFICAND_MASK;
+ let sign_bit = F::SIGN_MASK as F::Int;
+ let abs_mask = sign_bit - one;
+ let exponent_mask = F::EXPONENT_MASK;
+ let inf_rep = exponent_mask;
+ let quiet_bit = implicit_bit >> 1;
+ let qnan_rep = exponent_mask | quiet_bit;
+ // let exponent_bits = F::EXPONENT_BITS;
+
+ #[inline(always)]
+ fn negate_u32(a: u32) -> u32 {
+ (<i32>::wrapping_neg(a as i32)) as u32
+ }
+
+ #[inline(always)]
+ fn negate_u64(a: u64) -> u64 {
+ (<i64>::wrapping_neg(a as i64)) as u64
+ }
+
+ let a_rep = a.repr();
+ let b_rep = b.repr();
+
+ let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
+ let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
+ let quotient_sign = (a_rep ^ b_rep) & sign_bit;
+
+ let mut a_significand = a_rep & significand_mask;
+ let mut b_significand = b_rep & significand_mask;
+ let mut scale = 0;
+
+ // Detect if a or b is zero, denormal, infinity, or NaN.
+ if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
+ || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
+ {
+ let a_abs = a_rep & abs_mask;
+ let b_abs = b_rep & abs_mask;
+
+ // NaN / anything = qNaN
+ if a_abs > inf_rep {
+ return F::from_repr(a_rep | quiet_bit);
+ }
+ // anything / NaN = qNaN
+ if b_abs > inf_rep {
+ return F::from_repr(b_rep | quiet_bit);
+ }
+
+ if a_abs == inf_rep {
+ if b_abs == inf_rep {
+ // infinity / infinity = NaN
+ return F::from_repr(qnan_rep);
+ } else {
+ // infinity / anything else = +/- infinity
+ return F::from_repr(a_abs | quotient_sign);
+ }
+ }
+
+ // anything else / infinity = +/- 0
+ if b_abs == inf_rep {
+ return F::from_repr(quotient_sign);
+ }
+
+ if a_abs == zero {
+ if b_abs == zero {
+ // zero / zero = NaN
+ return F::from_repr(qnan_rep);
+ } else {
+ // zero / anything else = +/- zero
+ return F::from_repr(quotient_sign);
+ }
+ }
+
+ // anything else / zero = +/- infinity
+ if b_abs == zero {
+ return F::from_repr(inf_rep | quotient_sign);
+ }
+
+ // one or both of a or b is denormal, the other (if applicable) is a
+ // normal number. Renormalize one or both of a and b, and set scale to
+ // include the necessary exponent adjustment.
+ if a_abs < implicit_bit {
+ let (exponent, significand) = F::normalize(a_significand);
+ scale += exponent;
+ a_significand = significand;
+ }
+
+ if b_abs < implicit_bit {
+ let (exponent, significand) = F::normalize(b_significand);
+ scale -= exponent;
+ b_significand = significand;
+ }
+ }
+
+ // Or in the implicit significand bit. (If we fell through from the
+ // denormal path it was already set by normalize( ), but setting it twice
+ // won't hurt anything.)
+ a_significand |= implicit_bit;
+ b_significand |= implicit_bit;
+ let mut quotient_exponent: i32 = CastInto::<i32>::cast(a_exponent)
+ .wrapping_sub(CastInto::<i32>::cast(b_exponent))
+ .wrapping_add(scale);
+
+ // Align the significand of b as a Q31 fixed-point number in the range
+ // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
+ // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
+ // is accurate to about 3.5 binary digits.
+ let q31b = CastInto::<u32>::cast(b_significand >> 21.cast());
+ let mut recip32 = (0x7504f333u32).wrapping_sub(q31b);
+
+ // Now refine the reciprocal estimate using a Newton-Raphson iteration:
+ //
+ // x1 = x0 * (2 - x0 * b)
+ //
+ // This doubles the number of correct binary digits in the approximation
+ // with each iteration, so after three iterations, we have about 28 binary
+ // digits of accuracy.
+
+ let mut correction32: u32 =
+ negate_u32(((recip32 as u64).wrapping_mul(q31b as u64) >> 32) as u32);
+ recip32 = ((recip32 as u64).wrapping_mul(correction32 as u64) >> 31) as u32;
+ correction32 = negate_u32(((recip32 as u64).wrapping_mul(q31b as u64) >> 32) as u32);
+ recip32 = ((recip32 as u64).wrapping_mul(correction32 as u64) >> 31) as u32;
+ correction32 = negate_u32(((recip32 as u64).wrapping_mul(q31b as u64) >> 32) as u32);
+ recip32 = ((recip32 as u64).wrapping_mul(correction32 as u64) >> 31) as u32;
+
+ // recip32 might have overflowed to exactly zero in the preceeding
+ // computation if the high word of b is exactly 1.0. This would sabotage
+ // the full-width final stage of the computation that follows, so we adjust
+ // recip32 downward by one bit.
+ recip32 = recip32.wrapping_sub(1);
+
+ // We need to perform one more iteration to get us to 56 binary digits;
+ // The last iteration needs to happen with extra precision.
+ let q63blo = CastInto::<u32>::cast(b_significand << 11.cast());
+
+ let correction: u64 = negate_u64(
+ (recip32 as u64)
+ .wrapping_mul(q31b as u64)
+ .wrapping_add((recip32 as u64).wrapping_mul(q63blo as u64) >> 32),
+ );
+ let c_hi = (correction >> 32) as u32;
+ let c_lo = correction as u32;
+ let mut reciprocal: u64 = (recip32 as u64)
+ .wrapping_mul(c_hi as u64)
+ .wrapping_add((recip32 as u64).wrapping_mul(c_lo as u64) >> 32);
+
+ // We already adjusted the 32-bit estimate, now we need to adjust the final
+ // 64-bit reciprocal estimate downward to ensure that it is strictly smaller
+ // than the infinitely precise exact reciprocal. Because the computation
+ // of the Newton-Raphson step is truncating at every step, this adjustment
+ // is small; most of the work is already done.
+ reciprocal = reciprocal.wrapping_sub(2);
+
+ // The numerical reciprocal is accurate to within 2^-56, lies in the
+ // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
+ // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
+ // in Q53 with the following properties:
+ //
+ // 1. q < a/b
+ // 2. q is in the interval [0.5, 2.0)
+ // 3. the error in q is bounded away from 2^-53 (actually, we have a
+ // couple of bits to spare, but this is all we need).
+
+ // We need a 64 x 64 multiply high to compute q, which isn't a basic
+ // operation in C, so we need to be a little bit fussy.
+ // let mut quotient: F::Int = ((((reciprocal as u64)
+ // .wrapping_mul(CastInto::<u32>::cast(a_significand << 1) as u64))
+ // >> 32) as u32)
+ // .cast();
+
+ // We need a 64 x 64 multiply high to compute q, which isn't a basic
+ // operation in C, so we need to be a little bit fussy.
+ let mut quotient = (a_significand << 2).widen_mul(reciprocal.cast()).hi();
+
+ // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
+ // In either case, we are going to compute a residual of the form
+ //
+ // r = a - q*b
+ //
+ // We know from the construction of q that r satisfies:
+ //
+ // 0 <= r < ulp(q)*b
+ //
+ // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
+ // already have the correct result. The exact halfway case cannot occur.
+ // We also take this time to right shift quotient if it falls in the [1,2)
+ // range and adjust the exponent accordingly.
+ let residual = if quotient < (implicit_bit << 1) {
+ quotient_exponent = quotient_exponent.wrapping_sub(1);
+ (a_significand << (significand_bits + 1)).wrapping_sub(quotient.wrapping_mul(b_significand))
+ } else {
+ quotient >>= 1;
+ (a_significand << significand_bits).wrapping_sub(quotient.wrapping_mul(b_significand))
+ };
+
+ let written_exponent = quotient_exponent.wrapping_add(exponent_bias as i32);
+
+ if written_exponent >= max_exponent as i32 {
+ // If we have overflowed the exponent, return infinity.
+ return F::from_repr(inf_rep | quotient_sign);
+ } else if written_exponent < 1 {
+ // Flush denormals to zero. In the future, it would be nice to add
+ // code to round them correctly.
+ return F::from_repr(quotient_sign);
+ } else {
+ let round = ((residual << 1) > b_significand) as u32;
+ // Clear the implicit bits
+ let mut abs_result = quotient & significand_mask;
+ // Insert the exponent
+ abs_result |= written_exponent.cast() << significand_bits;
+ // Round
+ abs_result = abs_result.wrapping_add(round.cast());
+ // Insert the sign and return
+ return F::from_repr(abs_result | quotient_sign);
+ }
+}
+
+intrinsics! {
+ #[arm_aeabi_alias = __aeabi_fdiv]
+ pub extern "C" fn __divsf3(a: f32, b: f32) -> f32 {
+ div32(a, b)
+ }
+
+ #[arm_aeabi_alias = __aeabi_ddiv]
+ pub extern "C" fn __divdf3(a: f64, b: f64) -> f64 {
+ div64(a, b)
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub extern "C" fn __divsf3vfp(a: f32, b: f32) -> f32 {
+ a / b
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub extern "C" fn __divdf3vfp(a: f64, b: f64) -> f64 {
+ a / b
+ }
+}
diff --git a/vendor/compiler_builtins/src/float/extend.rs b/vendor/compiler_builtins/src/float/extend.rs
new file mode 100644
index 000000000..39633773b
--- /dev/null
+++ b/vendor/compiler_builtins/src/float/extend.rs
@@ -0,0 +1,83 @@
+use float::Float;
+use int::{CastInto, Int};
+
+/// Generic conversion from a narrower to a wider IEEE-754 floating-point type
+fn extend<F: Float, R: Float>(a: F) -> R
+where
+ F::Int: CastInto<u64>,
+ u64: CastInto<F::Int>,
+ u32: CastInto<R::Int>,
+ R::Int: CastInto<u32>,
+ R::Int: CastInto<u64>,
+ u64: CastInto<R::Int>,
+ F::Int: CastInto<R::Int>,
+{
+ let src_zero = F::Int::ZERO;
+ let src_one = F::Int::ONE;
+ let src_bits = F::BITS;
+ let src_sign_bits = F::SIGNIFICAND_BITS;
+ let src_exp_bias = F::EXPONENT_BIAS;
+ let src_min_normal = F::IMPLICIT_BIT;
+ let src_infinity = F::EXPONENT_MASK;
+ let src_sign_mask = F::SIGN_MASK as F::Int;
+ let src_abs_mask = src_sign_mask - src_one;
+ let src_qnan = F::SIGNIFICAND_MASK;
+ let src_nan_code = src_qnan - src_one;
+
+ let dst_bits = R::BITS;
+ let dst_sign_bits = R::SIGNIFICAND_BITS;
+ let dst_inf_exp = R::EXPONENT_MAX;
+ let dst_exp_bias = R::EXPONENT_BIAS;
+ let dst_min_normal = R::IMPLICIT_BIT;
+
+ let sign_bits_delta = dst_sign_bits - src_sign_bits;
+ let exp_bias_delta = dst_exp_bias - src_exp_bias;
+ let a_abs = a.repr() & src_abs_mask;
+ let mut abs_result = R::Int::ZERO;
+
+ if a_abs.wrapping_sub(src_min_normal) < src_infinity.wrapping_sub(src_min_normal) {
+ // a is a normal number.
+ // Extend to the destination type by shifting the significand and
+ // exponent into the proper position and rebiasing the exponent.
+ let abs_dst: R::Int = a_abs.cast();
+ let bias_dst: R::Int = exp_bias_delta.cast();
+ abs_result = abs_dst.wrapping_shl(sign_bits_delta);
+ abs_result += bias_dst.wrapping_shl(dst_sign_bits);
+ } else if a_abs >= src_infinity {
+ // a is NaN or infinity.
+ // Conjure the result by beginning with infinity, then setting the qNaN
+ // bit (if needed) and right-aligning the rest of the trailing NaN
+ // payload field.
+ let qnan_dst: R::Int = (a_abs & src_qnan).cast();
+ let nan_code_dst: R::Int = (a_abs & src_nan_code).cast();
+ let inf_exp_dst: R::Int = dst_inf_exp.cast();
+ abs_result = inf_exp_dst.wrapping_shl(dst_sign_bits);
+ abs_result |= qnan_dst.wrapping_shl(sign_bits_delta);
+ abs_result |= nan_code_dst.wrapping_shl(sign_bits_delta);
+ } else if a_abs != src_zero {
+ // a is denormal.
+ // Renormalize the significand and clear the leading bit, then insert
+ // the correct adjusted exponent in the destination type.
+ let scale = a_abs.leading_zeros() - src_min_normal.leading_zeros();
+ let abs_dst: R::Int = a_abs.cast();
+ let bias_dst: R::Int = (exp_bias_delta - scale + 1).cast();
+ abs_result = abs_dst.wrapping_shl(sign_bits_delta + scale);
+ abs_result = (abs_result ^ dst_min_normal) | (bias_dst.wrapping_shl(dst_sign_bits));
+ }
+
+ let sign_result: R::Int = (a.repr() & src_sign_mask).cast();
+ R::from_repr(abs_result | (sign_result.wrapping_shl(dst_bits - src_bits)))
+}
+
+intrinsics! {
+ #[aapcs_on_arm]
+ #[arm_aeabi_alias = __aeabi_f2d]
+ pub extern "C" fn __extendsfdf2(a: f32) -> f64 {
+ extend(a)
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub extern "C" fn __extendsfdf2vfp(a: f32) -> f64 {
+ a as f64 // LLVM generate 'fcvtds'
+ }
+}
diff --git a/vendor/compiler_builtins/src/float/mod.rs b/vendor/compiler_builtins/src/float/mod.rs
new file mode 100644
index 000000000..01a5504d5
--- /dev/null
+++ b/vendor/compiler_builtins/src/float/mod.rs
@@ -0,0 +1,175 @@
+use core::ops;
+
+use super::int::Int;
+
+pub mod add;
+pub mod cmp;
+pub mod conv;
+pub mod div;
+pub mod extend;
+pub mod mul;
+pub mod pow;
+pub mod sub;
+pub mod trunc;
+
+public_test_dep! {
+/// Trait for some basic operations on floats
+pub(crate) trait Float:
+ Copy
+ + core::fmt::Debug
+ + PartialEq
+ + PartialOrd
+ + ops::AddAssign
+ + ops::MulAssign
+ + ops::Add<Output = Self>
+ + ops::Sub<Output = Self>
+ + ops::Div<Output = Self>
+ + ops::Rem<Output = Self>
+{
+ /// A uint of the same with as the float
+ type Int: Int;
+
+ /// A int of the same with as the float
+ type SignedInt: Int;
+
+ /// An int capable of containing the exponent bits plus a sign bit. This is signed.
+ type ExpInt: Int;
+
+ const ZERO: Self;
+ const ONE: Self;
+
+ /// The bitwidth of the float type
+ const BITS: u32;
+
+ /// The bitwidth of the significand
+ const SIGNIFICAND_BITS: u32;
+
+ /// The bitwidth of the exponent
+ const EXPONENT_BITS: u32 = Self::BITS - Self::SIGNIFICAND_BITS - 1;
+
+ /// The maximum value of the exponent
+ const EXPONENT_MAX: u32 = (1 << Self::EXPONENT_BITS) - 1;
+
+ /// The exponent bias value
+ const EXPONENT_BIAS: u32 = Self::EXPONENT_MAX >> 1;
+
+ /// A mask for the sign bit
+ const SIGN_MASK: Self::Int;
+
+ /// A mask for the significand
+ const SIGNIFICAND_MASK: Self::Int;
+
+ // The implicit bit of the float format
+ const IMPLICIT_BIT: Self::Int;
+
+ /// A mask for the exponent
+ const EXPONENT_MASK: Self::Int;
+
+ /// Returns `self` transmuted to `Self::Int`
+ fn repr(self) -> Self::Int;
+
+ /// Returns `self` transmuted to `Self::SignedInt`
+ fn signed_repr(self) -> Self::SignedInt;
+
+ /// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be
+ /// represented in multiple different ways. This method returns `true` if two NaNs are
+ /// compared.
+ fn eq_repr(self, rhs: Self) -> bool;
+
+ /// Returns the sign bit
+ fn sign(self) -> bool;
+
+ /// Returns the exponent with bias
+ fn exp(self) -> Self::ExpInt;
+
+ /// Returns the significand with no implicit bit (or the "fractional" part)
+ fn frac(self) -> Self::Int;
+
+ /// Returns the significand with implicit bit
+ fn imp_frac(self) -> Self::Int;
+
+ /// Returns a `Self::Int` transmuted back to `Self`
+ fn from_repr(a: Self::Int) -> Self;
+
+ /// Constructs a `Self` from its parts. Inputs are treated as bits and shifted into position.
+ fn from_parts(sign: bool, exponent: Self::Int, significand: Self::Int) -> Self;
+
+ /// Returns (normalized exponent, normalized significand)
+ fn normalize(significand: Self::Int) -> (i32, Self::Int);
+
+ /// Returns if `self` is subnormal
+ fn is_subnormal(self) -> bool;
+}
+}
+
+macro_rules! float_impl {
+ ($ty:ident, $ity:ident, $sity:ident, $expty:ident, $bits:expr, $significand_bits:expr) => {
+ impl Float for $ty {
+ type Int = $ity;
+ type SignedInt = $sity;
+ type ExpInt = $expty;
+
+ const ZERO: Self = 0.0;
+ const ONE: Self = 1.0;
+
+ const BITS: u32 = $bits;
+ const SIGNIFICAND_BITS: u32 = $significand_bits;
+
+ const SIGN_MASK: Self::Int = 1 << (Self::BITS - 1);
+ const SIGNIFICAND_MASK: Self::Int = (1 << Self::SIGNIFICAND_BITS) - 1;
+ const IMPLICIT_BIT: Self::Int = 1 << Self::SIGNIFICAND_BITS;
+ const EXPONENT_MASK: Self::Int = !(Self::SIGN_MASK | Self::SIGNIFICAND_MASK);
+
+ fn repr(self) -> Self::Int {
+ self.to_bits()
+ }
+ fn signed_repr(self) -> Self::SignedInt {
+ self.to_bits() as Self::SignedInt
+ }
+ fn eq_repr(self, rhs: Self) -> bool {
+ if self.is_nan() && rhs.is_nan() {
+ true
+ } else {
+ self.repr() == rhs.repr()
+ }
+ }
+ fn sign(self) -> bool {
+ self.signed_repr() < Self::SignedInt::ZERO
+ }
+ fn exp(self) -> Self::ExpInt {
+ ((self.to_bits() & Self::EXPONENT_MASK) >> Self::SIGNIFICAND_BITS) as Self::ExpInt
+ }
+ fn frac(self) -> Self::Int {
+ self.to_bits() & Self::SIGNIFICAND_MASK
+ }
+ fn imp_frac(self) -> Self::Int {
+ self.frac() | Self::IMPLICIT_BIT
+ }
+ fn from_repr(a: Self::Int) -> Self {
+ Self::from_bits(a)
+ }
+ fn from_parts(sign: bool, exponent: Self::Int, significand: Self::Int) -> Self {
+ Self::from_repr(
+ ((sign as Self::Int) << (Self::BITS - 1))
+ | ((exponent << Self::SIGNIFICAND_BITS) & Self::EXPONENT_MASK)
+ | (significand & Self::SIGNIFICAND_MASK),
+ )
+ }
+ fn normalize(significand: Self::Int) -> (i32, Self::Int) {
+ let shift = significand
+ .leading_zeros()
+ .wrapping_sub((Self::Int::ONE << Self::SIGNIFICAND_BITS).leading_zeros());
+ (
+ 1i32.wrapping_sub(shift as i32),
+ significand << shift as Self::Int,
+ )
+ }
+ fn is_subnormal(self) -> bool {
+ (self.repr() & Self::EXPONENT_MASK) == Self::Int::ZERO
+ }
+ }
+ };
+}
+
+float_impl!(f32, u32, i32, i16, 32, 23);
+float_impl!(f64, u64, i64, i16, 64, 52);
diff --git a/vendor/compiler_builtins/src/float/mul.rs b/vendor/compiler_builtins/src/float/mul.rs
new file mode 100644
index 000000000..c89f22756
--- /dev/null
+++ b/vendor/compiler_builtins/src/float/mul.rs
@@ -0,0 +1,209 @@
+use float::Float;
+use int::{CastInto, DInt, HInt, Int};
+
+fn mul<F: Float>(a: F, b: F) -> F
+where
+ u32: CastInto<F::Int>,
+ F::Int: CastInto<u32>,
+ i32: CastInto<F::Int>,
+ F::Int: CastInto<i32>,
+ F::Int: HInt,
+{
+ let one = F::Int::ONE;
+ let zero = F::Int::ZERO;
+
+ let bits = F::BITS;
+ let significand_bits = F::SIGNIFICAND_BITS;
+ let max_exponent = F::EXPONENT_MAX;
+
+ let exponent_bias = F::EXPONENT_BIAS;
+
+ let implicit_bit = F::IMPLICIT_BIT;
+ let significand_mask = F::SIGNIFICAND_MASK;
+ let sign_bit = F::SIGN_MASK as F::Int;
+ let abs_mask = sign_bit - one;
+ let exponent_mask = F::EXPONENT_MASK;
+ let inf_rep = exponent_mask;
+ let quiet_bit = implicit_bit >> 1;
+ let qnan_rep = exponent_mask | quiet_bit;
+ let exponent_bits = F::EXPONENT_BITS;
+
+ let a_rep = a.repr();
+ let b_rep = b.repr();
+
+ let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
+ let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
+ let product_sign = (a_rep ^ b_rep) & sign_bit;
+
+ let mut a_significand = a_rep & significand_mask;
+ let mut b_significand = b_rep & significand_mask;
+ let mut scale = 0;
+
+ // Detect if a or b is zero, denormal, infinity, or NaN.
+ if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
+ || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
+ {
+ let a_abs = a_rep & abs_mask;
+ let b_abs = b_rep & abs_mask;
+
+ // NaN + anything = qNaN
+ if a_abs > inf_rep {
+ return F::from_repr(a_rep | quiet_bit);
+ }
+ // anything + NaN = qNaN
+ if b_abs > inf_rep {
+ return F::from_repr(b_rep | quiet_bit);
+ }
+
+ if a_abs == inf_rep {
+ if b_abs != zero {
+ // infinity * non-zero = +/- infinity
+ return F::from_repr(a_abs | product_sign);
+ } else {
+ // infinity * zero = NaN
+ return F::from_repr(qnan_rep);
+ }
+ }
+
+ if b_abs == inf_rep {
+ if a_abs != zero {
+ // infinity * non-zero = +/- infinity
+ return F::from_repr(b_abs | product_sign);
+ } else {
+ // infinity * zero = NaN
+ return F::from_repr(qnan_rep);
+ }
+ }
+
+ // zero * anything = +/- zero
+ if a_abs == zero {
+ return F::from_repr(product_sign);
+ }
+
+ // anything * zero = +/- zero
+ if b_abs == zero {
+ return F::from_repr(product_sign);
+ }
+
+ // one or both of a or b is denormal, the other (if applicable) is a
+ // normal number. Renormalize one or both of a and b, and set scale to
+ // include the necessary exponent adjustment.
+ if a_abs < implicit_bit {
+ let (exponent, significand) = F::normalize(a_significand);
+ scale += exponent;
+ a_significand = significand;
+ }
+
+ if b_abs < implicit_bit {
+ let (exponent, significand) = F::normalize(b_significand);
+ scale += exponent;
+ b_significand = significand;
+ }
+ }
+
+ // Or in the implicit significand bit. (If we fell through from the
+ // denormal path it was already set by normalize( ), but setting it twice
+ // won't hurt anything.)
+ a_significand |= implicit_bit;
+ b_significand |= implicit_bit;
+
+ // Get the significand of a*b. Before multiplying the significands, shift
+ // one of them left to left-align it in the field. Thus, the product will
+ // have (exponentBits + 2) integral digits, all but two of which must be
+ // zero. Normalizing this result is just a conditional left-shift by one
+ // and bumping the exponent accordingly.
+ let (mut product_low, mut product_high) = a_significand
+ .widen_mul(b_significand << exponent_bits)
+ .lo_hi();
+
+ let a_exponent_i32: i32 = a_exponent.cast();
+ let b_exponent_i32: i32 = b_exponent.cast();
+ let mut product_exponent: i32 = a_exponent_i32
+ .wrapping_add(b_exponent_i32)
+ .wrapping_add(scale)
+ .wrapping_sub(exponent_bias as i32);
+
+ // Normalize the significand, adjust exponent if needed.
+ if (product_high & implicit_bit) != zero {
+ product_exponent = product_exponent.wrapping_add(1);
+ } else {
+ product_high = (product_high << 1) | (product_low >> (bits - 1));
+ product_low <<= 1;
+ }
+
+ // If we have overflowed the type, return +/- infinity.
+ if product_exponent >= max_exponent as i32 {
+ return F::from_repr(inf_rep | product_sign);
+ }
+
+ if product_exponent <= 0 {
+ // Result is denormal before rounding
+ //
+ // If the result is so small that it just underflows to zero, return
+ // a zero of the appropriate sign. Mathematically there is no need to
+ // handle this case separately, but we make it a special case to
+ // simplify the shift logic.
+ let shift = one.wrapping_sub(product_exponent.cast()).cast();
+ if shift >= bits {
+ return F::from_repr(product_sign);
+ }
+
+ // Otherwise, shift the significand of the result so that the round
+ // bit is the high bit of productLo.
+ if shift < bits {
+ let sticky = product_low << (bits - shift);
+ product_low = product_high << (bits - shift) | product_low >> shift | sticky;
+ product_high >>= shift;
+ } else if shift < (2 * bits) {
+ let sticky = product_high << (2 * bits - shift) | product_low;
+ product_low = product_high >> (shift - bits) | sticky;
+ product_high = zero;
+ } else {
+ product_high = zero;
+ }
+ } else {
+ // Result is normal before rounding; insert the exponent.
+ product_high &= significand_mask;
+ product_high |= product_exponent.cast() << significand_bits;
+ }
+
+ // Insert the sign of the result:
+ product_high |= product_sign;
+
+ // Final rounding. The final result may overflow to infinity, or underflow
+ // to zero, but those are the correct results in those cases. We use the
+ // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
+ if product_low > sign_bit {
+ product_high += one;
+ }
+
+ if product_low == sign_bit {
+ product_high += product_high & one;
+ }
+
+ F::from_repr(product_high)
+}
+
+intrinsics! {
+ #[aapcs_on_arm]
+ #[arm_aeabi_alias = __aeabi_fmul]
+ pub extern "C" fn __mulsf3(a: f32, b: f32) -> f32 {
+ mul(a, b)
+ }
+
+ #[aapcs_on_arm]
+ #[arm_aeabi_alias = __aeabi_dmul]
+ pub extern "C" fn __muldf3(a: f64, b: f64) -> f64 {
+ mul(a, b)
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub extern "C" fn __mulsf3vfp(a: f32, b: f32) -> f32 {
+ a * b
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub extern "C" fn __muldf3vfp(a: f64, b: f64) -> f64 {
+ a * b
+ }
+}
diff --git a/vendor/compiler_builtins/src/float/pow.rs b/vendor/compiler_builtins/src/float/pow.rs
new file mode 100644
index 000000000..a75340c30
--- /dev/null
+++ b/vendor/compiler_builtins/src/float/pow.rs
@@ -0,0 +1,36 @@
+use float::Float;
+use int::Int;
+
+/// Returns `a` raised to the power `b`
+fn pow<F: Float>(a: F, b: i32) -> F {
+ let mut a = a;
+ let recip = b < 0;
+ let mut pow = Int::abs_diff(b, 0);
+ let mut mul = F::ONE;
+ loop {
+ if (pow & 1) != 0 {
+ mul *= a;
+ }
+ pow >>= 1;
+ if pow == 0 {
+ break;
+ }
+ a *= a;
+ }
+
+ if recip {
+ F::ONE / mul
+ } else {
+ mul
+ }
+}
+
+intrinsics! {
+ pub extern "C" fn __powisf2(a: f32, b: i32) -> f32 {
+ pow(a, b)
+ }
+
+ pub extern "C" fn __powidf2(a: f64, b: i32) -> f64 {
+ pow(a, b)
+ }
+}
diff --git a/vendor/compiler_builtins/src/float/sub.rs b/vendor/compiler_builtins/src/float/sub.rs
new file mode 100644
index 000000000..8d300e9d2
--- /dev/null
+++ b/vendor/compiler_builtins/src/float/sub.rs
@@ -0,0 +1,25 @@
+use float::add::__adddf3;
+use float::add::__addsf3;
+use float::Float;
+
+intrinsics! {
+ #[arm_aeabi_alias = __aeabi_fsub]
+ pub extern "C" fn __subsf3(a: f32, b: f32) -> f32 {
+ __addsf3(a, f32::from_repr(b.repr() ^ f32::SIGN_MASK))
+ }
+
+ #[arm_aeabi_alias = __aeabi_dsub]
+ pub extern "C" fn __subdf3(a: f64, b: f64) -> f64 {
+ __adddf3(a, f64::from_repr(b.repr() ^ f64::SIGN_MASK))
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub extern "C" fn __subsf3vfp(a: f32, b: f32) -> f32 {
+ a - b
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub extern "C" fn __subdf3vfp(a: f64, b: f64) -> f64 {
+ a - b
+ }
+}
diff --git a/vendor/compiler_builtins/src/float/trunc.rs b/vendor/compiler_builtins/src/float/trunc.rs
new file mode 100644
index 000000000..d73713084
--- /dev/null
+++ b/vendor/compiler_builtins/src/float/trunc.rs
@@ -0,0 +1,125 @@
+use float::Float;
+use int::{CastInto, Int};
+
+fn trunc<F: Float, R: Float>(a: F) -> R
+where
+ F::Int: CastInto<u64>,
+ F::Int: CastInto<u32>,
+ u64: CastInto<F::Int>,
+ u32: CastInto<F::Int>,
+
+ R::Int: CastInto<u32>,
+ u32: CastInto<R::Int>,
+ F::Int: CastInto<R::Int>,
+{
+ let src_zero = F::Int::ZERO;
+ let src_one = F::Int::ONE;
+ let src_bits = F::BITS;
+ let src_exp_bias = F::EXPONENT_BIAS;
+
+ let src_min_normal = F::IMPLICIT_BIT;
+ let src_significand_mask = F::SIGNIFICAND_MASK;
+ let src_infinity = F::EXPONENT_MASK;
+ let src_sign_mask = F::SIGN_MASK;
+ let src_abs_mask = src_sign_mask - src_one;
+ let round_mask = (src_one << (F::SIGNIFICAND_BITS - R::SIGNIFICAND_BITS)) - src_one;
+ let halfway = src_one << (F::SIGNIFICAND_BITS - R::SIGNIFICAND_BITS - 1);
+ let src_qnan = src_one << (F::SIGNIFICAND_BITS - 1);
+ let src_nan_code = src_qnan - src_one;
+
+ let dst_zero = R::Int::ZERO;
+ let dst_one = R::Int::ONE;
+ let dst_bits = R::BITS;
+ let dst_inf_exp = R::EXPONENT_MAX;
+ let dst_exp_bias = R::EXPONENT_BIAS;
+
+ let underflow_exponent: F::Int = (src_exp_bias + 1 - dst_exp_bias).cast();
+ let overflow_exponent: F::Int = (src_exp_bias + dst_inf_exp - dst_exp_bias).cast();
+ let underflow: F::Int = underflow_exponent << F::SIGNIFICAND_BITS;
+ let overflow: F::Int = overflow_exponent << F::SIGNIFICAND_BITS;
+
+ let dst_qnan = R::Int::ONE << (R::SIGNIFICAND_BITS - 1);
+ let dst_nan_code = dst_qnan - dst_one;
+
+ let sign_bits_delta = F::SIGNIFICAND_BITS - R::SIGNIFICAND_BITS;
+ // Break a into a sign and representation of the absolute value.
+ let a_abs = a.repr() & src_abs_mask;
+ let sign = a.repr() & src_sign_mask;
+ let mut abs_result: R::Int;
+
+ if a_abs.wrapping_sub(underflow) < a_abs.wrapping_sub(overflow) {
+ // The exponent of a is within the range of normal numbers in the
+ // destination format. We can convert by simply right-shifting with
+ // rounding and adjusting the exponent.
+ abs_result = (a_abs >> sign_bits_delta).cast();
+ let tmp = src_exp_bias.wrapping_sub(dst_exp_bias) << R::SIGNIFICAND_BITS;
+ abs_result = abs_result.wrapping_sub(tmp.cast());
+
+ let round_bits = a_abs & round_mask;
+ if round_bits > halfway {
+ // Round to nearest.
+ abs_result += dst_one;
+ } else if round_bits == halfway {
+ // Tie to even.
+ abs_result += abs_result & dst_one;
+ };
+ } else if a_abs > src_infinity {
+ // a is NaN.
+ // Conjure the result by beginning with infinity, setting the qNaN
+ // bit and inserting the (truncated) trailing NaN field.
+ abs_result = (dst_inf_exp << R::SIGNIFICAND_BITS).cast();
+ abs_result |= dst_qnan;
+ abs_result |= dst_nan_code
+ & ((a_abs & src_nan_code) >> (F::SIGNIFICAND_BITS - R::SIGNIFICAND_BITS)).cast();
+ } else if a_abs >= overflow {
+ // a overflows to infinity.
+ abs_result = (dst_inf_exp << R::SIGNIFICAND_BITS).cast();
+ } else {
+ // a underflows on conversion to the destination type or is an exact
+ // zero. The result may be a denormal or zero. Extract the exponent
+ // to get the shift amount for the denormalization.
+ let a_exp: u32 = (a_abs >> F::SIGNIFICAND_BITS).cast();
+ let shift = src_exp_bias - dst_exp_bias - a_exp + 1;
+
+ let significand = (a.repr() & src_significand_mask) | src_min_normal;
+
+ // Right shift by the denormalization amount with sticky.
+ if shift > F::SIGNIFICAND_BITS {
+ abs_result = dst_zero;
+ } else {
+ let sticky = if (significand << (src_bits - shift)) != src_zero {
+ src_one
+ } else {
+ src_zero
+ };
+ let denormalized_significand: F::Int = significand >> shift | sticky;
+ abs_result =
+ (denormalized_significand >> (F::SIGNIFICAND_BITS - R::SIGNIFICAND_BITS)).cast();
+ let round_bits = denormalized_significand & round_mask;
+ // Round to nearest
+ if round_bits > halfway {
+ abs_result += dst_one;
+ }
+ // Ties to even
+ else if round_bits == halfway {
+ abs_result += abs_result & dst_one;
+ };
+ }
+ }
+
+ // Apply the signbit to the absolute value.
+ R::from_repr(abs_result | sign.wrapping_shr(src_bits - dst_bits).cast())
+}
+
+intrinsics! {
+ #[aapcs_on_arm]
+ #[arm_aeabi_alias = __aeabi_d2f]
+ pub extern "C" fn __truncdfsf2(a: f64) -> f32 {
+ trunc(a)
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub extern "C" fn __truncdfsf2vfp(a: f64) -> f32 {
+ a as f32
+ }
+}
diff --git a/vendor/compiler_builtins/src/int/addsub.rs b/vendor/compiler_builtins/src/int/addsub.rs
new file mode 100644
index 000000000..f4841e90f
--- /dev/null
+++ b/vendor/compiler_builtins/src/int/addsub.rs
@@ -0,0 +1,96 @@
+use int::{DInt, Int};
+
+trait UAddSub: DInt {
+ fn uadd(self, other: Self) -> Self {
+ let (lo, carry) = self.lo().overflowing_add(other.lo());
+ let hi = self.hi().wrapping_add(other.hi());
+ let carry = if carry { Self::H::ONE } else { Self::H::ZERO };
+ Self::from_lo_hi(lo, hi.wrapping_add(carry))
+ }
+ fn uadd_one(self) -> Self {
+ let (lo, carry) = self.lo().overflowing_add(Self::H::ONE);
+ let carry = if carry { Self::H::ONE } else { Self::H::ZERO };
+ Self::from_lo_hi(lo, self.hi().wrapping_add(carry))
+ }
+ fn usub(self, other: Self) -> Self {
+ let uneg = (!other).uadd_one();
+ self.uadd(uneg)
+ }
+}
+
+impl UAddSub for u128 {}
+
+trait AddSub: Int
+where
+ <Self as Int>::UnsignedInt: UAddSub,
+{
+ fn add(self, other: Self) -> Self {
+ Self::from_unsigned(self.unsigned().uadd(other.unsigned()))
+ }
+ fn sub(self, other: Self) -> Self {
+ Self::from_unsigned(self.unsigned().usub(other.unsigned()))
+ }
+}
+
+impl AddSub for u128 {}
+impl AddSub for i128 {}
+
+trait Addo: AddSub
+where
+ <Self as Int>::UnsignedInt: UAddSub,
+{
+ fn addo(self, other: Self) -> (Self, bool) {
+ let sum = AddSub::add(self, other);
+ (sum, (other < Self::ZERO) != (sum < self))
+ }
+}
+
+impl Addo for i128 {}
+impl Addo for u128 {}
+
+trait Subo: AddSub
+where
+ <Self as Int>::UnsignedInt: UAddSub,
+{
+ fn subo(self, other: Self) -> (Self, bool) {
+ let sum = AddSub::sub(self, other);
+ (sum, (other < Self::ZERO) != (self < sum))
+ }
+}
+
+impl Subo for i128 {}
+impl Subo for u128 {}
+
+intrinsics! {
+ pub extern "C" fn __rust_i128_add(a: i128, b: i128) -> i128 {
+ AddSub::add(a,b)
+ }
+
+ pub extern "C" fn __rust_i128_addo(a: i128, b: i128) -> (i128, bool) {
+ a.addo(b)
+ }
+
+ pub extern "C" fn __rust_u128_add(a: u128, b: u128) -> u128 {
+ AddSub::add(a,b)
+ }
+
+ pub extern "C" fn __rust_u128_addo(a: u128, b: u128) -> (u128, bool) {
+ a.addo(b)
+ }
+
+ pub extern "C" fn __rust_i128_sub(a: i128, b: i128) -> i128 {
+ AddSub::sub(a,b)
+ }
+
+ pub extern "C" fn __rust_i128_subo(a: i128, b: i128) -> (i128, bool) {
+ a.subo(b)
+ }
+
+ pub extern "C" fn __rust_u128_sub(a: u128, b: u128) -> u128 {
+ AddSub::sub(a,b)
+ }
+
+ pub extern "C" fn __rust_u128_subo(a: u128, b: u128) -> (u128, bool) {
+ a.subo(b)
+ }
+}
diff --git a/vendor/compiler_builtins/src/int/leading_zeros.rs b/vendor/compiler_builtins/src/int/leading_zeros.rs
new file mode 100644
index 000000000..9e60ab0d7
--- /dev/null
+++ b/vendor/compiler_builtins/src/int/leading_zeros.rs
@@ -0,0 +1,149 @@
+// Note: these functions happen to produce the correct `usize::leading_zeros(0)` value
+// without a explicit zero check. Zero is probably common enough that it could warrant
+// adding a zero check at the beginning, but `__clzsi2` has a precondition that `x != 0`.
+// Compilers will insert the check for zero in cases where it is needed.
+
+public_test_dep! {
+/// Returns the number of leading binary zeros in `x`.
+#[allow(dead_code)]
+pub(crate) fn usize_leading_zeros_default(x: usize) -> usize {
+ // The basic idea is to test if the higher bits of `x` are zero and bisect the number
+ // of leading zeros. It is possible for all branches of the bisection to use the same
+ // code path by conditionally shifting the higher parts down to let the next bisection
+ // step work on the higher or lower parts of `x`. Instead of starting with `z == 0`
+ // and adding to the number of zeros, it is slightly faster to start with
+ // `z == usize::MAX.count_ones()` and subtract from the potential number of zeros,
+ // because it simplifies the final bisection step.
+ let mut x = x;
+ // the number of potential leading zeros
+ let mut z = usize::MAX.count_ones() as usize;
+ // a temporary
+ let mut t: usize;
+ #[cfg(target_pointer_width = "64")]
+ {
+ t = x >> 32;
+ if t != 0 {
+ z -= 32;
+ x = t;
+ }
+ }
+ #[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
+ {
+ t = x >> 16;
+ if t != 0 {
+ z -= 16;
+ x = t;
+ }
+ }
+ t = x >> 8;
+ if t != 0 {
+ z -= 8;
+ x = t;
+ }
+ t = x >> 4;
+ if t != 0 {
+ z -= 4;
+ x = t;
+ }
+ t = x >> 2;
+ if t != 0 {
+ z -= 2;
+ x = t;
+ }
+ // the last two bisections are combined into one conditional
+ t = x >> 1;
+ if t != 0 {
+ z - 2
+ } else {
+ z - x
+ }
+
+ // We could potentially save a few cycles by using the LUT trick from
+ // "https://embeddedgurus.com/state-space/2014/09/
+ // fast-deterministic-and-portable-counting-leading-zeros/".
+ // However, 256 bytes for a LUT is too large for embedded use cases. We could remove
+ // the last 3 bisections and use this 16 byte LUT for the rest of the work:
+ //const LUT: [u8; 16] = [0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4];
+ //z -= LUT[x] as usize;
+ //z
+ // However, it ends up generating about the same number of instructions. When benchmarked
+ // on x86_64, it is slightly faster to use the LUT, but this is probably because of OOO
+ // execution effects. Changing to using a LUT and branching is risky for smaller cores.
+}
+}
+
+// The above method does not compile well on RISC-V (because of the lack of predicated
+// instructions), producing code with many branches or using an excessively long
+// branchless solution. This method takes advantage of the set-if-less-than instruction on
+// RISC-V that allows `(x >= power-of-two) as usize` to be branchless.
+
+public_test_dep! {
+/// Returns the number of leading binary zeros in `x`.
+#[allow(dead_code)]
+pub(crate) fn usize_leading_zeros_riscv(x: usize) -> usize {
+ let mut x = x;
+ // the number of potential leading zeros
+ let mut z = usize::MAX.count_ones() as usize;
+ // a temporary
+ let mut t: usize;
+
+ // RISC-V does not have a set-if-greater-than-or-equal instruction and
+ // `(x >= power-of-two) as usize` will get compiled into two instructions, but this is
+ // still the most optimal method. A conditional set can only be turned into a single
+ // immediate instruction if `x` is compared with an immediate `imm` (that can fit into
+ // 12 bits) like `x < imm` but not `imm < x` (because the immediate is always on the
+ // right). If we try to save an instruction by using `x < imm` for each bisection, we
+ // have to shift `x` left and compare with powers of two approaching `usize::MAX + 1`,
+ // but the immediate will never fit into 12 bits and never save an instruction.
+ #[cfg(target_pointer_width = "64")]
+ {
+ // If the upper 32 bits of `x` are not all 0, `t` is set to `1 << 5`, otherwise
+ // `t` is set to 0.
+ t = ((x >= (1 << 32)) as usize) << 5;
+ // If `t` was set to `1 << 5`, then the upper 32 bits are shifted down for the
+ // next step to process.
+ x >>= t;
+ // If `t` was set to `1 << 5`, then we subtract 32 from the number of potential
+ // leading zeros
+ z -= t;
+ }
+ #[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
+ {
+ t = ((x >= (1 << 16)) as usize) << 4;
+ x >>= t;
+ z -= t;
+ }
+ t = ((x >= (1 << 8)) as usize) << 3;
+ x >>= t;
+ z -= t;
+ t = ((x >= (1 << 4)) as usize) << 2;
+ x >>= t;
+ z -= t;
+ t = ((x >= (1 << 2)) as usize) << 1;
+ x >>= t;
+ z -= t;
+ t = (x >= (1 << 1)) as usize;
+ x >>= t;
+ z -= t;
+ // All bits except the LSB are guaranteed to be zero for this final bisection step.
+ // If `x != 0` then `x == 1` and subtracts one potential zero from `z`.
+ z - x
+}
+}
+
+intrinsics! {
+ #[maybe_use_optimized_c_shim]
+ #[cfg(any(
+ target_pointer_width = "16",
+ target_pointer_width = "32",
+ target_pointer_width = "64"
+ ))]
+ /// Returns the number of leading binary zeros in `x`.
+ pub extern "C" fn __clzsi2(x: usize) -> usize {
+ if cfg!(any(target_arch = "riscv32", target_arch = "riscv64")) {
+ usize_leading_zeros_riscv(x)
+ } else {
+ usize_leading_zeros_default(x)
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/src/int/mod.rs b/vendor/compiler_builtins/src/int/mod.rs
new file mode 100644
index 000000000..509f9fdae
--- /dev/null
+++ b/vendor/compiler_builtins/src/int/mod.rs
@@ -0,0 +1,390 @@
+use core::ops;
+
+mod specialized_div_rem;
+
+pub mod addsub;
+pub mod leading_zeros;
+pub mod mul;
+pub mod sdiv;
+pub mod shift;
+pub mod udiv;
+
+pub use self::leading_zeros::__clzsi2;
+
+public_test_dep! {
+/// Trait for some basic operations on integers
+pub(crate) trait Int:
+ Copy
+ + core::fmt::Debug
+ + PartialEq
+ + PartialOrd
+ + ops::AddAssign
+ + ops::SubAssign
+ + ops::BitAndAssign
+ + ops::BitOrAssign
+ + ops::BitXorAssign
+ + ops::ShlAssign<i32>
+ + ops::ShrAssign<u32>
+ + ops::Add<Output = Self>
+ + ops::Sub<Output = Self>
+ + ops::Div<Output = Self>
+ + ops::Shl<u32, Output = Self>
+ + ops::Shr<u32, Output = Self>
+ + ops::BitOr<Output = Self>
+ + ops::BitXor<Output = Self>
+ + ops::BitAnd<Output = Self>
+ + ops::Not<Output = Self>
+{
+ /// Type with the same width but other signedness
+ type OtherSign: Int;
+ /// Unsigned version of Self
+ type UnsignedInt: Int;
+
+ /// If `Self` is a signed integer
+ const SIGNED: bool;
+
+ /// The bitwidth of the int type
+ const BITS: u32;
+
+ const ZERO: Self;
+ const ONE: Self;
+ const MIN: Self;
+ const MAX: Self;
+
+ /// LUT used for maximizing the space covered and minimizing the computational cost of fuzzing
+ /// in `testcrate`. For example, Self = u128 produces [0,1,2,7,8,15,16,31,32,63,64,95,96,111,
+ /// 112,119,120,125,126,127].
+ const FUZZ_LENGTHS: [u8; 20];
+ /// The number of entries of `FUZZ_LENGTHS` actually used. The maximum is 20 for u128.
+ const FUZZ_NUM: usize;
+
+ fn unsigned(self) -> Self::UnsignedInt;
+ fn from_unsigned(unsigned: Self::UnsignedInt) -> Self;
+
+ fn from_bool(b: bool) -> Self;
+
+ /// Prevents the need for excessive conversions between signed and unsigned
+ fn logical_shr(self, other: u32) -> Self;
+
+ /// Absolute difference between two integers.
+ fn abs_diff(self, other: Self) -> Self::UnsignedInt;
+
+ // copied from primitive integers, but put in a trait
+ fn is_zero(self) -> bool;
+ fn wrapping_neg(self) -> Self;
+ fn wrapping_add(self, other: Self) -> Self;
+ fn wrapping_mul(self, other: Self) -> Self;
+ fn wrapping_sub(self, other: Self) -> Self;
+ fn wrapping_shl(self, other: u32) -> Self;
+ fn wrapping_shr(self, other: u32) -> Self;
+ fn rotate_left(self, other: u32) -> Self;
+ fn overflowing_add(self, other: Self) -> (Self, bool);
+ fn leading_zeros(self) -> u32;
+}
+}
+
+macro_rules! int_impl_common {
+ ($ty:ty) => {
+ const BITS: u32 = <Self as Int>::ZERO.count_zeros();
+ const SIGNED: bool = Self::MIN != Self::ZERO;
+
+ const ZERO: Self = 0;
+ const ONE: Self = 1;
+ const MIN: Self = <Self>::MIN;
+ const MAX: Self = <Self>::MAX;
+
+ const FUZZ_LENGTHS: [u8; 20] = {
+ let bits = <Self as Int>::BITS;
+ let mut v = [0u8; 20];
+ v[0] = 0;
+ v[1] = 1;
+ v[2] = 2; // important for parity and the iX::MIN case when reversed
+ let mut i = 3;
+ // No need for any more until the byte boundary, because there should be no algorithms
+ // that are sensitive to anything not next to byte boundaries after 2. We also scale
+ // in powers of two, which is important to prevent u128 corner tests from getting too
+ // big.
+ let mut l = 8;
+ loop {
+ if l >= ((bits / 2) as u8) {
+ break;
+ }
+ // get both sides of the byte boundary
+ v[i] = l - 1;
+ i += 1;
+ v[i] = l;
+ i += 1;
+ l *= 2;
+ }
+
+ if bits != 8 {
+ // add the lower side of the middle boundary
+ v[i] = ((bits / 2) - 1) as u8;
+ i += 1;
+ }
+
+ // We do not want to jump directly from the Self::BITS/2 boundary to the Self::BITS
+ // boundary because of algorithms that split the high part up. We reverse the scaling
+ // as we go to Self::BITS.
+ let mid = i;
+ let mut j = 1;
+ loop {
+ v[i] = (bits as u8) - (v[mid - j]) - 1;
+ if j == mid {
+ break;
+ }
+ i += 1;
+ j += 1;
+ }
+ v
+ };
+
+ const FUZZ_NUM: usize = {
+ let log2 = (<Self as Int>::BITS - 1).count_ones() as usize;
+ if log2 == 3 {
+ // case for u8
+ 6
+ } else {
+ // 3 entries on each extreme, 2 in the middle, and 4 for each scale of intermediate
+ // boundaries.
+ 8 + (4 * (log2 - 4))
+ }
+ };
+
+ fn from_bool(b: bool) -> Self {
+ b as $ty
+ }
+
+ fn logical_shr(self, other: u32) -> Self {
+ Self::from_unsigned(self.unsigned().wrapping_shr(other))
+ }
+
+ fn is_zero(self) -> bool {
+ self == Self::ZERO
+ }
+
+ fn wrapping_neg(self) -> Self {
+ <Self>::wrapping_neg(self)
+ }
+
+ fn wrapping_add(self, other: Self) -> Self {
+ <Self>::wrapping_add(self, other)
+ }
+
+ fn wrapping_mul(self, other: Self) -> Self {
+ <Self>::wrapping_mul(self, other)
+ }
+
+ fn wrapping_sub(self, other: Self) -> Self {
+ <Self>::wrapping_sub(self, other)
+ }
+
+ fn wrapping_shl(self, other: u32) -> Self {
+ <Self>::wrapping_shl(self, other)
+ }
+
+ fn wrapping_shr(self, other: u32) -> Self {
+ <Self>::wrapping_shr(self, other)
+ }
+
+ fn rotate_left(self, other: u32) -> Self {
+ <Self>::rotate_left(self, other)
+ }
+
+ fn overflowing_add(self, other: Self) -> (Self, bool) {
+ <Self>::overflowing_add(self, other)
+ }
+
+ fn leading_zeros(self) -> u32 {
+ <Self>::leading_zeros(self)
+ }
+ };
+}
+
+macro_rules! int_impl {
+ ($ity:ty, $uty:ty) => {
+ impl Int for $uty {
+ type OtherSign = $ity;
+ type UnsignedInt = $uty;
+
+ fn unsigned(self) -> $uty {
+ self
+ }
+
+ // It makes writing macros easier if this is implemented for both signed and unsigned
+ #[allow(clippy::wrong_self_convention)]
+ fn from_unsigned(me: $uty) -> Self {
+ me
+ }
+
+ fn abs_diff(self, other: Self) -> Self {
+ if self < other {
+ other.wrapping_sub(self)
+ } else {
+ self.wrapping_sub(other)
+ }
+ }
+
+ int_impl_common!($uty);
+ }
+
+ impl Int for $ity {
+ type OtherSign = $uty;
+ type UnsignedInt = $uty;
+
+ fn unsigned(self) -> $uty {
+ self as $uty
+ }
+
+ fn from_unsigned(me: $uty) -> Self {
+ me as $ity
+ }
+
+ fn abs_diff(self, other: Self) -> $uty {
+ self.wrapping_sub(other).wrapping_abs() as $uty
+ }
+
+ int_impl_common!($ity);
+ }
+ };
+}
+
+int_impl!(isize, usize);
+int_impl!(i8, u8);
+int_impl!(i16, u16);
+int_impl!(i32, u32);
+int_impl!(i64, u64);
+int_impl!(i128, u128);
+
+public_test_dep! {
+/// Trait for integers twice the bit width of another integer. This is implemented for all
+/// primitives except for `u8`, because there is not a smaller primitive.
+pub(crate) trait DInt: Int {
+ /// Integer that is half the bit width of the integer this trait is implemented for
+ type H: HInt<D = Self> + Int;
+
+ /// Returns the low half of `self`
+ fn lo(self) -> Self::H;
+ /// Returns the high half of `self`
+ fn hi(self) -> Self::H;
+ /// Returns the low and high halves of `self` as a tuple
+ fn lo_hi(self) -> (Self::H, Self::H);
+ /// Constructs an integer using lower and higher half parts
+ fn from_lo_hi(lo: Self::H, hi: Self::H) -> Self;
+}
+}
+
+public_test_dep! {
+/// Trait for integers half the bit width of another integer. This is implemented for all
+/// primitives except for `u128`, because it there is not a larger primitive.
+pub(crate) trait HInt: Int {
+ /// Integer that is double the bit width of the integer this trait is implemented for
+ type D: DInt<H = Self> + Int;
+
+ /// Widens (using default extension) the integer to have double bit width
+ fn widen(self) -> Self::D;
+ /// Widens (zero extension only) the integer to have double bit width. This is needed to get
+ /// around problems with associated type bounds (such as `Int<Othersign: DInt>`) being unstable
+ fn zero_widen(self) -> Self::D;
+ /// Widens the integer to have double bit width and shifts the integer into the higher bits
+ fn widen_hi(self) -> Self::D;
+ /// Widening multiplication with zero widening. This cannot overflow.
+ fn zero_widen_mul(self, rhs: Self) -> Self::D;
+ /// Widening multiplication. This cannot overflow.
+ fn widen_mul(self, rhs: Self) -> Self::D;
+}
+}
+
+macro_rules! impl_d_int {
+ ($($X:ident $D:ident),*) => {
+ $(
+ impl DInt for $D {
+ type H = $X;
+
+ fn lo(self) -> Self::H {
+ self as $X
+ }
+ fn hi(self) -> Self::H {
+ (self >> <$X as Int>::BITS) as $X
+ }
+ fn lo_hi(self) -> (Self::H, Self::H) {
+ (self.lo(), self.hi())
+ }
+ fn from_lo_hi(lo: Self::H, hi: Self::H) -> Self {
+ lo.zero_widen() | hi.widen_hi()
+ }
+ }
+ )*
+ };
+}
+
+macro_rules! impl_h_int {
+ ($($H:ident $uH:ident $X:ident),*) => {
+ $(
+ impl HInt for $H {
+ type D = $X;
+
+ fn widen(self) -> Self::D {
+ self as $X
+ }
+ fn zero_widen(self) -> Self::D {
+ (self as $uH) as $X
+ }
+ fn widen_hi(self) -> Self::D {
+ (self as $X) << <$H as Int>::BITS
+ }
+ fn zero_widen_mul(self, rhs: Self) -> Self::D {
+ self.zero_widen().wrapping_mul(rhs.zero_widen())
+ }
+ fn widen_mul(self, rhs: Self) -> Self::D {
+ self.widen().wrapping_mul(rhs.widen())
+ }
+ }
+ )*
+ };
+}
+
+impl_d_int!(u8 u16, u16 u32, u32 u64, u64 u128, i8 i16, i16 i32, i32 i64, i64 i128);
+impl_h_int!(
+ u8 u8 u16,
+ u16 u16 u32,
+ u32 u32 u64,
+ u64 u64 u128,
+ i8 u8 i16,
+ i16 u16 i32,
+ i32 u32 i64,
+ i64 u64 i128
+);
+
+public_test_dep! {
+/// Trait to express (possibly lossy) casting of integers
+pub(crate) trait CastInto<T: Copy>: Copy {
+ fn cast(self) -> T;
+}
+}
+
+macro_rules! cast_into {
+ ($ty:ty) => {
+ cast_into!($ty; usize, isize, u8, i8, u16, i16, u32, i32, u64, i64, u128, i128);
+ };
+ ($ty:ty; $($into:ty),*) => {$(
+ impl CastInto<$into> for $ty {
+ fn cast(self) -> $into {
+ self as $into
+ }
+ }
+ )*};
+}
+
+cast_into!(usize);
+cast_into!(isize);
+cast_into!(u8);
+cast_into!(i8);
+cast_into!(u16);
+cast_into!(i16);
+cast_into!(u32);
+cast_into!(i32);
+cast_into!(u64);
+cast_into!(i64);
+cast_into!(u128);
+cast_into!(i128);
diff --git a/vendor/compiler_builtins/src/int/mul.rs b/vendor/compiler_builtins/src/int/mul.rs
new file mode 100644
index 000000000..07ce061c9
--- /dev/null
+++ b/vendor/compiler_builtins/src/int/mul.rs
@@ -0,0 +1,138 @@
+use int::{DInt, HInt, Int};
+
+trait Mul: DInt
+where
+ Self::H: DInt,
+{
+ fn mul(self, rhs: Self) -> Self {
+ // In order to prevent infinite recursion, we cannot use the `widen_mul` in this:
+ //self.lo().widen_mul(rhs.lo())
+ // .wrapping_add(self.lo().wrapping_mul(rhs.hi()).widen_hi())
+ // .wrapping_add(self.hi().wrapping_mul(rhs.lo()).widen_hi())
+
+ let lhs_lo = self.lo();
+ let rhs_lo = rhs.lo();
+ // construct the widening multiplication using only `Self::H` sized multiplications
+ let tmp_0 = lhs_lo.lo().zero_widen_mul(rhs_lo.lo());
+ let tmp_1 = lhs_lo.lo().zero_widen_mul(rhs_lo.hi());
+ let tmp_2 = lhs_lo.hi().zero_widen_mul(rhs_lo.lo());
+ let tmp_3 = lhs_lo.hi().zero_widen_mul(rhs_lo.hi());
+ // sum up all widening partials
+ let mul = Self::from_lo_hi(tmp_0, tmp_3)
+ .wrapping_add(tmp_1.zero_widen() << (Self::BITS / 4))
+ .wrapping_add(tmp_2.zero_widen() << (Self::BITS / 4));
+ // add the higher partials
+ mul.wrapping_add(lhs_lo.wrapping_mul(rhs.hi()).widen_hi())
+ .wrapping_add(self.hi().wrapping_mul(rhs_lo).widen_hi())
+ }
+}
+
+impl Mul for u64 {}
+impl Mul for i128 {}
+
+pub(crate) trait UMulo: Int + DInt {
+ fn mulo(self, rhs: Self) -> (Self, bool) {
+ match (self.hi().is_zero(), rhs.hi().is_zero()) {
+ // overflow is guaranteed
+ (false, false) => (self.wrapping_mul(rhs), true),
+ (true, false) => {
+ let mul_lo = self.lo().widen_mul(rhs.lo());
+ let mul_hi = self.lo().widen_mul(rhs.hi());
+ let (mul, o) = mul_lo.overflowing_add(mul_hi.lo().widen_hi());
+ (mul, o || !mul_hi.hi().is_zero())
+ }
+ (false, true) => {
+ let mul_lo = rhs.lo().widen_mul(self.lo());
+ let mul_hi = rhs.lo().widen_mul(self.hi());
+ let (mul, o) = mul_lo.overflowing_add(mul_hi.lo().widen_hi());
+ (mul, o || !mul_hi.hi().is_zero())
+ }
+ // overflow is guaranteed to not happen, and use a smaller widening multiplication
+ (true, true) => (self.lo().widen_mul(rhs.lo()), false),
+ }
+ }
+}
+
+impl UMulo for u32 {}
+impl UMulo for u64 {}
+impl UMulo for u128 {}
+
+macro_rules! impl_signed_mulo {
+ ($fn:ident, $iD:ident, $uD:ident) => {
+ fn $fn(lhs: $iD, rhs: $iD) -> ($iD, bool) {
+ let mut lhs = lhs;
+ let mut rhs = rhs;
+ // the test against `mul_neg` below fails without this early return
+ if lhs == 0 || rhs == 0 {
+ return (0, false);
+ }
+
+ let lhs_neg = lhs < 0;
+ let rhs_neg = rhs < 0;
+ if lhs_neg {
+ lhs = lhs.wrapping_neg();
+ }
+ if rhs_neg {
+ rhs = rhs.wrapping_neg();
+ }
+ let mul_neg = lhs_neg != rhs_neg;
+
+ let (mul, o) = (lhs as $uD).mulo(rhs as $uD);
+ let mut mul = mul as $iD;
+
+ if mul_neg {
+ mul = mul.wrapping_neg();
+ }
+ if (mul < 0) != mul_neg {
+ // this one check happens to catch all edge cases related to `$iD::MIN`
+ (mul, true)
+ } else {
+ (mul, o)
+ }
+ }
+ };
+}
+
+impl_signed_mulo!(i32_overflowing_mul, i32, u32);
+impl_signed_mulo!(i64_overflowing_mul, i64, u64);
+impl_signed_mulo!(i128_overflowing_mul, i128, u128);
+
+intrinsics! {
+ #[maybe_use_optimized_c_shim]
+ #[arm_aeabi_alias = __aeabi_lmul]
+ #[cfg(any(not(any(target_arch = "riscv32", target_arch = "riscv64")), target_feature = "m"))]
+ pub extern "C" fn __muldi3(a: u64, b: u64) -> u64 {
+ a.mul(b)
+ }
+
+ pub extern "C" fn __multi3(a: i128, b: i128) -> i128 {
+ a.mul(b)
+ }
+
+ pub extern "C" fn __mulosi4(a: i32, b: i32, oflow: &mut i32) -> i32 {
+ let (mul, o) = i32_overflowing_mul(a, b);
+ *oflow = o as i32;
+ mul
+ }
+
+ pub extern "C" fn __mulodi4(a: i64, b: i64, oflow: &mut i32) -> i64 {
+ let (mul, o) = i64_overflowing_mul(a, b);
+ *oflow = o as i32;
+ mul
+ }
+
+ #[unadjusted_on_win64]
+ pub extern "C" fn __muloti4(a: i128, b: i128, oflow: &mut i32) -> i128 {
+ let (mul, o) = i128_overflowing_mul(a, b);
+ *oflow = o as i32;
+ mul
+ }
+
+ pub extern "C" fn __rust_i128_mulo(a: i128, b: i128) -> (i128, bool) {
+ i128_overflowing_mul(a, b)
+ }
+
+ pub extern "C" fn __rust_u128_mulo(a: u128, b: u128) -> (u128, bool) {
+ a.mulo(b)
+ }
+}
diff --git a/vendor/compiler_builtins/src/int/sdiv.rs b/vendor/compiler_builtins/src/int/sdiv.rs
new file mode 100644
index 000000000..f1822f0f8
--- /dev/null
+++ b/vendor/compiler_builtins/src/int/sdiv.rs
@@ -0,0 +1,169 @@
+use int::udiv::*;
+
+macro_rules! sdivmod {
+ (
+ $unsigned_fn:ident, // name of the unsigned division function
+ $signed_fn:ident, // name of the signed division function
+ $uX:ident, // unsigned integer type for the inputs and outputs of `$unsigned_name`
+ $iX:ident, // signed integer type for the inputs and outputs of `$signed_name`
+ $($attr:tt),* // attributes
+ ) => {
+ intrinsics! {
+ #[avr_skip]
+ $(
+ #[$attr]
+ )*
+ /// Returns `n / d` and sets `*rem = n % d`
+ pub extern "C" fn $signed_fn(a: $iX, b: $iX, rem: &mut $iX) -> $iX {
+ let a_neg = a < 0;
+ let b_neg = b < 0;
+ let mut a = a;
+ let mut b = b;
+ if a_neg {
+ a = a.wrapping_neg();
+ }
+ if b_neg {
+ b = b.wrapping_neg();
+ }
+ let mut r = *rem as $uX;
+ let t = $unsigned_fn(a as $uX, b as $uX, Some(&mut r)) as $iX;
+ let mut r = r as $iX;
+ if a_neg {
+ r = r.wrapping_neg();
+ }
+ *rem = r;
+ if a_neg != b_neg {
+ t.wrapping_neg()
+ } else {
+ t
+ }
+ }
+ }
+ }
+}
+
+macro_rules! sdiv {
+ (
+ $unsigned_fn:ident, // name of the unsigned division function
+ $signed_fn:ident, // name of the signed division function
+ $uX:ident, // unsigned integer type for the inputs and outputs of `$unsigned_name`
+ $iX:ident, // signed integer type for the inputs and outputs of `$signed_name`
+ $($attr:tt),* // attributes
+ ) => {
+ intrinsics! {
+ #[avr_skip]
+ $(
+ #[$attr]
+ )*
+ /// Returns `n / d`
+ pub extern "C" fn $signed_fn(a: $iX, b: $iX) -> $iX {
+ let a_neg = a < 0;
+ let b_neg = b < 0;
+ let mut a = a;
+ let mut b = b;
+ if a_neg {
+ a = a.wrapping_neg();
+ }
+ if b_neg {
+ b = b.wrapping_neg();
+ }
+ let t = $unsigned_fn(a as $uX, b as $uX) as $iX;
+ if a_neg != b_neg {
+ t.wrapping_neg()
+ } else {
+ t
+ }
+ }
+ }
+ }
+}
+
+macro_rules! smod {
+ (
+ $unsigned_fn:ident, // name of the unsigned division function
+ $signed_fn:ident, // name of the signed division function
+ $uX:ident, // unsigned integer type for the inputs and outputs of `$unsigned_name`
+ $iX:ident, // signed integer type for the inputs and outputs of `$signed_name`
+ $($attr:tt),* // attributes
+ ) => {
+ intrinsics! {
+ #[avr_skip]
+ $(
+ #[$attr]
+ )*
+ /// Returns `n % d`
+ pub extern "C" fn $signed_fn(a: $iX, b: $iX) -> $iX {
+ let a_neg = a < 0;
+ let b_neg = b < 0;
+ let mut a = a;
+ let mut b = b;
+ if a_neg {
+ a = a.wrapping_neg();
+ }
+ if b_neg {
+ b = b.wrapping_neg();
+ }
+ let r = $unsigned_fn(a as $uX, b as $uX) as $iX;
+ if a_neg {
+ r.wrapping_neg()
+ } else {
+ r
+ }
+ }
+ }
+ }
+}
+
+sdivmod!(
+ __udivmodsi4,
+ __divmodsi4,
+ u32,
+ i32,
+ maybe_use_optimized_c_shim
+);
+// The `#[arm_aeabi_alias = __aeabi_idiv]` attribute cannot be made to work with `intrinsics!` in macros
+intrinsics! {
+ #[maybe_use_optimized_c_shim]
+ #[arm_aeabi_alias = __aeabi_idiv]
+ /// Returns `n / d`
+ pub extern "C" fn __divsi3(a: i32, b: i32) -> i32 {
+ let a_neg = a < 0;
+ let b_neg = b < 0;
+ let mut a = a;
+ let mut b = b;
+ if a_neg {
+ a = a.wrapping_neg();
+ }
+ if b_neg {
+ b = b.wrapping_neg();
+ }
+ let t = __udivsi3(a as u32, b as u32) as i32;
+ if a_neg != b_neg {
+ t.wrapping_neg()
+ } else {
+ t
+ }
+ }
+}
+smod!(__umodsi3, __modsi3, u32, i32, maybe_use_optimized_c_shim);
+
+sdivmod!(
+ __udivmoddi4,
+ __divmoddi4,
+ u64,
+ i64,
+ maybe_use_optimized_c_shim
+);
+sdiv!(__udivdi3, __divdi3, u64, i64, maybe_use_optimized_c_shim);
+smod!(__umoddi3, __moddi3, u64, i64, maybe_use_optimized_c_shim);
+
+// LLVM does not currently have a `__divmodti4` function, but GCC does
+sdivmod!(
+ __udivmodti4,
+ __divmodti4,
+ u128,
+ i128,
+ maybe_use_optimized_c_shim
+);
+sdiv!(__udivti3, __divti3, u128, i128, win64_128bit_abi_hack);
+smod!(__umodti3, __modti3, u128, i128, win64_128bit_abi_hack);
diff --git a/vendor/compiler_builtins/src/int/shift.rs b/vendor/compiler_builtins/src/int/shift.rs
new file mode 100644
index 000000000..908e619e1
--- /dev/null
+++ b/vendor/compiler_builtins/src/int/shift.rs
@@ -0,0 +1,116 @@
+use int::{DInt, HInt, Int};
+
+trait Ashl: DInt {
+ /// Returns `a << b`, requires `b < Self::BITS`
+ fn ashl(self, shl: u32) -> Self {
+ let n_h = Self::H::BITS;
+ if shl & n_h != 0 {
+ // we only need `self.lo()` because `self.hi()` will be shifted out entirely
+ self.lo().wrapping_shl(shl - n_h).widen_hi()
+ } else if shl == 0 {
+ self
+ } else {
+ Self::from_lo_hi(
+ self.lo().wrapping_shl(shl),
+ self.lo().logical_shr(n_h - shl) | self.hi().wrapping_shl(shl),
+ )
+ }
+ }
+}
+
+impl Ashl for u32 {}
+impl Ashl for u64 {}
+impl Ashl for u128 {}
+
+trait Ashr: DInt {
+ /// Returns arithmetic `a >> b`, requires `b < Self::BITS`
+ fn ashr(self, shr: u32) -> Self {
+ let n_h = Self::H::BITS;
+ if shr & n_h != 0 {
+ Self::from_lo_hi(
+ self.hi().wrapping_shr(shr - n_h),
+ // smear the sign bit
+ self.hi().wrapping_shr(n_h - 1),
+ )
+ } else if shr == 0 {
+ self
+ } else {
+ Self::from_lo_hi(
+ self.lo().logical_shr(shr) | self.hi().wrapping_shl(n_h - shr),
+ self.hi().wrapping_shr(shr),
+ )
+ }
+ }
+}
+
+impl Ashr for i32 {}
+impl Ashr for i64 {}
+impl Ashr for i128 {}
+
+trait Lshr: DInt {
+ /// Returns logical `a >> b`, requires `b < Self::BITS`
+ fn lshr(self, shr: u32) -> Self {
+ let n_h = Self::H::BITS;
+ if shr & n_h != 0 {
+ self.hi().logical_shr(shr - n_h).zero_widen()
+ } else if shr == 0 {
+ self
+ } else {
+ Self::from_lo_hi(
+ self.lo().logical_shr(shr) | self.hi().wrapping_shl(n_h - shr),
+ self.hi().logical_shr(shr),
+ )
+ }
+ }
+}
+
+impl Lshr for u32 {}
+impl Lshr for u64 {}
+impl Lshr for u128 {}
+
+intrinsics! {
+ #[maybe_use_optimized_c_shim]
+ pub extern "C" fn __ashlsi3(a: u32, b: u32) -> u32 {
+ a.ashl(b)
+ }
+
+ #[maybe_use_optimized_c_shim]
+ #[arm_aeabi_alias = __aeabi_llsl]
+ pub extern "C" fn __ashldi3(a: u64, b: u32) -> u64 {
+ a.ashl(b)
+ }
+
+ pub extern "C" fn __ashlti3(a: u128, b: u32) -> u128 {
+ a.ashl(b)
+ }
+
+ #[maybe_use_optimized_c_shim]
+ pub extern "C" fn __ashrsi3(a: i32, b: u32) -> i32 {
+ a.ashr(b)
+ }
+
+ #[maybe_use_optimized_c_shim]
+ #[arm_aeabi_alias = __aeabi_lasr]
+ pub extern "C" fn __ashrdi3(a: i64, b: u32) -> i64 {
+ a.ashr(b)
+ }
+
+ pub extern "C" fn __ashrti3(a: i128, b: u32) -> i128 {
+ a.ashr(b)
+ }
+
+ #[maybe_use_optimized_c_shim]
+ pub extern "C" fn __lshrsi3(a: u32, b: u32) -> u32 {
+ a.lshr(b)
+ }
+
+ #[maybe_use_optimized_c_shim]
+ #[arm_aeabi_alias = __aeabi_llsr]
+ pub extern "C" fn __lshrdi3(a: u64, b: u32) -> u64 {
+ a.lshr(b)
+ }
+
+ pub extern "C" fn __lshrti3(a: u128, b: u32) -> u128 {
+ a.lshr(b)
+ }
+}
diff --git a/vendor/compiler_builtins/src/int/specialized_div_rem/asymmetric.rs b/vendor/compiler_builtins/src/int/specialized_div_rem/asymmetric.rs
new file mode 100644
index 000000000..56ce188a3
--- /dev/null
+++ b/vendor/compiler_builtins/src/int/specialized_div_rem/asymmetric.rs
@@ -0,0 +1,69 @@
+/// Creates an unsigned division function optimized for dividing integers with the same
+/// bitwidth as the largest operand in an asymmetrically sized division. For example, x86-64 has an
+/// assembly instruction that can divide a 128 bit integer by a 64 bit integer if the quotient fits
+/// in 64 bits. The 128 bit version of this algorithm would use that fast hardware division to
+/// construct a full 128 bit by 128 bit division.
+#[allow(unused_macros)]
+macro_rules! impl_asymmetric {
+ (
+ $fn:ident, // name of the unsigned division function
+ $zero_div_fn:ident, // function called when division by zero is attempted
+ $half_division:ident, // function for division of a $uX by a $uX
+ $asymmetric_division:ident, // function for division of a $uD by a $uX
+ $n_h:expr, // the number of bits in a $iH or $uH
+ $uH:ident, // unsigned integer with half the bit width of $uX
+ $uX:ident, // unsigned integer with half the bit width of $uD
+ $uD:ident // unsigned integer type for the inputs and outputs of `$fn`
+ ) => {
+ /// Computes the quotient and remainder of `duo` divided by `div` and returns them as a
+ /// tuple.
+ pub fn $fn(duo: $uD, div: $uD) -> ($uD, $uD) {
+ let n: u32 = $n_h * 2;
+
+ let duo_lo = duo as $uX;
+ let duo_hi = (duo >> n) as $uX;
+ let div_lo = div as $uX;
+ let div_hi = (div >> n) as $uX;
+ if div_hi == 0 {
+ if div_lo == 0 {
+ $zero_div_fn()
+ }
+ if duo_hi < div_lo {
+ // `$uD` by `$uX` division with a quotient that will fit into a `$uX`
+ let (quo, rem) = unsafe { $asymmetric_division(duo, div_lo) };
+ return (quo as $uD, rem as $uD);
+ } else {
+ // Short division using the $uD by $uX division
+ let (quo_hi, rem_hi) = $half_division(duo_hi, div_lo);
+ let tmp = unsafe {
+ $asymmetric_division((duo_lo as $uD) | ((rem_hi as $uD) << n), div_lo)
+ };
+ return ((tmp.0 as $uD) | ((quo_hi as $uD) << n), tmp.1 as $uD);
+ }
+ }
+
+ // This has been adapted from
+ // https://www.codeproject.com/tips/785014/uint-division-modulus which was in turn
+ // adapted from Hacker's Delight. This is similar to the two possibility algorithm
+ // in that it uses only more significant parts of `duo` and `div` to divide a large
+ // integer with a smaller division instruction.
+ let div_lz = div_hi.leading_zeros();
+ let div_extra = n - div_lz;
+ let div_sig_n = (div >> div_extra) as $uX;
+ let tmp = unsafe { $asymmetric_division(duo >> 1, div_sig_n) };
+
+ let mut quo = tmp.0 >> ((n - 1) - div_lz);
+ if quo != 0 {
+ quo -= 1;
+ }
+
+ // Note that this is a full `$uD` multiplication being used here
+ let mut rem = duo - (quo as $uD).wrapping_mul(div);
+ if div <= rem {
+ quo += 1;
+ rem -= div;
+ }
+ return (quo as $uD, rem);
+ }
+ };
+}
diff --git a/vendor/compiler_builtins/src/int/specialized_div_rem/binary_long.rs b/vendor/compiler_builtins/src/int/specialized_div_rem/binary_long.rs
new file mode 100644
index 000000000..0d7822882
--- /dev/null
+++ b/vendor/compiler_builtins/src/int/specialized_div_rem/binary_long.rs
@@ -0,0 +1,548 @@
+/// Creates an unsigned division function that uses binary long division, designed for
+/// computer architectures without division instructions. These functions have good performance for
+/// microarchitectures with large branch miss penalties and architectures without the ability to
+/// predicate instructions. For architectures with predicated instructions, one of the algorithms
+/// described in the documentation of these functions probably has higher performance, and a custom
+/// assembly routine should be used instead.
+#[allow(unused_macros)]
+macro_rules! impl_binary_long {
+ (
+ $fn:ident, // name of the unsigned division function
+ $zero_div_fn:ident, // function called when division by zero is attempted
+ $normalization_shift:ident, // function for finding the normalization shift
+ $n:tt, // the number of bits in a $iX or $uX
+ $uX:ident, // unsigned integer type for the inputs and outputs of `$fn`
+ $iX:ident // signed integer type with same bitwidth as `$uX`
+ ) => {
+ /// Computes the quotient and remainder of `duo` divided by `div` and returns them as a
+ /// tuple.
+ pub fn $fn(duo: $uX, div: $uX) -> ($uX, $uX) {
+ let mut duo = duo;
+ // handle edge cases before calling `$normalization_shift`
+ if div == 0 {
+ $zero_div_fn()
+ }
+ if duo < div {
+ return (0, duo);
+ }
+
+ // There are many variations of binary division algorithm that could be used. This
+ // documentation gives a tour of different methods so that future readers wanting to
+ // optimize further do not have to painstakingly derive them. The SWAR variation is
+ // especially hard to understand without reading the less convoluted methods first.
+
+ // You may notice that a `duo < div_original` check is included in many these
+ // algorithms. A critical optimization that many algorithms miss is handling of
+ // quotients that will turn out to have many trailing zeros or many leading zeros. This
+ // happens in cases of exact or close-to-exact divisions, divisions by power of two, and
+ // in cases where the quotient is small. The `duo < div_original` check handles these
+ // cases of early returns and ends up replacing other kinds of mundane checks that
+ // normally terminate a binary division algorithm.
+ //
+ // Something you may see in other algorithms that is not special-cased here is checks
+ // for division by powers of two. The `duo < div_original` check handles this case and
+ // more, however it can be checked up front before the bisection using the
+ // `((div > 0) && ((div & (div - 1)) == 0))` trick. This is not special-cased because
+ // compilers should handle most cases where divisions by power of two occur, and we do
+ // not want to add on a few cycles for every division operation just to save a few
+ // cycles rarely.
+
+ // The following example is the most straightforward translation from the way binary
+ // long division is typically visualized:
+ // Dividing 178u8 (0b10110010) by 6u8 (0b110). `div` is shifted left by 5, according to
+ // the result from `$normalization_shift(duo, div, false)`.
+ //
+ // Step 0: `sub` is negative, so there is not full normalization, so no `quo` bit is set
+ // and `duo` is kept unchanged.
+ // duo:10110010, div_shifted:11000000, sub:11110010, quo:00000000, shl:5
+ //
+ // Step 1: `sub` is positive, set a `quo` bit and update `duo` for next step.
+ // duo:10110010, div_shifted:01100000, sub:01010010, quo:00010000, shl:4
+ //
+ // Step 2: Continue based on `sub`. The `quo` bits start accumulating.
+ // duo:01010010, div_shifted:00110000, sub:00100010, quo:00011000, shl:3
+ // duo:00100010, div_shifted:00011000, sub:00001010, quo:00011100, shl:2
+ // duo:00001010, div_shifted:00001100, sub:11111110, quo:00011100, shl:1
+ // duo:00001010, div_shifted:00000110, sub:00000100, quo:00011100, shl:0
+ // The `duo < div_original` check terminates the algorithm with the correct quotient of
+ // 29u8 and remainder of 4u8
+ /*
+ let div_original = div;
+ let mut shl = $normalization_shift(duo, div, false);
+ let mut quo = 0;
+ loop {
+ let div_shifted = div << shl;
+ let sub = duo.wrapping_sub(div_shifted);
+ // it is recommended to use `println!`s like this if functionality is unclear
+ /*
+ println!("duo:{:08b}, div_shifted:{:08b}, sub:{:08b}, quo:{:08b}, shl:{}",
+ duo,
+ div_shifted,
+ sub,
+ quo,
+ shl
+ );
+ */
+ if 0 <= (sub as $iX) {
+ duo = sub;
+ quo += 1 << shl;
+ if duo < div_original {
+ // this branch is optional
+ return (quo, duo)
+ }
+ }
+ if shl == 0 {
+ return (quo, duo)
+ }
+ shl -= 1;
+ }
+ */
+
+ // This restoring binary long division algorithm reduces the number of operations
+ // overall via:
+ // - `pow` can be shifted right instead of recalculating from `shl`
+ // - starting `div` shifted left and shifting it right for each step instead of
+ // recalculating from `shl`
+ // - The `duo < div_original` branch is used to terminate the algorithm instead of the
+ // `shl == 0` branch. This check is strong enough to prevent set bits of `pow` and
+ // `div` from being shifted off the end. This check also only occurs on half of steps
+ // on average, since it is behind the `(sub as $iX) >= 0` branch.
+ // - `shl` is now not needed by any aspect of of the loop and thus only 3 variables are
+ // being updated between steps
+ //
+ // There are many variations of this algorithm, but this encompases the largest number
+ // of architectures and does not rely on carry flags, add-with-carry, or SWAR
+ // complications to be decently fast.
+ /*
+ let div_original = div;
+ let shl = $normalization_shift(duo, div, false);
+ let mut div: $uX = div << shl;
+ let mut pow: $uX = 1 << shl;
+ let mut quo: $uX = 0;
+ loop {
+ let sub = duo.wrapping_sub(div);
+ if 0 <= (sub as $iX) {
+ duo = sub;
+ quo |= pow;
+ if duo < div_original {
+ return (quo, duo)
+ }
+ }
+ div >>= 1;
+ pow >>= 1;
+ }
+ */
+
+ // If the architecture has flags and predicated arithmetic instructions, it is possible
+ // to do binary long division without branching and in only 3 or 4 instructions. This is
+ // a variation of a 3 instruction central loop from
+ // http://www.chiark.greenend.org.uk/~theom/riscos/docs/ultimate/a252div.txt.
+ //
+ // What allows doing division in only 3 instructions is realizing that instead of
+ // keeping `duo` in place and shifting `div` right to align bits, `div` can be kept in
+ // place and `duo` can be shifted left. This means `div` does not have to be updated,
+ // but causes edge case problems and makes `duo < div_original` tests harder. Some
+ // architectures have an option to shift an argument in an arithmetic operation, which
+ // means `duo` can be shifted left and subtracted from in one instruction. The other two
+ // instructions are updating `quo` and undoing the subtraction if it turns out things
+ // were not normalized.
+
+ /*
+ // Perform one binary long division step on the already normalized arguments, because
+ // the main. Note that this does a full normalization since the central loop needs
+ // `duo.leading_zeros()` to be at least 1 more than `div.leading_zeros()`. The original
+ // variation only did normalization to the nearest 4 steps, but this makes handling edge
+ // cases much harder. We do a full normalization and perform a binary long division
+ // step. In the edge case where the msbs of `duo` and `div` are set, it clears the msb
+ // of `duo`, then the edge case handler shifts `div` right and does another long
+ // division step to always insure `duo.leading_zeros() + 1 >= div.leading_zeros()`.
+ let div_original = div;
+ let mut shl = $normalization_shift(duo, div, true);
+ let mut div: $uX = (div << shl);
+ let mut quo: $uX = 1;
+ duo = duo.wrapping_sub(div);
+ if duo < div_original {
+ return (1 << shl, duo);
+ }
+ let div_neg: $uX;
+ if (div as $iX) < 0 {
+ // A very ugly edge case where the most significant bit of `div` is set (after
+ // shifting to match `duo` when its most significant bit is at the sign bit), which
+ // leads to the sign bit of `div_neg` being cut off and carries not happening when
+ // they should. This branch performs a long division step that keeps `duo` in place
+ // and shifts `div` down.
+ div >>= 1;
+ div_neg = div.wrapping_neg();
+ let (sub, carry) = duo.overflowing_add(div_neg);
+ duo = sub;
+ quo = quo.wrapping_add(quo).wrapping_add(carry as $uX);
+ if !carry {
+ duo = duo.wrapping_add(div);
+ }
+ shl -= 1;
+ } else {
+ div_neg = div.wrapping_neg();
+ }
+ // The add-with-carry that updates `quo` needs to have the carry set when a normalized
+ // subtract happens. Using `duo.wrapping_shl(1).overflowing_sub(div)` to do the
+ // subtraction generates a carry when an unnormalized subtract happens, which is the
+ // opposite of what we want. Instead, we use
+ // `duo.wrapping_shl(1).overflowing_add(div_neg)`, where `div_neg` is negative `div`.
+ let mut i = shl;
+ loop {
+ if i == 0 {
+ break;
+ }
+ i -= 1;
+ // `ADDS duo, div, duo, LSL #1`
+ // (add `div` to `duo << 1` and set flags)
+ let (sub, carry) = duo.wrapping_shl(1).overflowing_add(div_neg);
+ duo = sub;
+ // `ADC quo, quo, quo`
+ // (add with carry). Effectively shifts `quo` left by 1 and sets the least
+ // significant bit to the carry.
+ quo = quo.wrapping_add(quo).wrapping_add(carry as $uX);
+ // `ADDCC duo, duo, div`
+ // (add if carry clear). Undoes the subtraction if no carry was generated.
+ if !carry {
+ duo = duo.wrapping_add(div);
+ }
+ }
+ return (quo, duo >> shl);
+ */
+
+ // This is the SWAR (SIMD within in a register) restoring division algorithm.
+ // This combines several ideas of the above algorithms:
+ // - If `duo` is shifted left instead of shifting `div` right like in the 3 instruction
+ // restoring division algorithm, some architectures can do the shifting and
+ // subtraction step in one instruction.
+ // - `quo` can be constructed by adding powers-of-two to it or shifting it left by one
+ // and adding one.
+ // - Every time `duo` is shifted left, there is another unused 0 bit shifted into the
+ // LSB, so what if we use those bits to store `quo`?
+ // Through a complex setup, it is possible to manage `duo` and `quo` in the same
+ // register, and perform one step with 2 or 3 instructions. The only major downsides are
+ // that there is significant setup (it is only saves instructions if `shl` is
+ // approximately more than 4), `duo < div_original` checks are impractical once SWAR is
+ // initiated, and the number of division steps taken has to be exact (we cannot do more
+ // division steps than `shl`, because it introduces edge cases where quotient bits in
+ // `duo` start to collide with the real part of `div`.
+ /*
+ // first step. The quotient bit is stored in `quo` for now
+ let div_original = div;
+ let mut shl = $normalization_shift(duo, div, true);
+ let mut div: $uX = (div << shl);
+ duo = duo.wrapping_sub(div);
+ let mut quo: $uX = 1 << shl;
+ if duo < div_original {
+ return (quo, duo);
+ }
+
+ let mask: $uX;
+ if (div as $iX) < 0 {
+ // deal with same edge case as the 3 instruction restoring division algorithm, but
+ // the quotient bit from this step also has to be stored in `quo`
+ div >>= 1;
+ shl -= 1;
+ let tmp = 1 << shl;
+ mask = tmp - 1;
+ let sub = duo.wrapping_sub(div);
+ if (sub as $iX) >= 0 {
+ // restore
+ duo = sub;
+ quo |= tmp;
+ }
+ if duo < div_original {
+ return (quo, duo);
+ }
+ } else {
+ mask = quo - 1;
+ }
+ // There is now room for quotient bits in `duo`.
+
+ // Note that `div` is already shifted left and has `shl` unset bits. We subtract 1 from
+ // `div` and end up with the subset of `shl` bits being all being set. This subset acts
+ // just like a two's complement negative one. The subset of `div` containing the divisor
+ // had 1 subtracted from it, but a carry will always be generated from the `shl` subset
+ // as long as the quotient stays positive.
+ //
+ // When the modified `div` is subtracted from `duo.wrapping_shl(1)`, the `shl` subset
+ // adds a quotient bit to the least significant bit.
+ // For example, 89 (0b01011001) divided by 3 (0b11):
+ //
+ // shl:4, div:0b00110000
+ // first step:
+ // duo:0b01011001
+ // + div_neg:0b11010000
+ // ____________________
+ // 0b00101001
+ // quo is set to 0b00010000 and mask is set to 0b00001111 for later
+ //
+ // 1 is subtracted from `div`. I will differentiate the `shl` part of `div` and the
+ // quotient part of `duo` with `^`s.
+ // chars.
+ // div:0b00110000
+ // ^^^^
+ // + 0b11111111
+ // ________________
+ // 0b00101111
+ // ^^^^
+ // div_neg:0b11010001
+ //
+ // first SWAR step:
+ // duo_shl1:0b01010010
+ // ^
+ // + div_neg:0b11010001
+ // ____________________
+ // 0b00100011
+ // ^
+ // second:
+ // duo_shl1:0b01000110
+ // ^^
+ // + div_neg:0b11010001
+ // ____________________
+ // 0b00010111
+ // ^^
+ // third:
+ // duo_shl1:0b00101110
+ // ^^^
+ // + div_neg:0b11010001
+ // ____________________
+ // 0b11111111
+ // ^^^
+ // 3 steps resulted in the quotient with 3 set bits as expected, but currently the real
+ // part of `duo` is negative and the third step was an unnormalized step. The restore
+ // branch then restores `duo`. Note that the restore branch does not shift `duo` left.
+ //
+ // duo:0b11111111
+ // ^^^
+ // + div:0b00101111
+ // ^^^^
+ // ________________
+ // 0b00101110
+ // ^^^
+ // `duo` is now back in the `duo_shl1` state it was at in the the third step, with an
+ // unset quotient bit.
+ //
+ // final step (`shl` was 4, so exactly 4 steps must be taken)
+ // duo_shl1:0b01011100
+ // ^^^^
+ // + div_neg:0b11010001
+ // ____________________
+ // 0b00101101
+ // ^^^^
+ // The quotient includes the `^` bits added with the `quo` bits from the beginning that
+ // contained the first step and potential edge case step,
+ // `quo:0b00010000 + (duo:0b00101101 & mask:0b00001111) == 0b00011101 == 29u8`.
+ // The remainder is the bits remaining in `duo` that are not part of the quotient bits,
+ // `duo:0b00101101 >> shl == 0b0010 == 2u8`.
+ let div: $uX = div.wrapping_sub(1);
+ let mut i = shl;
+ loop {
+ if i == 0 {
+ break;
+ }
+ i -= 1;
+ duo = duo.wrapping_shl(1).wrapping_sub(div);
+ if (duo as $iX) < 0 {
+ // restore
+ duo = duo.wrapping_add(div);
+ }
+ }
+ // unpack the results of SWAR
+ return ((duo & mask) | quo, duo >> shl);
+ */
+
+ // The problem with the conditional restoring SWAR algorithm above is that, in practice,
+ // it requires assembly code to bring out its full unrolled potential (It seems that
+ // LLVM can't use unrolled conditionals optimally and ends up erasing all the benefit
+ // that my algorithm intends. On architectures without predicated instructions, the code
+ // gen is especially bad. We need a default software division algorithm that is
+ // guaranteed to get decent code gen for the central loop.
+
+ // For non-SWAR algorithms, there is a way to do binary long division without
+ // predication or even branching. This involves creating a mask from the sign bit and
+ // performing different kinds of steps using that.
+ /*
+ let shl = $normalization_shift(duo, div, true);
+ let mut div: $uX = div << shl;
+ let mut pow: $uX = 1 << shl;
+ let mut quo: $uX = 0;
+ loop {
+ let sub = duo.wrapping_sub(div);
+ let sign_mask = !((sub as $iX).wrapping_shr($n - 1) as $uX);
+ duo -= div & sign_mask;
+ quo |= pow & sign_mask;
+ div >>= 1;
+ pow >>= 1;
+ if pow == 0 {
+ break;
+ }
+ }
+ return (quo, duo);
+ */
+ // However, it requires about 4 extra operations (smearing the sign bit, negating the
+ // mask, and applying the mask twice) on top of the operations done by the actual
+ // algorithm. With SWAR however, just 2 extra operations are needed, making it
+ // practical and even the most optimal algorithm for some architectures.
+
+ // What we do is use custom assembly for predicated architectures that need software
+ // division, and for the default algorithm use a mask based restoring SWAR algorithm
+ // without conditionals or branches. On almost all architectures, this Rust code is
+ // guaranteed to compile down to 5 assembly instructions or less for each step, and LLVM
+ // will unroll it in a decent way.
+
+ // standard opening for SWAR algorithm with first step and edge case handling
+ let div_original = div;
+ let mut shl = $normalization_shift(duo, div, true);
+ let mut div: $uX = (div << shl);
+ duo = duo.wrapping_sub(div);
+ let mut quo: $uX = 1 << shl;
+ if duo < div_original {
+ return (quo, duo);
+ }
+ let mask: $uX;
+ if (div as $iX) < 0 {
+ div >>= 1;
+ shl -= 1;
+ let tmp = 1 << shl;
+ mask = tmp - 1;
+ let sub = duo.wrapping_sub(div);
+ if (sub as $iX) >= 0 {
+ duo = sub;
+ quo |= tmp;
+ }
+ if duo < div_original {
+ return (quo, duo);
+ }
+ } else {
+ mask = quo - 1;
+ }
+
+ // central loop
+ div = div.wrapping_sub(1);
+ let mut i = shl;
+ loop {
+ if i == 0 {
+ break;
+ }
+ i -= 1;
+ // shift left 1 and subtract
+ duo = duo.wrapping_shl(1).wrapping_sub(div);
+ // create mask
+ let mask = (duo as $iX).wrapping_shr($n - 1) as $uX;
+ // restore
+ duo = duo.wrapping_add(div & mask);
+ }
+ // unpack
+ return ((duo & mask) | quo, duo >> shl);
+
+ // miscellanious binary long division algorithms that might be better for specific
+ // architectures
+
+ // Another kind of long division uses an interesting fact that `div` and `pow` can be
+ // negated when `duo` is negative to perform a "negated" division step that works in
+ // place of any normalization mechanism. This is a non-restoring division algorithm that
+ // is very similar to the non-restoring division algorithms that can be found on the
+ // internet, except there is only one test for `duo < 0`. The subtraction from `quo` can
+ // be viewed as shifting the least significant set bit right (e.x. if we enter a series
+ // of negated binary long division steps starting with `quo == 0b1011_0000` and
+ // `pow == 0b0000_1000`, `quo` will progress like this: 0b1010_1000, 0b1010_0100,
+ // 0b1010_0010, 0b1010_0001).
+ /*
+ let div_original = div;
+ let shl = $normalization_shift(duo, div, true);
+ let mut div: $uX = (div << shl);
+ let mut pow: $uX = 1 << shl;
+ let mut quo: $uX = pow;
+ duo = duo.wrapping_sub(div);
+ if duo < div_original {
+ return (quo, duo);
+ }
+ div >>= 1;
+ pow >>= 1;
+ loop {
+ if (duo as $iX) < 0 {
+ // Negated binary long division step.
+ duo = duo.wrapping_add(div);
+ quo = quo.wrapping_sub(pow);
+ } else {
+ // Normal long division step.
+ if duo < div_original {
+ return (quo, duo)
+ }
+ duo = duo.wrapping_sub(div);
+ quo = quo.wrapping_add(pow);
+ }
+ pow >>= 1;
+ div >>= 1;
+ }
+ */
+
+ // This is the Nonrestoring SWAR algorithm, combining the nonrestoring algorithm with
+ // SWAR techniques that makes the only difference between steps be negation of `div`.
+ // If there was an architecture with an instruction that negated inputs to an adder
+ // based on conditionals, and in place shifting (or a three input addition operation
+ // that can have `duo` as two of the inputs to effectively shift it left by 1), then a
+ // single instruction central loop is possible. Microarchitectures often have inputs to
+ // their ALU that can invert the arguments and carry in of adders, but the architectures
+ // unfortunately do not have an instruction to dynamically invert this input based on
+ // conditionals.
+ /*
+ // SWAR opening
+ let div_original = div;
+ let mut shl = $normalization_shift(duo, div, true);
+ let mut div: $uX = (div << shl);
+ duo = duo.wrapping_sub(div);
+ let mut quo: $uX = 1 << shl;
+ if duo < div_original {
+ return (quo, duo);
+ }
+ let mask: $uX;
+ if (div as $iX) < 0 {
+ div >>= 1;
+ shl -= 1;
+ let tmp = 1 << shl;
+ let sub = duo.wrapping_sub(div);
+ if (sub as $iX) >= 0 {
+ // restore
+ duo = sub;
+ quo |= tmp;
+ }
+ if duo < div_original {
+ return (quo, duo);
+ }
+ mask = tmp - 1;
+ } else {
+ mask = quo - 1;
+ }
+
+ // central loop
+ let div: $uX = div.wrapping_sub(1);
+ let mut i = shl;
+ loop {
+ if i == 0 {
+ break;
+ }
+ i -= 1;
+ // note: the `wrapping_shl(1)` can be factored out, but would require another
+ // restoring division step to prevent `(duo as $iX)` from overflowing
+ if (duo as $iX) < 0 {
+ // Negated binary long division step.
+ duo = duo.wrapping_shl(1).wrapping_add(div);
+ } else {
+ // Normal long division step.
+ duo = duo.wrapping_shl(1).wrapping_sub(div);
+ }
+ }
+ if (duo as $iX) < 0 {
+ // Restore. This was not needed in the original nonrestoring algorithm because of
+ // the `duo < div_original` checks.
+ duo = duo.wrapping_add(div);
+ }
+ // unpack
+ return ((duo & mask) | quo, duo >> shl);
+ */
+ }
+ };
+}
diff --git a/vendor/compiler_builtins/src/int/specialized_div_rem/delegate.rs b/vendor/compiler_builtins/src/int/specialized_div_rem/delegate.rs
new file mode 100644
index 000000000..330c6e4f8
--- /dev/null
+++ b/vendor/compiler_builtins/src/int/specialized_div_rem/delegate.rs
@@ -0,0 +1,319 @@
+/// Creates an unsigned division function that uses a combination of hardware division and
+/// binary long division to divide integers larger than what hardware division by itself can do. This
+/// function is intended for microarchitectures that have division hardware, but not fast enough
+/// multiplication hardware for `impl_trifecta` to be faster.
+#[allow(unused_macros)]
+macro_rules! impl_delegate {
+ (
+ $fn:ident, // name of the unsigned division function
+ $zero_div_fn:ident, // function called when division by zero is attempted
+ $half_normalization_shift:ident, // function for finding the normalization shift of $uX
+ $half_division:ident, // function for division of a $uX by a $uX
+ $n_h:expr, // the number of bits in $iH or $uH
+ $uH:ident, // unsigned integer with half the bit width of $uX
+ $uX:ident, // unsigned integer with half the bit width of $uD.
+ $uD:ident, // unsigned integer type for the inputs and outputs of `$fn`
+ $iD:ident // signed integer type with the same bitwidth as `$uD`
+ ) => {
+ /// Computes the quotient and remainder of `duo` divided by `div` and returns them as a
+ /// tuple.
+ pub fn $fn(duo: $uD, div: $uD) -> ($uD, $uD) {
+ // The two possibility algorithm, undersubtracting long division algorithm, or any kind
+ // of reciprocal based algorithm will not be fastest, because they involve large
+ // multiplications that we assume to not be fast enough relative to the divisions to
+ // outweigh setup times.
+
+ // the number of bits in a $uX
+ let n = $n_h * 2;
+
+ let duo_lo = duo as $uX;
+ let duo_hi = (duo >> n) as $uX;
+ let div_lo = div as $uX;
+ let div_hi = (div >> n) as $uX;
+
+ match (div_lo == 0, div_hi == 0, duo_hi == 0) {
+ (true, true, _) => $zero_div_fn(),
+ (_, false, true) => {
+ // `duo` < `div`
+ return (0, duo);
+ }
+ (false, true, true) => {
+ // delegate to smaller division
+ let tmp = $half_division(duo_lo, div_lo);
+ return (tmp.0 as $uD, tmp.1 as $uD);
+ }
+ (false, true, false) => {
+ if duo_hi < div_lo {
+ // `quo_hi` will always be 0. This performs a binary long division algorithm
+ // to zero `duo_hi` followed by a half division.
+
+ // We can calculate the normalization shift using only `$uX` size functions.
+ // If we calculated the normalization shift using
+ // `$half_normalization_shift(duo_hi, div_lo false)`, it would break the
+ // assumption the function has that the first argument is more than the
+ // second argument. If the arguments are switched, the assumption holds true
+ // since `duo_hi < div_lo`.
+ let norm_shift = $half_normalization_shift(div_lo, duo_hi, false);
+ let shl = if norm_shift == 0 {
+ // Consider what happens if the msbs of `duo_hi` and `div_lo` align with
+ // no shifting. The normalization shift will always return
+ // `norm_shift == 0` regardless of whether it is fully normalized,
+ // because `duo_hi < div_lo`. In that edge case, `n - norm_shift` would
+ // result in shift overflow down the line. For the edge case, because
+ // both `duo_hi < div_lo` and we are comparing all the significant bits
+ // of `duo_hi` and `div`, we can make `shl = n - 1`.
+ n - 1
+ } else {
+ // We also cannot just use `shl = n - norm_shift - 1` in the general
+ // case, because when we are not in the edge case comparing all the
+ // significant bits, then the full `duo < div` may not be true and thus
+ // breaks the division algorithm.
+ n - norm_shift
+ };
+
+ // The 3 variable restoring division algorithm (see binary_long.rs) is ideal
+ // for this task, since `pow` and `quo` can be `$uX` and the delegation
+ // check is simple.
+ let mut div: $uD = div << shl;
+ let mut pow_lo: $uX = 1 << shl;
+ let mut quo_lo: $uX = 0;
+ let mut duo = duo;
+ loop {
+ let sub = duo.wrapping_sub(div);
+ if 0 <= (sub as $iD) {
+ duo = sub;
+ quo_lo |= pow_lo;
+ let duo_hi = (duo >> n) as $uX;
+ if duo_hi == 0 {
+ // Delegate to get the rest of the quotient. Note that the
+ // `div_lo` here is the original unshifted `div`.
+ let tmp = $half_division(duo as $uX, div_lo);
+ return ((quo_lo | tmp.0) as $uD, tmp.1 as $uD);
+ }
+ }
+ div >>= 1;
+ pow_lo >>= 1;
+ }
+ } else if duo_hi == div_lo {
+ // `quo_hi == 1`. This branch is cheap and helps with edge cases.
+ let tmp = $half_division(duo as $uX, div as $uX);
+ return ((1 << n) | (tmp.0 as $uD), tmp.1 as $uD);
+ } else {
+ // `div_lo < duo_hi`
+ // `rem_hi == 0`
+ if (div_lo >> $n_h) == 0 {
+ // Short division of $uD by a $uH, using $uX by $uX division
+ let div_0 = div_lo as $uH as $uX;
+ let (quo_hi, rem_3) = $half_division(duo_hi, div_0);
+
+ let duo_mid = ((duo >> $n_h) as $uH as $uX) | (rem_3 << $n_h);
+ let (quo_1, rem_2) = $half_division(duo_mid, div_0);
+
+ let duo_lo = (duo as $uH as $uX) | (rem_2 << $n_h);
+ let (quo_0, rem_1) = $half_division(duo_lo, div_0);
+
+ return (
+ (quo_0 as $uD) | ((quo_1 as $uD) << $n_h) | ((quo_hi as $uD) << n),
+ rem_1 as $uD,
+ );
+ }
+
+ // This is basically a short division composed of a half division for the hi
+ // part, specialized 3 variable binary long division in the middle, and
+ // another half division for the lo part.
+ let duo_lo = duo as $uX;
+ let tmp = $half_division(duo_hi, div_lo);
+ let quo_hi = tmp.0;
+ let mut duo = (duo_lo as $uD) | ((tmp.1 as $uD) << n);
+ // This check is required to avoid breaking the long division below.
+ if duo < div {
+ return ((quo_hi as $uD) << n, duo);
+ }
+
+ // The half division handled all shift alignments down to `n`, so this
+ // division can continue with a shift of `n - 1`.
+ let mut div: $uD = div << (n - 1);
+ let mut pow_lo: $uX = 1 << (n - 1);
+ let mut quo_lo: $uX = 0;
+ loop {
+ let sub = duo.wrapping_sub(div);
+ if 0 <= (sub as $iD) {
+ duo = sub;
+ quo_lo |= pow_lo;
+ let duo_hi = (duo >> n) as $uX;
+ if duo_hi == 0 {
+ // Delegate to get the rest of the quotient. Note that the
+ // `div_lo` here is the original unshifted `div`.
+ let tmp = $half_division(duo as $uX, div_lo);
+ return (
+ (tmp.0) as $uD | (quo_lo as $uD) | ((quo_hi as $uD) << n),
+ tmp.1 as $uD,
+ );
+ }
+ }
+ div >>= 1;
+ pow_lo >>= 1;
+ }
+ }
+ }
+ (_, false, false) => {
+ // Full $uD by $uD binary long division. `quo_hi` will always be 0.
+ if duo < div {
+ return (0, duo);
+ }
+ let div_original = div;
+ let shl = $half_normalization_shift(duo_hi, div_hi, false);
+ let mut duo = duo;
+ let mut div: $uD = div << shl;
+ let mut pow_lo: $uX = 1 << shl;
+ let mut quo_lo: $uX = 0;
+ loop {
+ let sub = duo.wrapping_sub(div);
+ if 0 <= (sub as $iD) {
+ duo = sub;
+ quo_lo |= pow_lo;
+ if duo < div_original {
+ return (quo_lo as $uD, duo);
+ }
+ }
+ div >>= 1;
+ pow_lo >>= 1;
+ }
+ }
+ }
+ }
+ };
+}
+
+public_test_dep! {
+/// Returns `n / d` and sets `*rem = n % d`.
+///
+/// This specialization exists because:
+/// - The LLVM backend for 32-bit SPARC cannot compile functions that return `(u128, u128)`,
+/// so we have to use an old fashioned `&mut u128` argument to return the remainder.
+/// - 64-bit SPARC does not have u64 * u64 => u128 widening multiplication, which makes the
+/// delegate algorithm strategy the only reasonably fast way to perform `u128` division.
+// used on SPARC
+#[allow(dead_code)]
+pub(crate) fn u128_divide_sparc(duo: u128, div: u128, rem: &mut u128) -> u128 {
+ use super::*;
+ let duo_lo = duo as u64;
+ let duo_hi = (duo >> 64) as u64;
+ let div_lo = div as u64;
+ let div_hi = (div >> 64) as u64;
+
+ match (div_lo == 0, div_hi == 0, duo_hi == 0) {
+ (true, true, _) => zero_div_fn(),
+ (_, false, true) => {
+ *rem = duo;
+ return 0;
+ }
+ (false, true, true) => {
+ let tmp = u64_by_u64_div_rem(duo_lo, div_lo);
+ *rem = tmp.1 as u128;
+ return tmp.0 as u128;
+ }
+ (false, true, false) => {
+ if duo_hi < div_lo {
+ let norm_shift = u64_normalization_shift(div_lo, duo_hi, false);
+ let shl = if norm_shift == 0 {
+ 64 - 1
+ } else {
+ 64 - norm_shift
+ };
+
+ let mut div: u128 = div << shl;
+ let mut pow_lo: u64 = 1 << shl;
+ let mut quo_lo: u64 = 0;
+ let mut duo = duo;
+ loop {
+ let sub = duo.wrapping_sub(div);
+ if 0 <= (sub as i128) {
+ duo = sub;
+ quo_lo |= pow_lo;
+ let duo_hi = (duo >> 64) as u64;
+ if duo_hi == 0 {
+ let tmp = u64_by_u64_div_rem(duo as u64, div_lo);
+ *rem = tmp.1 as u128;
+ return (quo_lo | tmp.0) as u128;
+ }
+ }
+ div >>= 1;
+ pow_lo >>= 1;
+ }
+ } else if duo_hi == div_lo {
+ let tmp = u64_by_u64_div_rem(duo as u64, div as u64);
+ *rem = tmp.1 as u128;
+ return (1 << 64) | (tmp.0 as u128);
+ } else {
+ if (div_lo >> 32) == 0 {
+ let div_0 = div_lo as u32 as u64;
+ let (quo_hi, rem_3) = u64_by_u64_div_rem(duo_hi, div_0);
+
+ let duo_mid = ((duo >> 32) as u32 as u64) | (rem_3 << 32);
+ let (quo_1, rem_2) = u64_by_u64_div_rem(duo_mid, div_0);
+
+ let duo_lo = (duo as u32 as u64) | (rem_2 << 32);
+ let (quo_0, rem_1) = u64_by_u64_div_rem(duo_lo, div_0);
+
+ *rem = rem_1 as u128;
+ return (quo_0 as u128) | ((quo_1 as u128) << 32) | ((quo_hi as u128) << 64);
+ }
+
+ let duo_lo = duo as u64;
+ let tmp = u64_by_u64_div_rem(duo_hi, div_lo);
+ let quo_hi = tmp.0;
+ let mut duo = (duo_lo as u128) | ((tmp.1 as u128) << 64);
+ if duo < div {
+ *rem = duo;
+ return (quo_hi as u128) << 64;
+ }
+
+ let mut div: u128 = div << (64 - 1);
+ let mut pow_lo: u64 = 1 << (64 - 1);
+ let mut quo_lo: u64 = 0;
+ loop {
+ let sub = duo.wrapping_sub(div);
+ if 0 <= (sub as i128) {
+ duo = sub;
+ quo_lo |= pow_lo;
+ let duo_hi = (duo >> 64) as u64;
+ if duo_hi == 0 {
+ let tmp = u64_by_u64_div_rem(duo as u64, div_lo);
+ *rem = tmp.1 as u128;
+ return (tmp.0) as u128 | (quo_lo as u128) | ((quo_hi as u128) << 64);
+ }
+ }
+ div >>= 1;
+ pow_lo >>= 1;
+ }
+ }
+ }
+ (_, false, false) => {
+ if duo < div {
+ *rem = duo;
+ return 0;
+ }
+ let div_original = div;
+ let shl = u64_normalization_shift(duo_hi, div_hi, false);
+ let mut duo = duo;
+ let mut div: u128 = div << shl;
+ let mut pow_lo: u64 = 1 << shl;
+ let mut quo_lo: u64 = 0;
+ loop {
+ let sub = duo.wrapping_sub(div);
+ if 0 <= (sub as i128) {
+ duo = sub;
+ quo_lo |= pow_lo;
+ if duo < div_original {
+ *rem = duo;
+ return quo_lo as u128;
+ }
+ }
+ div >>= 1;
+ pow_lo >>= 1;
+ }
+ }
+ }
+}
+}
diff --git a/vendor/compiler_builtins/src/int/specialized_div_rem/mod.rs b/vendor/compiler_builtins/src/int/specialized_div_rem/mod.rs
new file mode 100644
index 000000000..6ec4675df
--- /dev/null
+++ b/vendor/compiler_builtins/src/int/specialized_div_rem/mod.rs
@@ -0,0 +1,306 @@
+// TODO: when `unsafe_block_in_unsafe_fn` is stabilized, remove this
+#![allow(unused_unsafe)]
+// The functions are complex with many branches, and explicit
+// `return`s makes it clear where function exit points are
+#![allow(clippy::needless_return)]
+#![allow(clippy::comparison_chain)]
+// Clippy is confused by the complex configuration
+#![allow(clippy::if_same_then_else)]
+#![allow(clippy::needless_bool)]
+
+//! This `specialized_div_rem` module is originally from version 1.0.0 of the
+//! `specialized-div-rem` crate. Note that `for` loops with ranges are not used in this
+//! module, since unoptimized compilation may generate references to `memcpy`.
+//!
+//! The purpose of these macros is to easily change the both the division algorithm used
+//! for a given integer size and the half division used by that algorithm. The way
+//! functions call each other is also constructed such that linkers will find the chain of
+//! software and hardware divisions needed for every size of signed and unsigned division.
+//! For example, most target compilations do the following:
+//!
+//! - Many 128 bit division functions like `u128::wrapping_div` use
+//! `std::intrinsics::unchecked_div`, which gets replaced by `__udivti3` because there
+//! is not a 128 bit by 128 bit hardware division function in most architectures.
+//! `__udivti3` uses `u128_div_rem` (this extra level of function calls exists because
+//! `__umodti3` and `__udivmodti4` also exist, and `specialized_div_rem` supplies just
+//! one function to calculate both the quotient and remainder. If configuration flags
+//! enable it, `impl_trifecta!` defines `u128_div_rem` to use the trifecta algorithm,
+//! which requires the half sized division `u64_by_u64_div_rem`. If the architecture
+//! supplies a 64 bit hardware division instruction, `u64_by_u64_div_rem` will be
+//! reduced to those instructions. Note that we do not specify the half size division
+//! directly to be `__udivdi3`, because hardware division would never be introduced.
+//! - If the architecture does not supply a 64 bit hardware division instruction, u64
+//! divisions will use functions such as `__udivdi3`. This will call `u64_div_rem`
+//! which is defined by `impl_delegate!`. The half division for this algorithm is
+//! `u32_by_u32_div_rem` which in turn becomes hardware division instructions or more
+//! software division algorithms.
+//! - If the architecture does not supply a 32 bit hardware instruction, linkers will
+//! look for `__udivsi3`. `impl_binary_long!` is used, but this algorithm uses no half
+//! division, so the chain of calls ends here.
+//!
+//! On some architectures like x86_64, an asymmetrically sized division is supplied, in
+//! which 128 bit numbers can be divided by 64 bit numbers. `impl_asymmetric!` is used to
+//! extend the 128 by 64 bit division to a full 128 by 128 bit division.
+
+// `allow(dead_code)` is used in various places, because the configuration code would otherwise be
+// ridiculously complex
+
+#[macro_use]
+mod norm_shift;
+
+#[macro_use]
+mod binary_long;
+
+#[macro_use]
+mod delegate;
+
+// used on SPARC
+#[allow(unused_imports)]
+#[cfg(not(feature = "public-test-deps"))]
+pub(crate) use self::delegate::u128_divide_sparc;
+
+#[cfg(feature = "public-test-deps")]
+pub use self::delegate::u128_divide_sparc;
+
+#[macro_use]
+mod trifecta;
+
+#[macro_use]
+mod asymmetric;
+
+/// The behavior of all divisions by zero is controlled by this function. This function should be
+/// impossible to reach by Rust users, unless `compiler-builtins` public division functions or
+/// `core/std::unchecked_div/rem` are directly used without a zero check in front.
+fn zero_div_fn() -> ! {
+ unsafe { core::hint::unreachable_unchecked() }
+}
+
+const USE_LZ: bool = {
+ if cfg!(target_arch = "arm") {
+ if cfg!(target_feature = "thumb-mode") {
+ // ARM thumb targets have CLZ instructions if the instruction set of ARMv6T2 is
+ // supported. This is needed to successfully differentiate between targets like
+ // `thumbv8.base` and `thumbv8.main`.
+ cfg!(target_feature = "v6t2")
+ } else {
+ // Regular ARM targets have CLZ instructions if the ARMv5TE instruction set is
+ // supported. Technically, ARMv5T was the first to have CLZ, but the "v5t" target
+ // feature does not seem to work.
+ cfg!(target_feature = "v5te")
+ }
+ } else if cfg!(any(target_arch = "sparc", target_arch = "sparc64")) {
+ // LZD or LZCNT on SPARC only exists for the VIS 3 extension and later.
+ cfg!(target_feature = "vis3")
+ } else if cfg!(any(target_arch = "riscv32", target_arch = "riscv64")) {
+ // The `B` extension on RISC-V determines if a CLZ assembly instruction exists
+ cfg!(target_feature = "b")
+ } else {
+ // All other common targets Rust supports should have CLZ instructions
+ true
+ }
+};
+
+impl_normalization_shift!(
+ u32_normalization_shift,
+ USE_LZ,
+ 32,
+ u32,
+ i32,
+ allow(dead_code)
+);
+impl_normalization_shift!(
+ u64_normalization_shift,
+ USE_LZ,
+ 64,
+ u64,
+ i64,
+ allow(dead_code)
+);
+
+/// Divides `duo` by `div` and returns a tuple of the quotient and the remainder.
+/// `checked_div` and `checked_rem` are used to avoid bringing in panic function
+/// dependencies.
+#[inline]
+fn u64_by_u64_div_rem(duo: u64, div: u64) -> (u64, u64) {
+ if let Some(quo) = duo.checked_div(div) {
+ if let Some(rem) = duo.checked_rem(div) {
+ return (quo, rem);
+ }
+ }
+ zero_div_fn()
+}
+
+// Whether `trifecta` or `delegate` is faster for 128 bit division depends on the speed at which a
+// microarchitecture can multiply and divide. We decide to be optimistic and assume `trifecta` is
+// faster if the target pointer width is at least 64.
+#[cfg(all(
+ not(any(target_pointer_width = "16", target_pointer_width = "32")),
+ not(all(not(feature = "no-asm"), target_arch = "x86_64")),
+ not(any(target_arch = "sparc", target_arch = "sparc64"))
+))]
+impl_trifecta!(
+ u128_div_rem,
+ zero_div_fn,
+ u64_by_u64_div_rem,
+ 32,
+ u32,
+ u64,
+ u128
+);
+
+// If the pointer width less than 64, then the target architecture almost certainly does not have
+// the fast 64 to 128 bit widening multiplication needed for `trifecta` to be faster.
+#[cfg(all(
+ any(target_pointer_width = "16", target_pointer_width = "32"),
+ not(all(not(feature = "no-asm"), target_arch = "x86_64")),
+ not(any(target_arch = "sparc", target_arch = "sparc64"))
+))]
+impl_delegate!(
+ u128_div_rem,
+ zero_div_fn,
+ u64_normalization_shift,
+ u64_by_u64_div_rem,
+ 32,
+ u32,
+ u64,
+ u128,
+ i128
+);
+
+/// Divides `duo` by `div` and returns a tuple of the quotient and the remainder.
+///
+/// # Safety
+///
+/// If the quotient does not fit in a `u64`, a floating point exception occurs.
+/// If `div == 0`, then a division by zero exception occurs.
+#[cfg(all(not(feature = "no-asm"), target_arch = "x86_64"))]
+#[inline]
+unsafe fn u128_by_u64_div_rem(duo: u128, div: u64) -> (u64, u64) {
+ let duo_lo = duo as u64;
+ let duo_hi = (duo >> 64) as u64;
+ let quo: u64;
+ let rem: u64;
+ unsafe {
+ // divides the combined registers rdx:rax (`duo` is split into two 64 bit parts to do this)
+ // by `div`. The quotient is stored in rax and the remainder in rdx.
+ // FIXME: Use the Intel syntax once we drop LLVM 9 support on rust-lang/rust.
+ core::arch::asm!(
+ "div {0}",
+ in(reg) div,
+ inlateout("rax") duo_lo => quo,
+ inlateout("rdx") duo_hi => rem,
+ options(att_syntax, pure, nomem, nostack)
+ );
+ }
+ (quo, rem)
+}
+
+// use `asymmetric` instead of `trifecta` on x86_64
+#[cfg(all(not(feature = "no-asm"), target_arch = "x86_64"))]
+impl_asymmetric!(
+ u128_div_rem,
+ zero_div_fn,
+ u64_by_u64_div_rem,
+ u128_by_u64_div_rem,
+ 32,
+ u32,
+ u64,
+ u128
+);
+
+/// Divides `duo` by `div` and returns a tuple of the quotient and the remainder.
+/// `checked_div` and `checked_rem` are used to avoid bringing in panic function
+/// dependencies.
+#[inline]
+#[allow(dead_code)]
+fn u32_by_u32_div_rem(duo: u32, div: u32) -> (u32, u32) {
+ if let Some(quo) = duo.checked_div(div) {
+ if let Some(rem) = duo.checked_rem(div) {
+ return (quo, rem);
+ }
+ }
+ zero_div_fn()
+}
+
+// When not on x86 and the pointer width is not 64, use `delegate` since the division size is larger
+// than register size.
+#[cfg(all(
+ not(all(not(feature = "no-asm"), target_arch = "x86")),
+ not(target_pointer_width = "64")
+))]
+impl_delegate!(
+ u64_div_rem,
+ zero_div_fn,
+ u32_normalization_shift,
+ u32_by_u32_div_rem,
+ 16,
+ u16,
+ u32,
+ u64,
+ i64
+);
+
+// When not on x86 and the pointer width is 64, use `binary_long`.
+#[cfg(all(
+ not(all(not(feature = "no-asm"), target_arch = "x86")),
+ target_pointer_width = "64"
+))]
+impl_binary_long!(
+ u64_div_rem,
+ zero_div_fn,
+ u64_normalization_shift,
+ 64,
+ u64,
+ i64
+);
+
+/// Divides `duo` by `div` and returns a tuple of the quotient and the remainder.
+///
+/// # Safety
+///
+/// If the quotient does not fit in a `u32`, a floating point exception occurs.
+/// If `div == 0`, then a division by zero exception occurs.
+#[cfg(all(not(feature = "no-asm"), target_arch = "x86"))]
+#[inline]
+unsafe fn u64_by_u32_div_rem(duo: u64, div: u32) -> (u32, u32) {
+ let duo_lo = duo as u32;
+ let duo_hi = (duo >> 32) as u32;
+ let quo: u32;
+ let rem: u32;
+ unsafe {
+ // divides the combined registers rdx:rax (`duo` is split into two 32 bit parts to do this)
+ // by `div`. The quotient is stored in rax and the remainder in rdx.
+ // FIXME: Use the Intel syntax once we drop LLVM 9 support on rust-lang/rust.
+ core::arch::asm!(
+ "div {0}",
+ in(reg) div,
+ inlateout("rax") duo_lo => quo,
+ inlateout("rdx") duo_hi => rem,
+ options(att_syntax, pure, nomem, nostack)
+ );
+ }
+ (quo, rem)
+}
+
+// use `asymmetric` instead of `delegate` on x86
+#[cfg(all(not(feature = "no-asm"), target_arch = "x86"))]
+impl_asymmetric!(
+ u64_div_rem,
+ zero_div_fn,
+ u32_by_u32_div_rem,
+ u64_by_u32_div_rem,
+ 16,
+ u16,
+ u32,
+ u64
+);
+
+// 32 bits is the smallest division used by `compiler-builtins`, so we end with binary long division
+impl_binary_long!(
+ u32_div_rem,
+ zero_div_fn,
+ u32_normalization_shift,
+ 32,
+ u32,
+ i32
+);
diff --git a/vendor/compiler_builtins/src/int/specialized_div_rem/norm_shift.rs b/vendor/compiler_builtins/src/int/specialized_div_rem/norm_shift.rs
new file mode 100644
index 000000000..61b67b6bc
--- /dev/null
+++ b/vendor/compiler_builtins/src/int/specialized_div_rem/norm_shift.rs
@@ -0,0 +1,106 @@
+/// Creates a function used by some division algorithms to compute the "normalization shift".
+#[allow(unused_macros)]
+macro_rules! impl_normalization_shift {
+ (
+ $name:ident, // name of the normalization shift function
+ // boolean for if `$uX::leading_zeros` should be used (if an architecture does not have a
+ // hardware instruction for `usize::leading_zeros`, then this should be `true`)
+ $use_lz:ident,
+ $n:tt, // the number of bits in a $iX or $uX
+ $uX:ident, // unsigned integer type for the inputs of `$name`
+ $iX:ident, // signed integer type for the inputs of `$name`
+ $($unsigned_attr:meta),* // attributes for the function
+ ) => {
+ /// Finds the shift left that the divisor `div` would need to be normalized for a binary
+ /// long division step with the dividend `duo`. NOTE: This function assumes that these edge
+ /// cases have been handled before reaching it:
+ /// `
+ /// if div == 0 {
+ /// panic!("attempt to divide by zero")
+ /// }
+ /// if duo < div {
+ /// return (0, duo)
+ /// }
+ /// `
+ ///
+ /// Normalization is defined as (where `shl` is the output of this function):
+ /// `
+ /// if duo.leading_zeros() != (div << shl).leading_zeros() {
+ /// // If the most significant bits of `duo` and `div << shl` are not in the same place,
+ /// // then `div << shl` has one more leading zero than `duo`.
+ /// assert_eq!(duo.leading_zeros() + 1, (div << shl).leading_zeros());
+ /// // Also, `2*(div << shl)` is not more than `duo` (otherwise the first division step
+ /// // would not be able to clear the msb of `duo`)
+ /// assert!(duo < (div << (shl + 1)));
+ /// }
+ /// if full_normalization {
+ /// // Some algorithms do not need "full" normalization, which means that `duo` is
+ /// // larger than `div << shl` when the most significant bits are aligned.
+ /// assert!((div << shl) <= duo);
+ /// }
+ /// `
+ ///
+ /// Note: If the software bisection algorithm is being used in this function, it happens
+ /// that full normalization always occurs, so be careful that new algorithms are not
+ /// invisibly depending on this invariant when `full_normalization` is set to `false`.
+ $(
+ #[$unsigned_attr]
+ )*
+ fn $name(duo: $uX, div: $uX, full_normalization: bool) -> usize {
+ // We have to find the leading zeros of `div` to know where its msb (most significant
+ // set bit) is to even begin binary long division. It is also good to know where the msb
+ // of `duo` is so that useful work can be started instead of shifting `div` for all
+ // possible quotients (many division steps are wasted if `duo.leading_zeros()` is large
+ // and `div` starts out being shifted all the way to the msb). Aligning the msbs of
+ // `div` and `duo` could be done by shifting `div` left by
+ // `div.leading_zeros() - duo.leading_zeros()`, but some CPUs without division hardware
+ // also do not have single instructions for calculating `leading_zeros`. Instead of
+ // software doing two bisections to find the two `leading_zeros`, we do one bisection to
+ // find `div.leading_zeros() - duo.leading_zeros()` without actually knowing either of
+ // the leading zeros values.
+
+ let mut shl: usize;
+ if $use_lz {
+ shl = (div.leading_zeros() - duo.leading_zeros()) as usize;
+ if full_normalization {
+ if duo < (div << shl) {
+ // when the msb of `duo` and `div` are aligned, the resulting `div` may be
+ // larger than `duo`, so we decrease the shift by 1.
+ shl -= 1;
+ }
+ }
+ } else {
+ let mut test = duo;
+ shl = 0usize;
+ let mut lvl = $n >> 1;
+ loop {
+ let tmp = test >> lvl;
+ // It happens that a final `duo < (div << shl)` check is not needed, because the
+ // `div <= tmp` check insures that the msb of `test` never passes the msb of
+ // `div`, and any set bits shifted off the end of `test` would still keep
+ // `div <= tmp` true.
+ if div <= tmp {
+ test = tmp;
+ shl += lvl;
+ }
+ // narrow down bisection
+ lvl >>= 1;
+ if lvl == 0 {
+ break
+ }
+ }
+ }
+ // tests the invariants that should hold before beginning binary long division
+ /*
+ if full_normalization {
+ assert!((div << shl) <= duo);
+ }
+ if duo.leading_zeros() != (div << shl).leading_zeros() {
+ assert_eq!(duo.leading_zeros() + 1, (div << shl).leading_zeros());
+ assert!(duo < (div << (shl + 1)));
+ }
+ */
+ shl
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/src/int/specialized_div_rem/trifecta.rs b/vendor/compiler_builtins/src/int/specialized_div_rem/trifecta.rs
new file mode 100644
index 000000000..7e104053b
--- /dev/null
+++ b/vendor/compiler_builtins/src/int/specialized_div_rem/trifecta.rs
@@ -0,0 +1,386 @@
+/// Creates an unsigned division function optimized for division of integers with bitwidths
+/// larger than the largest hardware integer division supported. These functions use large radix
+/// division algorithms that require both fast division and very fast widening multiplication on the
+/// target microarchitecture. Otherwise, `impl_delegate` should be used instead.
+#[allow(unused_macros)]
+macro_rules! impl_trifecta {
+ (
+ $fn:ident, // name of the unsigned division function
+ $zero_div_fn:ident, // function called when division by zero is attempted
+ $half_division:ident, // function for division of a $uX by a $uX
+ $n_h:expr, // the number of bits in $iH or $uH
+ $uH:ident, // unsigned integer with half the bit width of $uX
+ $uX:ident, // unsigned integer with half the bit width of $uD
+ $uD:ident // unsigned integer type for the inputs and outputs of `$unsigned_name`
+ ) => {
+ /// Computes the quotient and remainder of `duo` divided by `div` and returns them as a
+ /// tuple.
+ pub fn $fn(duo: $uD, div: $uD) -> ($uD, $uD) {
+ // This is called the trifecta algorithm because it uses three main algorithms: short
+ // division for small divisors, the two possibility algorithm for large divisors, and an
+ // undersubtracting long division algorithm for intermediate cases.
+
+ // This replicates `carrying_mul` (rust-lang rfc #2417). LLVM correctly optimizes this
+ // to use a widening multiply to 128 bits on the relevant architectures.
+ fn carrying_mul(lhs: $uX, rhs: $uX) -> ($uX, $uX) {
+ let tmp = (lhs as $uD).wrapping_mul(rhs as $uD);
+ (tmp as $uX, (tmp >> ($n_h * 2)) as $uX)
+ }
+ fn carrying_mul_add(lhs: $uX, mul: $uX, add: $uX) -> ($uX, $uX) {
+ let tmp = (lhs as $uD)
+ .wrapping_mul(mul as $uD)
+ .wrapping_add(add as $uD);
+ (tmp as $uX, (tmp >> ($n_h * 2)) as $uX)
+ }
+
+ // the number of bits in a $uX
+ let n = $n_h * 2;
+
+ if div == 0 {
+ $zero_div_fn()
+ }
+
+ // Trying to use a normalization shift function will cause inelegancies in the code and
+ // inefficiencies for architectures with a native count leading zeros instruction. The
+ // undersubtracting algorithm needs both values (keeping the original `div_lz` but
+ // updating `duo_lz` multiple times), so we assume hardware support for fast
+ // `leading_zeros` calculation.
+ let div_lz = div.leading_zeros();
+ let mut duo_lz = duo.leading_zeros();
+
+ // the possible ranges of `duo` and `div` at this point:
+ // `0 <= duo < 2^n_d`
+ // `1 <= div < 2^n_d`
+
+ // quotient is 0 or 1 branch
+ if div_lz <= duo_lz {
+ // The quotient cannot be more than 1. The highest set bit of `duo` needs to be at
+ // least one place higher than `div` for the quotient to be more than 1.
+ if duo >= div {
+ return (1, duo - div);
+ } else {
+ return (0, duo);
+ }
+ }
+
+ // `_sb` is the number of significant bits (from the ones place to the highest set bit)
+ // `{2, 2^div_sb} <= duo < 2^n_d`
+ // `1 <= div < {2^duo_sb, 2^(n_d - 1)}`
+ // smaller division branch
+ if duo_lz >= n {
+ // `duo < 2^n` so it will fit in a $uX. `div` will also fit in a $uX (because of the
+ // `div_lz <= duo_lz` branch) so no numerical error.
+ let (quo, rem) = $half_division(duo as $uX, div as $uX);
+ return (quo as $uD, rem as $uD);
+ }
+
+ // `{2^n, 2^div_sb} <= duo < 2^n_d`
+ // `1 <= div < {2^duo_sb, 2^(n_d - 1)}`
+ // short division branch
+ if div_lz >= (n + $n_h) {
+ // `1 <= div < {2^duo_sb, 2^n_h}`
+
+ // It is barely possible to improve the performance of this by calculating the
+ // reciprocal and removing one `$half_division`, but only if the CPU can do fast
+ // multiplications in parallel. Other reciprocal based methods can remove two
+ // `$half_division`s, but have multiplications that cannot be done in parallel and
+ // reduce performance. I have decided to use this trivial short division method and
+ // rely on the CPU having quick divisions.
+
+ let duo_hi = (duo >> n) as $uX;
+ let div_0 = div as $uH as $uX;
+ let (quo_hi, rem_3) = $half_division(duo_hi, div_0);
+
+ let duo_mid = ((duo >> $n_h) as $uH as $uX) | (rem_3 << $n_h);
+ let (quo_1, rem_2) = $half_division(duo_mid, div_0);
+
+ let duo_lo = (duo as $uH as $uX) | (rem_2 << $n_h);
+ let (quo_0, rem_1) = $half_division(duo_lo, div_0);
+
+ return (
+ (quo_0 as $uD) | ((quo_1 as $uD) << $n_h) | ((quo_hi as $uD) << n),
+ rem_1 as $uD,
+ );
+ }
+
+ // relative leading significant bits, cannot overflow because of above branches
+ let lz_diff = div_lz - duo_lz;
+
+ // `{2^n, 2^div_sb} <= duo < 2^n_d`
+ // `2^n_h <= div < {2^duo_sb, 2^(n_d - 1)}`
+ // `mul` or `mul - 1` branch
+ if lz_diff < $n_h {
+ // Two possibility division algorithm
+
+ // The most significant bits of `duo` and `div` are within `$n_h` bits of each
+ // other. If we take the `n` most significant bits of `duo` and divide them by the
+ // corresponding bits in `div`, it produces a quotient value `quo`. It happens that
+ // `quo` or `quo - 1` will always be the correct quotient for the whole number. In
+ // other words, the bits less significant than the `n` most significant bits of
+ // `duo` and `div` can only influence the quotient to be one of two values.
+ // Because there are only two possibilities, there only needs to be one `$uH` sized
+ // division, a `$uH` by `$uD` multiplication, and only one branch with a few simple
+ // operations.
+ //
+ // Proof that the true quotient can only be `quo` or `quo - 1`.
+ // All `/` operators here are floored divisions.
+ //
+ // `shift` is the number of bits not in the higher `n` significant bits of `duo`.
+ // (definitions)
+ // 0. shift = n - duo_lz
+ // 1. duo_sig_n == duo / 2^shift
+ // 2. div_sig_n == div / 2^shift
+ // 3. quo == duo_sig_n / div_sig_n
+ //
+ //
+ // We are trying to find the true quotient, `true_quo`.
+ // 4. true_quo = duo / div. (definition)
+ //
+ // This is true because of the bits that are cut off during the bit shift.
+ // 5. duo_sig_n * 2^shift <= duo < (duo_sig_n + 1) * 2^shift.
+ // 6. div_sig_n * 2^shift <= div < (div_sig_n + 1) * 2^shift.
+ //
+ // Dividing each bound of (5) by each bound of (6) gives 4 possibilities for what
+ // `true_quo == duo / div` is bounded by:
+ // (duo_sig_n * 2^shift) / (div_sig_n * 2^shift)
+ // (duo_sig_n * 2^shift) / ((div_sig_n + 1) * 2^shift)
+ // ((duo_sig_n + 1) * 2^shift) / (div_sig_n * 2^shift)
+ // ((duo_sig_n + 1) * 2^shift) / ((div_sig_n + 1) * 2^shift)
+ //
+ // Simplifying each of these four:
+ // duo_sig_n / div_sig_n
+ // duo_sig_n / (div_sig_n + 1)
+ // (duo_sig_n + 1) / div_sig_n
+ // (duo_sig_n + 1) / (div_sig_n + 1)
+ //
+ // Taking the smallest and the largest of these as the low and high bounds
+ // and replacing `duo / div` with `true_quo`:
+ // 7. duo_sig_n / (div_sig_n + 1) <= true_quo < (duo_sig_n + 1) / div_sig_n
+ //
+ // The `lz_diff < n_h` conditional on this branch makes sure that `div_sig_n` is at
+ // least `2^n_h`, and the `div_lz <= duo_lz` branch makes sure that the highest bit
+ // of `div_sig_n` is not the `2^(n - 1)` bit.
+ // 8. `2^(n - 1) <= duo_sig_n < 2^n`
+ // 9. `2^n_h <= div_sig_n < 2^(n - 1)`
+ //
+ // We want to prove that either
+ // `(duo_sig_n + 1) / div_sig_n == duo_sig_n / (div_sig_n + 1)` or that
+ // `(duo_sig_n + 1) / div_sig_n == duo_sig_n / (div_sig_n + 1) + 1`.
+ //
+ // We also want to prove that `quo` is one of these:
+ // `duo_sig_n / div_sig_n == duo_sig_n / (div_sig_n + 1)` or
+ // `duo_sig_n / div_sig_n == (duo_sig_n + 1) / div_sig_n`.
+ //
+ // When 1 is added to the numerator of `duo_sig_n / div_sig_n` to produce
+ // `(duo_sig_n + 1) / div_sig_n`, it is not possible that the value increases by
+ // more than 1 with floored integer arithmetic and `div_sig_n != 0`. Consider
+ // `x/y + 1 < (x + 1)/y` <=> `x/y + 1 < x/y + 1/y` <=> `1 < 1/y` <=> `y < 1`.
+ // `div_sig_n` is a nonzero integer. Thus,
+ // 10. `duo_sig_n / div_sig_n == (duo_sig_n + 1) / div_sig_n` or
+ // `(duo_sig_n / div_sig_n) + 1 == (duo_sig_n + 1) / div_sig_n.
+ //
+ // When 1 is added to the denominator of `duo_sig_n / div_sig_n` to produce
+ // `duo_sig_n / (div_sig_n + 1)`, it is not possible that the value decreases by
+ // more than 1 with the bounds (8) and (9). Consider `x/y - 1 <= x/(y + 1)` <=>
+ // `(x - y)/y < x/(y + 1)` <=> `(y + 1)*(x - y) < x*y` <=> `x*y - y*y + x - y < x*y`
+ // <=> `x < y*y + y`. The smallest value of `div_sig_n` is `2^n_h` and the largest
+ // value of `duo_sig_n` is `2^n - 1`. Substituting reveals `2^n - 1 < 2^n + 2^n_h`.
+ // Thus,
+ // 11. `duo_sig_n / div_sig_n == duo_sig_n / (div_sig_n + 1)` or
+ // `(duo_sig_n / div_sig_n) - 1` == duo_sig_n / (div_sig_n + 1)`
+ //
+ // Combining both (10) and (11), we know that
+ // `quo - 1 <= duo_sig_n / (div_sig_n + 1) <= true_quo
+ // < (duo_sig_n + 1) / div_sig_n <= quo + 1` and therefore:
+ // 12. quo - 1 <= true_quo < quo + 1
+ //
+ // In a lot of division algorithms using smaller divisions to construct a larger
+ // division, we often encounter a situation where the approximate `quo` value
+ // calculated from a smaller division is multiple increments away from the true
+ // `quo` value. In those algorithms, multiple correction steps have to be applied.
+ // Those correction steps may need more multiplications to test `duo - (quo*div)`
+ // again. Because of the fact that our `quo` can only be one of two values, we can
+ // see if `duo - (quo*div)` overflows. If it did overflow, then we know that we have
+ // the larger of the two values (since the true quotient is unique, and any larger
+ // quotient will cause `duo - (quo*div)` to be negative). Also because there is only
+ // one correction needed, we can calculate the remainder `duo - (true_quo*div) ==
+ // duo - ((quo - 1)*div) == duo - (quo*div - div) == duo + div - quo*div`.
+ // If `duo - (quo*div)` did not overflow, then we have the correct answer.
+ let shift = n - duo_lz;
+ let duo_sig_n = (duo >> shift) as $uX;
+ let div_sig_n = (div >> shift) as $uX;
+ let quo = $half_division(duo_sig_n, div_sig_n).0;
+
+ // The larger `quo` value can overflow `$uD` in the right circumstances. This is a
+ // manual `carrying_mul_add` with overflow checking.
+ let div_lo = div as $uX;
+ let div_hi = (div >> n) as $uX;
+ let (tmp_lo, carry) = carrying_mul(quo, div_lo);
+ let (tmp_hi, overflow) = carrying_mul_add(quo, div_hi, carry);
+ let tmp = (tmp_lo as $uD) | ((tmp_hi as $uD) << n);
+ if (overflow != 0) || (duo < tmp) {
+ return (
+ (quo - 1) as $uD,
+ // Both the addition and subtraction can overflow, but when combined end up
+ // as a correct positive number.
+ duo.wrapping_add(div).wrapping_sub(tmp),
+ );
+ } else {
+ return (quo as $uD, duo - tmp);
+ }
+ }
+
+ // Undersubtracting long division algorithm.
+ // Instead of clearing a minimum of 1 bit from `duo` per iteration via binary long
+ // division, `n_h - 1` bits are cleared per iteration with this algorithm. It is a more
+ // complicated version of regular long division. Most integer division algorithms tend
+ // to guess a part of the quotient, and may have a larger quotient than the true
+ // quotient (which when multiplied by `div` will "oversubtract" the original dividend).
+ // They then check if the quotient was in fact too large and then have to correct it.
+ // This long division algorithm has been carefully constructed to always underguess the
+ // quotient by slim margins. This allows different subalgorithms to be blindly jumped to
+ // without needing an extra correction step.
+ //
+ // The only problem is that this subalgorithm will not work for many ranges of `duo` and
+ // `div`. Fortunately, the short division, two possibility algorithm, and other simple
+ // cases happen to exactly fill these gaps.
+ //
+ // For an example, consider the division of 76543210 by 213 and assume that `n_h` is
+ // equal to two decimal digits (note: we are working with base 10 here for readability).
+ // The first `sig_n_h` part of the divisor (21) is taken and is incremented by 1 to
+ // prevent oversubtraction. We also record the number of extra places not a part of
+ // the `sig_n` or `sig_n_h` parts.
+ //
+ // sig_n_h == 2 digits, sig_n == 4 digits
+ //
+ // vvvv <- `duo_sig_n`
+ // 76543210
+ // ^^^^ <- extra places in duo, `duo_extra == 4`
+ //
+ // vv <- `div_sig_n_h`
+ // 213
+ // ^ <- extra places in div, `div_extra == 1`
+ //
+ // The difference in extra places, `duo_extra - div_extra == extra_shl == 3`, is used
+ // for shifting partial sums in the long division.
+ //
+ // In the first step, the first `sig_n` part of duo (7654) is divided by
+ // `div_sig_n_h_add_1` (22), which results in a partial quotient of 347. This is
+ // multiplied by the whole divisor to make 73911, which is shifted left by `extra_shl`
+ // and subtracted from duo. The partial quotient is also shifted left by `extra_shl` to
+ // be added to `quo`.
+ //
+ // 347
+ // ________
+ // |76543210
+ // -73911
+ // 2632210
+ //
+ // Variables dependent on duo have to be updated:
+ //
+ // vvvv <- `duo_sig_n == 2632`
+ // 2632210
+ // ^^^ <- `duo_extra == 3`
+ //
+ // `extra_shl == 2`
+ //
+ // Two more steps are taken after this and then duo fits into `n` bits, and then a final
+ // normal long division step is made. The partial quotients are all progressively added
+ // to each other in the actual algorithm, but here I have left them all in a tower that
+ // can be added together to produce the quotient, 359357.
+ //
+ // 14
+ // 443
+ // 119
+ // 347
+ // ________
+ // |76543210
+ // -73911
+ // 2632210
+ // -25347
+ // 97510
+ // -94359
+ // 3151
+ // -2982
+ // 169 <- the remainder
+
+ let mut duo = duo;
+ let mut quo: $uD = 0;
+
+ // The number of lesser significant bits not a part of `div_sig_n_h`
+ let div_extra = (n + $n_h) - div_lz;
+
+ // The most significant `n_h` bits of div
+ let div_sig_n_h = (div >> div_extra) as $uH;
+
+ // This needs to be a `$uX` in case of overflow from the increment
+ let div_sig_n_h_add1 = (div_sig_n_h as $uX) + 1;
+
+ // `{2^n, 2^(div_sb + n_h)} <= duo < 2^n_d`
+ // `2^n_h <= div < {2^(duo_sb - n_h), 2^n}`
+ loop {
+ // The number of lesser significant bits not a part of `duo_sig_n`
+ let duo_extra = n - duo_lz;
+
+ // The most significant `n` bits of `duo`
+ let duo_sig_n = (duo >> duo_extra) as $uX;
+
+ // the two possibility algorithm requires that the difference between msbs is less
+ // than `n_h`, so the comparison is `<=` here.
+ if div_extra <= duo_extra {
+ // Undersubtracting long division step
+ let quo_part = $half_division(duo_sig_n, div_sig_n_h_add1).0 as $uD;
+ let extra_shl = duo_extra - div_extra;
+
+ // Addition to the quotient.
+ quo += (quo_part << extra_shl);
+
+ // Subtraction from `duo`. At least `n_h - 1` bits are cleared from `duo` here.
+ duo -= (div.wrapping_mul(quo_part) << extra_shl);
+ } else {
+ // Two possibility algorithm
+ let shift = n - duo_lz;
+ let duo_sig_n = (duo >> shift) as $uX;
+ let div_sig_n = (div >> shift) as $uX;
+ let quo_part = $half_division(duo_sig_n, div_sig_n).0;
+ let div_lo = div as $uX;
+ let div_hi = (div >> n) as $uX;
+
+ let (tmp_lo, carry) = carrying_mul(quo_part, div_lo);
+ // The undersubtracting long division algorithm has already run once, so
+ // overflow beyond `$uD` bits is not possible here
+ let (tmp_hi, _) = carrying_mul_add(quo_part, div_hi, carry);
+ let tmp = (tmp_lo as $uD) | ((tmp_hi as $uD) << n);
+
+ if duo < tmp {
+ return (
+ quo + ((quo_part - 1) as $uD),
+ duo.wrapping_add(div).wrapping_sub(tmp),
+ );
+ } else {
+ return (quo + (quo_part as $uD), duo - tmp);
+ }
+ }
+
+ duo_lz = duo.leading_zeros();
+
+ if div_lz <= duo_lz {
+ // quotient can have 0 or 1 added to it
+ if div <= duo {
+ return (quo + 1, duo - div);
+ } else {
+ return (quo, duo);
+ }
+ }
+
+ // This can only happen if `div_sd < n` (because of previous "quo = 0 or 1"
+ // branches), but it is not worth it to unroll further.
+ if n <= duo_lz {
+ // simple division and addition
+ let tmp = $half_division(duo as $uX, div as $uX);
+ return (quo + (tmp.0 as $uD), tmp.1 as $uD);
+ }
+ }
+ }
+ };
+}
diff --git a/vendor/compiler_builtins/src/int/udiv.rs b/vendor/compiler_builtins/src/int/udiv.rs
new file mode 100644
index 000000000..fb09f87d8
--- /dev/null
+++ b/vendor/compiler_builtins/src/int/udiv.rs
@@ -0,0 +1,106 @@
+#[cfg(not(feature = "public-test-deps"))]
+pub(crate) use int::specialized_div_rem::*;
+
+#[cfg(feature = "public-test-deps")]
+pub use int::specialized_div_rem::*;
+
+intrinsics! {
+ #[maybe_use_optimized_c_shim]
+ #[arm_aeabi_alias = __aeabi_uidiv]
+ /// Returns `n / d`
+ pub extern "C" fn __udivsi3(n: u32, d: u32) -> u32 {
+ u32_div_rem(n, d).0
+ }
+
+ #[maybe_use_optimized_c_shim]
+ /// Returns `n % d`
+ pub extern "C" fn __umodsi3(n: u32, d: u32) -> u32 {
+ u32_div_rem(n, d).1
+ }
+
+ #[avr_skip]
+ #[maybe_use_optimized_c_shim]
+ /// Returns `n / d` and sets `*rem = n % d`
+ pub extern "C" fn __udivmodsi4(n: u32, d: u32, rem: Option<&mut u32>) -> u32 {
+ let quo_rem = u32_div_rem(n, d);
+ if let Some(rem) = rem {
+ *rem = quo_rem.1;
+ }
+ quo_rem.0
+ }
+
+ #[avr_skip]
+ #[maybe_use_optimized_c_shim]
+ /// Returns `n / d`
+ pub extern "C" fn __udivdi3(n: u64, d: u64) -> u64 {
+ u64_div_rem(n, d).0
+ }
+
+ #[avr_skip]
+ #[maybe_use_optimized_c_shim]
+ /// Returns `n % d`
+ pub extern "C" fn __umoddi3(n: u64, d: u64) -> u64 {
+ u64_div_rem(n, d).1
+ }
+
+ #[avr_skip]
+ #[maybe_use_optimized_c_shim]
+ /// Returns `n / d` and sets `*rem = n % d`
+ pub extern "C" fn __udivmoddi4(n: u64, d: u64, rem: Option<&mut u64>) -> u64 {
+ let quo_rem = u64_div_rem(n, d);
+ if let Some(rem) = rem {
+ *rem = quo_rem.1;
+ }
+ quo_rem.0
+ }
+
+ // Note: we use block configuration and not `if cfg!(...)`, because we need to entirely disable
+ // the existence of `u128_div_rem` to get 32-bit SPARC to compile, see `u128_divide_sparc` docs.
+
+ #[avr_skip]
+ #[win64_128bit_abi_hack]
+ /// Returns `n / d`
+ pub extern "C" fn __udivti3(n: u128, d: u128) -> u128 {
+ #[cfg(not(any(target_arch = "sparc", target_arch = "sparc64")))] {
+ u128_div_rem(n, d).0
+ }
+ #[cfg(any(target_arch = "sparc", target_arch = "sparc64"))] {
+ u128_divide_sparc(n, d, &mut 0)
+ }
+ }
+
+ #[avr_skip]
+ #[win64_128bit_abi_hack]
+ /// Returns `n % d`
+ pub extern "C" fn __umodti3(n: u128, d: u128) -> u128 {
+ #[cfg(not(any(target_arch = "sparc", target_arch = "sparc64")))] {
+ u128_div_rem(n, d).1
+ }
+ #[cfg(any(target_arch = "sparc", target_arch = "sparc64"))] {
+ let mut rem = 0;
+ u128_divide_sparc(n, d, &mut rem);
+ rem
+ }
+ }
+
+ #[avr_skip]
+ #[win64_128bit_abi_hack]
+ /// Returns `n / d` and sets `*rem = n % d`
+ pub extern "C" fn __udivmodti4(n: u128, d: u128, rem: Option<&mut u128>) -> u128 {
+ #[cfg(not(any(target_arch = "sparc", target_arch = "sparc64")))] {
+ let quo_rem = u128_div_rem(n, d);
+ if let Some(rem) = rem {
+ *rem = quo_rem.1;
+ }
+ quo_rem.0
+ }
+ #[cfg(any(target_arch = "sparc", target_arch = "sparc64"))] {
+ let mut tmp = 0;
+ let quo = u128_divide_sparc(n, d, &mut tmp);
+ if let Some(rem) = rem {
+ *rem = tmp;
+ }
+ quo
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/src/lib.rs b/vendor/compiler_builtins/src/lib.rs
new file mode 100644
index 000000000..009923d27
--- /dev/null
+++ b/vendor/compiler_builtins/src/lib.rs
@@ -0,0 +1,72 @@
+#![cfg_attr(feature = "compiler-builtins", compiler_builtins)]
+#![cfg_attr(not(feature = "no-asm"), feature(asm))]
+#![feature(abi_unadjusted)]
+#![cfg_attr(not(feature = "no-asm"), feature(global_asm))]
+#![feature(cfg_target_has_atomic)]
+#![feature(compiler_builtins)]
+#![feature(core_ffi_c)]
+#![feature(core_intrinsics)]
+#![feature(lang_items)]
+#![feature(linkage)]
+#![feature(naked_functions)]
+#![feature(repr_simd)]
+#![no_builtins]
+#![no_std]
+#![allow(unused_features)]
+// We use `u128` in a whole bunch of places which we currently agree with the
+// compiler on ABIs and such, so we should be "good enough" for now and changes
+// to the `u128` ABI will be reflected here.
+#![allow(improper_ctypes, improper_ctypes_definitions)]
+// `mem::swap` cannot be used because it may generate references to memcpy in unoptimized code.
+#![allow(clippy::manual_swap)]
+// Support compiling on both stage0 and stage1 which may differ in supported stable features.
+#![allow(stable_features)]
+
+// We disable #[no_mangle] for tests so that we can verify the test results
+// against the native compiler-rt implementations of the builtins.
+
+// NOTE cfg(all(feature = "c", ..)) indicate that compiler-rt provides an arch optimized
+// implementation of that intrinsic and we'll prefer to use that
+
+// NOTE(aapcs, aeabi, arm) ARM targets use intrinsics named __aeabi_* instead of the intrinsics
+// that follow "x86 naming convention" (e.g. addsf3). Those aeabi intrinsics must adhere to the
+// AAPCS calling convention (`extern "aapcs"`) because that's how LLVM will call them.
+
+#[cfg(test)]
+extern crate core;
+
+#[macro_use]
+mod macros;
+
+pub mod float;
+pub mod int;
+
+#[cfg(any(
+ all(target_family = "wasm", target_os = "unknown"),
+ all(target_arch = "x86_64", target_os = "uefi"),
+ all(target_arch = "arm", target_os = "none"),
+ all(target_vendor = "fortanix", target_env = "sgx")
+))]
+pub mod math;
+pub mod mem;
+
+#[cfg(target_arch = "arm")]
+pub mod arm;
+
+#[cfg(all(
+ kernel_user_helpers,
+ any(target_os = "linux", target_os = "android"),
+ target_arch = "arm"
+))]
+pub mod arm_linux;
+
+#[cfg(any(target_arch = "riscv32", target_arch = "riscv64"))]
+pub mod riscv;
+
+#[cfg(target_arch = "x86")]
+pub mod x86;
+
+#[cfg(target_arch = "x86_64")]
+pub mod x86_64;
+
+pub mod probestack;
diff --git a/vendor/compiler_builtins/src/macros.rs b/vendor/compiler_builtins/src/macros.rs
new file mode 100644
index 000000000..518a18d4d
--- /dev/null
+++ b/vendor/compiler_builtins/src/macros.rs
@@ -0,0 +1,448 @@
+//! Macros shared throughout the compiler-builtins implementation
+
+/// Changes the visibility to `pub` if feature "public-test-deps" is set
+#[cfg(not(feature = "public-test-deps"))]
+macro_rules! public_test_dep {
+ ($(#[$($meta:meta)*])* pub(crate) $ident:ident $($tokens:tt)*) => {
+ $(#[$($meta)*])* pub(crate) $ident $($tokens)*
+ };
+}
+
+/// Changes the visibility to `pub` if feature "public-test-deps" is set
+#[cfg(feature = "public-test-deps")]
+macro_rules! public_test_dep {
+ {$(#[$($meta:meta)*])* pub(crate) $ident:ident $($tokens:tt)*} => {
+ $(#[$($meta)*])* pub $ident $($tokens)*
+ };
+}
+
+/// The "main macro" used for defining intrinsics.
+///
+/// The compiler-builtins library is super platform-specific with tons of crazy
+/// little tweaks for various platforms. As a result it *could* involve a lot of
+/// #[cfg] and macro soup, but the intention is that this macro alleviates a lot
+/// of that complexity. Ideally this macro has all the weird ABI things
+/// platforms need and elsewhere in this library it just looks like normal Rust
+/// code.
+///
+/// This macro is structured to be invoked with a bunch of functions that looks
+/// like:
+///
+/// intrinsics! {
+/// pub extern "C" fn foo(a: i32) -> u32 {
+/// // ...
+/// }
+///
+/// #[nonstandard_attribute]
+/// pub extern "C" fn bar(a: i32) -> u32 {
+/// // ...
+/// }
+/// }
+///
+/// Each function is defined in a manner that looks like a normal Rust function.
+/// The macro then accepts a few nonstandard attributes that can decorate
+/// various functions. Each of the attributes is documented below with what it
+/// can do, and each of them slightly tweaks how further expansion happens.
+///
+/// A quick overview of attributes supported right now are:
+///
+/// * `maybe_use_optimized_c_shim` - indicates that the Rust implementation is
+/// ignored if an optimized C version was compiled.
+/// * `aapcs_on_arm` - forces the ABI of the function to be `"aapcs"` on ARM and
+/// the specified ABI everywhere else.
+/// * `unadjusted_on_win64` - like `aapcs_on_arm` this switches to the
+/// `"unadjusted"` abi on Win64 and the specified abi elsewhere.
+/// * `win64_128bit_abi_hack` - this attribute is used for 128-bit integer
+/// intrinsics where the ABI is slightly tweaked on Windows platforms, but
+/// it's a normal ABI elsewhere for returning a 128 bit integer.
+/// * `arm_aeabi_alias` - handles the "aliasing" of various intrinsics on ARM
+/// their otherwise typical names to other prefixed ones.
+///
+macro_rules! intrinsics {
+ () => ();
+
+ // Support cfg_attr:
+ (
+ #[cfg_attr($e:meta, $($attr:tt)*)]
+ $(#[$($attrs:tt)*])*
+ pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
+ $($body:tt)*
+ }
+ $($rest:tt)*
+ ) => (
+ #[cfg($e)]
+ intrinsics! {
+ #[$($attr)*]
+ $(#[$($attrs)*])*
+ pub extern $abi fn $name($($argname: $ty),*) $(-> $ret)? {
+ $($body)*
+ }
+ }
+
+ #[cfg(not($e))]
+ intrinsics! {
+ $(#[$($attrs)*])*
+ pub extern $abi fn $name($($argname: $ty),*) $(-> $ret)? {
+ $($body)*
+ }
+ }
+
+ intrinsics!($($rest)*);
+ );
+
+ // Right now there's a bunch of architecture-optimized intrinsics in the
+ // stock compiler-rt implementation. Not all of these have been ported over
+ // to Rust yet so when the `c` feature of this crate is enabled we fall back
+ // to the architecture-specific versions which should be more optimized. The
+ // purpose of this macro is to easily allow specifying this.
+ //
+ // The `#[maybe_use_optimized_c_shim]` attribute indicates that this
+ // intrinsic may have an optimized C version. In these situations the build
+ // script, if the C code is enabled and compiled, will emit a cfg directive
+ // to get passed to rustc for our compilation. If that cfg is set we skip
+ // the Rust implementation, but if the attribute is not enabled then we
+ // compile in the Rust implementation.
+ (
+ #[maybe_use_optimized_c_shim]
+ $(#[$($attr:tt)*])*
+ pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
+ $($body:tt)*
+ }
+
+ $($rest:tt)*
+ ) => (
+ #[cfg($name = "optimized-c")]
+ pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ extern $abi {
+ fn $name($($argname: $ty),*) $(-> $ret)?;
+ }
+ unsafe {
+ $name($($argname),*)
+ }
+ }
+
+ #[cfg(not($name = "optimized-c"))]
+ intrinsics! {
+ $(#[$($attr)*])*
+ pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+ }
+
+ intrinsics!($($rest)*);
+ );
+
+ // We recognize the `#[aapcs_on_arm]` attribute here and generate the
+ // same intrinsic but force it to have the `"aapcs"` calling convention on
+ // ARM and `"C"` elsewhere.
+ (
+ #[aapcs_on_arm]
+ $(#[$($attr:tt)*])*
+ pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
+ $($body:tt)*
+ }
+
+ $($rest:tt)*
+ ) => (
+ #[cfg(target_arch = "arm")]
+ intrinsics! {
+ $(#[$($attr)*])*
+ pub extern "aapcs" fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+ }
+
+ #[cfg(not(target_arch = "arm"))]
+ intrinsics! {
+ $(#[$($attr)*])*
+ pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+ }
+
+ intrinsics!($($rest)*);
+ );
+
+ // Like aapcs above we recognize an attribute for the "unadjusted" abi on
+ // win64 for some methods.
+ (
+ #[unadjusted_on_win64]
+ $(#[$($attr:tt)*])*
+ pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
+ $($body:tt)*
+ }
+
+ $($rest:tt)*
+ ) => (
+ #[cfg(all(windows, target_pointer_width = "64"))]
+ intrinsics! {
+ $(#[$($attr)*])*
+ pub extern "unadjusted" fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+ }
+
+ #[cfg(not(all(windows, target_pointer_width = "64")))]
+ intrinsics! {
+ $(#[$($attr)*])*
+ pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+ }
+
+ intrinsics!($($rest)*);
+ );
+
+ // Some intrinsics on win64 which return a 128-bit integer have an.. unusual
+ // calling convention. That's managed here with this "abi hack" which alters
+ // the generated symbol's ABI.
+ //
+ // This will still define a function in this crate with the given name and
+ // signature, but the actual symbol for the intrinsic may have a slightly
+ // different ABI on win64.
+ (
+ #[win64_128bit_abi_hack]
+ $(#[$($attr:tt)*])*
+ pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
+ $($body:tt)*
+ }
+
+ $($rest:tt)*
+ ) => (
+ #[cfg(all(windows, target_arch = "x86_64"))]
+ $(#[$($attr)*])*
+ pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+
+ #[cfg(all(windows, target_arch = "x86_64"))]
+ pub mod $name {
+ #[cfg_attr(not(feature = "mangled-names"), no_mangle)]
+ pub extern $abi fn $name( $($argname: $ty),* )
+ -> ::macros::win64_128bit_abi_hack::U64x2
+ {
+ let e: $($ret)? = super::$name($($argname),*);
+ ::macros::win64_128bit_abi_hack::U64x2::from(e)
+ }
+ }
+
+ #[cfg(not(all(windows, target_arch = "x86_64")))]
+ intrinsics! {
+ $(#[$($attr)*])*
+ pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+ }
+
+ intrinsics!($($rest)*);
+ );
+
+ // A bunch of intrinsics on ARM are aliased in the standard compiler-rt
+ // build under `__aeabi_*` aliases, and LLVM will call these instead of the
+ // original function. The aliasing here is used to generate these symbols in
+ // the object file.
+ (
+ #[arm_aeabi_alias = $alias:ident]
+ $(#[$($attr:tt)*])*
+ pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
+ $($body:tt)*
+ }
+
+ $($rest:tt)*
+ ) => (
+ #[cfg(target_arch = "arm")]
+ pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub mod $name {
+ #[cfg_attr(not(feature = "mangled-names"), no_mangle)]
+ pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ super::$name($($argname),*)
+ }
+ }
+
+ #[cfg(target_arch = "arm")]
+ pub mod $alias {
+ #[cfg_attr(not(feature = "mangled-names"), no_mangle)]
+ pub extern "aapcs" fn $alias( $($argname: $ty),* ) $(-> $ret)? {
+ super::$name($($argname),*)
+ }
+ }
+
+ #[cfg(not(target_arch = "arm"))]
+ intrinsics! {
+ $(#[$($attr)*])*
+ pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+ }
+
+ intrinsics!($($rest)*);
+ );
+
+ // C mem* functions are only generated when the "mem" feature is enabled.
+ (
+ #[mem_builtin]
+ $(#[$($attr:tt)*])*
+ pub unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
+ $($body:tt)*
+ }
+
+ $($rest:tt)*
+ ) => (
+ $(#[$($attr)*])*
+ pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+
+ #[cfg(feature = "mem")]
+ pub mod $name {
+ $(#[$($attr)*])*
+ #[cfg_attr(not(feature = "mangled-names"), no_mangle)]
+ pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ super::$name($($argname),*)
+ }
+ }
+
+ intrinsics!($($rest)*);
+ );
+
+ // Naked functions are special: we can't generate wrappers for them since
+ // they use a custom calling convention.
+ (
+ #[naked]
+ $(#[$($attr:tt)*])*
+ pub unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
+ $($body:tt)*
+ }
+
+ $($rest:tt)*
+ ) => (
+ pub mod $name {
+ #[naked]
+ $(#[$($attr)*])*
+ #[cfg_attr(not(feature = "mangled-names"), no_mangle)]
+ pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+ }
+
+ intrinsics!($($rest)*);
+ );
+
+ // For division and modulo, AVR uses a custom calling conventionĀ¹ that does
+ // not match our definitions here. Ideally we would just use hand-written
+ // naked functions, but that's quite a lot of code to portĀ² - so for the
+ // time being we are just ignoring the problematic functions, letting
+ // avr-gcc (which is required to compile to AVR anyway) link them from
+ // libgcc.
+ //
+ // Ā¹ https://gcc.gnu.org/wiki/avr-gcc (see "Exceptions to the Calling
+ // Convention")
+ // Ā² https://github.com/gcc-mirror/gcc/blob/31048012db98f5ec9c2ba537bfd850374bdd771f/libgcc/config/avr/lib1funcs.S
+ (
+ #[avr_skip]
+ $(#[$($attr:tt)*])*
+ pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
+ $($body:tt)*
+ }
+
+ $($rest:tt)*
+ ) => (
+ #[cfg(not(target_arch = "avr"))]
+ intrinsics! {
+ $(#[$($attr)*])*
+ pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+ }
+
+ intrinsics!($($rest)*);
+ );
+
+ // This is the final catch-all rule. At this point we generate an
+ // intrinsic with a conditional `#[no_mangle]` directive to avoid
+ // interfering with duplicate symbols and whatnot during testing.
+ //
+ // The implementation is placed in a separate module, to take advantage
+ // of the fact that rustc partitions functions into code generation
+ // units based on module they are defined in. As a result we will have
+ // a separate object file for each intrinsic. For further details see
+ // corresponding PR in rustc https://github.com/rust-lang/rust/pull/70846
+ //
+ // After the intrinsic is defined we just continue with the rest of the
+ // input we were given.
+ (
+ $(#[$($attr:tt)*])*
+ pub extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
+ $($body:tt)*
+ }
+
+ $($rest:tt)*
+ ) => (
+ $(#[$($attr)*])*
+ pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+
+ pub mod $name {
+ $(#[$($attr)*])*
+ #[cfg_attr(not(feature = "mangled-names"), no_mangle)]
+ pub extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ super::$name($($argname),*)
+ }
+ }
+
+ intrinsics!($($rest)*);
+ );
+
+ // Same as the above for unsafe functions.
+ (
+ $(#[$($attr:tt)*])*
+ pub unsafe extern $abi:tt fn $name:ident( $($argname:ident: $ty:ty),* ) $(-> $ret:ty)? {
+ $($body:tt)*
+ }
+
+ $($rest:tt)*
+ ) => (
+ $(#[$($attr)*])*
+ pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ $($body)*
+ }
+
+ pub mod $name {
+ $(#[$($attr)*])*
+ #[cfg_attr(not(feature = "mangled-names"), no_mangle)]
+ pub unsafe extern $abi fn $name( $($argname: $ty),* ) $(-> $ret)? {
+ super::$name($($argname),*)
+ }
+ }
+
+ intrinsics!($($rest)*);
+ );
+}
+
+// Hack for LLVM expectations for ABI on windows. This is used by the
+// `#[win64_128bit_abi_hack]` attribute recognized above
+#[cfg(all(windows, target_pointer_width = "64"))]
+pub mod win64_128bit_abi_hack {
+ #[repr(simd)]
+ pub struct U64x2(u64, u64);
+
+ impl From<i128> for U64x2 {
+ fn from(i: i128) -> U64x2 {
+ use int::DInt;
+ let j = i as u128;
+ U64x2(j.lo(), j.hi())
+ }
+ }
+
+ impl From<u128> for U64x2 {
+ fn from(i: u128) -> U64x2 {
+ use int::DInt;
+ U64x2(i.lo(), i.hi())
+ }
+ }
+}
diff --git a/vendor/compiler_builtins/src/math.rs b/vendor/compiler_builtins/src/math.rs
new file mode 100644
index 000000000..fa59753f8
--- /dev/null
+++ b/vendor/compiler_builtins/src/math.rs
@@ -0,0 +1,117 @@
+#[allow(dead_code)]
+#[path = "../libm/src/math/mod.rs"]
+mod libm;
+
+macro_rules! no_mangle {
+ ($(fn $fun:ident($($iid:ident : $ity:ty),+) -> $oty:ty;)+) => {
+ intrinsics! {
+ $(
+ pub extern "C" fn $fun($($iid: $ity),+) -> $oty {
+ self::libm::$fun($($iid),+)
+ }
+ )+
+ }
+ }
+}
+
+#[cfg(any(
+ all(
+ target_family = "wasm",
+ target_os = "unknown",
+ not(target_env = "wasi")
+ ),
+ all(target_arch = "x86_64", target_os = "uefi"),
+ all(target_arch = "xtensa", target_os = "none"),
+ all(target_vendor = "fortanix", target_env = "sgx")
+))]
+no_mangle! {
+ fn acos(x: f64) -> f64;
+ fn asin(x: f64) -> f64;
+ fn cbrt(x: f64) -> f64;
+ fn expm1(x: f64) -> f64;
+ fn hypot(x: f64, y: f64) -> f64;
+ fn tan(x: f64) -> f64;
+ fn cos(x: f64) -> f64;
+ fn expf(x: f32) -> f32;
+ fn log2(x: f64) -> f64;
+ fn log2f(x: f32) -> f32;
+ fn log10(x: f64) -> f64;
+ fn log10f(x: f32) -> f32;
+ fn log(x: f64) -> f64;
+ fn logf(x: f32) -> f32;
+ fn fmin(x: f64, y: f64) -> f64;
+ fn fminf(x: f32, y: f32) -> f32;
+ fn fmax(x: f64, y: f64) -> f64;
+ fn fmaxf(x: f32, y: f32) -> f32;
+ fn round(x: f64) -> f64;
+ fn roundf(x: f32) -> f32;
+ fn sin(x: f64) -> f64;
+ fn pow(x: f64, y: f64) -> f64;
+ fn powf(x: f32, y: f32) -> f32;
+ fn fmod(x: f64, y: f64) -> f64;
+ fn fmodf(x: f32, y: f32) -> f32;
+ fn acosf(n: f32) -> f32;
+ fn atan2f(a: f32, b: f32) -> f32;
+ fn atanf(n: f32) -> f32;
+ fn coshf(n: f32) -> f32;
+ fn expm1f(n: f32) -> f32;
+ fn fdim(a: f64, b: f64) -> f64;
+ fn fdimf(a: f32, b: f32) -> f32;
+ fn log1pf(n: f32) -> f32;
+ fn sinhf(n: f32) -> f32;
+ fn tanhf(n: f32) -> f32;
+ fn ldexp(f: f64, n: i32) -> f64;
+ fn ldexpf(f: f32, n: i32) -> f32;
+}
+
+#[cfg(any(
+ all(
+ target_family = "wasm",
+ target_os = "unknown",
+ not(target_env = "wasi")
+ ),
+ all(target_arch = "xtensa", target_os = "none"),
+ all(target_vendor = "fortanix", target_env = "sgx")
+))]
+no_mangle! {
+ fn atan(x: f64) -> f64;
+ fn atan2(x: f64, y: f64) -> f64;
+ fn cosh(x: f64) -> f64;
+ fn log1p(x: f64) -> f64;
+ fn sinh(x: f64) -> f64;
+ fn tanh(x: f64) -> f64;
+ fn cosf(x: f32) -> f32;
+ fn exp(x: f64) -> f64;
+ fn sinf(x: f32) -> f32;
+ fn exp2(x: f64) -> f64;
+ fn exp2f(x: f32) -> f32;
+ fn fma(x: f64, y: f64, z: f64) -> f64;
+ fn fmaf(x: f32, y: f32, z: f32) -> f32;
+ fn asinf(n: f32) -> f32;
+ fn cbrtf(n: f32) -> f32;
+ fn hypotf(x: f32, y: f32) -> f32;
+ fn tanf(n: f32) -> f32;
+}
+
+#[cfg(all(target_vendor = "fortanix", target_env = "sgx"))]
+no_mangle! {
+ fn ceil(x: f64) -> f64;
+ fn ceilf(x: f32) -> f32;
+ fn floor(x: f64) -> f64;
+ fn floorf(x: f32) -> f32;
+ fn trunc(x: f64) -> f64;
+ fn truncf(x: f32) -> f32;
+}
+
+// only for the thumb*-none-eabi* targets
+#[cfg(all(target_arch = "arm", target_os = "none"))]
+no_mangle! {
+ fn fmin(x: f64, y: f64) -> f64;
+ fn fminf(x: f32, y: f32) -> f32;
+ fn fmax(x: f64, y: f64) -> f64;
+ fn fmaxf(x: f32, y: f32) -> f32;
+ // `f64 % f64`
+ fn fmod(x: f64, y: f64) -> f64;
+ // `f32 % f32`
+ fn fmodf(x: f32, y: f32) -> f32;
+}
diff --git a/vendor/compiler_builtins/src/mem/impls.rs b/vendor/compiler_builtins/src/mem/impls.rs
new file mode 100644
index 000000000..815132425
--- /dev/null
+++ b/vendor/compiler_builtins/src/mem/impls.rs
@@ -0,0 +1,267 @@
+use core::intrinsics::likely;
+
+const WORD_SIZE: usize = core::mem::size_of::<usize>();
+const WORD_MASK: usize = WORD_SIZE - 1;
+
+// If the number of bytes involved exceed this threshold we will opt in word-wise copy.
+// The value here selected is max(2 * WORD_SIZE, 16):
+// * We need at least 2 * WORD_SIZE bytes to guarantee that at least 1 word will be copied through
+// word-wise copy.
+// * The word-wise copy logic needs to perform some checks so it has some small overhead.
+// ensures that even on 32-bit platforms we have copied at least 8 bytes through
+// word-wise copy so the saving of word-wise copy outweights the fixed overhead.
+const WORD_COPY_THRESHOLD: usize = if 2 * WORD_SIZE > 16 {
+ 2 * WORD_SIZE
+} else {
+ 16
+};
+
+#[cfg(feature = "mem-unaligned")]
+unsafe fn read_usize_unaligned(x: *const usize) -> usize {
+ // Do not use `core::ptr::read_unaligned` here, since it calls `copy_nonoverlapping` which
+ // is translated to memcpy in LLVM.
+ let x_read = (x as *const [u8; core::mem::size_of::<usize>()]).read();
+ core::mem::transmute(x_read)
+}
+
+#[inline(always)]
+pub unsafe fn copy_forward(mut dest: *mut u8, mut src: *const u8, mut n: usize) {
+ #[inline(always)]
+ unsafe fn copy_forward_bytes(mut dest: *mut u8, mut src: *const u8, n: usize) {
+ let dest_end = dest.add(n);
+ while dest < dest_end {
+ *dest = *src;
+ dest = dest.add(1);
+ src = src.add(1);
+ }
+ }
+
+ #[inline(always)]
+ unsafe fn copy_forward_aligned_words(dest: *mut u8, src: *const u8, n: usize) {
+ let mut dest_usize = dest as *mut usize;
+ let mut src_usize = src as *mut usize;
+ let dest_end = dest.add(n) as *mut usize;
+
+ while dest_usize < dest_end {
+ *dest_usize = *src_usize;
+ dest_usize = dest_usize.add(1);
+ src_usize = src_usize.add(1);
+ }
+ }
+
+ #[cfg(not(feature = "mem-unaligned"))]
+ #[inline(always)]
+ unsafe fn copy_forward_misaligned_words(dest: *mut u8, src: *const u8, n: usize) {
+ let mut dest_usize = dest as *mut usize;
+ let dest_end = dest.add(n) as *mut usize;
+
+ // Calculate the misalignment offset and shift needed to reassemble value.
+ let offset = src as usize & WORD_MASK;
+ let shift = offset * 8;
+
+ // Realign src
+ let mut src_aligned = (src as usize & !WORD_MASK) as *mut usize;
+ // This will read (but won't use) bytes out of bound.
+ // cfg needed because not all targets will have atomic loads that can be lowered
+ // (e.g. BPF, MSP430), or provided by an external library (e.g. RV32I)
+ #[cfg(target_has_atomic_load_store = "ptr")]
+ let mut prev_word = core::intrinsics::atomic_load_unordered(src_aligned);
+ #[cfg(not(target_has_atomic_load_store = "ptr"))]
+ let mut prev_word = core::ptr::read_volatile(src_aligned);
+
+ while dest_usize < dest_end {
+ src_aligned = src_aligned.add(1);
+ let cur_word = *src_aligned;
+ #[cfg(target_endian = "little")]
+ let resembled = prev_word >> shift | cur_word << (WORD_SIZE * 8 - shift);
+ #[cfg(target_endian = "big")]
+ let resembled = prev_word << shift | cur_word >> (WORD_SIZE * 8 - shift);
+ prev_word = cur_word;
+
+ *dest_usize = resembled;
+ dest_usize = dest_usize.add(1);
+ }
+ }
+
+ #[cfg(feature = "mem-unaligned")]
+ #[inline(always)]
+ unsafe fn copy_forward_misaligned_words(dest: *mut u8, src: *const u8, n: usize) {
+ let mut dest_usize = dest as *mut usize;
+ let mut src_usize = src as *mut usize;
+ let dest_end = dest.add(n) as *mut usize;
+
+ while dest_usize < dest_end {
+ *dest_usize = read_usize_unaligned(src_usize);
+ dest_usize = dest_usize.add(1);
+ src_usize = src_usize.add(1);
+ }
+ }
+
+ if n >= WORD_COPY_THRESHOLD {
+ // Align dest
+ // Because of n >= 2 * WORD_SIZE, dst_misalignment < n
+ let dest_misalignment = (dest as usize).wrapping_neg() & WORD_MASK;
+ copy_forward_bytes(dest, src, dest_misalignment);
+ dest = dest.add(dest_misalignment);
+ src = src.add(dest_misalignment);
+ n -= dest_misalignment;
+
+ let n_words = n & !WORD_MASK;
+ let src_misalignment = src as usize & WORD_MASK;
+ if likely(src_misalignment == 0) {
+ copy_forward_aligned_words(dest, src, n_words);
+ } else {
+ copy_forward_misaligned_words(dest, src, n_words);
+ }
+ dest = dest.add(n_words);
+ src = src.add(n_words);
+ n -= n_words;
+ }
+ copy_forward_bytes(dest, src, n);
+}
+
+#[inline(always)]
+pub unsafe fn copy_backward(dest: *mut u8, src: *const u8, mut n: usize) {
+ // The following backward copy helper functions uses the pointers past the end
+ // as their inputs instead of pointers to the start!
+ #[inline(always)]
+ unsafe fn copy_backward_bytes(mut dest: *mut u8, mut src: *const u8, n: usize) {
+ let dest_start = dest.sub(n);
+ while dest_start < dest {
+ dest = dest.sub(1);
+ src = src.sub(1);
+ *dest = *src;
+ }
+ }
+
+ #[inline(always)]
+ unsafe fn copy_backward_aligned_words(dest: *mut u8, src: *const u8, n: usize) {
+ let mut dest_usize = dest as *mut usize;
+ let mut src_usize = src as *mut usize;
+ let dest_start = dest.sub(n) as *mut usize;
+
+ while dest_start < dest_usize {
+ dest_usize = dest_usize.sub(1);
+ src_usize = src_usize.sub(1);
+ *dest_usize = *src_usize;
+ }
+ }
+
+ #[cfg(not(feature = "mem-unaligned"))]
+ #[inline(always)]
+ unsafe fn copy_backward_misaligned_words(dest: *mut u8, src: *const u8, n: usize) {
+ let mut dest_usize = dest as *mut usize;
+ let dest_start = dest.sub(n) as *mut usize;
+
+ // Calculate the misalignment offset and shift needed to reassemble value.
+ let offset = src as usize & WORD_MASK;
+ let shift = offset * 8;
+
+ // Realign src_aligned
+ let mut src_aligned = (src as usize & !WORD_MASK) as *mut usize;
+ // This will read (but won't use) bytes out of bound.
+ // cfg needed because not all targets will have atomic loads that can be lowered
+ // (e.g. BPF, MSP430), or provided by an external library (e.g. RV32I)
+ #[cfg(target_has_atomic_load_store = "ptr")]
+ let mut prev_word = core::intrinsics::atomic_load_unordered(src_aligned);
+ #[cfg(not(target_has_atomic_load_store = "ptr"))]
+ let mut prev_word = core::ptr::read_volatile(src_aligned);
+
+ while dest_start < dest_usize {
+ src_aligned = src_aligned.sub(1);
+ let cur_word = *src_aligned;
+ #[cfg(target_endian = "little")]
+ let resembled = prev_word << (WORD_SIZE * 8 - shift) | cur_word >> shift;
+ #[cfg(target_endian = "big")]
+ let resembled = prev_word >> (WORD_SIZE * 8 - shift) | cur_word << shift;
+ prev_word = cur_word;
+
+ dest_usize = dest_usize.sub(1);
+ *dest_usize = resembled;
+ }
+ }
+
+ #[cfg(feature = "mem-unaligned")]
+ #[inline(always)]
+ unsafe fn copy_backward_misaligned_words(dest: *mut u8, src: *const u8, n: usize) {
+ let mut dest_usize = dest as *mut usize;
+ let mut src_usize = src as *mut usize;
+ let dest_start = dest.sub(n) as *mut usize;
+
+ while dest_start < dest_usize {
+ dest_usize = dest_usize.sub(1);
+ src_usize = src_usize.sub(1);
+ *dest_usize = read_usize_unaligned(src_usize);
+ }
+ }
+
+ let mut dest = dest.add(n);
+ let mut src = src.add(n);
+
+ if n >= WORD_COPY_THRESHOLD {
+ // Align dest
+ // Because of n >= 2 * WORD_SIZE, dst_misalignment < n
+ let dest_misalignment = dest as usize & WORD_MASK;
+ copy_backward_bytes(dest, src, dest_misalignment);
+ dest = dest.sub(dest_misalignment);
+ src = src.sub(dest_misalignment);
+ n -= dest_misalignment;
+
+ let n_words = n & !WORD_MASK;
+ let src_misalignment = src as usize & WORD_MASK;
+ if likely(src_misalignment == 0) {
+ copy_backward_aligned_words(dest, src, n_words);
+ } else {
+ copy_backward_misaligned_words(dest, src, n_words);
+ }
+ dest = dest.sub(n_words);
+ src = src.sub(n_words);
+ n -= n_words;
+ }
+ copy_backward_bytes(dest, src, n);
+}
+
+#[inline(always)]
+pub unsafe fn set_bytes(mut s: *mut u8, c: u8, mut n: usize) {
+ #[inline(always)]
+ pub unsafe fn set_bytes_bytes(mut s: *mut u8, c: u8, n: usize) {
+ let end = s.add(n);
+ while s < end {
+ *s = c;
+ s = s.add(1);
+ }
+ }
+
+ #[inline(always)]
+ pub unsafe fn set_bytes_words(s: *mut u8, c: u8, n: usize) {
+ let mut broadcast = c as usize;
+ let mut bits = 8;
+ while bits < WORD_SIZE * 8 {
+ broadcast |= broadcast << bits;
+ bits *= 2;
+ }
+
+ let mut s_usize = s as *mut usize;
+ let end = s.add(n) as *mut usize;
+
+ while s_usize < end {
+ *s_usize = broadcast;
+ s_usize = s_usize.add(1);
+ }
+ }
+
+ if likely(n >= WORD_COPY_THRESHOLD) {
+ // Align s
+ // Because of n >= 2 * WORD_SIZE, dst_misalignment < n
+ let misalignment = (s as usize).wrapping_neg() & WORD_MASK;
+ set_bytes_bytes(s, c, misalignment);
+ s = s.add(misalignment);
+ n -= misalignment;
+
+ let n_words = n & !WORD_MASK;
+ set_bytes_words(s, c, n_words);
+ s = s.add(n_words);
+ n -= n_words;
+ }
+ set_bytes_bytes(s, c, n);
+}
diff --git a/vendor/compiler_builtins/src/mem/mod.rs b/vendor/compiler_builtins/src/mem/mod.rs
new file mode 100644
index 000000000..a55113861
--- /dev/null
+++ b/vendor/compiler_builtins/src/mem/mod.rs
@@ -0,0 +1,211 @@
+// Trying to satisfy clippy here is hopeless
+#![allow(clippy::style)]
+
+#[allow(warnings)]
+#[cfg(target_pointer_width = "16")]
+type c_int = i16;
+#[allow(warnings)]
+#[cfg(not(target_pointer_width = "16"))]
+type c_int = i32;
+
+use core::intrinsics::{atomic_load_unordered, atomic_store_unordered, exact_div};
+use core::mem;
+use core::ops::{BitOr, Shl};
+
+// memcpy/memmove/memset have optimized implementations on some architectures
+#[cfg_attr(
+ all(not(feature = "no-asm"), target_arch = "x86_64"),
+ path = "x86_64.rs"
+)]
+mod impls;
+
+intrinsics! {
+ #[mem_builtin]
+ #[cfg_attr(not(all(target_os = "windows", target_env = "gnu")), linkage = "weak")]
+ pub unsafe extern "C" fn memcpy(dest: *mut u8, src: *const u8, n: usize) -> *mut u8 {
+ impls::copy_forward(dest, src, n);
+ dest
+ }
+
+ #[mem_builtin]
+ #[cfg_attr(not(all(target_os = "windows", target_env = "gnu")), linkage = "weak")]
+ pub unsafe extern "C" fn memmove(dest: *mut u8, src: *const u8, n: usize) -> *mut u8 {
+ let delta = (dest as usize).wrapping_sub(src as usize);
+ if delta >= n {
+ // We can copy forwards because either dest is far enough ahead of src,
+ // or src is ahead of dest (and delta overflowed).
+ impls::copy_forward(dest, src, n);
+ } else {
+ impls::copy_backward(dest, src, n);
+ }
+ dest
+ }
+
+ #[mem_builtin]
+ #[cfg_attr(not(all(target_os = "windows", target_env = "gnu")), linkage = "weak")]
+ pub unsafe extern "C" fn memset(s: *mut u8, c: crate::mem::c_int, n: usize) -> *mut u8 {
+ impls::set_bytes(s, c as u8, n);
+ s
+ }
+
+ #[mem_builtin]
+ #[cfg_attr(not(all(target_os = "windows", target_env = "gnu")), linkage = "weak")]
+ pub unsafe extern "C" fn memcmp(s1: *const u8, s2: *const u8, n: usize) -> i32 {
+ let mut i = 0;
+ while i < n {
+ let a = *s1.add(i);
+ let b = *s2.add(i);
+ if a != b {
+ return a as i32 - b as i32;
+ }
+ i += 1;
+ }
+ 0
+ }
+
+ #[mem_builtin]
+ #[cfg_attr(not(all(target_os = "windows", target_env = "gnu")), linkage = "weak")]
+ pub unsafe extern "C" fn bcmp(s1: *const u8, s2: *const u8, n: usize) -> i32 {
+ memcmp(s1, s2, n)
+ }
+
+ #[mem_builtin]
+ #[cfg_attr(not(all(target_os = "windows", target_env = "gnu")), linkage = "weak")]
+ pub unsafe extern "C" fn strlen(s: *const core::ffi::c_char) -> usize {
+ let mut n = 0;
+ let mut s = s;
+ while *s != 0 {
+ n += 1;
+ s = s.offset(1);
+ }
+ n
+ }
+}
+
+// `bytes` must be a multiple of `mem::size_of::<T>()`
+#[cfg_attr(not(target_has_atomic_load_store = "8"), allow(dead_code))]
+fn memcpy_element_unordered_atomic<T: Copy>(dest: *mut T, src: *const T, bytes: usize) {
+ unsafe {
+ let n = exact_div(bytes, mem::size_of::<T>());
+ let mut i = 0;
+ while i < n {
+ atomic_store_unordered(dest.add(i), atomic_load_unordered(src.add(i)));
+ i += 1;
+ }
+ }
+}
+
+// `bytes` must be a multiple of `mem::size_of::<T>()`
+#[cfg_attr(not(target_has_atomic_load_store = "8"), allow(dead_code))]
+fn memmove_element_unordered_atomic<T: Copy>(dest: *mut T, src: *const T, bytes: usize) {
+ unsafe {
+ let n = exact_div(bytes, mem::size_of::<T>());
+ if src < dest as *const T {
+ // copy from end
+ let mut i = n;
+ while i != 0 {
+ i -= 1;
+ atomic_store_unordered(dest.add(i), atomic_load_unordered(src.add(i)));
+ }
+ } else {
+ // copy from beginning
+ let mut i = 0;
+ while i < n {
+ atomic_store_unordered(dest.add(i), atomic_load_unordered(src.add(i)));
+ i += 1;
+ }
+ }
+ }
+}
+
+// `T` must be a primitive integer type, and `bytes` must be a multiple of `mem::size_of::<T>()`
+#[cfg_attr(not(target_has_atomic_load_store = "8"), allow(dead_code))]
+fn memset_element_unordered_atomic<T>(s: *mut T, c: u8, bytes: usize)
+where
+ T: Copy + From<u8> + Shl<u32, Output = T> + BitOr<T, Output = T>,
+{
+ unsafe {
+ let n = exact_div(bytes, mem::size_of::<T>());
+
+ // Construct a value of type `T` consisting of repeated `c`
+ // bytes, to let us ensure we write each `T` atomically.
+ let mut x = T::from(c);
+ let mut i = 1;
+ while i < mem::size_of::<T>() {
+ x = x << 8 | T::from(c);
+ i += 1;
+ }
+
+ // Write it to `s`
+ let mut i = 0;
+ while i < n {
+ atomic_store_unordered(s.add(i), x);
+ i += 1;
+ }
+ }
+}
+
+intrinsics! {
+ #[cfg(target_has_atomic_load_store = "8")]
+ pub unsafe extern "C" fn __llvm_memcpy_element_unordered_atomic_1(dest: *mut u8, src: *const u8, bytes: usize) -> () {
+ memcpy_element_unordered_atomic(dest, src, bytes);
+ }
+ #[cfg(target_has_atomic_load_store = "16")]
+ pub unsafe extern "C" fn __llvm_memcpy_element_unordered_atomic_2(dest: *mut u16, src: *const u16, bytes: usize) -> () {
+ memcpy_element_unordered_atomic(dest, src, bytes);
+ }
+ #[cfg(target_has_atomic_load_store = "32")]
+ pub unsafe extern "C" fn __llvm_memcpy_element_unordered_atomic_4(dest: *mut u32, src: *const u32, bytes: usize) -> () {
+ memcpy_element_unordered_atomic(dest, src, bytes);
+ }
+ #[cfg(target_has_atomic_load_store = "64")]
+ pub unsafe extern "C" fn __llvm_memcpy_element_unordered_atomic_8(dest: *mut u64, src: *const u64, bytes: usize) -> () {
+ memcpy_element_unordered_atomic(dest, src, bytes);
+ }
+ #[cfg(target_has_atomic_load_store = "128")]
+ pub unsafe extern "C" fn __llvm_memcpy_element_unordered_atomic_16(dest: *mut u128, src: *const u128, bytes: usize) -> () {
+ memcpy_element_unordered_atomic(dest, src, bytes);
+ }
+
+ #[cfg(target_has_atomic_load_store = "8")]
+ pub unsafe extern "C" fn __llvm_memmove_element_unordered_atomic_1(dest: *mut u8, src: *const u8, bytes: usize) -> () {
+ memmove_element_unordered_atomic(dest, src, bytes);
+ }
+ #[cfg(target_has_atomic_load_store = "16")]
+ pub unsafe extern "C" fn __llvm_memmove_element_unordered_atomic_2(dest: *mut u16, src: *const u16, bytes: usize) -> () {
+ memmove_element_unordered_atomic(dest, src, bytes);
+ }
+ #[cfg(target_has_atomic_load_store = "32")]
+ pub unsafe extern "C" fn __llvm_memmove_element_unordered_atomic_4(dest: *mut u32, src: *const u32, bytes: usize) -> () {
+ memmove_element_unordered_atomic(dest, src, bytes);
+ }
+ #[cfg(target_has_atomic_load_store = "64")]
+ pub unsafe extern "C" fn __llvm_memmove_element_unordered_atomic_8(dest: *mut u64, src: *const u64, bytes: usize) -> () {
+ memmove_element_unordered_atomic(dest, src, bytes);
+ }
+ #[cfg(target_has_atomic_load_store = "128")]
+ pub unsafe extern "C" fn __llvm_memmove_element_unordered_atomic_16(dest: *mut u128, src: *const u128, bytes: usize) -> () {
+ memmove_element_unordered_atomic(dest, src, bytes);
+ }
+
+ #[cfg(target_has_atomic_load_store = "8")]
+ pub unsafe extern "C" fn __llvm_memset_element_unordered_atomic_1(s: *mut u8, c: u8, bytes: usize) -> () {
+ memset_element_unordered_atomic(s, c, bytes);
+ }
+ #[cfg(target_has_atomic_load_store = "16")]
+ pub unsafe extern "C" fn __llvm_memset_element_unordered_atomic_2(s: *mut u16, c: u8, bytes: usize) -> () {
+ memset_element_unordered_atomic(s, c, bytes);
+ }
+ #[cfg(target_has_atomic_load_store = "32")]
+ pub unsafe extern "C" fn __llvm_memset_element_unordered_atomic_4(s: *mut u32, c: u8, bytes: usize) -> () {
+ memset_element_unordered_atomic(s, c, bytes);
+ }
+ #[cfg(target_has_atomic_load_store = "64")]
+ pub unsafe extern "C" fn __llvm_memset_element_unordered_atomic_8(s: *mut u64, c: u8, bytes: usize) -> () {
+ memset_element_unordered_atomic(s, c, bytes);
+ }
+ #[cfg(target_has_atomic_load_store = "128")]
+ pub unsafe extern "C" fn __llvm_memset_element_unordered_atomic_16(s: *mut u128, c: u8, bytes: usize) -> () {
+ memset_element_unordered_atomic(s, c, bytes);
+ }
+}
diff --git a/vendor/compiler_builtins/src/mem/x86_64.rs b/vendor/compiler_builtins/src/mem/x86_64.rs
new file mode 100644
index 000000000..a7ab6f605
--- /dev/null
+++ b/vendor/compiler_builtins/src/mem/x86_64.rs
@@ -0,0 +1,100 @@
+// On most modern Intel and AMD processors, "rep movsq" and "rep stosq" have
+// been enhanced to perform better than an simple qword loop, making them ideal
+// for implementing memcpy/memset. Note that "rep cmps" has received no such
+// enhancement, so it is not used to implement memcmp.
+//
+// On certain recent Intel processors, "rep movsb" and "rep stosb" have been
+// further enhanced to automatically select the best microarchitectural
+// implementation based on length and alignment. See the following features from
+// the "IntelĀ® 64 and IA-32 Architectures Optimization Reference Manual":
+// - ERMSB - Enhanced REP MOVSB and STOSB (Ivy Bridge and later)
+// - FSRM - Fast Short REP MOV (Ice Lake and later)
+// - Fast Zero-Length MOVSB (On no current hardware)
+// - Fast Short STOSB (On no current hardware)
+//
+// To simplify things, we switch to using the byte-based variants if the "ermsb"
+// feature is present at compile-time. We don't bother detecting other features.
+// Note that ERMSB does not enhance the backwards (DF=1) "rep movsb".
+
+#[inline(always)]
+#[cfg(target_feature = "ermsb")]
+pub unsafe fn copy_forward(dest: *mut u8, src: *const u8, count: usize) {
+ // FIXME: Use the Intel syntax once we drop LLVM 9 support on rust-lang/rust.
+ core::arch::asm!(
+ "repe movsb (%rsi), (%rdi)",
+ inout("rcx") count => _,
+ inout("rdi") dest => _,
+ inout("rsi") src => _,
+ options(att_syntax, nostack, preserves_flags)
+ );
+}
+
+#[inline(always)]
+#[cfg(not(target_feature = "ermsb"))]
+pub unsafe fn copy_forward(dest: *mut u8, src: *const u8, count: usize) {
+ let qword_count = count >> 3;
+ let byte_count = count & 0b111;
+ // FIXME: Use the Intel syntax once we drop LLVM 9 support on rust-lang/rust.
+ core::arch::asm!(
+ "repe movsq (%rsi), (%rdi)",
+ "mov {byte_count:e}, %ecx",
+ "repe movsb (%rsi), (%rdi)",
+ byte_count = in(reg) byte_count,
+ inout("rcx") qword_count => _,
+ inout("rdi") dest => _,
+ inout("rsi") src => _,
+ options(att_syntax, nostack, preserves_flags)
+ );
+}
+
+#[inline(always)]
+pub unsafe fn copy_backward(dest: *mut u8, src: *const u8, count: usize) {
+ let qword_count = count >> 3;
+ let byte_count = count & 0b111;
+ // FIXME: Use the Intel syntax once we drop LLVM 9 support on rust-lang/rust.
+ core::arch::asm!(
+ "std",
+ "repe movsq (%rsi), (%rdi)",
+ "movl {byte_count:e}, %ecx",
+ "addq $7, %rdi",
+ "addq $7, %rsi",
+ "repe movsb (%rsi), (%rdi)",
+ "cld",
+ byte_count = in(reg) byte_count,
+ inout("rcx") qword_count => _,
+ inout("rdi") dest.add(count).wrapping_sub(8) => _,
+ inout("rsi") src.add(count).wrapping_sub(8) => _,
+ options(att_syntax, nostack)
+ );
+}
+
+#[inline(always)]
+#[cfg(target_feature = "ermsb")]
+pub unsafe fn set_bytes(dest: *mut u8, c: u8, count: usize) {
+ // FIXME: Use the Intel syntax once we drop LLVM 9 support on rust-lang/rust.
+ core::arch::asm!(
+ "repe stosb %al, (%rdi)",
+ inout("rcx") count => _,
+ inout("rdi") dest => _,
+ inout("al") c => _,
+ options(att_syntax, nostack, preserves_flags)
+ )
+}
+
+#[inline(always)]
+#[cfg(not(target_feature = "ermsb"))]
+pub unsafe fn set_bytes(dest: *mut u8, c: u8, count: usize) {
+ let qword_count = count >> 3;
+ let byte_count = count & 0b111;
+ // FIXME: Use the Intel syntax once we drop LLVM 9 support on rust-lang/rust.
+ core::arch::asm!(
+ "repe stosq %rax, (%rdi)",
+ "mov {byte_count:e}, %ecx",
+ "repe stosb %al, (%rdi)",
+ byte_count = in(reg) byte_count,
+ inout("rcx") qword_count => _,
+ inout("rdi") dest => _,
+ in("rax") (c as u64) * 0x0101010101010101,
+ options(att_syntax, nostack, preserves_flags)
+ );
+}
diff --git a/vendor/compiler_builtins/src/probestack.rs b/vendor/compiler_builtins/src/probestack.rs
new file mode 100644
index 000000000..0c30384db
--- /dev/null
+++ b/vendor/compiler_builtins/src/probestack.rs
@@ -0,0 +1,350 @@
+// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! This module defines the `__rust_probestack` intrinsic which is used in the
+//! implementation of "stack probes" on certain platforms.
+//!
+//! The purpose of a stack probe is to provide a static guarantee that if a
+//! thread has a guard page then a stack overflow is guaranteed to hit that
+//! guard page. If a function did not have a stack probe then there's a risk of
+//! having a stack frame *larger* than the guard page, so a function call could
+//! skip over the guard page entirely and then later hit maybe the heap or
+//! another thread, possibly leading to security vulnerabilities such as [The
+//! Stack Clash], for example.
+//!
+//! [The Stack Clash]: https://blog.qualys.com/securitylabs/2017/06/19/the-stack-clash
+//!
+//! The `__rust_probestack` is called in the prologue of functions whose stack
+//! size is larger than the guard page, for example larger than 4096 bytes on
+//! x86. This function is then responsible for "touching" all pages relevant to
+//! the stack to ensure that that if any of them are the guard page we'll hit
+//! them guaranteed.
+//!
+//! The precise ABI for how this function operates is defined by LLVM. There's
+//! no real documentation as to what this is, so you'd basically need to read
+//! the LLVM source code for reference. Often though the test cases can be
+//! illuminating as to the ABI that's generated, or just looking at the output
+//! of `llc`.
+//!
+//! Note that `#[naked]` is typically used here for the stack probe because the
+//! ABI corresponds to no actual ABI.
+//!
+//! Finally it's worth noting that at the time of this writing LLVM only has
+//! support for stack probes on x86 and x86_64. There's no support for stack
+//! probes on any other architecture like ARM or PowerPC64. LLVM I'm sure would
+//! be more than welcome to accept such a change!
+
+#![cfg(not(feature = "mangled-names"))]
+// Windows already has builtins to do this.
+#![cfg(not(windows))]
+// All these builtins require assembly
+#![cfg(not(feature = "no-asm"))]
+// We only define stack probing for these architectures today.
+#![cfg(any(target_arch = "x86_64", target_arch = "x86"))]
+
+extern "C" {
+ pub fn __rust_probestack();
+}
+
+// A wrapper for our implementation of __rust_probestack, which allows us to
+// keep the assembly inline while controlling all CFI directives in the assembly
+// emitted for the function.
+//
+// This is the ELF version.
+#[cfg(not(any(target_vendor = "apple", target_os = "uefi")))]
+macro_rules! define_rust_probestack {
+ ($body: expr) => {
+ concat!(
+ "
+ .pushsection .text.__rust_probestack
+ .globl __rust_probestack
+ .type __rust_probestack, @function
+ .hidden __rust_probestack
+ __rust_probestack:
+ ",
+ $body,
+ "
+ .size __rust_probestack, . - __rust_probestack
+ .popsection
+ "
+ )
+ };
+}
+
+#[cfg(all(target_os = "uefi", target_arch = "x86_64"))]
+macro_rules! define_rust_probestack {
+ ($body: expr) => {
+ concat!(
+ "
+ .globl __rust_probestack
+ __rust_probestack:
+ ",
+ $body
+ )
+ };
+}
+
+// Same as above, but for Mach-O. Note that the triple underscore
+// is deliberate
+#[cfg(target_vendor = "apple")]
+macro_rules! define_rust_probestack {
+ ($body: expr) => {
+ concat!(
+ "
+ .globl ___rust_probestack
+ ___rust_probestack:
+ ",
+ $body
+ )
+ };
+}
+
+// In UEFI x86 arch, triple underscore is deliberate.
+#[cfg(all(target_os = "uefi", target_arch = "x86"))]
+macro_rules! define_rust_probestack {
+ ($body: expr) => {
+ concat!(
+ "
+ .globl ___rust_probestack
+ ___rust_probestack:
+ ",
+ $body
+ )
+ };
+}
+
+// Our goal here is to touch each page between %rsp+8 and %rsp+8-%rax,
+// ensuring that if any pages are unmapped we'll make a page fault.
+//
+// The ABI here is that the stack frame size is located in `%rax`. Upon
+// return we're not supposed to modify `%rsp` or `%rax`.
+//
+// Any changes to this function should be replicated to the SGX version below.
+#[cfg(all(
+ target_arch = "x86_64",
+ not(all(target_env = "sgx", target_vendor = "fortanix"))
+))]
+core::arch::global_asm!(
+ define_rust_probestack!(
+ "
+ .cfi_startproc
+ pushq %rbp
+ .cfi_adjust_cfa_offset 8
+ .cfi_offset %rbp, -16
+ movq %rsp, %rbp
+ .cfi_def_cfa_register %rbp
+
+ mov %rax,%r11 // duplicate %rax as we're clobbering %r11
+
+ // Main loop, taken in one page increments. We're decrementing rsp by
+ // a page each time until there's less than a page remaining. We're
+ // guaranteed that this function isn't called unless there's more than a
+ // page needed.
+ //
+ // Note that we're also testing against `8(%rsp)` to account for the 8
+ // bytes pushed on the stack orginally with our return address. Using
+ // `8(%rsp)` simulates us testing the stack pointer in the caller's
+ // context.
+
+ // It's usually called when %rax >= 0x1000, but that's not always true.
+ // Dynamic stack allocation, which is needed to implement unsized
+ // rvalues, triggers stackprobe even if %rax < 0x1000.
+ // Thus we have to check %r11 first to avoid segfault.
+ cmp $0x1000,%r11
+ jna 3f
+2:
+ sub $0x1000,%rsp
+ test %rsp,8(%rsp)
+ sub $0x1000,%r11
+ cmp $0x1000,%r11
+ ja 2b
+
+3:
+ // Finish up the last remaining stack space requested, getting the last
+ // bits out of r11
+ sub %r11,%rsp
+ test %rsp,8(%rsp)
+
+ // Restore the stack pointer to what it previously was when entering
+ // this function. The caller will readjust the stack pointer after we
+ // return.
+ add %rax,%rsp
+
+ leave
+ .cfi_def_cfa_register %rsp
+ .cfi_adjust_cfa_offset -8
+ ret
+ .cfi_endproc
+ "
+ ),
+ options(att_syntax)
+);
+
+// This function is the same as above, except that some instructions are
+// [manually patched for LVI].
+//
+// [manually patched for LVI]: https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection#specialinstructions
+#[cfg(all(
+ target_arch = "x86_64",
+ all(target_env = "sgx", target_vendor = "fortanix")
+))]
+core::arch::global_asm!(
+ define_rust_probestack!(
+ "
+ .cfi_startproc
+ pushq %rbp
+ .cfi_adjust_cfa_offset 8
+ .cfi_offset %rbp, -16
+ movq %rsp, %rbp
+ .cfi_def_cfa_register %rbp
+
+ mov %rax,%r11 // duplicate %rax as we're clobbering %r11
+
+ // Main loop, taken in one page increments. We're decrementing rsp by
+ // a page each time until there's less than a page remaining. We're
+ // guaranteed that this function isn't called unless there's more than a
+ // page needed.
+ //
+ // Note that we're also testing against `8(%rsp)` to account for the 8
+ // bytes pushed on the stack orginally with our return address. Using
+ // `8(%rsp)` simulates us testing the stack pointer in the caller's
+ // context.
+
+ // It's usually called when %rax >= 0x1000, but that's not always true.
+ // Dynamic stack allocation, which is needed to implement unsized
+ // rvalues, triggers stackprobe even if %rax < 0x1000.
+ // Thus we have to check %r11 first to avoid segfault.
+ cmp $0x1000,%r11
+ jna 3f
+2:
+ sub $0x1000,%rsp
+ test %rsp,8(%rsp)
+ sub $0x1000,%r11
+ cmp $0x1000,%r11
+ ja 2b
+
+3:
+ // Finish up the last remaining stack space requested, getting the last
+ // bits out of r11
+ sub %r11,%rsp
+ test %rsp,8(%rsp)
+
+ // Restore the stack pointer to what it previously was when entering
+ // this function. The caller will readjust the stack pointer after we
+ // return.
+ add %rax,%rsp
+
+ leave
+ .cfi_def_cfa_register %rsp
+ .cfi_adjust_cfa_offset -8
+ pop %r11
+ lfence
+ jmp *%r11
+ .cfi_endproc
+ "
+ ),
+ options(att_syntax)
+);
+
+#[cfg(all(target_arch = "x86", not(target_os = "uefi")))]
+// This is the same as x86_64 above, only translated for 32-bit sizes. Note
+// that on Unix we're expected to restore everything as it was, this
+// function basically can't tamper with anything.
+//
+// The ABI here is the same as x86_64, except everything is 32-bits large.
+core::arch::global_asm!(
+ define_rust_probestack!(
+ "
+ .cfi_startproc
+ push %ebp
+ .cfi_adjust_cfa_offset 4
+ .cfi_offset %ebp, -8
+ mov %esp, %ebp
+ .cfi_def_cfa_register %ebp
+ push %ecx
+ mov %eax,%ecx
+
+ cmp $0x1000,%ecx
+ jna 3f
+2:
+ sub $0x1000,%esp
+ test %esp,8(%esp)
+ sub $0x1000,%ecx
+ cmp $0x1000,%ecx
+ ja 2b
+
+3:
+ sub %ecx,%esp
+ test %esp,8(%esp)
+
+ add %eax,%esp
+ pop %ecx
+ leave
+ .cfi_def_cfa_register %esp
+ .cfi_adjust_cfa_offset -4
+ ret
+ .cfi_endproc
+ "
+ ),
+ options(att_syntax)
+);
+
+#[cfg(all(target_arch = "x86", target_os = "uefi"))]
+// UEFI target is windows like target. LLVM will do _chkstk things like windows.
+// probestack function will also do things like _chkstk in MSVC.
+// So we need to sub %ax %sp in probestack when arch is x86.
+//
+// REF: Rust commit(74e80468347)
+// rust\src\llvm-project\llvm\lib\Target\X86\X86FrameLowering.cpp: 805
+// Comments in LLVM:
+// MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
+// MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
+// themselves.
+core::arch::global_asm!(
+ define_rust_probestack!(
+ "
+ .cfi_startproc
+ push %ebp
+ .cfi_adjust_cfa_offset 4
+ .cfi_offset %ebp, -8
+ mov %esp, %ebp
+ .cfi_def_cfa_register %ebp
+ push %ecx
+ push %edx
+ mov %eax,%ecx
+
+ cmp $0x1000,%ecx
+ jna 3f
+2:
+ sub $0x1000,%esp
+ test %esp,8(%esp)
+ sub $0x1000,%ecx
+ cmp $0x1000,%ecx
+ ja 2b
+
+3:
+ sub %ecx,%esp
+ test %esp,8(%esp)
+ mov 4(%ebp),%edx
+ mov %edx, 12(%esp)
+ add %eax,%esp
+ pop %edx
+ pop %ecx
+ leave
+
+ sub %eax, %esp
+ .cfi_def_cfa_register %esp
+ .cfi_adjust_cfa_offset -4
+ ret
+ .cfi_endproc
+ "
+ ),
+ options(att_syntax)
+);
diff --git a/vendor/compiler_builtins/src/riscv.rs b/vendor/compiler_builtins/src/riscv.rs
new file mode 100644
index 000000000..ee78b9dba
--- /dev/null
+++ b/vendor/compiler_builtins/src/riscv.rs
@@ -0,0 +1,34 @@
+intrinsics! {
+ // Implementation from gcc
+ // https://raw.githubusercontent.com/gcc-mirror/gcc/master/libgcc/config/epiphany/mulsi3.c
+ pub extern "C" fn __mulsi3(a: u32, b: u32) -> u32 {
+ let (mut a, mut b) = (a, b);
+ let mut r = 0;
+
+ while a > 0 {
+ if a & 1 > 0 {
+ r += b;
+ }
+ a >>= 1;
+ b <<= 1;
+ }
+
+ r
+ }
+
+ #[cfg(not(target_feature = "m"))]
+ pub extern "C" fn __muldi3(a: u64, b: u64) -> u64 {
+ let (mut a, mut b) = (a, b);
+ let mut r = 0;
+
+ while a > 0 {
+ if a & 1 > 0 {
+ r += b;
+ }
+ a >>= 1;
+ b <<= 1;
+ }
+
+ r
+ }
+}
diff --git a/vendor/compiler_builtins/src/x86.rs b/vendor/compiler_builtins/src/x86.rs
new file mode 100644
index 000000000..fd1f32e3a
--- /dev/null
+++ b/vendor/compiler_builtins/src/x86.rs
@@ -0,0 +1,85 @@
+#![allow(unused_imports)]
+
+use core::intrinsics;
+
+// NOTE These functions are implemented using assembly because they using a custom
+// calling convention which can't be implemented using a normal Rust function
+
+// NOTE These functions are never mangled as they are not tested against compiler-rt
+// and mangling ___chkstk would break the `jmp ___chkstk` instruction in __alloca
+
+intrinsics! {
+ #[naked]
+ #[cfg(all(
+ windows,
+ target_env = "gnu",
+ not(feature = "no-asm")
+ ))]
+ pub unsafe extern "C" fn ___chkstk_ms() {
+ core::arch::asm!(
+ "push %ecx",
+ "push %eax",
+ "cmp $0x1000,%eax",
+ "lea 12(%esp),%ecx",
+ "jb 1f",
+ "2:",
+ "sub $0x1000,%ecx",
+ "test %ecx,(%ecx)",
+ "sub $0x1000,%eax",
+ "cmp $0x1000,%eax",
+ "ja 2b",
+ "1:",
+ "sub %eax,%ecx",
+ "test %ecx,(%ecx)",
+ "pop %eax",
+ "pop %ecx",
+ "ret",
+ options(noreturn, att_syntax)
+ );
+ }
+
+ // FIXME: __alloca should be an alias to __chkstk
+ #[naked]
+ #[cfg(all(
+ windows,
+ target_env = "gnu",
+ not(feature = "no-asm")
+ ))]
+ pub unsafe extern "C" fn __alloca() {
+ core::arch::asm!(
+ "jmp ___chkstk", // Jump to ___chkstk since fallthrough may be unreliable"
+ options(noreturn, att_syntax)
+ );
+ }
+
+ #[naked]
+ #[cfg(all(
+ windows,
+ target_env = "gnu",
+ not(feature = "no-asm")
+ ))]
+ pub unsafe extern "C" fn ___chkstk() {
+ core::arch::asm!(
+ "push %ecx",
+ "cmp $0x1000,%eax",
+ "lea 8(%esp),%ecx", // esp before calling this routine -> ecx
+ "jb 1f",
+ "2:",
+ "sub $0x1000,%ecx",
+ "test %ecx,(%ecx)",
+ "sub $0x1000,%eax",
+ "cmp $0x1000,%eax",
+ "ja 2b",
+ "1:",
+ "sub %eax,%ecx",
+ "test %ecx,(%ecx)",
+ "lea 4(%esp),%eax", // load pointer to the return address into eax
+ "mov %ecx,%esp", // install the new top of stack pointer into esp
+ "mov -4(%eax),%ecx", // restore ecx
+ "push (%eax)", // push return address onto the stack
+ "sub %esp,%eax", // restore the original value in eax
+ "ret",
+ options(noreturn, att_syntax)
+ );
+ }
+}
diff --git a/vendor/compiler_builtins/src/x86_64.rs b/vendor/compiler_builtins/src/x86_64.rs
new file mode 100644
index 000000000..393eeddd8
--- /dev/null
+++ b/vendor/compiler_builtins/src/x86_64.rs
@@ -0,0 +1,94 @@
+#![allow(unused_imports)]
+
+use core::intrinsics;
+
+// NOTE These functions are implemented using assembly because they using a custom
+// calling convention which can't be implemented using a normal Rust function
+
+// NOTE These functions are never mangled as they are not tested against compiler-rt
+// and mangling ___chkstk would break the `jmp ___chkstk` instruction in __alloca
+
+intrinsics! {
+ #[naked]
+ #[cfg(all(
+ windows,
+ target_env = "gnu",
+ not(feature = "no-asm")
+ ))]
+ pub unsafe extern "C" fn ___chkstk_ms() {
+ core::arch::asm!(
+ "push %rcx",
+ "push %rax",
+ "cmp $0x1000,%rax",
+ "lea 24(%rsp),%rcx",
+ "jb 1f",
+ "2:",
+ "sub $0x1000,%rcx",
+ "test %rcx,(%rcx)",
+ "sub $0x1000,%rax",
+ "cmp $0x1000,%rax",
+ "ja 2b",
+ "1:",
+ "sub %rax,%rcx",
+ "test %rcx,(%rcx)",
+ "pop %rax",
+ "pop %rcx",
+ "ret",
+ options(noreturn, att_syntax)
+ );
+ }
+
+ #[naked]
+ #[cfg(all(
+ windows,
+ target_env = "gnu",
+ not(feature = "no-asm")
+ ))]
+ pub unsafe extern "C" fn __alloca() {
+ core::arch::asm!(
+ "mov %rcx,%rax", // x64 _alloca is a normal function with parameter in rcx
+ "jmp ___chkstk", // Jump to ___chkstk since fallthrough may be unreliable"
+ options(noreturn, att_syntax)
+ );
+ }
+
+ #[naked]
+ #[cfg(all(
+ windows,
+ target_env = "gnu",
+ not(feature = "no-asm")
+ ))]
+ pub unsafe extern "C" fn ___chkstk() {
+ core::arch::asm!(
+ "push %rcx",
+ "cmp $0x1000,%rax",
+ "lea 16(%rsp),%rcx", // rsp before calling this routine -> rcx
+ "jb 1f",
+ "2:",
+ "sub $0x1000,%rcx",
+ "test %rcx,(%rcx)",
+ "sub $0x1000,%rax",
+ "cmp $0x1000,%rax",
+ "ja 2b",
+ "1:",
+ "sub %rax,%rcx",
+ "test %rcx,(%rcx)",
+ "lea 8(%rsp),%rax", // load pointer to the return address into rax
+ "mov %rcx,%rsp", // install the new top of stack pointer into rsp
+ "mov -8(%rax),%rcx", // restore rcx
+ "push (%rax)", // push return address onto the stack
+ "sub %rsp,%rax", // restore the original value in rax
+ "ret",
+ options(noreturn, att_syntax)
+ );
+ }
+}
+
+// HACK(https://github.com/rust-lang/rust/issues/62785): x86_64-unknown-uefi needs special LLVM
+// support unless we emit the _fltused
+mod _fltused {
+ #[no_mangle]
+ #[used]
+ #[cfg(target_os = "uefi")]
+ static _fltused: i32 = 0;
+}