summaryrefslogtreecommitdiffstats
path: root/vendor/num-traits/src
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /vendor/num-traits/src
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/num-traits/src')
-rw-r--r--vendor/num-traits/src/bounds.rs127
-rw-r--r--vendor/num-traits/src/cast.rs794
-rw-r--r--vendor/num-traits/src/float.rs2390
-rw-r--r--vendor/num-traits/src/identities.rs206
-rw-r--r--vendor/num-traits/src/int.rs409
-rw-r--r--vendor/num-traits/src/lib.rs574
-rw-r--r--vendor/num-traits/src/macros.rs37
-rw-r--r--vendor/num-traits/src/ops/checked.rs277
-rw-r--r--vendor/num-traits/src/ops/inv.rs47
-rw-r--r--vendor/num-traits/src/ops/mod.rs5
-rw-r--r--vendor/num-traits/src/ops/mul_add.rs151
-rw-r--r--vendor/num-traits/src/ops/saturating.rs137
-rw-r--r--vendor/num-traits/src/ops/wrapping.rs337
-rw-r--r--vendor/num-traits/src/pow.rs262
-rw-r--r--vendor/num-traits/src/real.rs834
-rw-r--r--vendor/num-traits/src/sign.rs225
16 files changed, 6812 insertions, 0 deletions
diff --git a/vendor/num-traits/src/bounds.rs b/vendor/num-traits/src/bounds.rs
new file mode 100644
index 000000000..c9ff749d2
--- /dev/null
+++ b/vendor/num-traits/src/bounds.rs
@@ -0,0 +1,127 @@
+use core::num::Wrapping;
+use core::{f32, f64};
+#[cfg(has_i128)]
+use core::{i128, u128};
+use core::{i16, i32, i64, i8, isize};
+use core::{u16, u32, u64, u8, usize};
+
+/// Numbers which have upper and lower bounds
+pub trait Bounded {
+ // FIXME (#5527): These should be associated constants
+ /// returns the smallest finite number this type can represent
+ fn min_value() -> Self;
+ /// returns the largest finite number this type can represent
+ fn max_value() -> Self;
+}
+
+macro_rules! bounded_impl {
+ ($t:ty, $min:expr, $max:expr) => {
+ impl Bounded for $t {
+ #[inline]
+ fn min_value() -> $t {
+ $min
+ }
+
+ #[inline]
+ fn max_value() -> $t {
+ $max
+ }
+ }
+ };
+}
+
+bounded_impl!(usize, usize::MIN, usize::MAX);
+bounded_impl!(u8, u8::MIN, u8::MAX);
+bounded_impl!(u16, u16::MIN, u16::MAX);
+bounded_impl!(u32, u32::MIN, u32::MAX);
+bounded_impl!(u64, u64::MIN, u64::MAX);
+#[cfg(has_i128)]
+bounded_impl!(u128, u128::MIN, u128::MAX);
+
+bounded_impl!(isize, isize::MIN, isize::MAX);
+bounded_impl!(i8, i8::MIN, i8::MAX);
+bounded_impl!(i16, i16::MIN, i16::MAX);
+bounded_impl!(i32, i32::MIN, i32::MAX);
+bounded_impl!(i64, i64::MIN, i64::MAX);
+#[cfg(has_i128)]
+bounded_impl!(i128, i128::MIN, i128::MAX);
+
+impl<T: Bounded> Bounded for Wrapping<T> {
+ fn min_value() -> Self {
+ Wrapping(T::min_value())
+ }
+ fn max_value() -> Self {
+ Wrapping(T::max_value())
+ }
+}
+
+bounded_impl!(f32, f32::MIN, f32::MAX);
+
+macro_rules! for_each_tuple_ {
+ ( $m:ident !! ) => (
+ $m! { }
+ );
+ ( $m:ident !! $h:ident, $($t:ident,)* ) => (
+ $m! { $h $($t)* }
+ for_each_tuple_! { $m !! $($t,)* }
+ );
+}
+macro_rules! for_each_tuple {
+ ($m:ident) => {
+ for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, }
+ };
+}
+
+macro_rules! bounded_tuple {
+ ( $($name:ident)* ) => (
+ impl<$($name: Bounded,)*> Bounded for ($($name,)*) {
+ #[inline]
+ fn min_value() -> Self {
+ ($($name::min_value(),)*)
+ }
+ #[inline]
+ fn max_value() -> Self {
+ ($($name::max_value(),)*)
+ }
+ }
+ );
+}
+
+for_each_tuple!(bounded_tuple);
+bounded_impl!(f64, f64::MIN, f64::MAX);
+
+#[test]
+fn wrapping_bounded() {
+ macro_rules! test_wrapping_bounded {
+ ($($t:ty)+) => {
+ $(
+ assert_eq!(<Wrapping<$t> as Bounded>::min_value().0, <$t>::min_value());
+ assert_eq!(<Wrapping<$t> as Bounded>::max_value().0, <$t>::max_value());
+ )+
+ };
+ }
+
+ test_wrapping_bounded!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
+}
+
+#[cfg(has_i128)]
+#[test]
+fn wrapping_bounded_i128() {
+ macro_rules! test_wrapping_bounded {
+ ($($t:ty)+) => {
+ $(
+ assert_eq!(<Wrapping<$t> as Bounded>::min_value().0, <$t>::min_value());
+ assert_eq!(<Wrapping<$t> as Bounded>::max_value().0, <$t>::max_value());
+ )+
+ };
+ }
+
+ test_wrapping_bounded!(u128 i128);
+}
+
+#[test]
+fn wrapping_is_bounded() {
+ fn require_bounded<T: Bounded>(_: &T) {}
+ require_bounded(&Wrapping(42_u32));
+ require_bounded(&Wrapping(-42));
+}
diff --git a/vendor/num-traits/src/cast.rs b/vendor/num-traits/src/cast.rs
new file mode 100644
index 000000000..b33f1a19f
--- /dev/null
+++ b/vendor/num-traits/src/cast.rs
@@ -0,0 +1,794 @@
+use core::mem::size_of;
+use core::num::Wrapping;
+use core::{f32, f64};
+#[cfg(has_i128)]
+use core::{i128, u128};
+use core::{i16, i32, i64, i8, isize};
+use core::{u16, u32, u64, u8, usize};
+
+use float::FloatCore;
+
+/// A generic trait for converting a value to a number.
+pub trait ToPrimitive {
+ /// Converts the value of `self` to an `isize`. If the value cannot be
+ /// represented by an `isize`, then `None` is returned.
+ #[inline]
+ fn to_isize(&self) -> Option<isize> {
+ self.to_i64().as_ref().and_then(ToPrimitive::to_isize)
+ }
+
+ /// Converts the value of `self` to an `i8`. If the value cannot be
+ /// represented by an `i8`, then `None` is returned.
+ #[inline]
+ fn to_i8(&self) -> Option<i8> {
+ self.to_i64().as_ref().and_then(ToPrimitive::to_i8)
+ }
+
+ /// Converts the value of `self` to an `i16`. If the value cannot be
+ /// represented by an `i16`, then `None` is returned.
+ #[inline]
+ fn to_i16(&self) -> Option<i16> {
+ self.to_i64().as_ref().and_then(ToPrimitive::to_i16)
+ }
+
+ /// Converts the value of `self` to an `i32`. If the value cannot be
+ /// represented by an `i32`, then `None` is returned.
+ #[inline]
+ fn to_i32(&self) -> Option<i32> {
+ self.to_i64().as_ref().and_then(ToPrimitive::to_i32)
+ }
+
+ /// Converts the value of `self` to an `i64`. If the value cannot be
+ /// represented by an `i64`, then `None` is returned.
+ fn to_i64(&self) -> Option<i64>;
+
+ /// Converts the value of `self` to an `i128`. If the value cannot be
+ /// represented by an `i128` (`i64` under the default implementation), then
+ /// `None` is returned.
+ ///
+ /// This method is only available with feature `i128` enabled on Rust >= 1.26.
+ ///
+ /// The default implementation converts through `to_i64()`. Types implementing
+ /// this trait should override this method if they can represent a greater range.
+ #[inline]
+ #[cfg(has_i128)]
+ fn to_i128(&self) -> Option<i128> {
+ self.to_i64().map(From::from)
+ }
+
+ /// Converts the value of `self` to a `usize`. If the value cannot be
+ /// represented by a `usize`, then `None` is returned.
+ #[inline]
+ fn to_usize(&self) -> Option<usize> {
+ self.to_u64().as_ref().and_then(ToPrimitive::to_usize)
+ }
+
+ /// Converts the value of `self` to a `u8`. If the value cannot be
+ /// represented by a `u8`, then `None` is returned.
+ #[inline]
+ fn to_u8(&self) -> Option<u8> {
+ self.to_u64().as_ref().and_then(ToPrimitive::to_u8)
+ }
+
+ /// Converts the value of `self` to a `u16`. If the value cannot be
+ /// represented by a `u16`, then `None` is returned.
+ #[inline]
+ fn to_u16(&self) -> Option<u16> {
+ self.to_u64().as_ref().and_then(ToPrimitive::to_u16)
+ }
+
+ /// Converts the value of `self` to a `u32`. If the value cannot be
+ /// represented by a `u32`, then `None` is returned.
+ #[inline]
+ fn to_u32(&self) -> Option<u32> {
+ self.to_u64().as_ref().and_then(ToPrimitive::to_u32)
+ }
+
+ /// Converts the value of `self` to a `u64`. If the value cannot be
+ /// represented by a `u64`, then `None` is returned.
+ fn to_u64(&self) -> Option<u64>;
+
+ /// Converts the value of `self` to a `u128`. If the value cannot be
+ /// represented by a `u128` (`u64` under the default implementation), then
+ /// `None` is returned.
+ ///
+ /// This method is only available with feature `i128` enabled on Rust >= 1.26.
+ ///
+ /// The default implementation converts through `to_u64()`. Types implementing
+ /// this trait should override this method if they can represent a greater range.
+ #[inline]
+ #[cfg(has_i128)]
+ fn to_u128(&self) -> Option<u128> {
+ self.to_u64().map(From::from)
+ }
+
+ /// Converts the value of `self` to an `f32`. If the value cannot be
+ /// represented by an `f32`, then `None` is returned.
+ #[inline]
+ fn to_f32(&self) -> Option<f32> {
+ self.to_f64().as_ref().and_then(ToPrimitive::to_f32)
+ }
+
+ /// Converts the value of `self` to an `f64`. If the value cannot be
+ /// represented by an `f64`, then `None` is returned.
+ #[inline]
+ fn to_f64(&self) -> Option<f64> {
+ match self.to_i64() {
+ Some(i) => i.to_f64(),
+ None => self.to_u64().as_ref().and_then(ToPrimitive::to_f64),
+ }
+ }
+}
+
+macro_rules! impl_to_primitive_int_to_int {
+ ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$DstT> {
+ let min = $DstT::MIN as $SrcT;
+ let max = $DstT::MAX as $SrcT;
+ if size_of::<$SrcT>() <= size_of::<$DstT>() || (min <= *self && *self <= max) {
+ Some(*self as $DstT)
+ } else {
+ None
+ }
+ }
+ )*}
+}
+
+macro_rules! impl_to_primitive_int_to_uint {
+ ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$DstT> {
+ let max = $DstT::MAX as $SrcT;
+ if 0 <= *self && (size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max) {
+ Some(*self as $DstT)
+ } else {
+ None
+ }
+ }
+ )*}
+}
+
+macro_rules! impl_to_primitive_int {
+ ($T:ident) => {
+ impl ToPrimitive for $T {
+ impl_to_primitive_int_to_int! { $T:
+ fn to_isize -> isize;
+ fn to_i8 -> i8;
+ fn to_i16 -> i16;
+ fn to_i32 -> i32;
+ fn to_i64 -> i64;
+ #[cfg(has_i128)]
+ fn to_i128 -> i128;
+ }
+
+ impl_to_primitive_int_to_uint! { $T:
+ fn to_usize -> usize;
+ fn to_u8 -> u8;
+ fn to_u16 -> u16;
+ fn to_u32 -> u32;
+ fn to_u64 -> u64;
+ #[cfg(has_i128)]
+ fn to_u128 -> u128;
+ }
+
+ #[inline]
+ fn to_f32(&self) -> Option<f32> {
+ Some(*self as f32)
+ }
+ #[inline]
+ fn to_f64(&self) -> Option<f64> {
+ Some(*self as f64)
+ }
+ }
+ };
+}
+
+impl_to_primitive_int!(isize);
+impl_to_primitive_int!(i8);
+impl_to_primitive_int!(i16);
+impl_to_primitive_int!(i32);
+impl_to_primitive_int!(i64);
+#[cfg(has_i128)]
+impl_to_primitive_int!(i128);
+
+macro_rules! impl_to_primitive_uint_to_int {
+ ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$DstT> {
+ let max = $DstT::MAX as $SrcT;
+ if size_of::<$SrcT>() < size_of::<$DstT>() || *self <= max {
+ Some(*self as $DstT)
+ } else {
+ None
+ }
+ }
+ )*}
+}
+
+macro_rules! impl_to_primitive_uint_to_uint {
+ ($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$DstT> {
+ let max = $DstT::MAX as $SrcT;
+ if size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max {
+ Some(*self as $DstT)
+ } else {
+ None
+ }
+ }
+ )*}
+}
+
+macro_rules! impl_to_primitive_uint {
+ ($T:ident) => {
+ impl ToPrimitive for $T {
+ impl_to_primitive_uint_to_int! { $T:
+ fn to_isize -> isize;
+ fn to_i8 -> i8;
+ fn to_i16 -> i16;
+ fn to_i32 -> i32;
+ fn to_i64 -> i64;
+ #[cfg(has_i128)]
+ fn to_i128 -> i128;
+ }
+
+ impl_to_primitive_uint_to_uint! { $T:
+ fn to_usize -> usize;
+ fn to_u8 -> u8;
+ fn to_u16 -> u16;
+ fn to_u32 -> u32;
+ fn to_u64 -> u64;
+ #[cfg(has_i128)]
+ fn to_u128 -> u128;
+ }
+
+ #[inline]
+ fn to_f32(&self) -> Option<f32> {
+ Some(*self as f32)
+ }
+ #[inline]
+ fn to_f64(&self) -> Option<f64> {
+ Some(*self as f64)
+ }
+ }
+ };
+}
+
+impl_to_primitive_uint!(usize);
+impl_to_primitive_uint!(u8);
+impl_to_primitive_uint!(u16);
+impl_to_primitive_uint!(u32);
+impl_to_primitive_uint!(u64);
+#[cfg(has_i128)]
+impl_to_primitive_uint!(u128);
+
+macro_rules! impl_to_primitive_float_to_float {
+ ($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$(
+ #[inline]
+ fn $method(&self) -> Option<$DstT> {
+ // Only finite values that are reducing size need to worry about overflow.
+ if size_of::<$SrcT>() > size_of::<$DstT>() && FloatCore::is_finite(*self) {
+ let n = *self as f64;
+ if n < $DstT::MIN as f64 || n > $DstT::MAX as f64 {
+ return None;
+ }
+ }
+ // We can safely cast NaN, +-inf, and finite values in range.
+ Some(*self as $DstT)
+ }
+ )*}
+}
+
+#[cfg(has_to_int_unchecked)]
+macro_rules! float_to_int_unchecked {
+ // SAFETY: Must not be NaN or infinite; must be representable as the integer after truncating.
+ // We already checked that the float is in the exclusive range `(MIN-1, MAX+1)`.
+ ($float:expr => $int:ty) => {
+ unsafe { $float.to_int_unchecked::<$int>() }
+ };
+}
+
+#[cfg(not(has_to_int_unchecked))]
+macro_rules! float_to_int_unchecked {
+ ($float:expr => $int:ty) => {
+ $float as $int
+ };
+}
+
+macro_rules! impl_to_primitive_float_to_signed_int {
+ ($f:ident : $( $(#[$cfg:meta])* fn $method:ident -> $i:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$i> {
+ // Float as int truncates toward zero, so we want to allow values
+ // in the exclusive range `(MIN-1, MAX+1)`.
+ if size_of::<$f>() > size_of::<$i>() {
+ // With a larger size, we can represent the range exactly.
+ const MIN_M1: $f = $i::MIN as $f - 1.0;
+ const MAX_P1: $f = $i::MAX as $f + 1.0;
+ if *self > MIN_M1 && *self < MAX_P1 {
+ return Some(float_to_int_unchecked!(*self => $i));
+ }
+ } else {
+ // We can't represent `MIN-1` exactly, but there's no fractional part
+ // at this magnitude, so we can just use a `MIN` inclusive boundary.
+ const MIN: $f = $i::MIN as $f;
+ // We can't represent `MAX` exactly, but it will round up to exactly
+ // `MAX+1` (a power of two) when we cast it.
+ const MAX_P1: $f = $i::MAX as $f;
+ if *self >= MIN && *self < MAX_P1 {
+ return Some(float_to_int_unchecked!(*self => $i));
+ }
+ }
+ None
+ }
+ )*}
+}
+
+macro_rules! impl_to_primitive_float_to_unsigned_int {
+ ($f:ident : $( $(#[$cfg:meta])* fn $method:ident -> $u:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$u> {
+ // Float as int truncates toward zero, so we want to allow values
+ // in the exclusive range `(-1, MAX+1)`.
+ if size_of::<$f>() > size_of::<$u>() {
+ // With a larger size, we can represent the range exactly.
+ const MAX_P1: $f = $u::MAX as $f + 1.0;
+ if *self > -1.0 && *self < MAX_P1 {
+ return Some(float_to_int_unchecked!(*self => $u));
+ }
+ } else {
+ // We can't represent `MAX` exactly, but it will round up to exactly
+ // `MAX+1` (a power of two) when we cast it.
+ // (`u128::MAX as f32` is infinity, but this is still ok.)
+ const MAX_P1: $f = $u::MAX as $f;
+ if *self > -1.0 && *self < MAX_P1 {
+ return Some(float_to_int_unchecked!(*self => $u));
+ }
+ }
+ None
+ }
+ )*}
+}
+
+macro_rules! impl_to_primitive_float {
+ ($T:ident) => {
+ impl ToPrimitive for $T {
+ impl_to_primitive_float_to_signed_int! { $T:
+ fn to_isize -> isize;
+ fn to_i8 -> i8;
+ fn to_i16 -> i16;
+ fn to_i32 -> i32;
+ fn to_i64 -> i64;
+ #[cfg(has_i128)]
+ fn to_i128 -> i128;
+ }
+
+ impl_to_primitive_float_to_unsigned_int! { $T:
+ fn to_usize -> usize;
+ fn to_u8 -> u8;
+ fn to_u16 -> u16;
+ fn to_u32 -> u32;
+ fn to_u64 -> u64;
+ #[cfg(has_i128)]
+ fn to_u128 -> u128;
+ }
+
+ impl_to_primitive_float_to_float! { $T:
+ fn to_f32 -> f32;
+ fn to_f64 -> f64;
+ }
+ }
+ };
+}
+
+impl_to_primitive_float!(f32);
+impl_to_primitive_float!(f64);
+
+/// A generic trait for converting a number to a value.
+pub trait FromPrimitive: Sized {
+ /// Converts an `isize` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_isize(n: isize) -> Option<Self> {
+ n.to_i64().and_then(FromPrimitive::from_i64)
+ }
+
+ /// Converts an `i8` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_i8(n: i8) -> Option<Self> {
+ FromPrimitive::from_i64(From::from(n))
+ }
+
+ /// Converts an `i16` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_i16(n: i16) -> Option<Self> {
+ FromPrimitive::from_i64(From::from(n))
+ }
+
+ /// Converts an `i32` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_i32(n: i32) -> Option<Self> {
+ FromPrimitive::from_i64(From::from(n))
+ }
+
+ /// Converts an `i64` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ fn from_i64(n: i64) -> Option<Self>;
+
+ /// Converts an `i128` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ ///
+ /// This method is only available with feature `i128` enabled on Rust >= 1.26.
+ ///
+ /// The default implementation converts through `from_i64()`. Types implementing
+ /// this trait should override this method if they can represent a greater range.
+ #[inline]
+ #[cfg(has_i128)]
+ fn from_i128(n: i128) -> Option<Self> {
+ n.to_i64().and_then(FromPrimitive::from_i64)
+ }
+
+ /// Converts a `usize` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_usize(n: usize) -> Option<Self> {
+ n.to_u64().and_then(FromPrimitive::from_u64)
+ }
+
+ /// Converts an `u8` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_u8(n: u8) -> Option<Self> {
+ FromPrimitive::from_u64(From::from(n))
+ }
+
+ /// Converts an `u16` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_u16(n: u16) -> Option<Self> {
+ FromPrimitive::from_u64(From::from(n))
+ }
+
+ /// Converts an `u32` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_u32(n: u32) -> Option<Self> {
+ FromPrimitive::from_u64(From::from(n))
+ }
+
+ /// Converts an `u64` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ fn from_u64(n: u64) -> Option<Self>;
+
+ /// Converts an `u128` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ ///
+ /// This method is only available with feature `i128` enabled on Rust >= 1.26.
+ ///
+ /// The default implementation converts through `from_u64()`. Types implementing
+ /// this trait should override this method if they can represent a greater range.
+ #[inline]
+ #[cfg(has_i128)]
+ fn from_u128(n: u128) -> Option<Self> {
+ n.to_u64().and_then(FromPrimitive::from_u64)
+ }
+
+ /// Converts a `f32` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_f32(n: f32) -> Option<Self> {
+ FromPrimitive::from_f64(From::from(n))
+ }
+
+ /// Converts a `f64` to return an optional value of this type. If the
+ /// value cannot be represented by this type, then `None` is returned.
+ #[inline]
+ fn from_f64(n: f64) -> Option<Self> {
+ match n.to_i64() {
+ Some(i) => FromPrimitive::from_i64(i),
+ None => n.to_u64().and_then(FromPrimitive::from_u64),
+ }
+ }
+}
+
+macro_rules! impl_from_primitive {
+ ($T:ty, $to_ty:ident) => {
+ #[allow(deprecated)]
+ impl FromPrimitive for $T {
+ #[inline]
+ fn from_isize(n: isize) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_i8(n: i8) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_i16(n: i16) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_i32(n: i32) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_i64(n: i64) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[cfg(has_i128)]
+ #[inline]
+ fn from_i128(n: i128) -> Option<$T> {
+ n.$to_ty()
+ }
+
+ #[inline]
+ fn from_usize(n: usize) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_u8(n: u8) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_u16(n: u16) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_u32(n: u32) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_u64(n: u64) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[cfg(has_i128)]
+ #[inline]
+ fn from_u128(n: u128) -> Option<$T> {
+ n.$to_ty()
+ }
+
+ #[inline]
+ fn from_f32(n: f32) -> Option<$T> {
+ n.$to_ty()
+ }
+ #[inline]
+ fn from_f64(n: f64) -> Option<$T> {
+ n.$to_ty()
+ }
+ }
+ };
+}
+
+impl_from_primitive!(isize, to_isize);
+impl_from_primitive!(i8, to_i8);
+impl_from_primitive!(i16, to_i16);
+impl_from_primitive!(i32, to_i32);
+impl_from_primitive!(i64, to_i64);
+#[cfg(has_i128)]
+impl_from_primitive!(i128, to_i128);
+impl_from_primitive!(usize, to_usize);
+impl_from_primitive!(u8, to_u8);
+impl_from_primitive!(u16, to_u16);
+impl_from_primitive!(u32, to_u32);
+impl_from_primitive!(u64, to_u64);
+#[cfg(has_i128)]
+impl_from_primitive!(u128, to_u128);
+impl_from_primitive!(f32, to_f32);
+impl_from_primitive!(f64, to_f64);
+
+macro_rules! impl_to_primitive_wrapping {
+ ($( $(#[$cfg:meta])* fn $method:ident -> $i:ident ; )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(&self) -> Option<$i> {
+ (self.0).$method()
+ }
+ )*}
+}
+
+impl<T: ToPrimitive> ToPrimitive for Wrapping<T> {
+ impl_to_primitive_wrapping! {
+ fn to_isize -> isize;
+ fn to_i8 -> i8;
+ fn to_i16 -> i16;
+ fn to_i32 -> i32;
+ fn to_i64 -> i64;
+ #[cfg(has_i128)]
+ fn to_i128 -> i128;
+
+ fn to_usize -> usize;
+ fn to_u8 -> u8;
+ fn to_u16 -> u16;
+ fn to_u32 -> u32;
+ fn to_u64 -> u64;
+ #[cfg(has_i128)]
+ fn to_u128 -> u128;
+
+ fn to_f32 -> f32;
+ fn to_f64 -> f64;
+ }
+}
+
+macro_rules! impl_from_primitive_wrapping {
+ ($( $(#[$cfg:meta])* fn $method:ident ( $i:ident ); )*) => {$(
+ #[inline]
+ $(#[$cfg])*
+ fn $method(n: $i) -> Option<Self> {
+ T::$method(n).map(Wrapping)
+ }
+ )*}
+}
+
+impl<T: FromPrimitive> FromPrimitive for Wrapping<T> {
+ impl_from_primitive_wrapping! {
+ fn from_isize(isize);
+ fn from_i8(i8);
+ fn from_i16(i16);
+ fn from_i32(i32);
+ fn from_i64(i64);
+ #[cfg(has_i128)]
+ fn from_i128(i128);
+
+ fn from_usize(usize);
+ fn from_u8(u8);
+ fn from_u16(u16);
+ fn from_u32(u32);
+ fn from_u64(u64);
+ #[cfg(has_i128)]
+ fn from_u128(u128);
+
+ fn from_f32(f32);
+ fn from_f64(f64);
+ }
+}
+
+/// Cast from one machine scalar to another.
+///
+/// # Examples
+///
+/// ```
+/// # use num_traits as num;
+/// let twenty: f32 = num::cast(0x14).unwrap();
+/// assert_eq!(twenty, 20f32);
+/// ```
+///
+#[inline]
+pub fn cast<T: NumCast, U: NumCast>(n: T) -> Option<U> {
+ NumCast::from(n)
+}
+
+/// An interface for casting between machine scalars.
+pub trait NumCast: Sized + ToPrimitive {
+ /// Creates a number from another value that can be converted into
+ /// a primitive via the `ToPrimitive` trait. If the source value cannot be
+ /// represented by the target type, then `None` is returned.
+ fn from<T: ToPrimitive>(n: T) -> Option<Self>;
+}
+
+macro_rules! impl_num_cast {
+ ($T:ty, $conv:ident) => {
+ impl NumCast for $T {
+ #[inline]
+ #[allow(deprecated)]
+ fn from<N: ToPrimitive>(n: N) -> Option<$T> {
+ // `$conv` could be generated using `concat_idents!`, but that
+ // macro seems to be broken at the moment
+ n.$conv()
+ }
+ }
+ };
+}
+
+impl_num_cast!(u8, to_u8);
+impl_num_cast!(u16, to_u16);
+impl_num_cast!(u32, to_u32);
+impl_num_cast!(u64, to_u64);
+#[cfg(has_i128)]
+impl_num_cast!(u128, to_u128);
+impl_num_cast!(usize, to_usize);
+impl_num_cast!(i8, to_i8);
+impl_num_cast!(i16, to_i16);
+impl_num_cast!(i32, to_i32);
+impl_num_cast!(i64, to_i64);
+#[cfg(has_i128)]
+impl_num_cast!(i128, to_i128);
+impl_num_cast!(isize, to_isize);
+impl_num_cast!(f32, to_f32);
+impl_num_cast!(f64, to_f64);
+
+impl<T: NumCast> NumCast for Wrapping<T> {
+ fn from<U: ToPrimitive>(n: U) -> Option<Self> {
+ T::from(n).map(Wrapping)
+ }
+}
+
+/// A generic interface for casting between machine scalars with the
+/// `as` operator, which admits narrowing and precision loss.
+/// Implementers of this trait `AsPrimitive` should behave like a primitive
+/// numeric type (e.g. a newtype around another primitive), and the
+/// intended conversion must never fail.
+///
+/// # Examples
+///
+/// ```
+/// # use num_traits::AsPrimitive;
+/// let three: i32 = (3.14159265f32).as_();
+/// assert_eq!(three, 3);
+/// ```
+///
+/// # Safety
+///
+/// Currently, some uses of the `as` operator are not entirely safe.
+/// In particular, it is undefined behavior if:
+///
+/// - A truncated floating point value cannot fit in the target integer
+/// type ([#10184](https://github.com/rust-lang/rust/issues/10184));
+///
+/// ```ignore
+/// # use num_traits::AsPrimitive;
+/// let x: u8 = (1.04E+17).as_(); // UB
+/// ```
+///
+/// - Or a floating point value does not fit in another floating
+/// point type ([#15536](https://github.com/rust-lang/rust/issues/15536)).
+///
+/// ```ignore
+/// # use num_traits::AsPrimitive;
+/// let x: f32 = (1e300f64).as_(); // UB
+/// ```
+///
+pub trait AsPrimitive<T>: 'static + Copy
+where
+ T: 'static + Copy,
+{
+ /// Convert a value to another, using the `as` operator.
+ fn as_(self) -> T;
+}
+
+macro_rules! impl_as_primitive {
+ (@ $T: ty => $(#[$cfg:meta])* impl $U: ty ) => {
+ $(#[$cfg])*
+ impl AsPrimitive<$U> for $T {
+ #[inline] fn as_(self) -> $U { self as $U }
+ }
+ };
+ (@ $T: ty => { $( $U: ty ),* } ) => {$(
+ impl_as_primitive!(@ $T => impl $U);
+ )*};
+ ($T: ty => { $( $U: ty ),* } ) => {
+ impl_as_primitive!(@ $T => { $( $U ),* });
+ impl_as_primitive!(@ $T => { u8, u16, u32, u64, usize });
+ impl_as_primitive!(@ $T => #[cfg(has_i128)] impl u128);
+ impl_as_primitive!(@ $T => { i8, i16, i32, i64, isize });
+ impl_as_primitive!(@ $T => #[cfg(has_i128)] impl i128);
+ };
+}
+
+impl_as_primitive!(u8 => { char, f32, f64 });
+impl_as_primitive!(i8 => { f32, f64 });
+impl_as_primitive!(u16 => { f32, f64 });
+impl_as_primitive!(i16 => { f32, f64 });
+impl_as_primitive!(u32 => { f32, f64 });
+impl_as_primitive!(i32 => { f32, f64 });
+impl_as_primitive!(u64 => { f32, f64 });
+impl_as_primitive!(i64 => { f32, f64 });
+#[cfg(has_i128)]
+impl_as_primitive!(u128 => { f32, f64 });
+#[cfg(has_i128)]
+impl_as_primitive!(i128 => { f32, f64 });
+impl_as_primitive!(usize => { f32, f64 });
+impl_as_primitive!(isize => { f32, f64 });
+impl_as_primitive!(f32 => { f32, f64 });
+impl_as_primitive!(f64 => { f32, f64 });
+impl_as_primitive!(char => { char });
+impl_as_primitive!(bool => {});
diff --git a/vendor/num-traits/src/float.rs b/vendor/num-traits/src/float.rs
new file mode 100644
index 000000000..0e7b9db35
--- /dev/null
+++ b/vendor/num-traits/src/float.rs
@@ -0,0 +1,2390 @@
+use core::mem;
+use core::num::FpCategory;
+use core::ops::{Add, Div, Neg};
+
+use core::f32;
+use core::f64;
+
+use {Num, NumCast, ToPrimitive};
+
+#[cfg(all(not(feature = "std"), feature = "libm"))]
+use libm;
+
+/// Generic trait for floating point numbers that works with `no_std`.
+///
+/// This trait implements a subset of the `Float` trait.
+pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
+ /// Returns positive infinity.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T) {
+ /// assert!(T::infinity() == x);
+ /// }
+ ///
+ /// check(f32::INFINITY);
+ /// check(f64::INFINITY);
+ /// ```
+ fn infinity() -> Self;
+
+ /// Returns negative infinity.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T) {
+ /// assert!(T::neg_infinity() == x);
+ /// }
+ ///
+ /// check(f32::NEG_INFINITY);
+ /// check(f64::NEG_INFINITY);
+ /// ```
+ fn neg_infinity() -> Self;
+
+ /// Returns NaN.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ ///
+ /// fn check<T: FloatCore>() {
+ /// let n = T::nan();
+ /// assert!(n != n);
+ /// }
+ ///
+ /// check::<f32>();
+ /// check::<f64>();
+ /// ```
+ fn nan() -> Self;
+
+ /// Returns `-0.0`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(n: T) {
+ /// let z = T::neg_zero();
+ /// assert!(z.is_zero());
+ /// assert!(T::one() / z == n);
+ /// }
+ ///
+ /// check(f32::NEG_INFINITY);
+ /// check(f64::NEG_INFINITY);
+ /// ```
+ fn neg_zero() -> Self;
+
+ /// Returns the smallest finite value that this type can represent.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T) {
+ /// assert!(T::min_value() == x);
+ /// }
+ ///
+ /// check(f32::MIN);
+ /// check(f64::MIN);
+ /// ```
+ fn min_value() -> Self;
+
+ /// Returns the smallest positive, normalized value that this type can represent.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T) {
+ /// assert!(T::min_positive_value() == x);
+ /// }
+ ///
+ /// check(f32::MIN_POSITIVE);
+ /// check(f64::MIN_POSITIVE);
+ /// ```
+ fn min_positive_value() -> Self;
+
+ /// Returns epsilon, a small positive value.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T) {
+ /// assert!(T::epsilon() == x);
+ /// }
+ ///
+ /// check(f32::EPSILON);
+ /// check(f64::EPSILON);
+ /// ```
+ fn epsilon() -> Self;
+
+ /// Returns the largest finite value that this type can represent.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T) {
+ /// assert!(T::max_value() == x);
+ /// }
+ ///
+ /// check(f32::MAX);
+ /// check(f64::MAX);
+ /// ```
+ fn max_value() -> Self;
+
+ /// Returns `true` if the number is NaN.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, p: bool) {
+ /// assert!(x.is_nan() == p);
+ /// }
+ ///
+ /// check(f32::NAN, true);
+ /// check(f32::INFINITY, false);
+ /// check(f64::NAN, true);
+ /// check(0.0f64, false);
+ /// ```
+ #[inline]
+ fn is_nan(self) -> bool {
+ self != self
+ }
+
+ /// Returns `true` if the number is infinite.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, p: bool) {
+ /// assert!(x.is_infinite() == p);
+ /// }
+ ///
+ /// check(f32::INFINITY, true);
+ /// check(f32::NEG_INFINITY, true);
+ /// check(f32::NAN, false);
+ /// check(f64::INFINITY, true);
+ /// check(f64::NEG_INFINITY, true);
+ /// check(0.0f64, false);
+ /// ```
+ #[inline]
+ fn is_infinite(self) -> bool {
+ self == Self::infinity() || self == Self::neg_infinity()
+ }
+
+ /// Returns `true` if the number is neither infinite or NaN.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, p: bool) {
+ /// assert!(x.is_finite() == p);
+ /// }
+ ///
+ /// check(f32::INFINITY, false);
+ /// check(f32::MAX, true);
+ /// check(f64::NEG_INFINITY, false);
+ /// check(f64::MIN_POSITIVE, true);
+ /// check(f64::NAN, false);
+ /// ```
+ #[inline]
+ fn is_finite(self) -> bool {
+ !(self.is_nan() || self.is_infinite())
+ }
+
+ /// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, p: bool) {
+ /// assert!(x.is_normal() == p);
+ /// }
+ ///
+ /// check(f32::INFINITY, false);
+ /// check(f32::MAX, true);
+ /// check(f64::NEG_INFINITY, false);
+ /// check(f64::MIN_POSITIVE, true);
+ /// check(0.0f64, false);
+ /// ```
+ #[inline]
+ fn is_normal(self) -> bool {
+ self.classify() == FpCategory::Normal
+ }
+
+ /// Returns the floating point category of the number. If only one property
+ /// is going to be tested, it is generally faster to use the specific
+ /// predicate instead.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ /// use std::num::FpCategory;
+ ///
+ /// fn check<T: FloatCore>(x: T, c: FpCategory) {
+ /// assert!(x.classify() == c);
+ /// }
+ ///
+ /// check(f32::INFINITY, FpCategory::Infinite);
+ /// check(f32::MAX, FpCategory::Normal);
+ /// check(f64::NAN, FpCategory::Nan);
+ /// check(f64::MIN_POSITIVE, FpCategory::Normal);
+ /// check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal);
+ /// check(0.0f64, FpCategory::Zero);
+ /// ```
+ fn classify(self) -> FpCategory;
+
+ /// Returns the largest integer less than or equal to a number.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, y: T) {
+ /// assert!(x.floor() == y);
+ /// }
+ ///
+ /// check(f32::INFINITY, f32::INFINITY);
+ /// check(0.9f32, 0.0);
+ /// check(1.0f32, 1.0);
+ /// check(1.1f32, 1.0);
+ /// check(-0.0f64, 0.0);
+ /// check(-0.9f64, -1.0);
+ /// check(-1.0f64, -1.0);
+ /// check(-1.1f64, -2.0);
+ /// check(f64::MIN, f64::MIN);
+ /// ```
+ #[inline]
+ fn floor(self) -> Self {
+ let f = self.fract();
+ if f.is_nan() || f.is_zero() {
+ self
+ } else if self < Self::zero() {
+ self - f - Self::one()
+ } else {
+ self - f
+ }
+ }
+
+ /// Returns the smallest integer greater than or equal to a number.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, y: T) {
+ /// assert!(x.ceil() == y);
+ /// }
+ ///
+ /// check(f32::INFINITY, f32::INFINITY);
+ /// check(0.9f32, 1.0);
+ /// check(1.0f32, 1.0);
+ /// check(1.1f32, 2.0);
+ /// check(-0.0f64, 0.0);
+ /// check(-0.9f64, -0.0);
+ /// check(-1.0f64, -1.0);
+ /// check(-1.1f64, -1.0);
+ /// check(f64::MIN, f64::MIN);
+ /// ```
+ #[inline]
+ fn ceil(self) -> Self {
+ let f = self.fract();
+ if f.is_nan() || f.is_zero() {
+ self
+ } else if self > Self::zero() {
+ self - f + Self::one()
+ } else {
+ self - f
+ }
+ }
+
+ /// Returns the nearest integer to a number. Round half-way cases away from `0.0`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, y: T) {
+ /// assert!(x.round() == y);
+ /// }
+ ///
+ /// check(f32::INFINITY, f32::INFINITY);
+ /// check(0.4f32, 0.0);
+ /// check(0.5f32, 1.0);
+ /// check(0.6f32, 1.0);
+ /// check(-0.4f64, 0.0);
+ /// check(-0.5f64, -1.0);
+ /// check(-0.6f64, -1.0);
+ /// check(f64::MIN, f64::MIN);
+ /// ```
+ #[inline]
+ fn round(self) -> Self {
+ let one = Self::one();
+ let h = Self::from(0.5).expect("Unable to cast from 0.5");
+ let f = self.fract();
+ if f.is_nan() || f.is_zero() {
+ self
+ } else if self > Self::zero() {
+ if f < h {
+ self - f
+ } else {
+ self - f + one
+ }
+ } else {
+ if -f < h {
+ self - f
+ } else {
+ self - f - one
+ }
+ }
+ }
+
+ /// Return the integer part of a number.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, y: T) {
+ /// assert!(x.trunc() == y);
+ /// }
+ ///
+ /// check(f32::INFINITY, f32::INFINITY);
+ /// check(0.9f32, 0.0);
+ /// check(1.0f32, 1.0);
+ /// check(1.1f32, 1.0);
+ /// check(-0.0f64, 0.0);
+ /// check(-0.9f64, -0.0);
+ /// check(-1.0f64, -1.0);
+ /// check(-1.1f64, -1.0);
+ /// check(f64::MIN, f64::MIN);
+ /// ```
+ #[inline]
+ fn trunc(self) -> Self {
+ let f = self.fract();
+ if f.is_nan() {
+ self
+ } else {
+ self - f
+ }
+ }
+
+ /// Returns the fractional part of a number.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, y: T) {
+ /// assert!(x.fract() == y);
+ /// }
+ ///
+ /// check(f32::MAX, 0.0);
+ /// check(0.75f32, 0.75);
+ /// check(1.0f32, 0.0);
+ /// check(1.25f32, 0.25);
+ /// check(-0.0f64, 0.0);
+ /// check(-0.75f64, -0.75);
+ /// check(-1.0f64, 0.0);
+ /// check(-1.25f64, -0.25);
+ /// check(f64::MIN, 0.0);
+ /// ```
+ #[inline]
+ fn fract(self) -> Self {
+ if self.is_zero() {
+ Self::zero()
+ } else {
+ self % Self::one()
+ }
+ }
+
+ /// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the
+ /// number is `FloatCore::nan()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, y: T) {
+ /// assert!(x.abs() == y);
+ /// }
+ ///
+ /// check(f32::INFINITY, f32::INFINITY);
+ /// check(1.0f32, 1.0);
+ /// check(0.0f64, 0.0);
+ /// check(-0.0f64, 0.0);
+ /// check(-1.0f64, 1.0);
+ /// check(f64::MIN, f64::MAX);
+ /// ```
+ #[inline]
+ fn abs(self) -> Self {
+ if self.is_sign_positive() {
+ return self;
+ }
+ if self.is_sign_negative() {
+ return -self;
+ }
+ Self::nan()
+ }
+
+ /// Returns a number that represents the sign of `self`.
+ ///
+ /// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()`
+ /// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()`
+ /// - `FloatCore::nan()` if the number is `FloatCore::nan()`
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, y: T) {
+ /// assert!(x.signum() == y);
+ /// }
+ ///
+ /// check(f32::INFINITY, 1.0);
+ /// check(3.0f32, 1.0);
+ /// check(0.0f32, 1.0);
+ /// check(-0.0f64, -1.0);
+ /// check(-3.0f64, -1.0);
+ /// check(f64::MIN, -1.0);
+ /// ```
+ #[inline]
+ fn signum(self) -> Self {
+ if self.is_nan() {
+ Self::nan()
+ } else if self.is_sign_negative() {
+ -Self::one()
+ } else {
+ Self::one()
+ }
+ }
+
+ /// Returns `true` if `self` is positive, including `+0.0` and
+ /// `FloatCore::infinity()`, and since Rust 1.20 also
+ /// `FloatCore::nan()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, p: bool) {
+ /// assert!(x.is_sign_positive() == p);
+ /// }
+ ///
+ /// check(f32::INFINITY, true);
+ /// check(f32::MAX, true);
+ /// check(0.0f32, true);
+ /// check(-0.0f64, false);
+ /// check(f64::NEG_INFINITY, false);
+ /// check(f64::MIN_POSITIVE, true);
+ /// check(-f64::NAN, false);
+ /// ```
+ #[inline]
+ fn is_sign_positive(self) -> bool {
+ !self.is_sign_negative()
+ }
+
+ /// Returns `true` if `self` is negative, including `-0.0` and
+ /// `FloatCore::neg_infinity()`, and since Rust 1.20 also
+ /// `-FloatCore::nan()`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, p: bool) {
+ /// assert!(x.is_sign_negative() == p);
+ /// }
+ ///
+ /// check(f32::INFINITY, false);
+ /// check(f32::MAX, false);
+ /// check(0.0f32, false);
+ /// check(-0.0f64, true);
+ /// check(f64::NEG_INFINITY, true);
+ /// check(f64::MIN_POSITIVE, false);
+ /// check(f64::NAN, false);
+ /// ```
+ #[inline]
+ fn is_sign_negative(self) -> bool {
+ let (_, _, sign) = self.integer_decode();
+ sign < 0
+ }
+
+ /// Returns the minimum of the two numbers.
+ ///
+ /// If one of the arguments is NaN, then the other argument is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, y: T, min: T) {
+ /// assert!(x.min(y) == min);
+ /// }
+ ///
+ /// check(1.0f32, 2.0, 1.0);
+ /// check(f32::NAN, 2.0, 2.0);
+ /// check(1.0f64, -2.0, -2.0);
+ /// check(1.0f64, f64::NAN, 1.0);
+ /// ```
+ #[inline]
+ fn min(self, other: Self) -> Self {
+ if self.is_nan() {
+ return other;
+ }
+ if other.is_nan() {
+ return self;
+ }
+ if self < other {
+ self
+ } else {
+ other
+ }
+ }
+
+ /// Returns the maximum of the two numbers.
+ ///
+ /// If one of the arguments is NaN, then the other argument is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, y: T, max: T) {
+ /// assert!(x.max(y) == max);
+ /// }
+ ///
+ /// check(1.0f32, 2.0, 2.0);
+ /// check(1.0f32, f32::NAN, 1.0);
+ /// check(-1.0f64, 2.0, 2.0);
+ /// check(-1.0f64, f64::NAN, -1.0);
+ /// ```
+ #[inline]
+ fn max(self, other: Self) -> Self {
+ if self.is_nan() {
+ return other;
+ }
+ if other.is_nan() {
+ return self;
+ }
+ if self > other {
+ self
+ } else {
+ other
+ }
+ }
+
+ /// Returns the reciprocal (multiplicative inverse) of the number.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, y: T) {
+ /// assert!(x.recip() == y);
+ /// assert!(y.recip() == x);
+ /// }
+ ///
+ /// check(f32::INFINITY, 0.0);
+ /// check(2.0f32, 0.5);
+ /// check(-0.25f64, -4.0);
+ /// check(-0.0f64, f64::NEG_INFINITY);
+ /// ```
+ #[inline]
+ fn recip(self) -> Self {
+ Self::one() / self
+ }
+
+ /// Raise a number to an integer power.
+ ///
+ /// Using this function is generally faster than using `powf`
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ ///
+ /// fn check<T: FloatCore>(x: T, exp: i32, powi: T) {
+ /// assert!(x.powi(exp) == powi);
+ /// }
+ ///
+ /// check(9.0f32, 2, 81.0);
+ /// check(1.0f32, -2, 1.0);
+ /// check(10.0f64, 20, 1e20);
+ /// check(4.0f64, -2, 0.0625);
+ /// check(-1.0f64, std::i32::MIN, 1.0);
+ /// ```
+ #[inline]
+ fn powi(mut self, mut exp: i32) -> Self {
+ if exp < 0 {
+ exp = exp.wrapping_neg();
+ self = self.recip();
+ }
+ // It should always be possible to convert a positive `i32` to a `usize`.
+ // Note, `i32::MIN` will wrap and still be negative, so we need to convert
+ // to `u32` without sign-extension before growing to `usize`.
+ super::pow(self, (exp as u32).to_usize().unwrap())
+ }
+
+ /// Converts to degrees, assuming the number is in radians.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(rad: T, deg: T) {
+ /// assert!(rad.to_degrees() == deg);
+ /// }
+ ///
+ /// check(0.0f32, 0.0);
+ /// check(f32::consts::PI, 180.0);
+ /// check(f64::consts::FRAC_PI_4, 45.0);
+ /// check(f64::INFINITY, f64::INFINITY);
+ /// ```
+ fn to_degrees(self) -> Self;
+
+ /// Converts to radians, assuming the number is in degrees.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(deg: T, rad: T) {
+ /// assert!(deg.to_radians() == rad);
+ /// }
+ ///
+ /// check(0.0f32, 0.0);
+ /// check(180.0, f32::consts::PI);
+ /// check(45.0, f64::consts::FRAC_PI_4);
+ /// check(f64::INFINITY, f64::INFINITY);
+ /// ```
+ fn to_radians(self) -> Self;
+
+ /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
+ /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::float::FloatCore;
+ /// use std::{f32, f64};
+ ///
+ /// fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) {
+ /// let (mantissa, exponent, sign) = x.integer_decode();
+ /// assert_eq!(mantissa, m);
+ /// assert_eq!(exponent, e);
+ /// assert_eq!(sign, s);
+ /// }
+ ///
+ /// check(2.0f32, 1 << 23, -22, 1);
+ /// check(-2.0f32, 1 << 23, -22, -1);
+ /// check(f32::INFINITY, 1 << 23, 105, 1);
+ /// check(f64::NEG_INFINITY, 1 << 52, 972, -1);
+ /// ```
+ fn integer_decode(self) -> (u64, i16, i8);
+}
+
+impl FloatCore for f32 {
+ constant! {
+ infinity() -> f32::INFINITY;
+ neg_infinity() -> f32::NEG_INFINITY;
+ nan() -> f32::NAN;
+ neg_zero() -> -0.0;
+ min_value() -> f32::MIN;
+ min_positive_value() -> f32::MIN_POSITIVE;
+ epsilon() -> f32::EPSILON;
+ max_value() -> f32::MAX;
+ }
+
+ #[inline]
+ fn integer_decode(self) -> (u64, i16, i8) {
+ integer_decode_f32(self)
+ }
+
+ #[inline]
+ #[cfg(not(feature = "std"))]
+ fn classify(self) -> FpCategory {
+ const EXP_MASK: u32 = 0x7f800000;
+ const MAN_MASK: u32 = 0x007fffff;
+
+ // Safety: this identical to the implementation of f32::to_bits(),
+ // which is only available starting at Rust 1.20
+ let bits: u32 = unsafe { mem::transmute(self) };
+ match (bits & MAN_MASK, bits & EXP_MASK) {
+ (0, 0) => FpCategory::Zero,
+ (_, 0) => FpCategory::Subnormal,
+ (0, EXP_MASK) => FpCategory::Infinite,
+ (_, EXP_MASK) => FpCategory::Nan,
+ _ => FpCategory::Normal,
+ }
+ }
+
+ #[inline]
+ #[cfg(not(feature = "std"))]
+ fn to_degrees(self) -> Self {
+ // Use a constant for better precision.
+ const PIS_IN_180: f32 = 57.2957795130823208767981548141051703_f32;
+ self * PIS_IN_180
+ }
+
+ #[inline]
+ #[cfg(not(feature = "std"))]
+ fn to_radians(self) -> Self {
+ self * (f32::consts::PI / 180.0)
+ }
+
+ #[cfg(feature = "std")]
+ forward! {
+ Self::is_nan(self) -> bool;
+ Self::is_infinite(self) -> bool;
+ Self::is_finite(self) -> bool;
+ Self::is_normal(self) -> bool;
+ Self::classify(self) -> FpCategory;
+ Self::floor(self) -> Self;
+ Self::ceil(self) -> Self;
+ Self::round(self) -> Self;
+ Self::trunc(self) -> Self;
+ Self::fract(self) -> Self;
+ Self::abs(self) -> Self;
+ Self::signum(self) -> Self;
+ Self::is_sign_positive(self) -> bool;
+ Self::is_sign_negative(self) -> bool;
+ Self::min(self, other: Self) -> Self;
+ Self::max(self, other: Self) -> Self;
+ Self::recip(self) -> Self;
+ Self::powi(self, n: i32) -> Self;
+ Self::to_degrees(self) -> Self;
+ Self::to_radians(self) -> Self;
+ }
+}
+
+impl FloatCore for f64 {
+ constant! {
+ infinity() -> f64::INFINITY;
+ neg_infinity() -> f64::NEG_INFINITY;
+ nan() -> f64::NAN;
+ neg_zero() -> -0.0;
+ min_value() -> f64::MIN;
+ min_positive_value() -> f64::MIN_POSITIVE;
+ epsilon() -> f64::EPSILON;
+ max_value() -> f64::MAX;
+ }
+
+ #[inline]
+ fn integer_decode(self) -> (u64, i16, i8) {
+ integer_decode_f64(self)
+ }
+
+ #[inline]
+ #[cfg(not(feature = "std"))]
+ fn classify(self) -> FpCategory {
+ const EXP_MASK: u64 = 0x7ff0000000000000;
+ const MAN_MASK: u64 = 0x000fffffffffffff;
+
+ // Safety: this identical to the implementation of f64::to_bits(),
+ // which is only available starting at Rust 1.20
+ let bits: u64 = unsafe { mem::transmute(self) };
+ match (bits & MAN_MASK, bits & EXP_MASK) {
+ (0, 0) => FpCategory::Zero,
+ (_, 0) => FpCategory::Subnormal,
+ (0, EXP_MASK) => FpCategory::Infinite,
+ (_, EXP_MASK) => FpCategory::Nan,
+ _ => FpCategory::Normal,
+ }
+ }
+
+ #[inline]
+ #[cfg(not(feature = "std"))]
+ fn to_degrees(self) -> Self {
+ // The division here is correctly rounded with respect to the true
+ // value of 180/π. (This differs from f32, where a constant must be
+ // used to ensure a correctly rounded result.)
+ self * (180.0 / f64::consts::PI)
+ }
+
+ #[inline]
+ #[cfg(not(feature = "std"))]
+ fn to_radians(self) -> Self {
+ self * (f64::consts::PI / 180.0)
+ }
+
+ #[cfg(feature = "std")]
+ forward! {
+ Self::is_nan(self) -> bool;
+ Self::is_infinite(self) -> bool;
+ Self::is_finite(self) -> bool;
+ Self::is_normal(self) -> bool;
+ Self::classify(self) -> FpCategory;
+ Self::floor(self) -> Self;
+ Self::ceil(self) -> Self;
+ Self::round(self) -> Self;
+ Self::trunc(self) -> Self;
+ Self::fract(self) -> Self;
+ Self::abs(self) -> Self;
+ Self::signum(self) -> Self;
+ Self::is_sign_positive(self) -> bool;
+ Self::is_sign_negative(self) -> bool;
+ Self::min(self, other: Self) -> Self;
+ Self::max(self, other: Self) -> Self;
+ Self::recip(self) -> Self;
+ Self::powi(self, n: i32) -> Self;
+ Self::to_degrees(self) -> Self;
+ Self::to_radians(self) -> Self;
+ }
+}
+
+// FIXME: these doctests aren't actually helpful, because they're using and
+// testing the inherent methods directly, not going through `Float`.
+
+/// Generic trait for floating point numbers
+///
+/// This trait is only available with the `std` feature, or with the `libm` feature otherwise.
+#[cfg(any(feature = "std", feature = "libm"))]
+pub trait Float: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> {
+ /// Returns the `NaN` value.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let nan: f32 = Float::nan();
+ ///
+ /// assert!(nan.is_nan());
+ /// ```
+ fn nan() -> Self;
+ /// Returns the infinite value.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f32;
+ ///
+ /// let infinity: f32 = Float::infinity();
+ ///
+ /// assert!(infinity.is_infinite());
+ /// assert!(!infinity.is_finite());
+ /// assert!(infinity > f32::MAX);
+ /// ```
+ fn infinity() -> Self;
+ /// Returns the negative infinite value.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f32;
+ ///
+ /// let neg_infinity: f32 = Float::neg_infinity();
+ ///
+ /// assert!(neg_infinity.is_infinite());
+ /// assert!(!neg_infinity.is_finite());
+ /// assert!(neg_infinity < f32::MIN);
+ /// ```
+ fn neg_infinity() -> Self;
+ /// Returns `-0.0`.
+ ///
+ /// ```
+ /// use num_traits::{Zero, Float};
+ ///
+ /// let inf: f32 = Float::infinity();
+ /// let zero: f32 = Zero::zero();
+ /// let neg_zero: f32 = Float::neg_zero();
+ ///
+ /// assert_eq!(zero, neg_zero);
+ /// assert_eq!(7.0f32/inf, zero);
+ /// assert_eq!(zero * 10.0, zero);
+ /// ```
+ fn neg_zero() -> Self;
+
+ /// Returns the smallest finite value that this type can represent.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let x: f64 = Float::min_value();
+ ///
+ /// assert_eq!(x, f64::MIN);
+ /// ```
+ fn min_value() -> Self;
+
+ /// Returns the smallest positive, normalized value that this type can represent.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let x: f64 = Float::min_positive_value();
+ ///
+ /// assert_eq!(x, f64::MIN_POSITIVE);
+ /// ```
+ fn min_positive_value() -> Self;
+
+ /// Returns epsilon, a small positive value.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let x: f64 = Float::epsilon();
+ ///
+ /// assert_eq!(x, f64::EPSILON);
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// The default implementation will panic if `f32::EPSILON` cannot
+ /// be cast to `Self`.
+ fn epsilon() -> Self {
+ Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON")
+ }
+
+ /// Returns the largest finite value that this type can represent.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let x: f64 = Float::max_value();
+ /// assert_eq!(x, f64::MAX);
+ /// ```
+ fn max_value() -> Self;
+
+ /// Returns `true` if this value is `NaN` and false otherwise.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let nan = f64::NAN;
+ /// let f = 7.0;
+ ///
+ /// assert!(nan.is_nan());
+ /// assert!(!f.is_nan());
+ /// ```
+ fn is_nan(self) -> bool;
+
+ /// Returns `true` if this value is positive infinity or negative infinity and
+ /// false otherwise.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f32;
+ ///
+ /// let f = 7.0f32;
+ /// let inf: f32 = Float::infinity();
+ /// let neg_inf: f32 = Float::neg_infinity();
+ /// let nan: f32 = f32::NAN;
+ ///
+ /// assert!(!f.is_infinite());
+ /// assert!(!nan.is_infinite());
+ ///
+ /// assert!(inf.is_infinite());
+ /// assert!(neg_inf.is_infinite());
+ /// ```
+ fn is_infinite(self) -> bool;
+
+ /// Returns `true` if this number is neither infinite nor `NaN`.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f32;
+ ///
+ /// let f = 7.0f32;
+ /// let inf: f32 = Float::infinity();
+ /// let neg_inf: f32 = Float::neg_infinity();
+ /// let nan: f32 = f32::NAN;
+ ///
+ /// assert!(f.is_finite());
+ ///
+ /// assert!(!nan.is_finite());
+ /// assert!(!inf.is_finite());
+ /// assert!(!neg_inf.is_finite());
+ /// ```
+ fn is_finite(self) -> bool;
+
+ /// Returns `true` if the number is neither zero, infinite,
+ /// [subnormal][subnormal], or `NaN`.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f32;
+ ///
+ /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
+ /// let max = f32::MAX;
+ /// let lower_than_min = 1.0e-40_f32;
+ /// let zero = 0.0f32;
+ ///
+ /// assert!(min.is_normal());
+ /// assert!(max.is_normal());
+ ///
+ /// assert!(!zero.is_normal());
+ /// assert!(!f32::NAN.is_normal());
+ /// assert!(!f32::INFINITY.is_normal());
+ /// // Values between `0` and `min` are Subnormal.
+ /// assert!(!lower_than_min.is_normal());
+ /// ```
+ /// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number
+ fn is_normal(self) -> bool;
+
+ /// Returns the floating point category of the number. If only one property
+ /// is going to be tested, it is generally faster to use the specific
+ /// predicate instead.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::num::FpCategory;
+ /// use std::f32;
+ ///
+ /// let num = 12.4f32;
+ /// let inf = f32::INFINITY;
+ ///
+ /// assert_eq!(num.classify(), FpCategory::Normal);
+ /// assert_eq!(inf.classify(), FpCategory::Infinite);
+ /// ```
+ fn classify(self) -> FpCategory;
+
+ /// Returns the largest integer less than or equal to a number.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let f = 3.99;
+ /// let g = 3.0;
+ ///
+ /// assert_eq!(f.floor(), 3.0);
+ /// assert_eq!(g.floor(), 3.0);
+ /// ```
+ fn floor(self) -> Self;
+
+ /// Returns the smallest integer greater than or equal to a number.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let f = 3.01;
+ /// let g = 4.0;
+ ///
+ /// assert_eq!(f.ceil(), 4.0);
+ /// assert_eq!(g.ceil(), 4.0);
+ /// ```
+ fn ceil(self) -> Self;
+
+ /// Returns the nearest integer to a number. Round half-way cases away from
+ /// `0.0`.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let f = 3.3;
+ /// let g = -3.3;
+ ///
+ /// assert_eq!(f.round(), 3.0);
+ /// assert_eq!(g.round(), -3.0);
+ /// ```
+ fn round(self) -> Self;
+
+ /// Return the integer part of a number.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let f = 3.3;
+ /// let g = -3.7;
+ ///
+ /// assert_eq!(f.trunc(), 3.0);
+ /// assert_eq!(g.trunc(), -3.0);
+ /// ```
+ fn trunc(self) -> Self;
+
+ /// Returns the fractional part of a number.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let x = 3.5;
+ /// let y = -3.5;
+ /// let abs_difference_x = (x.fract() - 0.5).abs();
+ /// let abs_difference_y = (y.fract() - (-0.5)).abs();
+ ///
+ /// assert!(abs_difference_x < 1e-10);
+ /// assert!(abs_difference_y < 1e-10);
+ /// ```
+ fn fract(self) -> Self;
+
+ /// Computes the absolute value of `self`. Returns `Float::nan()` if the
+ /// number is `Float::nan()`.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let x = 3.5;
+ /// let y = -3.5;
+ ///
+ /// let abs_difference_x = (x.abs() - x).abs();
+ /// let abs_difference_y = (y.abs() - (-y)).abs();
+ ///
+ /// assert!(abs_difference_x < 1e-10);
+ /// assert!(abs_difference_y < 1e-10);
+ ///
+ /// assert!(f64::NAN.abs().is_nan());
+ /// ```
+ fn abs(self) -> Self;
+
+ /// Returns a number that represents the sign of `self`.
+ ///
+ /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
+ /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
+ /// - `Float::nan()` if the number is `Float::nan()`
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let f = 3.5;
+ ///
+ /// assert_eq!(f.signum(), 1.0);
+ /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
+ ///
+ /// assert!(f64::NAN.signum().is_nan());
+ /// ```
+ fn signum(self) -> Self;
+
+ /// Returns `true` if `self` is positive, including `+0.0`,
+ /// `Float::infinity()`, and since Rust 1.20 also `Float::nan()`.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let neg_nan: f64 = -f64::NAN;
+ ///
+ /// let f = 7.0;
+ /// let g = -7.0;
+ ///
+ /// assert!(f.is_sign_positive());
+ /// assert!(!g.is_sign_positive());
+ /// assert!(!neg_nan.is_sign_positive());
+ /// ```
+ fn is_sign_positive(self) -> bool;
+
+ /// Returns `true` if `self` is negative, including `-0.0`,
+ /// `Float::neg_infinity()`, and since Rust 1.20 also `-Float::nan()`.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let nan: f64 = f64::NAN;
+ ///
+ /// let f = 7.0;
+ /// let g = -7.0;
+ ///
+ /// assert!(!f.is_sign_negative());
+ /// assert!(g.is_sign_negative());
+ /// assert!(!nan.is_sign_negative());
+ /// ```
+ fn is_sign_negative(self) -> bool;
+
+ /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+ /// error, yielding a more accurate result than an unfused multiply-add.
+ ///
+ /// Using `mul_add` can be more performant than an unfused multiply-add if
+ /// the target architecture has a dedicated `fma` CPU instruction.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let m = 10.0;
+ /// let x = 4.0;
+ /// let b = 60.0;
+ ///
+ /// // 100.0
+ /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn mul_add(self, a: Self, b: Self) -> Self;
+ /// Take the reciprocal (inverse) of a number, `1/x`.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let x = 2.0;
+ /// let abs_difference = (x.recip() - (1.0/x)).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn recip(self) -> Self;
+
+ /// Raise a number to an integer power.
+ ///
+ /// Using this function is generally faster than using `powf`
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let x = 2.0;
+ /// let abs_difference = (x.powi(2) - x*x).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn powi(self, n: i32) -> Self;
+
+ /// Raise a number to a floating point power.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let x = 2.0;
+ /// let abs_difference = (x.powf(2.0) - x*x).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn powf(self, n: Self) -> Self;
+
+ /// Take the square root of a number.
+ ///
+ /// Returns NaN if `self` is a negative number.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let positive = 4.0;
+ /// let negative = -4.0;
+ ///
+ /// let abs_difference = (positive.sqrt() - 2.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// assert!(negative.sqrt().is_nan());
+ /// ```
+ fn sqrt(self) -> Self;
+
+ /// Returns `e^(self)`, (the exponential function).
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let one = 1.0;
+ /// // e^1
+ /// let e = one.exp();
+ ///
+ /// // ln(e) - 1 == 0
+ /// let abs_difference = (e.ln() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn exp(self) -> Self;
+
+ /// Returns `2^(self)`.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let f = 2.0;
+ ///
+ /// // 2^2 - 4 == 0
+ /// let abs_difference = (f.exp2() - 4.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn exp2(self) -> Self;
+
+ /// Returns the natural logarithm of the number.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let one = 1.0;
+ /// // e^1
+ /// let e = one.exp();
+ ///
+ /// // ln(e) - 1 == 0
+ /// let abs_difference = (e.ln() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn ln(self) -> Self;
+
+ /// Returns the logarithm of the number with respect to an arbitrary base.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let ten = 10.0;
+ /// let two = 2.0;
+ ///
+ /// // log10(10) - 1 == 0
+ /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
+ ///
+ /// // log2(2) - 1 == 0
+ /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
+ ///
+ /// assert!(abs_difference_10 < 1e-10);
+ /// assert!(abs_difference_2 < 1e-10);
+ /// ```
+ fn log(self, base: Self) -> Self;
+
+ /// Returns the base 2 logarithm of the number.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let two = 2.0;
+ ///
+ /// // log2(2) - 1 == 0
+ /// let abs_difference = (two.log2() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn log2(self) -> Self;
+
+ /// Returns the base 10 logarithm of the number.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let ten = 10.0;
+ ///
+ /// // log10(10) - 1 == 0
+ /// let abs_difference = (ten.log10() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn log10(self) -> Self;
+
+ /// Converts radians to degrees.
+ ///
+ /// ```
+ /// use std::f64::consts;
+ ///
+ /// let angle = consts::PI;
+ ///
+ /// let abs_difference = (angle.to_degrees() - 180.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ #[inline]
+ fn to_degrees(self) -> Self {
+ let halfpi = Self::zero().acos();
+ let ninety = Self::from(90u8).unwrap();
+ self * ninety / halfpi
+ }
+
+ /// Converts degrees to radians.
+ ///
+ /// ```
+ /// use std::f64::consts;
+ ///
+ /// let angle = 180.0_f64;
+ ///
+ /// let abs_difference = (angle.to_radians() - consts::PI).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ #[inline]
+ fn to_radians(self) -> Self {
+ let halfpi = Self::zero().acos();
+ let ninety = Self::from(90u8).unwrap();
+ self * halfpi / ninety
+ }
+
+ /// Returns the maximum of the two numbers.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let x = 1.0;
+ /// let y = 2.0;
+ ///
+ /// assert_eq!(x.max(y), y);
+ /// ```
+ fn max(self, other: Self) -> Self;
+
+ /// Returns the minimum of the two numbers.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let x = 1.0;
+ /// let y = 2.0;
+ ///
+ /// assert_eq!(x.min(y), x);
+ /// ```
+ fn min(self, other: Self) -> Self;
+
+ /// The positive difference of two numbers.
+ ///
+ /// * If `self <= other`: `0:0`
+ /// * Else: `self - other`
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let x = 3.0;
+ /// let y = -3.0;
+ ///
+ /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
+ /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
+ ///
+ /// assert!(abs_difference_x < 1e-10);
+ /// assert!(abs_difference_y < 1e-10);
+ /// ```
+ fn abs_sub(self, other: Self) -> Self;
+
+ /// Take the cubic root of a number.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let x = 8.0;
+ ///
+ /// // x^(1/3) - 2 == 0
+ /// let abs_difference = (x.cbrt() - 2.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn cbrt(self) -> Self;
+
+ /// Calculate the length of the hypotenuse of a right-angle triangle given
+ /// legs of length `x` and `y`.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let x = 2.0;
+ /// let y = 3.0;
+ ///
+ /// // sqrt(x^2 + y^2)
+ /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn hypot(self, other: Self) -> Self;
+
+ /// Computes the sine of a number (in radians).
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let x = f64::consts::PI/2.0;
+ ///
+ /// let abs_difference = (x.sin() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn sin(self) -> Self;
+
+ /// Computes the cosine of a number (in radians).
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let x = 2.0*f64::consts::PI;
+ ///
+ /// let abs_difference = (x.cos() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn cos(self) -> Self;
+
+ /// Computes the tangent of a number (in radians).
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let x = f64::consts::PI/4.0;
+ /// let abs_difference = (x.tan() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-14);
+ /// ```
+ fn tan(self) -> Self;
+
+ /// Computes the arcsine of a number. Return value is in radians in
+ /// the range [-pi/2, pi/2] or NaN if the number is outside the range
+ /// [-1, 1].
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let f = f64::consts::PI / 2.0;
+ ///
+ /// // asin(sin(pi/2))
+ /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn asin(self) -> Self;
+
+ /// Computes the arccosine of a number. Return value is in radians in
+ /// the range [0, pi] or NaN if the number is outside the range
+ /// [-1, 1].
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let f = f64::consts::PI / 4.0;
+ ///
+ /// // acos(cos(pi/4))
+ /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn acos(self) -> Self;
+
+ /// Computes the arctangent of a number. Return value is in radians in the
+ /// range [-pi/2, pi/2];
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let f = 1.0;
+ ///
+ /// // atan(tan(1))
+ /// let abs_difference = (f.tan().atan() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn atan(self) -> Self;
+
+ /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
+ ///
+ /// * `x = 0`, `y = 0`: `0`
+ /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
+ /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
+ /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let pi = f64::consts::PI;
+ /// // All angles from horizontal right (+x)
+ /// // 45 deg counter-clockwise
+ /// let x1 = 3.0;
+ /// let y1 = -3.0;
+ ///
+ /// // 135 deg clockwise
+ /// let x2 = -3.0;
+ /// let y2 = 3.0;
+ ///
+ /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
+ /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
+ ///
+ /// assert!(abs_difference_1 < 1e-10);
+ /// assert!(abs_difference_2 < 1e-10);
+ /// ```
+ fn atan2(self, other: Self) -> Self;
+
+ /// Simultaneously computes the sine and cosine of the number, `x`. Returns
+ /// `(sin(x), cos(x))`.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let x = f64::consts::PI/4.0;
+ /// let f = x.sin_cos();
+ ///
+ /// let abs_difference_0 = (f.0 - x.sin()).abs();
+ /// let abs_difference_1 = (f.1 - x.cos()).abs();
+ ///
+ /// assert!(abs_difference_0 < 1e-10);
+ /// assert!(abs_difference_0 < 1e-10);
+ /// ```
+ fn sin_cos(self) -> (Self, Self);
+
+ /// Returns `e^(self) - 1` in a way that is accurate even if the
+ /// number is close to zero.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let x = 7.0;
+ ///
+ /// // e^(ln(7)) - 1
+ /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn exp_m1(self) -> Self;
+
+ /// Returns `ln(1+n)` (natural logarithm) more accurately than if
+ /// the operations were performed separately.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let x = f64::consts::E - 1.0;
+ ///
+ /// // ln(1 + (e - 1)) == ln(e) == 1
+ /// let abs_difference = (x.ln_1p() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn ln_1p(self) -> Self;
+
+ /// Hyperbolic sine function.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let e = f64::consts::E;
+ /// let x = 1.0;
+ ///
+ /// let f = x.sinh();
+ /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
+ /// let g = (e*e - 1.0)/(2.0*e);
+ /// let abs_difference = (f - g).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn sinh(self) -> Self;
+
+ /// Hyperbolic cosine function.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let e = f64::consts::E;
+ /// let x = 1.0;
+ /// let f = x.cosh();
+ /// // Solving cosh() at 1 gives this result
+ /// let g = (e*e + 1.0)/(2.0*e);
+ /// let abs_difference = (f - g).abs();
+ ///
+ /// // Same result
+ /// assert!(abs_difference < 1.0e-10);
+ /// ```
+ fn cosh(self) -> Self;
+
+ /// Hyperbolic tangent function.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let e = f64::consts::E;
+ /// let x = 1.0;
+ ///
+ /// let f = x.tanh();
+ /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
+ /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
+ /// let abs_difference = (f - g).abs();
+ ///
+ /// assert!(abs_difference < 1.0e-10);
+ /// ```
+ fn tanh(self) -> Self;
+
+ /// Inverse hyperbolic sine function.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let x = 1.0;
+ /// let f = x.sinh().asinh();
+ ///
+ /// let abs_difference = (f - x).abs();
+ ///
+ /// assert!(abs_difference < 1.0e-10);
+ /// ```
+ fn asinh(self) -> Self;
+
+ /// Inverse hyperbolic cosine function.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let x = 1.0;
+ /// let f = x.cosh().acosh();
+ ///
+ /// let abs_difference = (f - x).abs();
+ ///
+ /// assert!(abs_difference < 1.0e-10);
+ /// ```
+ fn acosh(self) -> Self;
+
+ /// Inverse hyperbolic tangent function.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ /// use std::f64;
+ ///
+ /// let e = f64::consts::E;
+ /// let f = e.tanh().atanh();
+ ///
+ /// let abs_difference = (f - e).abs();
+ ///
+ /// assert!(abs_difference < 1.0e-10);
+ /// ```
+ fn atanh(self) -> Self;
+
+ /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
+ /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
+ ///
+ /// ```
+ /// use num_traits::Float;
+ ///
+ /// let num = 2.0f32;
+ ///
+ /// // (8388608, -22, 1)
+ /// let (mantissa, exponent, sign) = Float::integer_decode(num);
+ /// let sign_f = sign as f32;
+ /// let mantissa_f = mantissa as f32;
+ /// let exponent_f = num.powf(exponent as f32);
+ ///
+ /// // 1 * 8388608 * 2^(-22) == 2
+ /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn integer_decode(self) -> (u64, i16, i8);
+}
+
+#[cfg(feature = "std")]
+macro_rules! float_impl_std {
+ ($T:ident $decode:ident) => {
+ impl Float for $T {
+ constant! {
+ nan() -> $T::NAN;
+ infinity() -> $T::INFINITY;
+ neg_infinity() -> $T::NEG_INFINITY;
+ neg_zero() -> -0.0;
+ min_value() -> $T::MIN;
+ min_positive_value() -> $T::MIN_POSITIVE;
+ epsilon() -> $T::EPSILON;
+ max_value() -> $T::MAX;
+ }
+
+ #[inline]
+ #[allow(deprecated)]
+ fn abs_sub(self, other: Self) -> Self {
+ <$T>::abs_sub(self, other)
+ }
+
+ #[inline]
+ fn integer_decode(self) -> (u64, i16, i8) {
+ $decode(self)
+ }
+
+ forward! {
+ Self::is_nan(self) -> bool;
+ Self::is_infinite(self) -> bool;
+ Self::is_finite(self) -> bool;
+ Self::is_normal(self) -> bool;
+ Self::classify(self) -> FpCategory;
+ Self::floor(self) -> Self;
+ Self::ceil(self) -> Self;
+ Self::round(self) -> Self;
+ Self::trunc(self) -> Self;
+ Self::fract(self) -> Self;
+ Self::abs(self) -> Self;
+ Self::signum(self) -> Self;
+ Self::is_sign_positive(self) -> bool;
+ Self::is_sign_negative(self) -> bool;
+ Self::mul_add(self, a: Self, b: Self) -> Self;
+ Self::recip(self) -> Self;
+ Self::powi(self, n: i32) -> Self;
+ Self::powf(self, n: Self) -> Self;
+ Self::sqrt(self) -> Self;
+ Self::exp(self) -> Self;
+ Self::exp2(self) -> Self;
+ Self::ln(self) -> Self;
+ Self::log(self, base: Self) -> Self;
+ Self::log2(self) -> Self;
+ Self::log10(self) -> Self;
+ Self::to_degrees(self) -> Self;
+ Self::to_radians(self) -> Self;
+ Self::max(self, other: Self) -> Self;
+ Self::min(self, other: Self) -> Self;
+ Self::cbrt(self) -> Self;
+ Self::hypot(self, other: Self) -> Self;
+ Self::sin(self) -> Self;
+ Self::cos(self) -> Self;
+ Self::tan(self) -> Self;
+ Self::asin(self) -> Self;
+ Self::acos(self) -> Self;
+ Self::atan(self) -> Self;
+ Self::atan2(self, other: Self) -> Self;
+ Self::sin_cos(self) -> (Self, Self);
+ Self::exp_m1(self) -> Self;
+ Self::ln_1p(self) -> Self;
+ Self::sinh(self) -> Self;
+ Self::cosh(self) -> Self;
+ Self::tanh(self) -> Self;
+ Self::asinh(self) -> Self;
+ Self::acosh(self) -> Self;
+ Self::atanh(self) -> Self;
+ }
+ }
+ };
+}
+
+#[cfg(all(not(feature = "std"), feature = "libm"))]
+macro_rules! float_impl_libm {
+ ($T:ident $decode:ident) => {
+ constant! {
+ nan() -> $T::NAN;
+ infinity() -> $T::INFINITY;
+ neg_infinity() -> $T::NEG_INFINITY;
+ neg_zero() -> -0.0;
+ min_value() -> $T::MIN;
+ min_positive_value() -> $T::MIN_POSITIVE;
+ epsilon() -> $T::EPSILON;
+ max_value() -> $T::MAX;
+ }
+
+ #[inline]
+ fn integer_decode(self) -> (u64, i16, i8) {
+ $decode(self)
+ }
+
+ #[inline]
+ fn fract(self) -> Self {
+ self - FloatCore::trunc(self)
+ }
+
+ #[inline]
+ fn log(self, base: Self) -> Self {
+ self.ln() / base.ln()
+ }
+
+ forward! {
+ FloatCore::is_nan(self) -> bool;
+ FloatCore::is_infinite(self) -> bool;
+ FloatCore::is_finite(self) -> bool;
+ FloatCore::is_normal(self) -> bool;
+ FloatCore::classify(self) -> FpCategory;
+ FloatCore::signum(self) -> Self;
+ FloatCore::is_sign_positive(self) -> bool;
+ FloatCore::is_sign_negative(self) -> bool;
+ FloatCore::recip(self) -> Self;
+ FloatCore::powi(self, n: i32) -> Self;
+ FloatCore::to_degrees(self) -> Self;
+ FloatCore::to_radians(self) -> Self;
+ FloatCore::max(self, other: Self) -> Self;
+ FloatCore::min(self, other: Self) -> Self;
+ }
+ };
+}
+
+fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
+ // Safety: this identical to the implementation of f32::to_bits(),
+ // which is only available starting at Rust 1.20
+ let bits: u32 = unsafe { mem::transmute(f) };
+ let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
+ let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
+ let mantissa = if exponent == 0 {
+ (bits & 0x7fffff) << 1
+ } else {
+ (bits & 0x7fffff) | 0x800000
+ };
+ // Exponent bias + mantissa shift
+ exponent -= 127 + 23;
+ (mantissa as u64, exponent, sign)
+}
+
+fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
+ // Safety: this identical to the implementation of f64::to_bits(),
+ // which is only available starting at Rust 1.20
+ let bits: u64 = unsafe { mem::transmute(f) };
+ let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
+ let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
+ let mantissa = if exponent == 0 {
+ (bits & 0xfffffffffffff) << 1
+ } else {
+ (bits & 0xfffffffffffff) | 0x10000000000000
+ };
+ // Exponent bias + mantissa shift
+ exponent -= 1023 + 52;
+ (mantissa, exponent, sign)
+}
+
+#[cfg(feature = "std")]
+float_impl_std!(f32 integer_decode_f32);
+#[cfg(feature = "std")]
+float_impl_std!(f64 integer_decode_f64);
+
+#[cfg(all(not(feature = "std"), feature = "libm"))]
+impl Float for f32 {
+ float_impl_libm!(f32 integer_decode_f32);
+
+ #[inline]
+ #[allow(deprecated)]
+ fn abs_sub(self, other: Self) -> Self {
+ libm::fdimf(self, other)
+ }
+ #[inline]
+ fn floor(self) -> Self {
+ libm::floorf(self)
+ }
+ #[inline]
+ fn ceil(self) -> Self {
+ libm::ceilf(self)
+ }
+ #[inline]
+ fn round(self) -> Self {
+ libm::roundf(self)
+ }
+ #[inline]
+ fn trunc(self) -> Self {
+ libm::truncf(self)
+ }
+ #[inline]
+ fn abs(self) -> Self {
+ libm::fabsf(self)
+ }
+ #[inline]
+ fn mul_add(self, a: Self, b: Self) -> Self {
+ libm::fmaf(self, a, b)
+ }
+ #[inline]
+ fn powf(self, n: Self) -> Self {
+ libm::powf(self, n)
+ }
+ #[inline]
+ fn sqrt(self) -> Self {
+ libm::sqrtf(self)
+ }
+ #[inline]
+ fn exp(self) -> Self {
+ libm::expf(self)
+ }
+ #[inline]
+ fn exp2(self) -> Self {
+ libm::exp2f(self)
+ }
+ #[inline]
+ fn ln(self) -> Self {
+ libm::logf(self)
+ }
+ #[inline]
+ fn log2(self) -> Self {
+ libm::log2f(self)
+ }
+ #[inline]
+ fn log10(self) -> Self {
+ libm::log10f(self)
+ }
+ #[inline]
+ fn cbrt(self) -> Self {
+ libm::cbrtf(self)
+ }
+ #[inline]
+ fn hypot(self, other: Self) -> Self {
+ libm::hypotf(self, other)
+ }
+ #[inline]
+ fn sin(self) -> Self {
+ libm::sinf(self)
+ }
+ #[inline]
+ fn cos(self) -> Self {
+ libm::cosf(self)
+ }
+ #[inline]
+ fn tan(self) -> Self {
+ libm::tanf(self)
+ }
+ #[inline]
+ fn asin(self) -> Self {
+ libm::asinf(self)
+ }
+ #[inline]
+ fn acos(self) -> Self {
+ libm::acosf(self)
+ }
+ #[inline]
+ fn atan(self) -> Self {
+ libm::atanf(self)
+ }
+ #[inline]
+ fn atan2(self, other: Self) -> Self {
+ libm::atan2f(self, other)
+ }
+ #[inline]
+ fn sin_cos(self) -> (Self, Self) {
+ libm::sincosf(self)
+ }
+ #[inline]
+ fn exp_m1(self) -> Self {
+ libm::expm1f(self)
+ }
+ #[inline]
+ fn ln_1p(self) -> Self {
+ libm::log1pf(self)
+ }
+ #[inline]
+ fn sinh(self) -> Self {
+ libm::sinhf(self)
+ }
+ #[inline]
+ fn cosh(self) -> Self {
+ libm::coshf(self)
+ }
+ #[inline]
+ fn tanh(self) -> Self {
+ libm::tanhf(self)
+ }
+ #[inline]
+ fn asinh(self) -> Self {
+ libm::asinhf(self)
+ }
+ #[inline]
+ fn acosh(self) -> Self {
+ libm::acoshf(self)
+ }
+ #[inline]
+ fn atanh(self) -> Self {
+ libm::atanhf(self)
+ }
+}
+
+#[cfg(all(not(feature = "std"), feature = "libm"))]
+impl Float for f64 {
+ float_impl_libm!(f64 integer_decode_f64);
+
+ #[inline]
+ #[allow(deprecated)]
+ fn abs_sub(self, other: Self) -> Self {
+ libm::fdim(self, other)
+ }
+ #[inline]
+ fn floor(self) -> Self {
+ libm::floor(self)
+ }
+ #[inline]
+ fn ceil(self) -> Self {
+ libm::ceil(self)
+ }
+ #[inline]
+ fn round(self) -> Self {
+ libm::round(self)
+ }
+ #[inline]
+ fn trunc(self) -> Self {
+ libm::trunc(self)
+ }
+ #[inline]
+ fn abs(self) -> Self {
+ libm::fabs(self)
+ }
+ #[inline]
+ fn mul_add(self, a: Self, b: Self) -> Self {
+ libm::fma(self, a, b)
+ }
+ #[inline]
+ fn powf(self, n: Self) -> Self {
+ libm::pow(self, n)
+ }
+ #[inline]
+ fn sqrt(self) -> Self {
+ libm::sqrt(self)
+ }
+ #[inline]
+ fn exp(self) -> Self {
+ libm::exp(self)
+ }
+ #[inline]
+ fn exp2(self) -> Self {
+ libm::exp2(self)
+ }
+ #[inline]
+ fn ln(self) -> Self {
+ libm::log(self)
+ }
+ #[inline]
+ fn log2(self) -> Self {
+ libm::log2(self)
+ }
+ #[inline]
+ fn log10(self) -> Self {
+ libm::log10(self)
+ }
+ #[inline]
+ fn cbrt(self) -> Self {
+ libm::cbrt(self)
+ }
+ #[inline]
+ fn hypot(self, other: Self) -> Self {
+ libm::hypot(self, other)
+ }
+ #[inline]
+ fn sin(self) -> Self {
+ libm::sin(self)
+ }
+ #[inline]
+ fn cos(self) -> Self {
+ libm::cos(self)
+ }
+ #[inline]
+ fn tan(self) -> Self {
+ libm::tan(self)
+ }
+ #[inline]
+ fn asin(self) -> Self {
+ libm::asin(self)
+ }
+ #[inline]
+ fn acos(self) -> Self {
+ libm::acos(self)
+ }
+ #[inline]
+ fn atan(self) -> Self {
+ libm::atan(self)
+ }
+ #[inline]
+ fn atan2(self, other: Self) -> Self {
+ libm::atan2(self, other)
+ }
+ #[inline]
+ fn sin_cos(self) -> (Self, Self) {
+ libm::sincos(self)
+ }
+ #[inline]
+ fn exp_m1(self) -> Self {
+ libm::expm1(self)
+ }
+ #[inline]
+ fn ln_1p(self) -> Self {
+ libm::log1p(self)
+ }
+ #[inline]
+ fn sinh(self) -> Self {
+ libm::sinh(self)
+ }
+ #[inline]
+ fn cosh(self) -> Self {
+ libm::cosh(self)
+ }
+ #[inline]
+ fn tanh(self) -> Self {
+ libm::tanh(self)
+ }
+ #[inline]
+ fn asinh(self) -> Self {
+ libm::asinh(self)
+ }
+ #[inline]
+ fn acosh(self) -> Self {
+ libm::acosh(self)
+ }
+ #[inline]
+ fn atanh(self) -> Self {
+ libm::atanh(self)
+ }
+}
+
+macro_rules! float_const_impl {
+ ($(#[$doc:meta] $constant:ident,)+) => (
+ #[allow(non_snake_case)]
+ pub trait FloatConst {
+ $(#[$doc] fn $constant() -> Self;)+
+ #[doc = "Return the full circle constant `τ`."]
+ #[inline]
+ fn TAU() -> Self where Self: Sized + Add<Self, Output = Self> {
+ Self::PI() + Self::PI()
+ }
+ #[doc = "Return `log10(2.0)`."]
+ #[inline]
+ fn LOG10_2() -> Self where Self: Sized + Div<Self, Output = Self> {
+ Self::LN_2() / Self::LN_10()
+ }
+ #[doc = "Return `log2(10.0)`."]
+ #[inline]
+ fn LOG2_10() -> Self where Self: Sized + Div<Self, Output = Self> {
+ Self::LN_10() / Self::LN_2()
+ }
+ }
+ float_const_impl! { @float f32, $($constant,)+ }
+ float_const_impl! { @float f64, $($constant,)+ }
+ );
+ (@float $T:ident, $($constant:ident,)+) => (
+ impl FloatConst for $T {
+ constant! {
+ $( $constant() -> $T::consts::$constant; )+
+ TAU() -> 6.28318530717958647692528676655900577;
+ LOG10_2() -> 0.301029995663981195213738894724493027;
+ LOG2_10() -> 3.32192809488736234787031942948939018;
+ }
+ }
+ );
+}
+
+float_const_impl! {
+ #[doc = "Return Euler’s number."]
+ E,
+ #[doc = "Return `1.0 / π`."]
+ FRAC_1_PI,
+ #[doc = "Return `1.0 / sqrt(2.0)`."]
+ FRAC_1_SQRT_2,
+ #[doc = "Return `2.0 / π`."]
+ FRAC_2_PI,
+ #[doc = "Return `2.0 / sqrt(π)`."]
+ FRAC_2_SQRT_PI,
+ #[doc = "Return `π / 2.0`."]
+ FRAC_PI_2,
+ #[doc = "Return `π / 3.0`."]
+ FRAC_PI_3,
+ #[doc = "Return `π / 4.0`."]
+ FRAC_PI_4,
+ #[doc = "Return `π / 6.0`."]
+ FRAC_PI_6,
+ #[doc = "Return `π / 8.0`."]
+ FRAC_PI_8,
+ #[doc = "Return `ln(10.0)`."]
+ LN_10,
+ #[doc = "Return `ln(2.0)`."]
+ LN_2,
+ #[doc = "Return `log10(e)`."]
+ LOG10_E,
+ #[doc = "Return `log2(e)`."]
+ LOG2_E,
+ #[doc = "Return Archimedes’ constant `π`."]
+ PI,
+ #[doc = "Return `sqrt(2.0)`."]
+ SQRT_2,
+}
+
+#[cfg(test)]
+mod tests {
+ use core::f64::consts;
+
+ const DEG_RAD_PAIRS: [(f64, f64); 7] = [
+ (0.0, 0.),
+ (22.5, consts::FRAC_PI_8),
+ (30.0, consts::FRAC_PI_6),
+ (45.0, consts::FRAC_PI_4),
+ (60.0, consts::FRAC_PI_3),
+ (90.0, consts::FRAC_PI_2),
+ (180.0, consts::PI),
+ ];
+
+ #[test]
+ fn convert_deg_rad() {
+ use float::FloatCore;
+
+ for &(deg, rad) in &DEG_RAD_PAIRS {
+ assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6);
+ assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6);
+
+ let (deg, rad) = (deg as f32, rad as f32);
+ assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-5);
+ assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-5);
+ }
+ }
+
+ #[cfg(any(feature = "std", feature = "libm"))]
+ #[test]
+ fn convert_deg_rad_std() {
+ for &(deg, rad) in &DEG_RAD_PAIRS {
+ use Float;
+
+ assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
+ assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
+
+ let (deg, rad) = (deg as f32, rad as f32);
+ assert!((Float::to_degrees(rad) - deg).abs() < 1e-5);
+ assert!((Float::to_radians(deg) - rad).abs() < 1e-5);
+ }
+ }
+
+ #[test]
+ // This fails with the forwarded `std` implementation in Rust 1.8.
+ // To avoid the failure, the test is limited to `no_std` builds.
+ #[cfg(not(feature = "std"))]
+ fn to_degrees_rounding() {
+ use float::FloatCore;
+
+ assert_eq!(
+ FloatCore::to_degrees(1_f32),
+ 57.2957795130823208767981548141051703
+ );
+ }
+
+ #[test]
+ #[cfg(any(feature = "std", feature = "libm"))]
+ fn extra_logs() {
+ use float::{Float, FloatConst};
+
+ fn check<F: Float + FloatConst>(diff: F) {
+ let _2 = F::from(2.0).unwrap();
+ assert!((F::LOG10_2() - F::log10(_2)).abs() < diff);
+ assert!((F::LOG10_2() - F::LN_2() / F::LN_10()).abs() < diff);
+
+ let _10 = F::from(10.0).unwrap();
+ assert!((F::LOG2_10() - F::log2(_10)).abs() < diff);
+ assert!((F::LOG2_10() - F::LN_10() / F::LN_2()).abs() < diff);
+ }
+
+ check::<f32>(1e-6);
+ check::<f64>(1e-12);
+ }
+}
diff --git a/vendor/num-traits/src/identities.rs b/vendor/num-traits/src/identities.rs
new file mode 100644
index 000000000..7a99566d9
--- /dev/null
+++ b/vendor/num-traits/src/identities.rs
@@ -0,0 +1,206 @@
+use core::num::Wrapping;
+use core::ops::{Add, Mul};
+
+/// Defines an additive identity element for `Self`.
+///
+/// # Laws
+///
+/// ```{.text}
+/// a + 0 = a ∀ a ∈ Self
+/// 0 + a = a ∀ a ∈ Self
+/// ```
+pub trait Zero: Sized + Add<Self, Output = Self> {
+ /// Returns the additive identity element of `Self`, `0`.
+ /// # Purity
+ ///
+ /// This function should return the same result at all times regardless of
+ /// external mutable state, for example values stored in TLS or in
+ /// `static mut`s.
+ // This cannot be an associated constant, because of bignums.
+ fn zero() -> Self;
+
+ /// Sets `self` to the additive identity element of `Self`, `0`.
+ fn set_zero(&mut self) {
+ *self = Zero::zero();
+ }
+
+ /// Returns `true` if `self` is equal to the additive identity.
+ fn is_zero(&self) -> bool;
+}
+
+macro_rules! zero_impl {
+ ($t:ty, $v:expr) => {
+ impl Zero for $t {
+ #[inline]
+ fn zero() -> $t {
+ $v
+ }
+ #[inline]
+ fn is_zero(&self) -> bool {
+ *self == $v
+ }
+ }
+ };
+}
+
+zero_impl!(usize, 0);
+zero_impl!(u8, 0);
+zero_impl!(u16, 0);
+zero_impl!(u32, 0);
+zero_impl!(u64, 0);
+#[cfg(has_i128)]
+zero_impl!(u128, 0);
+
+zero_impl!(isize, 0);
+zero_impl!(i8, 0);
+zero_impl!(i16, 0);
+zero_impl!(i32, 0);
+zero_impl!(i64, 0);
+#[cfg(has_i128)]
+zero_impl!(i128, 0);
+
+zero_impl!(f32, 0.0);
+zero_impl!(f64, 0.0);
+
+impl<T: Zero> Zero for Wrapping<T>
+where
+ Wrapping<T>: Add<Output = Wrapping<T>>,
+{
+ fn is_zero(&self) -> bool {
+ self.0.is_zero()
+ }
+
+ fn set_zero(&mut self) {
+ self.0.set_zero();
+ }
+
+ fn zero() -> Self {
+ Wrapping(T::zero())
+ }
+}
+
+/// Defines a multiplicative identity element for `Self`.
+///
+/// # Laws
+///
+/// ```{.text}
+/// a * 1 = a ∀ a ∈ Self
+/// 1 * a = a ∀ a ∈ Self
+/// ```
+pub trait One: Sized + Mul<Self, Output = Self> {
+ /// Returns the multiplicative identity element of `Self`, `1`.
+ ///
+ /// # Purity
+ ///
+ /// This function should return the same result at all times regardless of
+ /// external mutable state, for example values stored in TLS or in
+ /// `static mut`s.
+ // This cannot be an associated constant, because of bignums.
+ fn one() -> Self;
+
+ /// Sets `self` to the multiplicative identity element of `Self`, `1`.
+ fn set_one(&mut self) {
+ *self = One::one();
+ }
+
+ /// Returns `true` if `self` is equal to the multiplicative identity.
+ ///
+ /// For performance reasons, it's best to implement this manually.
+ /// After a semver bump, this method will be required, and the
+ /// `where Self: PartialEq` bound will be removed.
+ #[inline]
+ fn is_one(&self) -> bool
+ where
+ Self: PartialEq,
+ {
+ *self == Self::one()
+ }
+}
+
+macro_rules! one_impl {
+ ($t:ty, $v:expr) => {
+ impl One for $t {
+ #[inline]
+ fn one() -> $t {
+ $v
+ }
+ #[inline]
+ fn is_one(&self) -> bool {
+ *self == $v
+ }
+ }
+ };
+}
+
+one_impl!(usize, 1);
+one_impl!(u8, 1);
+one_impl!(u16, 1);
+one_impl!(u32, 1);
+one_impl!(u64, 1);
+#[cfg(has_i128)]
+one_impl!(u128, 1);
+
+one_impl!(isize, 1);
+one_impl!(i8, 1);
+one_impl!(i16, 1);
+one_impl!(i32, 1);
+one_impl!(i64, 1);
+#[cfg(has_i128)]
+one_impl!(i128, 1);
+
+one_impl!(f32, 1.0);
+one_impl!(f64, 1.0);
+
+impl<T: One> One for Wrapping<T>
+where
+ Wrapping<T>: Mul<Output = Wrapping<T>>,
+{
+ fn set_one(&mut self) {
+ self.0.set_one();
+ }
+
+ fn one() -> Self {
+ Wrapping(T::one())
+ }
+}
+
+// Some helper functions provided for backwards compatibility.
+
+/// Returns the additive identity, `0`.
+#[inline(always)]
+pub fn zero<T: Zero>() -> T {
+ Zero::zero()
+}
+
+/// Returns the multiplicative identity, `1`.
+#[inline(always)]
+pub fn one<T: One>() -> T {
+ One::one()
+}
+
+#[test]
+fn wrapping_identities() {
+ macro_rules! test_wrapping_identities {
+ ($($t:ty)+) => {
+ $(
+ assert_eq!(zero::<$t>(), zero::<Wrapping<$t>>().0);
+ assert_eq!(one::<$t>(), one::<Wrapping<$t>>().0);
+ assert_eq!((0 as $t).is_zero(), Wrapping(0 as $t).is_zero());
+ assert_eq!((1 as $t).is_zero(), Wrapping(1 as $t).is_zero());
+ )+
+ };
+ }
+
+ test_wrapping_identities!(isize i8 i16 i32 i64 usize u8 u16 u32 u64);
+}
+
+#[test]
+fn wrapping_is_zero() {
+ fn require_zero<T: Zero>(_: &T) {}
+ require_zero(&Wrapping(42));
+}
+#[test]
+fn wrapping_is_one() {
+ fn require_one<T: One>(_: &T) {}
+ require_one(&Wrapping(42));
+}
diff --git a/vendor/num-traits/src/int.rs b/vendor/num-traits/src/int.rs
new file mode 100644
index 000000000..10e751a9d
--- /dev/null
+++ b/vendor/num-traits/src/int.rs
@@ -0,0 +1,409 @@
+use core::ops::{BitAnd, BitOr, BitXor, Not, Shl, Shr};
+
+use bounds::Bounded;
+use ops::checked::*;
+use ops::saturating::Saturating;
+use {Num, NumCast};
+
+/// Generic trait for primitive integers.
+///
+/// The `PrimInt` trait is an abstraction over the builtin primitive integer types (e.g., `u8`,
+/// `u32`, `isize`, `i128`, ...). It inherits the basic numeric traits and extends them with
+/// bitwise operators and non-wrapping arithmetic.
+///
+/// The trait explicitly inherits `Copy`, `Eq`, `Ord`, and `Sized`. The intention is that all
+/// types implementing this trait behave like primitive types that are passed by value by default
+/// and behave like builtin integers. Furthermore, the types are expected to expose the integer
+/// value in binary representation and support bitwise operators. The standard bitwise operations
+/// (e.g., bitwise-and, bitwise-or, right-shift, left-shift) are inherited and the trait extends
+/// these with introspective queries (e.g., `PrimInt::count_ones()`, `PrimInt::leading_zeros()`),
+/// bitwise combinators (e.g., `PrimInt::rotate_left()`), and endianness converters (e.g.,
+/// `PrimInt::to_be()`).
+///
+/// All `PrimInt` types are expected to be fixed-width binary integers. The width can be queried
+/// via `T::zero().count_zeros()`. The trait currently lacks a way to query the width at
+/// compile-time.
+///
+/// While a default implementation for all builtin primitive integers is provided, the trait is in
+/// no way restricted to these. Other integer types that fulfil the requirements are free to
+/// implement the trait was well.
+///
+/// This trait and many of the method names originate in the unstable `core::num::Int` trait from
+/// the rust standard library. The original trait was never stabilized and thus removed from the
+/// standard library.
+pub trait PrimInt:
+ Sized
+ + Copy
+ + Num
+ + NumCast
+ + Bounded
+ + PartialOrd
+ + Ord
+ + Eq
+ + Not<Output = Self>
+ + BitAnd<Output = Self>
+ + BitOr<Output = Self>
+ + BitXor<Output = Self>
+ + Shl<usize, Output = Self>
+ + Shr<usize, Output = Self>
+ + CheckedAdd<Output = Self>
+ + CheckedSub<Output = Self>
+ + CheckedMul<Output = Self>
+ + CheckedDiv<Output = Self>
+ + Saturating
+{
+ /// Returns the number of ones in the binary representation of `self`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0b01001100u8;
+ ///
+ /// assert_eq!(n.count_ones(), 3);
+ /// ```
+ fn count_ones(self) -> u32;
+
+ /// Returns the number of zeros in the binary representation of `self`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0b01001100u8;
+ ///
+ /// assert_eq!(n.count_zeros(), 5);
+ /// ```
+ fn count_zeros(self) -> u32;
+
+ /// Returns the number of leading zeros in the binary representation
+ /// of `self`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0b0101000u16;
+ ///
+ /// assert_eq!(n.leading_zeros(), 10);
+ /// ```
+ fn leading_zeros(self) -> u32;
+
+ /// Returns the number of trailing zeros in the binary representation
+ /// of `self`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0b0101000u16;
+ ///
+ /// assert_eq!(n.trailing_zeros(), 3);
+ /// ```
+ fn trailing_zeros(self) -> u32;
+
+ /// Shifts the bits to the left by a specified amount, `n`, wrapping
+ /// the truncated bits to the end of the resulting integer.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0x0123456789ABCDEFu64;
+ /// let m = 0x3456789ABCDEF012u64;
+ ///
+ /// assert_eq!(n.rotate_left(12), m);
+ /// ```
+ fn rotate_left(self, n: u32) -> Self;
+
+ /// Shifts the bits to the right by a specified amount, `n`, wrapping
+ /// the truncated bits to the beginning of the resulting integer.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0x0123456789ABCDEFu64;
+ /// let m = 0xDEF0123456789ABCu64;
+ ///
+ /// assert_eq!(n.rotate_right(12), m);
+ /// ```
+ fn rotate_right(self, n: u32) -> Self;
+
+ /// Shifts the bits to the left by a specified amount, `n`, filling
+ /// zeros in the least significant bits.
+ ///
+ /// This is bitwise equivalent to signed `Shl`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0x0123456789ABCDEFu64;
+ /// let m = 0x3456789ABCDEF000u64;
+ ///
+ /// assert_eq!(n.signed_shl(12), m);
+ /// ```
+ fn signed_shl(self, n: u32) -> Self;
+
+ /// Shifts the bits to the right by a specified amount, `n`, copying
+ /// the "sign bit" in the most significant bits even for unsigned types.
+ ///
+ /// This is bitwise equivalent to signed `Shr`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0xFEDCBA9876543210u64;
+ /// let m = 0xFFFFEDCBA9876543u64;
+ ///
+ /// assert_eq!(n.signed_shr(12), m);
+ /// ```
+ fn signed_shr(self, n: u32) -> Self;
+
+ /// Shifts the bits to the left by a specified amount, `n`, filling
+ /// zeros in the least significant bits.
+ ///
+ /// This is bitwise equivalent to unsigned `Shl`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0x0123456789ABCDEFi64;
+ /// let m = 0x3456789ABCDEF000i64;
+ ///
+ /// assert_eq!(n.unsigned_shl(12), m);
+ /// ```
+ fn unsigned_shl(self, n: u32) -> Self;
+
+ /// Shifts the bits to the right by a specified amount, `n`, filling
+ /// zeros in the most significant bits.
+ ///
+ /// This is bitwise equivalent to unsigned `Shr`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = -8i8; // 0b11111000
+ /// let m = 62i8; // 0b00111110
+ ///
+ /// assert_eq!(n.unsigned_shr(2), m);
+ /// ```
+ fn unsigned_shr(self, n: u32) -> Self;
+
+ /// Reverses the byte order of the integer.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0x0123456789ABCDEFu64;
+ /// let m = 0xEFCDAB8967452301u64;
+ ///
+ /// assert_eq!(n.swap_bytes(), m);
+ /// ```
+ fn swap_bytes(self) -> Self;
+
+ /// Convert an integer from big endian to the target's endianness.
+ ///
+ /// On big endian this is a no-op. On little endian the bytes are swapped.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0x0123456789ABCDEFu64;
+ ///
+ /// if cfg!(target_endian = "big") {
+ /// assert_eq!(u64::from_be(n), n)
+ /// } else {
+ /// assert_eq!(u64::from_be(n), n.swap_bytes())
+ /// }
+ /// ```
+ fn from_be(x: Self) -> Self;
+
+ /// Convert an integer from little endian to the target's endianness.
+ ///
+ /// On little endian this is a no-op. On big endian the bytes are swapped.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0x0123456789ABCDEFu64;
+ ///
+ /// if cfg!(target_endian = "little") {
+ /// assert_eq!(u64::from_le(n), n)
+ /// } else {
+ /// assert_eq!(u64::from_le(n), n.swap_bytes())
+ /// }
+ /// ```
+ fn from_le(x: Self) -> Self;
+
+ /// Convert `self` to big endian from the target's endianness.
+ ///
+ /// On big endian this is a no-op. On little endian the bytes are swapped.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0x0123456789ABCDEFu64;
+ ///
+ /// if cfg!(target_endian = "big") {
+ /// assert_eq!(n.to_be(), n)
+ /// } else {
+ /// assert_eq!(n.to_be(), n.swap_bytes())
+ /// }
+ /// ```
+ fn to_be(self) -> Self;
+
+ /// Convert `self` to little endian from the target's endianness.
+ ///
+ /// On little endian this is a no-op. On big endian the bytes are swapped.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// let n = 0x0123456789ABCDEFu64;
+ ///
+ /// if cfg!(target_endian = "little") {
+ /// assert_eq!(n.to_le(), n)
+ /// } else {
+ /// assert_eq!(n.to_le(), n.swap_bytes())
+ /// }
+ /// ```
+ fn to_le(self) -> Self;
+
+ /// Raises self to the power of `exp`, using exponentiation by squaring.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::PrimInt;
+ ///
+ /// assert_eq!(2i32.pow(4), 16);
+ /// ```
+ fn pow(self, exp: u32) -> Self;
+}
+
+macro_rules! prim_int_impl {
+ ($T:ty, $S:ty, $U:ty) => {
+ impl PrimInt for $T {
+ #[inline]
+ fn count_ones(self) -> u32 {
+ <$T>::count_ones(self)
+ }
+
+ #[inline]
+ fn count_zeros(self) -> u32 {
+ <$T>::count_zeros(self)
+ }
+
+ #[inline]
+ fn leading_zeros(self) -> u32 {
+ <$T>::leading_zeros(self)
+ }
+
+ #[inline]
+ fn trailing_zeros(self) -> u32 {
+ <$T>::trailing_zeros(self)
+ }
+
+ #[inline]
+ fn rotate_left(self, n: u32) -> Self {
+ <$T>::rotate_left(self, n)
+ }
+
+ #[inline]
+ fn rotate_right(self, n: u32) -> Self {
+ <$T>::rotate_right(self, n)
+ }
+
+ #[inline]
+ fn signed_shl(self, n: u32) -> Self {
+ ((self as $S) << n) as $T
+ }
+
+ #[inline]
+ fn signed_shr(self, n: u32) -> Self {
+ ((self as $S) >> n) as $T
+ }
+
+ #[inline]
+ fn unsigned_shl(self, n: u32) -> Self {
+ ((self as $U) << n) as $T
+ }
+
+ #[inline]
+ fn unsigned_shr(self, n: u32) -> Self {
+ ((self as $U) >> n) as $T
+ }
+
+ #[inline]
+ fn swap_bytes(self) -> Self {
+ <$T>::swap_bytes(self)
+ }
+
+ #[inline]
+ fn from_be(x: Self) -> Self {
+ <$T>::from_be(x)
+ }
+
+ #[inline]
+ fn from_le(x: Self) -> Self {
+ <$T>::from_le(x)
+ }
+
+ #[inline]
+ fn to_be(self) -> Self {
+ <$T>::to_be(self)
+ }
+
+ #[inline]
+ fn to_le(self) -> Self {
+ <$T>::to_le(self)
+ }
+
+ #[inline]
+ fn pow(self, exp: u32) -> Self {
+ <$T>::pow(self, exp)
+ }
+ }
+ };
+}
+
+// prim_int_impl!(type, signed, unsigned);
+prim_int_impl!(u8, i8, u8);
+prim_int_impl!(u16, i16, u16);
+prim_int_impl!(u32, i32, u32);
+prim_int_impl!(u64, i64, u64);
+#[cfg(has_i128)]
+prim_int_impl!(u128, i128, u128);
+prim_int_impl!(usize, isize, usize);
+prim_int_impl!(i8, i8, u8);
+prim_int_impl!(i16, i16, u16);
+prim_int_impl!(i32, i32, u32);
+prim_int_impl!(i64, i64, u64);
+#[cfg(has_i128)]
+prim_int_impl!(i128, i128, u128);
+prim_int_impl!(isize, isize, usize);
diff --git a/vendor/num-traits/src/lib.rs b/vendor/num-traits/src/lib.rs
new file mode 100644
index 000000000..d9989467e
--- /dev/null
+++ b/vendor/num-traits/src/lib.rs
@@ -0,0 +1,574 @@
+// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Numeric traits for generic mathematics
+//!
+//! ## Compatibility
+//!
+//! The `num-traits` crate is tested for rustc 1.8 and greater.
+
+#![doc(html_root_url = "https://docs.rs/num-traits/0.2")]
+#![deny(unconditional_recursion)]
+#![no_std]
+#[cfg(feature = "std")]
+extern crate std;
+
+// Only `no_std` builds actually use `libm`.
+#[cfg(all(not(feature = "std"), feature = "libm"))]
+extern crate libm;
+
+use core::fmt;
+use core::num::Wrapping;
+use core::ops::{Add, Div, Mul, Rem, Sub};
+use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
+
+pub use bounds::Bounded;
+#[cfg(any(feature = "std", feature = "libm"))]
+pub use float::Float;
+pub use float::FloatConst;
+// pub use real::{FloatCore, Real}; // NOTE: Don't do this, it breaks `use num_traits::*;`.
+pub use cast::{cast, AsPrimitive, FromPrimitive, NumCast, ToPrimitive};
+pub use identities::{one, zero, One, Zero};
+pub use int::PrimInt;
+pub use ops::checked::{
+ CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedShl, CheckedShr, CheckedSub,
+};
+pub use ops::inv::Inv;
+pub use ops::mul_add::{MulAdd, MulAddAssign};
+pub use ops::saturating::{Saturating, SaturatingAdd, SaturatingMul, SaturatingSub};
+pub use ops::wrapping::{
+ WrappingAdd, WrappingMul, WrappingNeg, WrappingShl, WrappingShr, WrappingSub,
+};
+pub use pow::{checked_pow, pow, Pow};
+pub use sign::{abs, abs_sub, signum, Signed, Unsigned};
+
+#[macro_use]
+mod macros;
+
+pub mod bounds;
+pub mod cast;
+pub mod float;
+pub mod identities;
+pub mod int;
+pub mod ops;
+pub mod pow;
+pub mod real;
+pub mod sign;
+
+/// The base trait for numeric types, covering `0` and `1` values,
+/// comparisons, basic numeric operations, and string conversion.
+pub trait Num: PartialEq + Zero + One + NumOps {
+ type FromStrRadixErr;
+
+ /// Convert from a string and radix <= 36.
+ ///
+ /// # Examples
+ ///
+ /// ```rust
+ /// use num_traits::Num;
+ ///
+ /// let result = <i32 as Num>::from_str_radix("27", 10);
+ /// assert_eq!(result, Ok(27));
+ ///
+ /// let result = <i32 as Num>::from_str_radix("foo", 10);
+ /// assert!(result.is_err());
+ /// ```
+ fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>;
+}
+
+/// The trait for types implementing basic numeric operations
+///
+/// This is automatically implemented for types which implement the operators.
+pub trait NumOps<Rhs = Self, Output = Self>:
+ Add<Rhs, Output = Output>
+ + Sub<Rhs, Output = Output>
+ + Mul<Rhs, Output = Output>
+ + Div<Rhs, Output = Output>
+ + Rem<Rhs, Output = Output>
+{
+}
+
+impl<T, Rhs, Output> NumOps<Rhs, Output> for T where
+ T: Add<Rhs, Output = Output>
+ + Sub<Rhs, Output = Output>
+ + Mul<Rhs, Output = Output>
+ + Div<Rhs, Output = Output>
+ + Rem<Rhs, Output = Output>
+{
+}
+
+/// The trait for `Num` types which also implement numeric operations taking
+/// the second operand by reference.
+///
+/// This is automatically implemented for types which implement the operators.
+pub trait NumRef: Num + for<'r> NumOps<&'r Self> {}
+impl<T> NumRef for T where T: Num + for<'r> NumOps<&'r T> {}
+
+/// The trait for references which implement numeric operations, taking the
+/// second operand either by value or by reference.
+///
+/// This is automatically implemented for types which implement the operators.
+pub trait RefNum<Base>: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
+impl<T, Base> RefNum<Base> for T where T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
+
+/// The trait for types implementing numeric assignment operators (like `+=`).
+///
+/// This is automatically implemented for types which implement the operators.
+pub trait NumAssignOps<Rhs = Self>:
+ AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
+{
+}
+
+impl<T, Rhs> NumAssignOps<Rhs> for T where
+ T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
+{
+}
+
+/// The trait for `Num` types which also implement assignment operators.
+///
+/// This is automatically implemented for types which implement the operators.
+pub trait NumAssign: Num + NumAssignOps {}
+impl<T> NumAssign for T where T: Num + NumAssignOps {}
+
+/// The trait for `NumAssign` types which also implement assignment operations
+/// taking the second operand by reference.
+///
+/// This is automatically implemented for types which implement the operators.
+pub trait NumAssignRef: NumAssign + for<'r> NumAssignOps<&'r Self> {}
+impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {}
+
+macro_rules! int_trait_impl {
+ ($name:ident for $($t:ty)*) => ($(
+ impl $name for $t {
+ type FromStrRadixErr = ::core::num::ParseIntError;
+ #[inline]
+ fn from_str_radix(s: &str, radix: u32)
+ -> Result<Self, ::core::num::ParseIntError>
+ {
+ <$t>::from_str_radix(s, radix)
+ }
+ }
+ )*)
+}
+int_trait_impl!(Num for usize u8 u16 u32 u64 isize i8 i16 i32 i64);
+#[cfg(has_i128)]
+int_trait_impl!(Num for u128 i128);
+
+impl<T: Num> Num for Wrapping<T>
+where
+ Wrapping<T>: Add<Output = Wrapping<T>>
+ + Sub<Output = Wrapping<T>>
+ + Mul<Output = Wrapping<T>>
+ + Div<Output = Wrapping<T>>
+ + Rem<Output = Wrapping<T>>,
+{
+ type FromStrRadixErr = T::FromStrRadixErr;
+ fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
+ T::from_str_radix(str, radix).map(Wrapping)
+ }
+}
+
+#[derive(Debug)]
+pub enum FloatErrorKind {
+ Empty,
+ Invalid,
+}
+// FIXME: core::num::ParseFloatError is stable in 1.0, but opaque to us,
+// so there's not really any way for us to reuse it.
+#[derive(Debug)]
+pub struct ParseFloatError {
+ pub kind: FloatErrorKind,
+}
+
+impl fmt::Display for ParseFloatError {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ let description = match self.kind {
+ FloatErrorKind::Empty => "cannot parse float from empty string",
+ FloatErrorKind::Invalid => "invalid float literal",
+ };
+
+ description.fmt(f)
+ }
+}
+
+// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck
+// with this implementation ourselves until we want to make a breaking change.
+// (would have to drop it from `Num` though)
+macro_rules! float_trait_impl {
+ ($name:ident for $($t:ident)*) => ($(
+ impl $name for $t {
+ type FromStrRadixErr = ParseFloatError;
+
+ fn from_str_radix(src: &str, radix: u32)
+ -> Result<Self, Self::FromStrRadixErr>
+ {
+ use self::FloatErrorKind::*;
+ use self::ParseFloatError as PFE;
+
+ // Special values
+ match src {
+ "inf" => return Ok(core::$t::INFINITY),
+ "-inf" => return Ok(core::$t::NEG_INFINITY),
+ "NaN" => return Ok(core::$t::NAN),
+ _ => {},
+ }
+
+ fn slice_shift_char(src: &str) -> Option<(char, &str)> {
+ let mut chars = src.chars();
+ if let Some(ch) = chars.next() {
+ Some((ch, chars.as_str()))
+ } else {
+ None
+ }
+ }
+
+ let (is_positive, src) = match slice_shift_char(src) {
+ None => return Err(PFE { kind: Empty }),
+ Some(('-', "")) => return Err(PFE { kind: Empty }),
+ Some(('-', src)) => (false, src),
+ Some((_, _)) => (true, src),
+ };
+
+ // The significand to accumulate
+ let mut sig = if is_positive { 0.0 } else { -0.0 };
+ // Necessary to detect overflow
+ let mut prev_sig = sig;
+ let mut cs = src.chars().enumerate();
+ // Exponent prefix and exponent index offset
+ let mut exp_info = None::<(char, usize)>;
+
+ // Parse the integer part of the significand
+ for (i, c) in cs.by_ref() {
+ match c.to_digit(radix) {
+ Some(digit) => {
+ // shift significand one digit left
+ sig = sig * (radix as $t);
+
+ // add/subtract current digit depending on sign
+ if is_positive {
+ sig = sig + ((digit as isize) as $t);
+ } else {
+ sig = sig - ((digit as isize) as $t);
+ }
+
+ // Detect overflow by comparing to last value, except
+ // if we've not seen any non-zero digits.
+ if prev_sig != 0.0 {
+ if is_positive && sig <= prev_sig
+ { return Ok(core::$t::INFINITY); }
+ if !is_positive && sig >= prev_sig
+ { return Ok(core::$t::NEG_INFINITY); }
+
+ // Detect overflow by reversing the shift-and-add process
+ if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
+ { return Ok(core::$t::INFINITY); }
+ if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
+ { return Ok(core::$t::NEG_INFINITY); }
+ }
+ prev_sig = sig;
+ },
+ None => match c {
+ 'e' | 'E' | 'p' | 'P' => {
+ exp_info = Some((c, i + 1));
+ break; // start of exponent
+ },
+ '.' => {
+ break; // start of fractional part
+ },
+ _ => {
+ return Err(PFE { kind: Invalid });
+ },
+ },
+ }
+ }
+
+ // If we are not yet at the exponent parse the fractional
+ // part of the significand
+ if exp_info.is_none() {
+ let mut power = 1.0;
+ for (i, c) in cs.by_ref() {
+ match c.to_digit(radix) {
+ Some(digit) => {
+ // Decrease power one order of magnitude
+ power = power / (radix as $t);
+ // add/subtract current digit depending on sign
+ sig = if is_positive {
+ sig + (digit as $t) * power
+ } else {
+ sig - (digit as $t) * power
+ };
+ // Detect overflow by comparing to last value
+ if is_positive && sig < prev_sig
+ { return Ok(core::$t::INFINITY); }
+ if !is_positive && sig > prev_sig
+ { return Ok(core::$t::NEG_INFINITY); }
+ prev_sig = sig;
+ },
+ None => match c {
+ 'e' | 'E' | 'p' | 'P' => {
+ exp_info = Some((c, i + 1));
+ break; // start of exponent
+ },
+ _ => {
+ return Err(PFE { kind: Invalid });
+ },
+ },
+ }
+ }
+ }
+
+ // Parse and calculate the exponent
+ let exp = match exp_info {
+ Some((c, offset)) => {
+ let base = match c {
+ 'E' | 'e' if radix == 10 => 10.0,
+ 'P' | 'p' if radix == 16 => 2.0,
+ _ => return Err(PFE { kind: Invalid }),
+ };
+
+ // Parse the exponent as decimal integer
+ let src = &src[offset..];
+ let (is_positive, exp) = match slice_shift_char(src) {
+ Some(('-', src)) => (false, src.parse::<usize>()),
+ Some(('+', src)) => (true, src.parse::<usize>()),
+ Some((_, _)) => (true, src.parse::<usize>()),
+ None => return Err(PFE { kind: Invalid }),
+ };
+
+ #[cfg(feature = "std")]
+ fn pow(base: $t, exp: usize) -> $t {
+ Float::powi(base, exp as i32)
+ }
+ // otherwise uses the generic `pow` from the root
+
+ match (is_positive, exp) {
+ (true, Ok(exp)) => pow(base, exp),
+ (false, Ok(exp)) => 1.0 / pow(base, exp),
+ (_, Err(_)) => return Err(PFE { kind: Invalid }),
+ }
+ },
+ None => 1.0, // no exponent
+ };
+
+ Ok(sig * exp)
+ }
+ }
+ )*)
+}
+float_trait_impl!(Num for f32 f64);
+
+/// A value bounded by a minimum and a maximum
+///
+/// If input is less than min then this returns min.
+/// If input is greater than max then this returns max.
+/// Otherwise this returns input.
+///
+/// **Panics** in debug mode if `!(min <= max)`.
+#[inline]
+pub fn clamp<T: PartialOrd>(input: T, min: T, max: T) -> T {
+ debug_assert!(min <= max, "min must be less than or equal to max");
+ if input < min {
+ min
+ } else if input > max {
+ max
+ } else {
+ input
+ }
+}
+
+/// A value bounded by a minimum value
+///
+/// If input is less than min then this returns min.
+/// Otherwise this returns input.
+/// `clamp_min(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::min(std::f32::NAN, 1.0)`.
+///
+/// **Panics** in debug mode if `!(min == min)`. (This occurs if `min` is `NAN`.)
+#[inline]
+pub fn clamp_min<T: PartialOrd>(input: T, min: T) -> T {
+ debug_assert!(min == min, "min must not be NAN");
+ if input < min {
+ min
+ } else {
+ input
+ }
+}
+
+/// A value bounded by a maximum value
+///
+/// If input is greater than max then this returns max.
+/// Otherwise this returns input.
+/// `clamp_max(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::max(std::f32::NAN, 1.0)`.
+///
+/// **Panics** in debug mode if `!(max == max)`. (This occurs if `max` is `NAN`.)
+#[inline]
+pub fn clamp_max<T: PartialOrd>(input: T, max: T) -> T {
+ debug_assert!(max == max, "max must not be NAN");
+ if input > max {
+ max
+ } else {
+ input
+ }
+}
+
+#[test]
+fn clamp_test() {
+ // Int test
+ assert_eq!(1, clamp(1, -1, 2));
+ assert_eq!(-1, clamp(-2, -1, 2));
+ assert_eq!(2, clamp(3, -1, 2));
+ assert_eq!(1, clamp_min(1, -1));
+ assert_eq!(-1, clamp_min(-2, -1));
+ assert_eq!(-1, clamp_max(1, -1));
+ assert_eq!(-2, clamp_max(-2, -1));
+
+ // Float test
+ assert_eq!(1.0, clamp(1.0, -1.0, 2.0));
+ assert_eq!(-1.0, clamp(-2.0, -1.0, 2.0));
+ assert_eq!(2.0, clamp(3.0, -1.0, 2.0));
+ assert_eq!(1.0, clamp_min(1.0, -1.0));
+ assert_eq!(-1.0, clamp_min(-2.0, -1.0));
+ assert_eq!(-1.0, clamp_max(1.0, -1.0));
+ assert_eq!(-2.0, clamp_max(-2.0, -1.0));
+ assert!(clamp(::core::f32::NAN, -1.0, 1.0).is_nan());
+ assert!(clamp_min(::core::f32::NAN, 1.0).is_nan());
+ assert!(clamp_max(::core::f32::NAN, 1.0).is_nan());
+}
+
+#[test]
+#[should_panic]
+#[cfg(debug_assertions)]
+fn clamp_nan_min() {
+ clamp(0., ::core::f32::NAN, 1.);
+}
+
+#[test]
+#[should_panic]
+#[cfg(debug_assertions)]
+fn clamp_nan_max() {
+ clamp(0., -1., ::core::f32::NAN);
+}
+
+#[test]
+#[should_panic]
+#[cfg(debug_assertions)]
+fn clamp_nan_min_max() {
+ clamp(0., ::core::f32::NAN, ::core::f32::NAN);
+}
+
+#[test]
+#[should_panic]
+#[cfg(debug_assertions)]
+fn clamp_min_nan_min() {
+ clamp_min(0., ::core::f32::NAN);
+}
+
+#[test]
+#[should_panic]
+#[cfg(debug_assertions)]
+fn clamp_max_nan_max() {
+ clamp_max(0., ::core::f32::NAN);
+}
+
+#[test]
+fn from_str_radix_unwrap() {
+ // The Result error must impl Debug to allow unwrap()
+
+ let i: i32 = Num::from_str_radix("0", 10).unwrap();
+ assert_eq!(i, 0);
+
+ let f: f32 = Num::from_str_radix("0.0", 10).unwrap();
+ assert_eq!(f, 0.0);
+}
+
+#[test]
+fn from_str_radix_multi_byte_fail() {
+ // Ensure parsing doesn't panic, even on invalid sign characters
+ assert!(f32::from_str_radix("™0.2", 10).is_err());
+
+ // Even when parsing the exponent sign
+ assert!(f32::from_str_radix("0.2E™1", 10).is_err());
+}
+
+#[test]
+fn wrapping_is_num() {
+ fn require_num<T: Num>(_: &T) {}
+ require_num(&Wrapping(42_u32));
+ require_num(&Wrapping(-42));
+}
+
+#[test]
+fn wrapping_from_str_radix() {
+ macro_rules! test_wrapping_from_str_radix {
+ ($($t:ty)+) => {
+ $(
+ for &(s, r) in &[("42", 10), ("42", 2), ("-13.0", 10), ("foo", 10)] {
+ let w = Wrapping::<$t>::from_str_radix(s, r).map(|w| w.0);
+ assert_eq!(w, <$t as Num>::from_str_radix(s, r));
+ }
+ )+
+ };
+ }
+
+ test_wrapping_from_str_radix!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
+}
+
+#[test]
+fn check_num_ops() {
+ fn compute<T: Num + Copy>(x: T, y: T) -> T {
+ x * y / y % y + y - y
+ }
+ assert_eq!(compute(1, 2), 1)
+}
+
+#[test]
+fn check_numref_ops() {
+ fn compute<T: NumRef>(x: T, y: &T) -> T {
+ x * y / y % y + y - y
+ }
+ assert_eq!(compute(1, &2), 1)
+}
+
+#[test]
+fn check_refnum_ops() {
+ fn compute<T: Copy>(x: &T, y: T) -> T
+ where
+ for<'a> &'a T: RefNum<T>,
+ {
+ &(&(&(&(x * y) / y) % y) + y) - y
+ }
+ assert_eq!(compute(&1, 2), 1)
+}
+
+#[test]
+fn check_refref_ops() {
+ fn compute<T>(x: &T, y: &T) -> T
+ where
+ for<'a> &'a T: RefNum<T>,
+ {
+ &(&(&(&(x * y) / y) % y) + y) - y
+ }
+ assert_eq!(compute(&1, &2), 1)
+}
+
+#[test]
+fn check_numassign_ops() {
+ fn compute<T: NumAssign + Copy>(mut x: T, y: T) -> T {
+ x *= y;
+ x /= y;
+ x %= y;
+ x += y;
+ x -= y;
+ x
+ }
+ assert_eq!(compute(1, 2), 1)
+}
+
+// TODO test `NumAssignRef`, but even the standard numeric types don't
+// implement this yet. (see rust pr41336)
diff --git a/vendor/num-traits/src/macros.rs b/vendor/num-traits/src/macros.rs
new file mode 100644
index 000000000..4330cdfd8
--- /dev/null
+++ b/vendor/num-traits/src/macros.rs
@@ -0,0 +1,37 @@
+// not all are used in all features configurations
+#![allow(unused)]
+
+/// Forward a method to an inherent method or a base trait method.
+macro_rules! forward {
+ ($( Self :: $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*)
+ => {$(
+ #[inline]
+ fn $method(self $( , $arg : $ty )* ) -> $ret {
+ Self::$method(self $( , $arg )* )
+ }
+ )*};
+ ($( $base:ident :: $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*)
+ => {$(
+ #[inline]
+ fn $method(self $( , $arg : $ty )* ) -> $ret {
+ <Self as $base>::$method(self $( , $arg )* )
+ }
+ )*};
+ ($( $base:ident :: $method:ident ( $( $arg:ident : $ty:ty ),* ) -> $ret:ty ; )*)
+ => {$(
+ #[inline]
+ fn $method( $( $arg : $ty ),* ) -> $ret {
+ <Self as $base>::$method( $( $arg ),* )
+ }
+ )*}
+}
+
+macro_rules! constant {
+ ($( $method:ident () -> $ret:expr ; )*)
+ => {$(
+ #[inline]
+ fn $method() -> Self {
+ $ret
+ }
+ )*};
+}
diff --git a/vendor/num-traits/src/ops/checked.rs b/vendor/num-traits/src/ops/checked.rs
new file mode 100644
index 000000000..386557003
--- /dev/null
+++ b/vendor/num-traits/src/ops/checked.rs
@@ -0,0 +1,277 @@
+use core::ops::{Add, Div, Mul, Rem, Shl, Shr, Sub};
+
+/// Performs addition that returns `None` instead of wrapping around on
+/// overflow.
+pub trait CheckedAdd: Sized + Add<Self, Output = Self> {
+ /// Adds two numbers, checking for overflow. If overflow happens, `None` is
+ /// returned.
+ fn checked_add(&self, v: &Self) -> Option<Self>;
+}
+
+macro_rules! checked_impl {
+ ($trait_name:ident, $method:ident, $t:ty) => {
+ impl $trait_name for $t {
+ #[inline]
+ fn $method(&self, v: &$t) -> Option<$t> {
+ <$t>::$method(*self, *v)
+ }
+ }
+ };
+}
+
+checked_impl!(CheckedAdd, checked_add, u8);
+checked_impl!(CheckedAdd, checked_add, u16);
+checked_impl!(CheckedAdd, checked_add, u32);
+checked_impl!(CheckedAdd, checked_add, u64);
+checked_impl!(CheckedAdd, checked_add, usize);
+#[cfg(has_i128)]
+checked_impl!(CheckedAdd, checked_add, u128);
+
+checked_impl!(CheckedAdd, checked_add, i8);
+checked_impl!(CheckedAdd, checked_add, i16);
+checked_impl!(CheckedAdd, checked_add, i32);
+checked_impl!(CheckedAdd, checked_add, i64);
+checked_impl!(CheckedAdd, checked_add, isize);
+#[cfg(has_i128)]
+checked_impl!(CheckedAdd, checked_add, i128);
+
+/// Performs subtraction that returns `None` instead of wrapping around on underflow.
+pub trait CheckedSub: Sized + Sub<Self, Output = Self> {
+ /// Subtracts two numbers, checking for underflow. If underflow happens,
+ /// `None` is returned.
+ fn checked_sub(&self, v: &Self) -> Option<Self>;
+}
+
+checked_impl!(CheckedSub, checked_sub, u8);
+checked_impl!(CheckedSub, checked_sub, u16);
+checked_impl!(CheckedSub, checked_sub, u32);
+checked_impl!(CheckedSub, checked_sub, u64);
+checked_impl!(CheckedSub, checked_sub, usize);
+#[cfg(has_i128)]
+checked_impl!(CheckedSub, checked_sub, u128);
+
+checked_impl!(CheckedSub, checked_sub, i8);
+checked_impl!(CheckedSub, checked_sub, i16);
+checked_impl!(CheckedSub, checked_sub, i32);
+checked_impl!(CheckedSub, checked_sub, i64);
+checked_impl!(CheckedSub, checked_sub, isize);
+#[cfg(has_i128)]
+checked_impl!(CheckedSub, checked_sub, i128);
+
+/// Performs multiplication that returns `None` instead of wrapping around on underflow or
+/// overflow.
+pub trait CheckedMul: Sized + Mul<Self, Output = Self> {
+ /// Multiplies two numbers, checking for underflow or overflow. If underflow
+ /// or overflow happens, `None` is returned.
+ fn checked_mul(&self, v: &Self) -> Option<Self>;
+}
+
+checked_impl!(CheckedMul, checked_mul, u8);
+checked_impl!(CheckedMul, checked_mul, u16);
+checked_impl!(CheckedMul, checked_mul, u32);
+checked_impl!(CheckedMul, checked_mul, u64);
+checked_impl!(CheckedMul, checked_mul, usize);
+#[cfg(has_i128)]
+checked_impl!(CheckedMul, checked_mul, u128);
+
+checked_impl!(CheckedMul, checked_mul, i8);
+checked_impl!(CheckedMul, checked_mul, i16);
+checked_impl!(CheckedMul, checked_mul, i32);
+checked_impl!(CheckedMul, checked_mul, i64);
+checked_impl!(CheckedMul, checked_mul, isize);
+#[cfg(has_i128)]
+checked_impl!(CheckedMul, checked_mul, i128);
+
+/// Performs division that returns `None` instead of panicking on division by zero and instead of
+/// wrapping around on underflow and overflow.
+pub trait CheckedDiv: Sized + Div<Self, Output = Self> {
+ /// Divides two numbers, checking for underflow, overflow and division by
+ /// zero. If any of that happens, `None` is returned.
+ fn checked_div(&self, v: &Self) -> Option<Self>;
+}
+
+checked_impl!(CheckedDiv, checked_div, u8);
+checked_impl!(CheckedDiv, checked_div, u16);
+checked_impl!(CheckedDiv, checked_div, u32);
+checked_impl!(CheckedDiv, checked_div, u64);
+checked_impl!(CheckedDiv, checked_div, usize);
+#[cfg(has_i128)]
+checked_impl!(CheckedDiv, checked_div, u128);
+
+checked_impl!(CheckedDiv, checked_div, i8);
+checked_impl!(CheckedDiv, checked_div, i16);
+checked_impl!(CheckedDiv, checked_div, i32);
+checked_impl!(CheckedDiv, checked_div, i64);
+checked_impl!(CheckedDiv, checked_div, isize);
+#[cfg(has_i128)]
+checked_impl!(CheckedDiv, checked_div, i128);
+
+/// Performs an integral remainder that returns `None` instead of panicking on division by zero and
+/// instead of wrapping around on underflow and overflow.
+pub trait CheckedRem: Sized + Rem<Self, Output = Self> {
+ /// Finds the remainder of dividing two numbers, checking for underflow, overflow and division
+ /// by zero. If any of that happens, `None` is returned.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::CheckedRem;
+ /// use std::i32::MIN;
+ ///
+ /// assert_eq!(CheckedRem::checked_rem(&10, &7), Some(3));
+ /// assert_eq!(CheckedRem::checked_rem(&10, &-7), Some(3));
+ /// assert_eq!(CheckedRem::checked_rem(&-10, &7), Some(-3));
+ /// assert_eq!(CheckedRem::checked_rem(&-10, &-7), Some(-3));
+ ///
+ /// assert_eq!(CheckedRem::checked_rem(&10, &0), None);
+ ///
+ /// assert_eq!(CheckedRem::checked_rem(&MIN, &1), Some(0));
+ /// assert_eq!(CheckedRem::checked_rem(&MIN, &-1), None);
+ /// ```
+ fn checked_rem(&self, v: &Self) -> Option<Self>;
+}
+
+checked_impl!(CheckedRem, checked_rem, u8);
+checked_impl!(CheckedRem, checked_rem, u16);
+checked_impl!(CheckedRem, checked_rem, u32);
+checked_impl!(CheckedRem, checked_rem, u64);
+checked_impl!(CheckedRem, checked_rem, usize);
+#[cfg(has_i128)]
+checked_impl!(CheckedRem, checked_rem, u128);
+
+checked_impl!(CheckedRem, checked_rem, i8);
+checked_impl!(CheckedRem, checked_rem, i16);
+checked_impl!(CheckedRem, checked_rem, i32);
+checked_impl!(CheckedRem, checked_rem, i64);
+checked_impl!(CheckedRem, checked_rem, isize);
+#[cfg(has_i128)]
+checked_impl!(CheckedRem, checked_rem, i128);
+
+macro_rules! checked_impl_unary {
+ ($trait_name:ident, $method:ident, $t:ty) => {
+ impl $trait_name for $t {
+ #[inline]
+ fn $method(&self) -> Option<$t> {
+ <$t>::$method(*self)
+ }
+ }
+ };
+}
+
+/// Performs negation that returns `None` if the result can't be represented.
+pub trait CheckedNeg: Sized {
+ /// Negates a number, returning `None` for results that can't be represented, like signed `MIN`
+ /// values that can't be positive, or non-zero unsigned values that can't be negative.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::CheckedNeg;
+ /// use std::i32::MIN;
+ ///
+ /// assert_eq!(CheckedNeg::checked_neg(&1_i32), Some(-1));
+ /// assert_eq!(CheckedNeg::checked_neg(&-1_i32), Some(1));
+ /// assert_eq!(CheckedNeg::checked_neg(&MIN), None);
+ ///
+ /// assert_eq!(CheckedNeg::checked_neg(&0_u32), Some(0));
+ /// assert_eq!(CheckedNeg::checked_neg(&1_u32), None);
+ /// ```
+ fn checked_neg(&self) -> Option<Self>;
+}
+
+checked_impl_unary!(CheckedNeg, checked_neg, u8);
+checked_impl_unary!(CheckedNeg, checked_neg, u16);
+checked_impl_unary!(CheckedNeg, checked_neg, u32);
+checked_impl_unary!(CheckedNeg, checked_neg, u64);
+checked_impl_unary!(CheckedNeg, checked_neg, usize);
+#[cfg(has_i128)]
+checked_impl_unary!(CheckedNeg, checked_neg, u128);
+
+checked_impl_unary!(CheckedNeg, checked_neg, i8);
+checked_impl_unary!(CheckedNeg, checked_neg, i16);
+checked_impl_unary!(CheckedNeg, checked_neg, i32);
+checked_impl_unary!(CheckedNeg, checked_neg, i64);
+checked_impl_unary!(CheckedNeg, checked_neg, isize);
+#[cfg(has_i128)]
+checked_impl_unary!(CheckedNeg, checked_neg, i128);
+
+/// Performs a left shift that returns `None` on shifts larger than
+/// the type width.
+pub trait CheckedShl: Sized + Shl<u32, Output = Self> {
+ /// Checked shift left. Computes `self << rhs`, returning `None`
+ /// if `rhs` is larger than or equal to the number of bits in `self`.
+ ///
+ /// ```
+ /// use num_traits::CheckedShl;
+ ///
+ /// let x: u16 = 0x0001;
+ ///
+ /// assert_eq!(CheckedShl::checked_shl(&x, 0), Some(0x0001));
+ /// assert_eq!(CheckedShl::checked_shl(&x, 1), Some(0x0002));
+ /// assert_eq!(CheckedShl::checked_shl(&x, 15), Some(0x8000));
+ /// assert_eq!(CheckedShl::checked_shl(&x, 16), None);
+ /// ```
+ fn checked_shl(&self, rhs: u32) -> Option<Self>;
+}
+
+macro_rules! checked_shift_impl {
+ ($trait_name:ident, $method:ident, $t:ty) => {
+ impl $trait_name for $t {
+ #[inline]
+ fn $method(&self, rhs: u32) -> Option<$t> {
+ <$t>::$method(*self, rhs)
+ }
+ }
+ };
+}
+
+checked_shift_impl!(CheckedShl, checked_shl, u8);
+checked_shift_impl!(CheckedShl, checked_shl, u16);
+checked_shift_impl!(CheckedShl, checked_shl, u32);
+checked_shift_impl!(CheckedShl, checked_shl, u64);
+checked_shift_impl!(CheckedShl, checked_shl, usize);
+#[cfg(has_i128)]
+checked_shift_impl!(CheckedShl, checked_shl, u128);
+
+checked_shift_impl!(CheckedShl, checked_shl, i8);
+checked_shift_impl!(CheckedShl, checked_shl, i16);
+checked_shift_impl!(CheckedShl, checked_shl, i32);
+checked_shift_impl!(CheckedShl, checked_shl, i64);
+checked_shift_impl!(CheckedShl, checked_shl, isize);
+#[cfg(has_i128)]
+checked_shift_impl!(CheckedShl, checked_shl, i128);
+
+/// Performs a right shift that returns `None` on shifts larger than
+/// the type width.
+pub trait CheckedShr: Sized + Shr<u32, Output = Self> {
+ /// Checked shift right. Computes `self >> rhs`, returning `None`
+ /// if `rhs` is larger than or equal to the number of bits in `self`.
+ ///
+ /// ```
+ /// use num_traits::CheckedShr;
+ ///
+ /// let x: u16 = 0x8000;
+ ///
+ /// assert_eq!(CheckedShr::checked_shr(&x, 0), Some(0x8000));
+ /// assert_eq!(CheckedShr::checked_shr(&x, 1), Some(0x4000));
+ /// assert_eq!(CheckedShr::checked_shr(&x, 15), Some(0x0001));
+ /// assert_eq!(CheckedShr::checked_shr(&x, 16), None);
+ /// ```
+ fn checked_shr(&self, rhs: u32) -> Option<Self>;
+}
+
+checked_shift_impl!(CheckedShr, checked_shr, u8);
+checked_shift_impl!(CheckedShr, checked_shr, u16);
+checked_shift_impl!(CheckedShr, checked_shr, u32);
+checked_shift_impl!(CheckedShr, checked_shr, u64);
+checked_shift_impl!(CheckedShr, checked_shr, usize);
+#[cfg(has_i128)]
+checked_shift_impl!(CheckedShr, checked_shr, u128);
+
+checked_shift_impl!(CheckedShr, checked_shr, i8);
+checked_shift_impl!(CheckedShr, checked_shr, i16);
+checked_shift_impl!(CheckedShr, checked_shr, i32);
+checked_shift_impl!(CheckedShr, checked_shr, i64);
+checked_shift_impl!(CheckedShr, checked_shr, isize);
+#[cfg(has_i128)]
+checked_shift_impl!(CheckedShr, checked_shr, i128);
diff --git a/vendor/num-traits/src/ops/inv.rs b/vendor/num-traits/src/ops/inv.rs
new file mode 100644
index 000000000..7087d09d0
--- /dev/null
+++ b/vendor/num-traits/src/ops/inv.rs
@@ -0,0 +1,47 @@
+/// Unary operator for retrieving the multiplicative inverse, or reciprocal, of a value.
+pub trait Inv {
+ /// The result after applying the operator.
+ type Output;
+
+ /// Returns the multiplicative inverse of `self`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use std::f64::INFINITY;
+ /// use num_traits::Inv;
+ ///
+ /// assert_eq!(7.0.inv() * 7.0, 1.0);
+ /// assert_eq!((-0.0).inv(), -INFINITY);
+ /// ```
+ fn inv(self) -> Self::Output;
+}
+
+impl Inv for f32 {
+ type Output = f32;
+ #[inline]
+ fn inv(self) -> f32 {
+ 1.0 / self
+ }
+}
+impl Inv for f64 {
+ type Output = f64;
+ #[inline]
+ fn inv(self) -> f64 {
+ 1.0 / self
+ }
+}
+impl<'a> Inv for &'a f32 {
+ type Output = f32;
+ #[inline]
+ fn inv(self) -> f32 {
+ 1.0 / *self
+ }
+}
+impl<'a> Inv for &'a f64 {
+ type Output = f64;
+ #[inline]
+ fn inv(self) -> f64 {
+ 1.0 / *self
+ }
+}
diff --git a/vendor/num-traits/src/ops/mod.rs b/vendor/num-traits/src/ops/mod.rs
new file mode 100644
index 000000000..fd1695d99
--- /dev/null
+++ b/vendor/num-traits/src/ops/mod.rs
@@ -0,0 +1,5 @@
+pub mod checked;
+pub mod inv;
+pub mod mul_add;
+pub mod saturating;
+pub mod wrapping;
diff --git a/vendor/num-traits/src/ops/mul_add.rs b/vendor/num-traits/src/ops/mul_add.rs
new file mode 100644
index 000000000..c5835d3d0
--- /dev/null
+++ b/vendor/num-traits/src/ops/mul_add.rs
@@ -0,0 +1,151 @@
+/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+/// error, yielding a more accurate result than an unfused multiply-add.
+///
+/// Using `mul_add` can be more performant than an unfused multiply-add if
+/// the target architecture has a dedicated `fma` CPU instruction.
+///
+/// Note that `A` and `B` are `Self` by default, but this is not mandatory.
+///
+/// # Example
+///
+/// ```
+/// use std::f32;
+///
+/// let m = 10.0_f32;
+/// let x = 4.0_f32;
+/// let b = 60.0_f32;
+///
+/// // 100.0
+/// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
+///
+/// assert!(abs_difference <= 100.0 * f32::EPSILON);
+/// ```
+pub trait MulAdd<A = Self, B = Self> {
+ /// The resulting type after applying the fused multiply-add.
+ type Output;
+
+ /// Performs the fused multiply-add operation.
+ fn mul_add(self, a: A, b: B) -> Self::Output;
+}
+
+/// The fused multiply-add assignment operation.
+pub trait MulAddAssign<A = Self, B = Self> {
+ /// Performs the fused multiply-add operation.
+ fn mul_add_assign(&mut self, a: A, b: B);
+}
+
+#[cfg(any(feature = "std", feature = "libm"))]
+impl MulAdd<f32, f32> for f32 {
+ type Output = Self;
+
+ #[inline]
+ fn mul_add(self, a: Self, b: Self) -> Self::Output {
+ <Self as ::Float>::mul_add(self, a, b)
+ }
+}
+
+#[cfg(any(feature = "std", feature = "libm"))]
+impl MulAdd<f64, f64> for f64 {
+ type Output = Self;
+
+ #[inline]
+ fn mul_add(self, a: Self, b: Self) -> Self::Output {
+ <Self as ::Float>::mul_add(self, a, b)
+ }
+}
+
+macro_rules! mul_add_impl {
+ ($trait_name:ident for $($t:ty)*) => {$(
+ impl $trait_name for $t {
+ type Output = Self;
+
+ #[inline]
+ fn mul_add(self, a: Self, b: Self) -> Self::Output {
+ (self * a) + b
+ }
+ }
+ )*}
+}
+
+mul_add_impl!(MulAdd for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
+#[cfg(has_i128)]
+mul_add_impl!(MulAdd for i128 u128);
+
+#[cfg(any(feature = "std", feature = "libm"))]
+impl MulAddAssign<f32, f32> for f32 {
+ #[inline]
+ fn mul_add_assign(&mut self, a: Self, b: Self) {
+ *self = <Self as ::Float>::mul_add(*self, a, b)
+ }
+}
+
+#[cfg(any(feature = "std", feature = "libm"))]
+impl MulAddAssign<f64, f64> for f64 {
+ #[inline]
+ fn mul_add_assign(&mut self, a: Self, b: Self) {
+ *self = <Self as ::Float>::mul_add(*self, a, b)
+ }
+}
+
+macro_rules! mul_add_assign_impl {
+ ($trait_name:ident for $($t:ty)*) => {$(
+ impl $trait_name for $t {
+ #[inline]
+ fn mul_add_assign(&mut self, a: Self, b: Self) {
+ *self = (*self * a) + b
+ }
+ }
+ )*}
+}
+
+mul_add_assign_impl!(MulAddAssign for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
+#[cfg(has_i128)]
+mul_add_assign_impl!(MulAddAssign for i128 u128);
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn mul_add_integer() {
+ macro_rules! test_mul_add {
+ ($($t:ident)+) => {
+ $(
+ {
+ let m: $t = 2;
+ let x: $t = 3;
+ let b: $t = 4;
+
+ assert_eq!(MulAdd::mul_add(m, x, b), (m*x + b));
+ }
+ )+
+ };
+ }
+
+ test_mul_add!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn mul_add_float() {
+ macro_rules! test_mul_add {
+ ($($t:ident)+) => {
+ $(
+ {
+ use core::$t;
+
+ let m: $t = 12.0;
+ let x: $t = 3.4;
+ let b: $t = 5.6;
+
+ let abs_difference = (MulAdd::mul_add(m, x, b) - (m*x + b)).abs();
+
+ assert!(abs_difference <= 46.4 * $t::EPSILON);
+ }
+ )+
+ };
+ }
+
+ test_mul_add!(f32 f64);
+ }
+}
diff --git a/vendor/num-traits/src/ops/saturating.rs b/vendor/num-traits/src/ops/saturating.rs
new file mode 100644
index 000000000..e39cfd7b6
--- /dev/null
+++ b/vendor/num-traits/src/ops/saturating.rs
@@ -0,0 +1,137 @@
+use core::ops::{Add, Mul, Sub};
+
+/// Saturating math operations. Deprecated, use `SaturatingAdd`, `SaturatingSub` and
+/// `SaturatingMul` instead.
+pub trait Saturating {
+ /// Saturating addition operator.
+ /// Returns a+b, saturating at the numeric bounds instead of overflowing.
+ fn saturating_add(self, v: Self) -> Self;
+
+ /// Saturating subtraction operator.
+ /// Returns a-b, saturating at the numeric bounds instead of overflowing.
+ fn saturating_sub(self, v: Self) -> Self;
+}
+
+macro_rules! deprecated_saturating_impl {
+ ($trait_name:ident for $($t:ty)*) => {$(
+ impl $trait_name for $t {
+ #[inline]
+ fn saturating_add(self, v: Self) -> Self {
+ Self::saturating_add(self, v)
+ }
+
+ #[inline]
+ fn saturating_sub(self, v: Self) -> Self {
+ Self::saturating_sub(self, v)
+ }
+ }
+ )*}
+}
+
+deprecated_saturating_impl!(Saturating for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
+#[cfg(has_i128)]
+deprecated_saturating_impl!(Saturating for i128 u128);
+
+macro_rules! saturating_impl {
+ ($trait_name:ident, $method:ident, $t:ty) => {
+ impl $trait_name for $t {
+ #[inline]
+ fn $method(&self, v: &Self) -> Self {
+ <$t>::$method(*self, *v)
+ }
+ }
+ };
+}
+
+/// Performs addition that saturates at the numeric bounds instead of overflowing.
+pub trait SaturatingAdd: Sized + Add<Self, Output = Self> {
+ /// Saturating addition. Computes `self + other`, saturating at the relevant high or low boundary of
+ /// the type.
+ fn saturating_add(&self, v: &Self) -> Self;
+}
+
+saturating_impl!(SaturatingAdd, saturating_add, u8);
+saturating_impl!(SaturatingAdd, saturating_add, u16);
+saturating_impl!(SaturatingAdd, saturating_add, u32);
+saturating_impl!(SaturatingAdd, saturating_add, u64);
+saturating_impl!(SaturatingAdd, saturating_add, usize);
+#[cfg(has_i128)]
+saturating_impl!(SaturatingAdd, saturating_add, u128);
+
+saturating_impl!(SaturatingAdd, saturating_add, i8);
+saturating_impl!(SaturatingAdd, saturating_add, i16);
+saturating_impl!(SaturatingAdd, saturating_add, i32);
+saturating_impl!(SaturatingAdd, saturating_add, i64);
+saturating_impl!(SaturatingAdd, saturating_add, isize);
+#[cfg(has_i128)]
+saturating_impl!(SaturatingAdd, saturating_add, i128);
+
+/// Performs subtraction that saturates at the numeric bounds instead of overflowing.
+pub trait SaturatingSub: Sized + Sub<Self, Output = Self> {
+ /// Saturating subtraction. Computes `self - other`, saturating at the relevant high or low boundary of
+ /// the type.
+ fn saturating_sub(&self, v: &Self) -> Self;
+}
+
+saturating_impl!(SaturatingSub, saturating_sub, u8);
+saturating_impl!(SaturatingSub, saturating_sub, u16);
+saturating_impl!(SaturatingSub, saturating_sub, u32);
+saturating_impl!(SaturatingSub, saturating_sub, u64);
+saturating_impl!(SaturatingSub, saturating_sub, usize);
+#[cfg(has_i128)]
+saturating_impl!(SaturatingSub, saturating_sub, u128);
+
+saturating_impl!(SaturatingSub, saturating_sub, i8);
+saturating_impl!(SaturatingSub, saturating_sub, i16);
+saturating_impl!(SaturatingSub, saturating_sub, i32);
+saturating_impl!(SaturatingSub, saturating_sub, i64);
+saturating_impl!(SaturatingSub, saturating_sub, isize);
+#[cfg(has_i128)]
+saturating_impl!(SaturatingSub, saturating_sub, i128);
+
+/// Performs multiplication that saturates at the numeric bounds instead of overflowing.
+pub trait SaturatingMul: Sized + Mul<Self, Output = Self> {
+ /// Saturating multiplication. Computes `self * other`, saturating at the relevant high or low boundary of
+ /// the type.
+ fn saturating_mul(&self, v: &Self) -> Self;
+}
+
+saturating_impl!(SaturatingMul, saturating_mul, u8);
+saturating_impl!(SaturatingMul, saturating_mul, u16);
+saturating_impl!(SaturatingMul, saturating_mul, u32);
+saturating_impl!(SaturatingMul, saturating_mul, u64);
+saturating_impl!(SaturatingMul, saturating_mul, usize);
+#[cfg(has_i128)]
+saturating_impl!(SaturatingMul, saturating_mul, u128);
+
+saturating_impl!(SaturatingMul, saturating_mul, i8);
+saturating_impl!(SaturatingMul, saturating_mul, i16);
+saturating_impl!(SaturatingMul, saturating_mul, i32);
+saturating_impl!(SaturatingMul, saturating_mul, i64);
+saturating_impl!(SaturatingMul, saturating_mul, isize);
+#[cfg(has_i128)]
+saturating_impl!(SaturatingMul, saturating_mul, i128);
+
+// TODO: add SaturatingNeg for signed integer primitives once the saturating_neg() API is stable.
+
+#[test]
+fn test_saturating_traits() {
+ fn saturating_add<T: SaturatingAdd>(a: T, b: T) -> T {
+ a.saturating_add(&b)
+ }
+ fn saturating_sub<T: SaturatingSub>(a: T, b: T) -> T {
+ a.saturating_sub(&b)
+ }
+ fn saturating_mul<T: SaturatingMul>(a: T, b: T) -> T {
+ a.saturating_mul(&b)
+ }
+ assert_eq!(saturating_add(255, 1), 255u8);
+ assert_eq!(saturating_add(127, 1), 127i8);
+ assert_eq!(saturating_add(-128, -1), -128i8);
+ assert_eq!(saturating_sub(0, 1), 0u8);
+ assert_eq!(saturating_sub(-128, 1), -128i8);
+ assert_eq!(saturating_sub(127, -1), 127i8);
+ assert_eq!(saturating_mul(255, 2), 255u8);
+ assert_eq!(saturating_mul(127, 2), 127i8);
+ assert_eq!(saturating_mul(-128, 2), -128i8);
+}
diff --git a/vendor/num-traits/src/ops/wrapping.rs b/vendor/num-traits/src/ops/wrapping.rs
new file mode 100644
index 000000000..265b8f3bb
--- /dev/null
+++ b/vendor/num-traits/src/ops/wrapping.rs
@@ -0,0 +1,337 @@
+use core::num::Wrapping;
+use core::ops::{Add, Mul, Neg, Shl, Shr, Sub};
+
+macro_rules! wrapping_impl {
+ ($trait_name:ident, $method:ident, $t:ty) => {
+ impl $trait_name for $t {
+ #[inline]
+ fn $method(&self, v: &Self) -> Self {
+ <$t>::$method(*self, *v)
+ }
+ }
+ };
+ ($trait_name:ident, $method:ident, $t:ty, $rhs:ty) => {
+ impl $trait_name<$rhs> for $t {
+ #[inline]
+ fn $method(&self, v: &$rhs) -> Self {
+ <$t>::$method(*self, *v)
+ }
+ }
+ };
+}
+
+/// Performs addition that wraps around on overflow.
+pub trait WrappingAdd: Sized + Add<Self, Output = Self> {
+ /// Wrapping (modular) addition. Computes `self + other`, wrapping around at the boundary of
+ /// the type.
+ fn wrapping_add(&self, v: &Self) -> Self;
+}
+
+wrapping_impl!(WrappingAdd, wrapping_add, u8);
+wrapping_impl!(WrappingAdd, wrapping_add, u16);
+wrapping_impl!(WrappingAdd, wrapping_add, u32);
+wrapping_impl!(WrappingAdd, wrapping_add, u64);
+wrapping_impl!(WrappingAdd, wrapping_add, usize);
+#[cfg(has_i128)]
+wrapping_impl!(WrappingAdd, wrapping_add, u128);
+
+wrapping_impl!(WrappingAdd, wrapping_add, i8);
+wrapping_impl!(WrappingAdd, wrapping_add, i16);
+wrapping_impl!(WrappingAdd, wrapping_add, i32);
+wrapping_impl!(WrappingAdd, wrapping_add, i64);
+wrapping_impl!(WrappingAdd, wrapping_add, isize);
+#[cfg(has_i128)]
+wrapping_impl!(WrappingAdd, wrapping_add, i128);
+
+/// Performs subtraction that wraps around on overflow.
+pub trait WrappingSub: Sized + Sub<Self, Output = Self> {
+ /// Wrapping (modular) subtraction. Computes `self - other`, wrapping around at the boundary
+ /// of the type.
+ fn wrapping_sub(&self, v: &Self) -> Self;
+}
+
+wrapping_impl!(WrappingSub, wrapping_sub, u8);
+wrapping_impl!(WrappingSub, wrapping_sub, u16);
+wrapping_impl!(WrappingSub, wrapping_sub, u32);
+wrapping_impl!(WrappingSub, wrapping_sub, u64);
+wrapping_impl!(WrappingSub, wrapping_sub, usize);
+#[cfg(has_i128)]
+wrapping_impl!(WrappingSub, wrapping_sub, u128);
+
+wrapping_impl!(WrappingSub, wrapping_sub, i8);
+wrapping_impl!(WrappingSub, wrapping_sub, i16);
+wrapping_impl!(WrappingSub, wrapping_sub, i32);
+wrapping_impl!(WrappingSub, wrapping_sub, i64);
+wrapping_impl!(WrappingSub, wrapping_sub, isize);
+#[cfg(has_i128)]
+wrapping_impl!(WrappingSub, wrapping_sub, i128);
+
+/// Performs multiplication that wraps around on overflow.
+pub trait WrappingMul: Sized + Mul<Self, Output = Self> {
+ /// Wrapping (modular) multiplication. Computes `self * other`, wrapping around at the boundary
+ /// of the type.
+ fn wrapping_mul(&self, v: &Self) -> Self;
+}
+
+wrapping_impl!(WrappingMul, wrapping_mul, u8);
+wrapping_impl!(WrappingMul, wrapping_mul, u16);
+wrapping_impl!(WrappingMul, wrapping_mul, u32);
+wrapping_impl!(WrappingMul, wrapping_mul, u64);
+wrapping_impl!(WrappingMul, wrapping_mul, usize);
+#[cfg(has_i128)]
+wrapping_impl!(WrappingMul, wrapping_mul, u128);
+
+wrapping_impl!(WrappingMul, wrapping_mul, i8);
+wrapping_impl!(WrappingMul, wrapping_mul, i16);
+wrapping_impl!(WrappingMul, wrapping_mul, i32);
+wrapping_impl!(WrappingMul, wrapping_mul, i64);
+wrapping_impl!(WrappingMul, wrapping_mul, isize);
+#[cfg(has_i128)]
+wrapping_impl!(WrappingMul, wrapping_mul, i128);
+
+macro_rules! wrapping_unary_impl {
+ ($trait_name:ident, $method:ident, $t:ty) => {
+ impl $trait_name for $t {
+ #[inline]
+ fn $method(&self) -> $t {
+ <$t>::$method(*self)
+ }
+ }
+ };
+}
+
+/// Performs a negation that does not panic.
+pub trait WrappingNeg: Sized {
+ /// Wrapping (modular) negation. Computes `-self`,
+ /// wrapping around at the boundary of the type.
+ ///
+ /// Since unsigned types do not have negative equivalents
+ /// all applications of this function will wrap (except for `-0`).
+ /// For values smaller than the corresponding signed type's maximum
+ /// the result is the same as casting the corresponding signed value.
+ /// Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)` where
+ /// `MAX` is the corresponding signed type's maximum.
+ ///
+ /// ```
+ /// use num_traits::WrappingNeg;
+ ///
+ /// assert_eq!(100i8.wrapping_neg(), -100);
+ /// assert_eq!((-100i8).wrapping_neg(), 100);
+ /// assert_eq!((-128i8).wrapping_neg(), -128); // wrapped!
+ /// ```
+ fn wrapping_neg(&self) -> Self;
+}
+
+wrapping_unary_impl!(WrappingNeg, wrapping_neg, u8);
+wrapping_unary_impl!(WrappingNeg, wrapping_neg, u16);
+wrapping_unary_impl!(WrappingNeg, wrapping_neg, u32);
+wrapping_unary_impl!(WrappingNeg, wrapping_neg, u64);
+wrapping_unary_impl!(WrappingNeg, wrapping_neg, usize);
+#[cfg(has_i128)]
+wrapping_unary_impl!(WrappingNeg, wrapping_neg, u128);
+wrapping_unary_impl!(WrappingNeg, wrapping_neg, i8);
+wrapping_unary_impl!(WrappingNeg, wrapping_neg, i16);
+wrapping_unary_impl!(WrappingNeg, wrapping_neg, i32);
+wrapping_unary_impl!(WrappingNeg, wrapping_neg, i64);
+wrapping_unary_impl!(WrappingNeg, wrapping_neg, isize);
+#[cfg(has_i128)]
+wrapping_unary_impl!(WrappingNeg, wrapping_neg, i128);
+
+macro_rules! wrapping_shift_impl {
+ ($trait_name:ident, $method:ident, $t:ty) => {
+ impl $trait_name for $t {
+ #[inline]
+ fn $method(&self, rhs: u32) -> $t {
+ <$t>::$method(*self, rhs)
+ }
+ }
+ };
+}
+
+/// Performs a left shift that does not panic.
+pub trait WrappingShl: Sized + Shl<usize, Output = Self> {
+ /// Panic-free bitwise shift-left; yields `self << mask(rhs)`,
+ /// where `mask` removes any high order bits of `rhs` that would
+ /// cause the shift to exceed the bitwidth of the type.
+ ///
+ /// ```
+ /// use num_traits::WrappingShl;
+ ///
+ /// let x: u16 = 0x0001;
+ ///
+ /// assert_eq!(WrappingShl::wrapping_shl(&x, 0), 0x0001);
+ /// assert_eq!(WrappingShl::wrapping_shl(&x, 1), 0x0002);
+ /// assert_eq!(WrappingShl::wrapping_shl(&x, 15), 0x8000);
+ /// assert_eq!(WrappingShl::wrapping_shl(&x, 16), 0x0001);
+ /// ```
+ fn wrapping_shl(&self, rhs: u32) -> Self;
+}
+
+wrapping_shift_impl!(WrappingShl, wrapping_shl, u8);
+wrapping_shift_impl!(WrappingShl, wrapping_shl, u16);
+wrapping_shift_impl!(WrappingShl, wrapping_shl, u32);
+wrapping_shift_impl!(WrappingShl, wrapping_shl, u64);
+wrapping_shift_impl!(WrappingShl, wrapping_shl, usize);
+#[cfg(has_i128)]
+wrapping_shift_impl!(WrappingShl, wrapping_shl, u128);
+
+wrapping_shift_impl!(WrappingShl, wrapping_shl, i8);
+wrapping_shift_impl!(WrappingShl, wrapping_shl, i16);
+wrapping_shift_impl!(WrappingShl, wrapping_shl, i32);
+wrapping_shift_impl!(WrappingShl, wrapping_shl, i64);
+wrapping_shift_impl!(WrappingShl, wrapping_shl, isize);
+#[cfg(has_i128)]
+wrapping_shift_impl!(WrappingShl, wrapping_shl, i128);
+
+/// Performs a right shift that does not panic.
+pub trait WrappingShr: Sized + Shr<usize, Output = Self> {
+ /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`,
+ /// where `mask` removes any high order bits of `rhs` that would
+ /// cause the shift to exceed the bitwidth of the type.
+ ///
+ /// ```
+ /// use num_traits::WrappingShr;
+ ///
+ /// let x: u16 = 0x8000;
+ ///
+ /// assert_eq!(WrappingShr::wrapping_shr(&x, 0), 0x8000);
+ /// assert_eq!(WrappingShr::wrapping_shr(&x, 1), 0x4000);
+ /// assert_eq!(WrappingShr::wrapping_shr(&x, 15), 0x0001);
+ /// assert_eq!(WrappingShr::wrapping_shr(&x, 16), 0x8000);
+ /// ```
+ fn wrapping_shr(&self, rhs: u32) -> Self;
+}
+
+wrapping_shift_impl!(WrappingShr, wrapping_shr, u8);
+wrapping_shift_impl!(WrappingShr, wrapping_shr, u16);
+wrapping_shift_impl!(WrappingShr, wrapping_shr, u32);
+wrapping_shift_impl!(WrappingShr, wrapping_shr, u64);
+wrapping_shift_impl!(WrappingShr, wrapping_shr, usize);
+#[cfg(has_i128)]
+wrapping_shift_impl!(WrappingShr, wrapping_shr, u128);
+
+wrapping_shift_impl!(WrappingShr, wrapping_shr, i8);
+wrapping_shift_impl!(WrappingShr, wrapping_shr, i16);
+wrapping_shift_impl!(WrappingShr, wrapping_shr, i32);
+wrapping_shift_impl!(WrappingShr, wrapping_shr, i64);
+wrapping_shift_impl!(WrappingShr, wrapping_shr, isize);
+#[cfg(has_i128)]
+wrapping_shift_impl!(WrappingShr, wrapping_shr, i128);
+
+// Well this is a bit funny, but all the more appropriate.
+impl<T: WrappingAdd> WrappingAdd for Wrapping<T>
+where
+ Wrapping<T>: Add<Output = Wrapping<T>>,
+{
+ fn wrapping_add(&self, v: &Self) -> Self {
+ Wrapping(self.0.wrapping_add(&v.0))
+ }
+}
+impl<T: WrappingSub> WrappingSub for Wrapping<T>
+where
+ Wrapping<T>: Sub<Output = Wrapping<T>>,
+{
+ fn wrapping_sub(&self, v: &Self) -> Self {
+ Wrapping(self.0.wrapping_sub(&v.0))
+ }
+}
+impl<T: WrappingMul> WrappingMul for Wrapping<T>
+where
+ Wrapping<T>: Mul<Output = Wrapping<T>>,
+{
+ fn wrapping_mul(&self, v: &Self) -> Self {
+ Wrapping(self.0.wrapping_mul(&v.0))
+ }
+}
+impl<T: WrappingNeg> WrappingNeg for Wrapping<T>
+where
+ Wrapping<T>: Neg<Output = Wrapping<T>>,
+{
+ fn wrapping_neg(&self) -> Self {
+ Wrapping(self.0.wrapping_neg())
+ }
+}
+impl<T: WrappingShl> WrappingShl for Wrapping<T>
+where
+ Wrapping<T>: Shl<usize, Output = Wrapping<T>>,
+{
+ fn wrapping_shl(&self, rhs: u32) -> Self {
+ Wrapping(self.0.wrapping_shl(rhs))
+ }
+}
+impl<T: WrappingShr> WrappingShr for Wrapping<T>
+where
+ Wrapping<T>: Shr<usize, Output = Wrapping<T>>,
+{
+ fn wrapping_shr(&self, rhs: u32) -> Self {
+ Wrapping(self.0.wrapping_shr(rhs))
+ }
+}
+
+#[test]
+fn test_wrapping_traits() {
+ fn wrapping_add<T: WrappingAdd>(a: T, b: T) -> T {
+ a.wrapping_add(&b)
+ }
+ fn wrapping_sub<T: WrappingSub>(a: T, b: T) -> T {
+ a.wrapping_sub(&b)
+ }
+ fn wrapping_mul<T: WrappingMul>(a: T, b: T) -> T {
+ a.wrapping_mul(&b)
+ }
+ fn wrapping_neg<T: WrappingNeg>(a: T) -> T {
+ a.wrapping_neg()
+ }
+ fn wrapping_shl<T: WrappingShl>(a: T, b: u32) -> T {
+ a.wrapping_shl(b)
+ }
+ fn wrapping_shr<T: WrappingShr>(a: T, b: u32) -> T {
+ a.wrapping_shr(b)
+ }
+ assert_eq!(wrapping_add(255, 1), 0u8);
+ assert_eq!(wrapping_sub(0, 1), 255u8);
+ assert_eq!(wrapping_mul(255, 2), 254u8);
+ assert_eq!(wrapping_neg(255), 1u8);
+ assert_eq!(wrapping_shl(255, 8), 255u8);
+ assert_eq!(wrapping_shr(255, 8), 255u8);
+ assert_eq!(wrapping_add(255, 1), (Wrapping(255u8) + Wrapping(1u8)).0);
+ assert_eq!(wrapping_sub(0, 1), (Wrapping(0u8) - Wrapping(1u8)).0);
+ assert_eq!(wrapping_mul(255, 2), (Wrapping(255u8) * Wrapping(2u8)).0);
+ // TODO: Test for Wrapping::Neg. Not possible yet since core::ops::Neg was
+ // only added to core::num::Wrapping<_> in Rust 1.10.
+ assert_eq!(wrapping_shl(255, 8), (Wrapping(255u8) << 8).0);
+ assert_eq!(wrapping_shr(255, 8), (Wrapping(255u8) >> 8).0);
+}
+
+#[test]
+fn wrapping_is_wrappingadd() {
+ fn require_wrappingadd<T: WrappingAdd>(_: &T) {}
+ require_wrappingadd(&Wrapping(42));
+}
+
+#[test]
+fn wrapping_is_wrappingsub() {
+ fn require_wrappingsub<T: WrappingSub>(_: &T) {}
+ require_wrappingsub(&Wrapping(42));
+}
+
+#[test]
+fn wrapping_is_wrappingmul() {
+ fn require_wrappingmul<T: WrappingMul>(_: &T) {}
+ require_wrappingmul(&Wrapping(42));
+}
+
+// TODO: Test for Wrapping::Neg. Not possible yet since core::ops::Neg was
+// only added to core::num::Wrapping<_> in Rust 1.10.
+
+#[test]
+fn wrapping_is_wrappingshl() {
+ fn require_wrappingshl<T: WrappingShl>(_: &T) {}
+ require_wrappingshl(&Wrapping(42));
+}
+
+#[test]
+fn wrapping_is_wrappingshr() {
+ fn require_wrappingshr<T: WrappingShr>(_: &T) {}
+ require_wrappingshr(&Wrapping(42));
+}
diff --git a/vendor/num-traits/src/pow.rs b/vendor/num-traits/src/pow.rs
new file mode 100644
index 000000000..8addc2112
--- /dev/null
+++ b/vendor/num-traits/src/pow.rs
@@ -0,0 +1,262 @@
+use core::num::Wrapping;
+use core::ops::Mul;
+use {CheckedMul, One};
+
+/// Binary operator for raising a value to a power.
+pub trait Pow<RHS> {
+ /// The result after applying the operator.
+ type Output;
+
+ /// Returns `self` to the power `rhs`.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_traits::Pow;
+ /// assert_eq!(Pow::pow(10u32, 2u32), 100);
+ /// ```
+ fn pow(self, rhs: RHS) -> Self::Output;
+}
+
+macro_rules! pow_impl {
+ ($t:ty) => {
+ pow_impl!($t, u8);
+ pow_impl!($t, usize);
+
+ // FIXME: these should be possible
+ // pow_impl!($t, u16);
+ // pow_impl!($t, u32);
+ // pow_impl!($t, u64);
+ };
+ ($t:ty, $rhs:ty) => {
+ pow_impl!($t, $rhs, usize, pow);
+ };
+ ($t:ty, $rhs:ty, $desired_rhs:ty, $method:expr) => {
+ impl Pow<$rhs> for $t {
+ type Output = $t;
+ #[inline]
+ fn pow(self, rhs: $rhs) -> $t {
+ ($method)(self, <$desired_rhs>::from(rhs))
+ }
+ }
+
+ impl<'a> Pow<&'a $rhs> for $t {
+ type Output = $t;
+ #[inline]
+ fn pow(self, rhs: &'a $rhs) -> $t {
+ ($method)(self, <$desired_rhs>::from(*rhs))
+ }
+ }
+
+ impl<'a> Pow<$rhs> for &'a $t {
+ type Output = $t;
+ #[inline]
+ fn pow(self, rhs: $rhs) -> $t {
+ ($method)(*self, <$desired_rhs>::from(rhs))
+ }
+ }
+
+ impl<'a, 'b> Pow<&'a $rhs> for &'b $t {
+ type Output = $t;
+ #[inline]
+ fn pow(self, rhs: &'a $rhs) -> $t {
+ ($method)(*self, <$desired_rhs>::from(*rhs))
+ }
+ }
+ };
+}
+
+pow_impl!(u8, u8, u32, u8::pow);
+pow_impl!(u8, u16, u32, u8::pow);
+pow_impl!(u8, u32, u32, u8::pow);
+pow_impl!(u8, usize);
+pow_impl!(i8, u8, u32, i8::pow);
+pow_impl!(i8, u16, u32, i8::pow);
+pow_impl!(i8, u32, u32, i8::pow);
+pow_impl!(i8, usize);
+pow_impl!(u16, u8, u32, u16::pow);
+pow_impl!(u16, u16, u32, u16::pow);
+pow_impl!(u16, u32, u32, u16::pow);
+pow_impl!(u16, usize);
+pow_impl!(i16, u8, u32, i16::pow);
+pow_impl!(i16, u16, u32, i16::pow);
+pow_impl!(i16, u32, u32, i16::pow);
+pow_impl!(i16, usize);
+pow_impl!(u32, u8, u32, u32::pow);
+pow_impl!(u32, u16, u32, u32::pow);
+pow_impl!(u32, u32, u32, u32::pow);
+pow_impl!(u32, usize);
+pow_impl!(i32, u8, u32, i32::pow);
+pow_impl!(i32, u16, u32, i32::pow);
+pow_impl!(i32, u32, u32, i32::pow);
+pow_impl!(i32, usize);
+pow_impl!(u64, u8, u32, u64::pow);
+pow_impl!(u64, u16, u32, u64::pow);
+pow_impl!(u64, u32, u32, u64::pow);
+pow_impl!(u64, usize);
+pow_impl!(i64, u8, u32, i64::pow);
+pow_impl!(i64, u16, u32, i64::pow);
+pow_impl!(i64, u32, u32, i64::pow);
+pow_impl!(i64, usize);
+
+#[cfg(has_i128)]
+pow_impl!(u128, u8, u32, u128::pow);
+#[cfg(has_i128)]
+pow_impl!(u128, u16, u32, u128::pow);
+#[cfg(has_i128)]
+pow_impl!(u128, u32, u32, u128::pow);
+#[cfg(has_i128)]
+pow_impl!(u128, usize);
+
+#[cfg(has_i128)]
+pow_impl!(i128, u8, u32, i128::pow);
+#[cfg(has_i128)]
+pow_impl!(i128, u16, u32, i128::pow);
+#[cfg(has_i128)]
+pow_impl!(i128, u32, u32, i128::pow);
+#[cfg(has_i128)]
+pow_impl!(i128, usize);
+
+pow_impl!(usize, u8, u32, usize::pow);
+pow_impl!(usize, u16, u32, usize::pow);
+pow_impl!(usize, u32, u32, usize::pow);
+pow_impl!(usize, usize);
+pow_impl!(isize, u8, u32, isize::pow);
+pow_impl!(isize, u16, u32, isize::pow);
+pow_impl!(isize, u32, u32, isize::pow);
+pow_impl!(isize, usize);
+pow_impl!(Wrapping<u8>);
+pow_impl!(Wrapping<i8>);
+pow_impl!(Wrapping<u16>);
+pow_impl!(Wrapping<i16>);
+pow_impl!(Wrapping<u32>);
+pow_impl!(Wrapping<i32>);
+pow_impl!(Wrapping<u64>);
+pow_impl!(Wrapping<i64>);
+#[cfg(has_i128)]
+pow_impl!(Wrapping<u128>);
+#[cfg(has_i128)]
+pow_impl!(Wrapping<i128>);
+pow_impl!(Wrapping<usize>);
+pow_impl!(Wrapping<isize>);
+
+// FIXME: these should be possible
+// pow_impl!(u8, u64);
+// pow_impl!(i16, u64);
+// pow_impl!(i8, u64);
+// pow_impl!(u16, u64);
+// pow_impl!(u32, u64);
+// pow_impl!(i32, u64);
+// pow_impl!(u64, u64);
+// pow_impl!(i64, u64);
+// pow_impl!(usize, u64);
+// pow_impl!(isize, u64);
+
+#[cfg(any(feature = "std", feature = "libm"))]
+mod float_impls {
+ use super::Pow;
+ use Float;
+
+ pow_impl!(f32, i8, i32, <f32 as Float>::powi);
+ pow_impl!(f32, u8, i32, <f32 as Float>::powi);
+ pow_impl!(f32, i16, i32, <f32 as Float>::powi);
+ pow_impl!(f32, u16, i32, <f32 as Float>::powi);
+ pow_impl!(f32, i32, i32, <f32 as Float>::powi);
+ pow_impl!(f64, i8, i32, <f64 as Float>::powi);
+ pow_impl!(f64, u8, i32, <f64 as Float>::powi);
+ pow_impl!(f64, i16, i32, <f64 as Float>::powi);
+ pow_impl!(f64, u16, i32, <f64 as Float>::powi);
+ pow_impl!(f64, i32, i32, <f64 as Float>::powi);
+ pow_impl!(f32, f32, f32, <f32 as Float>::powf);
+ pow_impl!(f64, f32, f64, <f64 as Float>::powf);
+ pow_impl!(f64, f64, f64, <f64 as Float>::powf);
+}
+
+/// Raises a value to the power of exp, using exponentiation by squaring.
+///
+/// Note that `0⁰` (`pow(0, 0)`) returns `1`. Mathematically this is undefined.
+///
+/// # Example
+///
+/// ```rust
+/// use num_traits::pow;
+///
+/// assert_eq!(pow(2i8, 4), 16);
+/// assert_eq!(pow(6u8, 3), 216);
+/// assert_eq!(pow(0u8, 0), 1); // Be aware if this case affects you
+/// ```
+#[inline]
+pub fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: usize) -> T {
+ if exp == 0 {
+ return T::one();
+ }
+
+ while exp & 1 == 0 {
+ base = base.clone() * base;
+ exp >>= 1;
+ }
+ if exp == 1 {
+ return base;
+ }
+
+ let mut acc = base.clone();
+ while exp > 1 {
+ exp >>= 1;
+ base = base.clone() * base;
+ if exp & 1 == 1 {
+ acc = acc * base.clone();
+ }
+ }
+ acc
+}
+
+/// Raises a value to the power of exp, returning `None` if an overflow occurred.
+///
+/// Note that `0⁰` (`checked_pow(0, 0)`) returns `Some(1)`. Mathematically this is undefined.
+///
+/// Otherwise same as the `pow` function.
+///
+/// # Example
+///
+/// ```rust
+/// use num_traits::checked_pow;
+///
+/// assert_eq!(checked_pow(2i8, 4), Some(16));
+/// assert_eq!(checked_pow(7i8, 8), None);
+/// assert_eq!(checked_pow(7u32, 8), Some(5_764_801));
+/// assert_eq!(checked_pow(0u32, 0), Some(1)); // Be aware if this case affect you
+/// ```
+#[inline]
+pub fn checked_pow<T: Clone + One + CheckedMul>(mut base: T, mut exp: usize) -> Option<T> {
+ if exp == 0 {
+ return Some(T::one());
+ }
+
+ macro_rules! optry {
+ ($expr:expr) => {
+ if let Some(val) = $expr {
+ val
+ } else {
+ return None;
+ }
+ };
+ }
+
+ while exp & 1 == 0 {
+ base = optry!(base.checked_mul(&base));
+ exp >>= 1;
+ }
+ if exp == 1 {
+ return Some(base);
+ }
+
+ let mut acc = base.clone();
+ while exp > 1 {
+ exp >>= 1;
+ base = optry!(base.checked_mul(&base));
+ if exp & 1 == 1 {
+ acc = optry!(acc.checked_mul(&base));
+ }
+ }
+ Some(acc)
+}
diff --git a/vendor/num-traits/src/real.rs b/vendor/num-traits/src/real.rs
new file mode 100644
index 000000000..8b31cce3f
--- /dev/null
+++ b/vendor/num-traits/src/real.rs
@@ -0,0 +1,834 @@
+#![cfg(any(feature = "std", feature = "libm"))]
+
+use core::ops::Neg;
+
+use {Float, Num, NumCast};
+
+// NOTE: These doctests have the same issue as those in src/float.rs.
+// They're testing the inherent methods directly, and not those of `Real`.
+
+/// A trait for real number types that do not necessarily have
+/// floating-point-specific characteristics such as NaN and infinity.
+///
+/// See [this Wikipedia article](https://en.wikipedia.org/wiki/Real_data_type)
+/// for a list of data types that could meaningfully implement this trait.
+///
+/// This trait is only available with the `std` feature, or with the `libm` feature otherwise.
+pub trait Real: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> {
+ /// Returns the smallest finite value that this type can represent.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let x: f64 = Real::min_value();
+ ///
+ /// assert_eq!(x, f64::MIN);
+ /// ```
+ fn min_value() -> Self;
+
+ /// Returns the smallest positive, normalized value that this type can represent.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let x: f64 = Real::min_positive_value();
+ ///
+ /// assert_eq!(x, f64::MIN_POSITIVE);
+ /// ```
+ fn min_positive_value() -> Self;
+
+ /// Returns epsilon, a small positive value.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let x: f64 = Real::epsilon();
+ ///
+ /// assert_eq!(x, f64::EPSILON);
+ /// ```
+ ///
+ /// # Panics
+ ///
+ /// The default implementation will panic if `f32::EPSILON` cannot
+ /// be cast to `Self`.
+ fn epsilon() -> Self;
+
+ /// Returns the largest finite value that this type can represent.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let x: f64 = Real::max_value();
+ /// assert_eq!(x, f64::MAX);
+ /// ```
+ fn max_value() -> Self;
+
+ /// Returns the largest integer less than or equal to a number.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let f = 3.99;
+ /// let g = 3.0;
+ ///
+ /// assert_eq!(f.floor(), 3.0);
+ /// assert_eq!(g.floor(), 3.0);
+ /// ```
+ fn floor(self) -> Self;
+
+ /// Returns the smallest integer greater than or equal to a number.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let f = 3.01;
+ /// let g = 4.0;
+ ///
+ /// assert_eq!(f.ceil(), 4.0);
+ /// assert_eq!(g.ceil(), 4.0);
+ /// ```
+ fn ceil(self) -> Self;
+
+ /// Returns the nearest integer to a number. Round half-way cases away from
+ /// `0.0`.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let f = 3.3;
+ /// let g = -3.3;
+ ///
+ /// assert_eq!(f.round(), 3.0);
+ /// assert_eq!(g.round(), -3.0);
+ /// ```
+ fn round(self) -> Self;
+
+ /// Return the integer part of a number.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let f = 3.3;
+ /// let g = -3.7;
+ ///
+ /// assert_eq!(f.trunc(), 3.0);
+ /// assert_eq!(g.trunc(), -3.0);
+ /// ```
+ fn trunc(self) -> Self;
+
+ /// Returns the fractional part of a number.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let x = 3.5;
+ /// let y = -3.5;
+ /// let abs_difference_x = (x.fract() - 0.5).abs();
+ /// let abs_difference_y = (y.fract() - (-0.5)).abs();
+ ///
+ /// assert!(abs_difference_x < 1e-10);
+ /// assert!(abs_difference_y < 1e-10);
+ /// ```
+ fn fract(self) -> Self;
+
+ /// Computes the absolute value of `self`. Returns `Float::nan()` if the
+ /// number is `Float::nan()`.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let x = 3.5;
+ /// let y = -3.5;
+ ///
+ /// let abs_difference_x = (x.abs() - x).abs();
+ /// let abs_difference_y = (y.abs() - (-y)).abs();
+ ///
+ /// assert!(abs_difference_x < 1e-10);
+ /// assert!(abs_difference_y < 1e-10);
+ ///
+ /// assert!(::num_traits::Float::is_nan(f64::NAN.abs()));
+ /// ```
+ fn abs(self) -> Self;
+
+ /// Returns a number that represents the sign of `self`.
+ ///
+ /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
+ /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
+ /// - `Float::nan()` if the number is `Float::nan()`
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let f = 3.5;
+ ///
+ /// assert_eq!(f.signum(), 1.0);
+ /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
+ ///
+ /// assert!(f64::NAN.signum().is_nan());
+ /// ```
+ fn signum(self) -> Self;
+
+ /// Returns `true` if `self` is positive, including `+0.0`,
+ /// `Float::infinity()`, and with newer versions of Rust `f64::NAN`.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let neg_nan: f64 = -f64::NAN;
+ ///
+ /// let f = 7.0;
+ /// let g = -7.0;
+ ///
+ /// assert!(f.is_sign_positive());
+ /// assert!(!g.is_sign_positive());
+ /// assert!(!neg_nan.is_sign_positive());
+ /// ```
+ fn is_sign_positive(self) -> bool;
+
+ /// Returns `true` if `self` is negative, including `-0.0`,
+ /// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let nan: f64 = f64::NAN;
+ ///
+ /// let f = 7.0;
+ /// let g = -7.0;
+ ///
+ /// assert!(!f.is_sign_negative());
+ /// assert!(g.is_sign_negative());
+ /// assert!(!nan.is_sign_negative());
+ /// ```
+ fn is_sign_negative(self) -> bool;
+
+ /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
+ /// error, yielding a more accurate result than an unfused multiply-add.
+ ///
+ /// Using `mul_add` can be more performant than an unfused multiply-add if
+ /// the target architecture has a dedicated `fma` CPU instruction.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let m = 10.0;
+ /// let x = 4.0;
+ /// let b = 60.0;
+ ///
+ /// // 100.0
+ /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn mul_add(self, a: Self, b: Self) -> Self;
+
+ /// Take the reciprocal (inverse) of a number, `1/x`.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let x = 2.0;
+ /// let abs_difference = (x.recip() - (1.0/x)).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn recip(self) -> Self;
+
+ /// Raise a number to an integer power.
+ ///
+ /// Using this function is generally faster than using `powf`
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let x = 2.0;
+ /// let abs_difference = (x.powi(2) - x*x).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn powi(self, n: i32) -> Self;
+
+ /// Raise a number to a real number power.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let x = 2.0;
+ /// let abs_difference = (x.powf(2.0) - x*x).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn powf(self, n: Self) -> Self;
+
+ /// Take the square root of a number.
+ ///
+ /// Returns NaN if `self` is a negative floating-point number.
+ ///
+ /// # Panics
+ ///
+ /// If the implementing type doesn't support NaN, this method should panic if `self < 0`.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let positive = 4.0;
+ /// let negative = -4.0;
+ ///
+ /// let abs_difference = (positive.sqrt() - 2.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// assert!(::num_traits::Float::is_nan(negative.sqrt()));
+ /// ```
+ fn sqrt(self) -> Self;
+
+ /// Returns `e^(self)`, (the exponential function).
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let one = 1.0;
+ /// // e^1
+ /// let e = one.exp();
+ ///
+ /// // ln(e) - 1 == 0
+ /// let abs_difference = (e.ln() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn exp(self) -> Self;
+
+ /// Returns `2^(self)`.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let f = 2.0;
+ ///
+ /// // 2^2 - 4 == 0
+ /// let abs_difference = (f.exp2() - 4.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn exp2(self) -> Self;
+
+ /// Returns the natural logarithm of the number.
+ ///
+ /// # Panics
+ ///
+ /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let one = 1.0;
+ /// // e^1
+ /// let e = one.exp();
+ ///
+ /// // ln(e) - 1 == 0
+ /// let abs_difference = (e.ln() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn ln(self) -> Self;
+
+ /// Returns the logarithm of the number with respect to an arbitrary base.
+ ///
+ /// # Panics
+ ///
+ /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let ten = 10.0;
+ /// let two = 2.0;
+ ///
+ /// // log10(10) - 1 == 0
+ /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
+ ///
+ /// // log2(2) - 1 == 0
+ /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
+ ///
+ /// assert!(abs_difference_10 < 1e-10);
+ /// assert!(abs_difference_2 < 1e-10);
+ /// ```
+ fn log(self, base: Self) -> Self;
+
+ /// Returns the base 2 logarithm of the number.
+ ///
+ /// # Panics
+ ///
+ /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let two = 2.0;
+ ///
+ /// // log2(2) - 1 == 0
+ /// let abs_difference = (two.log2() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn log2(self) -> Self;
+
+ /// Returns the base 10 logarithm of the number.
+ ///
+ /// # Panics
+ ///
+ /// If `self <= 0` and this type does not support a NaN representation, this function should panic.
+ ///
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let ten = 10.0;
+ ///
+ /// // log10(10) - 1 == 0
+ /// let abs_difference = (ten.log10() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn log10(self) -> Self;
+
+ /// Converts radians to degrees.
+ ///
+ /// ```
+ /// use std::f64::consts;
+ ///
+ /// let angle = consts::PI;
+ ///
+ /// let abs_difference = (angle.to_degrees() - 180.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn to_degrees(self) -> Self;
+
+ /// Converts degrees to radians.
+ ///
+ /// ```
+ /// use std::f64::consts;
+ ///
+ /// let angle = 180.0_f64;
+ ///
+ /// let abs_difference = (angle.to_radians() - consts::PI).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn to_radians(self) -> Self;
+
+ /// Returns the maximum of the two numbers.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let x = 1.0;
+ /// let y = 2.0;
+ ///
+ /// assert_eq!(x.max(y), y);
+ /// ```
+ fn max(self, other: Self) -> Self;
+
+ /// Returns the minimum of the two numbers.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let x = 1.0;
+ /// let y = 2.0;
+ ///
+ /// assert_eq!(x.min(y), x);
+ /// ```
+ fn min(self, other: Self) -> Self;
+
+ /// The positive difference of two numbers.
+ ///
+ /// * If `self <= other`: `0:0`
+ /// * Else: `self - other`
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let x = 3.0;
+ /// let y = -3.0;
+ ///
+ /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
+ /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
+ ///
+ /// assert!(abs_difference_x < 1e-10);
+ /// assert!(abs_difference_y < 1e-10);
+ /// ```
+ fn abs_sub(self, other: Self) -> Self;
+
+ /// Take the cubic root of a number.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let x = 8.0;
+ ///
+ /// // x^(1/3) - 2 == 0
+ /// let abs_difference = (x.cbrt() - 2.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn cbrt(self) -> Self;
+
+ /// Calculate the length of the hypotenuse of a right-angle triangle given
+ /// legs of length `x` and `y`.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let x = 2.0;
+ /// let y = 3.0;
+ ///
+ /// // sqrt(x^2 + y^2)
+ /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn hypot(self, other: Self) -> Self;
+
+ /// Computes the sine of a number (in radians).
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let x = f64::consts::PI/2.0;
+ ///
+ /// let abs_difference = (x.sin() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn sin(self) -> Self;
+
+ /// Computes the cosine of a number (in radians).
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let x = 2.0*f64::consts::PI;
+ ///
+ /// let abs_difference = (x.cos() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn cos(self) -> Self;
+
+ /// Computes the tangent of a number (in radians).
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let x = f64::consts::PI/4.0;
+ /// let abs_difference = (x.tan() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-14);
+ /// ```
+ fn tan(self) -> Self;
+
+ /// Computes the arcsine of a number. Return value is in radians in
+ /// the range [-pi/2, pi/2] or NaN if the number is outside the range
+ /// [-1, 1].
+ ///
+ /// # Panics
+ ///
+ /// If this type does not support a NaN representation, this function should panic
+ /// if the number is outside the range [-1, 1].
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let f = f64::consts::PI / 2.0;
+ ///
+ /// // asin(sin(pi/2))
+ /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn asin(self) -> Self;
+
+ /// Computes the arccosine of a number. Return value is in radians in
+ /// the range [0, pi] or NaN if the number is outside the range
+ /// [-1, 1].
+ ///
+ /// # Panics
+ ///
+ /// If this type does not support a NaN representation, this function should panic
+ /// if the number is outside the range [-1, 1].
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let f = f64::consts::PI / 4.0;
+ ///
+ /// // acos(cos(pi/4))
+ /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn acos(self) -> Self;
+
+ /// Computes the arctangent of a number. Return value is in radians in the
+ /// range [-pi/2, pi/2];
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let f = 1.0;
+ ///
+ /// // atan(tan(1))
+ /// let abs_difference = (f.tan().atan() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn atan(self) -> Self;
+
+ /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
+ ///
+ /// * `x = 0`, `y = 0`: `0`
+ /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
+ /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
+ /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let pi = f64::consts::PI;
+ /// // All angles from horizontal right (+x)
+ /// // 45 deg counter-clockwise
+ /// let x1 = 3.0;
+ /// let y1 = -3.0;
+ ///
+ /// // 135 deg clockwise
+ /// let x2 = -3.0;
+ /// let y2 = 3.0;
+ ///
+ /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
+ /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
+ ///
+ /// assert!(abs_difference_1 < 1e-10);
+ /// assert!(abs_difference_2 < 1e-10);
+ /// ```
+ fn atan2(self, other: Self) -> Self;
+
+ /// Simultaneously computes the sine and cosine of the number, `x`. Returns
+ /// `(sin(x), cos(x))`.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let x = f64::consts::PI/4.0;
+ /// let f = x.sin_cos();
+ ///
+ /// let abs_difference_0 = (f.0 - x.sin()).abs();
+ /// let abs_difference_1 = (f.1 - x.cos()).abs();
+ ///
+ /// assert!(abs_difference_0 < 1e-10);
+ /// assert!(abs_difference_0 < 1e-10);
+ /// ```
+ fn sin_cos(self) -> (Self, Self);
+
+ /// Returns `e^(self) - 1` in a way that is accurate even if the
+ /// number is close to zero.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let x = 7.0;
+ ///
+ /// // e^(ln(7)) - 1
+ /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn exp_m1(self) -> Self;
+
+ /// Returns `ln(1+n)` (natural logarithm) more accurately than if
+ /// the operations were performed separately.
+ ///
+ /// # Panics
+ ///
+ /// If this type does not support a NaN representation, this function should panic
+ /// if `self-1 <= 0`.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let x = f64::consts::E - 1.0;
+ ///
+ /// // ln(1 + (e - 1)) == ln(e) == 1
+ /// let abs_difference = (x.ln_1p() - 1.0).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn ln_1p(self) -> Self;
+
+ /// Hyperbolic sine function.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let e = f64::consts::E;
+ /// let x = 1.0;
+ ///
+ /// let f = x.sinh();
+ /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
+ /// let g = (e*e - 1.0)/(2.0*e);
+ /// let abs_difference = (f - g).abs();
+ ///
+ /// assert!(abs_difference < 1e-10);
+ /// ```
+ fn sinh(self) -> Self;
+
+ /// Hyperbolic cosine function.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let e = f64::consts::E;
+ /// let x = 1.0;
+ /// let f = x.cosh();
+ /// // Solving cosh() at 1 gives this result
+ /// let g = (e*e + 1.0)/(2.0*e);
+ /// let abs_difference = (f - g).abs();
+ ///
+ /// // Same result
+ /// assert!(abs_difference < 1.0e-10);
+ /// ```
+ fn cosh(self) -> Self;
+
+ /// Hyperbolic tangent function.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let e = f64::consts::E;
+ /// let x = 1.0;
+ ///
+ /// let f = x.tanh();
+ /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
+ /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
+ /// let abs_difference = (f - g).abs();
+ ///
+ /// assert!(abs_difference < 1.0e-10);
+ /// ```
+ fn tanh(self) -> Self;
+
+ /// Inverse hyperbolic sine function.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let x = 1.0;
+ /// let f = x.sinh().asinh();
+ ///
+ /// let abs_difference = (f - x).abs();
+ ///
+ /// assert!(abs_difference < 1.0e-10);
+ /// ```
+ fn asinh(self) -> Self;
+
+ /// Inverse hyperbolic cosine function.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ ///
+ /// let x = 1.0;
+ /// let f = x.cosh().acosh();
+ ///
+ /// let abs_difference = (f - x).abs();
+ ///
+ /// assert!(abs_difference < 1.0e-10);
+ /// ```
+ fn acosh(self) -> Self;
+
+ /// Inverse hyperbolic tangent function.
+ ///
+ /// ```
+ /// use num_traits::real::Real;
+ /// use std::f64;
+ ///
+ /// let e = f64::consts::E;
+ /// let f = e.tanh().atanh();
+ ///
+ /// let abs_difference = (f - e).abs();
+ ///
+ /// assert!(abs_difference < 1.0e-10);
+ /// ```
+ fn atanh(self) -> Self;
+}
+
+impl<T: Float> Real for T {
+ forward! {
+ Float::min_value() -> Self;
+ Float::min_positive_value() -> Self;
+ Float::epsilon() -> Self;
+ Float::max_value() -> Self;
+ }
+ forward! {
+ Float::floor(self) -> Self;
+ Float::ceil(self) -> Self;
+ Float::round(self) -> Self;
+ Float::trunc(self) -> Self;
+ Float::fract(self) -> Self;
+ Float::abs(self) -> Self;
+ Float::signum(self) -> Self;
+ Float::is_sign_positive(self) -> bool;
+ Float::is_sign_negative(self) -> bool;
+ Float::mul_add(self, a: Self, b: Self) -> Self;
+ Float::recip(self) -> Self;
+ Float::powi(self, n: i32) -> Self;
+ Float::powf(self, n: Self) -> Self;
+ Float::sqrt(self) -> Self;
+ Float::exp(self) -> Self;
+ Float::exp2(self) -> Self;
+ Float::ln(self) -> Self;
+ Float::log(self, base: Self) -> Self;
+ Float::log2(self) -> Self;
+ Float::log10(self) -> Self;
+ Float::to_degrees(self) -> Self;
+ Float::to_radians(self) -> Self;
+ Float::max(self, other: Self) -> Self;
+ Float::min(self, other: Self) -> Self;
+ Float::abs_sub(self, other: Self) -> Self;
+ Float::cbrt(self) -> Self;
+ Float::hypot(self, other: Self) -> Self;
+ Float::sin(self) -> Self;
+ Float::cos(self) -> Self;
+ Float::tan(self) -> Self;
+ Float::asin(self) -> Self;
+ Float::acos(self) -> Self;
+ Float::atan(self) -> Self;
+ Float::atan2(self, other: Self) -> Self;
+ Float::sin_cos(self) -> (Self, Self);
+ Float::exp_m1(self) -> Self;
+ Float::ln_1p(self) -> Self;
+ Float::sinh(self) -> Self;
+ Float::cosh(self) -> Self;
+ Float::tanh(self) -> Self;
+ Float::asinh(self) -> Self;
+ Float::acosh(self) -> Self;
+ Float::atanh(self) -> Self;
+ }
+}
diff --git a/vendor/num-traits/src/sign.rs b/vendor/num-traits/src/sign.rs
new file mode 100644
index 000000000..26d44c500
--- /dev/null
+++ b/vendor/num-traits/src/sign.rs
@@ -0,0 +1,225 @@
+use core::num::Wrapping;
+use core::ops::Neg;
+
+use float::FloatCore;
+use Num;
+
+/// Useful functions for signed numbers (i.e. numbers that can be negative).
+pub trait Signed: Sized + Num + Neg<Output = Self> {
+ /// Computes the absolute value.
+ ///
+ /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`.
+ ///
+ /// For signed integers, `::MIN` will be returned if the number is `::MIN`.
+ fn abs(&self) -> Self;
+
+ /// The positive difference of two numbers.
+ ///
+ /// Returns `zero` if the number is less than or equal to `other`, otherwise the difference
+ /// between `self` and `other` is returned.
+ fn abs_sub(&self, other: &Self) -> Self;
+
+ /// Returns the sign of the number.
+ ///
+ /// For `f32` and `f64`:
+ ///
+ /// * `1.0` if the number is positive, `+0.0` or `INFINITY`
+ /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
+ /// * `NaN` if the number is `NaN`
+ ///
+ /// For signed integers:
+ ///
+ /// * `0` if the number is zero
+ /// * `1` if the number is positive
+ /// * `-1` if the number is negative
+ fn signum(&self) -> Self;
+
+ /// Returns true if the number is positive and false if the number is zero or negative.
+ fn is_positive(&self) -> bool;
+
+ /// Returns true if the number is negative and false if the number is zero or positive.
+ fn is_negative(&self) -> bool;
+}
+
+macro_rules! signed_impl {
+ ($($t:ty)*) => ($(
+ impl Signed for $t {
+ #[inline]
+ fn abs(&self) -> $t {
+ if self.is_negative() { -*self } else { *self }
+ }
+
+ #[inline]
+ fn abs_sub(&self, other: &$t) -> $t {
+ if *self <= *other { 0 } else { *self - *other }
+ }
+
+ #[inline]
+ fn signum(&self) -> $t {
+ match *self {
+ n if n > 0 => 1,
+ 0 => 0,
+ _ => -1,
+ }
+ }
+
+ #[inline]
+ fn is_positive(&self) -> bool { *self > 0 }
+
+ #[inline]
+ fn is_negative(&self) -> bool { *self < 0 }
+ }
+ )*)
+}
+
+signed_impl!(isize i8 i16 i32 i64);
+
+#[cfg(has_i128)]
+signed_impl!(i128);
+
+impl<T: Signed> Signed for Wrapping<T>
+where
+ Wrapping<T>: Num + Neg<Output = Wrapping<T>>,
+{
+ #[inline]
+ fn abs(&self) -> Self {
+ Wrapping(self.0.abs())
+ }
+
+ #[inline]
+ fn abs_sub(&self, other: &Self) -> Self {
+ Wrapping(self.0.abs_sub(&other.0))
+ }
+
+ #[inline]
+ fn signum(&self) -> Self {
+ Wrapping(self.0.signum())
+ }
+
+ #[inline]
+ fn is_positive(&self) -> bool {
+ self.0.is_positive()
+ }
+
+ #[inline]
+ fn is_negative(&self) -> bool {
+ self.0.is_negative()
+ }
+}
+
+macro_rules! signed_float_impl {
+ ($t:ty) => {
+ impl Signed for $t {
+ /// Computes the absolute value. Returns `NAN` if the number is `NAN`.
+ #[inline]
+ fn abs(&self) -> $t {
+ FloatCore::abs(*self)
+ }
+
+ /// The positive difference of two numbers. Returns `0.0` if the number is
+ /// less than or equal to `other`, otherwise the difference between`self`
+ /// and `other` is returned.
+ #[inline]
+ fn abs_sub(&self, other: &$t) -> $t {
+ if *self <= *other {
+ 0.
+ } else {
+ *self - *other
+ }
+ }
+
+ /// # Returns
+ ///
+ /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
+ /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
+ /// - `NAN` if the number is NaN
+ #[inline]
+ fn signum(&self) -> $t {
+ FloatCore::signum(*self)
+ }
+
+ /// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
+ #[inline]
+ fn is_positive(&self) -> bool {
+ FloatCore::is_sign_positive(*self)
+ }
+
+ /// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY`
+ #[inline]
+ fn is_negative(&self) -> bool {
+ FloatCore::is_sign_negative(*self)
+ }
+ }
+ };
+}
+
+signed_float_impl!(f32);
+signed_float_impl!(f64);
+
+/// Computes the absolute value.
+///
+/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`
+///
+/// For signed integers, `::MIN` will be returned if the number is `::MIN`.
+#[inline(always)]
+pub fn abs<T: Signed>(value: T) -> T {
+ value.abs()
+}
+
+/// The positive difference of two numbers.
+///
+/// Returns zero if `x` is less than or equal to `y`, otherwise the difference
+/// between `x` and `y` is returned.
+#[inline(always)]
+pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
+ x.abs_sub(&y)
+}
+
+/// Returns the sign of the number.
+///
+/// For `f32` and `f64`:
+///
+/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
+/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
+/// * `NaN` if the number is `NaN`
+///
+/// For signed integers:
+///
+/// * `0` if the number is zero
+/// * `1` if the number is positive
+/// * `-1` if the number is negative
+#[inline(always)]
+pub fn signum<T: Signed>(value: T) -> T {
+ value.signum()
+}
+
+/// A trait for values which cannot be negative
+pub trait Unsigned: Num {}
+
+macro_rules! empty_trait_impl {
+ ($name:ident for $($t:ty)*) => ($(
+ impl $name for $t {}
+ )*)
+}
+
+empty_trait_impl!(Unsigned for usize u8 u16 u32 u64);
+#[cfg(has_i128)]
+empty_trait_impl!(Unsigned for u128);
+
+impl<T: Unsigned> Unsigned for Wrapping<T> where Wrapping<T>: Num {}
+
+#[test]
+fn unsigned_wrapping_is_unsigned() {
+ fn require_unsigned<T: Unsigned>(_: &T) {}
+ require_unsigned(&Wrapping(42_u32));
+}
+/*
+// Commenting this out since it doesn't compile on Rust 1.8,
+// because on this version Wrapping doesn't implement Neg and therefore can't
+// implement Signed.
+#[test]
+fn signed_wrapping_is_signed() {
+ fn require_signed<T: Signed>(_: &T) {}
+ require_signed(&Wrapping(-42));
+}
+*/