summaryrefslogtreecommitdiffstats
path: root/vendor/regex-automata/src/dense.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:18:25 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:18:25 +0000
commit5363f350887b1e5b5dd21a86f88c8af9d7fea6da (patch)
tree35ca005eb6e0e9a1ba3bb5dbc033209ad445dc17 /vendor/regex-automata/src/dense.rs
parentAdding debian version 1.66.0+dfsg1-1. (diff)
downloadrustc-5363f350887b1e5b5dd21a86f88c8af9d7fea6da.tar.xz
rustc-5363f350887b1e5b5dd21a86f88c8af9d7fea6da.zip
Merging upstream version 1.67.1+dfsg1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/regex-automata/src/dense.rs')
-rw-r--r--vendor/regex-automata/src/dense.rs2332
1 files changed, 0 insertions, 2332 deletions
diff --git a/vendor/regex-automata/src/dense.rs b/vendor/regex-automata/src/dense.rs
deleted file mode 100644
index ed4d1b683..000000000
--- a/vendor/regex-automata/src/dense.rs
+++ /dev/null
@@ -1,2332 +0,0 @@
-#[cfg(feature = "std")]
-use core::fmt;
-#[cfg(feature = "std")]
-use core::iter;
-use core::mem;
-use core::slice;
-
-#[cfg(feature = "std")]
-use byteorder::{BigEndian, LittleEndian};
-use byteorder::{ByteOrder, NativeEndian};
-#[cfg(feature = "std")]
-use regex_syntax::ParserBuilder;
-
-use classes::ByteClasses;
-#[cfg(feature = "std")]
-use determinize::Determinizer;
-use dfa::DFA;
-#[cfg(feature = "std")]
-use error::{Error, Result};
-#[cfg(feature = "std")]
-use minimize::Minimizer;
-#[cfg(feature = "std")]
-use nfa::{self, NFA};
-#[cfg(feature = "std")]
-use sparse::SparseDFA;
-use state_id::{dead_id, StateID};
-#[cfg(feature = "std")]
-use state_id::{
- next_state_id, premultiply_overflow_error, write_state_id_bytes,
-};
-
-/// The size of the alphabet in a standard DFA.
-///
-/// Specifically, this length controls the number of transitions present in
-/// each DFA state. However, when the byte class optimization is enabled,
-/// then each DFA maps the space of all possible 256 byte values to at most
-/// 256 distinct equivalence classes. In this case, the number of distinct
-/// equivalence classes corresponds to the internal alphabet of the DFA, in the
-/// sense that each DFA state has a number of transitions equal to the number
-/// of equivalence classes despite supporting matching on all possible byte
-/// values.
-const ALPHABET_LEN: usize = 256;
-
-/// Masks used in serialization of DFAs.
-pub(crate) const MASK_PREMULTIPLIED: u16 = 0b0000_0000_0000_0001;
-pub(crate) const MASK_ANCHORED: u16 = 0b0000_0000_0000_0010;
-
-/// A dense table-based deterministic finite automaton (DFA).
-///
-/// A dense DFA represents the core matching primitive in this crate. That is,
-/// logically, all DFAs have a single start state, one or more match states
-/// and a transition table that maps the current state and the current byte of
-/// input to the next state. A DFA can use this information to implement fast
-/// searching. In particular, the use of a dense DFA generally makes the trade
-/// off that match speed is the most valuable characteristic, even if building
-/// the regex may take significant time *and* space. As such, the processing
-/// of every byte of input is done with a small constant number of operations
-/// that does not vary with the pattern, its size or the size of the alphabet.
-/// If your needs don't line up with this trade off, then a dense DFA may not
-/// be an adequate solution to your problem.
-///
-/// In contrast, a [sparse DFA](enum.SparseDFA.html) makes the opposite
-/// trade off: it uses less space but will execute a variable number of
-/// instructions per byte at match time, which makes it slower for matching.
-///
-/// A DFA can be built using the default configuration via the
-/// [`DenseDFA::new`](enum.DenseDFA.html#method.new) constructor. Otherwise,
-/// one can configure various aspects via the
-/// [`dense::Builder`](dense/struct.Builder.html).
-///
-/// A single DFA fundamentally supports the following operations:
-///
-/// 1. Detection of a match.
-/// 2. Location of the end of the first possible match.
-/// 3. Location of the end of the leftmost-first match.
-///
-/// A notable absence from the above list of capabilities is the location of
-/// the *start* of a match. In order to provide both the start and end of a
-/// match, *two* DFAs are required. This functionality is provided by a
-/// [`Regex`](struct.Regex.html), which can be built with its basic
-/// constructor, [`Regex::new`](struct.Regex.html#method.new), or with
-/// a [`RegexBuilder`](struct.RegexBuilder.html).
-///
-/// # State size
-///
-/// A `DenseDFA` has two type parameters, `T` and `S`. `T` corresponds to
-/// the type of the DFA's transition table while `S` corresponds to the
-/// representation used for the DFA's state identifiers as described by the
-/// [`StateID`](trait.StateID.html) trait. This type parameter is typically
-/// `usize`, but other valid choices provided by this crate include `u8`,
-/// `u16`, `u32` and `u64`. The primary reason for choosing a different state
-/// identifier representation than the default is to reduce the amount of
-/// memory used by a DFA. Note though, that if the chosen representation cannot
-/// accommodate the size of your DFA, then building the DFA will fail and
-/// return an error.
-///
-/// While the reduction in heap memory used by a DFA is one reason for choosing
-/// a smaller state identifier representation, another possible reason is for
-/// decreasing the serialization size of a DFA, as returned by
-/// [`to_bytes_little_endian`](enum.DenseDFA.html#method.to_bytes_little_endian),
-/// [`to_bytes_big_endian`](enum.DenseDFA.html#method.to_bytes_big_endian)
-/// or
-/// [`to_bytes_native_endian`](enum.DenseDFA.html#method.to_bytes_native_endian).
-///
-/// The type of the transition table is typically either `Vec<S>` or `&[S]`,
-/// depending on where the transition table is stored.
-///
-/// # Variants
-///
-/// This DFA is defined as a non-exhaustive enumeration of different types of
-/// dense DFAs. All of these dense DFAs use the same internal representation
-/// for the transition table, but they vary in how the transition table is
-/// read. A DFA's specific variant depends on the configuration options set via
-/// [`dense::Builder`](dense/struct.Builder.html). The default variant is
-/// `PremultipliedByteClass`.
-///
-/// # The `DFA` trait
-///
-/// This type implements the [`DFA`](trait.DFA.html) trait, which means it
-/// can be used for searching. For example:
-///
-/// ```
-/// use regex_automata::{DFA, DenseDFA};
-///
-/// # fn example() -> Result<(), regex_automata::Error> {
-/// let dfa = DenseDFA::new("foo[0-9]+")?;
-/// assert_eq!(Some(8), dfa.find(b"foo12345"));
-/// # Ok(()) }; example().unwrap()
-/// ```
-///
-/// The `DFA` trait also provides an assortment of other lower level methods
-/// for DFAs, such as `start_state` and `next_state`. While these are correctly
-/// implemented, it is an anti-pattern to use them in performance sensitive
-/// code on the `DenseDFA` type directly. Namely, each implementation requires
-/// a branch to determine which type of dense DFA is being used. Instead,
-/// this branch should be pushed up a layer in the code since walking the
-/// transitions of a DFA is usually a hot path. If you do need to use these
-/// lower level methods in performance critical code, then you should match on
-/// the variants of this DFA and use each variant's implementation of the `DFA`
-/// trait directly.
-#[derive(Clone, Debug)]
-pub enum DenseDFA<T: AsRef<[S]>, S: StateID> {
- /// A standard DFA that does not use premultiplication or byte classes.
- Standard(Standard<T, S>),
- /// A DFA that shrinks its alphabet to a set of equivalence classes instead
- /// of using all possible byte values. Any two bytes belong to the same
- /// equivalence class if and only if they can be used interchangeably
- /// anywhere in the DFA while never discriminating between a match and a
- /// non-match.
- ///
- /// This type of DFA can result in significant space reduction with a very
- /// small match time performance penalty.
- ByteClass(ByteClass<T, S>),
- /// A DFA that premultiplies all of its state identifiers in its
- /// transition table. This saves an instruction per byte at match time
- /// which improves search performance.
- ///
- /// The only downside of premultiplication is that it may prevent one from
- /// using a smaller state identifier representation than you otherwise
- /// could.
- Premultiplied(Premultiplied<T, S>),
- /// The default configuration of a DFA, which uses byte classes and
- /// premultiplies its state identifiers.
- PremultipliedByteClass(PremultipliedByteClass<T, S>),
- /// Hints that destructuring should not be exhaustive.
- ///
- /// This enum may grow additional variants, so this makes sure clients
- /// don't count on exhaustive matching. (Otherwise, adding a new variant
- /// could break existing code.)
- #[doc(hidden)]
- __Nonexhaustive,
-}
-
-impl<T: AsRef<[S]>, S: StateID> DenseDFA<T, S> {
- /// Return the internal DFA representation.
- ///
- /// All variants share the same internal representation.
- fn repr(&self) -> &Repr<T, S> {
- match *self {
- DenseDFA::Standard(ref r) => &r.0,
- DenseDFA::ByteClass(ref r) => &r.0,
- DenseDFA::Premultiplied(ref r) => &r.0,
- DenseDFA::PremultipliedByteClass(ref r) => &r.0,
- DenseDFA::__Nonexhaustive => unreachable!(),
- }
- }
-}
-
-#[cfg(feature = "std")]
-impl DenseDFA<Vec<usize>, usize> {
- /// Parse the given regular expression using a default configuration and
- /// return the corresponding DFA.
- ///
- /// The default configuration uses `usize` for state IDs, premultiplies
- /// them and reduces the alphabet size by splitting bytes into equivalence
- /// classes. The DFA is *not* minimized.
- ///
- /// If you want a non-default configuration, then use the
- /// [`dense::Builder`](dense/struct.Builder.html)
- /// to set your own configuration.
- ///
- /// # Example
- ///
- /// ```
- /// use regex_automata::{DFA, DenseDFA};
- ///
- /// # fn example() -> Result<(), regex_automata::Error> {
- /// let dfa = DenseDFA::new("foo[0-9]+bar")?;
- /// assert_eq!(Some(11), dfa.find(b"foo12345bar"));
- /// # Ok(()) }; example().unwrap()
- /// ```
- pub fn new(pattern: &str) -> Result<DenseDFA<Vec<usize>, usize>> {
- Builder::new().build(pattern)
- }
-}
-
-#[cfg(feature = "std")]
-impl<S: StateID> DenseDFA<Vec<S>, S> {
- /// Create a new empty DFA that never matches any input.
- ///
- /// # Example
- ///
- /// In order to build an empty DFA, callers must provide a type hint
- /// indicating their choice of state identifier representation.
- ///
- /// ```
- /// use regex_automata::{DFA, DenseDFA};
- ///
- /// # fn example() -> Result<(), regex_automata::Error> {
- /// let dfa: DenseDFA<Vec<usize>, usize> = DenseDFA::empty();
- /// assert_eq!(None, dfa.find(b""));
- /// assert_eq!(None, dfa.find(b"foo"));
- /// # Ok(()) }; example().unwrap()
- /// ```
- pub fn empty() -> DenseDFA<Vec<S>, S> {
- Repr::empty().into_dense_dfa()
- }
-}
-
-impl<T: AsRef<[S]>, S: StateID> DenseDFA<T, S> {
- /// Cheaply return a borrowed version of this dense DFA. Specifically, the
- /// DFA returned always uses `&[S]` for its transition table while keeping
- /// the same state identifier representation.
- pub fn as_ref<'a>(&'a self) -> DenseDFA<&'a [S], S> {
- match *self {
- DenseDFA::Standard(ref r) => {
- DenseDFA::Standard(Standard(r.0.as_ref()))
- }
- DenseDFA::ByteClass(ref r) => {
- DenseDFA::ByteClass(ByteClass(r.0.as_ref()))
- }
- DenseDFA::Premultiplied(ref r) => {
- DenseDFA::Premultiplied(Premultiplied(r.0.as_ref()))
- }
- DenseDFA::PremultipliedByteClass(ref r) => {
- let inner = PremultipliedByteClass(r.0.as_ref());
- DenseDFA::PremultipliedByteClass(inner)
- }
- DenseDFA::__Nonexhaustive => unreachable!(),
- }
- }
-
- /// Return an owned version of this sparse DFA. Specifically, the DFA
- /// returned always uses `Vec<u8>` for its transition table while keeping
- /// the same state identifier representation.
- ///
- /// Effectively, this returns a sparse DFA whose transition table lives
- /// on the heap.
- #[cfg(feature = "std")]
- pub fn to_owned(&self) -> DenseDFA<Vec<S>, S> {
- match *self {
- DenseDFA::Standard(ref r) => {
- DenseDFA::Standard(Standard(r.0.to_owned()))
- }
- DenseDFA::ByteClass(ref r) => {
- DenseDFA::ByteClass(ByteClass(r.0.to_owned()))
- }
- DenseDFA::Premultiplied(ref r) => {
- DenseDFA::Premultiplied(Premultiplied(r.0.to_owned()))
- }
- DenseDFA::PremultipliedByteClass(ref r) => {
- let inner = PremultipliedByteClass(r.0.to_owned());
- DenseDFA::PremultipliedByteClass(inner)
- }
- DenseDFA::__Nonexhaustive => unreachable!(),
- }
- }
-
- /// Returns the memory usage, in bytes, of this DFA.
- ///
- /// The memory usage is computed based on the number of bytes used to
- /// represent this DFA's transition table. This corresponds to heap memory
- /// usage.
- ///
- /// This does **not** include the stack size used up by this DFA. To
- /// compute that, used `std::mem::size_of::<DenseDFA>()`.
- pub fn memory_usage(&self) -> usize {
- self.repr().memory_usage()
- }
-}
-
-/// Routines for converting a dense DFA to other representations, such as
-/// sparse DFAs, smaller state identifiers or raw bytes suitable for persistent
-/// storage.
-#[cfg(feature = "std")]
-impl<T: AsRef<[S]>, S: StateID> DenseDFA<T, S> {
- /// Convert this dense DFA to a sparse DFA.
- ///
- /// This is a convenience routine for `to_sparse_sized` that fixes the
- /// state identifier representation of the sparse DFA to the same
- /// representation used for this dense DFA.
- ///
- /// If the chosen state identifier representation is too small to represent
- /// all states in the sparse DFA, then this returns an error. In most
- /// cases, if a dense DFA is constructable with `S` then a sparse DFA will
- /// be as well. However, it is not guaranteed.
- ///
- /// # Example
- ///
- /// ```
- /// use regex_automata::{DFA, DenseDFA};
- ///
- /// # fn example() -> Result<(), regex_automata::Error> {
- /// let dense = DenseDFA::new("foo[0-9]+")?;
- /// let sparse = dense.to_sparse()?;
- /// assert_eq!(Some(8), sparse.find(b"foo12345"));
- /// # Ok(()) }; example().unwrap()
- /// ```
- pub fn to_sparse(&self) -> Result<SparseDFA<Vec<u8>, S>> {
- self.to_sparse_sized()
- }
-
- /// Convert this dense DFA to a sparse DFA.
- ///
- /// Using this routine requires supplying a type hint to choose the state
- /// identifier representation for the resulting sparse DFA.
- ///
- /// If the chosen state identifier representation is too small to represent
- /// all states in the sparse DFA, then this returns an error.
- ///
- /// # Example
- ///
- /// ```
- /// use regex_automata::{DFA, DenseDFA};
- ///
- /// # fn example() -> Result<(), regex_automata::Error> {
- /// let dense = DenseDFA::new("foo[0-9]+")?;
- /// let sparse = dense.to_sparse_sized::<u8>()?;
- /// assert_eq!(Some(8), sparse.find(b"foo12345"));
- /// # Ok(()) }; example().unwrap()
- /// ```
- pub fn to_sparse_sized<A: StateID>(
- &self,
- ) -> Result<SparseDFA<Vec<u8>, A>> {
- self.repr().to_sparse_sized()
- }
-
- /// Create a new DFA whose match semantics are equivalent to this DFA,
- /// but attempt to use `u8` for the representation of state identifiers.
- /// If `u8` is insufficient to represent all state identifiers in this
- /// DFA, then this returns an error.
- ///
- /// This is a convenience routine for `to_sized::<u8>()`.
- pub fn to_u8(&self) -> Result<DenseDFA<Vec<u8>, u8>> {
- self.to_sized()
- }
-
- /// Create a new DFA whose match semantics are equivalent to this DFA,
- /// but attempt to use `u16` for the representation of state identifiers.
- /// If `u16` is insufficient to represent all state identifiers in this
- /// DFA, then this returns an error.
- ///
- /// This is a convenience routine for `to_sized::<u16>()`.
- pub fn to_u16(&self) -> Result<DenseDFA<Vec<u16>, u16>> {
- self.to_sized()
- }
-
- /// Create a new DFA whose match semantics are equivalent to this DFA,
- /// but attempt to use `u32` for the representation of state identifiers.
- /// If `u32` is insufficient to represent all state identifiers in this
- /// DFA, then this returns an error.
- ///
- /// This is a convenience routine for `to_sized::<u32>()`.
- #[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
- pub fn to_u32(&self) -> Result<DenseDFA<Vec<u32>, u32>> {
- self.to_sized()
- }
-
- /// Create a new DFA whose match semantics are equivalent to this DFA,
- /// but attempt to use `u64` for the representation of state identifiers.
- /// If `u64` is insufficient to represent all state identifiers in this
- /// DFA, then this returns an error.
- ///
- /// This is a convenience routine for `to_sized::<u64>()`.
- #[cfg(target_pointer_width = "64")]
- pub fn to_u64(&self) -> Result<DenseDFA<Vec<u64>, u64>> {
- self.to_sized()
- }
-
- /// Create a new DFA whose match semantics are equivalent to this DFA, but
- /// attempt to use `A` for the representation of state identifiers. If `A`
- /// is insufficient to represent all state identifiers in this DFA, then
- /// this returns an error.
- ///
- /// An alternative way to construct such a DFA is to use
- /// [`dense::Builder::build_with_size`](dense/struct.Builder.html#method.build_with_size).
- /// In general, using the builder is preferred since it will use the given
- /// state identifier representation throughout determinization (and
- /// minimization, if done), and thereby using less memory throughout the
- /// entire construction process. However, these routines are necessary
- /// in cases where, say, a minimized DFA could fit in a smaller state
- /// identifier representation, but the initial determinized DFA would not.
- pub fn to_sized<A: StateID>(&self) -> Result<DenseDFA<Vec<A>, A>> {
- self.repr().to_sized().map(|r| r.into_dense_dfa())
- }
-
- /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary, in little
- /// endian format.
- ///
- /// If the state identifier representation of this DFA has a size different
- /// than 1, 2, 4 or 8 bytes, then this returns an error. All
- /// implementations of `StateID` provided by this crate satisfy this
- /// requirement.
- pub fn to_bytes_little_endian(&self) -> Result<Vec<u8>> {
- self.repr().to_bytes::<LittleEndian>()
- }
-
- /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary, in big
- /// endian format.
- ///
- /// If the state identifier representation of this DFA has a size different
- /// than 1, 2, 4 or 8 bytes, then this returns an error. All
- /// implementations of `StateID` provided by this crate satisfy this
- /// requirement.
- pub fn to_bytes_big_endian(&self) -> Result<Vec<u8>> {
- self.repr().to_bytes::<BigEndian>()
- }
-
- /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary, in native
- /// endian format. Generally, it is better to pick an explicit endianness
- /// using either `to_bytes_little_endian` or `to_bytes_big_endian`. This
- /// routine is useful in tests where the DFA is serialized and deserialized
- /// on the same platform.
- ///
- /// If the state identifier representation of this DFA has a size different
- /// than 1, 2, 4 or 8 bytes, then this returns an error. All
- /// implementations of `StateID` provided by this crate satisfy this
- /// requirement.
- pub fn to_bytes_native_endian(&self) -> Result<Vec<u8>> {
- self.repr().to_bytes::<NativeEndian>()
- }
-}
-
-impl<'a, S: StateID> DenseDFA<&'a [S], S> {
- /// Deserialize a DFA with a specific state identifier representation.
- ///
- /// Deserializing a DFA using this routine will never allocate heap memory.
- /// This is also guaranteed to be a constant time operation that does not
- /// vary with the size of the DFA.
- ///
- /// The bytes given should be generated by the serialization of a DFA with
- /// either the
- /// [`to_bytes_little_endian`](enum.DenseDFA.html#method.to_bytes_little_endian)
- /// method or the
- /// [`to_bytes_big_endian`](enum.DenseDFA.html#method.to_bytes_big_endian)
- /// endian, depending on the endianness of the machine you are
- /// deserializing this DFA from.
- ///
- /// If the state identifier representation is `usize`, then deserialization
- /// is dependent on the pointer size. For this reason, it is best to
- /// serialize DFAs using a fixed size representation for your state
- /// identifiers, such as `u8`, `u16`, `u32` or `u64`.
- ///
- /// # Panics
- ///
- /// The bytes given should be *trusted*. In particular, if the bytes
- /// are not a valid serialization of a DFA, or if the given bytes are
- /// not aligned to an 8 byte boundary, or if the endianness of the
- /// serialized bytes is different than the endianness of the machine that
- /// is deserializing the DFA, then this routine will panic. Moreover, it is
- /// possible for this deserialization routine to succeed even if the given
- /// bytes do not represent a valid serialized dense DFA.
- ///
- /// # Safety
- ///
- /// This routine is unsafe because it permits callers to provide an
- /// arbitrary transition table with possibly incorrect transitions. While
- /// the various serialization routines will never return an incorrect
- /// transition table, there is no guarantee that the bytes provided here
- /// are correct. While deserialization does many checks (as documented
- /// above in the panic conditions), this routine does not check that the
- /// transition table is correct. Given an incorrect transition table, it is
- /// possible for the search routines to access out-of-bounds memory because
- /// of explicit bounds check elision.
- ///
- /// # Example
- ///
- /// This example shows how to serialize a DFA to raw bytes, deserialize it
- /// and then use it for searching. Note that we first convert the DFA to
- /// using `u16` for its state identifier representation before serializing
- /// it. While this isn't strictly necessary, it's good practice in order to
- /// decrease the size of the DFA and to avoid platform specific pitfalls
- /// such as differing pointer sizes.
- ///
- /// ```
- /// use regex_automata::{DFA, DenseDFA};
- ///
- /// # fn example() -> Result<(), regex_automata::Error> {
- /// let initial = DenseDFA::new("foo[0-9]+")?;
- /// let bytes = initial.to_u16()?.to_bytes_native_endian()?;
- /// let dfa: DenseDFA<&[u16], u16> = unsafe {
- /// DenseDFA::from_bytes(&bytes)
- /// };
- ///
- /// assert_eq!(Some(8), dfa.find(b"foo12345"));
- /// # Ok(()) }; example().unwrap()
- /// ```
- pub unsafe fn from_bytes(buf: &'a [u8]) -> DenseDFA<&'a [S], S> {
- Repr::from_bytes(buf).into_dense_dfa()
- }
-}
-
-#[cfg(feature = "std")]
-impl<S: StateID> DenseDFA<Vec<S>, S> {
- /// Minimize this DFA in place.
- ///
- /// This is not part of the public API. It is only exposed to allow for
- /// more granular external benchmarking.
- #[doc(hidden)]
- pub fn minimize(&mut self) {
- self.repr_mut().minimize();
- }
-
- /// Return a mutable reference to the internal DFA representation.
- fn repr_mut(&mut self) -> &mut Repr<Vec<S>, S> {
- match *self {
- DenseDFA::Standard(ref mut r) => &mut r.0,
- DenseDFA::ByteClass(ref mut r) => &mut r.0,
- DenseDFA::Premultiplied(ref mut r) => &mut r.0,
- DenseDFA::PremultipliedByteClass(ref mut r) => &mut r.0,
- DenseDFA::__Nonexhaustive => unreachable!(),
- }
- }
-}
-
-impl<T: AsRef<[S]>, S: StateID> DFA for DenseDFA<T, S> {
- type ID = S;
-
- #[inline]
- fn start_state(&self) -> S {
- self.repr().start_state()
- }
-
- #[inline]
- fn is_match_state(&self, id: S) -> bool {
- self.repr().is_match_state(id)
- }
-
- #[inline]
- fn is_dead_state(&self, id: S) -> bool {
- self.repr().is_dead_state(id)
- }
-
- #[inline]
- fn is_match_or_dead_state(&self, id: S) -> bool {
- self.repr().is_match_or_dead_state(id)
- }
-
- #[inline]
- fn is_anchored(&self) -> bool {
- self.repr().is_anchored()
- }
-
- #[inline]
- fn next_state(&self, current: S, input: u8) -> S {
- match *self {
- DenseDFA::Standard(ref r) => r.next_state(current, input),
- DenseDFA::ByteClass(ref r) => r.next_state(current, input),
- DenseDFA::Premultiplied(ref r) => r.next_state(current, input),
- DenseDFA::PremultipliedByteClass(ref r) => {
- r.next_state(current, input)
- }
- DenseDFA::__Nonexhaustive => unreachable!(),
- }
- }
-
- #[inline]
- unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
- match *self {
- DenseDFA::Standard(ref r) => {
- r.next_state_unchecked(current, input)
- }
- DenseDFA::ByteClass(ref r) => {
- r.next_state_unchecked(current, input)
- }
- DenseDFA::Premultiplied(ref r) => {
- r.next_state_unchecked(current, input)
- }
- DenseDFA::PremultipliedByteClass(ref r) => {
- r.next_state_unchecked(current, input)
- }
- DenseDFA::__Nonexhaustive => unreachable!(),
- }
- }
-
- // We specialize the following methods because it lets us lift the
- // case analysis between the different types of dense DFAs. Instead of
- // doing the case analysis for every transition, we do it once before
- // searching.
-
- #[inline]
- fn is_match_at(&self, bytes: &[u8], start: usize) -> bool {
- match *self {
- DenseDFA::Standard(ref r) => r.is_match_at(bytes, start),
- DenseDFA::ByteClass(ref r) => r.is_match_at(bytes, start),
- DenseDFA::Premultiplied(ref r) => r.is_match_at(bytes, start),
- DenseDFA::PremultipliedByteClass(ref r) => {
- r.is_match_at(bytes, start)
- }
- DenseDFA::__Nonexhaustive => unreachable!(),
- }
- }
-
- #[inline]
- fn shortest_match_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
- match *self {
- DenseDFA::Standard(ref r) => r.shortest_match_at(bytes, start),
- DenseDFA::ByteClass(ref r) => r.shortest_match_at(bytes, start),
- DenseDFA::Premultiplied(ref r) => {
- r.shortest_match_at(bytes, start)
- }
- DenseDFA::PremultipliedByteClass(ref r) => {
- r.shortest_match_at(bytes, start)
- }
- DenseDFA::__Nonexhaustive => unreachable!(),
- }
- }
-
- #[inline]
- fn find_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
- match *self {
- DenseDFA::Standard(ref r) => r.find_at(bytes, start),
- DenseDFA::ByteClass(ref r) => r.find_at(bytes, start),
- DenseDFA::Premultiplied(ref r) => r.find_at(bytes, start),
- DenseDFA::PremultipliedByteClass(ref r) => r.find_at(bytes, start),
- DenseDFA::__Nonexhaustive => unreachable!(),
- }
- }
-
- #[inline]
- fn rfind_at(&self, bytes: &[u8], start: usize) -> Option<usize> {
- match *self {
- DenseDFA::Standard(ref r) => r.rfind_at(bytes, start),
- DenseDFA::ByteClass(ref r) => r.rfind_at(bytes, start),
- DenseDFA::Premultiplied(ref r) => r.rfind_at(bytes, start),
- DenseDFA::PremultipliedByteClass(ref r) => {
- r.rfind_at(bytes, start)
- }
- DenseDFA::__Nonexhaustive => unreachable!(),
- }
- }
-}
-
-/// A standard dense DFA that does not use premultiplication or byte classes.
-///
-/// Generally, it isn't necessary to use this type directly, since a `DenseDFA`
-/// can be used for searching directly. One possible reason why one might want
-/// to use this type directly is if you are implementing your own search
-/// routines by walking a DFA's transitions directly. In that case, you'll want
-/// to use this type (or any of the other DFA variant types) directly, since
-/// they implement `next_state` more efficiently.
-#[derive(Clone, Debug)]
-pub struct Standard<T: AsRef<[S]>, S: StateID>(Repr<T, S>);
-
-impl<T: AsRef<[S]>, S: StateID> DFA for Standard<T, S> {
- type ID = S;
-
- #[inline]
- fn start_state(&self) -> S {
- self.0.start_state()
- }
-
- #[inline]
- fn is_match_state(&self, id: S) -> bool {
- self.0.is_match_state(id)
- }
-
- #[inline]
- fn is_dead_state(&self, id: S) -> bool {
- self.0.is_dead_state(id)
- }
-
- #[inline]
- fn is_match_or_dead_state(&self, id: S) -> bool {
- self.0.is_match_or_dead_state(id)
- }
-
- #[inline]
- fn is_anchored(&self) -> bool {
- self.0.is_anchored()
- }
-
- #[inline]
- fn next_state(&self, current: S, input: u8) -> S {
- let o = current.to_usize() * ALPHABET_LEN + input as usize;
- self.0.trans()[o]
- }
-
- #[inline]
- unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
- let o = current.to_usize() * ALPHABET_LEN + input as usize;
- *self.0.trans().get_unchecked(o)
- }
-}
-
-/// A dense DFA that shrinks its alphabet.
-///
-/// Alphabet shrinking is achieved by using a set of equivalence classes
-/// instead of using all possible byte values. Any two bytes belong to the same
-/// equivalence class if and only if they can be used interchangeably anywhere
-/// in the DFA while never discriminating between a match and a non-match.
-///
-/// This type of DFA can result in significant space reduction with a very
-/// small match time performance penalty.
-///
-/// Generally, it isn't necessary to use this type directly, since a `DenseDFA`
-/// can be used for searching directly. One possible reason why one might want
-/// to use this type directly is if you are implementing your own search
-/// routines by walking a DFA's transitions directly. In that case, you'll want
-/// to use this type (or any of the other DFA variant types) directly, since
-/// they implement `next_state` more efficiently.
-#[derive(Clone, Debug)]
-pub struct ByteClass<T: AsRef<[S]>, S: StateID>(Repr<T, S>);
-
-impl<T: AsRef<[S]>, S: StateID> DFA for ByteClass<T, S> {
- type ID = S;
-
- #[inline]
- fn start_state(&self) -> S {
- self.0.start_state()
- }
-
- #[inline]
- fn is_match_state(&self, id: S) -> bool {
- self.0.is_match_state(id)
- }
-
- #[inline]
- fn is_dead_state(&self, id: S) -> bool {
- self.0.is_dead_state(id)
- }
-
- #[inline]
- fn is_match_or_dead_state(&self, id: S) -> bool {
- self.0.is_match_or_dead_state(id)
- }
-
- #[inline]
- fn is_anchored(&self) -> bool {
- self.0.is_anchored()
- }
-
- #[inline]
- fn next_state(&self, current: S, input: u8) -> S {
- let input = self.0.byte_classes().get(input);
- let o = current.to_usize() * self.0.alphabet_len() + input as usize;
- self.0.trans()[o]
- }
-
- #[inline]
- unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
- let input = self.0.byte_classes().get_unchecked(input);
- let o = current.to_usize() * self.0.alphabet_len() + input as usize;
- *self.0.trans().get_unchecked(o)
- }
-}
-
-/// A dense DFA that premultiplies all of its state identifiers in its
-/// transition table.
-///
-/// This saves an instruction per byte at match time which improves search
-/// performance.
-///
-/// The only downside of premultiplication is that it may prevent one from
-/// using a smaller state identifier representation than you otherwise could.
-///
-/// Generally, it isn't necessary to use this type directly, since a `DenseDFA`
-/// can be used for searching directly. One possible reason why one might want
-/// to use this type directly is if you are implementing your own search
-/// routines by walking a DFA's transitions directly. In that case, you'll want
-/// to use this type (or any of the other DFA variant types) directly, since
-/// they implement `next_state` more efficiently.
-#[derive(Clone, Debug)]
-pub struct Premultiplied<T: AsRef<[S]>, S: StateID>(Repr<T, S>);
-
-impl<T: AsRef<[S]>, S: StateID> DFA for Premultiplied<T, S> {
- type ID = S;
-
- #[inline]
- fn start_state(&self) -> S {
- self.0.start_state()
- }
-
- #[inline]
- fn is_match_state(&self, id: S) -> bool {
- self.0.is_match_state(id)
- }
-
- #[inline]
- fn is_dead_state(&self, id: S) -> bool {
- self.0.is_dead_state(id)
- }
-
- #[inline]
- fn is_match_or_dead_state(&self, id: S) -> bool {
- self.0.is_match_or_dead_state(id)
- }
-
- #[inline]
- fn is_anchored(&self) -> bool {
- self.0.is_anchored()
- }
-
- #[inline]
- fn next_state(&self, current: S, input: u8) -> S {
- let o = current.to_usize() + input as usize;
- self.0.trans()[o]
- }
-
- #[inline]
- unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
- let o = current.to_usize() + input as usize;
- *self.0.trans().get_unchecked(o)
- }
-}
-
-/// The default configuration of a dense DFA, which uses byte classes and
-/// premultiplies its state identifiers.
-///
-/// Generally, it isn't necessary to use this type directly, since a `DenseDFA`
-/// can be used for searching directly. One possible reason why one might want
-/// to use this type directly is if you are implementing your own search
-/// routines by walking a DFA's transitions directly. In that case, you'll want
-/// to use this type (or any of the other DFA variant types) directly, since
-/// they implement `next_state` more efficiently.
-#[derive(Clone, Debug)]
-pub struct PremultipliedByteClass<T: AsRef<[S]>, S: StateID>(Repr<T, S>);
-
-impl<T: AsRef<[S]>, S: StateID> DFA for PremultipliedByteClass<T, S> {
- type ID = S;
-
- #[inline]
- fn start_state(&self) -> S {
- self.0.start_state()
- }
-
- #[inline]
- fn is_match_state(&self, id: S) -> bool {
- self.0.is_match_state(id)
- }
-
- #[inline]
- fn is_dead_state(&self, id: S) -> bool {
- self.0.is_dead_state(id)
- }
-
- #[inline]
- fn is_match_or_dead_state(&self, id: S) -> bool {
- self.0.is_match_or_dead_state(id)
- }
-
- #[inline]
- fn is_anchored(&self) -> bool {
- self.0.is_anchored()
- }
-
- #[inline]
- fn next_state(&self, current: S, input: u8) -> S {
- let input = self.0.byte_classes().get(input);
- let o = current.to_usize() + input as usize;
- self.0.trans()[o]
- }
-
- #[inline]
- unsafe fn next_state_unchecked(&self, current: S, input: u8) -> S {
- let input = self.0.byte_classes().get_unchecked(input);
- let o = current.to_usize() + input as usize;
- *self.0.trans().get_unchecked(o)
- }
-}
-
-/// The internal representation of a dense DFA.
-///
-/// This representation is shared by all DFA variants.
-#[derive(Clone)]
-#[cfg_attr(not(feature = "std"), derive(Debug))]
-pub(crate) struct Repr<T, S> {
- /// Whether the state identifiers in the transition table have been
- /// premultiplied or not.
- ///
- /// Premultiplied identifiers means that instead of your matching loop
- /// looking something like this:
- ///
- /// state = dfa.start
- /// for byte in haystack:
- /// next = dfa.transitions[state * len(alphabet) + byte]
- /// if dfa.is_match(next):
- /// return true
- /// return false
- ///
- /// it can instead look like this:
- ///
- /// state = dfa.start
- /// for byte in haystack:
- /// next = dfa.transitions[state + byte]
- /// if dfa.is_match(next):
- /// return true
- /// return false
- ///
- /// In other words, we save a multiplication instruction in the critical
- /// path. This turns out to be a decent performance win. The cost of using
- /// premultiplied state ids is that they can require a bigger state id
- /// representation.
- premultiplied: bool,
- /// Whether this DFA can only match at the beginning of input or not.
- ///
- /// When true, a match should only be reported if it begins at the 0th
- /// index of the haystack.
- anchored: bool,
- /// The initial start state ID.
- start: S,
- /// The total number of states in this DFA. Note that a DFA always has at
- /// least one state---the dead state---even the empty DFA. In particular,
- /// the dead state always has ID 0 and is correspondingly always the first
- /// state. The dead state is never a match state.
- state_count: usize,
- /// States in a DFA have a *partial* ordering such that a match state
- /// always precedes any non-match state (except for the special dead
- /// state).
- ///
- /// `max_match` corresponds to the last state that is a match state. This
- /// encoding has two critical benefits. Firstly, we are not required to
- /// store any additional per-state information about whether it is a match
- /// state or not. Secondly, when searching with the DFA, we can do a single
- /// comparison with `max_match` for each byte instead of two comparisons
- /// for each byte (one testing whether it is a match and the other testing
- /// whether we've reached a dead state). Namely, to determine the status
- /// of the next state, we can do this:
- ///
- /// next_state = transition[cur_state * alphabet_len + cur_byte]
- /// if next_state <= max_match:
- /// // next_state is either dead (no-match) or a match
- /// return next_state != dead
- max_match: S,
- /// A set of equivalence classes, where a single equivalence class
- /// represents a set of bytes that never discriminate between a match
- /// and a non-match in the DFA. Each equivalence class corresponds to
- /// a single letter in this DFA's alphabet, where the maximum number of
- /// letters is 256 (each possible value of a byte). Consequently, the
- /// number of equivalence classes corresponds to the number of transitions
- /// for each DFA state.
- ///
- /// The only time the number of equivalence classes is fewer than 256 is
- /// if the DFA's kind uses byte classes. If the DFA doesn't use byte
- /// classes, then this vector is empty.
- byte_classes: ByteClasses,
- /// A contiguous region of memory representing the transition table in
- /// row-major order. The representation is dense. That is, every state has
- /// precisely the same number of transitions. The maximum number of
- /// transitions is 256. If a DFA has been instructed to use byte classes,
- /// then the number of transitions can be much less.
- ///
- /// In practice, T is either Vec<S> or &[S].
- trans: T,
-}
-
-#[cfg(feature = "std")]
-impl<S: StateID> Repr<Vec<S>, S> {
- /// Create a new empty DFA with singleton byte classes (every byte is its
- /// own equivalence class).
- pub fn empty() -> Repr<Vec<S>, S> {
- Repr::empty_with_byte_classes(ByteClasses::singletons())
- }
-
- /// Create a new empty DFA with the given set of byte equivalence classes.
- /// An empty DFA never matches any input.
- pub fn empty_with_byte_classes(
- byte_classes: ByteClasses,
- ) -> Repr<Vec<S>, S> {
- let mut dfa = Repr {
- premultiplied: false,
- anchored: true,
- start: dead_id(),
- state_count: 0,
- max_match: S::from_usize(0),
- byte_classes,
- trans: vec![],
- };
- // Every state ID repr must be able to fit at least one state.
- dfa.add_empty_state().unwrap();
- dfa
- }
-
- /// Sets whether this DFA is anchored or not.
- pub fn anchored(mut self, yes: bool) -> Repr<Vec<S>, S> {
- self.anchored = yes;
- self
- }
-}
-
-impl<T: AsRef<[S]>, S: StateID> Repr<T, S> {
- /// Convert this internal DFA representation to a DenseDFA based on its
- /// transition table access pattern.
- pub fn into_dense_dfa(self) -> DenseDFA<T, S> {
- match (self.premultiplied, self.byte_classes().is_singleton()) {
- // no premultiplication, no byte classes
- (false, true) => DenseDFA::Standard(Standard(self)),
- // no premultiplication, yes byte classes
- (false, false) => DenseDFA::ByteClass(ByteClass(self)),
- // yes premultiplication, no byte classes
- (true, true) => DenseDFA::Premultiplied(Premultiplied(self)),
- // yes premultiplication, yes byte classes
- (true, false) => {
- DenseDFA::PremultipliedByteClass(PremultipliedByteClass(self))
- }
- }
- }
-
- fn as_ref<'a>(&'a self) -> Repr<&'a [S], S> {
- Repr {
- premultiplied: self.premultiplied,
- anchored: self.anchored,
- start: self.start,
- state_count: self.state_count,
- max_match: self.max_match,
- byte_classes: self.byte_classes().clone(),
- trans: self.trans(),
- }
- }
-
- #[cfg(feature = "std")]
- fn to_owned(&self) -> Repr<Vec<S>, S> {
- Repr {
- premultiplied: self.premultiplied,
- anchored: self.anchored,
- start: self.start,
- state_count: self.state_count,
- max_match: self.max_match,
- byte_classes: self.byte_classes().clone(),
- trans: self.trans().to_vec(),
- }
- }
-
- /// Return the starting state of this DFA.
- ///
- /// All searches using this DFA must begin at this state. There is exactly
- /// one starting state for every DFA. A starting state may be a dead state
- /// or a matching state or neither.
- pub fn start_state(&self) -> S {
- self.start
- }
-
- /// Returns true if and only if the given identifier corresponds to a match
- /// state.
- pub fn is_match_state(&self, id: S) -> bool {
- id <= self.max_match && id != dead_id()
- }
-
- /// Returns true if and only if the given identifier corresponds to a dead
- /// state.
- pub fn is_dead_state(&self, id: S) -> bool {
- id == dead_id()
- }
-
- /// Returns true if and only if the given identifier could correspond to
- /// either a match state or a dead state. If this returns false, then the
- /// given identifier does not correspond to either a match state or a dead
- /// state.
- pub fn is_match_or_dead_state(&self, id: S) -> bool {
- id <= self.max_match_state()
- }
-
- /// Returns the maximum identifier for which a match state can exist.
- ///
- /// More specifically, the return identifier always corresponds to either
- /// a match state or a dead state. Namely, either
- /// `is_match_state(returned)` or `is_dead_state(returned)` is guaranteed
- /// to be true.
- pub fn max_match_state(&self) -> S {
- self.max_match
- }
-
- /// Returns true if and only if this DFA is anchored.
- pub fn is_anchored(&self) -> bool {
- self.anchored
- }
-
- /// Return the byte classes used by this DFA.
- pub fn byte_classes(&self) -> &ByteClasses {
- &self.byte_classes
- }
-
- /// Returns an iterator over all states in this DFA.
- ///
- /// This iterator yields a tuple for each state. The first element of the
- /// tuple corresponds to a state's identifier, and the second element
- /// corresponds to the state itself (comprised of its transitions).
- ///
- /// If this DFA is premultiplied, then the state identifiers are in
- /// turn premultiplied as well, making them usable without additional
- /// modification.
- #[cfg(feature = "std")]
- pub fn states(&self) -> StateIter<T, S> {
- let it = self.trans().chunks(self.alphabet_len());
- StateIter { dfa: self, it: it.enumerate() }
- }
-
- /// Return the total number of states in this DFA. Every DFA has at least
- /// 1 state, even the empty DFA.
- #[cfg(feature = "std")]
- pub fn state_count(&self) -> usize {
- self.state_count
- }
-
- /// Return the number of elements in this DFA's alphabet.
- ///
- /// If this DFA doesn't use byte classes, then this is always equivalent
- /// to 256. Otherwise, it is guaranteed to be some value less than or equal
- /// to 256.
- pub fn alphabet_len(&self) -> usize {
- self.byte_classes().alphabet_len()
- }
-
- /// Returns the memory usage, in bytes, of this DFA.
- pub fn memory_usage(&self) -> usize {
- self.trans().len() * mem::size_of::<S>()
- }
-
- /// Convert the given state identifier to the state's index. The state's
- /// index corresponds to the position in which it appears in the transition
- /// table. When a DFA is NOT premultiplied, then a state's identifier is
- /// also its index. When a DFA is premultiplied, then a state's identifier
- /// is equal to `index * alphabet_len`. This routine reverses that.
- #[cfg(feature = "std")]
- pub fn state_id_to_index(&self, id: S) -> usize {
- if self.premultiplied {
- id.to_usize() / self.alphabet_len()
- } else {
- id.to_usize()
- }
- }
-
- /// Return this DFA's transition table as a slice.
- fn trans(&self) -> &[S] {
- self.trans.as_ref()
- }
-
- /// Create a sparse DFA from the internal representation of a dense DFA.
- #[cfg(feature = "std")]
- pub fn to_sparse_sized<A: StateID>(
- &self,
- ) -> Result<SparseDFA<Vec<u8>, A>> {
- SparseDFA::from_dense_sized(self)
- }
-
- /// Create a new DFA whose match semantics are equivalent to this DFA, but
- /// attempt to use `A` for the representation of state identifiers. If `A`
- /// is insufficient to represent all state identifiers in this DFA, then
- /// this returns an error.
- #[cfg(feature = "std")]
- pub fn to_sized<A: StateID>(&self) -> Result<Repr<Vec<A>, A>> {
- // Check that this DFA can fit into A's representation.
- let mut last_state_id = self.state_count - 1;
- if self.premultiplied {
- last_state_id *= self.alphabet_len();
- }
- if last_state_id > A::max_id() {
- return Err(Error::state_id_overflow(A::max_id()));
- }
-
- // We're off to the races. The new DFA is the same as the old one,
- // but its transition table is truncated.
- let mut new = Repr {
- premultiplied: self.premultiplied,
- anchored: self.anchored,
- start: A::from_usize(self.start.to_usize()),
- state_count: self.state_count,
- max_match: A::from_usize(self.max_match.to_usize()),
- byte_classes: self.byte_classes().clone(),
- trans: vec![dead_id::<A>(); self.trans().len()],
- };
- for (i, id) in new.trans.iter_mut().enumerate() {
- *id = A::from_usize(self.trans()[i].to_usize());
- }
- Ok(new)
- }
-
- /// Serialize a DFA to raw bytes, aligned to an 8 byte boundary.
- ///
- /// If the state identifier representation of this DFA has a size different
- /// than 1, 2, 4 or 8 bytes, then this returns an error. All
- /// implementations of `StateID` provided by this crate satisfy this
- /// requirement.
- #[cfg(feature = "std")]
- pub(crate) fn to_bytes<A: ByteOrder>(&self) -> Result<Vec<u8>> {
- let label = b"rust-regex-automata-dfa\x00";
- assert_eq!(24, label.len());
-
- let trans_size = mem::size_of::<S>() * self.trans().len();
- let size =
- // For human readable label.
- label.len()
- // endiannes check, must be equal to 0xFEFF for native endian
- + 2
- // For version number.
- + 2
- // Size of state ID representation, in bytes.
- // Must be 1, 2, 4 or 8.
- + 2
- // For DFA misc options.
- + 2
- // For start state.
- + 8
- // For state count.
- + 8
- // For max match state.
- + 8
- // For byte class map.
- + 256
- // For transition table.
- + trans_size;
- // sanity check, this can be updated if need be
- assert_eq!(312 + trans_size, size);
- // This must always pass. It checks that the transition table is at
- // a properly aligned address.
- assert_eq!(0, (size - trans_size) % 8);
-
- let mut buf = vec![0; size];
- let mut i = 0;
-
- // write label
- for &b in label {
- buf[i] = b;
- i += 1;
- }
- // endianness check
- A::write_u16(&mut buf[i..], 0xFEFF);
- i += 2;
- // version number
- A::write_u16(&mut buf[i..], 1);
- i += 2;
- // size of state ID
- let state_size = mem::size_of::<S>();
- if ![1, 2, 4, 8].contains(&state_size) {
- return Err(Error::serialize(&format!(
- "state size of {} not supported, must be 1, 2, 4 or 8",
- state_size
- )));
- }
- A::write_u16(&mut buf[i..], state_size as u16);
- i += 2;
- // DFA misc options
- let mut options = 0u16;
- if self.premultiplied {
- options |= MASK_PREMULTIPLIED;
- }
- if self.anchored {
- options |= MASK_ANCHORED;
- }
- A::write_u16(&mut buf[i..], options);
- i += 2;
- // start state
- A::write_u64(&mut buf[i..], self.start.to_usize() as u64);
- i += 8;
- // state count
- A::write_u64(&mut buf[i..], self.state_count as u64);
- i += 8;
- // max match state
- A::write_u64(&mut buf[i..], self.max_match.to_usize() as u64);
- i += 8;
- // byte class map
- for b in (0..256).map(|b| b as u8) {
- buf[i] = self.byte_classes().get(b);
- i += 1;
- }
- // transition table
- for &id in self.trans() {
- write_state_id_bytes::<A, _>(&mut buf[i..], id);
- i += state_size;
- }
- assert_eq!(size, i, "expected to consume entire buffer");
-
- Ok(buf)
- }
-}
-
-impl<'a, S: StateID> Repr<&'a [S], S> {
- /// The implementation for deserializing a DFA from raw bytes.
- unsafe fn from_bytes(mut buf: &'a [u8]) -> Repr<&'a [S], S> {
- assert_eq!(
- 0,
- buf.as_ptr() as usize % mem::align_of::<S>(),
- "DenseDFA starting at address {} is not aligned to {} bytes",
- buf.as_ptr() as usize,
- mem::align_of::<S>()
- );
-
- // skip over label
- match buf.iter().position(|&b| b == b'\x00') {
- None => panic!("could not find label"),
- Some(i) => buf = &buf[i + 1..],
- }
-
- // check that current endianness is same as endianness of DFA
- let endian_check = NativeEndian::read_u16(buf);
- buf = &buf[2..];
- if endian_check != 0xFEFF {
- panic!(
- "endianness mismatch, expected 0xFEFF but got 0x{:X}. \
- are you trying to load a DenseDFA serialized with a \
- different endianness?",
- endian_check,
- );
- }
-
- // check that the version number is supported
- let version = NativeEndian::read_u16(buf);
- buf = &buf[2..];
- if version != 1 {
- panic!(
- "expected version 1, but found unsupported version {}",
- version,
- );
- }
-
- // read size of state
- let state_size = NativeEndian::read_u16(buf) as usize;
- if state_size != mem::size_of::<S>() {
- panic!(
- "state size of DenseDFA ({}) does not match \
- requested state size ({})",
- state_size,
- mem::size_of::<S>(),
- );
- }
- buf = &buf[2..];
-
- // read miscellaneous options
- let opts = NativeEndian::read_u16(buf);
- buf = &buf[2..];
-
- // read start state
- let start = S::from_usize(NativeEndian::read_u64(buf) as usize);
- buf = &buf[8..];
-
- // read state count
- let state_count = NativeEndian::read_u64(buf) as usize;
- buf = &buf[8..];
-
- // read max match state
- let max_match = S::from_usize(NativeEndian::read_u64(buf) as usize);
- buf = &buf[8..];
-
- // read byte classes
- let byte_classes = ByteClasses::from_slice(&buf[..256]);
- buf = &buf[256..];
-
- let len = state_count * byte_classes.alphabet_len();
- let len_bytes = len * state_size;
- assert!(
- buf.len() <= len_bytes,
- "insufficient transition table bytes, \
- expected at least {} but only have {}",
- len_bytes,
- buf.len()
- );
- assert_eq!(
- 0,
- buf.as_ptr() as usize % mem::align_of::<S>(),
- "DenseDFA transition table is not properly aligned"
- );
-
- // SAFETY: This is the only actual not-safe thing in this entire
- // routine. The key things we need to worry about here are alignment
- // and size. The two asserts above should cover both conditions.
- let trans = slice::from_raw_parts(buf.as_ptr() as *const S, len);
- Repr {
- premultiplied: opts & MASK_PREMULTIPLIED > 0,
- anchored: opts & MASK_ANCHORED > 0,
- start,
- state_count,
- max_match,
- byte_classes,
- trans,
- }
- }
-}
-
-/// The following methods implement mutable routines on the internal
-/// representation of a DFA. As such, we must fix the first type parameter to
-/// a `Vec<S>` since a generic `T: AsRef<[S]>` does not permit mutation. We
-/// can get away with this because these methods are internal to the crate and
-/// are exclusively used during construction of the DFA.
-#[cfg(feature = "std")]
-impl<S: StateID> Repr<Vec<S>, S> {
- pub fn premultiply(&mut self) -> Result<()> {
- if self.premultiplied || self.state_count <= 1 {
- return Ok(());
- }
-
- let alpha_len = self.alphabet_len();
- premultiply_overflow_error(
- S::from_usize(self.state_count - 1),
- alpha_len,
- )?;
-
- for id in (0..self.state_count).map(S::from_usize) {
- for (_, next) in self.get_state_mut(id).iter_mut() {
- *next = S::from_usize(next.to_usize() * alpha_len);
- }
- }
- self.premultiplied = true;
- self.start = S::from_usize(self.start.to_usize() * alpha_len);
- self.max_match = S::from_usize(self.max_match.to_usize() * alpha_len);
- Ok(())
- }
-
- /// Minimize this DFA using Hopcroft's algorithm.
- ///
- /// This cannot be called on a premultiplied DFA.
- pub fn minimize(&mut self) {
- assert!(!self.premultiplied, "can't minimize premultiplied DFA");
-
- Minimizer::new(self).run();
- }
-
- /// Set the start state of this DFA.
- ///
- /// Note that a start state cannot be set on a premultiplied DFA. Instead,
- /// DFAs should first be completely constructed and then premultiplied.
- pub fn set_start_state(&mut self, start: S) {
- assert!(!self.premultiplied, "can't set start on premultiplied DFA");
- assert!(start.to_usize() < self.state_count, "invalid start state");
-
- self.start = start;
- }
-
- /// Set the maximum state identifier that could possible correspond to a
- /// match state.
- ///
- /// Callers must uphold the invariant that any state identifier less than
- /// or equal to the identifier given is either a match state or the special
- /// dead state (which always has identifier 0 and whose transitions all
- /// lead back to itself).
- ///
- /// This cannot be called on a premultiplied DFA.
- pub fn set_max_match_state(&mut self, id: S) {
- assert!(!self.premultiplied, "can't set match on premultiplied DFA");
- assert!(id.to_usize() < self.state_count, "invalid max match state");
-
- self.max_match = id;
- }
-
- /// Add the given transition to this DFA. Both the `from` and `to` states
- /// must already exist.
- ///
- /// This cannot be called on a premultiplied DFA.
- pub fn add_transition(&mut self, from: S, byte: u8, to: S) {
- assert!(!self.premultiplied, "can't add trans to premultiplied DFA");
- assert!(from.to_usize() < self.state_count, "invalid from state");
- assert!(to.to_usize() < self.state_count, "invalid to state");
-
- let class = self.byte_classes().get(byte);
- let offset = from.to_usize() * self.alphabet_len() + class as usize;
- self.trans[offset] = to;
- }
-
- /// An an empty state (a state where all transitions lead to a dead state)
- /// and return its identifier. The identifier returned is guaranteed to
- /// not point to any other existing state.
- ///
- /// If adding a state would exhaust the state identifier space (given by
- /// `S`), then this returns an error. In practice, this means that the
- /// state identifier representation chosen is too small.
- ///
- /// This cannot be called on a premultiplied DFA.
- pub fn add_empty_state(&mut self) -> Result<S> {
- assert!(!self.premultiplied, "can't add state to premultiplied DFA");
-
- let id = if self.state_count == 0 {
- S::from_usize(0)
- } else {
- next_state_id(S::from_usize(self.state_count - 1))?
- };
- let alphabet_len = self.alphabet_len();
- self.trans.extend(iter::repeat(dead_id::<S>()).take(alphabet_len));
- // This should never panic, since state_count is a usize. The
- // transition table size would have run out of room long ago.
- self.state_count = self.state_count.checked_add(1).unwrap();
- Ok(id)
- }
-
- /// Return a mutable representation of the state corresponding to the given
- /// id. This is useful for implementing routines that manipulate DFA states
- /// (e.g., swapping states).
- ///
- /// This cannot be called on a premultiplied DFA.
- pub fn get_state_mut(&mut self, id: S) -> StateMut<S> {
- assert!(!self.premultiplied, "can't get state in premultiplied DFA");
-
- let alphabet_len = self.alphabet_len();
- let offset = id.to_usize() * alphabet_len;
- StateMut {
- transitions: &mut self.trans[offset..offset + alphabet_len],
- }
- }
-
- /// Swap the two states given in the transition table.
- ///
- /// This routine does not do anything to check the correctness of this
- /// swap. Callers must ensure that other states pointing to id1 and id2 are
- /// updated appropriately.
- ///
- /// This cannot be called on a premultiplied DFA.
- pub fn swap_states(&mut self, id1: S, id2: S) {
- assert!(!self.premultiplied, "can't swap states in premultiplied DFA");
-
- let o1 = id1.to_usize() * self.alphabet_len();
- let o2 = id2.to_usize() * self.alphabet_len();
- for b in 0..self.alphabet_len() {
- self.trans.swap(o1 + b, o2 + b);
- }
- }
-
- /// Truncate the states in this DFA to the given count.
- ///
- /// This routine does not do anything to check the correctness of this
- /// truncation. Callers must ensure that other states pointing to truncated
- /// states are updated appropriately.
- ///
- /// This cannot be called on a premultiplied DFA.
- pub fn truncate_states(&mut self, count: usize) {
- assert!(!self.premultiplied, "can't truncate in premultiplied DFA");
-
- let alphabet_len = self.alphabet_len();
- self.trans.truncate(count * alphabet_len);
- self.state_count = count;
- }
-
- /// This routine shuffles all match states in this DFA---according to the
- /// given map---to the beginning of the DFA such that every non-match state
- /// appears after every match state. (With one exception: the special dead
- /// state remains as the first state.) The given map should have length
- /// exactly equivalent to the number of states in this DFA.
- ///
- /// The purpose of doing this shuffling is to avoid the need to store
- /// additional state to determine whether a state is a match state or not.
- /// It also enables a single conditional in the core matching loop instead
- /// of two.
- ///
- /// This updates `self.max_match` to point to the last matching state as
- /// well as `self.start` if the starting state was moved.
- pub fn shuffle_match_states(&mut self, is_match: &[bool]) {
- assert!(
- !self.premultiplied,
- "cannot shuffle match states of premultiplied DFA"
- );
- assert_eq!(self.state_count, is_match.len());
-
- if self.state_count <= 1 {
- return;
- }
-
- let mut first_non_match = 1;
- while first_non_match < self.state_count && is_match[first_non_match] {
- first_non_match += 1;
- }
-
- let mut swaps: Vec<S> = vec![dead_id(); self.state_count];
- let mut cur = self.state_count - 1;
- while cur > first_non_match {
- if is_match[cur] {
- self.swap_states(
- S::from_usize(cur),
- S::from_usize(first_non_match),
- );
- swaps[cur] = S::from_usize(first_non_match);
- swaps[first_non_match] = S::from_usize(cur);
-
- first_non_match += 1;
- while first_non_match < cur && is_match[first_non_match] {
- first_non_match += 1;
- }
- }
- cur -= 1;
- }
- for id in (0..self.state_count).map(S::from_usize) {
- for (_, next) in self.get_state_mut(id).iter_mut() {
- if swaps[next.to_usize()] != dead_id() {
- *next = swaps[next.to_usize()];
- }
- }
- }
- if swaps[self.start.to_usize()] != dead_id() {
- self.start = swaps[self.start.to_usize()];
- }
- self.max_match = S::from_usize(first_non_match - 1);
- }
-}
-
-#[cfg(feature = "std")]
-impl<T: AsRef<[S]>, S: StateID> fmt::Debug for Repr<T, S> {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- fn state_status<T: AsRef<[S]>, S: StateID>(
- dfa: &Repr<T, S>,
- id: S,
- ) -> &'static str {
- if id == dead_id() {
- if dfa.is_match_state(id) {
- "D*"
- } else {
- "D "
- }
- } else if id == dfa.start_state() {
- if dfa.is_match_state(id) {
- ">*"
- } else {
- "> "
- }
- } else {
- if dfa.is_match_state(id) {
- " *"
- } else {
- " "
- }
- }
- }
-
- writeln!(f, "DenseDFA(")?;
- for (id, state) in self.states() {
- let status = state_status(self, id);
- writeln!(f, "{}{:06}: {:?}", status, id.to_usize(), state)?;
- }
- writeln!(f, ")")?;
- Ok(())
- }
-}
-
-/// An iterator over all states in a DFA.
-///
-/// This iterator yields a tuple for each state. The first element of the
-/// tuple corresponds to a state's identifier, and the second element
-/// corresponds to the state itself (comprised of its transitions).
-///
-/// If this DFA is premultiplied, then the state identifiers are in turn
-/// premultiplied as well, making them usable without additional modification.
-///
-/// `'a` corresponding to the lifetime of original DFA, `T` corresponds to
-/// the type of the transition table itself and `S` corresponds to the state
-/// identifier representation.
-#[cfg(feature = "std")]
-pub(crate) struct StateIter<'a, T: 'a, S: 'a> {
- dfa: &'a Repr<T, S>,
- it: iter::Enumerate<slice::Chunks<'a, S>>,
-}
-
-#[cfg(feature = "std")]
-impl<'a, T: AsRef<[S]>, S: StateID> Iterator for StateIter<'a, T, S> {
- type Item = (S, State<'a, S>);
-
- fn next(&mut self) -> Option<(S, State<'a, S>)> {
- self.it.next().map(|(id, chunk)| {
- let state = State { transitions: chunk };
- let id = if self.dfa.premultiplied {
- id * self.dfa.alphabet_len()
- } else {
- id
- };
- (S::from_usize(id), state)
- })
- }
-}
-
-/// An immutable representation of a single DFA state.
-///
-/// `'a` correspondings to the lifetime of a DFA's transition table and `S`
-/// corresponds to the state identifier representation.
-#[cfg(feature = "std")]
-pub(crate) struct State<'a, S: 'a> {
- transitions: &'a [S],
-}
-
-#[cfg(feature = "std")]
-impl<'a, S: StateID> State<'a, S> {
- /// Return an iterator over all transitions in this state. This yields
- /// a number of transitions equivalent to the alphabet length of the
- /// corresponding DFA.
- ///
- /// Each transition is represented by a tuple. The first element is
- /// the input byte for that transition and the second element is the
- /// transitions itself.
- pub fn transitions(&self) -> StateTransitionIter<S> {
- StateTransitionIter { it: self.transitions.iter().enumerate() }
- }
-
- /// Return an iterator over a sparse representation of the transitions in
- /// this state. Only non-dead transitions are returned.
- ///
- /// The "sparse" representation in this case corresponds to a sequence of
- /// triples. The first two elements of the triple comprise an inclusive
- /// byte range while the last element corresponds to the transition taken
- /// for all bytes in the range.
- ///
- /// This is somewhat more condensed than the classical sparse
- /// representation (where you have an element for every non-dead
- /// transition), but in practice, checking if a byte is in a range is very
- /// cheap and using ranges tends to conserve quite a bit more space.
- pub fn sparse_transitions(&self) -> StateSparseTransitionIter<S> {
- StateSparseTransitionIter { dense: self.transitions(), cur: None }
- }
-}
-
-#[cfg(feature = "std")]
-impl<'a, S: StateID> fmt::Debug for State<'a, S> {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- let mut transitions = vec![];
- for (start, end, next_id) in self.sparse_transitions() {
- let line = if start == end {
- format!("{} => {}", escape(start), next_id.to_usize())
- } else {
- format!(
- "{}-{} => {}",
- escape(start),
- escape(end),
- next_id.to_usize(),
- )
- };
- transitions.push(line);
- }
- write!(f, "{}", transitions.join(", "))?;
- Ok(())
- }
-}
-
-/// An iterator over all transitions in a single DFA state. This yields
-/// a number of transitions equivalent to the alphabet length of the
-/// corresponding DFA.
-///
-/// Each transition is represented by a tuple. The first element is the input
-/// byte for that transition and the second element is the transitions itself.
-#[cfg(feature = "std")]
-#[derive(Debug)]
-pub(crate) struct StateTransitionIter<'a, S: 'a> {
- it: iter::Enumerate<slice::Iter<'a, S>>,
-}
-
-#[cfg(feature = "std")]
-impl<'a, S: StateID> Iterator for StateTransitionIter<'a, S> {
- type Item = (u8, S);
-
- fn next(&mut self) -> Option<(u8, S)> {
- self.it.next().map(|(i, &id)| (i as u8, id))
- }
-}
-
-/// An iterator over all transitions in a single DFA state using a sparse
-/// representation.
-///
-/// Each transition is represented by a triple. The first two elements of the
-/// triple comprise an inclusive byte range while the last element corresponds
-/// to the transition taken for all bytes in the range.
-#[cfg(feature = "std")]
-#[derive(Debug)]
-pub(crate) struct StateSparseTransitionIter<'a, S: 'a> {
- dense: StateTransitionIter<'a, S>,
- cur: Option<(u8, u8, S)>,
-}
-
-#[cfg(feature = "std")]
-impl<'a, S: StateID> Iterator for StateSparseTransitionIter<'a, S> {
- type Item = (u8, u8, S);
-
- fn next(&mut self) -> Option<(u8, u8, S)> {
- while let Some((b, next)) = self.dense.next() {
- let (prev_start, prev_end, prev_next) = match self.cur {
- Some(t) => t,
- None => {
- self.cur = Some((b, b, next));
- continue;
- }
- };
- if prev_next == next {
- self.cur = Some((prev_start, b, prev_next));
- } else {
- self.cur = Some((b, b, next));
- if prev_next != dead_id() {
- return Some((prev_start, prev_end, prev_next));
- }
- }
- }
- if let Some((start, end, next)) = self.cur.take() {
- if next != dead_id() {
- return Some((start, end, next));
- }
- }
- None
- }
-}
-
-/// A mutable representation of a single DFA state.
-///
-/// `'a` correspondings to the lifetime of a DFA's transition table and `S`
-/// corresponds to the state identifier representation.
-#[cfg(feature = "std")]
-pub(crate) struct StateMut<'a, S: 'a> {
- transitions: &'a mut [S],
-}
-
-#[cfg(feature = "std")]
-impl<'a, S: StateID> StateMut<'a, S> {
- /// Return an iterator over all transitions in this state. This yields
- /// a number of transitions equivalent to the alphabet length of the
- /// corresponding DFA.
- ///
- /// Each transition is represented by a tuple. The first element is the
- /// input byte for that transition and the second element is a mutable
- /// reference to the transition itself.
- pub fn iter_mut(&mut self) -> StateTransitionIterMut<S> {
- StateTransitionIterMut { it: self.transitions.iter_mut().enumerate() }
- }
-}
-
-#[cfg(feature = "std")]
-impl<'a, S: StateID> fmt::Debug for StateMut<'a, S> {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- fmt::Debug::fmt(&State { transitions: self.transitions }, f)
- }
-}
-
-/// A mutable iterator over all transitions in a DFA state.
-///
-/// Each transition is represented by a tuple. The first element is the
-/// input byte for that transition and the second element is a mutable
-/// reference to the transition itself.
-#[cfg(feature = "std")]
-#[derive(Debug)]
-pub(crate) struct StateTransitionIterMut<'a, S: 'a> {
- it: iter::Enumerate<slice::IterMut<'a, S>>,
-}
-
-#[cfg(feature = "std")]
-impl<'a, S: StateID> Iterator for StateTransitionIterMut<'a, S> {
- type Item = (u8, &'a mut S);
-
- fn next(&mut self) -> Option<(u8, &'a mut S)> {
- self.it.next().map(|(i, id)| (i as u8, id))
- }
-}
-
-/// A builder for constructing a deterministic finite automaton from regular
-/// expressions.
-///
-/// This builder permits configuring several aspects of the construction
-/// process such as case insensitivity, Unicode support and various options
-/// that impact the size of the generated DFA. In some cases, options (like
-/// performing DFA minimization) can come with a substantial additional cost.
-///
-/// This builder always constructs a *single* DFA. As such, this builder can
-/// only be used to construct regexes that either detect the presence of a
-/// match or find the end location of a match. A single DFA cannot produce both
-/// the start and end of a match. For that information, use a
-/// [`Regex`](struct.Regex.html), which can be similarly configured using
-/// [`RegexBuilder`](struct.RegexBuilder.html).
-#[cfg(feature = "std")]
-#[derive(Clone, Debug)]
-pub struct Builder {
- parser: ParserBuilder,
- nfa: nfa::Builder,
- anchored: bool,
- minimize: bool,
- premultiply: bool,
- byte_classes: bool,
- reverse: bool,
- longest_match: bool,
-}
-
-#[cfg(feature = "std")]
-impl Builder {
- /// Create a new DenseDFA builder with the default configuration.
- pub fn new() -> Builder {
- let mut nfa = nfa::Builder::new();
- // This is enabled by default, but we set it here anyway. Since we're
- // building a DFA, shrinking the NFA is always a good idea.
- nfa.shrink(true);
- Builder {
- parser: ParserBuilder::new(),
- nfa,
- anchored: false,
- minimize: false,
- premultiply: true,
- byte_classes: true,
- reverse: false,
- longest_match: false,
- }
- }
-
- /// Build a DFA from the given pattern.
- ///
- /// If there was a problem parsing or compiling the pattern, then an error
- /// is returned.
- pub fn build(&self, pattern: &str) -> Result<DenseDFA<Vec<usize>, usize>> {
- self.build_with_size::<usize>(pattern)
- }
-
- /// Build a DFA from the given pattern using a specific representation for
- /// the DFA's state IDs.
- ///
- /// If there was a problem parsing or compiling the pattern, then an error
- /// is returned.
- ///
- /// The representation of state IDs is determined by the `S` type
- /// parameter. In general, `S` is usually one of `u8`, `u16`, `u32`, `u64`
- /// or `usize`, where `usize` is the default used for `build`. The purpose
- /// of specifying a representation for state IDs is to reduce the memory
- /// footprint of a DFA.
- ///
- /// When using this routine, the chosen state ID representation will be
- /// used throughout determinization and minimization, if minimization
- /// was requested. Even if the minimized DFA can fit into the chosen
- /// state ID representation but the initial determinized DFA cannot,
- /// then this will still return an error. To get a minimized DFA with a
- /// smaller state ID representation, first build it with a bigger state ID
- /// representation, and then shrink the size of the DFA using one of its
- /// conversion routines, such as
- /// [`DenseDFA::to_u16`](enum.DenseDFA.html#method.to_u16).
- pub fn build_with_size<S: StateID>(
- &self,
- pattern: &str,
- ) -> Result<DenseDFA<Vec<S>, S>> {
- self.build_from_nfa(&self.build_nfa(pattern)?)
- }
-
- /// An internal only (for now) API for building a dense DFA directly from
- /// an NFA.
- pub(crate) fn build_from_nfa<S: StateID>(
- &self,
- nfa: &NFA,
- ) -> Result<DenseDFA<Vec<S>, S>> {
- if self.longest_match && !self.anchored {
- return Err(Error::unsupported_longest_match());
- }
-
- let mut dfa = if self.byte_classes {
- Determinizer::new(nfa)
- .with_byte_classes()
- .longest_match(self.longest_match)
- .build()
- } else {
- Determinizer::new(nfa).longest_match(self.longest_match).build()
- }?;
- if self.minimize {
- dfa.minimize();
- }
- if self.premultiply {
- dfa.premultiply()?;
- }
- Ok(dfa.into_dense_dfa())
- }
-
- /// Builds an NFA from the given pattern.
- pub(crate) fn build_nfa(&self, pattern: &str) -> Result<NFA> {
- let hir = self.parser.build().parse(pattern).map_err(Error::syntax)?;
- Ok(self.nfa.build(&hir)?)
- }
-
- /// Set whether matching must be anchored at the beginning of the input.
- ///
- /// When enabled, a match must begin at the start of the input. When
- /// disabled, the DFA will act as if the pattern started with a `.*?`,
- /// which enables a match to appear anywhere.
- ///
- /// By default this is disabled.
- pub fn anchored(&mut self, yes: bool) -> &mut Builder {
- self.anchored = yes;
- self.nfa.anchored(yes);
- self
- }
-
- /// Enable or disable the case insensitive flag by default.
- ///
- /// By default this is disabled. It may alternatively be selectively
- /// enabled in the regular expression itself via the `i` flag.
- pub fn case_insensitive(&mut self, yes: bool) -> &mut Builder {
- self.parser.case_insensitive(yes);
- self
- }
-
- /// Enable verbose mode in the regular expression.
- ///
- /// When enabled, verbose mode permits insigificant whitespace in many
- /// places in the regular expression, as well as comments. Comments are
- /// started using `#` and continue until the end of the line.
- ///
- /// By default, this is disabled. It may be selectively enabled in the
- /// regular expression by using the `x` flag regardless of this setting.
- pub fn ignore_whitespace(&mut self, yes: bool) -> &mut Builder {
- self.parser.ignore_whitespace(yes);
- self
- }
-
- /// Enable or disable the "dot matches any character" flag by default.
- ///
- /// By default this is disabled. It may alternatively be selectively
- /// enabled in the regular expression itself via the `s` flag.
- pub fn dot_matches_new_line(&mut self, yes: bool) -> &mut Builder {
- self.parser.dot_matches_new_line(yes);
- self
- }
-
- /// Enable or disable the "swap greed" flag by default.
- ///
- /// By default this is disabled. It may alternatively be selectively
- /// enabled in the regular expression itself via the `U` flag.
- pub fn swap_greed(&mut self, yes: bool) -> &mut Builder {
- self.parser.swap_greed(yes);
- self
- }
-
- /// Enable or disable the Unicode flag (`u`) by default.
- ///
- /// By default this is **enabled**. It may alternatively be selectively
- /// disabled in the regular expression itself via the `u` flag.
- ///
- /// Note that unless `allow_invalid_utf8` is enabled (it's disabled by
- /// default), a regular expression will fail to parse if Unicode mode is
- /// disabled and a sub-expression could possibly match invalid UTF-8.
- pub fn unicode(&mut self, yes: bool) -> &mut Builder {
- self.parser.unicode(yes);
- self
- }
-
- /// When enabled, the builder will permit the construction of a regular
- /// expression that may match invalid UTF-8.
- ///
- /// When disabled (the default), the builder is guaranteed to produce a
- /// regex that will only ever match valid UTF-8 (otherwise, the builder
- /// will return an error).
- pub fn allow_invalid_utf8(&mut self, yes: bool) -> &mut Builder {
- self.parser.allow_invalid_utf8(yes);
- self.nfa.allow_invalid_utf8(yes);
- self
- }
-
- /// Set the nesting limit used for the regular expression parser.
- ///
- /// The nesting limit controls how deep the abstract syntax tree is allowed
- /// to be. If the AST exceeds the given limit (e.g., with too many nested
- /// groups), then an error is returned by the parser.
- ///
- /// The purpose of this limit is to act as a heuristic to prevent stack
- /// overflow when building a finite automaton from a regular expression's
- /// abstract syntax tree. In particular, construction currently uses
- /// recursion. In the future, the implementation may stop using recursion
- /// and this option will no longer be necessary.
- ///
- /// This limit is not checked until the entire AST is parsed. Therefore,
- /// if callers want to put a limit on the amount of heap space used, then
- /// they should impose a limit on the length, in bytes, of the concrete
- /// pattern string. In particular, this is viable since the parser will
- /// limit itself to heap space proportional to the lenth of the pattern
- /// string.
- ///
- /// Note that a nest limit of `0` will return a nest limit error for most
- /// patterns but not all. For example, a nest limit of `0` permits `a` but
- /// not `ab`, since `ab` requires a concatenation AST item, which results
- /// in a nest depth of `1`. In general, a nest limit is not something that
- /// manifests in an obvious way in the concrete syntax, therefore, it
- /// should not be used in a granular way.
- pub fn nest_limit(&mut self, limit: u32) -> &mut Builder {
- self.parser.nest_limit(limit);
- self
- }
-
- /// Minimize the DFA.
- ///
- /// When enabled, the DFA built will be minimized such that it is as small
- /// as possible.
- ///
- /// Whether one enables minimization or not depends on the types of costs
- /// you're willing to pay and how much you care about its benefits. In
- /// particular, minimization has worst case `O(n*k*logn)` time and `O(k*n)`
- /// space, where `n` is the number of DFA states and `k` is the alphabet
- /// size. In practice, minimization can be quite costly in terms of both
- /// space and time, so it should only be done if you're willing to wait
- /// longer to produce a DFA. In general, you might want a minimal DFA in
- /// the following circumstances:
- ///
- /// 1. You would like to optimize for the size of the automaton. This can
- /// manifest in one of two ways. Firstly, if you're converting the
- /// DFA into Rust code (or a table embedded in the code), then a minimal
- /// DFA will translate into a corresponding reduction in code size, and
- /// thus, also the final compiled binary size. Secondly, if you are
- /// building many DFAs and putting them on the heap, you'll be able to
- /// fit more if they are smaller. Note though that building a minimal
- /// DFA itself requires additional space; you only realize the space
- /// savings once the minimal DFA is constructed (at which point, the
- /// space used for minimization is freed).
- /// 2. You've observed that a smaller DFA results in faster match
- /// performance. Naively, this isn't guaranteed since there is no
- /// inherent difference between matching with a bigger-than-minimal
- /// DFA and a minimal DFA. However, a smaller DFA may make use of your
- /// CPU's cache more efficiently.
- /// 3. You are trying to establish an equivalence between regular
- /// languages. The standard method for this is to build a minimal DFA
- /// for each language and then compare them. If the DFAs are equivalent
- /// (up to state renaming), then the languages are equivalent.
- ///
- /// This option is disabled by default.
- pub fn minimize(&mut self, yes: bool) -> &mut Builder {
- self.minimize = yes;
- self
- }
-
- /// Premultiply state identifiers in the DFA's transition table.
- ///
- /// When enabled, state identifiers are premultiplied to point to their
- /// corresponding row in the DFA's transition table. That is, given the
- /// `i`th state, its corresponding premultiplied identifier is `i * k`
- /// where `k` is the alphabet size of the DFA. (The alphabet size is at
- /// most 256, but is in practice smaller if byte classes is enabled.)
- ///
- /// When state identifiers are not premultiplied, then the identifier of
- /// the `i`th state is `i`.
- ///
- /// The advantage of premultiplying state identifiers is that is saves
- /// a multiplication instruction per byte when searching with the DFA.
- /// This has been observed to lead to a 20% performance benefit in
- /// micro-benchmarks.
- ///
- /// The primary disadvantage of premultiplying state identifiers is
- /// that they require a larger integer size to represent. For example,
- /// if your DFA has 200 states, then its premultiplied form requires
- /// 16 bits to represent every possible state identifier, where as its
- /// non-premultiplied form only requires 8 bits.
- ///
- /// This option is enabled by default.
- pub fn premultiply(&mut self, yes: bool) -> &mut Builder {
- self.premultiply = yes;
- self
- }
-
- /// Shrink the size of the DFA's alphabet by mapping bytes to their
- /// equivalence classes.
- ///
- /// When enabled, each DFA will use a map from all possible bytes to their
- /// corresponding equivalence class. Each equivalence class represents a
- /// set of bytes that does not discriminate between a match and a non-match
- /// in the DFA. For example, the pattern `[ab]+` has at least two
- /// equivalence classes: a set containing `a` and `b` and a set containing
- /// every byte except for `a` and `b`. `a` and `b` are in the same
- /// equivalence classes because they never discriminate between a match
- /// and a non-match.
- ///
- /// The advantage of this map is that the size of the transition table can
- /// be reduced drastically from `#states * 256 * sizeof(id)` to
- /// `#states * k * sizeof(id)` where `k` is the number of equivalence
- /// classes. As a result, total space usage can decrease substantially.
- /// Moreover, since a smaller alphabet is used, compilation becomes faster
- /// as well.
- ///
- /// The disadvantage of this map is that every byte searched must be
- /// passed through this map before it can be used to determine the next
- /// transition. This has a small match time performance cost.
- ///
- /// This option is enabled by default.
- pub fn byte_classes(&mut self, yes: bool) -> &mut Builder {
- self.byte_classes = yes;
- self
- }
-
- /// Reverse the DFA.
- ///
- /// A DFA reversal is performed by reversing all of the concatenated
- /// sub-expressions in the original pattern, recursively. The resulting
- /// DFA can be used to match the pattern starting from the end of a string
- /// instead of the beginning of a string.
- ///
- /// Generally speaking, a reversed DFA is most useful for finding the start
- /// of a match, since a single forward DFA is only capable of finding the
- /// end of a match. This start of match handling is done for you
- /// automatically if you build a [`Regex`](struct.Regex.html).
- pub fn reverse(&mut self, yes: bool) -> &mut Builder {
- self.reverse = yes;
- self.nfa.reverse(yes);
- self
- }
-
- /// Find the longest possible match.
- ///
- /// This is distinct from the default leftmost-first match semantics in
- /// that it treats all NFA states as having equivalent priority. In other
- /// words, the longest possible match is always found and it is not
- /// possible to implement non-greedy match semantics when this is set. That
- /// is, `a+` and `a+?` are equivalent when this is enabled.
- ///
- /// In particular, a practical issue with this option at the moment is that
- /// it prevents unanchored searches from working correctly, since
- /// unanchored searches are implemented by prepending an non-greedy `.*?`
- /// to the beginning of the pattern. As stated above, non-greedy match
- /// semantics aren't supported. Therefore, if this option is enabled and
- /// an unanchored search is requested, then building a DFA will return an
- /// error.
- ///
- /// This option is principally useful when building a reverse DFA for
- /// finding the start of a match. If you are building a regex with
- /// [`RegexBuilder`](struct.RegexBuilder.html), then this is handled for
- /// you automatically. The reason why this is necessary for start of match
- /// handling is because we want to find the earliest possible starting
- /// position of a match to satisfy leftmost-first match semantics. When
- /// matching in reverse, this means finding the longest possible match,
- /// hence, this option.
- ///
- /// By default this is disabled.
- pub fn longest_match(&mut self, yes: bool) -> &mut Builder {
- // There is prior art in RE2 that shows how this can support unanchored
- // searches. Instead of treating all NFA states as having equivalent
- // priority, we instead group NFA states into sets, and treat members
- // of each set as having equivalent priority, but having greater
- // priority than all following members of different sets. We then
- // essentially assign a higher priority to everything over the prefix
- // `.*?`.
- self.longest_match = yes;
- self
- }
-
- /// Apply best effort heuristics to shrink the NFA at the expense of more
- /// time/memory.
- ///
- /// This may be exposed in the future, but for now is exported for use in
- /// the `regex-automata-debug` tool.
- #[doc(hidden)]
- pub fn shrink(&mut self, yes: bool) -> &mut Builder {
- self.nfa.shrink(yes);
- self
- }
-}
-
-#[cfg(feature = "std")]
-impl Default for Builder {
- fn default() -> Builder {
- Builder::new()
- }
-}
-
-/// Return the given byte as its escaped string form.
-#[cfg(feature = "std")]
-fn escape(b: u8) -> String {
- use std::ascii;
-
- String::from_utf8(ascii::escape_default(b).collect::<Vec<_>>()).unwrap()
-}
-
-#[cfg(all(test, feature = "std"))]
-mod tests {
- use super::*;
-
- #[test]
- fn errors_when_converting_to_smaller_dfa() {
- let pattern = r"\w{10}";
- let dfa = Builder::new()
- .byte_classes(false)
- .anchored(true)
- .premultiply(false)
- .build_with_size::<u16>(pattern)
- .unwrap();
- assert!(dfa.to_u8().is_err());
- }
-
- #[test]
- fn errors_when_determinization_would_overflow() {
- let pattern = r"\w{10}";
-
- let mut builder = Builder::new();
- builder.byte_classes(false).anchored(true).premultiply(false);
- // using u16 is fine
- assert!(builder.build_with_size::<u16>(pattern).is_ok());
- // // ... but u8 results in overflow (because there are >256 states)
- assert!(builder.build_with_size::<u8>(pattern).is_err());
- }
-
- #[test]
- fn errors_when_premultiply_would_overflow() {
- let pattern = r"[a-z]";
-
- let mut builder = Builder::new();
- builder.byte_classes(false).anchored(true).premultiply(false);
- // without premultiplication is OK
- assert!(builder.build_with_size::<u8>(pattern).is_ok());
- // ... but with premultiplication overflows u8
- builder.premultiply(true);
- assert!(builder.build_with_size::<u8>(pattern).is_err());
- }
-
- // let data = ::std::fs::read_to_string("/usr/share/dict/words").unwrap();
- // let mut words: Vec<&str> = data.lines().collect();
- // println!("{} words", words.len());
- // words.sort_by(|w1, w2| w1.len().cmp(&w2.len()).reverse());
- // let pattern = words.join("|");
- // print_automata_counts(&pattern);
- // print_automata(&pattern);
-
- // print_automata(r"[01]*1[01]{5}");
- // print_automata(r"X(.?){0,8}Y");
- // print_automata_counts(r"\p{alphabetic}");
- // print_automata(r"a*b+|cdefg");
- // print_automata(r"(..)*(...)*");
-
- // let pattern = r"\p{any}*?\p{Other_Uppercase}";
- // let pattern = r"\p{any}*?\w+";
- // print_automata_counts(pattern);
- // print_automata_counts(r"(?-u:\w)");
-
- // let pattern = r"\p{Greek}";
- // let pattern = r"zZzZzZzZzZ";
- // let pattern = grapheme_pattern();
- // let pattern = r"\p{Ideographic}";
- // let pattern = r"\w{10}"; // 51784 --> 41264
- // let pattern = r"\w"; // 5182
- // let pattern = r"a*";
- // print_automata(pattern);
- // let (_, _, dfa) = build_automata(pattern);
-}