summaryrefslogtreecommitdiffstats
path: root/vendor/regex-automata/src/nfa/range_trie.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /vendor/regex-automata/src/nfa/range_trie.rs
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/regex-automata/src/nfa/range_trie.rs')
-rw-r--r--vendor/regex-automata/src/nfa/range_trie.rs1048
1 files changed, 1048 insertions, 0 deletions
diff --git a/vendor/regex-automata/src/nfa/range_trie.rs b/vendor/regex-automata/src/nfa/range_trie.rs
new file mode 100644
index 000000000..50767c7c6
--- /dev/null
+++ b/vendor/regex-automata/src/nfa/range_trie.rs
@@ -0,0 +1,1048 @@
+// I've called the primary data structure in this module a "range trie." As far
+// as I can tell, there is no prior art on a data structure like this, however,
+// it's likely someone somewhere has built something like it. Searching for
+// "range trie" turns up the paper "Range Tries for Scalable Address Lookup,"
+// but it does not appear relevant.
+//
+// The range trie is just like a trie in that it is a special case of a
+// deterministic finite state machine. It has states and each state has a set
+// of transitions to other states. It is acyclic, and, like a normal trie,
+// it makes no attempt to reuse common suffixes among its elements. The key
+// difference between a normal trie and a range trie below is that a range trie
+// operates on *contiguous sequences* of bytes instead of singleton bytes.
+// One could say say that our alphabet is ranges of bytes instead of bytes
+// themselves, except a key part of range trie construction is splitting ranges
+// apart to ensure there is at most one transition that can be taken for any
+// byte in a given state.
+//
+// I've tried to explain the details of how the range trie works below, so
+// for now, we are left with trying to understand what problem we're trying to
+// solve. Which is itself fairly involved!
+//
+// At the highest level, here's what we want to do. We want to convert a
+// sequence of Unicode codepoints into a finite state machine whose transitions
+// are over *bytes* and *not* Unicode codepoints. We want this because it makes
+// said finite state machines much smaller and much faster to execute. As a
+// simple example, consider a byte oriented automaton for all Unicode scalar
+// values (0x00 through 0x10FFFF, not including surrogate codepoints):
+//
+// [00-7F]
+// [C2-DF][80-BF]
+// [E0-E0][A0-BF][80-BF]
+// [E1-EC][80-BF][80-BF]
+// [ED-ED][80-9F][80-BF]
+// [EE-EF][80-BF][80-BF]
+// [F0-F0][90-BF][80-BF][80-BF]
+// [F1-F3][80-BF][80-BF][80-BF]
+// [F4-F4][80-8F][80-BF][80-BF]
+//
+// (These byte ranges are generated via the regex-syntax::utf8 module, which
+// was based on Russ Cox's code in RE2, which was in turn based on Ken
+// Thompson's implementation of the same idea in his Plan9 implementation of
+// grep.)
+//
+// It should be fairly straight-forward to see how one could compile this into
+// a DFA. The sequences are sorted and non-overlapping. Essentially, you could
+// build a trie from this fairly easy. The problem comes when your initial
+// range (in this case, 0x00-0x10FFFF) isn't so nice. For example, the class
+// represented by '\w' contains only a tenth of the codepoints that
+// 0x00-0x10FFFF contains, but if we were to write out the byte based ranges
+// as we did above, the list would stretch to 892 entries! This turns into
+// quite a large NFA with a few thousand states. Turning this beast into a DFA
+// takes quite a bit of time. We are thus left with trying to trim down the
+// number of states we produce as early as possible.
+//
+// One approach (used by RE2 and still by the regex crate, at time of writing)
+// is to try to find common suffixes while building NFA states for the above
+// and reuse them. This is very cheap to do and one can control precisely how
+// much extra memory you want to use for the cache.
+//
+// Another approach, however, is to reuse an algorithm for constructing a
+// *minimal* DFA from a sorted sequence of inputs. I don't want to go into
+// the full details here, but I explain it in more depth in my blog post on
+// FSTs[1]. Note that the algorithm not invented by me, but was published
+// in paper by Daciuk et al. in 2000 called "Incremental Construction of
+// MinimalAcyclic Finite-State Automata." Like the suffix cache approach above,
+// it is also possible to control the amount of extra memory one uses, although
+// this usually comes with the cost of sacrificing true minimality. (But it's
+// typically close enough with a reasonably sized cache of states.)
+//
+// The catch is that Daciuk's algorithm only works if you add your keys in
+// lexicographic ascending order. In our case, since we're dealing with ranges,
+// we also need the additional requirement that ranges are either equivalent
+// or do not overlap at all. For example, if one were given the following byte
+// ranges:
+//
+// [BC-BF][80-BF]
+// [BC-BF][90-BF]
+//
+// Then Daciuk's algorithm also would not work, since there is nothing to
+// handle the fact that the ranges overlap. They would need to be split apart.
+// Thankfully, Thompson's algorithm for producing byte ranges for Unicode
+// codepoint ranges meets both of our requirements.
+//
+// ... however, we would also like to be able to compile UTF-8 automata in
+// reverse. We want this because in order to find the starting location of a
+// match using a DFA, we need to run a second DFA---a reversed version of the
+// forward DFA---backwards to discover the match location. Unfortunately, if
+// we reverse our byte sequences for 0x00-0x10FFFF, we get sequences that are
+// can overlap, even if they are sorted:
+//
+// [00-7F]
+// [80-BF][80-9F][ED-ED]
+// [80-BF][80-BF][80-8F][F4-F4]
+// [80-BF][80-BF][80-BF][F1-F3]
+// [80-BF][80-BF][90-BF][F0-F0]
+// [80-BF][80-BF][E1-EC]
+// [80-BF][80-BF][EE-EF]
+// [80-BF][A0-BF][E0-E0]
+// [80-BF][C2-DF]
+//
+// For example, '[80-BF][80-BF][EE-EF]' and '[80-BF][A0-BF][E0-E0]' have
+// overlapping ranges between '[80-BF]' and '[A0-BF]'. Thus, there is no
+// simple way to apply Daciuk's algorithm.
+//
+// And thus, the range trie was born. The range trie's only purpose is to take
+// sequences of byte ranges like the ones above, collect them into a trie and
+// then spit them in a sorted fashion with no overlapping ranges. For example,
+// 0x00-0x10FFFF gets translated to:
+//
+// [0-7F]
+// [80-BF][80-9F][80-8F][F1-F3]
+// [80-BF][80-9F][80-8F][F4]
+// [80-BF][80-9F][90-BF][F0]
+// [80-BF][80-9F][90-BF][F1-F3]
+// [80-BF][80-9F][E1-EC]
+// [80-BF][80-9F][ED]
+// [80-BF][80-9F][EE-EF]
+// [80-BF][A0-BF][80-8F][F1-F3]
+// [80-BF][A0-BF][80-8F][F4]
+// [80-BF][A0-BF][90-BF][F0]
+// [80-BF][A0-BF][90-BF][F1-F3]
+// [80-BF][A0-BF][E0]
+// [80-BF][A0-BF][E1-EC]
+// [80-BF][A0-BF][EE-EF]
+// [80-BF][C2-DF]
+//
+// We've thus satisfied our requirements for running Daciuk's algorithm. All
+// sequences of ranges are sorted, and any corresponding ranges are either
+// exactly equivalent or non-overlapping.
+//
+// In effect, a range trie is building a DFA from a sequence of arbitrary
+// byte ranges. But it uses an algoritm custom tailored to its input, so it
+// is not as costly as traditional DFA construction. While it is still quite
+// a bit more costly than the forward's case (which only needs Daciuk's
+// algorithm), it winds up saving a substantial amount of time if one is doing
+// a full DFA powerset construction later by virtue of producing a much much
+// smaller NFA.
+//
+// [1] - https://blog.burntsushi.net/transducers/
+// [2] - https://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601
+
+use std::cell::RefCell;
+use std::fmt;
+use std::mem;
+use std::ops::RangeInclusive;
+use std::u32;
+
+use regex_syntax::utf8::Utf8Range;
+
+/// A smaller state ID means more effective use of the CPU cache and less
+/// time spent copying. The implementation below will panic if the state ID
+/// space is exhausted, but in order for that to happen, the range trie itself
+/// would use well over 100GB of memory. Moreover, it's likely impossible
+/// for the state ID space to get that big. In fact, it's likely that even a
+/// u16 would be good enough here. But it's not quite clear how to prove this.
+type StateID = u32;
+
+/// There is only one final state in this trie. Every sequence of byte ranges
+/// added shares the same final state.
+const FINAL: StateID = 0;
+
+/// The root state of the trie.
+const ROOT: StateID = 1;
+
+/// A range trie represents an ordered set of sequences of bytes.
+///
+/// A range trie accepts as input a sequence of byte ranges and merges
+/// them into the existing set such that the trie can produce a sorted
+/// non-overlapping sequence of byte ranges. The sequence emitted corresponds
+/// precisely to the sequence of bytes matched by the given keys, although the
+/// byte ranges themselves may be split at different boundaries.
+///
+/// The order complexity of this data structure seems difficult to analyze.
+/// If the size of a byte is held as a constant, then insertion is clearly
+/// O(n) where n is the number of byte ranges in the input key. However, if
+/// k=256 is our alphabet size, then insertion could be O(k^2 * n). In
+/// particular it seems possible for pathological inputs to cause insertion
+/// to do a lot of work. However, for what we use this data structure for,
+/// there should be no pathological inputs since the ultimate source is always
+/// a sorted set of Unicode scalar value ranges.
+///
+/// Internally, this trie is setup like a finite state machine. Note though
+/// that it is acyclic.
+#[derive(Clone)]
+pub struct RangeTrie {
+ /// The states in this trie. The first is always the shared final state.
+ /// The second is always the root state. Otherwise, there is no
+ /// particular order.
+ states: Vec<State>,
+ /// A free-list of states. When a range trie is cleared, all of its states
+ /// are added to list. Creating a new state reuses states from this list
+ /// before allocating a new one.
+ free: Vec<State>,
+ /// A stack for traversing this trie to yield sequences of byte ranges in
+ /// lexicographic order.
+ iter_stack: RefCell<Vec<NextIter>>,
+ /// A bufer that stores the current sequence during iteration.
+ iter_ranges: RefCell<Vec<Utf8Range>>,
+ /// A stack used for traversing the trie in order to (deeply) duplicate
+ /// a state.
+ dupe_stack: Vec<NextDupe>,
+ /// A stack used for traversing the trie during insertion of a new
+ /// sequence of byte ranges.
+ insert_stack: Vec<NextInsert>,
+}
+
+/// A single state in this trie.
+#[derive(Clone)]
+struct State {
+ /// A sorted sequence of non-overlapping transitions to other states. Each
+ /// transition corresponds to a single range of bytes.
+ transitions: Vec<Transition>,
+}
+
+/// A transition is a single range of bytes. If a particular byte is in this
+/// range, then the corresponding machine may transition to the state pointed
+/// to by `next_id`.
+#[derive(Clone)]
+struct Transition {
+ /// The byte range.
+ range: Utf8Range,
+ /// The next state to transition to.
+ next_id: StateID,
+}
+
+impl RangeTrie {
+ /// Create a new empty range trie.
+ pub fn new() -> RangeTrie {
+ let mut trie = RangeTrie {
+ states: vec![],
+ free: vec![],
+ iter_stack: RefCell::new(vec![]),
+ iter_ranges: RefCell::new(vec![]),
+ dupe_stack: vec![],
+ insert_stack: vec![],
+ };
+ trie.clear();
+ trie
+ }
+
+ /// Clear this range trie such that it is empty. Clearing a range trie
+ /// and reusing it can beneficial because this may reuse allocations.
+ pub fn clear(&mut self) {
+ self.free.extend(self.states.drain(..));
+ self.add_empty(); // final
+ self.add_empty(); // root
+ }
+
+ /// Iterate over all of the sequences of byte ranges in this trie, and
+ /// call the provided function for each sequence. Iteration occurs in
+ /// lexicographic order.
+ pub fn iter<F: FnMut(&[Utf8Range])>(&self, mut f: F) {
+ let mut stack = self.iter_stack.borrow_mut();
+ stack.clear();
+ let mut ranges = self.iter_ranges.borrow_mut();
+ ranges.clear();
+
+ // We do iteration in a way that permits us to use a single buffer
+ // for our keys. We iterate in a depth first fashion, while being
+ // careful to expand our frontier as we move deeper in the trie.
+ stack.push(NextIter { state_id: ROOT, tidx: 0 });
+ while let Some(NextIter { mut state_id, mut tidx }) = stack.pop() {
+ // This could be implemented more simply without an inner loop
+ // here, but at the cost of more stack pushes.
+ loop {
+ let state = self.state(state_id);
+ // If we're visited all transitions in this state, then pop
+ // back to the parent state.
+ if tidx >= state.transitions.len() {
+ ranges.pop();
+ break;
+ }
+
+ let t = &state.transitions[tidx];
+ ranges.push(t.range);
+ if t.next_id == FINAL {
+ f(&ranges);
+ ranges.pop();
+ tidx += 1;
+ } else {
+ // Expand our frontier. Once we come back to this state
+ // via the stack, start in on the next transition.
+ stack.push(NextIter { state_id, tidx: tidx + 1 });
+ // Otherwise, move to the first transition of the next
+ // state.
+ state_id = t.next_id;
+ tidx = 0;
+ }
+ }
+ }
+ }
+
+ /// Inserts a new sequence of ranges into this trie.
+ ///
+ /// The sequence given must be non-empty and must not have a length
+ /// exceeding 4.
+ pub fn insert(&mut self, ranges: &[Utf8Range]) {
+ assert!(!ranges.is_empty());
+ assert!(ranges.len() <= 4);
+
+ let mut stack = mem::replace(&mut self.insert_stack, vec![]);
+ stack.clear();
+
+ stack.push(NextInsert::new(ROOT, ranges));
+ while let Some(next) = stack.pop() {
+ let (state_id, ranges) = (next.state_id(), next.ranges());
+ assert!(!ranges.is_empty());
+
+ let (mut new, rest) = (ranges[0], &ranges[1..]);
+
+ // i corresponds to the position of the existing transition on
+ // which we are operating. Typically, the result is to remove the
+ // transition and replace it with two or more new transitions
+ // corresponding to the partitions generated by splitting the
+ // 'new' with the ith transition's range.
+ let mut i = self.state(state_id).find(new);
+
+ // In this case, there is no overlap *and* the new range is greater
+ // than all existing ranges. So we can just add it to the end.
+ if i == self.state(state_id).transitions.len() {
+ let next_id = NextInsert::push(self, &mut stack, rest);
+ self.add_transition(state_id, new, next_id);
+ continue;
+ }
+
+ // The need for this loop is a bit subtle, buf basically, after
+ // we've handled the partitions from our initial split, it's
+ // possible that there will be a partition leftover that overlaps
+ // with a subsequent transition. If so, then we have to repeat
+ // the split process again with the leftovers and that subsequent
+ // transition.
+ 'OUTER: loop {
+ let old = self.state(state_id).transitions[i].clone();
+ let split = match Split::new(old.range, new) {
+ Some(split) => split,
+ None => {
+ let next_id = NextInsert::push(self, &mut stack, rest);
+ self.add_transition_at(i, state_id, new, next_id);
+ continue;
+ }
+ };
+ let splits = split.as_slice();
+ // If we only have one partition, then the ranges must be
+ // equivalent. There's nothing to do here for this state, so
+ // just move on to the next one.
+ if splits.len() == 1 {
+ // ... but only if we have anything left to do.
+ if !rest.is_empty() {
+ stack.push(NextInsert::new(old.next_id, rest));
+ }
+ break;
+ }
+ // At this point, we know that 'split' is non-empty and there
+ // must be some overlap AND that the two ranges are not
+ // equivalent. Therefore, the existing range MUST be removed
+ // and split up somehow. Instead of actually doing the removal
+ // and then a subsequent insertion---with all the memory
+ // shuffling that entails---we simply overwrite the transition
+ // at position `i` for the first new transition we want to
+ // insert. After that, we're forced to do expensive inserts.
+ let mut first = true;
+ let mut add_trans =
+ |trie: &mut RangeTrie, pos, from, range, to| {
+ if first {
+ trie.set_transition_at(pos, from, range, to);
+ first = false;
+ } else {
+ trie.add_transition_at(pos, from, range, to);
+ }
+ };
+ for (j, &srange) in splits.iter().enumerate() {
+ match srange {
+ SplitRange::Old(r) => {
+ // Deep clone the state pointed to by the ith
+ // transition. This is always necessary since 'old'
+ // is always coupled with at least a 'both'
+ // partition. We don't want any new changes made
+ // via the 'both' partition to impact the part of
+ // the transition that doesn't overlap with the
+ // new range.
+ let dup_id = self.duplicate(old.next_id);
+ add_trans(self, i, state_id, r, dup_id);
+ }
+ SplitRange::New(r) => {
+ // This is a bit subtle, but if this happens to be
+ // the last partition in our split, it is possible
+ // that this overlaps with a subsequent transition.
+ // If it does, then we must repeat the whole
+ // splitting process over again with `r` and the
+ // subsequent transition.
+ {
+ let trans = &self.state(state_id).transitions;
+ if j + 1 == splits.len()
+ && i < trans.len()
+ && intersects(r, trans[i].range)
+ {
+ new = r;
+ continue 'OUTER;
+ }
+ }
+
+ // ... otherwise, setup exploration for a new
+ // empty state and add a brand new transition for
+ // this new range.
+ let next_id =
+ NextInsert::push(self, &mut stack, rest);
+ add_trans(self, i, state_id, r, next_id);
+ }
+ SplitRange::Both(r) => {
+ // Continue adding the remaining ranges on this
+ // path and update the transition with the new
+ // range.
+ if !rest.is_empty() {
+ stack.push(NextInsert::new(old.next_id, rest));
+ }
+ add_trans(self, i, state_id, r, old.next_id);
+ }
+ }
+ i += 1;
+ }
+ // If we've reached this point, then we know that there are
+ // no subsequent transitions with any overlap. Therefore, we
+ // can stop processing this range and move on to the next one.
+ break;
+ }
+ }
+ self.insert_stack = stack;
+ }
+
+ pub fn add_empty(&mut self) -> StateID {
+ if self.states.len() as u64 > u32::MAX as u64 {
+ // This generally should not happen since a range trie is only
+ // ever used to compile a single sequence of Unicode scalar values.
+ // If we ever got to this point, we would, at *minimum*, be using
+ // 96GB in just the range trie alone.
+ panic!("too many sequences added to range trie");
+ }
+ let id = self.states.len() as StateID;
+ // If we have some free states available, then use them to avoid
+ // more allocations.
+ if let Some(mut state) = self.free.pop() {
+ state.clear();
+ self.states.push(state);
+ } else {
+ self.states.push(State { transitions: vec![] });
+ }
+ id
+ }
+
+ /// Performs a deep clone of the given state and returns the duplicate's
+ /// state ID.
+ ///
+ /// A "deep clone" in this context means that the state given along with
+ /// recursively all states that it points to are copied. Once complete,
+ /// the given state ID and the returned state ID share nothing.
+ ///
+ /// This is useful during range trie insertion when a new range overlaps
+ /// with an existing range that is bigger than the new one. The part of
+ /// the existing range that does *not* overlap with the new one is that
+ /// duplicated so that adding the new range to the overlap doesn't disturb
+ /// the non-overlapping portion.
+ ///
+ /// There's one exception: if old_id is the final state, then it is not
+ /// duplicated and the same final state is returned. This is because all
+ /// final states in this trie are equivalent.
+ fn duplicate(&mut self, old_id: StateID) -> StateID {
+ if old_id == FINAL {
+ return FINAL;
+ }
+
+ let mut stack = mem::replace(&mut self.dupe_stack, vec![]);
+ stack.clear();
+
+ let new_id = self.add_empty();
+ // old_id is the state we're cloning and new_id is the ID of the
+ // duplicated state for old_id.
+ stack.push(NextDupe { old_id, new_id });
+ while let Some(NextDupe { old_id, new_id }) = stack.pop() {
+ for i in 0..self.state(old_id).transitions.len() {
+ let t = self.state(old_id).transitions[i].clone();
+ if t.next_id == FINAL {
+ // All final states are the same, so there's no need to
+ // duplicate it.
+ self.add_transition(new_id, t.range, FINAL);
+ continue;
+ }
+
+ let new_child_id = self.add_empty();
+ self.add_transition(new_id, t.range, new_child_id);
+ stack.push(NextDupe {
+ old_id: t.next_id,
+ new_id: new_child_id,
+ });
+ }
+ }
+ self.dupe_stack = stack;
+ new_id
+ }
+
+ /// Adds the given transition to the given state.
+ ///
+ /// Callers must ensure that all previous transitions in this state
+ /// are lexicographically smaller than the given range.
+ fn add_transition(
+ &mut self,
+ from_id: StateID,
+ range: Utf8Range,
+ next_id: StateID,
+ ) {
+ self.state_mut(from_id)
+ .transitions
+ .push(Transition { range, next_id });
+ }
+
+ /// Like `add_transition`, except this inserts the transition just before
+ /// the ith transition.
+ fn add_transition_at(
+ &mut self,
+ i: usize,
+ from_id: StateID,
+ range: Utf8Range,
+ next_id: StateID,
+ ) {
+ self.state_mut(from_id)
+ .transitions
+ .insert(i, Transition { range, next_id });
+ }
+
+ /// Overwrites the transition at position i with the given transition.
+ fn set_transition_at(
+ &mut self,
+ i: usize,
+ from_id: StateID,
+ range: Utf8Range,
+ next_id: StateID,
+ ) {
+ self.state_mut(from_id).transitions[i] = Transition { range, next_id };
+ }
+
+ /// Return an immutable borrow for the state with the given ID.
+ fn state(&self, id: StateID) -> &State {
+ &self.states[id as usize]
+ }
+
+ /// Return a mutable borrow for the state with the given ID.
+ fn state_mut(&mut self, id: StateID) -> &mut State {
+ &mut self.states[id as usize]
+ }
+}
+
+impl State {
+ /// Find the position at which the given range should be inserted in this
+ /// state.
+ ///
+ /// The position returned is always in the inclusive range
+ /// [0, transitions.len()]. If 'transitions.len()' is returned, then the
+ /// given range overlaps with no other range in this state *and* is greater
+ /// than all of them.
+ ///
+ /// For all other possible positions, the given range either overlaps
+ /// with the transition at that position or is otherwise less than it
+ /// with no overlap (and is greater than the previous transition). In the
+ /// former case, careful attention must be paid to inserting this range
+ /// as a new transition. In the latter case, the range can be inserted as
+ /// a new transition at the given position without disrupting any other
+ /// transitions.
+ fn find(&self, range: Utf8Range) -> usize {
+ /// Returns the position `i` at which `pred(xs[i])` first returns true
+ /// such that for all `j >= i`, `pred(xs[j]) == true`. If `pred` never
+ /// returns true, then `xs.len()` is returned.
+ ///
+ /// We roll our own binary search because it doesn't seem like the
+ /// standard library's binary search can be used here. Namely, if
+ /// there is an overlapping range, then we want to find the first such
+ /// occurrence, but there may be many. Or at least, it's not quite
+ /// clear to me how to do it.
+ fn binary_search<T, F>(xs: &[T], mut pred: F) -> usize
+ where
+ F: FnMut(&T) -> bool,
+ {
+ let (mut left, mut right) = (0, xs.len());
+ while left < right {
+ // Overflow is impossible because xs.len() <= 256.
+ let mid = (left + right) / 2;
+ if pred(&xs[mid]) {
+ right = mid;
+ } else {
+ left = mid + 1;
+ }
+ }
+ left
+ }
+
+ // Benchmarks suggest that binary search is just a bit faster than
+ // straight linear search. Specifically when using the debug tool:
+ //
+ // hyperfine "regex-automata-debug debug -acqr '\w{40} ecurB'"
+ binary_search(&self.transitions, |t| range.start <= t.range.end)
+ }
+
+ /// Clear this state such that it has zero transitions.
+ fn clear(&mut self) {
+ self.transitions.clear();
+ }
+}
+
+/// The next state to process during duplication.
+#[derive(Clone, Debug)]
+struct NextDupe {
+ /// The state we want to duplicate.
+ old_id: StateID,
+ /// The ID of the new state that is a duplicate of old_id.
+ new_id: StateID,
+}
+
+/// The next state (and its corresponding transition) that we want to visit
+/// during iteration in lexicographic order.
+#[derive(Clone, Debug)]
+struct NextIter {
+ state_id: StateID,
+ tidx: usize,
+}
+
+/// The next state to process during insertion and any remaining ranges that we
+/// want to add for a partcular sequence of ranges. The first such instance
+/// is always the root state along with all ranges given.
+#[derive(Clone, Debug)]
+struct NextInsert {
+ /// The next state to begin inserting ranges. This state should be the
+ /// state at which `ranges[0]` should be inserted.
+ state_id: StateID,
+ /// The ranges to insert. We used a fixed-size array here to avoid an
+ /// allocation.
+ ranges: [Utf8Range; 4],
+ /// The number of valid ranges in the above array.
+ len: u8,
+}
+
+impl NextInsert {
+ /// Create the next item to visit. The given state ID should correspond
+ /// to the state at which the first range in the given slice should be
+ /// inserted. The slice given must not be empty and it must be no longer
+ /// than 4.
+ fn new(state_id: StateID, ranges: &[Utf8Range]) -> NextInsert {
+ let len = ranges.len();
+ assert!(len > 0);
+ assert!(len <= 4);
+
+ let mut tmp = [Utf8Range { start: 0, end: 0 }; 4];
+ tmp[..len].copy_from_slice(ranges);
+ NextInsert { state_id, ranges: tmp, len: len as u8 }
+ }
+
+ /// Push a new empty state to visit along with any remaining ranges that
+ /// still need to be inserted. The ID of the new empty state is returned.
+ ///
+ /// If ranges is empty, then no new state is created and FINAL is returned.
+ fn push(
+ trie: &mut RangeTrie,
+ stack: &mut Vec<NextInsert>,
+ ranges: &[Utf8Range],
+ ) -> StateID {
+ if ranges.is_empty() {
+ FINAL
+ } else {
+ let next_id = trie.add_empty();
+ stack.push(NextInsert::new(next_id, ranges));
+ next_id
+ }
+ }
+
+ /// Return the ID of the state to visit.
+ fn state_id(&self) -> StateID {
+ self.state_id
+ }
+
+ /// Return the remaining ranges to insert.
+ fn ranges(&self) -> &[Utf8Range] {
+ &self.ranges[..self.len as usize]
+ }
+}
+
+/// Split represents a partitioning of two ranges into one or more ranges. This
+/// is the secret sauce that makes a range trie work, as it's what tells us
+/// how to deal with two overlapping but unequal ranges during insertion.
+///
+/// Essentially, either two ranges overlap or they don't. If they don't, then
+/// handling insertion is easy: just insert the new range into its
+/// lexicographically correct position. Since it does not overlap with anything
+/// else, no other transitions are impacted by the new range.
+///
+/// If they do overlap though, there are generally three possible cases to
+/// handle:
+///
+/// 1. The part where the two ranges actually overlap. i.e., The intersection.
+/// 2. The part of the existing range that is not in the the new range.
+/// 3. The part of the new range that is not in the old range.
+///
+/// (1) is guaranteed to always occur since all overlapping ranges have a
+/// non-empty intersection. If the two ranges are not equivalent, then at
+/// least one of (2) or (3) is guaranteed to occur as well. In some cases,
+/// e.g., `[0-4]` and `[4-9]`, all three cases will occur.
+///
+/// This `Split` type is responsible for providing (1), (2) and (3) for any
+/// possible pair of byte ranges.
+///
+/// As for insertion, for the overlap in (1), the remaining ranges to insert
+/// should be added by following the corresponding transition. However, this
+/// should only be done for the overlapping parts of the range. If there was
+/// a part of the existing range that was not in the new range, then that
+/// existing part must be split off from the transition and duplicated. The
+/// remaining parts of the overlap can then be added to using the new ranges
+/// without disturbing the existing range.
+///
+/// Handling the case for the part of a new range that is not in an existing
+/// range is seemingly easy. Just treat it as if it were a non-overlapping
+/// range. The problem here is that if this new non-overlapping range occurs
+/// after both (1) and (2), then it's possible that it can overlap with the
+/// next transition in the current state. If it does, then the whole process
+/// must be repeated!
+///
+/// # Details of the 3 cases
+///
+/// The following details the various cases that are implemented in code
+/// below. It's plausible that the number of cases is not actually minimal,
+/// but it's important for this code to remain at least somewhat readable.
+///
+/// Given [a,b] and [x,y], where a <= b, x <= y, b < 256 and y < 256, we define
+/// the follow distinct relationships where at least one must apply. The order
+/// of these matters, since multiple can match. The first to match applies.
+///
+/// 1. b < x <=> [a,b] < [x,y]
+/// 2. y < a <=> [x,y] < [a,b]
+///
+/// In the case of (1) and (2), these are the only cases where there is no
+/// overlap. Or otherwise, the intersection of [a,b] and [x,y] is empty. In
+/// order to compute the intersection, one can do [max(a,x), min(b,y)]. The
+/// intersection in all of the following cases is non-empty.
+///
+/// 3. a = x && b = y <=> [a,b] == [x,y]
+/// 4. a = x && b < y <=> [x,y] right-extends [a,b]
+/// 5. b = y && a > x <=> [x,y] left-extends [a,b]
+/// 6. x = a && y < b <=> [a,b] right-extends [x,y]
+/// 7. y = b && x > a <=> [a,b] left-extends [x,y]
+/// 8. a > x && b < y <=> [x,y] covers [a,b]
+/// 9. x > a && y < b <=> [a,b] covers [x,y]
+/// 10. b = x && a < y <=> [a,b] is left-adjacent to [x,y]
+/// 11. y = a && x < b <=> [x,y] is left-adjacent to [a,b]
+/// 12. b > x && b < y <=> [a,b] left-overlaps [x,y]
+/// 13. y > a && y < b <=> [x,y] left-overlaps [a,b]
+///
+/// In cases 3-13, we can form rules that partition the ranges into a
+/// non-overlapping ordered sequence of ranges:
+///
+/// 3. [a,b]
+/// 4. [a,b], [b+1,y]
+/// 5. [x,a-1], [a,b]
+/// 6. [x,y], [y+1,b]
+/// 7. [a,x-1], [x,y]
+/// 8. [x,a-1], [a,b], [b+1,y]
+/// 9. [a,x-1], [x,y], [y+1,b]
+/// 10. [a,b-1], [b,b], [b+1,y]
+/// 11. [x,y-1], [y,y], [y+1,b]
+/// 12. [a,x-1], [x,b], [b+1,y]
+/// 13. [x,a-1], [a,y], [y+1,b]
+///
+/// In the code below, we go a step further and identify each of the above
+/// outputs as belonging either to the overlap of the two ranges or to one
+/// of [a,b] or [x,y] exclusively.
+#[derive(Clone, Debug, Eq, PartialEq)]
+struct Split {
+ partitions: [SplitRange; 3],
+ len: usize,
+}
+
+/// A tagged range indicating how it was derived from a pair of ranges.
+#[derive(Clone, Copy, Debug, Eq, PartialEq)]
+enum SplitRange {
+ Old(Utf8Range),
+ New(Utf8Range),
+ Both(Utf8Range),
+}
+
+impl Split {
+ /// Create a partitioning of the given ranges.
+ ///
+ /// If the given ranges have an empty intersection, then None is returned.
+ fn new(o: Utf8Range, n: Utf8Range) -> Option<Split> {
+ let range = |r: RangeInclusive<u8>| Utf8Range {
+ start: *r.start(),
+ end: *r.end(),
+ };
+ let old = |r| SplitRange::Old(range(r));
+ let new = |r| SplitRange::New(range(r));
+ let both = |r| SplitRange::Both(range(r));
+
+ // Use same names as the comment above to make it easier to compare.
+ let (a, b, x, y) = (o.start, o.end, n.start, n.end);
+
+ if b < x || y < a {
+ // case 1, case 2
+ None
+ } else if a == x && b == y {
+ // case 3
+ Some(Split::parts1(both(a..=b)))
+ } else if a == x && b < y {
+ // case 4
+ Some(Split::parts2(both(a..=b), new(b + 1..=y)))
+ } else if b == y && a > x {
+ // case 5
+ Some(Split::parts2(new(x..=a - 1), both(a..=b)))
+ } else if x == a && y < b {
+ // case 6
+ Some(Split::parts2(both(x..=y), old(y + 1..=b)))
+ } else if y == b && x > a {
+ // case 7
+ Some(Split::parts2(old(a..=x - 1), both(x..=y)))
+ } else if a > x && b < y {
+ // case 8
+ Some(Split::parts3(new(x..=a - 1), both(a..=b), new(b + 1..=y)))
+ } else if x > a && y < b {
+ // case 9
+ Some(Split::parts3(old(a..=x - 1), both(x..=y), old(y + 1..=b)))
+ } else if b == x && a < y {
+ // case 10
+ Some(Split::parts3(old(a..=b - 1), both(b..=b), new(b + 1..=y)))
+ } else if y == a && x < b {
+ // case 11
+ Some(Split::parts3(new(x..=y - 1), both(y..=y), old(y + 1..=b)))
+ } else if b > x && b < y {
+ // case 12
+ Some(Split::parts3(old(a..=x - 1), both(x..=b), new(b + 1..=y)))
+ } else if y > a && y < b {
+ // case 13
+ Some(Split::parts3(new(x..=a - 1), both(a..=y), old(y + 1..=b)))
+ } else {
+ unreachable!()
+ }
+ }
+
+ /// Create a new split with a single partition. This only occurs when two
+ /// ranges are equivalent.
+ fn parts1(r1: SplitRange) -> Split {
+ // This value doesn't matter since it is never accessed.
+ let nada = SplitRange::Old(Utf8Range { start: 0, end: 0 });
+ Split { partitions: [r1, nada, nada], len: 1 }
+ }
+
+ /// Create a new split with two partitions.
+ fn parts2(r1: SplitRange, r2: SplitRange) -> Split {
+ // This value doesn't matter since it is never accessed.
+ let nada = SplitRange::Old(Utf8Range { start: 0, end: 0 });
+ Split { partitions: [r1, r2, nada], len: 2 }
+ }
+
+ /// Create a new split with three partitions.
+ fn parts3(r1: SplitRange, r2: SplitRange, r3: SplitRange) -> Split {
+ Split { partitions: [r1, r2, r3], len: 3 }
+ }
+
+ /// Return the partitions in this split as a slice.
+ fn as_slice(&self) -> &[SplitRange] {
+ &self.partitions[..self.len]
+ }
+}
+
+impl fmt::Debug for RangeTrie {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ writeln!(f, "")?;
+ for (i, state) in self.states.iter().enumerate() {
+ let status = if i == FINAL as usize { '*' } else { ' ' };
+ writeln!(f, "{}{:06}: {:?}", status, i, state)?;
+ }
+ Ok(())
+ }
+}
+
+impl fmt::Debug for State {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ let rs = self
+ .transitions
+ .iter()
+ .map(|t| format!("{:?}", t))
+ .collect::<Vec<String>>()
+ .join(", ");
+ write!(f, "{}", rs)
+ }
+}
+
+impl fmt::Debug for Transition {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ if self.range.start == self.range.end {
+ write!(f, "{:02X} => {:02X}", self.range.start, self.next_id)
+ } else {
+ write!(
+ f,
+ "{:02X}-{:02X} => {:02X}",
+ self.range.start, self.range.end, self.next_id
+ )
+ }
+ }
+}
+
+/// Returns true if and only if the given ranges intersect.
+fn intersects(r1: Utf8Range, r2: Utf8Range) -> bool {
+ !(r1.end < r2.start || r2.end < r1.start)
+}
+
+#[cfg(test)]
+mod tests {
+ use std::ops::RangeInclusive;
+
+ use regex_syntax::utf8::Utf8Range;
+
+ use super::*;
+
+ fn r(range: RangeInclusive<u8>) -> Utf8Range {
+ Utf8Range { start: *range.start(), end: *range.end() }
+ }
+
+ fn split_maybe(
+ old: RangeInclusive<u8>,
+ new: RangeInclusive<u8>,
+ ) -> Option<Split> {
+ Split::new(r(old), r(new))
+ }
+
+ fn split(
+ old: RangeInclusive<u8>,
+ new: RangeInclusive<u8>,
+ ) -> Vec<SplitRange> {
+ split_maybe(old, new).unwrap().as_slice().to_vec()
+ }
+
+ #[test]
+ fn no_splits() {
+ // case 1
+ assert_eq!(None, split_maybe(0..=1, 2..=3));
+ // case 2
+ assert_eq!(None, split_maybe(2..=3, 0..=1));
+ }
+
+ #[test]
+ fn splits() {
+ let range = |r: RangeInclusive<u8>| Utf8Range {
+ start: *r.start(),
+ end: *r.end(),
+ };
+ let old = |r| SplitRange::Old(range(r));
+ let new = |r| SplitRange::New(range(r));
+ let both = |r| SplitRange::Both(range(r));
+
+ // case 3
+ assert_eq!(split(0..=0, 0..=0), vec![both(0..=0)]);
+ assert_eq!(split(9..=9, 9..=9), vec![both(9..=9)]);
+
+ // case 4
+ assert_eq!(split(0..=5, 0..=6), vec![both(0..=5), new(6..=6)]);
+ assert_eq!(split(0..=5, 0..=8), vec![both(0..=5), new(6..=8)]);
+ assert_eq!(split(5..=5, 5..=8), vec![both(5..=5), new(6..=8)]);
+
+ // case 5
+ assert_eq!(split(1..=5, 0..=5), vec![new(0..=0), both(1..=5)]);
+ assert_eq!(split(3..=5, 0..=5), vec![new(0..=2), both(3..=5)]);
+ assert_eq!(split(5..=5, 0..=5), vec![new(0..=4), both(5..=5)]);
+
+ // case 6
+ assert_eq!(split(0..=6, 0..=5), vec![both(0..=5), old(6..=6)]);
+ assert_eq!(split(0..=8, 0..=5), vec![both(0..=5), old(6..=8)]);
+ assert_eq!(split(5..=8, 5..=5), vec![both(5..=5), old(6..=8)]);
+
+ // case 7
+ assert_eq!(split(0..=5, 1..=5), vec![old(0..=0), both(1..=5)]);
+ assert_eq!(split(0..=5, 3..=5), vec![old(0..=2), both(3..=5)]);
+ assert_eq!(split(0..=5, 5..=5), vec![old(0..=4), both(5..=5)]);
+
+ // case 8
+ assert_eq!(
+ split(3..=6, 2..=7),
+ vec![new(2..=2), both(3..=6), new(7..=7)],
+ );
+ assert_eq!(
+ split(3..=6, 1..=8),
+ vec![new(1..=2), both(3..=6), new(7..=8)],
+ );
+
+ // case 9
+ assert_eq!(
+ split(2..=7, 3..=6),
+ vec![old(2..=2), both(3..=6), old(7..=7)],
+ );
+ assert_eq!(
+ split(1..=8, 3..=6),
+ vec![old(1..=2), both(3..=6), old(7..=8)],
+ );
+
+ // case 10
+ assert_eq!(
+ split(3..=6, 6..=7),
+ vec![old(3..=5), both(6..=6), new(7..=7)],
+ );
+ assert_eq!(
+ split(3..=6, 6..=8),
+ vec![old(3..=5), both(6..=6), new(7..=8)],
+ );
+ assert_eq!(
+ split(5..=6, 6..=7),
+ vec![old(5..=5), both(6..=6), new(7..=7)],
+ );
+
+ // case 11
+ assert_eq!(
+ split(6..=7, 3..=6),
+ vec![new(3..=5), both(6..=6), old(7..=7)],
+ );
+ assert_eq!(
+ split(6..=8, 3..=6),
+ vec![new(3..=5), both(6..=6), old(7..=8)],
+ );
+ assert_eq!(
+ split(6..=7, 5..=6),
+ vec![new(5..=5), both(6..=6), old(7..=7)],
+ );
+
+ // case 12
+ assert_eq!(
+ split(3..=7, 5..=9),
+ vec![old(3..=4), both(5..=7), new(8..=9)],
+ );
+ assert_eq!(
+ split(3..=5, 4..=6),
+ vec![old(3..=3), both(4..=5), new(6..=6)],
+ );
+
+ // case 13
+ assert_eq!(
+ split(5..=9, 3..=7),
+ vec![new(3..=4), both(5..=7), old(8..=9)],
+ );
+ assert_eq!(
+ split(4..=6, 3..=5),
+ vec![new(3..=3), both(4..=5), old(6..=6)],
+ );
+ }
+
+ // Arguably there should be more tests here, but in practice, this data
+ // structure is well covered by the huge number of regex tests.
+}