summaryrefslogtreecommitdiffstats
path: root/vendor/stacker/src
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-17 12:02:58 +0000
commit698f8c2f01ea549d77d7dc3338a12e04c11057b9 (patch)
tree173a775858bd501c378080a10dca74132f05bc50 /vendor/stacker/src
parentInitial commit. (diff)
downloadrustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.tar.xz
rustc-698f8c2f01ea549d77d7dc3338a12e04c11057b9.zip
Adding upstream version 1.64.0+dfsg1.upstream/1.64.0+dfsg1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/stacker/src')
-rw-r--r--vendor/stacker/src/arch/asm.h5
-rw-r--r--vendor/stacker/src/arch/windows.c5
-rw-r--r--vendor/stacker/src/lib.rs457
3 files changed, 467 insertions, 0 deletions
diff --git a/vendor/stacker/src/arch/asm.h b/vendor/stacker/src/arch/asm.h
new file mode 100644
index 000000000..56c9d2890
--- /dev/null
+++ b/vendor/stacker/src/arch/asm.h
@@ -0,0 +1,5 @@
+#if defined(APPLE) || (defined(WINDOWS) && defined(X86))
+#define GLOBAL(name) .globl _ ## name; _ ## name
+#else
+#define GLOBAL(name) .globl name; name
+#endif
diff --git a/vendor/stacker/src/arch/windows.c b/vendor/stacker/src/arch/windows.c
new file mode 100644
index 000000000..89485a0cc
--- /dev/null
+++ b/vendor/stacker/src/arch/windows.c
@@ -0,0 +1,5 @@
+#include <windows.h>
+
+PVOID __stacker_get_current_fiber() {
+ return GetCurrentFiber();
+}
diff --git a/vendor/stacker/src/lib.rs b/vendor/stacker/src/lib.rs
new file mode 100644
index 000000000..3c1d8891e
--- /dev/null
+++ b/vendor/stacker/src/lib.rs
@@ -0,0 +1,457 @@
+//! A library to help grow the stack when it runs out of space.
+//!
+//! This is an implementation of manually instrumented segmented stacks where points in a program's
+//! control flow are annotated with "maybe grow the stack here". Each point of annotation indicates
+//! how far away from the end of the stack it's allowed to be, plus the amount of stack to allocate
+//! if it does reach the end.
+//!
+//! Once a program has reached the end of its stack, a temporary stack on the heap is allocated and
+//! is switched to for the duration of a closure.
+//!
+//! For a set of lower-level primitives, consider the `psm` crate.
+//!
+//! # Examples
+//!
+//! ```
+//! // Grow the stack if we are within the "red zone" of 32K, and if we allocate
+//! // a new stack allocate 1MB of stack space.
+//! //
+//! // If we're already in bounds, just run the provided closure on current stack.
+//! stacker::maybe_grow(32 * 1024, 1024 * 1024, || {
+//! // guaranteed to have at least 32K of stack
+//! });
+//! ```
+
+#![allow(improper_ctypes)]
+
+#[macro_use]
+extern crate cfg_if;
+extern crate libc;
+#[cfg(windows)]
+extern crate winapi;
+#[macro_use]
+extern crate psm;
+
+use std::cell::Cell;
+
+/// Grows the call stack if necessary.
+///
+/// This function is intended to be called at manually instrumented points in a program where
+/// recursion is known to happen quite a bit. This function will check to see if we're within
+/// `red_zone` bytes of the end of the stack, and if so it will allocate a new stack of at least
+/// `stack_size` bytes.
+///
+/// The closure `f` is guaranteed to run on a stack with at least `red_zone` bytes, and it will be
+/// run on the current stack if there's space available.
+#[inline(always)]
+pub fn maybe_grow<R, F: FnOnce() -> R>(red_zone: usize, stack_size: usize, callback: F) -> R {
+ // if we can't guess the remaining stack (unsupported on some platforms) we immediately grow
+ // the stack and then cache the new stack size (which we do know now because we allocated it.
+ let enough_space = match remaining_stack() {
+ Some(remaining) => remaining >= red_zone,
+ None => false,
+ };
+ if enough_space {
+ callback()
+ } else {
+ grow(stack_size, callback)
+ }
+}
+
+/// Always creates a new stack for the passed closure to run on.
+/// The closure will still be on the same thread as the caller of `grow`.
+/// This will allocate a new stack with at least `stack_size` bytes.
+pub fn grow<R, F: FnOnce() -> R>(stack_size: usize, callback: F) -> R {
+ // To avoid monomorphizing `_grow()` and everything it calls,
+ // we convert the generic callback to a dynamic one.
+ let mut opt_callback = Some(callback);
+ let mut ret = None;
+ let ret_ref = &mut ret;
+
+ // This wrapper around `callback` achieves two things:
+ // * It converts the `impl FnOnce` to a `dyn FnMut`.
+ // `dyn` because we want it to not be generic, and
+ // `FnMut` because we can't pass a `dyn FnOnce` around without boxing it.
+ // * It eliminates the generic return value, by writing it to the stack of this function.
+ // Otherwise the closure would have to return an unsized value, which isn't possible.
+ let dyn_callback: &mut dyn FnMut() = &mut || {
+ let taken_callback = opt_callback.take().unwrap();
+ *ret_ref = Some(taken_callback());
+ };
+
+ _grow(stack_size, dyn_callback);
+ ret.unwrap()
+}
+
+/// Queries the amount of remaining stack as interpreted by this library.
+///
+/// This function will return the amount of stack space left which will be used
+/// to determine whether a stack switch should be made or not.
+pub fn remaining_stack() -> Option<usize> {
+ let current_ptr = current_stack_ptr();
+ get_stack_limit().map(|limit| current_ptr - limit)
+}
+
+psm_stack_information! (
+ yes {
+ fn current_stack_ptr() -> usize {
+ psm::stack_pointer() as usize
+ }
+ }
+ no {
+ #[inline(always)]
+ fn current_stack_ptr() -> usize {
+ unsafe {
+ let mut x = std::mem::MaybeUninit::<u8>::uninit();
+ // Unlikely to be ever exercised. As a fallback we execute a volatile read to a
+ // local (to hopefully defeat the optimisations that would make this local a static
+ // global) and take its address. This way we get a very approximate address of the
+ // current frame.
+ x.as_mut_ptr().write_volatile(42);
+ x.as_ptr() as usize
+ }
+ }
+ }
+);
+
+thread_local! {
+ static STACK_LIMIT: Cell<Option<usize>> = Cell::new(unsafe {
+ guess_os_stack_limit()
+ })
+}
+
+#[inline(always)]
+fn get_stack_limit() -> Option<usize> {
+ STACK_LIMIT.with(|s| s.get())
+}
+
+#[inline(always)]
+#[allow(unused)]
+fn set_stack_limit(l: Option<usize>) {
+ STACK_LIMIT.with(|s| s.set(l))
+}
+
+psm_stack_manipulation! {
+ yes {
+ struct StackRestoreGuard {
+ new_stack: *mut std::ffi::c_void,
+ stack_bytes: usize,
+ old_stack_limit: Option<usize>,
+ }
+
+ impl StackRestoreGuard {
+ #[cfg(target_arch = "wasm32")]
+ unsafe fn new(stack_bytes: usize, _page_size: usize) -> StackRestoreGuard {
+ let layout = std::alloc::Layout::from_size_align(stack_bytes, 16).unwrap();
+ let ptr = std::alloc::alloc(layout);
+ assert!(!ptr.is_null(), "unable to allocate stack");
+ StackRestoreGuard {
+ new_stack: ptr as *mut _,
+ stack_bytes,
+ old_stack_limit: get_stack_limit(),
+ }
+ }
+
+ #[cfg(not(target_arch = "wasm32"))]
+ unsafe fn new(stack_bytes: usize, page_size: usize) -> StackRestoreGuard {
+ let new_stack = libc::mmap(
+ std::ptr::null_mut(),
+ stack_bytes,
+ libc::PROT_NONE,
+ libc::MAP_PRIVATE |
+ libc::MAP_ANON,
+ -1, // Some implementations assert fd = -1 if MAP_ANON is specified
+ 0
+ );
+ if new_stack == libc::MAP_FAILED {
+ panic!("unable to allocate stack")
+ }
+ let guard = StackRestoreGuard {
+ new_stack,
+ stack_bytes,
+ old_stack_limit: get_stack_limit(),
+ };
+ let above_guard_page = new_stack.add(page_size);
+ #[cfg(not(target_os = "openbsd"))]
+ let result = libc::mprotect(
+ above_guard_page,
+ stack_bytes - page_size,
+ libc::PROT_READ | libc::PROT_WRITE
+ );
+ #[cfg(target_os = "openbsd")]
+ let result = if libc::mmap(
+ above_guard_page,
+ stack_bytes - page_size,
+ libc::PROT_READ | libc::PROT_WRITE,
+ libc::MAP_FIXED | libc::MAP_PRIVATE | libc::MAP_ANON | libc::MAP_STACK,
+ -1,
+ 0) == above_guard_page {
+ 0
+ } else {
+ -1
+ };
+ if result == -1 {
+ drop(guard);
+ panic!("unable to set stack permissions")
+ }
+ guard
+ }
+ }
+
+ impl Drop for StackRestoreGuard {
+ fn drop(&mut self) {
+ #[cfg(target_arch = "wasm32")]
+ unsafe {
+ std::alloc::dealloc(
+ self.new_stack as *mut u8,
+ std::alloc::Layout::from_size_align_unchecked(self.stack_bytes, 16),
+ );
+ }
+ #[cfg(not(target_arch = "wasm32"))]
+ unsafe {
+ // FIXME: check the error code and decide what to do with it.
+ // Perhaps a debug_assertion?
+ libc::munmap(self.new_stack, self.stack_bytes);
+ }
+ set_stack_limit(self.old_stack_limit);
+ }
+ }
+
+ fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
+ // Calculate a number of pages we want to allocate for the new stack.
+ // For maximum portability we want to produce a stack that is aligned to a page and has
+ // a size that’s a multiple of page size. Furthermore we want to allocate two extras pages
+ // for the stack guard. To achieve that we do our calculations in number of pages and
+ // convert to bytes last.
+ let page_size = page_size();
+ let requested_pages = stack_size
+ .checked_add(page_size - 1)
+ .expect("unreasonably large stack requested") / page_size;
+ let stack_pages = std::cmp::max(1, requested_pages) + 2;
+ let stack_bytes = stack_pages.checked_mul(page_size)
+ .expect("unreasonably large stack requesteed");
+
+ // Next, there are a couple of approaches to how we allocate the new stack. We take the
+ // most obvious path and use `mmap`. We also `mprotect` a guard page into our
+ // allocation.
+ //
+ // We use a guard pattern to ensure we deallocate the allocated stack when we leave
+ // this function and also try to uphold various safety invariants required by `psm`
+ // (such as not unwinding from the callback we pass to it).
+ //
+ // Other than that this code has no meaningful gotchas.
+ unsafe {
+ let guard = StackRestoreGuard::new(stack_bytes, page_size);
+ let above_guard_page = guard.new_stack.add(page_size);
+ set_stack_limit(Some(above_guard_page as usize));
+ let panic = psm::on_stack(above_guard_page as *mut _, stack_size, move || {
+ std::panic::catch_unwind(std::panic::AssertUnwindSafe(callback)).err()
+ });
+ drop(guard);
+ if let Some(p) = panic {
+ std::panic::resume_unwind(p);
+ }
+ }
+ }
+
+ fn page_size() -> usize {
+ // FIXME: consider caching the page size.
+ #[cfg(not(target_arch = "wasm32"))]
+ unsafe { libc::sysconf(libc::_SC_PAGE_SIZE) as usize }
+ #[cfg(target_arch = "wasm32")]
+ { 65536 }
+ }
+ }
+
+ no {
+ #[cfg(not(windows))]
+ fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
+ drop(stack_size);
+ callback();
+ }
+ }
+}
+
+cfg_if! {
+ if #[cfg(windows)] {
+ use std::ptr;
+ use std::io;
+
+ use winapi::shared::basetsd::*;
+ use winapi::shared::minwindef::{LPVOID, BOOL};
+ use winapi::shared::ntdef::*;
+ use winapi::um::fibersapi::*;
+ use winapi::um::memoryapi::*;
+ use winapi::um::processthreadsapi::*;
+ use winapi::um::winbase::*;
+
+ // Make sure the libstacker.a (implemented in C) is linked.
+ // See https://github.com/rust-lang/rust/issues/65610
+ #[link(name="stacker")]
+ extern {
+ fn __stacker_get_current_fiber() -> PVOID;
+ }
+
+ struct FiberInfo<F> {
+ callback: std::mem::MaybeUninit<F>,
+ panic: Option<Box<dyn std::any::Any + Send + 'static>>,
+ parent_fiber: LPVOID,
+ }
+
+ unsafe extern "system" fn fiber_proc<F: FnOnce()>(data: LPVOID) {
+ // This function is the entry point to our inner fiber, and as argument we get an
+ // instance of `FiberInfo`. We will set-up the "runtime" for the callback and execute
+ // it.
+ let data = &mut *(data as *mut FiberInfo<F>);
+ let old_stack_limit = get_stack_limit();
+ set_stack_limit(guess_os_stack_limit());
+ let callback = data.callback.as_ptr();
+ data.panic = std::panic::catch_unwind(std::panic::AssertUnwindSafe(callback.read())).err();
+
+ // Restore to the previous Fiber
+ set_stack_limit(old_stack_limit);
+ SwitchToFiber(data.parent_fiber);
+ return;
+ }
+
+ fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
+ // Fibers (or stackful coroutines) is the only official way to create new stacks on the
+ // same thread on Windows. So in order to extend the stack we create fiber and switch
+ // to it so we can use it's stack. After running `callback` within our fiber, we switch
+ // back to the current stack and destroy the fiber and its associated stack.
+ unsafe {
+ let was_fiber = IsThreadAFiber() == TRUE as BOOL;
+ let mut data = FiberInfo {
+ callback: std::mem::MaybeUninit::new(callback),
+ panic: None,
+ parent_fiber: {
+ if was_fiber {
+ // Get a handle to the current fiber. We need to use a C implementation
+ // for this as GetCurrentFiber is an header only function.
+ __stacker_get_current_fiber()
+ } else {
+ // Convert the current thread to a fiber, so we are able to switch back
+ // to the current stack. Threads coverted to fibers still act like
+ // regular threads, but they have associated fiber data. We later
+ // convert it back to a regular thread and free the fiber data.
+ ConvertThreadToFiber(ptr::null_mut())
+ }
+ },
+ };
+
+ if data.parent_fiber.is_null() {
+ panic!("unable to convert thread to fiber: {}", io::Error::last_os_error());
+ }
+
+ let fiber = CreateFiber(
+ stack_size as SIZE_T,
+ Some(fiber_proc::<&mut dyn FnMut()>),
+ &mut data as *mut FiberInfo<&mut dyn FnMut()> as *mut _,
+ );
+ if fiber.is_null() {
+ panic!("unable to allocate fiber: {}", io::Error::last_os_error());
+ }
+
+ // Switch to the fiber we created. This changes stacks and starts executing
+ // fiber_proc on it. fiber_proc will run `callback` and then switch back to run the
+ // next statement.
+ SwitchToFiber(fiber);
+ DeleteFiber(fiber);
+
+ // Clean-up.
+ if !was_fiber {
+ if ConvertFiberToThread() == 0 {
+ // FIXME: Perhaps should not panic here?
+ panic!("unable to convert back to thread: {}", io::Error::last_os_error());
+ }
+ }
+ if let Some(p) = data.panic {
+ std::panic::resume_unwind(p);
+ }
+ }
+ }
+
+ #[inline(always)]
+ fn get_thread_stack_guarantee() -> usize {
+ let min_guarantee = if cfg!(target_pointer_width = "32") {
+ 0x1000
+ } else {
+ 0x2000
+ };
+ let mut stack_guarantee = 0;
+ unsafe {
+ // Read the current thread stack guarantee
+ // This is the stack reserved for stack overflow
+ // exception handling.
+ // This doesn't return the true value so we need
+ // some further logic to calculate the real stack
+ // guarantee. This logic is what is used on x86-32 and
+ // x86-64 Windows 10. Other versions and platforms may differ
+ SetThreadStackGuarantee(&mut stack_guarantee)
+ };
+ std::cmp::max(stack_guarantee, min_guarantee) as usize + 0x1000
+ }
+
+ #[inline(always)]
+ unsafe fn guess_os_stack_limit() -> Option<usize> {
+ // Query the allocation which contains our stack pointer in order
+ // to discover the size of the stack
+ //
+ // FIXME: we could read stack base from the TIB, specifically the 3rd element of it.
+ type QueryT = winapi::um::winnt::MEMORY_BASIC_INFORMATION;
+ let mut mi = std::mem::MaybeUninit::<QueryT>::uninit();
+ VirtualQuery(
+ psm::stack_pointer() as *const _,
+ mi.as_mut_ptr(),
+ std::mem::size_of::<QueryT>() as SIZE_T,
+ );
+ Some(mi.assume_init().AllocationBase as usize + get_thread_stack_guarantee() + 0x1000)
+ }
+ } else if #[cfg(any(target_os = "linux", target_os="solaris", target_os = "netbsd"))] {
+ unsafe fn guess_os_stack_limit() -> Option<usize> {
+ let mut attr = std::mem::MaybeUninit::<libc::pthread_attr_t>::uninit();
+ assert_eq!(libc::pthread_attr_init(attr.as_mut_ptr()), 0);
+ assert_eq!(libc::pthread_getattr_np(libc::pthread_self(),
+ attr.as_mut_ptr()), 0);
+ let mut stackaddr = std::ptr::null_mut();
+ let mut stacksize = 0;
+ assert_eq!(libc::pthread_attr_getstack(
+ attr.as_ptr(), &mut stackaddr, &mut stacksize
+ ), 0);
+ assert_eq!(libc::pthread_attr_destroy(attr.as_mut_ptr()), 0);
+ Some(stackaddr as usize)
+ }
+ } else if #[cfg(any(target_os = "freebsd", target_os = "dragonfly"))] {
+ unsafe fn guess_os_stack_limit() -> Option<usize> {
+ let mut attr = std::mem::MaybeUninit::<libc::pthread_attr_t>::uninit();
+ assert_eq!(libc::pthread_attr_init(attr.as_mut_ptr()), 0);
+ assert_eq!(libc::pthread_attr_get_np(libc::pthread_self(), attr.as_mut_ptr()), 0);
+ let mut stackaddr = std::ptr::null_mut();
+ let mut stacksize = 0;
+ assert_eq!(libc::pthread_attr_getstack(
+ attr.as_ptr(), &mut stackaddr, &mut stacksize
+ ), 0);
+ assert_eq!(libc::pthread_attr_destroy(attr.as_mut_ptr()), 0);
+ Some(stackaddr as usize)
+ }
+ } else if #[cfg(target_os = "openbsd")] {
+ unsafe fn guess_os_stack_limit() -> Option<usize> {
+ let mut stackinfo = std::mem::MaybeUninit::<libc::stack_t>::uninit();
+ assert_eq!(libc::pthread_stackseg_np(libc::pthread_self(), stackinfo.as_mut_ptr()), 0);
+ Some(stackinfo.assume_init().ss_sp as usize - stackinfo.assume_init().ss_size)
+ }
+ } else if #[cfg(target_os = "macos")] {
+ unsafe fn guess_os_stack_limit() -> Option<usize> {
+ Some(libc::pthread_get_stackaddr_np(libc::pthread_self()) as usize -
+ libc::pthread_get_stacksize_np(libc::pthread_self()) as usize)
+ }
+ } else {
+ // fallback for other platforms is to always increase the stack if we're on
+ // the root stack. After we increased the stack once, we know the new stack
+ // size and don't need this pessimization anymore
+ #[inline(always)]
+ unsafe fn guess_os_stack_limit() -> Option<usize> {
+ None
+ }
+ }
+}