summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_apfloat
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--compiler/rustc_apfloat/Cargo.toml8
-rw-r--r--compiler/rustc_apfloat/src/ieee.rs2758
-rw-r--r--compiler/rustc_apfloat/src/lib.rs693
-rw-r--r--compiler/rustc_apfloat/src/ppc.rs434
-rw-r--r--compiler/rustc_apfloat/tests/ieee.rs3301
-rw-r--r--compiler/rustc_apfloat/tests/ppc.rs530
6 files changed, 7724 insertions, 0 deletions
diff --git a/compiler/rustc_apfloat/Cargo.toml b/compiler/rustc_apfloat/Cargo.toml
new file mode 100644
index 000000000..98305201b
--- /dev/null
+++ b/compiler/rustc_apfloat/Cargo.toml
@@ -0,0 +1,8 @@
+[package]
+name = "rustc_apfloat"
+version = "0.0.0"
+edition = "2021"
+
+[dependencies]
+bitflags = "1.2.1"
+smallvec = { version = "1.8.1", features = ["union", "may_dangle"] }
diff --git a/compiler/rustc_apfloat/src/ieee.rs b/compiler/rustc_apfloat/src/ieee.rs
new file mode 100644
index 000000000..3db8adb2a
--- /dev/null
+++ b/compiler/rustc_apfloat/src/ieee.rs
@@ -0,0 +1,2758 @@
+use crate::{Category, ExpInt, IEK_INF, IEK_NAN, IEK_ZERO};
+use crate::{Float, FloatConvert, ParseError, Round, Status, StatusAnd};
+
+use core::cmp::{self, Ordering};
+use core::convert::TryFrom;
+use core::fmt::{self, Write};
+use core::marker::PhantomData;
+use core::mem;
+use core::ops::Neg;
+use smallvec::{smallvec, SmallVec};
+
+#[must_use]
+pub struct IeeeFloat<S> {
+ /// Absolute significand value (including the integer bit).
+ sig: [Limb; 1],
+
+ /// The signed unbiased exponent of the value.
+ exp: ExpInt,
+
+ /// What kind of floating point number this is.
+ category: Category,
+
+ /// Sign bit of the number.
+ sign: bool,
+
+ marker: PhantomData<S>,
+}
+
+/// Fundamental unit of big integer arithmetic, but also
+/// large to store the largest significands by itself.
+type Limb = u128;
+const LIMB_BITS: usize = 128;
+fn limbs_for_bits(bits: usize) -> usize {
+ (bits + LIMB_BITS - 1) / LIMB_BITS
+}
+
+/// Enum that represents what fraction of the LSB truncated bits of an fp number
+/// represent.
+///
+/// This essentially combines the roles of guard and sticky bits.
+#[must_use]
+#[derive(Copy, Clone, PartialEq, Eq, Debug)]
+enum Loss {
+ // Example of truncated bits:
+ ExactlyZero, // 000000
+ LessThanHalf, // 0xxxxx x's not all zero
+ ExactlyHalf, // 100000
+ MoreThanHalf, // 1xxxxx x's not all zero
+}
+
+/// Represents floating point arithmetic semantics.
+pub trait Semantics: Sized {
+ /// Total number of bits in the in-memory format.
+ const BITS: usize;
+
+ /// Number of bits in the significand. This includes the integer bit.
+ const PRECISION: usize;
+
+ /// The largest E such that 2<sup>E</sup> is representable; this matches the
+ /// definition of IEEE 754.
+ const MAX_EXP: ExpInt;
+
+ /// The smallest E such that 2<sup>E</sup> is a normalized number; this
+ /// matches the definition of IEEE 754.
+ const MIN_EXP: ExpInt = -Self::MAX_EXP + 1;
+
+ /// The significand bit that marks NaN as quiet.
+ const QNAN_BIT: usize = Self::PRECISION - 2;
+
+ /// The significand bitpattern to mark a NaN as quiet.
+ /// NOTE: for X87DoubleExtended we need to set two bits instead of 2.
+ const QNAN_SIGNIFICAND: Limb = 1 << Self::QNAN_BIT;
+
+ fn from_bits(bits: u128) -> IeeeFloat<Self> {
+ assert!(Self::BITS > Self::PRECISION);
+
+ let sign = bits & (1 << (Self::BITS - 1));
+ let exponent = (bits & !sign) >> (Self::PRECISION - 1);
+ let mut r = IeeeFloat {
+ sig: [bits & ((1 << (Self::PRECISION - 1)) - 1)],
+ // Convert the exponent from its bias representation to a signed integer.
+ exp: (exponent as ExpInt) - Self::MAX_EXP,
+ category: Category::Zero,
+ sign: sign != 0,
+ marker: PhantomData,
+ };
+
+ if r.exp == Self::MIN_EXP - 1 && r.sig == [0] {
+ // Exponent, significand meaningless.
+ r.category = Category::Zero;
+ } else if r.exp == Self::MAX_EXP + 1 && r.sig == [0] {
+ // Exponent, significand meaningless.
+ r.category = Category::Infinity;
+ } else if r.exp == Self::MAX_EXP + 1 && r.sig != [0] {
+ // Sign, exponent, significand meaningless.
+ r.category = Category::NaN;
+ } else {
+ r.category = Category::Normal;
+ if r.exp == Self::MIN_EXP - 1 {
+ // Denormal.
+ r.exp = Self::MIN_EXP;
+ } else {
+ // Set integer bit.
+ sig::set_bit(&mut r.sig, Self::PRECISION - 1);
+ }
+ }
+
+ r
+ }
+
+ fn to_bits(x: IeeeFloat<Self>) -> u128 {
+ assert!(Self::BITS > Self::PRECISION);
+
+ // Split integer bit from significand.
+ let integer_bit = sig::get_bit(&x.sig, Self::PRECISION - 1);
+ let mut significand = x.sig[0] & ((1 << (Self::PRECISION - 1)) - 1);
+ let exponent = match x.category {
+ Category::Normal => {
+ if x.exp == Self::MIN_EXP && !integer_bit {
+ // Denormal.
+ Self::MIN_EXP - 1
+ } else {
+ x.exp
+ }
+ }
+ Category::Zero => {
+ // FIXME(eddyb) Maybe we should guarantee an invariant instead?
+ significand = 0;
+ Self::MIN_EXP - 1
+ }
+ Category::Infinity => {
+ // FIXME(eddyb) Maybe we should guarantee an invariant instead?
+ significand = 0;
+ Self::MAX_EXP + 1
+ }
+ Category::NaN => Self::MAX_EXP + 1,
+ };
+
+ // Convert the exponent from a signed integer to its bias representation.
+ let exponent = (exponent + Self::MAX_EXP) as u128;
+
+ ((x.sign as u128) << (Self::BITS - 1)) | (exponent << (Self::PRECISION - 1)) | significand
+ }
+}
+
+impl<S> Copy for IeeeFloat<S> {}
+impl<S> Clone for IeeeFloat<S> {
+ fn clone(&self) -> Self {
+ *self
+ }
+}
+
+macro_rules! ieee_semantics {
+ ($($name:ident = $sem:ident($bits:tt : $exp_bits:tt)),*) => {
+ $(pub struct $sem;)*
+ $(pub type $name = IeeeFloat<$sem>;)*
+ $(impl Semantics for $sem {
+ const BITS: usize = $bits;
+ const PRECISION: usize = ($bits - 1 - $exp_bits) + 1;
+ const MAX_EXP: ExpInt = (1 << ($exp_bits - 1)) - 1;
+ })*
+ }
+}
+
+ieee_semantics! {
+ Half = HalfS(16:5),
+ Single = SingleS(32:8),
+ Double = DoubleS(64:11),
+ Quad = QuadS(128:15)
+}
+
+pub struct X87DoubleExtendedS;
+pub type X87DoubleExtended = IeeeFloat<X87DoubleExtendedS>;
+impl Semantics for X87DoubleExtendedS {
+ const BITS: usize = 80;
+ const PRECISION: usize = 64;
+ const MAX_EXP: ExpInt = (1 << (15 - 1)) - 1;
+
+ /// For x87 extended precision, we want to make a NaN, not a
+ /// pseudo-NaN. Maybe we should expose the ability to make
+ /// pseudo-NaNs?
+ const QNAN_SIGNIFICAND: Limb = 0b11 << Self::QNAN_BIT;
+
+ /// Integer bit is explicit in this format. Intel hardware (387 and later)
+ /// does not support these bit patterns:
+ /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
+ /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
+ /// exponent = 0, integer bit 1 ("pseudodenormal")
+ /// exponent != 0 nor all 1's, integer bit 0 ("unnormal")
+ /// At the moment, the first two are treated as NaNs, the second two as Normal.
+ fn from_bits(bits: u128) -> IeeeFloat<Self> {
+ let sign = bits & (1 << (Self::BITS - 1));
+ let exponent = (bits & !sign) >> Self::PRECISION;
+ let mut r = IeeeFloat {
+ sig: [bits & ((1 << (Self::PRECISION - 1)) - 1)],
+ // Convert the exponent from its bias representation to a signed integer.
+ exp: (exponent as ExpInt) - Self::MAX_EXP,
+ category: Category::Zero,
+ sign: sign != 0,
+ marker: PhantomData,
+ };
+
+ if r.exp == Self::MIN_EXP - 1 && r.sig == [0] {
+ // Exponent, significand meaningless.
+ r.category = Category::Zero;
+ } else if r.exp == Self::MAX_EXP + 1 && r.sig == [1 << (Self::PRECISION - 1)] {
+ // Exponent, significand meaningless.
+ r.category = Category::Infinity;
+ } else if r.exp == Self::MAX_EXP + 1 && r.sig != [1 << (Self::PRECISION - 1)] {
+ // Sign, exponent, significand meaningless.
+ r.category = Category::NaN;
+ } else {
+ r.category = Category::Normal;
+ if r.exp == Self::MIN_EXP - 1 {
+ // Denormal.
+ r.exp = Self::MIN_EXP;
+ }
+ }
+
+ r
+ }
+
+ fn to_bits(x: IeeeFloat<Self>) -> u128 {
+ // Get integer bit from significand.
+ let integer_bit = sig::get_bit(&x.sig, Self::PRECISION - 1);
+ let mut significand = x.sig[0] & ((1 << Self::PRECISION) - 1);
+ let exponent = match x.category {
+ Category::Normal => {
+ if x.exp == Self::MIN_EXP && !integer_bit {
+ // Denormal.
+ Self::MIN_EXP - 1
+ } else {
+ x.exp
+ }
+ }
+ Category::Zero => {
+ // FIXME(eddyb) Maybe we should guarantee an invariant instead?
+ significand = 0;
+ Self::MIN_EXP - 1
+ }
+ Category::Infinity => {
+ // FIXME(eddyb) Maybe we should guarantee an invariant instead?
+ significand = 1 << (Self::PRECISION - 1);
+ Self::MAX_EXP + 1
+ }
+ Category::NaN => Self::MAX_EXP + 1,
+ };
+
+ // Convert the exponent from a signed integer to its bias representation.
+ let exponent = (exponent + Self::MAX_EXP) as u128;
+
+ ((x.sign as u128) << (Self::BITS - 1)) | (exponent << Self::PRECISION) | significand
+ }
+}
+
+float_common_impls!(IeeeFloat<S>);
+
+impl<S: Semantics> PartialEq for IeeeFloat<S> {
+ fn eq(&self, rhs: &Self) -> bool {
+ self.partial_cmp(rhs) == Some(Ordering::Equal)
+ }
+}
+
+impl<S: Semantics> PartialOrd for IeeeFloat<S> {
+ fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
+ match (self.category, rhs.category) {
+ (Category::NaN, _) | (_, Category::NaN) => None,
+
+ (Category::Infinity, Category::Infinity) => Some((!self.sign).cmp(&(!rhs.sign))),
+
+ (Category::Zero, Category::Zero) => Some(Ordering::Equal),
+
+ (Category::Infinity, _) | (Category::Normal, Category::Zero) => {
+ Some((!self.sign).cmp(&self.sign))
+ }
+
+ (_, Category::Infinity) | (Category::Zero, Category::Normal) => {
+ Some(rhs.sign.cmp(&(!rhs.sign)))
+ }
+
+ (Category::Normal, Category::Normal) => {
+ // Two normal numbers. Do they have the same sign?
+ Some((!self.sign).cmp(&(!rhs.sign)).then_with(|| {
+ // Compare absolute values; invert result if negative.
+ let result = self.cmp_abs_normal(*rhs);
+
+ if self.sign { result.reverse() } else { result }
+ }))
+ }
+ }
+ }
+}
+
+impl<S> Neg for IeeeFloat<S> {
+ type Output = Self;
+ fn neg(mut self) -> Self {
+ self.sign = !self.sign;
+ self
+ }
+}
+
+/// Prints this value as a decimal string.
+///
+/// \param precision The maximum number of digits of
+/// precision to output. If there are fewer digits available,
+/// zero padding will not be used unless the value is
+/// integral and small enough to be expressed in
+/// precision digits. 0 means to use the natural
+/// precision of the number.
+/// \param width The maximum number of zeros to
+/// consider inserting before falling back to scientific
+/// notation. 0 means to always use scientific notation.
+///
+/// \param alternate Indicate whether to remove the trailing zero in
+/// fraction part or not. Also setting this parameter to true forces
+/// producing of output more similar to default printf behavior.
+/// Specifically the lower e is used as exponent delimiter and exponent
+/// always contains no less than two digits.
+///
+/// Number precision width Result
+/// ------ --------- ----- ------
+/// 1.01E+4 5 2 10100
+/// 1.01E+4 4 2 1.01E+4
+/// 1.01E+4 5 1 1.01E+4
+/// 1.01E-2 5 2 0.0101
+/// 1.01E-2 4 2 0.0101
+/// 1.01E-2 4 1 1.01E-2
+impl<S: Semantics> fmt::Display for IeeeFloat<S> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ let width = f.width().unwrap_or(3);
+ let alternate = f.alternate();
+
+ match self.category {
+ Category::Infinity => {
+ if self.sign {
+ return f.write_str("-Inf");
+ } else {
+ return f.write_str("+Inf");
+ }
+ }
+
+ Category::NaN => return f.write_str("NaN"),
+
+ Category::Zero => {
+ if self.sign {
+ f.write_char('-')?;
+ }
+
+ if width == 0 {
+ if alternate {
+ f.write_str("0.0")?;
+ if let Some(n) = f.precision() {
+ for _ in 1..n {
+ f.write_char('0')?;
+ }
+ }
+ f.write_str("e+00")?;
+ } else {
+ f.write_str("0.0E+0")?;
+ }
+ } else {
+ f.write_char('0')?;
+ }
+ return Ok(());
+ }
+
+ Category::Normal => {}
+ }
+
+ if self.sign {
+ f.write_char('-')?;
+ }
+
+ // We use enough digits so the number can be round-tripped back to an
+ // APFloat. The formula comes from "How to Print Floating-Point Numbers
+ // Accurately" by Steele and White.
+ // FIXME: Using a formula based purely on the precision is conservative;
+ // we can print fewer digits depending on the actual value being printed.
+
+ // precision = 2 + floor(S::PRECISION / lg_2(10))
+ let precision = f.precision().unwrap_or(2 + S::PRECISION * 59 / 196);
+
+ // Decompose the number into an APInt and an exponent.
+ let mut exp = self.exp - (S::PRECISION as ExpInt - 1);
+ let mut sig = vec![self.sig[0]];
+
+ // Ignore trailing binary zeros.
+ let trailing_zeros = sig[0].trailing_zeros();
+ let _: Loss = sig::shift_right(&mut sig, &mut exp, trailing_zeros as usize);
+
+ // Change the exponent from 2^e to 10^e.
+ if exp == 0 {
+ // Nothing to do.
+ } else if exp > 0 {
+ // Just shift left.
+ let shift = exp as usize;
+ sig.resize(limbs_for_bits(S::PRECISION + shift), 0);
+ sig::shift_left(&mut sig, &mut exp, shift);
+ } else {
+ // exp < 0
+ let mut texp = -exp as usize;
+
+ // We transform this using the identity:
+ // (N)(2^-e) == (N)(5^e)(10^-e)
+
+ // Multiply significand by 5^e.
+ // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
+ let mut sig_scratch = vec![];
+ let mut p5 = vec![];
+ let mut p5_scratch = vec![];
+ while texp != 0 {
+ if p5.is_empty() {
+ p5.push(5);
+ } else {
+ p5_scratch.resize(p5.len() * 2, 0);
+ let _: Loss =
+ sig::mul(&mut p5_scratch, &mut 0, &p5, &p5, p5.len() * 2 * LIMB_BITS);
+ while p5_scratch.last() == Some(&0) {
+ p5_scratch.pop();
+ }
+ mem::swap(&mut p5, &mut p5_scratch);
+ }
+ if texp & 1 != 0 {
+ sig_scratch.resize(sig.len() + p5.len(), 0);
+ let _: Loss = sig::mul(
+ &mut sig_scratch,
+ &mut 0,
+ &sig,
+ &p5,
+ (sig.len() + p5.len()) * LIMB_BITS,
+ );
+ while sig_scratch.last() == Some(&0) {
+ sig_scratch.pop();
+ }
+ mem::swap(&mut sig, &mut sig_scratch);
+ }
+ texp >>= 1;
+ }
+ }
+
+ // Fill the buffer.
+ let mut buffer = vec![];
+
+ // Ignore digits from the significand until it is no more
+ // precise than is required for the desired precision.
+ // 196/59 is a very slight overestimate of lg_2(10).
+ let required = (precision * 196 + 58) / 59;
+ let mut discard_digits = sig::omsb(&sig).saturating_sub(required) * 59 / 196;
+ let mut in_trail = true;
+ while !sig.is_empty() {
+ // Perform short division by 10 to extract the rightmost digit.
+ // rem <- sig % 10
+ // sig <- sig / 10
+ let mut rem = 0;
+
+ // Use 64-bit division and remainder, with 32-bit chunks from sig.
+ sig::each_chunk(&mut sig, 32, |chunk| {
+ let chunk = chunk as u32;
+ let combined = ((rem as u64) << 32) | (chunk as u64);
+ rem = (combined % 10) as u8;
+ (combined / 10) as u32 as Limb
+ });
+
+ // Reduce the significand to avoid wasting time dividing 0's.
+ while sig.last() == Some(&0) {
+ sig.pop();
+ }
+
+ let digit = rem;
+
+ // Ignore digits we don't need.
+ if discard_digits > 0 {
+ discard_digits -= 1;
+ exp += 1;
+ continue;
+ }
+
+ // Drop trailing zeros.
+ if in_trail && digit == 0 {
+ exp += 1;
+ } else {
+ in_trail = false;
+ buffer.push(b'0' + digit);
+ }
+ }
+
+ assert!(!buffer.is_empty(), "no characters in buffer!");
+
+ // Drop down to precision.
+ // FIXME: don't do more precise calculations above than are required.
+ if buffer.len() > precision {
+ // The most significant figures are the last ones in the buffer.
+ let mut first_sig = buffer.len() - precision;
+
+ // Round.
+ // FIXME: this probably shouldn't use 'round half up'.
+
+ // Rounding down is just a truncation, except we also want to drop
+ // trailing zeros from the new result.
+ if buffer[first_sig - 1] < b'5' {
+ while first_sig < buffer.len() && buffer[first_sig] == b'0' {
+ first_sig += 1;
+ }
+ } else {
+ // Rounding up requires a decimal add-with-carry. If we continue
+ // the carry, the newly-introduced zeros will just be truncated.
+ for x in &mut buffer[first_sig..] {
+ if *x == b'9' {
+ first_sig += 1;
+ } else {
+ *x += 1;
+ break;
+ }
+ }
+ }
+
+ exp += first_sig as ExpInt;
+ buffer.drain(..first_sig);
+
+ // If we carried through, we have exactly one digit of precision.
+ if buffer.is_empty() {
+ buffer.push(b'1');
+ }
+ }
+
+ let digits = buffer.len();
+
+ // Check whether we should use scientific notation.
+ let scientific = if width == 0 {
+ true
+ } else if exp >= 0 {
+ // 765e3 --> 765000
+ // ^^^
+ // But we shouldn't make the number look more precise than it is.
+ exp as usize > width || digits + exp as usize > precision
+ } else {
+ // Power of the most significant digit.
+ let msd = exp + (digits - 1) as ExpInt;
+ if msd >= 0 {
+ // 765e-2 == 7.65
+ false
+ } else {
+ // 765e-5 == 0.00765
+ // ^ ^^
+ -msd as usize > width
+ }
+ };
+
+ // Scientific formatting is pretty straightforward.
+ if scientific {
+ exp += digits as ExpInt - 1;
+
+ f.write_char(buffer[digits - 1] as char)?;
+ f.write_char('.')?;
+ let truncate_zero = !alternate;
+ if digits == 1 && truncate_zero {
+ f.write_char('0')?;
+ } else {
+ for &d in buffer[..digits - 1].iter().rev() {
+ f.write_char(d as char)?;
+ }
+ }
+ // Fill with zeros up to precision.
+ if !truncate_zero && precision > digits - 1 {
+ for _ in 0..=precision - digits {
+ f.write_char('0')?;
+ }
+ }
+ // For alternate we use lower 'e'.
+ f.write_char(if alternate { 'e' } else { 'E' })?;
+
+ // Exponent always at least two digits if we do not truncate zeros.
+ if truncate_zero {
+ write!(f, "{:+}", exp)?;
+ } else {
+ write!(f, "{:+03}", exp)?;
+ }
+
+ return Ok(());
+ }
+
+ // Non-scientific, positive exponents.
+ if exp >= 0 {
+ for &d in buffer.iter().rev() {
+ f.write_char(d as char)?;
+ }
+ for _ in 0..exp {
+ f.write_char('0')?;
+ }
+ return Ok(());
+ }
+
+ // Non-scientific, negative exponents.
+ let unit_place = -exp as usize;
+ if unit_place < digits {
+ for &d in buffer[unit_place..].iter().rev() {
+ f.write_char(d as char)?;
+ }
+ f.write_char('.')?;
+ for &d in buffer[..unit_place].iter().rev() {
+ f.write_char(d as char)?;
+ }
+ } else {
+ f.write_str("0.")?;
+ for _ in digits..unit_place {
+ f.write_char('0')?;
+ }
+ for &d in buffer.iter().rev() {
+ f.write_char(d as char)?;
+ }
+ }
+
+ Ok(())
+ }
+}
+
+impl<S: Semantics> fmt::Debug for IeeeFloat<S> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(
+ f,
+ "{}({:?} | {}{:?} * 2^{})",
+ self,
+ self.category,
+ if self.sign { "-" } else { "+" },
+ self.sig,
+ self.exp
+ )
+ }
+}
+
+impl<S: Semantics> Float for IeeeFloat<S> {
+ const BITS: usize = S::BITS;
+ const PRECISION: usize = S::PRECISION;
+ const MAX_EXP: ExpInt = S::MAX_EXP;
+ const MIN_EXP: ExpInt = S::MIN_EXP;
+
+ const ZERO: Self = IeeeFloat {
+ sig: [0],
+ exp: S::MIN_EXP - 1,
+ category: Category::Zero,
+ sign: false,
+ marker: PhantomData,
+ };
+
+ const INFINITY: Self = IeeeFloat {
+ sig: [0],
+ exp: S::MAX_EXP + 1,
+ category: Category::Infinity,
+ sign: false,
+ marker: PhantomData,
+ };
+
+ // FIXME(eddyb) remove when qnan becomes const fn.
+ const NAN: Self = IeeeFloat {
+ sig: [S::QNAN_SIGNIFICAND],
+ exp: S::MAX_EXP + 1,
+ category: Category::NaN,
+ sign: false,
+ marker: PhantomData,
+ };
+
+ fn qnan(payload: Option<u128>) -> Self {
+ IeeeFloat {
+ sig: [S::QNAN_SIGNIFICAND
+ | payload.map_or(0, |payload| {
+ // Zero out the excess bits of the significand.
+ payload & ((1 << S::QNAN_BIT) - 1)
+ })],
+ exp: S::MAX_EXP + 1,
+ category: Category::NaN,
+ sign: false,
+ marker: PhantomData,
+ }
+ }
+
+ fn snan(payload: Option<u128>) -> Self {
+ let mut snan = Self::qnan(payload);
+
+ // We always have to clear the QNaN bit to make it an SNaN.
+ sig::clear_bit(&mut snan.sig, S::QNAN_BIT);
+
+ // If there are no bits set in the payload, we have to set
+ // *something* to make it a NaN instead of an infinity;
+ // conventionally, this is the next bit down from the QNaN bit.
+ if snan.sig[0] & !S::QNAN_SIGNIFICAND == 0 {
+ sig::set_bit(&mut snan.sig, S::QNAN_BIT - 1);
+ }
+
+ snan
+ }
+
+ fn largest() -> Self {
+ // We want (in interchange format):
+ // exponent = 1..10
+ // significand = 1..1
+ IeeeFloat {
+ sig: [(1 << S::PRECISION) - 1],
+ exp: S::MAX_EXP,
+ category: Category::Normal,
+ sign: false,
+ marker: PhantomData,
+ }
+ }
+
+ // We want (in interchange format):
+ // exponent = 0..0
+ // significand = 0..01
+ const SMALLEST: Self = IeeeFloat {
+ sig: [1],
+ exp: S::MIN_EXP,
+ category: Category::Normal,
+ sign: false,
+ marker: PhantomData,
+ };
+
+ fn smallest_normalized() -> Self {
+ // We want (in interchange format):
+ // exponent = 0..0
+ // significand = 10..0
+ IeeeFloat {
+ sig: [1 << (S::PRECISION - 1)],
+ exp: S::MIN_EXP,
+ category: Category::Normal,
+ sign: false,
+ marker: PhantomData,
+ }
+ }
+
+ fn add_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
+ let status = match (self.category, rhs.category) {
+ (Category::Infinity, Category::Infinity) => {
+ // Differently signed infinities can only be validly
+ // subtracted.
+ if self.sign != rhs.sign {
+ self = Self::NAN;
+ Status::INVALID_OP
+ } else {
+ Status::OK
+ }
+ }
+
+ // Sign may depend on rounding mode; handled below.
+ (_, Category::Zero) | (Category::NaN, _) | (Category::Infinity, Category::Normal) => {
+ Status::OK
+ }
+
+ (Category::Zero, _) | (_, Category::NaN | Category::Infinity) => {
+ self = rhs;
+ Status::OK
+ }
+
+ // This return code means it was not a simple case.
+ (Category::Normal, Category::Normal) => {
+ let loss = sig::add_or_sub(
+ &mut self.sig,
+ &mut self.exp,
+ &mut self.sign,
+ &mut [rhs.sig[0]],
+ rhs.exp,
+ rhs.sign,
+ );
+ let status;
+ self = unpack!(status=, self.normalize(round, loss));
+
+ // Can only be zero if we lost no fraction.
+ assert!(self.category != Category::Zero || loss == Loss::ExactlyZero);
+
+ status
+ }
+ };
+
+ // If two numbers add (exactly) to zero, IEEE 754 decrees it is a
+ // positive zero unless rounding to minus infinity, except that
+ // adding two like-signed zeroes gives that zero.
+ if self.category == Category::Zero
+ && (rhs.category != Category::Zero || self.sign != rhs.sign)
+ {
+ self.sign = round == Round::TowardNegative;
+ }
+
+ status.and(self)
+ }
+
+ fn mul_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
+ self.sign ^= rhs.sign;
+
+ match (self.category, rhs.category) {
+ (Category::NaN, _) => {
+ self.sign = false;
+ Status::OK.and(self)
+ }
+
+ (_, Category::NaN) => {
+ self.sign = false;
+ self.category = Category::NaN;
+ self.sig = rhs.sig;
+ Status::OK.and(self)
+ }
+
+ (Category::Zero, Category::Infinity) | (Category::Infinity, Category::Zero) => {
+ Status::INVALID_OP.and(Self::NAN)
+ }
+
+ (_, Category::Infinity) | (Category::Infinity, _) => {
+ self.category = Category::Infinity;
+ Status::OK.and(self)
+ }
+
+ (Category::Zero, _) | (_, Category::Zero) => {
+ self.category = Category::Zero;
+ Status::OK.and(self)
+ }
+
+ (Category::Normal, Category::Normal) => {
+ self.exp += rhs.exp;
+ let mut wide_sig = [0; 2];
+ let loss =
+ sig::mul(&mut wide_sig, &mut self.exp, &self.sig, &rhs.sig, S::PRECISION);
+ self.sig = [wide_sig[0]];
+ let mut status;
+ self = unpack!(status=, self.normalize(round, loss));
+ if loss != Loss::ExactlyZero {
+ status |= Status::INEXACT;
+ }
+ status.and(self)
+ }
+ }
+ }
+
+ fn mul_add_r(mut self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self> {
+ // If and only if all arguments are normal do we need to do an
+ // extended-precision calculation.
+ if !self.is_finite_non_zero() || !multiplicand.is_finite_non_zero() || !addend.is_finite() {
+ let mut status;
+ self = unpack!(status=, self.mul_r(multiplicand, round));
+
+ // FS can only be Status::OK or Status::INVALID_OP. There is no more work
+ // to do in the latter case. The IEEE-754R standard says it is
+ // implementation-defined in this case whether, if ADDEND is a
+ // quiet NaN, we raise invalid op; this implementation does so.
+ //
+ // If we need to do the addition we can do so with normal
+ // precision.
+ if status == Status::OK {
+ self = unpack!(status=, self.add_r(addend, round));
+ }
+ return status.and(self);
+ }
+
+ // Post-multiplication sign, before addition.
+ self.sign ^= multiplicand.sign;
+
+ // Allocate space for twice as many bits as the original significand, plus one
+ // extra bit for the addition to overflow into.
+ assert!(limbs_for_bits(S::PRECISION * 2 + 1) <= 2);
+ let mut wide_sig = sig::widening_mul(self.sig[0], multiplicand.sig[0]);
+
+ let mut loss = Loss::ExactlyZero;
+ let mut omsb = sig::omsb(&wide_sig);
+ self.exp += multiplicand.exp;
+
+ // Assume the operands involved in the multiplication are single-precision
+ // FP, and the two multiplicants are:
+ // lhs = a23 . a22 ... a0 * 2^e1
+ // rhs = b23 . b22 ... b0 * 2^e2
+ // the result of multiplication is:
+ // lhs = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
+ // Note that there are three significant bits at the left-hand side of the
+ // radix point: two for the multiplication, and an overflow bit for the
+ // addition (that will always be zero at this point). Move the radix point
+ // toward left by two bits, and adjust exponent accordingly.
+ self.exp += 2;
+
+ if addend.is_non_zero() {
+ // Normalize our MSB to one below the top bit to allow for overflow.
+ let ext_precision = 2 * S::PRECISION + 1;
+ if omsb != ext_precision - 1 {
+ assert!(ext_precision > omsb);
+ sig::shift_left(&mut wide_sig, &mut self.exp, (ext_precision - 1) - omsb);
+ }
+
+ // The intermediate result of the multiplication has "2 * S::PRECISION"
+ // significant bit; adjust the addend to be consistent with mul result.
+ let mut ext_addend_sig = [addend.sig[0], 0];
+
+ // Extend the addend significand to ext_precision - 1. This guarantees
+ // that the high bit of the significand is zero (same as wide_sig),
+ // so the addition will overflow (if it does overflow at all) into the top bit.
+ sig::shift_left(&mut ext_addend_sig, &mut 0, ext_precision - 1 - S::PRECISION);
+ loss = sig::add_or_sub(
+ &mut wide_sig,
+ &mut self.exp,
+ &mut self.sign,
+ &mut ext_addend_sig,
+ addend.exp + 1,
+ addend.sign,
+ );
+
+ omsb = sig::omsb(&wide_sig);
+ }
+
+ // Convert the result having "2 * S::PRECISION" significant-bits back to the one
+ // having "S::PRECISION" significant-bits. First, move the radix point from
+ // position "2*S::PRECISION - 1" to "S::PRECISION - 1". The exponent need to be
+ // adjusted by "2*S::PRECISION - 1" - "S::PRECISION - 1" = "S::PRECISION".
+ self.exp -= S::PRECISION as ExpInt + 1;
+
+ // In case MSB resides at the left-hand side of radix point, shift the
+ // mantissa right by some amount to make sure the MSB reside right before
+ // the radix point (i.e., "MSB . rest-significant-bits").
+ if omsb > S::PRECISION {
+ let bits = omsb - S::PRECISION;
+ loss = sig::shift_right(&mut wide_sig, &mut self.exp, bits).combine(loss);
+ }
+
+ self.sig[0] = wide_sig[0];
+
+ let mut status;
+ self = unpack!(status=, self.normalize(round, loss));
+ if loss != Loss::ExactlyZero {
+ status |= Status::INEXACT;
+ }
+
+ // If two numbers add (exactly) to zero, IEEE 754 decrees it is a
+ // positive zero unless rounding to minus infinity, except that
+ // adding two like-signed zeroes gives that zero.
+ if self.category == Category::Zero
+ && !status.intersects(Status::UNDERFLOW)
+ && self.sign != addend.sign
+ {
+ self.sign = round == Round::TowardNegative;
+ }
+
+ status.and(self)
+ }
+
+ fn div_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
+ self.sign ^= rhs.sign;
+
+ match (self.category, rhs.category) {
+ (Category::NaN, _) => {
+ self.sign = false;
+ Status::OK.and(self)
+ }
+
+ (_, Category::NaN) => {
+ self.category = Category::NaN;
+ self.sig = rhs.sig;
+ self.sign = false;
+ Status::OK.and(self)
+ }
+
+ (Category::Infinity, Category::Infinity) | (Category::Zero, Category::Zero) => {
+ Status::INVALID_OP.and(Self::NAN)
+ }
+
+ (Category::Infinity | Category::Zero, _) => Status::OK.and(self),
+
+ (Category::Normal, Category::Infinity) => {
+ self.category = Category::Zero;
+ Status::OK.and(self)
+ }
+
+ (Category::Normal, Category::Zero) => {
+ self.category = Category::Infinity;
+ Status::DIV_BY_ZERO.and(self)
+ }
+
+ (Category::Normal, Category::Normal) => {
+ self.exp -= rhs.exp;
+ let dividend = self.sig[0];
+ let loss = sig::div(
+ &mut self.sig,
+ &mut self.exp,
+ &mut [dividend],
+ &mut [rhs.sig[0]],
+ S::PRECISION,
+ );
+ let mut status;
+ self = unpack!(status=, self.normalize(round, loss));
+ if loss != Loss::ExactlyZero {
+ status |= Status::INEXACT;
+ }
+ status.and(self)
+ }
+ }
+ }
+
+ fn c_fmod(mut self, rhs: Self) -> StatusAnd<Self> {
+ match (self.category, rhs.category) {
+ (Category::NaN, _)
+ | (Category::Zero, Category::Infinity | Category::Normal)
+ | (Category::Normal, Category::Infinity) => Status::OK.and(self),
+
+ (_, Category::NaN) => {
+ self.sign = false;
+ self.category = Category::NaN;
+ self.sig = rhs.sig;
+ Status::OK.and(self)
+ }
+
+ (Category::Infinity, _) | (_, Category::Zero) => Status::INVALID_OP.and(Self::NAN),
+
+ (Category::Normal, Category::Normal) => {
+ while self.is_finite_non_zero()
+ && rhs.is_finite_non_zero()
+ && self.cmp_abs_normal(rhs) != Ordering::Less
+ {
+ let mut v = rhs.scalbn(self.ilogb() - rhs.ilogb());
+ if self.cmp_abs_normal(v) == Ordering::Less {
+ v = v.scalbn(-1);
+ }
+ v.sign = self.sign;
+
+ let status;
+ self = unpack!(status=, self - v);
+ assert_eq!(status, Status::OK);
+ }
+ Status::OK.and(self)
+ }
+ }
+ }
+
+ fn round_to_integral(self, round: Round) -> StatusAnd<Self> {
+ // If the exponent is large enough, we know that this value is already
+ // integral, and the arithmetic below would potentially cause it to saturate
+ // to +/-Inf. Bail out early instead.
+ if self.is_finite_non_zero() && self.exp + 1 >= S::PRECISION as ExpInt {
+ return Status::OK.and(self);
+ }
+
+ // The algorithm here is quite simple: we add 2^(p-1), where p is the
+ // precision of our format, and then subtract it back off again. The choice
+ // of rounding modes for the addition/subtraction determines the rounding mode
+ // for our integral rounding as well.
+ // NOTE: When the input value is negative, we do subtraction followed by
+ // addition instead.
+ assert!(S::PRECISION <= 128);
+ let mut status;
+ let magic_const = unpack!(status=, Self::from_u128(1 << (S::PRECISION - 1)));
+ let magic_const = magic_const.copy_sign(self);
+
+ if status != Status::OK {
+ return status.and(self);
+ }
+
+ let mut r = self;
+ r = unpack!(status=, r.add_r(magic_const, round));
+ if status != Status::OK && status != Status::INEXACT {
+ return status.and(self);
+ }
+
+ // Restore the input sign to handle 0.0/-0.0 cases correctly.
+ r.sub_r(magic_const, round).map(|r| r.copy_sign(self))
+ }
+
+ fn next_up(mut self) -> StatusAnd<Self> {
+ // Compute nextUp(x), handling each float category separately.
+ match self.category {
+ Category::Infinity => {
+ if self.sign {
+ // nextUp(-inf) = -largest
+ Status::OK.and(-Self::largest())
+ } else {
+ // nextUp(+inf) = +inf
+ Status::OK.and(self)
+ }
+ }
+ Category::NaN => {
+ // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
+ // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
+ // change the payload.
+ if self.is_signaling() {
+ // For consistency, propagate the sign of the sNaN to the qNaN.
+ Status::INVALID_OP.and(Self::NAN.copy_sign(self))
+ } else {
+ Status::OK.and(self)
+ }
+ }
+ Category::Zero => {
+ // nextUp(pm 0) = +smallest
+ Status::OK.and(Self::SMALLEST)
+ }
+ Category::Normal => {
+ // nextUp(-smallest) = -0
+ if self.is_smallest() && self.sign {
+ return Status::OK.and(-Self::ZERO);
+ }
+
+ // nextUp(largest) == INFINITY
+ if self.is_largest() && !self.sign {
+ return Status::OK.and(Self::INFINITY);
+ }
+
+ // Excluding the integral bit. This allows us to test for binade boundaries.
+ let sig_mask = (1 << (S::PRECISION - 1)) - 1;
+
+ // nextUp(normal) == normal + inc.
+ if self.sign {
+ // If we are negative, we need to decrement the significand.
+
+ // We only cross a binade boundary that requires adjusting the exponent
+ // if:
+ // 1. exponent != S::MIN_EXP. This implies we are not in the
+ // smallest binade or are dealing with denormals.
+ // 2. Our significand excluding the integral bit is all zeros.
+ let crossing_binade_boundary =
+ self.exp != S::MIN_EXP && self.sig[0] & sig_mask == 0;
+
+ // Decrement the significand.
+ //
+ // We always do this since:
+ // 1. If we are dealing with a non-binade decrement, by definition we
+ // just decrement the significand.
+ // 2. If we are dealing with a normal -> normal binade decrement, since
+ // we have an explicit integral bit the fact that all bits but the
+ // integral bit are zero implies that subtracting one will yield a
+ // significand with 0 integral bit and 1 in all other spots. Thus we
+ // must just adjust the exponent and set the integral bit to 1.
+ // 3. If we are dealing with a normal -> denormal binade decrement,
+ // since we set the integral bit to 0 when we represent denormals, we
+ // just decrement the significand.
+ sig::decrement(&mut self.sig);
+
+ if crossing_binade_boundary {
+ // Our result is a normal number. Do the following:
+ // 1. Set the integral bit to 1.
+ // 2. Decrement the exponent.
+ sig::set_bit(&mut self.sig, S::PRECISION - 1);
+ self.exp -= 1;
+ }
+ } else {
+ // If we are positive, we need to increment the significand.
+
+ // We only cross a binade boundary that requires adjusting the exponent if
+ // the input is not a denormal and all of said input's significand bits
+ // are set. If all of said conditions are true: clear the significand, set
+ // the integral bit to 1, and increment the exponent. If we have a
+ // denormal always increment since moving denormals and the numbers in the
+ // smallest normal binade have the same exponent in our representation.
+ let crossing_binade_boundary =
+ !self.is_denormal() && self.sig[0] & sig_mask == sig_mask;
+
+ if crossing_binade_boundary {
+ self.sig = [0];
+ sig::set_bit(&mut self.sig, S::PRECISION - 1);
+ assert_ne!(
+ self.exp,
+ S::MAX_EXP,
+ "We can not increment an exponent beyond the MAX_EXP \
+ allowed by the given floating point semantics."
+ );
+ self.exp += 1;
+ } else {
+ sig::increment(&mut self.sig);
+ }
+ }
+ Status::OK.and(self)
+ }
+ }
+ }
+
+ fn from_bits(input: u128) -> Self {
+ // Dispatch to semantics.
+ S::from_bits(input)
+ }
+
+ fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self> {
+ IeeeFloat {
+ sig: [input],
+ exp: S::PRECISION as ExpInt - 1,
+ category: Category::Normal,
+ sign: false,
+ marker: PhantomData,
+ }
+ .normalize(round, Loss::ExactlyZero)
+ }
+
+ fn from_str_r(mut s: &str, mut round: Round) -> Result<StatusAnd<Self>, ParseError> {
+ if s.is_empty() {
+ return Err(ParseError("Invalid string length"));
+ }
+
+ // Handle special cases.
+ match s {
+ "inf" | "INFINITY" => return Ok(Status::OK.and(Self::INFINITY)),
+ "-inf" | "-INFINITY" => return Ok(Status::OK.and(-Self::INFINITY)),
+ "nan" | "NaN" => return Ok(Status::OK.and(Self::NAN)),
+ "-nan" | "-NaN" => return Ok(Status::OK.and(-Self::NAN)),
+ _ => {}
+ }
+
+ // Handle a leading minus sign.
+ let minus = s.starts_with('-');
+ if minus || s.starts_with('+') {
+ s = &s[1..];
+ if s.is_empty() {
+ return Err(ParseError("String has no digits"));
+ }
+ }
+
+ // Adjust the rounding mode for the absolute value below.
+ if minus {
+ round = -round;
+ }
+
+ let r = if s.starts_with("0x") || s.starts_with("0X") {
+ s = &s[2..];
+ if s.is_empty() {
+ return Err(ParseError("Invalid string"));
+ }
+ Self::from_hexadecimal_string(s, round)?
+ } else {
+ Self::from_decimal_string(s, round)?
+ };
+
+ Ok(r.map(|r| if minus { -r } else { r }))
+ }
+
+ fn to_bits(self) -> u128 {
+ // Dispatch to semantics.
+ S::to_bits(self)
+ }
+
+ fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128> {
+ // The result of trying to convert a number too large.
+ let overflow = if self.sign {
+ // Negative numbers cannot be represented as unsigned.
+ 0
+ } else {
+ // Largest unsigned integer of the given width.
+ !0 >> (128 - width)
+ };
+
+ *is_exact = false;
+
+ match self.category {
+ Category::NaN => Status::INVALID_OP.and(0),
+
+ Category::Infinity => Status::INVALID_OP.and(overflow),
+
+ Category::Zero => {
+ // Negative zero can't be represented as an int.
+ *is_exact = !self.sign;
+ Status::OK.and(0)
+ }
+
+ Category::Normal => {
+ let mut r = 0;
+
+ // Step 1: place our absolute value, with any fraction truncated, in
+ // the destination.
+ let truncated_bits = if self.exp < 0 {
+ // Our absolute value is less than one; truncate everything.
+ // For exponent -1 the integer bit represents .5, look at that.
+ // For smaller exponents leftmost truncated bit is 0.
+ S::PRECISION - 1 + (-self.exp) as usize
+ } else {
+ // We want the most significant (exponent + 1) bits; the rest are
+ // truncated.
+ let bits = self.exp as usize + 1;
+
+ // Hopelessly large in magnitude?
+ if bits > width {
+ return Status::INVALID_OP.and(overflow);
+ }
+
+ if bits < S::PRECISION {
+ // We truncate (S::PRECISION - bits) bits.
+ r = self.sig[0] >> (S::PRECISION - bits);
+ S::PRECISION - bits
+ } else {
+ // We want at least as many bits as are available.
+ r = self.sig[0] << (bits - S::PRECISION);
+ 0
+ }
+ };
+
+ // Step 2: work out any lost fraction, and increment the absolute
+ // value if we would round away from zero.
+ let mut loss = Loss::ExactlyZero;
+ if truncated_bits > 0 {
+ loss = Loss::through_truncation(&self.sig, truncated_bits);
+ if loss != Loss::ExactlyZero
+ && self.round_away_from_zero(round, loss, truncated_bits)
+ {
+ r = r.wrapping_add(1);
+ if r == 0 {
+ return Status::INVALID_OP.and(overflow); // Overflow.
+ }
+ }
+ }
+
+ // Step 3: check if we fit in the destination.
+ if r > overflow {
+ return Status::INVALID_OP.and(overflow);
+ }
+
+ if loss == Loss::ExactlyZero {
+ *is_exact = true;
+ Status::OK.and(r)
+ } else {
+ Status::INEXACT.and(r)
+ }
+ }
+ }
+ }
+
+ fn cmp_abs_normal(self, rhs: Self) -> Ordering {
+ assert!(self.is_finite_non_zero());
+ assert!(rhs.is_finite_non_zero());
+
+ // If exponents are equal, do an unsigned comparison of the significands.
+ self.exp.cmp(&rhs.exp).then_with(|| sig::cmp(&self.sig, &rhs.sig))
+ }
+
+ fn bitwise_eq(self, rhs: Self) -> bool {
+ if self.category != rhs.category || self.sign != rhs.sign {
+ return false;
+ }
+
+ if self.category == Category::Zero || self.category == Category::Infinity {
+ return true;
+ }
+
+ if self.is_finite_non_zero() && self.exp != rhs.exp {
+ return false;
+ }
+
+ self.sig == rhs.sig
+ }
+
+ fn is_negative(self) -> bool {
+ self.sign
+ }
+
+ fn is_denormal(self) -> bool {
+ self.is_finite_non_zero()
+ && self.exp == S::MIN_EXP
+ && !sig::get_bit(&self.sig, S::PRECISION - 1)
+ }
+
+ fn is_signaling(self) -> bool {
+ // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
+ // first bit of the trailing significand being 0.
+ self.is_nan() && !sig::get_bit(&self.sig, S::QNAN_BIT)
+ }
+
+ fn category(self) -> Category {
+ self.category
+ }
+
+ fn get_exact_inverse(self) -> Option<Self> {
+ // Special floats and denormals have no exact inverse.
+ if !self.is_finite_non_zero() {
+ return None;
+ }
+
+ // Check that the number is a power of two by making sure that only the
+ // integer bit is set in the significand.
+ if self.sig != [1 << (S::PRECISION - 1)] {
+ return None;
+ }
+
+ // Get the inverse.
+ let mut reciprocal = Self::from_u128(1).value;
+ let status;
+ reciprocal = unpack!(status=, reciprocal / self);
+ if status != Status::OK {
+ return None;
+ }
+
+ // Avoid multiplication with a denormal, it is not safe on all platforms and
+ // may be slower than a normal division.
+ if reciprocal.is_denormal() {
+ return None;
+ }
+
+ assert!(reciprocal.is_finite_non_zero());
+ assert_eq!(reciprocal.sig, [1 << (S::PRECISION - 1)]);
+
+ Some(reciprocal)
+ }
+
+ fn ilogb(mut self) -> ExpInt {
+ if self.is_nan() {
+ return IEK_NAN;
+ }
+ if self.is_zero() {
+ return IEK_ZERO;
+ }
+ if self.is_infinite() {
+ return IEK_INF;
+ }
+ if !self.is_denormal() {
+ return self.exp;
+ }
+
+ let sig_bits = (S::PRECISION - 1) as ExpInt;
+ self.exp += sig_bits;
+ self = self.normalize(Round::NearestTiesToEven, Loss::ExactlyZero).value;
+ self.exp - sig_bits
+ }
+
+ fn scalbn_r(mut self, exp: ExpInt, round: Round) -> Self {
+ // If exp is wildly out-of-scale, simply adding it to self.exp will
+ // overflow; clamp it to a safe range before adding, but ensure that the range
+ // is large enough that the clamp does not change the result. The range we
+ // need to support is the difference between the largest possible exponent and
+ // the normalized exponent of half the smallest denormal.
+
+ let sig_bits = (S::PRECISION - 1) as i32;
+ let max_change = S::MAX_EXP as i32 - (S::MIN_EXP as i32 - sig_bits) + 1;
+
+ // Clamp to one past the range ends to let normalize handle overflow.
+ let exp_change = cmp::min(cmp::max(exp as i32, -max_change - 1), max_change);
+ self.exp = self.exp.saturating_add(exp_change as ExpInt);
+ self = self.normalize(round, Loss::ExactlyZero).value;
+ if self.is_nan() {
+ sig::set_bit(&mut self.sig, S::QNAN_BIT);
+ }
+ self
+ }
+
+ fn frexp_r(mut self, exp: &mut ExpInt, round: Round) -> Self {
+ *exp = self.ilogb();
+
+ // Quiet signalling nans.
+ if *exp == IEK_NAN {
+ sig::set_bit(&mut self.sig, S::QNAN_BIT);
+ return self;
+ }
+
+ if *exp == IEK_INF {
+ return self;
+ }
+
+ // 1 is added because frexp is defined to return a normalized fraction in
+ // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0).
+ if *exp == IEK_ZERO {
+ *exp = 0;
+ } else {
+ *exp += 1;
+ }
+ self.scalbn_r(-*exp, round)
+ }
+}
+
+impl<S: Semantics, T: Semantics> FloatConvert<IeeeFloat<T>> for IeeeFloat<S> {
+ fn convert_r(self, round: Round, loses_info: &mut bool) -> StatusAnd<IeeeFloat<T>> {
+ let mut r = IeeeFloat {
+ sig: self.sig,
+ exp: self.exp,
+ category: self.category,
+ sign: self.sign,
+ marker: PhantomData,
+ };
+
+ // x86 has some unusual NaNs which cannot be represented in any other
+ // format; note them here.
+ fn is_x87_double_extended<S: Semantics>() -> bool {
+ S::QNAN_SIGNIFICAND == X87DoubleExtendedS::QNAN_SIGNIFICAND
+ }
+ let x87_special_nan = is_x87_double_extended::<S>()
+ && !is_x87_double_extended::<T>()
+ && r.category == Category::NaN
+ && (r.sig[0] & S::QNAN_SIGNIFICAND) != S::QNAN_SIGNIFICAND;
+
+ // If this is a truncation of a denormal number, and the target semantics
+ // has larger exponent range than the source semantics (this can happen
+ // when truncating from PowerPC double-double to double format), the
+ // right shift could lose result mantissa bits. Adjust exponent instead
+ // of performing excessive shift.
+ let mut shift = T::PRECISION as ExpInt - S::PRECISION as ExpInt;
+ if shift < 0 && r.is_finite_non_zero() {
+ let mut exp_change = sig::omsb(&r.sig) as ExpInt - S::PRECISION as ExpInt;
+ if r.exp + exp_change < T::MIN_EXP {
+ exp_change = T::MIN_EXP - r.exp;
+ }
+ if exp_change < shift {
+ exp_change = shift;
+ }
+ if exp_change < 0 {
+ shift -= exp_change;
+ r.exp += exp_change;
+ }
+ }
+
+ // If this is a truncation, perform the shift.
+ let loss = if shift < 0 && (r.is_finite_non_zero() || r.category == Category::NaN) {
+ sig::shift_right(&mut r.sig, &mut 0, -shift as usize)
+ } else {
+ Loss::ExactlyZero
+ };
+
+ // If this is an extension, perform the shift.
+ if shift > 0 && (r.is_finite_non_zero() || r.category == Category::NaN) {
+ sig::shift_left(&mut r.sig, &mut 0, shift as usize);
+ }
+
+ let status;
+ if r.is_finite_non_zero() {
+ r = unpack!(status=, r.normalize(round, loss));
+ *loses_info = status != Status::OK;
+ } else if r.category == Category::NaN {
+ *loses_info = loss != Loss::ExactlyZero || x87_special_nan;
+
+ // For x87 extended precision, we want to make a NaN, not a special NaN if
+ // the input wasn't special either.
+ if !x87_special_nan && is_x87_double_extended::<T>() {
+ sig::set_bit(&mut r.sig, T::PRECISION - 1);
+ }
+
+ // Convert of sNaN creates qNaN and raises an exception (invalid op).
+ // This also guarantees that a sNaN does not become Inf on a truncation
+ // that loses all payload bits.
+ if self.is_signaling() {
+ // Quiet signaling NaN.
+ sig::set_bit(&mut r.sig, T::QNAN_BIT);
+ status = Status::INVALID_OP;
+ } else {
+ status = Status::OK;
+ }
+ } else {
+ *loses_info = false;
+ status = Status::OK;
+ }
+
+ status.and(r)
+ }
+}
+
+impl<S: Semantics> IeeeFloat<S> {
+ /// Handle positive overflow. We either return infinity or
+ /// the largest finite number. For negative overflow,
+ /// negate the `round` argument before calling.
+ fn overflow_result(round: Round) -> StatusAnd<Self> {
+ match round {
+ // Infinity?
+ Round::NearestTiesToEven | Round::NearestTiesToAway | Round::TowardPositive => {
+ (Status::OVERFLOW | Status::INEXACT).and(Self::INFINITY)
+ }
+ // Otherwise we become the largest finite number.
+ Round::TowardNegative | Round::TowardZero => Status::INEXACT.and(Self::largest()),
+ }
+ }
+
+ /// Returns `true` if, when truncating the current number, with `bit` the
+ /// new LSB, with the given lost fraction and rounding mode, the result
+ /// would need to be rounded away from zero (i.e., by increasing the
+ /// signficand). This routine must work for `Category::Zero` of both signs, and
+ /// `Category::Normal` numbers.
+ fn round_away_from_zero(&self, round: Round, loss: Loss, bit: usize) -> bool {
+ // NaNs and infinities should not have lost fractions.
+ assert!(self.is_finite_non_zero() || self.is_zero());
+
+ // Current callers never pass this so we don't handle it.
+ assert_ne!(loss, Loss::ExactlyZero);
+
+ match round {
+ Round::NearestTiesToAway => loss == Loss::ExactlyHalf || loss == Loss::MoreThanHalf,
+ Round::NearestTiesToEven => {
+ if loss == Loss::MoreThanHalf {
+ return true;
+ }
+
+ // Our zeros don't have a significand to test.
+ if loss == Loss::ExactlyHalf && self.category != Category::Zero {
+ return sig::get_bit(&self.sig, bit);
+ }
+
+ false
+ }
+ Round::TowardZero => false,
+ Round::TowardPositive => !self.sign,
+ Round::TowardNegative => self.sign,
+ }
+ }
+
+ fn normalize(mut self, round: Round, mut loss: Loss) -> StatusAnd<Self> {
+ if !self.is_finite_non_zero() {
+ return Status::OK.and(self);
+ }
+
+ // Before rounding normalize the exponent of Category::Normal numbers.
+ let mut omsb = sig::omsb(&self.sig);
+
+ if omsb > 0 {
+ // OMSB is numbered from 1. We want to place it in the integer
+ // bit numbered PRECISION if possible, with a compensating change in
+ // the exponent.
+ let mut final_exp = self.exp.saturating_add(omsb as ExpInt - S::PRECISION as ExpInt);
+
+ // If the resulting exponent is too high, overflow according to
+ // the rounding mode.
+ if final_exp > S::MAX_EXP {
+ let round = if self.sign { -round } else { round };
+ return Self::overflow_result(round).map(|r| r.copy_sign(self));
+ }
+
+ // Subnormal numbers have exponent MIN_EXP, and their MSB
+ // is forced based on that.
+ if final_exp < S::MIN_EXP {
+ final_exp = S::MIN_EXP;
+ }
+
+ // Shifting left is easy as we don't lose precision.
+ if final_exp < self.exp {
+ assert_eq!(loss, Loss::ExactlyZero);
+
+ let exp_change = (self.exp - final_exp) as usize;
+ sig::shift_left(&mut self.sig, &mut self.exp, exp_change);
+
+ return Status::OK.and(self);
+ }
+
+ // Shift right and capture any new lost fraction.
+ if final_exp > self.exp {
+ let exp_change = (final_exp - self.exp) as usize;
+ loss = sig::shift_right(&mut self.sig, &mut self.exp, exp_change).combine(loss);
+
+ // Keep OMSB up-to-date.
+ omsb = omsb.saturating_sub(exp_change);
+ }
+ }
+
+ // Now round the number according to round given the lost
+ // fraction.
+
+ // As specified in IEEE 754, since we do not trap we do not report
+ // underflow for exact results.
+ if loss == Loss::ExactlyZero {
+ // Canonicalize zeros.
+ if omsb == 0 {
+ self.category = Category::Zero;
+ }
+
+ return Status::OK.and(self);
+ }
+
+ // Increment the significand if we're rounding away from zero.
+ if self.round_away_from_zero(round, loss, 0) {
+ if omsb == 0 {
+ self.exp = S::MIN_EXP;
+ }
+
+ // We should never overflow.
+ assert_eq!(sig::increment(&mut self.sig), 0);
+ omsb = sig::omsb(&self.sig);
+
+ // Did the significand increment overflow?
+ if omsb == S::PRECISION + 1 {
+ // Renormalize by incrementing the exponent and shifting our
+ // significand right one. However if we already have the
+ // maximum exponent we overflow to infinity.
+ if self.exp == S::MAX_EXP {
+ self.category = Category::Infinity;
+
+ return (Status::OVERFLOW | Status::INEXACT).and(self);
+ }
+
+ let _: Loss = sig::shift_right(&mut self.sig, &mut self.exp, 1);
+
+ return Status::INEXACT.and(self);
+ }
+ }
+
+ // The normal case - we were and are not denormal, and any
+ // significand increment above didn't overflow.
+ if omsb == S::PRECISION {
+ return Status::INEXACT.and(self);
+ }
+
+ // We have a non-zero denormal.
+ assert!(omsb < S::PRECISION);
+
+ // Canonicalize zeros.
+ if omsb == 0 {
+ self.category = Category::Zero;
+ }
+
+ // The Category::Zero case is a denormal that underflowed to zero.
+ (Status::UNDERFLOW | Status::INEXACT).and(self)
+ }
+
+ fn from_hexadecimal_string(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> {
+ let mut r = IeeeFloat {
+ sig: [0],
+ exp: 0,
+ category: Category::Normal,
+ sign: false,
+ marker: PhantomData,
+ };
+
+ let mut any_digits = false;
+ let mut has_exp = false;
+ let mut bit_pos = LIMB_BITS as isize;
+ let mut loss = None;
+
+ // Without leading or trailing zeros, irrespective of the dot.
+ let mut first_sig_digit = None;
+ let mut dot = s.len();
+
+ for (p, c) in s.char_indices() {
+ // Skip leading zeros and any (hexa)decimal point.
+ if c == '.' {
+ if dot != s.len() {
+ return Err(ParseError("String contains multiple dots"));
+ }
+ dot = p;
+ } else if let Some(hex_value) = c.to_digit(16) {
+ any_digits = true;
+
+ if first_sig_digit.is_none() {
+ if hex_value == 0 {
+ continue;
+ }
+ first_sig_digit = Some(p);
+ }
+
+ // Store the number while we have space.
+ bit_pos -= 4;
+ if bit_pos >= 0 {
+ r.sig[0] |= (hex_value as Limb) << bit_pos;
+ // If zero or one-half (the hexadecimal digit 8) are followed
+ // by non-zero, they're a little more than zero or one-half.
+ } else if let Some(ref mut loss) = loss {
+ if hex_value != 0 {
+ if *loss == Loss::ExactlyZero {
+ *loss = Loss::LessThanHalf;
+ }
+ if *loss == Loss::ExactlyHalf {
+ *loss = Loss::MoreThanHalf;
+ }
+ }
+ } else {
+ loss = Some(match hex_value {
+ 0 => Loss::ExactlyZero,
+ 1..=7 => Loss::LessThanHalf,
+ 8 => Loss::ExactlyHalf,
+ 9..=15 => Loss::MoreThanHalf,
+ _ => unreachable!(),
+ });
+ }
+ } else if c == 'p' || c == 'P' {
+ if !any_digits {
+ return Err(ParseError("Significand has no digits"));
+ }
+
+ if dot == s.len() {
+ dot = p;
+ }
+
+ let mut chars = s[p + 1..].chars().peekable();
+
+ // Adjust for the given exponent.
+ let exp_minus = chars.peek() == Some(&'-');
+ if exp_minus || chars.peek() == Some(&'+') {
+ chars.next();
+ }
+
+ for c in chars {
+ if let Some(value) = c.to_digit(10) {
+ has_exp = true;
+ r.exp = r.exp.saturating_mul(10).saturating_add(value as ExpInt);
+ } else {
+ return Err(ParseError("Invalid character in exponent"));
+ }
+ }
+ if !has_exp {
+ return Err(ParseError("Exponent has no digits"));
+ }
+
+ if exp_minus {
+ r.exp = -r.exp;
+ }
+
+ break;
+ } else {
+ return Err(ParseError("Invalid character in significand"));
+ }
+ }
+ if !any_digits {
+ return Err(ParseError("Significand has no digits"));
+ }
+
+ // Hex floats require an exponent but not a hexadecimal point.
+ if !has_exp {
+ return Err(ParseError("Hex strings require an exponent"));
+ }
+
+ // Ignore the exponent if we are zero.
+ let first_sig_digit = match first_sig_digit {
+ Some(p) => p,
+ None => return Ok(Status::OK.and(Self::ZERO)),
+ };
+
+ // Calculate the exponent adjustment implicit in the number of
+ // significant digits and adjust for writing the significand starting
+ // at the most significant nibble.
+ let exp_adjustment = if dot > first_sig_digit {
+ ExpInt::try_from(dot - first_sig_digit).unwrap()
+ } else {
+ -ExpInt::try_from(first_sig_digit - dot - 1).unwrap()
+ };
+ let exp_adjustment = exp_adjustment
+ .saturating_mul(4)
+ .saturating_sub(1)
+ .saturating_add(S::PRECISION as ExpInt)
+ .saturating_sub(LIMB_BITS as ExpInt);
+ r.exp = r.exp.saturating_add(exp_adjustment);
+
+ Ok(r.normalize(round, loss.unwrap_or(Loss::ExactlyZero)))
+ }
+
+ fn from_decimal_string(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> {
+ // Given a normal decimal floating point number of the form
+ //
+ // dddd.dddd[eE][+-]ddd
+ //
+ // where the decimal point and exponent are optional, fill out the
+ // variables below. Exponent is appropriate if the significand is
+ // treated as an integer, and normalized_exp if the significand
+ // is taken to have the decimal point after a single leading
+ // non-zero digit.
+ //
+ // If the value is zero, first_sig_digit is None.
+
+ let mut any_digits = false;
+ let mut dec_exp = 0i32;
+
+ // Without leading or trailing zeros, irrespective of the dot.
+ let mut first_sig_digit = None;
+ let mut last_sig_digit = 0;
+ let mut dot = s.len();
+
+ for (p, c) in s.char_indices() {
+ if c == '.' {
+ if dot != s.len() {
+ return Err(ParseError("String contains multiple dots"));
+ }
+ dot = p;
+ } else if let Some(dec_value) = c.to_digit(10) {
+ any_digits = true;
+
+ if dec_value != 0 {
+ if first_sig_digit.is_none() {
+ first_sig_digit = Some(p);
+ }
+ last_sig_digit = p;
+ }
+ } else if c == 'e' || c == 'E' {
+ if !any_digits {
+ return Err(ParseError("Significand has no digits"));
+ }
+
+ if dot == s.len() {
+ dot = p;
+ }
+
+ let mut chars = s[p + 1..].chars().peekable();
+
+ // Adjust for the given exponent.
+ let exp_minus = chars.peek() == Some(&'-');
+ if exp_minus || chars.peek() == Some(&'+') {
+ chars.next();
+ }
+
+ any_digits = false;
+ for c in chars {
+ if let Some(value) = c.to_digit(10) {
+ any_digits = true;
+ dec_exp = dec_exp.saturating_mul(10).saturating_add(value as i32);
+ } else {
+ return Err(ParseError("Invalid character in exponent"));
+ }
+ }
+ if !any_digits {
+ return Err(ParseError("Exponent has no digits"));
+ }
+
+ if exp_minus {
+ dec_exp = -dec_exp;
+ }
+
+ break;
+ } else {
+ return Err(ParseError("Invalid character in significand"));
+ }
+ }
+ if !any_digits {
+ return Err(ParseError("Significand has no digits"));
+ }
+
+ // Test if we have a zero number allowing for non-zero exponents.
+ let first_sig_digit = match first_sig_digit {
+ Some(p) => p,
+ None => return Ok(Status::OK.and(Self::ZERO)),
+ };
+
+ // Adjust the exponents for any decimal point.
+ if dot > last_sig_digit {
+ dec_exp = dec_exp.saturating_add((dot - last_sig_digit - 1) as i32);
+ } else {
+ dec_exp = dec_exp.saturating_sub((last_sig_digit - dot) as i32);
+ }
+ let significand_digits = last_sig_digit - first_sig_digit + 1
+ - (dot > first_sig_digit && dot < last_sig_digit) as usize;
+ let normalized_exp = dec_exp.saturating_add(significand_digits as i32 - 1);
+
+ // Handle the cases where exponents are obviously too large or too
+ // small. Writing L for log 10 / log 2, a number d.ddddd*10^dec_exp
+ // definitely overflows if
+ //
+ // (dec_exp - 1) * L >= MAX_EXP
+ //
+ // and definitely underflows to zero where
+ //
+ // (dec_exp + 1) * L <= MIN_EXP - PRECISION
+ //
+ // With integer arithmetic the tightest bounds for L are
+ //
+ // 93/28 < L < 196/59 [ numerator <= 256 ]
+ // 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
+
+ // Check for MAX_EXP.
+ if normalized_exp.saturating_sub(1).saturating_mul(42039) >= 12655 * S::MAX_EXP as i32 {
+ // Overflow and round.
+ return Ok(Self::overflow_result(round));
+ }
+
+ // Check for MIN_EXP.
+ if normalized_exp.saturating_add(1).saturating_mul(28738)
+ <= 8651 * (S::MIN_EXP as i32 - S::PRECISION as i32)
+ {
+ // Underflow to zero and round.
+ let r =
+ if round == Round::TowardPositive { IeeeFloat::SMALLEST } else { IeeeFloat::ZERO };
+ return Ok((Status::UNDERFLOW | Status::INEXACT).and(r));
+ }
+
+ // A tight upper bound on number of bits required to hold an
+ // N-digit decimal integer is N * 196 / 59. Allocate enough space
+ // to hold the full significand, and an extra limb required by
+ // tcMultiplyPart.
+ let max_limbs = limbs_for_bits(1 + 196 * significand_digits / 59);
+ let mut dec_sig: SmallVec<[Limb; 1]> = SmallVec::with_capacity(max_limbs);
+
+ // Convert to binary efficiently - we do almost all multiplication
+ // in a Limb. When this would overflow do we do a single
+ // bignum multiplication, and then revert again to multiplication
+ // in a Limb.
+ let mut chars = s[first_sig_digit..=last_sig_digit].chars();
+ loop {
+ let mut val = 0;
+ let mut multiplier = 1;
+
+ loop {
+ let dec_value = match chars.next() {
+ Some('.') => continue,
+ Some(c) => c.to_digit(10).unwrap(),
+ None => break,
+ };
+
+ multiplier *= 10;
+ val = val * 10 + dec_value as Limb;
+
+ // The maximum number that can be multiplied by ten with any
+ // digit added without overflowing a Limb.
+ if multiplier > (!0 - 9) / 10 {
+ break;
+ }
+ }
+
+ // If we've consumed no digits, we're done.
+ if multiplier == 1 {
+ break;
+ }
+
+ // Multiply out the current limb.
+ let mut carry = val;
+ for x in &mut dec_sig {
+ let [low, mut high] = sig::widening_mul(*x, multiplier);
+
+ // Now add carry.
+ let (low, overflow) = low.overflowing_add(carry);
+ high += overflow as Limb;
+
+ *x = low;
+ carry = high;
+ }
+
+ // If we had carry, we need another limb (likely but not guaranteed).
+ if carry > 0 {
+ dec_sig.push(carry);
+ }
+ }
+
+ // Calculate pow(5, abs(dec_exp)) into `pow5_full`.
+ // The *_calc Vec's are reused scratch space, as an optimization.
+ let (pow5_full, mut pow5_calc, mut sig_calc, mut sig_scratch_calc) = {
+ let mut power = dec_exp.abs() as usize;
+
+ const FIRST_EIGHT_POWERS: [Limb; 8] = [1, 5, 25, 125, 625, 3125, 15625, 78125];
+
+ let mut p5_scratch = smallvec![];
+ let mut p5: SmallVec<[Limb; 1]> = smallvec![FIRST_EIGHT_POWERS[4]];
+
+ let mut r_scratch = smallvec![];
+ let mut r: SmallVec<[Limb; 1]> = smallvec![FIRST_EIGHT_POWERS[power & 7]];
+ power >>= 3;
+
+ while power > 0 {
+ // Calculate pow(5,pow(2,n+3)).
+ p5_scratch.resize(p5.len() * 2, 0);
+ let _: Loss = sig::mul(&mut p5_scratch, &mut 0, &p5, &p5, p5.len() * 2 * LIMB_BITS);
+ while p5_scratch.last() == Some(&0) {
+ p5_scratch.pop();
+ }
+ mem::swap(&mut p5, &mut p5_scratch);
+
+ if power & 1 != 0 {
+ r_scratch.resize(r.len() + p5.len(), 0);
+ let _: Loss =
+ sig::mul(&mut r_scratch, &mut 0, &r, &p5, (r.len() + p5.len()) * LIMB_BITS);
+ while r_scratch.last() == Some(&0) {
+ r_scratch.pop();
+ }
+ mem::swap(&mut r, &mut r_scratch);
+ }
+
+ power >>= 1;
+ }
+
+ (r, r_scratch, p5, p5_scratch)
+ };
+
+ // Attempt dec_sig * 10^dec_exp with increasing precision.
+ let mut attempt = 0;
+ loop {
+ let calc_precision = (LIMB_BITS << attempt) - 1;
+ attempt += 1;
+
+ let calc_normal_from_limbs = |sig: &mut SmallVec<[Limb; 1]>,
+ limbs: &[Limb]|
+ -> StatusAnd<ExpInt> {
+ sig.resize(limbs_for_bits(calc_precision), 0);
+ let (mut loss, mut exp) = sig::from_limbs(sig, limbs, calc_precision);
+
+ // Before rounding normalize the exponent of Category::Normal numbers.
+ let mut omsb = sig::omsb(sig);
+
+ assert_ne!(omsb, 0);
+
+ // OMSB is numbered from 1. We want to place it in the integer
+ // bit numbered PRECISION if possible, with a compensating change in
+ // the exponent.
+ let final_exp = exp.saturating_add(omsb as ExpInt - calc_precision as ExpInt);
+
+ // Shifting left is easy as we don't lose precision.
+ if final_exp < exp {
+ assert_eq!(loss, Loss::ExactlyZero);
+
+ let exp_change = (exp - final_exp) as usize;
+ sig::shift_left(sig, &mut exp, exp_change);
+
+ return Status::OK.and(exp);
+ }
+
+ // Shift right and capture any new lost fraction.
+ if final_exp > exp {
+ let exp_change = (final_exp - exp) as usize;
+ loss = sig::shift_right(sig, &mut exp, exp_change).combine(loss);
+
+ // Keep OMSB up-to-date.
+ omsb = omsb.saturating_sub(exp_change);
+ }
+
+ assert_eq!(omsb, calc_precision);
+
+ // Now round the number according to round given the lost
+ // fraction.
+
+ // As specified in IEEE 754, since we do not trap we do not report
+ // underflow for exact results.
+ if loss == Loss::ExactlyZero {
+ return Status::OK.and(exp);
+ }
+
+ // Increment the significand if we're rounding away from zero.
+ if loss == Loss::MoreThanHalf || loss == Loss::ExactlyHalf && sig::get_bit(sig, 0) {
+ // We should never overflow.
+ assert_eq!(sig::increment(sig), 0);
+ omsb = sig::omsb(sig);
+
+ // Did the significand increment overflow?
+ if omsb == calc_precision + 1 {
+ let _: Loss = sig::shift_right(sig, &mut exp, 1);
+
+ return Status::INEXACT.and(exp);
+ }
+ }
+
+ // The normal case - we were and are not denormal, and any
+ // significand increment above didn't overflow.
+ Status::INEXACT.and(exp)
+ };
+
+ let status;
+ let mut exp = unpack!(status=,
+ calc_normal_from_limbs(&mut sig_calc, &dec_sig));
+ let pow5_status;
+ let pow5_exp = unpack!(pow5_status=,
+ calc_normal_from_limbs(&mut pow5_calc, &pow5_full));
+
+ // Add dec_exp, as 10^n = 5^n * 2^n.
+ exp += dec_exp as ExpInt;
+
+ let mut used_bits = S::PRECISION;
+ let mut truncated_bits = calc_precision - used_bits;
+
+ let half_ulp_err1 = (status != Status::OK) as Limb;
+ let (calc_loss, half_ulp_err2);
+ if dec_exp >= 0 {
+ exp += pow5_exp;
+
+ sig_scratch_calc.resize(sig_calc.len() + pow5_calc.len(), 0);
+ calc_loss = sig::mul(
+ &mut sig_scratch_calc,
+ &mut exp,
+ &sig_calc,
+ &pow5_calc,
+ calc_precision,
+ );
+ mem::swap(&mut sig_calc, &mut sig_scratch_calc);
+
+ half_ulp_err2 = (pow5_status != Status::OK) as Limb;
+ } else {
+ exp -= pow5_exp;
+
+ sig_scratch_calc.resize(sig_calc.len(), 0);
+ calc_loss = sig::div(
+ &mut sig_scratch_calc,
+ &mut exp,
+ &mut sig_calc,
+ &mut pow5_calc,
+ calc_precision,
+ );
+ mem::swap(&mut sig_calc, &mut sig_scratch_calc);
+
+ // Denormal numbers have less precision.
+ if exp < S::MIN_EXP {
+ truncated_bits += (S::MIN_EXP - exp) as usize;
+ used_bits = calc_precision.saturating_sub(truncated_bits);
+ }
+ // Extra half-ulp lost in reciprocal of exponent.
+ half_ulp_err2 =
+ 2 * (pow5_status != Status::OK || calc_loss != Loss::ExactlyZero) as Limb;
+ }
+
+ // Both sig::mul and sig::div return the
+ // result with the integer bit set.
+ assert!(sig::get_bit(&sig_calc, calc_precision - 1));
+
+ // The error from the true value, in half-ulps, on multiplying two
+ // floating point numbers, which differ from the value they
+ // approximate by at most half_ulp_err1 and half_ulp_err2 half-ulps, is strictly less
+ // than the returned value.
+ //
+ // See "How to Read Floating Point Numbers Accurately" by William D Clinger.
+ assert!(half_ulp_err1 < 2 || half_ulp_err2 < 2 || (half_ulp_err1 + half_ulp_err2 < 8));
+
+ let inexact = (calc_loss != Loss::ExactlyZero) as Limb;
+ let half_ulp_err = if half_ulp_err1 + half_ulp_err2 == 0 {
+ inexact * 2 // <= inexact half-ulps.
+ } else {
+ inexact + 2 * (half_ulp_err1 + half_ulp_err2)
+ };
+
+ let ulps_from_boundary = {
+ let bits = calc_precision - used_bits - 1;
+
+ let i = bits / LIMB_BITS;
+ let limb = sig_calc[i] & (!0 >> (LIMB_BITS - 1 - bits % LIMB_BITS));
+ let boundary = match round {
+ Round::NearestTiesToEven | Round::NearestTiesToAway => 1 << (bits % LIMB_BITS),
+ _ => 0,
+ };
+ if i == 0 {
+ let delta = limb.wrapping_sub(boundary);
+ cmp::min(delta, delta.wrapping_neg())
+ } else if limb == boundary {
+ if !sig::is_all_zeros(&sig_calc[1..i]) {
+ !0 // A lot.
+ } else {
+ sig_calc[0]
+ }
+ } else if limb == boundary.wrapping_sub(1) {
+ if sig_calc[1..i].iter().any(|&x| x.wrapping_neg() != 1) {
+ !0 // A lot.
+ } else {
+ sig_calc[0].wrapping_neg()
+ }
+ } else {
+ !0 // A lot.
+ }
+ };
+
+ // Are we guaranteed to round correctly if we truncate?
+ if ulps_from_boundary.saturating_mul(2) >= half_ulp_err {
+ let mut r = IeeeFloat {
+ sig: [0],
+ exp,
+ category: Category::Normal,
+ sign: false,
+ marker: PhantomData,
+ };
+ sig::extract(&mut r.sig, &sig_calc, used_bits, calc_precision - used_bits);
+ // If we extracted less bits above we must adjust our exponent
+ // to compensate for the implicit right shift.
+ r.exp += (S::PRECISION - used_bits) as ExpInt;
+ let loss = Loss::through_truncation(&sig_calc, truncated_bits);
+ return Ok(r.normalize(round, loss));
+ }
+ }
+ }
+}
+
+impl Loss {
+ /// Combine the effect of two lost fractions.
+ fn combine(self, less_significant: Loss) -> Loss {
+ let mut more_significant = self;
+ if less_significant != Loss::ExactlyZero {
+ if more_significant == Loss::ExactlyZero {
+ more_significant = Loss::LessThanHalf;
+ } else if more_significant == Loss::ExactlyHalf {
+ more_significant = Loss::MoreThanHalf;
+ }
+ }
+
+ more_significant
+ }
+
+ /// Returns the fraction lost were a bignum truncated losing the least
+ /// significant `bits` bits.
+ fn through_truncation(limbs: &[Limb], bits: usize) -> Loss {
+ if bits == 0 {
+ return Loss::ExactlyZero;
+ }
+
+ let half_bit = bits - 1;
+ let half_limb = half_bit / LIMB_BITS;
+ let (half_limb, rest) = if half_limb < limbs.len() {
+ (limbs[half_limb], &limbs[..half_limb])
+ } else {
+ (0, limbs)
+ };
+ let half = 1 << (half_bit % LIMB_BITS);
+ let has_half = half_limb & half != 0;
+ let has_rest = half_limb & (half - 1) != 0 || !sig::is_all_zeros(rest);
+
+ match (has_half, has_rest) {
+ (false, false) => Loss::ExactlyZero,
+ (false, true) => Loss::LessThanHalf,
+ (true, false) => Loss::ExactlyHalf,
+ (true, true) => Loss::MoreThanHalf,
+ }
+ }
+}
+
+/// Implementation details of IeeeFloat significands, such as big integer arithmetic.
+/// As a rule of thumb, no functions in this module should dynamically allocate.
+mod sig {
+ use super::{limbs_for_bits, ExpInt, Limb, Loss, LIMB_BITS};
+ use core::cmp::Ordering;
+ use core::iter;
+ use core::mem;
+
+ pub(super) fn is_all_zeros(limbs: &[Limb]) -> bool {
+ limbs.iter().all(|&l| l == 0)
+ }
+
+ /// One, not zero, based LSB. That is, returns 0 for a zeroed significand.
+ pub(super) fn olsb(limbs: &[Limb]) -> usize {
+ limbs
+ .iter()
+ .enumerate()
+ .find(|(_, &limb)| limb != 0)
+ .map_or(0, |(i, limb)| i * LIMB_BITS + limb.trailing_zeros() as usize + 1)
+ }
+
+ /// One, not zero, based MSB. That is, returns 0 for a zeroed significand.
+ pub(super) fn omsb(limbs: &[Limb]) -> usize {
+ limbs
+ .iter()
+ .enumerate()
+ .rfind(|(_, &limb)| limb != 0)
+ .map_or(0, |(i, limb)| (i + 1) * LIMB_BITS - limb.leading_zeros() as usize)
+ }
+
+ /// Comparison (unsigned) of two significands.
+ pub(super) fn cmp(a: &[Limb], b: &[Limb]) -> Ordering {
+ assert_eq!(a.len(), b.len());
+ for (a, b) in a.iter().zip(b).rev() {
+ match a.cmp(b) {
+ Ordering::Equal => {}
+ o => return o,
+ }
+ }
+
+ Ordering::Equal
+ }
+
+ /// Extracts the given bit.
+ pub(super) fn get_bit(limbs: &[Limb], bit: usize) -> bool {
+ limbs[bit / LIMB_BITS] & (1 << (bit % LIMB_BITS)) != 0
+ }
+
+ /// Sets the given bit.
+ pub(super) fn set_bit(limbs: &mut [Limb], bit: usize) {
+ limbs[bit / LIMB_BITS] |= 1 << (bit % LIMB_BITS);
+ }
+
+ /// Clear the given bit.
+ pub(super) fn clear_bit(limbs: &mut [Limb], bit: usize) {
+ limbs[bit / LIMB_BITS] &= !(1 << (bit % LIMB_BITS));
+ }
+
+ /// Shifts `dst` left `bits` bits, subtract `bits` from its exponent.
+ pub(super) fn shift_left(dst: &mut [Limb], exp: &mut ExpInt, bits: usize) {
+ if bits > 0 {
+ // Our exponent should not underflow.
+ *exp = exp.checked_sub(bits as ExpInt).unwrap();
+
+ // Jump is the inter-limb jump; shift is the intra-limb shift.
+ let jump = bits / LIMB_BITS;
+ let shift = bits % LIMB_BITS;
+
+ for i in (0..dst.len()).rev() {
+ let mut limb;
+
+ if i < jump {
+ limb = 0;
+ } else {
+ // dst[i] comes from the two limbs src[i - jump] and, if we have
+ // an intra-limb shift, src[i - jump - 1].
+ limb = dst[i - jump];
+ if shift > 0 {
+ limb <<= shift;
+ if i > jump {
+ limb |= dst[i - jump - 1] >> (LIMB_BITS - shift);
+ }
+ }
+ }
+
+ dst[i] = limb;
+ }
+ }
+ }
+
+ /// Shifts `dst` right `bits` bits noting lost fraction.
+ pub(super) fn shift_right(dst: &mut [Limb], exp: &mut ExpInt, bits: usize) -> Loss {
+ let loss = Loss::through_truncation(dst, bits);
+
+ if bits > 0 {
+ // Our exponent should not overflow.
+ *exp = exp.checked_add(bits as ExpInt).unwrap();
+
+ // Jump is the inter-limb jump; shift is the intra-limb shift.
+ let jump = bits / LIMB_BITS;
+ let shift = bits % LIMB_BITS;
+
+ // Perform the shift. This leaves the most significant `bits` bits
+ // of the result at zero.
+ for i in 0..dst.len() {
+ let mut limb;
+
+ if i + jump >= dst.len() {
+ limb = 0;
+ } else {
+ limb = dst[i + jump];
+ if shift > 0 {
+ limb >>= shift;
+ if i + jump + 1 < dst.len() {
+ limb |= dst[i + jump + 1] << (LIMB_BITS - shift);
+ }
+ }
+ }
+
+ dst[i] = limb;
+ }
+ }
+
+ loss
+ }
+
+ /// Copies the bit vector of width `src_bits` from `src`, starting at bit SRC_LSB,
+ /// to `dst`, such that the bit SRC_LSB becomes the least significant bit of `dst`.
+ /// All high bits above `src_bits` in `dst` are zero-filled.
+ pub(super) fn extract(dst: &mut [Limb], src: &[Limb], src_bits: usize, src_lsb: usize) {
+ if src_bits == 0 {
+ return;
+ }
+
+ let dst_limbs = limbs_for_bits(src_bits);
+ assert!(dst_limbs <= dst.len());
+
+ let src = &src[src_lsb / LIMB_BITS..];
+ dst[..dst_limbs].copy_from_slice(&src[..dst_limbs]);
+
+ let shift = src_lsb % LIMB_BITS;
+ let _: Loss = shift_right(&mut dst[..dst_limbs], &mut 0, shift);
+
+ // We now have (dst_limbs * LIMB_BITS - shift) bits from `src`
+ // in `dst`. If this is less that src_bits, append the rest, else
+ // clear the high bits.
+ let n = dst_limbs * LIMB_BITS - shift;
+ if n < src_bits {
+ let mask = (1 << (src_bits - n)) - 1;
+ dst[dst_limbs - 1] |= (src[dst_limbs] & mask) << (n % LIMB_BITS);
+ } else if n > src_bits && src_bits % LIMB_BITS > 0 {
+ dst[dst_limbs - 1] &= (1 << (src_bits % LIMB_BITS)) - 1;
+ }
+
+ // Clear high limbs.
+ for x in &mut dst[dst_limbs..] {
+ *x = 0;
+ }
+ }
+
+ /// We want the most significant PRECISION bits of `src`. There may not
+ /// be that many; extract what we can.
+ pub(super) fn from_limbs(dst: &mut [Limb], src: &[Limb], precision: usize) -> (Loss, ExpInt) {
+ let omsb = omsb(src);
+
+ if precision <= omsb {
+ extract(dst, src, precision, omsb - precision);
+ (Loss::through_truncation(src, omsb - precision), omsb as ExpInt - 1)
+ } else {
+ extract(dst, src, omsb, 0);
+ (Loss::ExactlyZero, precision as ExpInt - 1)
+ }
+ }
+
+ /// For every consecutive chunk of `bits` bits from `limbs`,
+ /// going from most significant to the least significant bits,
+ /// call `f` to transform those bits and store the result back.
+ pub(super) fn each_chunk<F: FnMut(Limb) -> Limb>(limbs: &mut [Limb], bits: usize, mut f: F) {
+ assert_eq!(LIMB_BITS % bits, 0);
+ for limb in limbs.iter_mut().rev() {
+ let mut r = 0;
+ for i in (0..LIMB_BITS / bits).rev() {
+ r |= f((*limb >> (i * bits)) & ((1 << bits) - 1)) << (i * bits);
+ }
+ *limb = r;
+ }
+ }
+
+ /// Increment in-place, return the carry flag.
+ pub(super) fn increment(dst: &mut [Limb]) -> Limb {
+ for x in dst {
+ *x = x.wrapping_add(1);
+ if *x != 0 {
+ return 0;
+ }
+ }
+
+ 1
+ }
+
+ /// Decrement in-place, return the borrow flag.
+ pub(super) fn decrement(dst: &mut [Limb]) -> Limb {
+ for x in dst {
+ *x = x.wrapping_sub(1);
+ if *x != !0 {
+ return 0;
+ }
+ }
+
+ 1
+ }
+
+ /// `a += b + c` where `c` is zero or one. Returns the carry flag.
+ pub(super) fn add(a: &mut [Limb], b: &[Limb], mut c: Limb) -> Limb {
+ assert!(c <= 1);
+
+ for (a, &b) in iter::zip(a, b) {
+ let (r, overflow) = a.overflowing_add(b);
+ let (r, overflow2) = r.overflowing_add(c);
+ *a = r;
+ c = (overflow | overflow2) as Limb;
+ }
+
+ c
+ }
+
+ /// `a -= b + c` where `c` is zero or one. Returns the borrow flag.
+ pub(super) fn sub(a: &mut [Limb], b: &[Limb], mut c: Limb) -> Limb {
+ assert!(c <= 1);
+
+ for (a, &b) in iter::zip(a, b) {
+ let (r, overflow) = a.overflowing_sub(b);
+ let (r, overflow2) = r.overflowing_sub(c);
+ *a = r;
+ c = (overflow | overflow2) as Limb;
+ }
+
+ c
+ }
+
+ /// `a += b` or `a -= b`. Does not preserve `b`.
+ pub(super) fn add_or_sub(
+ a_sig: &mut [Limb],
+ a_exp: &mut ExpInt,
+ a_sign: &mut bool,
+ b_sig: &mut [Limb],
+ b_exp: ExpInt,
+ b_sign: bool,
+ ) -> Loss {
+ // Are we bigger exponent-wise than the RHS?
+ let bits = *a_exp - b_exp;
+
+ // Determine if the operation on the absolute values is effectively
+ // an addition or subtraction.
+ // Subtraction is more subtle than one might naively expect.
+ if *a_sign ^ b_sign {
+ let (reverse, loss);
+
+ if bits == 0 {
+ reverse = cmp(a_sig, b_sig) == Ordering::Less;
+ loss = Loss::ExactlyZero;
+ } else if bits > 0 {
+ loss = shift_right(b_sig, &mut 0, (bits - 1) as usize);
+ shift_left(a_sig, a_exp, 1);
+ reverse = false;
+ } else {
+ loss = shift_right(a_sig, a_exp, (-bits - 1) as usize);
+ shift_left(b_sig, &mut 0, 1);
+ reverse = true;
+ }
+
+ let borrow = (loss != Loss::ExactlyZero) as Limb;
+ if reverse {
+ // The code above is intended to ensure that no borrow is necessary.
+ assert_eq!(sub(b_sig, a_sig, borrow), 0);
+ a_sig.copy_from_slice(b_sig);
+ *a_sign = !*a_sign;
+ } else {
+ // The code above is intended to ensure that no borrow is necessary.
+ assert_eq!(sub(a_sig, b_sig, borrow), 0);
+ }
+
+ // Invert the lost fraction - it was on the RHS and subtracted.
+ match loss {
+ Loss::LessThanHalf => Loss::MoreThanHalf,
+ Loss::MoreThanHalf => Loss::LessThanHalf,
+ _ => loss,
+ }
+ } else {
+ let loss = if bits > 0 {
+ shift_right(b_sig, &mut 0, bits as usize)
+ } else {
+ shift_right(a_sig, a_exp, -bits as usize)
+ };
+ // We have a guard bit; generating a carry cannot happen.
+ assert_eq!(add(a_sig, b_sig, 0), 0);
+ loss
+ }
+ }
+
+ /// `[low, high] = a * b`.
+ ///
+ /// This cannot overflow, because
+ ///
+ /// `(n - 1) * (n - 1) + 2 * (n - 1) == (n - 1) * (n + 1)`
+ ///
+ /// which is less than n<sup>2</sup>.
+ pub(super) fn widening_mul(a: Limb, b: Limb) -> [Limb; 2] {
+ let mut wide = [0, 0];
+
+ if a == 0 || b == 0 {
+ return wide;
+ }
+
+ const HALF_BITS: usize = LIMB_BITS / 2;
+
+ let select = |limb, i| (limb >> (i * HALF_BITS)) & ((1 << HALF_BITS) - 1);
+ for i in 0..2 {
+ for j in 0..2 {
+ let mut x = [select(a, i) * select(b, j), 0];
+ shift_left(&mut x, &mut 0, (i + j) * HALF_BITS);
+ assert_eq!(add(&mut wide, &x, 0), 0);
+ }
+ }
+
+ wide
+ }
+
+ /// `dst = a * b` (for normal `a` and `b`). Returns the lost fraction.
+ pub(super) fn mul<'a>(
+ dst: &mut [Limb],
+ exp: &mut ExpInt,
+ mut a: &'a [Limb],
+ mut b: &'a [Limb],
+ precision: usize,
+ ) -> Loss {
+ // Put the narrower number on the `a` for less loops below.
+ if a.len() > b.len() {
+ mem::swap(&mut a, &mut b);
+ }
+
+ for x in &mut dst[..b.len()] {
+ *x = 0;
+ }
+
+ for i in 0..a.len() {
+ let mut carry = 0;
+ for j in 0..b.len() {
+ let [low, mut high] = widening_mul(a[i], b[j]);
+
+ // Now add carry.
+ let (low, overflow) = low.overflowing_add(carry);
+ high += overflow as Limb;
+
+ // And now `dst[i + j]`, and store the new low part there.
+ let (low, overflow) = low.overflowing_add(dst[i + j]);
+ high += overflow as Limb;
+
+ dst[i + j] = low;
+ carry = high;
+ }
+ dst[i + b.len()] = carry;
+ }
+
+ // Assume the operands involved in the multiplication are single-precision
+ // FP, and the two multiplicants are:
+ // a = a23 . a22 ... a0 * 2^e1
+ // b = b23 . b22 ... b0 * 2^e2
+ // the result of multiplication is:
+ // dst = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
+ // Note that there are three significant bits at the left-hand side of the
+ // radix point: two for the multiplication, and an overflow bit for the
+ // addition (that will always be zero at this point). Move the radix point
+ // toward left by two bits, and adjust exponent accordingly.
+ *exp += 2;
+
+ // Convert the result having "2 * precision" significant-bits back to the one
+ // having "precision" significant-bits. First, move the radix point from
+ // poision "2*precision - 1" to "precision - 1". The exponent need to be
+ // adjusted by "2*precision - 1" - "precision - 1" = "precision".
+ *exp -= precision as ExpInt + 1;
+
+ // In case MSB resides at the left-hand side of radix point, shift the
+ // mantissa right by some amount to make sure the MSB reside right before
+ // the radix point (i.e., "MSB . rest-significant-bits").
+ //
+ // Note that the result is not normalized when "omsb < precision". So, the
+ // caller needs to call IeeeFloat::normalize() if normalized value is
+ // expected.
+ let omsb = omsb(dst);
+ if omsb <= precision { Loss::ExactlyZero } else { shift_right(dst, exp, omsb - precision) }
+ }
+
+ /// `quotient = dividend / divisor`. Returns the lost fraction.
+ /// Does not preserve `dividend` or `divisor`.
+ pub(super) fn div(
+ quotient: &mut [Limb],
+ exp: &mut ExpInt,
+ dividend: &mut [Limb],
+ divisor: &mut [Limb],
+ precision: usize,
+ ) -> Loss {
+ // Normalize the divisor.
+ let bits = precision - omsb(divisor);
+ shift_left(divisor, &mut 0, bits);
+ *exp += bits as ExpInt;
+
+ // Normalize the dividend.
+ let bits = precision - omsb(dividend);
+ shift_left(dividend, exp, bits);
+
+ // Division by 1.
+ let olsb_divisor = olsb(divisor);
+ if olsb_divisor == precision {
+ quotient.copy_from_slice(dividend);
+ return Loss::ExactlyZero;
+ }
+
+ // Ensure the dividend >= divisor initially for the loop below.
+ // Incidentally, this means that the division loop below is
+ // guaranteed to set the integer bit to one.
+ if cmp(dividend, divisor) == Ordering::Less {
+ shift_left(dividend, exp, 1);
+ assert_ne!(cmp(dividend, divisor), Ordering::Less)
+ }
+
+ // Helper for figuring out the lost fraction.
+ let lost_fraction = |dividend: &[Limb], divisor: &[Limb]| match cmp(dividend, divisor) {
+ Ordering::Greater => Loss::MoreThanHalf,
+ Ordering::Equal => Loss::ExactlyHalf,
+ Ordering::Less => {
+ if is_all_zeros(dividend) {
+ Loss::ExactlyZero
+ } else {
+ Loss::LessThanHalf
+ }
+ }
+ };
+
+ // Try to perform a (much faster) short division for small divisors.
+ let divisor_bits = precision - (olsb_divisor - 1);
+ macro_rules! try_short_div {
+ ($W:ty, $H:ty, $half:expr) => {
+ if divisor_bits * 2 <= $half {
+ // Extract the small divisor.
+ let _: Loss = shift_right(divisor, &mut 0, olsb_divisor - 1);
+ let divisor = divisor[0] as $H as $W;
+
+ // Shift the dividend to produce a quotient with the unit bit set.
+ let top_limb = *dividend.last().unwrap();
+ let mut rem = (top_limb >> (LIMB_BITS - (divisor_bits - 1))) as $H;
+ shift_left(dividend, &mut 0, divisor_bits - 1);
+
+ // Apply short division in place on $H (of $half bits) chunks.
+ each_chunk(dividend, $half, |chunk| {
+ let chunk = chunk as $H;
+ let combined = ((rem as $W) << $half) | (chunk as $W);
+ rem = (combined % divisor) as $H;
+ (combined / divisor) as $H as Limb
+ });
+ quotient.copy_from_slice(dividend);
+
+ return lost_fraction(&[(rem as Limb) << 1], &[divisor as Limb]);
+ }
+ };
+ }
+
+ try_short_div!(u32, u16, 16);
+ try_short_div!(u64, u32, 32);
+ try_short_div!(u128, u64, 64);
+
+ // Zero the quotient before setting bits in it.
+ for x in &mut quotient[..limbs_for_bits(precision)] {
+ *x = 0;
+ }
+
+ // Long division.
+ for bit in (0..precision).rev() {
+ if cmp(dividend, divisor) != Ordering::Less {
+ sub(dividend, divisor, 0);
+ set_bit(quotient, bit);
+ }
+ shift_left(dividend, &mut 0, 1);
+ }
+
+ lost_fraction(dividend, divisor)
+ }
+}
diff --git a/compiler/rustc_apfloat/src/lib.rs b/compiler/rustc_apfloat/src/lib.rs
new file mode 100644
index 000000000..cfc3d5b15
--- /dev/null
+++ b/compiler/rustc_apfloat/src/lib.rs
@@ -0,0 +1,693 @@
+//! Port of LLVM's APFloat software floating-point implementation from the
+//! following C++ sources (please update commit hash when backporting):
+//! <https://github.com/llvm-mirror/llvm/tree/23efab2bbd424ed13495a420ad8641cb2c6c28f9>
+//!
+//! * `include/llvm/ADT/APFloat.h` -> `Float` and `FloatConvert` traits
+//! * `lib/Support/APFloat.cpp` -> `ieee` and `ppc` modules
+//! * `unittests/ADT/APFloatTest.cpp` -> `tests` directory
+//!
+//! The port contains no unsafe code, global state, or side-effects in general,
+//! and the only allocations are in the conversion to/from decimal strings.
+//!
+//! Most of the API and the testcases are intact in some form or another,
+//! with some ergonomic changes, such as idiomatic short names, returning
+//! new values instead of mutating the receiver, and having separate method
+//! variants that take a non-default rounding mode (with the suffix `_r`).
+//! Comments have been preserved where possible, only slightly adapted.
+//!
+//! Instead of keeping a pointer to a configuration struct and inspecting it
+//! dynamically on every operation, types (e.g., `ieee::Double`), traits
+//! (e.g., `ieee::Semantics`) and associated constants are employed for
+//! increased type safety and performance.
+//!
+//! On-heap bigints are replaced everywhere (except in decimal conversion),
+//! with short arrays of `type Limb = u128` elements (instead of `u64`),
+//! This allows fitting the largest supported significands in one integer
+//! (`ieee::Quad` and `ppc::Fallback` use slightly less than 128 bits).
+//! All of the functions in the `ieee::sig` module operate on slices.
+//!
+//! # Note
+//!
+//! This API is completely unstable and subject to change.
+
+#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
+#![no_std]
+#![forbid(unsafe_code)]
+
+#[macro_use]
+extern crate alloc;
+
+use core::cmp::Ordering;
+use core::fmt;
+use core::ops::{Add, Div, Mul, Neg, Rem, Sub};
+use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
+use core::str::FromStr;
+
+bitflags::bitflags! {
+ /// IEEE-754R 7: Default exception handling.
+ ///
+ /// UNDERFLOW or OVERFLOW are always returned or-ed with INEXACT.
+ #[must_use]
+ pub struct Status: u8 {
+ const OK = 0x00;
+ const INVALID_OP = 0x01;
+ const DIV_BY_ZERO = 0x02;
+ const OVERFLOW = 0x04;
+ const UNDERFLOW = 0x08;
+ const INEXACT = 0x10;
+ }
+}
+
+#[must_use]
+#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
+pub struct StatusAnd<T> {
+ pub status: Status,
+ pub value: T,
+}
+
+impl Status {
+ pub fn and<T>(self, value: T) -> StatusAnd<T> {
+ StatusAnd { status: self, value }
+ }
+}
+
+impl<T> StatusAnd<T> {
+ pub fn map<F: FnOnce(T) -> U, U>(self, f: F) -> StatusAnd<U> {
+ StatusAnd { status: self.status, value: f(self.value) }
+ }
+}
+
+#[macro_export]
+macro_rules! unpack {
+ ($status:ident|=, $e:expr) => {
+ match $e {
+ $crate::StatusAnd { status, value } => {
+ $status |= status;
+ value
+ }
+ }
+ };
+ ($status:ident=, $e:expr) => {
+ match $e {
+ $crate::StatusAnd { status, value } => {
+ $status = status;
+ value
+ }
+ }
+ };
+}
+
+/// Category of internally-represented number.
+#[derive(Copy, Clone, PartialEq, Eq, Debug)]
+pub enum Category {
+ Infinity,
+ NaN,
+ Normal,
+ Zero,
+}
+
+/// IEEE-754R 4.3: Rounding-direction attributes.
+#[derive(Copy, Clone, PartialEq, Eq, Debug)]
+pub enum Round {
+ NearestTiesToEven,
+ TowardPositive,
+ TowardNegative,
+ TowardZero,
+ NearestTiesToAway,
+}
+
+impl Neg for Round {
+ type Output = Round;
+ fn neg(self) -> Round {
+ match self {
+ Round::TowardPositive => Round::TowardNegative,
+ Round::TowardNegative => Round::TowardPositive,
+ Round::NearestTiesToEven | Round::TowardZero | Round::NearestTiesToAway => self,
+ }
+ }
+}
+
+/// A signed type to represent a floating point number's unbiased exponent.
+pub type ExpInt = i16;
+
+// \c ilogb error results.
+pub const IEK_INF: ExpInt = ExpInt::MAX;
+pub const IEK_NAN: ExpInt = ExpInt::MIN;
+pub const IEK_ZERO: ExpInt = ExpInt::MIN + 1;
+
+#[derive(Copy, Clone, PartialEq, Eq, Debug)]
+pub struct ParseError(pub &'static str);
+
+/// A self-contained host- and target-independent arbitrary-precision
+/// floating-point software implementation.
+///
+/// `apfloat` uses significand bignum integer arithmetic as provided by functions
+/// in the `ieee::sig`.
+///
+/// Written for clarity rather than speed, in particular with a view to use in
+/// the front-end of a cross compiler so that target arithmetic can be correctly
+/// performed on the host. Performance should nonetheless be reasonable,
+/// particularly for its intended use. It may be useful as a base
+/// implementation for a run-time library during development of a faster
+/// target-specific one.
+///
+/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
+/// implemented operations. Currently implemented operations are add, subtract,
+/// multiply, divide, fused-multiply-add, conversion-to-float,
+/// conversion-to-integer and conversion-from-integer. New rounding modes
+/// (e.g., away from zero) can be added with three or four lines of code.
+///
+/// Four formats are built-in: IEEE single precision, double precision,
+/// quadruple precision, and x87 80-bit extended double (when operating with
+/// full extended precision). Adding a new format that obeys IEEE semantics
+/// only requires adding two lines of code: a declaration and definition of the
+/// format.
+///
+/// All operations return the status of that operation as an exception bit-mask,
+/// so multiple operations can be done consecutively with their results or-ed
+/// together. The returned status can be useful for compiler diagnostics; e.g.,
+/// inexact, underflow and overflow can be easily diagnosed on constant folding,
+/// and compiler optimizers can determine what exceptions would be raised by
+/// folding operations and optimize, or perhaps not optimize, accordingly.
+///
+/// At present, underflow tininess is detected after rounding; it should be
+/// straight forward to add support for the before-rounding case too.
+///
+/// The library reads hexadecimal floating point numbers as per C99, and
+/// correctly rounds if necessary according to the specified rounding mode.
+/// Syntax is required to have been validated by the caller.
+///
+/// It also reads decimal floating point numbers and correctly rounds according
+/// to the specified rounding mode.
+///
+/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
+/// signed exponent, and the significand as an array of integer limbs. After
+/// normalization of a number of precision P the exponent is within the range of
+/// the format, and if the number is not denormal the P-th bit of the
+/// significand is set as an explicit integer bit. For denormals the most
+/// significant bit is shifted right so that the exponent is maintained at the
+/// format's minimum, so that the smallest denormal has just the least
+/// significant bit of the significand set. The sign of zeros and infinities
+/// is significant; the exponent and significand of such numbers is not stored,
+/// but has a known implicit (deterministic) value: 0 for the significands, 0
+/// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
+/// significand are deterministic, although not really meaningful, and preserved
+/// in non-conversion operations. The exponent is implicitly all 1 bits.
+///
+/// `apfloat` does not provide any exception handling beyond default exception
+/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
+/// by encoding Signaling NaNs with the first bit of its trailing significand
+/// as 0.
+///
+/// Future work
+/// ===========
+///
+/// Some features that may or may not be worth adding:
+///
+/// Optional ability to detect underflow tininess before rounding.
+///
+/// New formats: x87 in single and double precision mode (IEEE apart from
+/// extended exponent range) (hard).
+///
+/// New operations: sqrt, nexttoward.
+///
+pub trait Float:
+ Copy
+ + Default
+ + FromStr<Err = ParseError>
+ + PartialOrd
+ + fmt::Display
+ + Neg<Output = Self>
+ + AddAssign
+ + SubAssign
+ + MulAssign
+ + DivAssign
+ + RemAssign
+ + Add<Output = StatusAnd<Self>>
+ + Sub<Output = StatusAnd<Self>>
+ + Mul<Output = StatusAnd<Self>>
+ + Div<Output = StatusAnd<Self>>
+ + Rem<Output = StatusAnd<Self>>
+{
+ /// Total number of bits in the in-memory format.
+ const BITS: usize;
+
+ /// Number of bits in the significand. This includes the integer bit.
+ const PRECISION: usize;
+
+ /// The largest E such that 2<sup>E</sup> is representable; this matches the
+ /// definition of IEEE 754.
+ const MAX_EXP: ExpInt;
+
+ /// The smallest E such that 2<sup>E</sup> is a normalized number; this
+ /// matches the definition of IEEE 754.
+ const MIN_EXP: ExpInt;
+
+ /// Positive Zero.
+ const ZERO: Self;
+
+ /// Positive Infinity.
+ const INFINITY: Self;
+
+ /// NaN (Not a Number).
+ // FIXME(eddyb) provide a default when qnan becomes const fn.
+ const NAN: Self;
+
+ /// Factory for QNaN values.
+ // FIXME(eddyb) should be const fn.
+ fn qnan(payload: Option<u128>) -> Self;
+
+ /// Factory for SNaN values.
+ // FIXME(eddyb) should be const fn.
+ fn snan(payload: Option<u128>) -> Self;
+
+ /// Largest finite number.
+ // FIXME(eddyb) should be const (but FloatPair::largest is nontrivial).
+ fn largest() -> Self;
+
+ /// Smallest (by magnitude) finite number.
+ /// Might be denormalized, which implies a relative loss of precision.
+ const SMALLEST: Self;
+
+ /// Smallest (by magnitude) normalized finite number.
+ // FIXME(eddyb) should be const (but FloatPair::smallest_normalized is nontrivial).
+ fn smallest_normalized() -> Self;
+
+ // Arithmetic
+
+ fn add_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
+ fn sub_r(self, rhs: Self, round: Round) -> StatusAnd<Self> {
+ self.add_r(-rhs, round)
+ }
+ fn mul_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
+ fn mul_add_r(self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self>;
+ fn mul_add(self, multiplicand: Self, addend: Self) -> StatusAnd<Self> {
+ self.mul_add_r(multiplicand, addend, Round::NearestTiesToEven)
+ }
+ fn div_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
+ /// IEEE remainder.
+ // This is not currently correct in all cases.
+ fn ieee_rem(self, rhs: Self) -> StatusAnd<Self> {
+ let mut v = self;
+
+ let status;
+ v = unpack!(status=, v / rhs);
+ if status == Status::DIV_BY_ZERO {
+ return status.and(self);
+ }
+
+ assert!(Self::PRECISION < 128);
+
+ let status;
+ let x = unpack!(status=, v.to_i128_r(128, Round::NearestTiesToEven, &mut false));
+ if status == Status::INVALID_OP {
+ return status.and(self);
+ }
+
+ let status;
+ let mut v = unpack!(status=, Self::from_i128(x));
+ assert_eq!(status, Status::OK); // should always work
+
+ let status;
+ v = unpack!(status=, v * rhs);
+ assert_eq!(status - Status::INEXACT, Status::OK); // should not overflow or underflow
+
+ let status;
+ v = unpack!(status=, self - v);
+ assert_eq!(status - Status::INEXACT, Status::OK); // likewise
+
+ if v.is_zero() {
+ status.and(v.copy_sign(self)) // IEEE754 requires this
+ } else {
+ status.and(v)
+ }
+ }
+ /// C fmod, or llvm frem.
+ fn c_fmod(self, rhs: Self) -> StatusAnd<Self>;
+ fn round_to_integral(self, round: Round) -> StatusAnd<Self>;
+
+ /// IEEE-754R 2008 5.3.1: nextUp.
+ fn next_up(self) -> StatusAnd<Self>;
+
+ /// IEEE-754R 2008 5.3.1: nextDown.
+ ///
+ /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
+ /// appropriate sign switching before/after the computation.
+ fn next_down(self) -> StatusAnd<Self> {
+ (-self).next_up().map(|r| -r)
+ }
+
+ fn abs(self) -> Self {
+ if self.is_negative() { -self } else { self }
+ }
+ fn copy_sign(self, rhs: Self) -> Self {
+ if self.is_negative() != rhs.is_negative() { -self } else { self }
+ }
+
+ // Conversions
+ fn from_bits(input: u128) -> Self;
+ fn from_i128_r(input: i128, round: Round) -> StatusAnd<Self> {
+ if input < 0 {
+ Self::from_u128_r(input.wrapping_neg() as u128, -round).map(|r| -r)
+ } else {
+ Self::from_u128_r(input as u128, round)
+ }
+ }
+ fn from_i128(input: i128) -> StatusAnd<Self> {
+ Self::from_i128_r(input, Round::NearestTiesToEven)
+ }
+ fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self>;
+ fn from_u128(input: u128) -> StatusAnd<Self> {
+ Self::from_u128_r(input, Round::NearestTiesToEven)
+ }
+ fn from_str_r(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError>;
+ fn to_bits(self) -> u128;
+
+ /// Converts a floating point number to an integer according to the
+ /// rounding mode. In case of an invalid operation exception,
+ /// deterministic values are returned, namely zero for NaNs and the
+ /// minimal or maximal value respectively for underflow or overflow.
+ /// If the rounded value is in range but the floating point number is
+ /// not the exact integer, the C standard doesn't require an inexact
+ /// exception to be raised. IEEE-854 does require it so we do that.
+ ///
+ /// Note that for conversions to integer type the C standard requires
+ /// round-to-zero to always be used.
+ ///
+ /// The *is_exact output tells whether the result is exact, in the sense
+ /// that converting it back to the original floating point type produces
+ /// the original value. This is almost equivalent to `result == Status::OK`,
+ /// except for negative zeroes.
+ fn to_i128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<i128> {
+ let status;
+ if self.is_negative() {
+ if self.is_zero() {
+ // Negative zero can't be represented as an int.
+ *is_exact = false;
+ }
+ let r = unpack!(status=, (-self).to_u128_r(width, -round, is_exact));
+
+ // Check for values that don't fit in the signed integer.
+ if r > (1 << (width - 1)) {
+ // Return the most negative integer for the given width.
+ *is_exact = false;
+ Status::INVALID_OP.and(-1 << (width - 1))
+ } else {
+ status.and(r.wrapping_neg() as i128)
+ }
+ } else {
+ // Positive case is simpler, can pretend it's a smaller unsigned
+ // integer, and `to_u128` will take care of all the edge cases.
+ self.to_u128_r(width - 1, round, is_exact).map(|r| r as i128)
+ }
+ }
+ fn to_i128(self, width: usize) -> StatusAnd<i128> {
+ self.to_i128_r(width, Round::TowardZero, &mut true)
+ }
+ fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128>;
+ fn to_u128(self, width: usize) -> StatusAnd<u128> {
+ self.to_u128_r(width, Round::TowardZero, &mut true)
+ }
+
+ fn cmp_abs_normal(self, rhs: Self) -> Ordering;
+
+ /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
+ fn bitwise_eq(self, rhs: Self) -> bool;
+
+ // IEEE-754R 5.7.2 General operations.
+
+ /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
+ /// both are not NaN. If either argument is a NaN, returns the other argument.
+ fn min(self, other: Self) -> Self {
+ if self.is_nan() {
+ other
+ } else if other.is_nan() {
+ self
+ } else if other.partial_cmp(&self) == Some(Ordering::Less) {
+ other
+ } else {
+ self
+ }
+ }
+
+ /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
+ /// both are not NaN. If either argument is a NaN, returns the other argument.
+ fn max(self, other: Self) -> Self {
+ if self.is_nan() {
+ other
+ } else if other.is_nan() {
+ self
+ } else if self.partial_cmp(&other) == Some(Ordering::Less) {
+ other
+ } else {
+ self
+ }
+ }
+
+ /// IEEE-754R isSignMinus: Returns whether the current value is
+ /// negative.
+ ///
+ /// This applies to zeros and NaNs as well.
+ fn is_negative(self) -> bool;
+
+ /// IEEE-754R isNormal: Returns whether the current value is normal.
+ ///
+ /// This implies that the current value of the float is not zero, subnormal,
+ /// infinite, or NaN following the definition of normality from IEEE-754R.
+ fn is_normal(self) -> bool {
+ !self.is_denormal() && self.is_finite_non_zero()
+ }
+
+ /// Returns `true` if the current value is zero, subnormal, or
+ /// normal.
+ ///
+ /// This means that the value is not infinite or NaN.
+ fn is_finite(self) -> bool {
+ !self.is_nan() && !self.is_infinite()
+ }
+
+ /// Returns `true` if the float is plus or minus zero.
+ fn is_zero(self) -> bool {
+ self.category() == Category::Zero
+ }
+
+ /// IEEE-754R isSubnormal(): Returns whether the float is a
+ /// denormal.
+ fn is_denormal(self) -> bool;
+
+ /// IEEE-754R isInfinite(): Returns whether the float is infinity.
+ fn is_infinite(self) -> bool {
+ self.category() == Category::Infinity
+ }
+
+ /// Returns `true` if the float is a quiet or signaling NaN.
+ fn is_nan(self) -> bool {
+ self.category() == Category::NaN
+ }
+
+ /// Returns `true` if the float is a signaling NaN.
+ fn is_signaling(self) -> bool;
+
+ // Simple Queries
+
+ fn category(self) -> Category;
+ fn is_non_zero(self) -> bool {
+ !self.is_zero()
+ }
+ fn is_finite_non_zero(self) -> bool {
+ self.is_finite() && !self.is_zero()
+ }
+ fn is_pos_zero(self) -> bool {
+ self.is_zero() && !self.is_negative()
+ }
+ fn is_neg_zero(self) -> bool {
+ self.is_zero() && self.is_negative()
+ }
+
+ /// Returns `true` if the number has the smallest possible non-zero
+ /// magnitude in the current semantics.
+ fn is_smallest(self) -> bool {
+ Self::SMALLEST.copy_sign(self).bitwise_eq(self)
+ }
+
+ /// Returns `true` if the number has the largest possible finite
+ /// magnitude in the current semantics.
+ fn is_largest(self) -> bool {
+ Self::largest().copy_sign(self).bitwise_eq(self)
+ }
+
+ /// Returns `true` if the number is an exact integer.
+ fn is_integer(self) -> bool {
+ // This could be made more efficient; I'm going for obviously correct.
+ if !self.is_finite() {
+ return false;
+ }
+ self.round_to_integral(Round::TowardZero).value.bitwise_eq(self)
+ }
+
+ /// If this value has an exact multiplicative inverse, return it.
+ fn get_exact_inverse(self) -> Option<Self>;
+
+ /// Returns the exponent of the internal representation of the Float.
+ ///
+ /// Because the radix of Float is 2, this is equivalent to floor(log2(x)).
+ /// For special Float values, this returns special error codes:
+ ///
+ /// NaN -> \c IEK_NAN
+ /// 0 -> \c IEK_ZERO
+ /// Inf -> \c IEK_INF
+ ///
+ fn ilogb(self) -> ExpInt;
+
+ /// Returns: self * 2<sup>exp</sup> for integral exponents.
+ /// Equivalent to C standard library function `ldexp`.
+ fn scalbn_r(self, exp: ExpInt, round: Round) -> Self;
+ fn scalbn(self, exp: ExpInt) -> Self {
+ self.scalbn_r(exp, Round::NearestTiesToEven)
+ }
+
+ /// Equivalent to C standard library function with the same name.
+ ///
+ /// While the C standard says exp is an unspecified value for infinity and nan,
+ /// this returns INT_MAX for infinities, and INT_MIN for NaNs (see `ilogb`).
+ fn frexp_r(self, exp: &mut ExpInt, round: Round) -> Self;
+ fn frexp(self, exp: &mut ExpInt) -> Self {
+ self.frexp_r(exp, Round::NearestTiesToEven)
+ }
+}
+
+pub trait FloatConvert<T: Float>: Float {
+ /// Converts a value of one floating point type to another.
+ /// The return value corresponds to the IEEE754 exceptions. *loses_info
+ /// records whether the transformation lost information, i.e., whether
+ /// converting the result back to the original type will produce the
+ /// original value (this is almost the same as return `value == Status::OK`,
+ /// but there are edge cases where this is not so).
+ fn convert_r(self, round: Round, loses_info: &mut bool) -> StatusAnd<T>;
+ fn convert(self, loses_info: &mut bool) -> StatusAnd<T> {
+ self.convert_r(Round::NearestTiesToEven, loses_info)
+ }
+}
+
+macro_rules! float_common_impls {
+ ($ty:ident<$t:tt>) => {
+ impl<$t> Default for $ty<$t>
+ where
+ Self: Float,
+ {
+ fn default() -> Self {
+ Self::ZERO
+ }
+ }
+
+ impl<$t> ::core::str::FromStr for $ty<$t>
+ where
+ Self: Float,
+ {
+ type Err = ParseError;
+ fn from_str(s: &str) -> Result<Self, ParseError> {
+ Self::from_str_r(s, Round::NearestTiesToEven).map(|x| x.value)
+ }
+ }
+
+ // Rounding ties to the nearest even, by default.
+
+ impl<$t> ::core::ops::Add for $ty<$t>
+ where
+ Self: Float,
+ {
+ type Output = StatusAnd<Self>;
+ fn add(self, rhs: Self) -> StatusAnd<Self> {
+ self.add_r(rhs, Round::NearestTiesToEven)
+ }
+ }
+
+ impl<$t> ::core::ops::Sub for $ty<$t>
+ where
+ Self: Float,
+ {
+ type Output = StatusAnd<Self>;
+ fn sub(self, rhs: Self) -> StatusAnd<Self> {
+ self.sub_r(rhs, Round::NearestTiesToEven)
+ }
+ }
+
+ impl<$t> ::core::ops::Mul for $ty<$t>
+ where
+ Self: Float,
+ {
+ type Output = StatusAnd<Self>;
+ fn mul(self, rhs: Self) -> StatusAnd<Self> {
+ self.mul_r(rhs, Round::NearestTiesToEven)
+ }
+ }
+
+ impl<$t> ::core::ops::Div for $ty<$t>
+ where
+ Self: Float,
+ {
+ type Output = StatusAnd<Self>;
+ fn div(self, rhs: Self) -> StatusAnd<Self> {
+ self.div_r(rhs, Round::NearestTiesToEven)
+ }
+ }
+
+ impl<$t> ::core::ops::Rem for $ty<$t>
+ where
+ Self: Float,
+ {
+ type Output = StatusAnd<Self>;
+ fn rem(self, rhs: Self) -> StatusAnd<Self> {
+ self.c_fmod(rhs)
+ }
+ }
+
+ impl<$t> ::core::ops::AddAssign for $ty<$t>
+ where
+ Self: Float,
+ {
+ fn add_assign(&mut self, rhs: Self) {
+ *self = (*self + rhs).value;
+ }
+ }
+
+ impl<$t> ::core::ops::SubAssign for $ty<$t>
+ where
+ Self: Float,
+ {
+ fn sub_assign(&mut self, rhs: Self) {
+ *self = (*self - rhs).value;
+ }
+ }
+
+ impl<$t> ::core::ops::MulAssign for $ty<$t>
+ where
+ Self: Float,
+ {
+ fn mul_assign(&mut self, rhs: Self) {
+ *self = (*self * rhs).value;
+ }
+ }
+
+ impl<$t> ::core::ops::DivAssign for $ty<$t>
+ where
+ Self: Float,
+ {
+ fn div_assign(&mut self, rhs: Self) {
+ *self = (*self / rhs).value;
+ }
+ }
+
+ impl<$t> ::core::ops::RemAssign for $ty<$t>
+ where
+ Self: Float,
+ {
+ fn rem_assign(&mut self, rhs: Self) {
+ *self = (*self % rhs).value;
+ }
+ }
+ };
+}
+
+pub mod ieee;
+pub mod ppc;
diff --git a/compiler/rustc_apfloat/src/ppc.rs b/compiler/rustc_apfloat/src/ppc.rs
new file mode 100644
index 000000000..65a0f6664
--- /dev/null
+++ b/compiler/rustc_apfloat/src/ppc.rs
@@ -0,0 +1,434 @@
+use crate::ieee;
+use crate::{Category, ExpInt, Float, FloatConvert, ParseError, Round, Status, StatusAnd};
+
+use core::cmp::Ordering;
+use core::fmt;
+use core::ops::Neg;
+
+#[must_use]
+#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
+pub struct DoubleFloat<F>(F, F);
+pub type DoubleDouble = DoubleFloat<ieee::Double>;
+
+// These are legacy semantics for the Fallback, inaccurate implementation of
+// IBM double-double, if the accurate DoubleDouble doesn't handle the
+// operation. It's equivalent to having an IEEE number with consecutive 106
+// bits of mantissa and 11 bits of exponent.
+//
+// It's not equivalent to IBM double-double. For example, a legit IBM
+// double-double, 1 + epsilon:
+//
+// 1 + epsilon = 1 + (1 >> 1076)
+//
+// is not representable by a consecutive 106 bits of mantissa.
+//
+// Currently, these semantics are used in the following way:
+//
+// DoubleDouble -> (Double, Double) ->
+// DoubleDouble's Fallback -> IEEE operations
+//
+// FIXME: Implement all operations in DoubleDouble, and delete these
+// semantics.
+// FIXME(eddyb) This shouldn't need to be `pub`, it's only used in bounds.
+pub struct FallbackS<F>(#[allow(unused)] F);
+type Fallback<F> = ieee::IeeeFloat<FallbackS<F>>;
+impl<F: Float> ieee::Semantics for FallbackS<F> {
+ // Forbid any conversion to/from bits.
+ const BITS: usize = 0;
+ const PRECISION: usize = F::PRECISION * 2;
+ const MAX_EXP: ExpInt = F::MAX_EXP as ExpInt;
+ const MIN_EXP: ExpInt = F::MIN_EXP as ExpInt + F::PRECISION as ExpInt;
+}
+
+// Convert number to F. To avoid spurious underflows, we re-
+// normalize against the F exponent range first, and only *then*
+// truncate the mantissa. The result of that second conversion
+// may be inexact, but should never underflow.
+// FIXME(eddyb) This shouldn't need to be `pub`, it's only used in bounds.
+pub struct FallbackExtendedS<F>(#[allow(unused)] F);
+type FallbackExtended<F> = ieee::IeeeFloat<FallbackExtendedS<F>>;
+impl<F: Float> ieee::Semantics for FallbackExtendedS<F> {
+ // Forbid any conversion to/from bits.
+ const BITS: usize = 0;
+ const PRECISION: usize = Fallback::<F>::PRECISION;
+ const MAX_EXP: ExpInt = F::MAX_EXP as ExpInt;
+}
+
+impl<F: Float> From<Fallback<F>> for DoubleFloat<F>
+where
+ F: FloatConvert<FallbackExtended<F>>,
+ FallbackExtended<F>: FloatConvert<F>,
+{
+ fn from(x: Fallback<F>) -> Self {
+ let mut status;
+ let mut loses_info = false;
+
+ let extended: FallbackExtended<F> = unpack!(status=, x.convert(&mut loses_info));
+ assert_eq!((status, loses_info), (Status::OK, false));
+
+ let a = unpack!(status=, extended.convert(&mut loses_info));
+ assert_eq!(status - Status::INEXACT, Status::OK);
+
+ // If conversion was exact or resulted in a special case, we're done;
+ // just set the second double to zero. Otherwise, re-convert back to
+ // the extended format and compute the difference. This now should
+ // convert exactly to double.
+ let b = if a.is_finite_non_zero() && loses_info {
+ let u: FallbackExtended<F> = unpack!(status=, a.convert(&mut loses_info));
+ assert_eq!((status, loses_info), (Status::OK, false));
+ let v = unpack!(status=, extended - u);
+ assert_eq!(status, Status::OK);
+ let v = unpack!(status=, v.convert(&mut loses_info));
+ assert_eq!((status, loses_info), (Status::OK, false));
+ v
+ } else {
+ F::ZERO
+ };
+
+ DoubleFloat(a, b)
+ }
+}
+
+impl<F: FloatConvert<Self>> From<DoubleFloat<F>> for Fallback<F> {
+ fn from(DoubleFloat(a, b): DoubleFloat<F>) -> Self {
+ let mut status;
+ let mut loses_info = false;
+
+ // Get the first F and convert to our format.
+ let a = unpack!(status=, a.convert(&mut loses_info));
+ assert_eq!((status, loses_info), (Status::OK, false));
+
+ // Unless we have a special case, add in second F.
+ if a.is_finite_non_zero() {
+ let b = unpack!(status=, b.convert(&mut loses_info));
+ assert_eq!((status, loses_info), (Status::OK, false));
+
+ (a + b).value
+ } else {
+ a
+ }
+ }
+}
+
+float_common_impls!(DoubleFloat<F>);
+
+impl<F: Float> Neg for DoubleFloat<F> {
+ type Output = Self;
+ fn neg(self) -> Self {
+ if self.1.is_finite_non_zero() {
+ DoubleFloat(-self.0, -self.1)
+ } else {
+ DoubleFloat(-self.0, self.1)
+ }
+ }
+}
+
+impl<F: FloatConvert<Fallback<F>>> fmt::Display for DoubleFloat<F> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Display::fmt(&Fallback::from(*self), f)
+ }
+}
+
+impl<F: FloatConvert<Fallback<F>>> Float for DoubleFloat<F>
+where
+ Self: From<Fallback<F>>,
+{
+ const BITS: usize = F::BITS * 2;
+ const PRECISION: usize = Fallback::<F>::PRECISION;
+ const MAX_EXP: ExpInt = Fallback::<F>::MAX_EXP;
+ const MIN_EXP: ExpInt = Fallback::<F>::MIN_EXP;
+
+ const ZERO: Self = DoubleFloat(F::ZERO, F::ZERO);
+
+ const INFINITY: Self = DoubleFloat(F::INFINITY, F::ZERO);
+
+ // FIXME(eddyb) remove when qnan becomes const fn.
+ const NAN: Self = DoubleFloat(F::NAN, F::ZERO);
+
+ fn qnan(payload: Option<u128>) -> Self {
+ DoubleFloat(F::qnan(payload), F::ZERO)
+ }
+
+ fn snan(payload: Option<u128>) -> Self {
+ DoubleFloat(F::snan(payload), F::ZERO)
+ }
+
+ fn largest() -> Self {
+ let status;
+ let mut r = DoubleFloat(F::largest(), F::largest());
+ r.1 = r.1.scalbn(-(F::PRECISION as ExpInt + 1));
+ r.1 = unpack!(status=, r.1.next_down());
+ assert_eq!(status, Status::OK);
+ r
+ }
+
+ const SMALLEST: Self = DoubleFloat(F::SMALLEST, F::ZERO);
+
+ fn smallest_normalized() -> Self {
+ DoubleFloat(F::smallest_normalized().scalbn(F::PRECISION as ExpInt), F::ZERO)
+ }
+
+ // Implement addition, subtraction, multiplication and division based on:
+ // "Software for Doubled-Precision Floating-Point Computations",
+ // by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283.
+
+ fn add_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
+ match (self.category(), rhs.category()) {
+ (Category::Infinity, Category::Infinity) => {
+ if self.is_negative() != rhs.is_negative() {
+ Status::INVALID_OP.and(Self::NAN.copy_sign(self))
+ } else {
+ Status::OK.and(self)
+ }
+ }
+
+ (_, Category::Zero) | (Category::NaN, _) | (Category::Infinity, Category::Normal) => {
+ Status::OK.and(self)
+ }
+
+ (Category::Zero, _) | (_, Category::NaN | Category::Infinity) => Status::OK.and(rhs),
+
+ (Category::Normal, Category::Normal) => {
+ let mut status = Status::OK;
+ let (a, aa, c, cc) = (self.0, self.1, rhs.0, rhs.1);
+ let mut z = a;
+ z = unpack!(status|=, z.add_r(c, round));
+ if !z.is_finite() {
+ if !z.is_infinite() {
+ return status.and(DoubleFloat(z, F::ZERO));
+ }
+ status = Status::OK;
+ let a_cmp_c = a.cmp_abs_normal(c);
+ z = cc;
+ z = unpack!(status|=, z.add_r(aa, round));
+ if a_cmp_c == Ordering::Greater {
+ // z = cc + aa + c + a;
+ z = unpack!(status|=, z.add_r(c, round));
+ z = unpack!(status|=, z.add_r(a, round));
+ } else {
+ // z = cc + aa + a + c;
+ z = unpack!(status|=, z.add_r(a, round));
+ z = unpack!(status|=, z.add_r(c, round));
+ }
+ if !z.is_finite() {
+ return status.and(DoubleFloat(z, F::ZERO));
+ }
+ self.0 = z;
+ let mut zz = aa;
+ zz = unpack!(status|=, zz.add_r(cc, round));
+ if a_cmp_c == Ordering::Greater {
+ // self.1 = a - z + c + zz;
+ self.1 = a;
+ self.1 = unpack!(status|=, self.1.sub_r(z, round));
+ self.1 = unpack!(status|=, self.1.add_r(c, round));
+ self.1 = unpack!(status|=, self.1.add_r(zz, round));
+ } else {
+ // self.1 = c - z + a + zz;
+ self.1 = c;
+ self.1 = unpack!(status|=, self.1.sub_r(z, round));
+ self.1 = unpack!(status|=, self.1.add_r(a, round));
+ self.1 = unpack!(status|=, self.1.add_r(zz, round));
+ }
+ } else {
+ // q = a - z;
+ let mut q = a;
+ q = unpack!(status|=, q.sub_r(z, round));
+
+ // zz = q + c + (a - (q + z)) + aa + cc;
+ // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies.
+ let mut zz = q;
+ zz = unpack!(status|=, zz.add_r(c, round));
+ q = unpack!(status|=, q.add_r(z, round));
+ q = unpack!(status|=, q.sub_r(a, round));
+ q = -q;
+ zz = unpack!(status|=, zz.add_r(q, round));
+ zz = unpack!(status|=, zz.add_r(aa, round));
+ zz = unpack!(status|=, zz.add_r(cc, round));
+ if zz.is_zero() && !zz.is_negative() {
+ return Status::OK.and(DoubleFloat(z, F::ZERO));
+ }
+ self.0 = z;
+ self.0 = unpack!(status|=, self.0.add_r(zz, round));
+ if !self.0.is_finite() {
+ self.1 = F::ZERO;
+ return status.and(self);
+ }
+ self.1 = z;
+ self.1 = unpack!(status|=, self.1.sub_r(self.0, round));
+ self.1 = unpack!(status|=, self.1.add_r(zz, round));
+ }
+ status.and(self)
+ }
+ }
+ }
+
+ fn mul_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
+ // Interesting observation: For special categories, finding the lowest
+ // common ancestor of the following layered graph gives the correct
+ // return category:
+ //
+ // NaN
+ // / \
+ // Zero Inf
+ // \ /
+ // Normal
+ //
+ // e.g., NaN * NaN = NaN
+ // Zero * Inf = NaN
+ // Normal * Zero = Zero
+ // Normal * Inf = Inf
+ match (self.category(), rhs.category()) {
+ (Category::NaN, _) => Status::OK.and(self),
+
+ (_, Category::NaN) => Status::OK.and(rhs),
+
+ (Category::Zero, Category::Infinity) | (Category::Infinity, Category::Zero) => {
+ Status::OK.and(Self::NAN)
+ }
+
+ (Category::Zero | Category::Infinity, _) => Status::OK.and(self),
+
+ (_, Category::Zero | Category::Infinity) => Status::OK.and(rhs),
+
+ (Category::Normal, Category::Normal) => {
+ let mut status = Status::OK;
+ let (a, b, c, d) = (self.0, self.1, rhs.0, rhs.1);
+ // t = a * c
+ let mut t = a;
+ t = unpack!(status|=, t.mul_r(c, round));
+ if !t.is_finite_non_zero() {
+ return status.and(DoubleFloat(t, F::ZERO));
+ }
+
+ // tau = fmsub(a, c, t), that is -fmadd(-a, c, t).
+ let mut tau = a;
+ tau = unpack!(status|=, tau.mul_add_r(c, -t, round));
+ // v = a * d
+ let mut v = a;
+ v = unpack!(status|=, v.mul_r(d, round));
+ // w = b * c
+ let mut w = b;
+ w = unpack!(status|=, w.mul_r(c, round));
+ v = unpack!(status|=, v.add_r(w, round));
+ // tau += v + w
+ tau = unpack!(status|=, tau.add_r(v, round));
+ // u = t + tau
+ let mut u = t;
+ u = unpack!(status|=, u.add_r(tau, round));
+
+ self.0 = u;
+ if !u.is_finite() {
+ self.1 = F::ZERO;
+ } else {
+ // self.1 = (t - u) + tau
+ t = unpack!(status|=, t.sub_r(u, round));
+ t = unpack!(status|=, t.add_r(tau, round));
+ self.1 = t;
+ }
+ status.and(self)
+ }
+ }
+ }
+
+ fn mul_add_r(self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self> {
+ Fallback::from(self)
+ .mul_add_r(Fallback::from(multiplicand), Fallback::from(addend), round)
+ .map(Self::from)
+ }
+
+ fn div_r(self, rhs: Self, round: Round) -> StatusAnd<Self> {
+ Fallback::from(self).div_r(Fallback::from(rhs), round).map(Self::from)
+ }
+
+ fn c_fmod(self, rhs: Self) -> StatusAnd<Self> {
+ Fallback::from(self).c_fmod(Fallback::from(rhs)).map(Self::from)
+ }
+
+ fn round_to_integral(self, round: Round) -> StatusAnd<Self> {
+ Fallback::from(self).round_to_integral(round).map(Self::from)
+ }
+
+ fn next_up(self) -> StatusAnd<Self> {
+ Fallback::from(self).next_up().map(Self::from)
+ }
+
+ fn from_bits(input: u128) -> Self {
+ let (a, b) = (input, input >> F::BITS);
+ DoubleFloat(F::from_bits(a & ((1 << F::BITS) - 1)), F::from_bits(b & ((1 << F::BITS) - 1)))
+ }
+
+ fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self> {
+ Fallback::from_u128_r(input, round).map(Self::from)
+ }
+
+ fn from_str_r(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> {
+ Fallback::from_str_r(s, round).map(|r| r.map(Self::from))
+ }
+
+ fn to_bits(self) -> u128 {
+ self.0.to_bits() | (self.1.to_bits() << F::BITS)
+ }
+
+ fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128> {
+ Fallback::from(self).to_u128_r(width, round, is_exact)
+ }
+
+ fn cmp_abs_normal(self, rhs: Self) -> Ordering {
+ self.0.cmp_abs_normal(rhs.0).then_with(|| {
+ let result = self.1.cmp_abs_normal(rhs.1);
+ if result != Ordering::Equal {
+ let against = self.0.is_negative() ^ self.1.is_negative();
+ let rhs_against = rhs.0.is_negative() ^ rhs.1.is_negative();
+ (!against)
+ .cmp(&!rhs_against)
+ .then_with(|| if against { result.reverse() } else { result })
+ } else {
+ result
+ }
+ })
+ }
+
+ fn bitwise_eq(self, rhs: Self) -> bool {
+ self.0.bitwise_eq(rhs.0) && self.1.bitwise_eq(rhs.1)
+ }
+
+ fn is_negative(self) -> bool {
+ self.0.is_negative()
+ }
+
+ fn is_denormal(self) -> bool {
+ self.category() == Category::Normal
+ && (self.0.is_denormal() || self.0.is_denormal() ||
+ // (double)(Hi + Lo) == Hi defines a normal number.
+ !(self.0 + self.1).value.bitwise_eq(self.0))
+ }
+
+ fn is_signaling(self) -> bool {
+ self.0.is_signaling()
+ }
+
+ fn category(self) -> Category {
+ self.0.category()
+ }
+
+ fn get_exact_inverse(self) -> Option<Self> {
+ Fallback::from(self).get_exact_inverse().map(Self::from)
+ }
+
+ fn ilogb(self) -> ExpInt {
+ self.0.ilogb()
+ }
+
+ fn scalbn_r(self, exp: ExpInt, round: Round) -> Self {
+ DoubleFloat(self.0.scalbn_r(exp, round), self.1.scalbn_r(exp, round))
+ }
+
+ fn frexp_r(self, exp: &mut ExpInt, round: Round) -> Self {
+ let a = self.0.frexp_r(exp, round);
+ let mut b = self.1;
+ if self.category() == Category::Normal {
+ b = b.scalbn_r(-*exp, round);
+ }
+ DoubleFloat(a, b)
+ }
+}
diff --git a/compiler/rustc_apfloat/tests/ieee.rs b/compiler/rustc_apfloat/tests/ieee.rs
new file mode 100644
index 000000000..f8fac0c23
--- /dev/null
+++ b/compiler/rustc_apfloat/tests/ieee.rs
@@ -0,0 +1,3301 @@
+// ignore-tidy-filelength
+
+use rustc_apfloat::ieee::{Double, Half, Quad, Single, X87DoubleExtended};
+use rustc_apfloat::unpack;
+use rustc_apfloat::{Category, ExpInt, IEK_INF, IEK_NAN, IEK_ZERO};
+use rustc_apfloat::{Float, FloatConvert, ParseError, Round, Status};
+
+trait SingleExt {
+ fn from_f32(input: f32) -> Self;
+ fn to_f32(self) -> f32;
+}
+
+impl SingleExt for Single {
+ fn from_f32(input: f32) -> Self {
+ Self::from_bits(input.to_bits() as u128)
+ }
+
+ fn to_f32(self) -> f32 {
+ f32::from_bits(self.to_bits() as u32)
+ }
+}
+
+trait DoubleExt {
+ fn from_f64(input: f64) -> Self;
+ fn to_f64(self) -> f64;
+}
+
+impl DoubleExt for Double {
+ fn from_f64(input: f64) -> Self {
+ Self::from_bits(input.to_bits() as u128)
+ }
+
+ fn to_f64(self) -> f64 {
+ f64::from_bits(self.to_bits() as u64)
+ }
+}
+
+#[test]
+fn is_signaling() {
+ // We test qNaN, -qNaN, +sNaN, -sNaN with and without payloads.
+ let payload = 4;
+ assert!(!Single::qnan(None).is_signaling());
+ assert!(!(-Single::qnan(None)).is_signaling());
+ assert!(!Single::qnan(Some(payload)).is_signaling());
+ assert!(!(-Single::qnan(Some(payload))).is_signaling());
+ assert!(Single::snan(None).is_signaling());
+ assert!((-Single::snan(None)).is_signaling());
+ assert!(Single::snan(Some(payload)).is_signaling());
+ assert!((-Single::snan(Some(payload))).is_signaling());
+}
+
+#[test]
+fn next() {
+ // 1. Test Special Cases Values.
+ //
+ // Test all special values for nextUp and nextDown perscribed by IEEE-754R
+ // 2008. These are:
+ // 1. +inf
+ // 2. -inf
+ // 3. largest
+ // 4. -largest
+ // 5. smallest
+ // 6. -smallest
+ // 7. qNaN
+ // 8. sNaN
+ // 9. +0
+ // 10. -0
+
+ let mut status;
+
+ // nextUp(+inf) = +inf.
+ let test = unpack!(status=, Quad::INFINITY.next_up());
+ let expected = Quad::INFINITY;
+ assert_eq!(status, Status::OK);
+ assert!(test.is_infinite());
+ assert!(!test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(+inf) = -nextUp(-inf) = -(-largest) = largest
+ let test = unpack!(status=, Quad::INFINITY.next_down());
+ let expected = Quad::largest();
+ assert_eq!(status, Status::OK);
+ assert!(!test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(-inf) = -largest
+ let test = unpack!(status=, (-Quad::INFINITY).next_up());
+ let expected = -Quad::largest();
+ assert_eq!(status, Status::OK);
+ assert!(test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(-inf) = -nextUp(+inf) = -(+inf) = -inf.
+ let test = unpack!(status=, (-Quad::INFINITY).next_down());
+ let expected = -Quad::INFINITY;
+ assert_eq!(status, Status::OK);
+ assert!(test.is_infinite() && test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(largest) = +inf
+ let test = unpack!(status=, Quad::largest().next_up());
+ let expected = Quad::INFINITY;
+ assert_eq!(status, Status::OK);
+ assert!(test.is_infinite() && !test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(largest) = -nextUp(-largest)
+ // = -(-largest + inc)
+ // = largest - inc.
+ let test = unpack!(status=, Quad::largest().next_down());
+ let expected = "0x1.fffffffffffffffffffffffffffep+16383".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(!test.is_infinite() && !test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(-largest) = -largest + inc.
+ let test = unpack!(status=, (-Quad::largest()).next_up());
+ let expected = "-0x1.fffffffffffffffffffffffffffep+16383".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(-largest) = -nextUp(largest) = -(inf) = -inf.
+ let test = unpack!(status=, (-Quad::largest()).next_down());
+ let expected = -Quad::INFINITY;
+ assert_eq!(status, Status::OK);
+ assert!(test.is_infinite() && test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(smallest) = smallest + inc.
+ let test = unpack!(status=, "0x0.0000000000000000000000000001p-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_up());
+ let expected = "0x0.0000000000000000000000000002p-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(smallest) = -nextUp(-smallest) = -(-0) = +0.
+ let test = unpack!(status=, "0x0.0000000000000000000000000001p-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_down());
+ let expected = Quad::ZERO;
+ assert_eq!(status, Status::OK);
+ assert!(test.is_pos_zero());
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(-smallest) = -0.
+ let test = unpack!(status=, "-0x0.0000000000000000000000000001p-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_up());
+ let expected = -Quad::ZERO;
+ assert_eq!(status, Status::OK);
+ assert!(test.is_neg_zero());
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(-smallest) = -nextUp(smallest) = -smallest - inc.
+ let test = unpack!(status=, "-0x0.0000000000000000000000000001p-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_down());
+ let expected = "-0x0.0000000000000000000000000002p-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(qNaN) = qNaN
+ let test = unpack!(status=, Quad::qnan(None).next_up());
+ let expected = Quad::qnan(None);
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(qNaN) = qNaN
+ let test = unpack!(status=, Quad::qnan(None).next_down());
+ let expected = Quad::qnan(None);
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(sNaN) = qNaN
+ let test = unpack!(status=, Quad::snan(None).next_up());
+ let expected = Quad::qnan(None);
+ assert_eq!(status, Status::INVALID_OP);
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(sNaN) = qNaN
+ let test = unpack!(status=, Quad::snan(None).next_down());
+ let expected = Quad::qnan(None);
+ assert_eq!(status, Status::INVALID_OP);
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(+0) = +smallest
+ let test = unpack!(status=, Quad::ZERO.next_up());
+ let expected = Quad::SMALLEST;
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(+0) = -nextUp(-0) = -smallest
+ let test = unpack!(status=, Quad::ZERO.next_down());
+ let expected = -Quad::SMALLEST;
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(-0) = +smallest
+ let test = unpack!(status=, (-Quad::ZERO).next_up());
+ let expected = Quad::SMALLEST;
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(-0) = -nextUp(0) = -smallest
+ let test = unpack!(status=, (-Quad::ZERO).next_down());
+ let expected = -Quad::SMALLEST;
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // 2. Binade Boundary Tests.
+
+ // 2a. Test denormal <-> normal binade boundaries.
+ // * nextUp(+Largest Denormal) -> +Smallest Normal.
+ // * nextDown(-Largest Denormal) -> -Smallest Normal.
+ // * nextUp(-Smallest Normal) -> -Largest Denormal.
+ // * nextDown(+Smallest Normal) -> +Largest Denormal.
+
+ // nextUp(+Largest Denormal) -> +Smallest Normal.
+ let test = unpack!(status=, "0x0.ffffffffffffffffffffffffffffp-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_up());
+ let expected = "0x1.0000000000000000000000000000p-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(!test.is_denormal());
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(-Largest Denormal) -> -Smallest Normal.
+ let test = unpack!(status=, "-0x0.ffffffffffffffffffffffffffffp-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_down());
+ let expected = "-0x1.0000000000000000000000000000p-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(!test.is_denormal());
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(-Smallest Normal) -> -Largest Denormal.
+ let test = unpack!(status=, "-0x1.0000000000000000000000000000p-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_up());
+ let expected = "-0x0.ffffffffffffffffffffffffffffp-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.is_denormal());
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(+Smallest Normal) -> +Largest Denormal.
+ let test = unpack!(status=, "+0x1.0000000000000000000000000000p-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_down());
+ let expected = "+0x0.ffffffffffffffffffffffffffffp-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.is_denormal());
+ assert!(test.bitwise_eq(expected));
+
+ // 2b. Test normal <-> normal binade boundaries.
+ // * nextUp(-Normal Binade Boundary) -> -Normal Binade Boundary + 1.
+ // * nextDown(+Normal Binade Boundary) -> +Normal Binade Boundary - 1.
+ // * nextUp(+Normal Binade Boundary - 1) -> +Normal Binade Boundary.
+ // * nextDown(-Normal Binade Boundary + 1) -> -Normal Binade Boundary.
+
+ // nextUp(-Normal Binade Boundary) -> -Normal Binade Boundary + 1.
+ let test = unpack!(status=, "-0x1p+1".parse::<Quad>().unwrap().next_up());
+ let expected = "-0x1.ffffffffffffffffffffffffffffp+0".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(+Normal Binade Boundary) -> +Normal Binade Boundary - 1.
+ let test = unpack!(status=, "0x1p+1".parse::<Quad>().unwrap().next_down());
+ let expected = "0x1.ffffffffffffffffffffffffffffp+0".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(+Normal Binade Boundary - 1) -> +Normal Binade Boundary.
+ let test = unpack!(status=, "0x1.ffffffffffffffffffffffffffffp+0"
+ .parse::<Quad>()
+ .unwrap()
+ .next_up());
+ let expected = "0x1p+1".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(-Normal Binade Boundary + 1) -> -Normal Binade Boundary.
+ let test = unpack!(status=, "-0x1.ffffffffffffffffffffffffffffp+0"
+ .parse::<Quad>()
+ .unwrap()
+ .next_down());
+ let expected = "-0x1p+1".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // 2c. Test using next at binade boundaries with a direction away from the
+ // binade boundary. Away from denormal <-> normal boundaries.
+ //
+ // This is to make sure that even though we are at a binade boundary, since
+ // we are rounding away, we do not trigger the binade boundary code. Thus we
+ // test:
+ // * nextUp(-Largest Denormal) -> -Largest Denormal + inc.
+ // * nextDown(+Largest Denormal) -> +Largest Denormal - inc.
+ // * nextUp(+Smallest Normal) -> +Smallest Normal + inc.
+ // * nextDown(-Smallest Normal) -> -Smallest Normal - inc.
+
+ // nextUp(-Largest Denormal) -> -Largest Denormal + inc.
+ let test = unpack!(status=, "-0x0.ffffffffffffffffffffffffffffp-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_up());
+ let expected = "-0x0.fffffffffffffffffffffffffffep-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.is_denormal());
+ assert!(test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(+Largest Denormal) -> +Largest Denormal - inc.
+ let test = unpack!(status=, "0x0.ffffffffffffffffffffffffffffp-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_down());
+ let expected = "0x0.fffffffffffffffffffffffffffep-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.is_denormal());
+ assert!(!test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(+Smallest Normal) -> +Smallest Normal + inc.
+ let test = unpack!(status=, "0x1.0000000000000000000000000000p-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_up());
+ let expected = "0x1.0000000000000000000000000001p-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(!test.is_denormal());
+ assert!(!test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(-Smallest Normal) -> -Smallest Normal - inc.
+ let test = unpack!(status=, "-0x1.0000000000000000000000000000p-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_down());
+ let expected = "-0x1.0000000000000000000000000001p-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(!test.is_denormal());
+ assert!(test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // 2d. Test values which cause our exponent to go to min exponent. This
+ // is to ensure that guards in the code to check for min exponent
+ // trigger properly.
+ // * nextUp(-0x1p-16381) -> -0x1.ffffffffffffffffffffffffffffp-16382
+ // * nextDown(-0x1.ffffffffffffffffffffffffffffp-16382) ->
+ // -0x1p-16381
+ // * nextUp(0x1.ffffffffffffffffffffffffffffp-16382) -> 0x1p-16382
+ // * nextDown(0x1p-16382) -> 0x1.ffffffffffffffffffffffffffffp-16382
+
+ // nextUp(-0x1p-16381) -> -0x1.ffffffffffffffffffffffffffffp-16382
+ let test = unpack!(status=, "-0x1p-16381".parse::<Quad>().unwrap().next_up());
+ let expected = "-0x1.ffffffffffffffffffffffffffffp-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(-0x1.ffffffffffffffffffffffffffffp-16382) ->
+ // -0x1p-16381
+ let test = unpack!(status=, "-0x1.ffffffffffffffffffffffffffffp-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_down());
+ let expected = "-0x1p-16381".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(0x1.ffffffffffffffffffffffffffffp-16382) -> 0x1p-16381
+ let test = unpack!(status=, "0x1.ffffffffffffffffffffffffffffp-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_up());
+ let expected = "0x1p-16381".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(0x1p-16381) -> 0x1.ffffffffffffffffffffffffffffp-16382
+ let test = unpack!(status=, "0x1p-16381".parse::<Quad>().unwrap().next_down());
+ let expected = "0x1.ffffffffffffffffffffffffffffp-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.bitwise_eq(expected));
+
+ // 3. Now we test both denormal/normal computation which will not cause us
+ // to go across binade boundaries. Specifically we test:
+ // * nextUp(+Denormal) -> +Denormal.
+ // * nextDown(+Denormal) -> +Denormal.
+ // * nextUp(-Denormal) -> -Denormal.
+ // * nextDown(-Denormal) -> -Denormal.
+ // * nextUp(+Normal) -> +Normal.
+ // * nextDown(+Normal) -> +Normal.
+ // * nextUp(-Normal) -> -Normal.
+ // * nextDown(-Normal) -> -Normal.
+
+ // nextUp(+Denormal) -> +Denormal.
+ let test = unpack!(status=, "0x0.ffffffffffffffffffffffff000cp-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_up());
+ let expected = "0x0.ffffffffffffffffffffffff000dp-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.is_denormal());
+ assert!(!test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(+Denormal) -> +Denormal.
+ let test = unpack!(status=, "0x0.ffffffffffffffffffffffff000cp-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_down());
+ let expected = "0x0.ffffffffffffffffffffffff000bp-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.is_denormal());
+ assert!(!test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(-Denormal) -> -Denormal.
+ let test = unpack!(status=, "-0x0.ffffffffffffffffffffffff000cp-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_up());
+ let expected = "-0x0.ffffffffffffffffffffffff000bp-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.is_denormal());
+ assert!(test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(-Denormal) -> -Denormal
+ let test = unpack!(status=, "-0x0.ffffffffffffffffffffffff000cp-16382"
+ .parse::<Quad>()
+ .unwrap()
+ .next_down());
+ let expected = "-0x0.ffffffffffffffffffffffff000dp-16382".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(test.is_denormal());
+ assert!(test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(+Normal) -> +Normal.
+ let test = unpack!(status=, "0x1.ffffffffffffffffffffffff000cp-16000"
+ .parse::<Quad>()
+ .unwrap()
+ .next_up());
+ let expected = "0x1.ffffffffffffffffffffffff000dp-16000".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(!test.is_denormal());
+ assert!(!test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(+Normal) -> +Normal.
+ let test = unpack!(status=, "0x1.ffffffffffffffffffffffff000cp-16000"
+ .parse::<Quad>()
+ .unwrap()
+ .next_down());
+ let expected = "0x1.ffffffffffffffffffffffff000bp-16000".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(!test.is_denormal());
+ assert!(!test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextUp(-Normal) -> -Normal.
+ let test = unpack!(status=, "-0x1.ffffffffffffffffffffffff000cp-16000"
+ .parse::<Quad>()
+ .unwrap()
+ .next_up());
+ let expected = "-0x1.ffffffffffffffffffffffff000bp-16000".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(!test.is_denormal());
+ assert!(test.is_negative());
+ assert!(test.bitwise_eq(expected));
+
+ // nextDown(-Normal) -> -Normal.
+ let test = unpack!(status=, "-0x1.ffffffffffffffffffffffff000cp-16000"
+ .parse::<Quad>()
+ .unwrap()
+ .next_down());
+ let expected = "-0x1.ffffffffffffffffffffffff000dp-16000".parse::<Quad>().unwrap();
+ assert_eq!(status, Status::OK);
+ assert!(!test.is_denormal());
+ assert!(test.is_negative());
+ assert!(test.bitwise_eq(expected));
+}
+
+#[test]
+fn fma() {
+ {
+ let mut f1 = Single::from_f32(14.5);
+ let f2 = Single::from_f32(-14.5);
+ let f3 = Single::from_f32(225.0);
+ f1 = f1.mul_add(f2, f3).value;
+ assert_eq!(14.75, f1.to_f32());
+ }
+
+ {
+ let val2 = Single::from_f32(2.0);
+ let mut f1 = Single::from_f32(1.17549435e-38);
+ let mut f2 = Single::from_f32(1.17549435e-38);
+ f1 /= val2;
+ f2 /= val2;
+ let f3 = Single::from_f32(12.0);
+ f1 = f1.mul_add(f2, f3).value;
+ assert_eq!(12.0, f1.to_f32());
+ }
+
+ // Test for correct zero sign when answer is exactly zero.
+ // fma(1.0, -1.0, 1.0) -> +ve 0.
+ {
+ let mut f1 = Double::from_f64(1.0);
+ let f2 = Double::from_f64(-1.0);
+ let f3 = Double::from_f64(1.0);
+ f1 = f1.mul_add(f2, f3).value;
+ assert!(!f1.is_negative() && f1.is_zero());
+ }
+
+ // Test for correct zero sign when answer is exactly zero and rounding towards
+ // negative.
+ // fma(1.0, -1.0, 1.0) -> +ve 0.
+ {
+ let mut f1 = Double::from_f64(1.0);
+ let f2 = Double::from_f64(-1.0);
+ let f3 = Double::from_f64(1.0);
+ f1 = f1.mul_add_r(f2, f3, Round::TowardNegative).value;
+ assert!(f1.is_negative() && f1.is_zero());
+ }
+
+ // Test for correct (in this case -ve) sign when adding like signed zeros.
+ // Test fma(0.0, -0.0, -0.0) -> -ve 0.
+ {
+ let mut f1 = Double::from_f64(0.0);
+ let f2 = Double::from_f64(-0.0);
+ let f3 = Double::from_f64(-0.0);
+ f1 = f1.mul_add(f2, f3).value;
+ assert!(f1.is_negative() && f1.is_zero());
+ }
+
+ // Test -ve sign preservation when small negative results underflow.
+ {
+ let mut f1 = "-0x1p-1074".parse::<Double>().unwrap();
+ let f2 = "+0x1p-1074".parse::<Double>().unwrap();
+ let f3 = Double::from_f64(0.0);
+ f1 = f1.mul_add(f2, f3).value;
+ assert!(f1.is_negative() && f1.is_zero());
+ }
+
+ // Test x87 extended precision case from https://llvm.org/PR20728.
+ {
+ let mut m1 = X87DoubleExtended::from_u128(1).value;
+ let m2 = X87DoubleExtended::from_u128(1).value;
+ let a = X87DoubleExtended::from_u128(3).value;
+
+ let mut loses_info = false;
+ m1 = m1.mul_add(m2, a).value;
+ let r: Single = m1.convert(&mut loses_info).value;
+ assert!(!loses_info);
+ assert_eq!(4.0, r.to_f32());
+ }
+}
+
+#[test]
+fn issue_69532() {
+ let f = Double::from_bits(0x7FF0_0000_0000_0001u64 as u128);
+ let mut loses_info = false;
+ let sta = f.convert(&mut loses_info);
+ let r: Single = sta.value;
+ assert!(loses_info);
+ assert!(r.is_nan());
+ assert_eq!(sta.status, Status::INVALID_OP);
+}
+
+#[test]
+fn min_num() {
+ let f1 = Double::from_f64(1.0);
+ let f2 = Double::from_f64(2.0);
+ let nan = Double::NAN;
+
+ assert_eq!(1.0, f1.min(f2).to_f64());
+ assert_eq!(1.0, f2.min(f1).to_f64());
+ assert_eq!(1.0, f1.min(nan).to_f64());
+ assert_eq!(1.0, nan.min(f1).to_f64());
+}
+
+#[test]
+fn max_num() {
+ let f1 = Double::from_f64(1.0);
+ let f2 = Double::from_f64(2.0);
+ let nan = Double::NAN;
+
+ assert_eq!(2.0, f1.max(f2).to_f64());
+ assert_eq!(2.0, f2.max(f1).to_f64());
+ assert_eq!(1.0, f1.max(nan).to_f64());
+ assert_eq!(1.0, nan.max(f1).to_f64());
+}
+
+#[test]
+fn denormal() {
+ // Test single precision
+ {
+ assert!(!Single::from_f32(0.0).is_denormal());
+
+ let mut t = "1.17549435082228750797e-38".parse::<Single>().unwrap();
+ assert!(!t.is_denormal());
+
+ let val2 = Single::from_f32(2.0e0);
+ t /= val2;
+ assert!(t.is_denormal());
+ }
+
+ // Test double precision
+ {
+ assert!(!Double::from_f64(0.0).is_denormal());
+
+ let mut t = "2.22507385850720138309e-308".parse::<Double>().unwrap();
+ assert!(!t.is_denormal());
+
+ let val2 = Double::from_f64(2.0e0);
+ t /= val2;
+ assert!(t.is_denormal());
+ }
+
+ // Test Intel double-ext
+ {
+ assert!(!X87DoubleExtended::from_u128(0).value.is_denormal());
+
+ let mut t = "3.36210314311209350626e-4932".parse::<X87DoubleExtended>().unwrap();
+ assert!(!t.is_denormal());
+
+ t /= X87DoubleExtended::from_u128(2).value;
+ assert!(t.is_denormal());
+ }
+
+ // Test quadruple precision
+ {
+ assert!(!Quad::from_u128(0).value.is_denormal());
+
+ let mut t = "3.36210314311209350626267781732175260e-4932".parse::<Quad>().unwrap();
+ assert!(!t.is_denormal());
+
+ t /= Quad::from_u128(2).value;
+ assert!(t.is_denormal());
+ }
+}
+
+#[test]
+fn decimal_strings_without_null_terminators() {
+ // Make sure that we can parse strings without null terminators.
+ // rdar://14323230.
+ let val = "0.00"[..3].parse::<Double>().unwrap();
+ assert_eq!(val.to_f64(), 0.0);
+ let val = "0.01"[..3].parse::<Double>().unwrap();
+ assert_eq!(val.to_f64(), 0.0);
+ let val = "0.09"[..3].parse::<Double>().unwrap();
+ assert_eq!(val.to_f64(), 0.0);
+ let val = "0.095"[..4].parse::<Double>().unwrap();
+ assert_eq!(val.to_f64(), 0.09);
+ let val = "0.00e+3"[..7].parse::<Double>().unwrap();
+ assert_eq!(val.to_f64(), 0.00);
+ let val = "0e+3"[..4].parse::<Double>().unwrap();
+ assert_eq!(val.to_f64(), 0.00);
+}
+
+#[test]
+fn from_zero_decimal_string() {
+ assert_eq!(0.0, "0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0.".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0.".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0.".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, ".0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+.0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-.0".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0.0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0.0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0.0".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "00000.".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+00000.".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-00000.".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, ".00000".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+.00000".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-.00000".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0000.00000".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0000.00000".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0000.00000".parse::<Double>().unwrap().to_f64());
+}
+
+#[test]
+fn from_zero_decimal_single_exponent_string() {
+ assert_eq!(0.0, "0e1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0e1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0e1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0e+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0e+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0e+1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0e-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0e-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0e-1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0.e1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0.e1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0.e1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0.e+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0.e+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0.e+1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0.e-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0.e-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0.e-1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, ".0e1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+.0e1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-.0e1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, ".0e+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+.0e+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-.0e+1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, ".0e-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+.0e-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-.0e-1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0.0e1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0.0e1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0.0e1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0.0e+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0.0e+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0.0e+1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0.0e-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0.0e-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0.0e-1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "000.0000e1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+000.0000e+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-000.0000e+1".parse::<Double>().unwrap().to_f64());
+}
+
+#[test]
+fn from_zero_decimal_large_exponent_string() {
+ assert_eq!(0.0, "0e1234".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0e1234".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0e1234".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0e+1234".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0e+1234".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0e+1234".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0e-1234".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0e-1234".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0e-1234".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "000.0000e1234".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "000.0000e-1234".parse::<Double>().unwrap().to_f64());
+}
+
+#[test]
+fn from_zero_hexadecimal_string() {
+ assert_eq!(0.0, "0x0p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0x0p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0x0p1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0x0p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0x0p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0x0p+1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0x0p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0x0p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0x0p-1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0x0.p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0x0.p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0x0.p1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0x0.p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0x0.p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0x0.p+1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0x0.p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0x0.p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0x0.p-1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0x.0p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0x.0p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0x.0p1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0x.0p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0x.0p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0x.0p+1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0x.0p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0x.0p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0x.0p-1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0x0.0p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0x0.0p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0x0.0p1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0x0.0p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0x0.0p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0x0.0p+1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0x0.0p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "+0x0.0p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0x0.0p-1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.0, "0x00000.p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "0x0000.00000p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "0x.00000p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "0x0.p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "0x0p1234".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.0, "-0x0p1234".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "0x00000.p1234".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "0x0000.00000p1234".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "0x.00000p1234".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.0, "0x0.p1234".parse::<Double>().unwrap().to_f64());
+}
+
+#[test]
+fn from_decimal_string() {
+ assert_eq!(1.0, "1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2.0, "2.".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.5, ".5".parse::<Double>().unwrap().to_f64());
+ assert_eq!(1.0, "1.0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-2.0, "-2".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-4.0, "-4.".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.5, "-.5".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-1.5, "-1.5".parse::<Double>().unwrap().to_f64());
+ assert_eq!(1.25e12, "1.25e12".parse::<Double>().unwrap().to_f64());
+ assert_eq!(1.25e+12, "1.25e+12".parse::<Double>().unwrap().to_f64());
+ assert_eq!(1.25e-12, "1.25e-12".parse::<Double>().unwrap().to_f64());
+ assert_eq!(1024.0, "1024.".parse::<Double>().unwrap().to_f64());
+ assert_eq!(1024.05, "1024.05000".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.05, ".05000".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2.0, "2.".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2.0e2, "2.e2".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2.0e+2, "2.e+2".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2.0e-2, "2.e-2".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2.05e2, "002.05000e2".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2.05e+2, "002.05000e+2".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2.05e-2, "002.05000e-2".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2.05e12, "002.05000e12".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2.05e+12, "002.05000e+12".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2.05e-12, "002.05000e-12".parse::<Double>().unwrap().to_f64());
+
+ // These are "carefully selected" to overflow the fast log-base
+ // calculations in the implementation.
+ assert!("99e99999".parse::<Double>().unwrap().is_infinite());
+ assert!("-99e99999".parse::<Double>().unwrap().is_infinite());
+ assert!("1e-99999".parse::<Double>().unwrap().is_pos_zero());
+ assert!("-1e-99999".parse::<Double>().unwrap().is_neg_zero());
+
+ assert_eq!(2.71828, "2.71828".parse::<Double>().unwrap().to_f64());
+}
+
+#[test]
+fn from_hexadecimal_string() {
+ assert_eq!(1.0, "0x1p0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(1.0, "+0x1p0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-1.0, "-0x1p0".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(1.0, "0x1p+0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(1.0, "+0x1p+0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-1.0, "-0x1p+0".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(1.0, "0x1p-0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(1.0, "+0x1p-0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-1.0, "-0x1p-0".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(2.0, "0x1p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2.0, "+0x1p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-2.0, "-0x1p1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(2.0, "0x1p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2.0, "+0x1p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-2.0, "-0x1p+1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.5, "0x1p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.5, "+0x1p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.5, "-0x1p-1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(3.0, "0x1.8p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(3.0, "+0x1.8p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-3.0, "-0x1.8p1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(3.0, "0x1.8p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(3.0, "+0x1.8p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-3.0, "-0x1.8p+1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.75, "0x1.8p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.75, "+0x1.8p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.75, "-0x1.8p-1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(8192.0, "0x1000.000p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(8192.0, "+0x1000.000p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-8192.0, "-0x1000.000p1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(8192.0, "0x1000.000p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(8192.0, "+0x1000.000p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-8192.0, "-0x1000.000p+1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(2048.0, "0x1000.000p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2048.0, "+0x1000.000p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-2048.0, "-0x1000.000p-1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(8192.0, "0x1000p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(8192.0, "+0x1000p1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-8192.0, "-0x1000p1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(8192.0, "0x1000p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(8192.0, "+0x1000p+1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-8192.0, "-0x1000p+1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(2048.0, "0x1000p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(2048.0, "+0x1000p-1".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-2048.0, "-0x1000p-1".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(16384.0, "0x10p10".parse::<Double>().unwrap().to_f64());
+ assert_eq!(16384.0, "+0x10p10".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-16384.0, "-0x10p10".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(16384.0, "0x10p+10".parse::<Double>().unwrap().to_f64());
+ assert_eq!(16384.0, "+0x10p+10".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-16384.0, "-0x10p+10".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(0.015625, "0x10p-10".parse::<Double>().unwrap().to_f64());
+ assert_eq!(0.015625, "+0x10p-10".parse::<Double>().unwrap().to_f64());
+ assert_eq!(-0.015625, "-0x10p-10".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(1.0625, "0x1.1p0".parse::<Double>().unwrap().to_f64());
+ assert_eq!(1.0, "0x1p0".parse::<Double>().unwrap().to_f64());
+
+ assert_eq!(
+ "0x1p-150".parse::<Double>().unwrap().to_f64(),
+ "+0x800000000000000001.p-221".parse::<Double>().unwrap().to_f64()
+ );
+ assert_eq!(
+ 2251799813685248.5,
+ "0x80000000000004000000.010p-28".parse::<Double>().unwrap().to_f64()
+ );
+}
+
+#[test]
+fn to_string() {
+ let to_string = |d: f64, precision: usize, width: usize| {
+ let x = Double::from_f64(d);
+ if precision == 0 {
+ format!("{:1$}", x, width)
+ } else {
+ format!("{:2$.1$}", x, precision, width)
+ }
+ };
+ assert_eq!("10", to_string(10.0, 6, 3));
+ assert_eq!("1.0E+1", to_string(10.0, 6, 0));
+ assert_eq!("10100", to_string(1.01E+4, 5, 2));
+ assert_eq!("1.01E+4", to_string(1.01E+4, 4, 2));
+ assert_eq!("1.01E+4", to_string(1.01E+4, 5, 1));
+ assert_eq!("0.0101", to_string(1.01E-2, 5, 2));
+ assert_eq!("0.0101", to_string(1.01E-2, 4, 2));
+ assert_eq!("1.01E-2", to_string(1.01E-2, 5, 1));
+ assert_eq!("0.78539816339744828", to_string(0.78539816339744830961, 0, 3));
+ assert_eq!("4.9406564584124654E-324", to_string(4.9406564584124654e-324, 0, 3));
+ assert_eq!("873.18340000000001", to_string(873.1834, 0, 1));
+ assert_eq!("8.7318340000000001E+2", to_string(873.1834, 0, 0));
+ assert_eq!("1.7976931348623157E+308", to_string(1.7976931348623157E+308, 0, 0));
+
+ let to_string = |d: f64, precision: usize, width: usize| {
+ let x = Double::from_f64(d);
+ if precision == 0 {
+ format!("{:#1$}", x, width)
+ } else {
+ format!("{:#2$.1$}", x, precision, width)
+ }
+ };
+ assert_eq!("10", to_string(10.0, 6, 3));
+ assert_eq!("1.000000e+01", to_string(10.0, 6, 0));
+ assert_eq!("10100", to_string(1.01E+4, 5, 2));
+ assert_eq!("1.0100e+04", to_string(1.01E+4, 4, 2));
+ assert_eq!("1.01000e+04", to_string(1.01E+4, 5, 1));
+ assert_eq!("0.0101", to_string(1.01E-2, 5, 2));
+ assert_eq!("0.0101", to_string(1.01E-2, 4, 2));
+ assert_eq!("1.01000e-02", to_string(1.01E-2, 5, 1));
+ assert_eq!("0.78539816339744828", to_string(0.78539816339744830961, 0, 3));
+ assert_eq!("4.94065645841246540e-324", to_string(4.9406564584124654e-324, 0, 3));
+ assert_eq!("873.18340000000001", to_string(873.1834, 0, 1));
+ assert_eq!("8.73183400000000010e+02", to_string(873.1834, 0, 0));
+ assert_eq!("1.79769313486231570e+308", to_string(1.7976931348623157E+308, 0, 0));
+}
+
+#[test]
+fn to_integer() {
+ let mut is_exact = false;
+
+ assert_eq!(
+ Status::OK.and(10),
+ "10".parse::<Double>().unwrap().to_u128_r(5, Round::TowardZero, &mut is_exact,)
+ );
+ assert!(is_exact);
+
+ assert_eq!(
+ Status::INVALID_OP.and(0),
+ "-10".parse::<Double>().unwrap().to_u128_r(5, Round::TowardZero, &mut is_exact,)
+ );
+ assert!(!is_exact);
+
+ assert_eq!(
+ Status::INVALID_OP.and(31),
+ "32".parse::<Double>().unwrap().to_u128_r(5, Round::TowardZero, &mut is_exact,)
+ );
+ assert!(!is_exact);
+
+ assert_eq!(
+ Status::INEXACT.and(7),
+ "7.9".parse::<Double>().unwrap().to_u128_r(5, Round::TowardZero, &mut is_exact,)
+ );
+ assert!(!is_exact);
+
+ assert_eq!(
+ Status::OK.and(-10),
+ "-10".parse::<Double>().unwrap().to_i128_r(5, Round::TowardZero, &mut is_exact,)
+ );
+ assert!(is_exact);
+
+ assert_eq!(
+ Status::INVALID_OP.and(-16),
+ "-17".parse::<Double>().unwrap().to_i128_r(5, Round::TowardZero, &mut is_exact,)
+ );
+ assert!(!is_exact);
+
+ assert_eq!(
+ Status::INVALID_OP.and(15),
+ "16".parse::<Double>().unwrap().to_i128_r(5, Round::TowardZero, &mut is_exact,)
+ );
+ assert!(!is_exact);
+}
+
+#[test]
+fn nan() {
+ fn nanbits<T: Float>(signaling: bool, negative: bool, fill: u128) -> u128 {
+ let x = if signaling { T::snan(Some(fill)) } else { T::qnan(Some(fill)) };
+ if negative { (-x).to_bits() } else { x.to_bits() }
+ }
+
+ assert_eq!(0x7fc00000, nanbits::<Single>(false, false, 0));
+ assert_eq!(0xffc00000, nanbits::<Single>(false, true, 0));
+ assert_eq!(0x7fc0ae72, nanbits::<Single>(false, false, 0xae72));
+ assert_eq!(0x7fffae72, nanbits::<Single>(false, false, 0xffffae72));
+ assert_eq!(0x7fa00000, nanbits::<Single>(true, false, 0));
+ assert_eq!(0xffa00000, nanbits::<Single>(true, true, 0));
+ assert_eq!(0x7f80ae72, nanbits::<Single>(true, false, 0xae72));
+ assert_eq!(0x7fbfae72, nanbits::<Single>(true, false, 0xffffae72));
+
+ assert_eq!(0x7ff8000000000000, nanbits::<Double>(false, false, 0));
+ assert_eq!(0xfff8000000000000, nanbits::<Double>(false, true, 0));
+ assert_eq!(0x7ff800000000ae72, nanbits::<Double>(false, false, 0xae72));
+ assert_eq!(0x7fffffffffffae72, nanbits::<Double>(false, false, 0xffffffffffffae72));
+ assert_eq!(0x7ff4000000000000, nanbits::<Double>(true, false, 0));
+ assert_eq!(0xfff4000000000000, nanbits::<Double>(true, true, 0));
+ assert_eq!(0x7ff000000000ae72, nanbits::<Double>(true, false, 0xae72));
+ assert_eq!(0x7ff7ffffffffae72, nanbits::<Double>(true, false, 0xffffffffffffae72));
+}
+
+#[test]
+fn string_decimal_death() {
+ assert_eq!("".parse::<Double>(), Err(ParseError("Invalid string length")));
+ assert_eq!("+".parse::<Double>(), Err(ParseError("String has no digits")));
+ assert_eq!("-".parse::<Double>(), Err(ParseError("String has no digits")));
+
+ assert_eq!("\0".parse::<Double>(), Err(ParseError("Invalid character in significand")));
+ assert_eq!("1\0".parse::<Double>(), Err(ParseError("Invalid character in significand")));
+ assert_eq!("1\02".parse::<Double>(), Err(ParseError("Invalid character in significand")));
+ assert_eq!("1\02e1".parse::<Double>(), Err(ParseError("Invalid character in significand")));
+ assert_eq!("1e\0".parse::<Double>(), Err(ParseError("Invalid character in exponent")));
+ assert_eq!("1e1\0".parse::<Double>(), Err(ParseError("Invalid character in exponent")));
+ assert_eq!("1e1\02".parse::<Double>(), Err(ParseError("Invalid character in exponent")));
+
+ assert_eq!("1.0f".parse::<Double>(), Err(ParseError("Invalid character in significand")));
+
+ assert_eq!("..".parse::<Double>(), Err(ParseError("String contains multiple dots")));
+ assert_eq!("..0".parse::<Double>(), Err(ParseError("String contains multiple dots")));
+ assert_eq!("1.0.0".parse::<Double>(), Err(ParseError("String contains multiple dots")));
+}
+
+#[test]
+fn string_decimal_significand_death() {
+ assert_eq!(".".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("+.".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("-.".parse::<Double>(), Err(ParseError("Significand has no digits")));
+
+ assert_eq!("e".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("+e".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("-e".parse::<Double>(), Err(ParseError("Significand has no digits")));
+
+ assert_eq!("e1".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("+e1".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("-e1".parse::<Double>(), Err(ParseError("Significand has no digits")));
+
+ assert_eq!(".e1".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("+.e1".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("-.e1".parse::<Double>(), Err(ParseError("Significand has no digits")));
+
+ assert_eq!(".e".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("+.e".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("-.e".parse::<Double>(), Err(ParseError("Significand has no digits")));
+}
+
+#[test]
+fn string_decimal_exponent_death() {
+ assert_eq!("1e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+1e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-1e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("1.e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+1.e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-1.e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!(".1e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+.1e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-.1e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("1.1e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+1.1e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-1.1e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("1e+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("1e-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!(".1e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!(".1e+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!(".1e-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("1.0e".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("1.0e+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("1.0e-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+}
+
+#[test]
+fn string_hexadecimal_death() {
+ assert_eq!("0x".parse::<Double>(), Err(ParseError("Invalid string")));
+ assert_eq!("+0x".parse::<Double>(), Err(ParseError("Invalid string")));
+ assert_eq!("-0x".parse::<Double>(), Err(ParseError("Invalid string")));
+
+ assert_eq!("0x0".parse::<Double>(), Err(ParseError("Hex strings require an exponent")));
+ assert_eq!("+0x0".parse::<Double>(), Err(ParseError("Hex strings require an exponent")));
+ assert_eq!("-0x0".parse::<Double>(), Err(ParseError("Hex strings require an exponent")));
+
+ assert_eq!("0x0.".parse::<Double>(), Err(ParseError("Hex strings require an exponent")));
+ assert_eq!("+0x0.".parse::<Double>(), Err(ParseError("Hex strings require an exponent")));
+ assert_eq!("-0x0.".parse::<Double>(), Err(ParseError("Hex strings require an exponent")));
+
+ assert_eq!("0x.0".parse::<Double>(), Err(ParseError("Hex strings require an exponent")));
+ assert_eq!("+0x.0".parse::<Double>(), Err(ParseError("Hex strings require an exponent")));
+ assert_eq!("-0x.0".parse::<Double>(), Err(ParseError("Hex strings require an exponent")));
+
+ assert_eq!("0x0.0".parse::<Double>(), Err(ParseError("Hex strings require an exponent")));
+ assert_eq!("+0x0.0".parse::<Double>(), Err(ParseError("Hex strings require an exponent")));
+ assert_eq!("-0x0.0".parse::<Double>(), Err(ParseError("Hex strings require an exponent")));
+
+ assert_eq!("0x\0".parse::<Double>(), Err(ParseError("Invalid character in significand")));
+ assert_eq!("0x1\0".parse::<Double>(), Err(ParseError("Invalid character in significand")));
+ assert_eq!("0x1\02".parse::<Double>(), Err(ParseError("Invalid character in significand")));
+ assert_eq!("0x1\02p1".parse::<Double>(), Err(ParseError("Invalid character in significand")));
+ assert_eq!("0x1p\0".parse::<Double>(), Err(ParseError("Invalid character in exponent")));
+ assert_eq!("0x1p1\0".parse::<Double>(), Err(ParseError("Invalid character in exponent")));
+ assert_eq!("0x1p1\02".parse::<Double>(), Err(ParseError("Invalid character in exponent")));
+
+ assert_eq!("0x1p0f".parse::<Double>(), Err(ParseError("Invalid character in exponent")));
+
+ assert_eq!("0x..p1".parse::<Double>(), Err(ParseError("String contains multiple dots")));
+ assert_eq!("0x..0p1".parse::<Double>(), Err(ParseError("String contains multiple dots")));
+ assert_eq!("0x1.0.0p1".parse::<Double>(), Err(ParseError("String contains multiple dots")));
+}
+
+#[test]
+fn string_hexadecimal_significand_death() {
+ assert_eq!("0x.".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("+0x.".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("-0x.".parse::<Double>(), Err(ParseError("Significand has no digits")));
+
+ assert_eq!("0xp".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("+0xp".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("-0xp".parse::<Double>(), Err(ParseError("Significand has no digits")));
+
+ assert_eq!("0xp+".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("+0xp+".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("-0xp+".parse::<Double>(), Err(ParseError("Significand has no digits")));
+
+ assert_eq!("0xp-".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("+0xp-".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("-0xp-".parse::<Double>(), Err(ParseError("Significand has no digits")));
+
+ assert_eq!("0x.p".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("+0x.p".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("-0x.p".parse::<Double>(), Err(ParseError("Significand has no digits")));
+
+ assert_eq!("0x.p+".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("+0x.p+".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("-0x.p+".parse::<Double>(), Err(ParseError("Significand has no digits")));
+
+ assert_eq!("0x.p-".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("+0x.p-".parse::<Double>(), Err(ParseError("Significand has no digits")));
+ assert_eq!("-0x.p-".parse::<Double>(), Err(ParseError("Significand has no digits")));
+}
+
+#[test]
+fn string_hexadecimal_exponent_death() {
+ assert_eq!("0x1p".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+0x1p".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-0x1p".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("0x1p+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+0x1p+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-0x1p+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("0x1p-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+0x1p-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-0x1p-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("0x1.p".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+0x1.p".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-0x1.p".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("0x1.p+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+0x1.p+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-0x1.p+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("0x1.p-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+0x1.p-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-0x1.p-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("0x.1p".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+0x.1p".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-0x.1p".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("0x.1p+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+0x.1p+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-0x.1p+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("0x.1p-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+0x.1p-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-0x.1p-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("0x1.1p".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+0x1.1p".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-0x1.1p".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("0x1.1p+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+0x1.1p+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-0x1.1p+".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+
+ assert_eq!("0x1.1p-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("+0x1.1p-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+ assert_eq!("-0x1.1p-".parse::<Double>(), Err(ParseError("Exponent has no digits")));
+}
+
+#[test]
+fn exact_inverse() {
+ // Trivial operation.
+ assert!(Double::from_f64(2.0).get_exact_inverse().unwrap().bitwise_eq(Double::from_f64(0.5)));
+ assert!(Single::from_f32(2.0).get_exact_inverse().unwrap().bitwise_eq(Single::from_f32(0.5)));
+ assert!(
+ "2.0"
+ .parse::<Quad>()
+ .unwrap()
+ .get_exact_inverse()
+ .unwrap()
+ .bitwise_eq("0.5".parse::<Quad>().unwrap())
+ );
+ assert!(
+ "2.0"
+ .parse::<X87DoubleExtended>()
+ .unwrap()
+ .get_exact_inverse()
+ .unwrap()
+ .bitwise_eq("0.5".parse::<X87DoubleExtended>().unwrap())
+ );
+
+ // FLT_MIN
+ assert!(
+ Single::from_f32(1.17549435e-38)
+ .get_exact_inverse()
+ .unwrap()
+ .bitwise_eq(Single::from_f32(8.5070592e+37))
+ );
+
+ // Large float, inverse is a denormal.
+ assert!(Single::from_f32(1.7014118e38).get_exact_inverse().is_none());
+ // Zero
+ assert!(Double::from_f64(0.0).get_exact_inverse().is_none());
+ // Denormalized float
+ assert!(Single::from_f32(1.40129846e-45).get_exact_inverse().is_none());
+}
+
+#[test]
+fn round_to_integral() {
+ let t = Double::from_f64(-0.5);
+ assert_eq!(-0.0, t.round_to_integral(Round::TowardZero).value.to_f64());
+ assert_eq!(-1.0, t.round_to_integral(Round::TowardNegative).value.to_f64());
+ assert_eq!(-0.0, t.round_to_integral(Round::TowardPositive).value.to_f64());
+ assert_eq!(-0.0, t.round_to_integral(Round::NearestTiesToEven).value.to_f64());
+
+ let s = Double::from_f64(3.14);
+ assert_eq!(3.0, s.round_to_integral(Round::TowardZero).value.to_f64());
+ assert_eq!(3.0, s.round_to_integral(Round::TowardNegative).value.to_f64());
+ assert_eq!(4.0, s.round_to_integral(Round::TowardPositive).value.to_f64());
+ assert_eq!(3.0, s.round_to_integral(Round::NearestTiesToEven).value.to_f64());
+
+ let r = Double::largest();
+ assert_eq!(r.to_f64(), r.round_to_integral(Round::TowardZero).value.to_f64());
+ assert_eq!(r.to_f64(), r.round_to_integral(Round::TowardNegative).value.to_f64());
+ assert_eq!(r.to_f64(), r.round_to_integral(Round::TowardPositive).value.to_f64());
+ assert_eq!(r.to_f64(), r.round_to_integral(Round::NearestTiesToEven).value.to_f64());
+
+ let p = Double::ZERO.round_to_integral(Round::TowardZero).value;
+ assert_eq!(0.0, p.to_f64());
+ let p = (-Double::ZERO).round_to_integral(Round::TowardZero).value;
+ assert_eq!(-0.0, p.to_f64());
+ let p = Double::NAN.round_to_integral(Round::TowardZero).value;
+ assert!(p.to_f64().is_nan());
+ let p = Double::INFINITY.round_to_integral(Round::TowardZero).value;
+ assert!(p.to_f64().is_infinite() && p.to_f64() > 0.0);
+ let p = (-Double::INFINITY).round_to_integral(Round::TowardZero).value;
+ assert!(p.to_f64().is_infinite() && p.to_f64() < 0.0);
+}
+
+#[test]
+fn is_integer() {
+ let t = Double::from_f64(-0.0);
+ assert!(t.is_integer());
+ let t = Double::from_f64(3.14159);
+ assert!(!t.is_integer());
+ let t = Double::NAN;
+ assert!(!t.is_integer());
+ let t = Double::INFINITY;
+ assert!(!t.is_integer());
+ let t = -Double::INFINITY;
+ assert!(!t.is_integer());
+ let t = Double::largest();
+ assert!(t.is_integer());
+}
+
+#[test]
+fn largest() {
+ assert_eq!(3.402823466e+38, Single::largest().to_f32());
+ assert_eq!(1.7976931348623158e+308, Double::largest().to_f64());
+}
+
+#[test]
+fn smallest() {
+ let test = Single::SMALLEST;
+ let expected = "0x0.000002p-126".parse::<Single>().unwrap();
+ assert!(!test.is_negative());
+ assert!(test.is_finite_non_zero());
+ assert!(test.is_denormal());
+ assert!(test.bitwise_eq(expected));
+
+ let test = -Single::SMALLEST;
+ let expected = "-0x0.000002p-126".parse::<Single>().unwrap();
+ assert!(test.is_negative());
+ assert!(test.is_finite_non_zero());
+ assert!(test.is_denormal());
+ assert!(test.bitwise_eq(expected));
+
+ let test = Quad::SMALLEST;
+ let expected = "0x0.0000000000000000000000000001p-16382".parse::<Quad>().unwrap();
+ assert!(!test.is_negative());
+ assert!(test.is_finite_non_zero());
+ assert!(test.is_denormal());
+ assert!(test.bitwise_eq(expected));
+
+ let test = -Quad::SMALLEST;
+ let expected = "-0x0.0000000000000000000000000001p-16382".parse::<Quad>().unwrap();
+ assert!(test.is_negative());
+ assert!(test.is_finite_non_zero());
+ assert!(test.is_denormal());
+ assert!(test.bitwise_eq(expected));
+}
+
+#[test]
+fn smallest_normalized() {
+ let test = Single::smallest_normalized();
+ let expected = "0x1p-126".parse::<Single>().unwrap();
+ assert!(!test.is_negative());
+ assert!(test.is_finite_non_zero());
+ assert!(!test.is_denormal());
+ assert!(test.bitwise_eq(expected));
+
+ let test = -Single::smallest_normalized();
+ let expected = "-0x1p-126".parse::<Single>().unwrap();
+ assert!(test.is_negative());
+ assert!(test.is_finite_non_zero());
+ assert!(!test.is_denormal());
+ assert!(test.bitwise_eq(expected));
+
+ let test = Quad::smallest_normalized();
+ let expected = "0x1p-16382".parse::<Quad>().unwrap();
+ assert!(!test.is_negative());
+ assert!(test.is_finite_non_zero());
+ assert!(!test.is_denormal());
+ assert!(test.bitwise_eq(expected));
+
+ let test = -Quad::smallest_normalized();
+ let expected = "-0x1p-16382".parse::<Quad>().unwrap();
+ assert!(test.is_negative());
+ assert!(test.is_finite_non_zero());
+ assert!(!test.is_denormal());
+ assert!(test.bitwise_eq(expected));
+}
+
+#[test]
+fn zero() {
+ assert_eq!(0.0, Single::from_f32(0.0).to_f32());
+ assert_eq!(-0.0, Single::from_f32(-0.0).to_f32());
+ assert!(Single::from_f32(-0.0).is_negative());
+
+ assert_eq!(0.0, Double::from_f64(0.0).to_f64());
+ assert_eq!(-0.0, Double::from_f64(-0.0).to_f64());
+ assert!(Double::from_f64(-0.0).is_negative());
+
+ fn test<T: Float>(sign: bool, bits: u128) {
+ let test = if sign { -T::ZERO } else { T::ZERO };
+ let pattern = if sign { "-0x0p+0" } else { "0x0p+0" };
+ let expected = pattern.parse::<T>().unwrap();
+ assert!(test.is_zero());
+ assert_eq!(sign, test.is_negative());
+ assert!(test.bitwise_eq(expected));
+ assert_eq!(bits, test.to_bits());
+ }
+ test::<Half>(false, 0);
+ test::<Half>(true, 0x8000);
+ test::<Single>(false, 0);
+ test::<Single>(true, 0x80000000);
+ test::<Double>(false, 0);
+ test::<Double>(true, 0x8000000000000000);
+ test::<Quad>(false, 0);
+ test::<Quad>(true, 0x8000000000000000_0000000000000000);
+ test::<X87DoubleExtended>(false, 0);
+ test::<X87DoubleExtended>(true, 0x8000_0000000000000000);
+}
+
+#[test]
+fn copy_sign() {
+ assert!(
+ Double::from_f64(-42.0)
+ .bitwise_eq(Double::from_f64(42.0).copy_sign(Double::from_f64(-1.0),),)
+ );
+ assert!(
+ Double::from_f64(42.0)
+ .bitwise_eq(Double::from_f64(-42.0).copy_sign(Double::from_f64(1.0),),)
+ );
+ assert!(
+ Double::from_f64(-42.0)
+ .bitwise_eq(Double::from_f64(-42.0).copy_sign(Double::from_f64(-1.0),),)
+ );
+ assert!(
+ Double::from_f64(42.0)
+ .bitwise_eq(Double::from_f64(42.0).copy_sign(Double::from_f64(1.0),),)
+ );
+}
+
+#[test]
+fn convert() {
+ let mut loses_info = false;
+ let test = "1.0".parse::<Double>().unwrap();
+ let test: Single = test.convert(&mut loses_info).value;
+ assert_eq!(1.0, test.to_f32());
+ assert!(!loses_info);
+
+ let mut test = "0x1p-53".parse::<X87DoubleExtended>().unwrap();
+ let one = "1.0".parse::<X87DoubleExtended>().unwrap();
+ test += one;
+ let test: Double = test.convert(&mut loses_info).value;
+ assert_eq!(1.0, test.to_f64());
+ assert!(loses_info);
+
+ let mut test = "0x1p-53".parse::<Quad>().unwrap();
+ let one = "1.0".parse::<Quad>().unwrap();
+ test += one;
+ let test: Double = test.convert(&mut loses_info).value;
+ assert_eq!(1.0, test.to_f64());
+ assert!(loses_info);
+
+ let test = "0xf.fffffffp+28".parse::<X87DoubleExtended>().unwrap();
+ let test: Double = test.convert(&mut loses_info).value;
+ assert_eq!(4294967295.0, test.to_f64());
+ assert!(!loses_info);
+
+ let test = Single::qnan(None);
+ let x87_qnan = X87DoubleExtended::qnan(None);
+ let test: X87DoubleExtended = test.convert(&mut loses_info).value;
+ assert!(test.bitwise_eq(x87_qnan));
+ assert!(!loses_info);
+
+ let test = Single::snan(None);
+ let sta = test.convert(&mut loses_info);
+ let test: X87DoubleExtended = sta.value;
+ assert!(test.is_nan());
+ assert!(!test.is_signaling());
+ assert!(!loses_info);
+ assert_eq!(sta.status, Status::INVALID_OP);
+
+ let test = X87DoubleExtended::qnan(None);
+ let test: X87DoubleExtended = test.convert(&mut loses_info).value;
+ assert!(test.bitwise_eq(x87_qnan));
+ assert!(!loses_info);
+
+ let test = X87DoubleExtended::snan(None);
+ let sta = test.convert(&mut loses_info);
+ let test: X87DoubleExtended = sta.value;
+ assert!(test.is_nan());
+ assert!(!test.is_signaling());
+ assert!(!loses_info);
+ assert_eq!(sta.status, Status::INVALID_OP);
+}
+
+#[test]
+fn is_negative() {
+ let t = "0x1p+0".parse::<Single>().unwrap();
+ assert!(!t.is_negative());
+ let t = "-0x1p+0".parse::<Single>().unwrap();
+ assert!(t.is_negative());
+
+ assert!(!Single::INFINITY.is_negative());
+ assert!((-Single::INFINITY).is_negative());
+
+ assert!(!Single::ZERO.is_negative());
+ assert!((-Single::ZERO).is_negative());
+
+ assert!(!Single::NAN.is_negative());
+ assert!((-Single::NAN).is_negative());
+
+ assert!(!Single::snan(None).is_negative());
+ assert!((-Single::snan(None)).is_negative());
+}
+
+#[test]
+fn is_normal() {
+ let t = "0x1p+0".parse::<Single>().unwrap();
+ assert!(t.is_normal());
+
+ assert!(!Single::INFINITY.is_normal());
+ assert!(!Single::ZERO.is_normal());
+ assert!(!Single::NAN.is_normal());
+ assert!(!Single::snan(None).is_normal());
+ assert!(!"0x1p-149".parse::<Single>().unwrap().is_normal());
+}
+
+#[test]
+fn is_finite() {
+ let t = "0x1p+0".parse::<Single>().unwrap();
+ assert!(t.is_finite());
+ assert!(!Single::INFINITY.is_finite());
+ assert!(Single::ZERO.is_finite());
+ assert!(!Single::NAN.is_finite());
+ assert!(!Single::snan(None).is_finite());
+ assert!("0x1p-149".parse::<Single>().unwrap().is_finite());
+}
+
+#[test]
+fn is_infinite() {
+ let t = "0x1p+0".parse::<Single>().unwrap();
+ assert!(!t.is_infinite());
+ assert!(Single::INFINITY.is_infinite());
+ assert!(!Single::ZERO.is_infinite());
+ assert!(!Single::NAN.is_infinite());
+ assert!(!Single::snan(None).is_infinite());
+ assert!(!"0x1p-149".parse::<Single>().unwrap().is_infinite());
+}
+
+#[test]
+fn is_nan() {
+ let t = "0x1p+0".parse::<Single>().unwrap();
+ assert!(!t.is_nan());
+ assert!(!Single::INFINITY.is_nan());
+ assert!(!Single::ZERO.is_nan());
+ assert!(Single::NAN.is_nan());
+ assert!(Single::snan(None).is_nan());
+ assert!(!"0x1p-149".parse::<Single>().unwrap().is_nan());
+}
+
+#[test]
+fn is_finite_non_zero() {
+ // Test positive/negative normal value.
+ assert!("0x1p+0".parse::<Single>().unwrap().is_finite_non_zero());
+ assert!("-0x1p+0".parse::<Single>().unwrap().is_finite_non_zero());
+
+ // Test positive/negative denormal value.
+ assert!("0x1p-149".parse::<Single>().unwrap().is_finite_non_zero());
+ assert!("-0x1p-149".parse::<Single>().unwrap().is_finite_non_zero());
+
+ // Test +/- Infinity.
+ assert!(!Single::INFINITY.is_finite_non_zero());
+ assert!(!(-Single::INFINITY).is_finite_non_zero());
+
+ // Test +/- Zero.
+ assert!(!Single::ZERO.is_finite_non_zero());
+ assert!(!(-Single::ZERO).is_finite_non_zero());
+
+ // Test +/- qNaN. +/- don't mean anything with qNaN but paranoia can't hurt in
+ // this instance.
+ assert!(!Single::NAN.is_finite_non_zero());
+ assert!(!(-Single::NAN).is_finite_non_zero());
+
+ // Test +/- sNaN. +/- don't mean anything with sNaN but paranoia can't hurt in
+ // this instance.
+ assert!(!Single::snan(None).is_finite_non_zero());
+ assert!(!(-Single::snan(None)).is_finite_non_zero());
+}
+
+#[test]
+fn add() {
+ // Test Special Cases against each other and normal values.
+
+ // FIXMES/NOTES:
+ // 1. Since we perform only default exception handling all operations with
+ // signaling NaNs should have a result that is a quiet NaN. Currently they
+ // return sNaN.
+
+ let p_inf = Single::INFINITY;
+ let m_inf = -Single::INFINITY;
+ let p_zero = Single::ZERO;
+ let m_zero = -Single::ZERO;
+ let qnan = Single::NAN;
+ let p_normal_value = "0x1p+0".parse::<Single>().unwrap();
+ let m_normal_value = "-0x1p+0".parse::<Single>().unwrap();
+ let p_largest_value = Single::largest();
+ let m_largest_value = -Single::largest();
+ let p_smallest_value = Single::SMALLEST;
+ let m_smallest_value = -Single::SMALLEST;
+ let p_smallest_normalized = Single::smallest_normalized();
+ let m_smallest_normalized = -Single::smallest_normalized();
+
+ let overflow_status = Status::OVERFLOW | Status::INEXACT;
+
+ let special_cases = [
+ (p_inf, p_inf, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (p_inf, p_zero, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_zero, "inf", Status::OK, Category::Infinity),
+ (p_inf, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_inf, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_inf, p_normal_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_normal_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, p_largest_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_largest_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, p_smallest_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_smallest_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, p_smallest_normalized, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_smallest_normalized, "inf", Status::OK, Category::Infinity),
+ (m_inf, p_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (m_inf, m_inf, "-inf", Status::OK, Category::Infinity),
+ (m_inf, p_zero, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_zero, "-inf", Status::OK, Category::Infinity),
+ (m_inf, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_inf, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_inf, p_normal_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_normal_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, p_largest_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_largest_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, p_smallest_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_smallest_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, p_smallest_normalized, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_smallest_normalized, "-inf", Status::OK, Category::Infinity),
+ (p_zero, p_inf, "inf", Status::OK, Category::Infinity),
+ (p_zero, m_inf, "-inf", Status::OK, Category::Infinity),
+ (p_zero, p_zero, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, m_zero, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_zero, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_zero, p_normal_value, "0x1p+0", Status::OK, Category::Normal),
+ (p_zero, m_normal_value, "-0x1p+0", Status::OK, Category::Normal),
+ (p_zero, p_largest_value, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_zero, m_largest_value, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_zero, p_smallest_value, "0x1p-149", Status::OK, Category::Normal),
+ (p_zero, m_smallest_value, "-0x1p-149", Status::OK, Category::Normal),
+ (p_zero, p_smallest_normalized, "0x1p-126", Status::OK, Category::Normal),
+ (p_zero, m_smallest_normalized, "-0x1p-126", Status::OK, Category::Normal),
+ (m_zero, p_inf, "inf", Status::OK, Category::Infinity),
+ (m_zero, m_inf, "-inf", Status::OK, Category::Infinity),
+ (m_zero, p_zero, "0x0p+0", Status::OK, Category::Zero),
+ (m_zero, m_zero, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_zero, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_zero, p_normal_value, "0x1p+0", Status::OK, Category::Normal),
+ (m_zero, m_normal_value, "-0x1p+0", Status::OK, Category::Normal),
+ (m_zero, p_largest_value, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_zero, m_largest_value, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_zero, p_smallest_value, "0x1p-149", Status::OK, Category::Normal),
+ (m_zero, m_smallest_value, "-0x1p-149", Status::OK, Category::Normal),
+ (m_zero, p_smallest_normalized, "0x1p-126", Status::OK, Category::Normal),
+ (m_zero, m_smallest_normalized, "-0x1p-126", Status::OK, Category::Normal),
+ (qnan, p_inf, "nan", Status::OK, Category::NaN),
+ (qnan, m_inf, "nan", Status::OK, Category::NaN),
+ (qnan, p_zero, "nan", Status::OK, Category::NaN),
+ (qnan, m_zero, "nan", Status::OK, Category::NaN),
+ (qnan, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (qnan, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (qnan, p_normal_value, "nan", Status::OK, Category::NaN),
+ (qnan, m_normal_value, "nan", Status::OK, Category::NaN),
+ (qnan, p_largest_value, "nan", Status::OK, Category::NaN),
+ (qnan, m_largest_value, "nan", Status::OK, Category::NaN),
+ (qnan, p_smallest_value, "nan", Status::OK, Category::NaN),
+ (qnan, m_smallest_value, "nan", Status::OK, Category::NaN),
+ (qnan, p_smallest_normalized, "nan", Status::OK, Category::NaN),
+ (qnan, m_smallest_normalized, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (snan, p_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, qnan, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, snan, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_normal_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_normal_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_largest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_largest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_smallest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_smallest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_smallest_normalized, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_smallest_normalized, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_normal_value, p_inf, "inf", Status::OK, Category::Infinity),
+ (p_normal_value, m_inf, "-inf", Status::OK, Category::Infinity),
+ (p_normal_value, p_zero, "0x1p+0", Status::OK, Category::Normal),
+ (p_normal_value, m_zero, "0x1p+0", Status::OK, Category::Normal),
+ (p_normal_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_normal_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_normal_value, p_normal_value, "0x1p+1", Status::OK, Category::Normal),
+ (p_normal_value, m_normal_value, "0x0p+0", Status::OK, Category::Zero),
+ (p_normal_value, p_largest_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_normal_value, m_largest_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_normal_value, p_smallest_value, "0x1p+0", Status::INEXACT, Category::Normal),
+ (p_normal_value, m_smallest_value, "0x1p+0", Status::INEXACT, Category::Normal),
+ (p_normal_value, p_smallest_normalized, "0x1p+0", Status::INEXACT, Category::Normal),
+ (p_normal_value, m_smallest_normalized, "0x1p+0", Status::INEXACT, Category::Normal),
+ (m_normal_value, p_inf, "inf", Status::OK, Category::Infinity),
+ (m_normal_value, m_inf, "-inf", Status::OK, Category::Infinity),
+ (m_normal_value, p_zero, "-0x1p+0", Status::OK, Category::Normal),
+ (m_normal_value, m_zero, "-0x1p+0", Status::OK, Category::Normal),
+ (m_normal_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_normal_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_normal_value, p_normal_value, "0x0p+0", Status::OK, Category::Zero),
+ (m_normal_value, m_normal_value, "-0x1p+1", Status::OK, Category::Normal),
+ (m_normal_value, p_largest_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_normal_value, m_largest_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_normal_value, p_smallest_value, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (m_normal_value, m_smallest_value, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (m_normal_value, p_smallest_normalized, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (m_normal_value, m_smallest_normalized, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (p_largest_value, p_inf, "inf", Status::OK, Category::Infinity),
+ (p_largest_value, m_inf, "-inf", Status::OK, Category::Infinity),
+ (p_largest_value, p_zero, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_largest_value, m_zero, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_largest_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_largest_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_largest_value, p_normal_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_largest_value, m_normal_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_largest_value, p_largest_value, "inf", overflow_status, Category::Infinity),
+ (p_largest_value, m_largest_value, "0x0p+0", Status::OK, Category::Zero),
+ (p_largest_value, p_smallest_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_largest_value, m_smallest_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (
+ p_largest_value,
+ p_smallest_normalized,
+ "0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (
+ p_largest_value,
+ m_smallest_normalized,
+ "0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (m_largest_value, p_inf, "inf", Status::OK, Category::Infinity),
+ (m_largest_value, m_inf, "-inf", Status::OK, Category::Infinity),
+ (m_largest_value, p_zero, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_largest_value, m_zero, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_largest_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_largest_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_largest_value, p_normal_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_largest_value, m_normal_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_largest_value, p_largest_value, "0x0p+0", Status::OK, Category::Zero),
+ (m_largest_value, m_largest_value, "-inf", overflow_status, Category::Infinity),
+ (m_largest_value, p_smallest_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_largest_value, m_smallest_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (
+ m_largest_value,
+ p_smallest_normalized,
+ "-0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (
+ m_largest_value,
+ m_smallest_normalized,
+ "-0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (p_smallest_value, p_inf, "inf", Status::OK, Category::Infinity),
+ (p_smallest_value, m_inf, "-inf", Status::OK, Category::Infinity),
+ (p_smallest_value, p_zero, "0x1p-149", Status::OK, Category::Normal),
+ (p_smallest_value, m_zero, "0x1p-149", Status::OK, Category::Normal),
+ (p_smallest_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_smallest_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_smallest_value, p_normal_value, "0x1p+0", Status::INEXACT, Category::Normal),
+ (p_smallest_value, m_normal_value, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (p_smallest_value, p_largest_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_smallest_value, m_largest_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_smallest_value, p_smallest_value, "0x1p-148", Status::OK, Category::Normal),
+ (p_smallest_value, m_smallest_value, "0x0p+0", Status::OK, Category::Zero),
+ (p_smallest_value, p_smallest_normalized, "0x1.000002p-126", Status::OK, Category::Normal),
+ (p_smallest_value, m_smallest_normalized, "-0x1.fffffcp-127", Status::OK, Category::Normal),
+ (m_smallest_value, p_inf, "inf", Status::OK, Category::Infinity),
+ (m_smallest_value, m_inf, "-inf", Status::OK, Category::Infinity),
+ (m_smallest_value, p_zero, "-0x1p-149", Status::OK, Category::Normal),
+ (m_smallest_value, m_zero, "-0x1p-149", Status::OK, Category::Normal),
+ (m_smallest_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_smallest_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_smallest_value, p_normal_value, "0x1p+0", Status::INEXACT, Category::Normal),
+ (m_smallest_value, m_normal_value, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (m_smallest_value, p_largest_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_smallest_value, m_largest_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_smallest_value, p_smallest_value, "0x0p+0", Status::OK, Category::Zero),
+ (m_smallest_value, m_smallest_value, "-0x1p-148", Status::OK, Category::Normal),
+ (m_smallest_value, p_smallest_normalized, "0x1.fffffcp-127", Status::OK, Category::Normal),
+ (m_smallest_value, m_smallest_normalized, "-0x1.000002p-126", Status::OK, Category::Normal),
+ (p_smallest_normalized, p_inf, "inf", Status::OK, Category::Infinity),
+ (p_smallest_normalized, m_inf, "-inf", Status::OK, Category::Infinity),
+ (p_smallest_normalized, p_zero, "0x1p-126", Status::OK, Category::Normal),
+ (p_smallest_normalized, m_zero, "0x1p-126", Status::OK, Category::Normal),
+ (p_smallest_normalized, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_smallest_normalized, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_smallest_normalized, p_normal_value, "0x1p+0", Status::INEXACT, Category::Normal),
+ (p_smallest_normalized, m_normal_value, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (
+ p_smallest_normalized,
+ p_largest_value,
+ "0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (
+ p_smallest_normalized,
+ m_largest_value,
+ "-0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (p_smallest_normalized, p_smallest_value, "0x1.000002p-126", Status::OK, Category::Normal),
+ (p_smallest_normalized, m_smallest_value, "0x1.fffffcp-127", Status::OK, Category::Normal),
+ (p_smallest_normalized, p_smallest_normalized, "0x1p-125", Status::OK, Category::Normal),
+ (p_smallest_normalized, m_smallest_normalized, "0x0p+0", Status::OK, Category::Zero),
+ (m_smallest_normalized, p_inf, "inf", Status::OK, Category::Infinity),
+ (m_smallest_normalized, m_inf, "-inf", Status::OK, Category::Infinity),
+ (m_smallest_normalized, p_zero, "-0x1p-126", Status::OK, Category::Normal),
+ (m_smallest_normalized, m_zero, "-0x1p-126", Status::OK, Category::Normal),
+ (m_smallest_normalized, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_smallest_normalized, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_smallest_normalized, p_normal_value, "0x1p+0", Status::INEXACT, Category::Normal),
+ (m_smallest_normalized, m_normal_value, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (
+ m_smallest_normalized,
+ p_largest_value,
+ "0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (
+ m_smallest_normalized,
+ m_largest_value,
+ "-0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (m_smallest_normalized, p_smallest_value, "-0x1.fffffcp-127", Status::OK, Category::Normal),
+ (m_smallest_normalized, m_smallest_value, "-0x1.000002p-126", Status::OK, Category::Normal),
+ (m_smallest_normalized, p_smallest_normalized, "0x0p+0", Status::OK, Category::Zero),
+ (m_smallest_normalized, m_smallest_normalized, "-0x1p-125", Status::OK, Category::Normal),
+ ];
+
+ for (x, y, e_result, e_status, e_category) in special_cases {
+ let status;
+ let result = unpack!(status=, x + y);
+ assert_eq!(status, e_status);
+ assert_eq!(result.category(), e_category);
+ assert!(result.bitwise_eq(e_result.parse::<Single>().unwrap()));
+ }
+}
+
+#[test]
+fn subtract() {
+ // Test Special Cases against each other and normal values.
+
+ // FIXMES/NOTES:
+ // 1. Since we perform only default exception handling all operations with
+ // signaling NaNs should have a result that is a quiet NaN. Currently they
+ // return sNaN.
+
+ let p_inf = Single::INFINITY;
+ let m_inf = -Single::INFINITY;
+ let p_zero = Single::ZERO;
+ let m_zero = -Single::ZERO;
+ let qnan = Single::NAN;
+ let p_normal_value = "0x1p+0".parse::<Single>().unwrap();
+ let m_normal_value = "-0x1p+0".parse::<Single>().unwrap();
+ let p_largest_value = Single::largest();
+ let m_largest_value = -Single::largest();
+ let p_smallest_value = Single::SMALLEST;
+ let m_smallest_value = -Single::SMALLEST;
+ let p_smallest_normalized = Single::smallest_normalized();
+ let m_smallest_normalized = -Single::smallest_normalized();
+
+ let overflow_status = Status::OVERFLOW | Status::INEXACT;
+
+ let special_cases = [
+ (p_inf, p_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (p_inf, m_inf, "inf", Status::OK, Category::Infinity),
+ (p_inf, p_zero, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_zero, "inf", Status::OK, Category::Infinity),
+ (p_inf, qnan, "-nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_inf, snan, "-nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_inf, p_normal_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_normal_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, p_largest_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_largest_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, p_smallest_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_smallest_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, p_smallest_normalized, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_smallest_normalized, "inf", Status::OK, Category::Infinity),
+ (m_inf, p_inf, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (m_inf, p_zero, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_zero, "-inf", Status::OK, Category::Infinity),
+ (m_inf, qnan, "-nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_inf, snan, "-nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_inf, p_normal_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_normal_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, p_largest_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_largest_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, p_smallest_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_smallest_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, p_smallest_normalized, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_smallest_normalized, "-inf", Status::OK, Category::Infinity),
+ (p_zero, p_inf, "-inf", Status::OK, Category::Infinity),
+ (p_zero, m_inf, "inf", Status::OK, Category::Infinity),
+ (p_zero, p_zero, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, m_zero, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, qnan, "-nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_zero, snan, "-nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_zero, p_normal_value, "-0x1p+0", Status::OK, Category::Normal),
+ (p_zero, m_normal_value, "0x1p+0", Status::OK, Category::Normal),
+ (p_zero, p_largest_value, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_zero, m_largest_value, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_zero, p_smallest_value, "-0x1p-149", Status::OK, Category::Normal),
+ (p_zero, m_smallest_value, "0x1p-149", Status::OK, Category::Normal),
+ (p_zero, p_smallest_normalized, "-0x1p-126", Status::OK, Category::Normal),
+ (p_zero, m_smallest_normalized, "0x1p-126", Status::OK, Category::Normal),
+ (m_zero, p_inf, "-inf", Status::OK, Category::Infinity),
+ (m_zero, m_inf, "inf", Status::OK, Category::Infinity),
+ (m_zero, p_zero, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, m_zero, "0x0p+0", Status::OK, Category::Zero),
+ (m_zero, qnan, "-nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_zero, snan, "-nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_zero, p_normal_value, "-0x1p+0", Status::OK, Category::Normal),
+ (m_zero, m_normal_value, "0x1p+0", Status::OK, Category::Normal),
+ (m_zero, p_largest_value, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_zero, m_largest_value, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_zero, p_smallest_value, "-0x1p-149", Status::OK, Category::Normal),
+ (m_zero, m_smallest_value, "0x1p-149", Status::OK, Category::Normal),
+ (m_zero, p_smallest_normalized, "-0x1p-126", Status::OK, Category::Normal),
+ (m_zero, m_smallest_normalized, "0x1p-126", Status::OK, Category::Normal),
+ (qnan, p_inf, "nan", Status::OK, Category::NaN),
+ (qnan, m_inf, "nan", Status::OK, Category::NaN),
+ (qnan, p_zero, "nan", Status::OK, Category::NaN),
+ (qnan, m_zero, "nan", Status::OK, Category::NaN),
+ (qnan, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (qnan, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (qnan, p_normal_value, "nan", Status::OK, Category::NaN),
+ (qnan, m_normal_value, "nan", Status::OK, Category::NaN),
+ (qnan, p_largest_value, "nan", Status::OK, Category::NaN),
+ (qnan, m_largest_value, "nan", Status::OK, Category::NaN),
+ (qnan, p_smallest_value, "nan", Status::OK, Category::NaN),
+ (qnan, m_smallest_value, "nan", Status::OK, Category::NaN),
+ (qnan, p_smallest_normalized, "nan", Status::OK, Category::NaN),
+ (qnan, m_smallest_normalized, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (snan, p_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, qnan, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, snan, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_normal_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_normal_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_largest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_largest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_smallest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_smallest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_smallest_normalized, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_smallest_normalized, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_normal_value, p_inf, "-inf", Status::OK, Category::Infinity),
+ (p_normal_value, m_inf, "inf", Status::OK, Category::Infinity),
+ (p_normal_value, p_zero, "0x1p+0", Status::OK, Category::Normal),
+ (p_normal_value, m_zero, "0x1p+0", Status::OK, Category::Normal),
+ (p_normal_value, qnan, "-nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_normal_value, snan, "-nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_normal_value, p_normal_value, "0x0p+0", Status::OK, Category::Zero),
+ (p_normal_value, m_normal_value, "0x1p+1", Status::OK, Category::Normal),
+ (p_normal_value, p_largest_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_normal_value, m_largest_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_normal_value, p_smallest_value, "0x1p+0", Status::INEXACT, Category::Normal),
+ (p_normal_value, m_smallest_value, "0x1p+0", Status::INEXACT, Category::Normal),
+ (p_normal_value, p_smallest_normalized, "0x1p+0", Status::INEXACT, Category::Normal),
+ (p_normal_value, m_smallest_normalized, "0x1p+0", Status::INEXACT, Category::Normal),
+ (m_normal_value, p_inf, "-inf", Status::OK, Category::Infinity),
+ (m_normal_value, m_inf, "inf", Status::OK, Category::Infinity),
+ (m_normal_value, p_zero, "-0x1p+0", Status::OK, Category::Normal),
+ (m_normal_value, m_zero, "-0x1p+0", Status::OK, Category::Normal),
+ (m_normal_value, qnan, "-nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_normal_value, snan, "-nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_normal_value, p_normal_value, "-0x1p+1", Status::OK, Category::Normal),
+ (m_normal_value, m_normal_value, "0x0p+0", Status::OK, Category::Zero),
+ (m_normal_value, p_largest_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_normal_value, m_largest_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_normal_value, p_smallest_value, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (m_normal_value, m_smallest_value, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (m_normal_value, p_smallest_normalized, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (m_normal_value, m_smallest_normalized, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (p_largest_value, p_inf, "-inf", Status::OK, Category::Infinity),
+ (p_largest_value, m_inf, "inf", Status::OK, Category::Infinity),
+ (p_largest_value, p_zero, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_largest_value, m_zero, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_largest_value, qnan, "-nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_largest_value, snan, "-nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_largest_value, p_normal_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_largest_value, m_normal_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_largest_value, p_largest_value, "0x0p+0", Status::OK, Category::Zero),
+ (p_largest_value, m_largest_value, "inf", overflow_status, Category::Infinity),
+ (p_largest_value, p_smallest_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_largest_value, m_smallest_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (
+ p_largest_value,
+ p_smallest_normalized,
+ "0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (
+ p_largest_value,
+ m_smallest_normalized,
+ "0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (m_largest_value, p_inf, "-inf", Status::OK, Category::Infinity),
+ (m_largest_value, m_inf, "inf", Status::OK, Category::Infinity),
+ (m_largest_value, p_zero, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_largest_value, m_zero, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_largest_value, qnan, "-nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_largest_value, snan, "-nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_largest_value, p_normal_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_largest_value, m_normal_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_largest_value, p_largest_value, "-inf", overflow_status, Category::Infinity),
+ (m_largest_value, m_largest_value, "0x0p+0", Status::OK, Category::Zero),
+ (m_largest_value, p_smallest_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_largest_value, m_smallest_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (
+ m_largest_value,
+ p_smallest_normalized,
+ "-0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (
+ m_largest_value,
+ m_smallest_normalized,
+ "-0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (p_smallest_value, p_inf, "-inf", Status::OK, Category::Infinity),
+ (p_smallest_value, m_inf, "inf", Status::OK, Category::Infinity),
+ (p_smallest_value, p_zero, "0x1p-149", Status::OK, Category::Normal),
+ (p_smallest_value, m_zero, "0x1p-149", Status::OK, Category::Normal),
+ (p_smallest_value, qnan, "-nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_smallest_value, snan, "-nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_smallest_value, p_normal_value, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (p_smallest_value, m_normal_value, "0x1p+0", Status::INEXACT, Category::Normal),
+ (p_smallest_value, p_largest_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_smallest_value, m_largest_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (p_smallest_value, p_smallest_value, "0x0p+0", Status::OK, Category::Zero),
+ (p_smallest_value, m_smallest_value, "0x1p-148", Status::OK, Category::Normal),
+ (p_smallest_value, p_smallest_normalized, "-0x1.fffffcp-127", Status::OK, Category::Normal),
+ (p_smallest_value, m_smallest_normalized, "0x1.000002p-126", Status::OK, Category::Normal),
+ (m_smallest_value, p_inf, "-inf", Status::OK, Category::Infinity),
+ (m_smallest_value, m_inf, "inf", Status::OK, Category::Infinity),
+ (m_smallest_value, p_zero, "-0x1p-149", Status::OK, Category::Normal),
+ (m_smallest_value, m_zero, "-0x1p-149", Status::OK, Category::Normal),
+ (m_smallest_value, qnan, "-nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_smallest_value, snan, "-nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_smallest_value, p_normal_value, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (m_smallest_value, m_normal_value, "0x1p+0", Status::INEXACT, Category::Normal),
+ (m_smallest_value, p_largest_value, "-0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_smallest_value, m_largest_value, "0x1.fffffep+127", Status::INEXACT, Category::Normal),
+ (m_smallest_value, p_smallest_value, "-0x1p-148", Status::OK, Category::Normal),
+ (m_smallest_value, m_smallest_value, "0x0p+0", Status::OK, Category::Zero),
+ (m_smallest_value, p_smallest_normalized, "-0x1.000002p-126", Status::OK, Category::Normal),
+ (m_smallest_value, m_smallest_normalized, "0x1.fffffcp-127", Status::OK, Category::Normal),
+ (p_smallest_normalized, p_inf, "-inf", Status::OK, Category::Infinity),
+ (p_smallest_normalized, m_inf, "inf", Status::OK, Category::Infinity),
+ (p_smallest_normalized, p_zero, "0x1p-126", Status::OK, Category::Normal),
+ (p_smallest_normalized, m_zero, "0x1p-126", Status::OK, Category::Normal),
+ (p_smallest_normalized, qnan, "-nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_smallest_normalized, snan, "-nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_smallest_normalized, p_normal_value, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (p_smallest_normalized, m_normal_value, "0x1p+0", Status::INEXACT, Category::Normal),
+ (
+ p_smallest_normalized,
+ p_largest_value,
+ "-0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (
+ p_smallest_normalized,
+ m_largest_value,
+ "0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (p_smallest_normalized, p_smallest_value, "0x1.fffffcp-127", Status::OK, Category::Normal),
+ (p_smallest_normalized, m_smallest_value, "0x1.000002p-126", Status::OK, Category::Normal),
+ (p_smallest_normalized, p_smallest_normalized, "0x0p+0", Status::OK, Category::Zero),
+ (p_smallest_normalized, m_smallest_normalized, "0x1p-125", Status::OK, Category::Normal),
+ (m_smallest_normalized, p_inf, "-inf", Status::OK, Category::Infinity),
+ (m_smallest_normalized, m_inf, "inf", Status::OK, Category::Infinity),
+ (m_smallest_normalized, p_zero, "-0x1p-126", Status::OK, Category::Normal),
+ (m_smallest_normalized, m_zero, "-0x1p-126", Status::OK, Category::Normal),
+ (m_smallest_normalized, qnan, "-nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_smallest_normalized, snan, "-nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_smallest_normalized, p_normal_value, "-0x1p+0", Status::INEXACT, Category::Normal),
+ (m_smallest_normalized, m_normal_value, "0x1p+0", Status::INEXACT, Category::Normal),
+ (
+ m_smallest_normalized,
+ p_largest_value,
+ "-0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (
+ m_smallest_normalized,
+ m_largest_value,
+ "0x1.fffffep+127",
+ Status::INEXACT,
+ Category::Normal,
+ ),
+ (m_smallest_normalized, p_smallest_value, "-0x1.000002p-126", Status::OK, Category::Normal),
+ (m_smallest_normalized, m_smallest_value, "-0x1.fffffcp-127", Status::OK, Category::Normal),
+ (m_smallest_normalized, p_smallest_normalized, "-0x1p-125", Status::OK, Category::Normal),
+ (m_smallest_normalized, m_smallest_normalized, "0x0p+0", Status::OK, Category::Zero),
+ ];
+
+ for (x, y, e_result, e_status, e_category) in special_cases {
+ let status;
+ let result = unpack!(status=, x - y);
+ assert_eq!(status, e_status);
+ assert_eq!(result.category(), e_category);
+ assert!(result.bitwise_eq(e_result.parse::<Single>().unwrap()));
+ }
+}
+
+#[test]
+fn multiply() {
+ // Test Special Cases against each other and normal values.
+
+ // FIXMES/NOTES:
+ // 1. Since we perform only default exception handling all operations with
+ // signaling NaNs should have a result that is a quiet NaN. Currently they
+ // return sNaN.
+
+ let p_inf = Single::INFINITY;
+ let m_inf = -Single::INFINITY;
+ let p_zero = Single::ZERO;
+ let m_zero = -Single::ZERO;
+ let qnan = Single::NAN;
+ let p_normal_value = "0x1p+0".parse::<Single>().unwrap();
+ let m_normal_value = "-0x1p+0".parse::<Single>().unwrap();
+ let p_largest_value = Single::largest();
+ let m_largest_value = -Single::largest();
+ let p_smallest_value = Single::SMALLEST;
+ let m_smallest_value = -Single::SMALLEST;
+ let p_smallest_normalized = Single::smallest_normalized();
+ let m_smallest_normalized = -Single::smallest_normalized();
+
+ let overflow_status = Status::OVERFLOW | Status::INEXACT;
+ let underflow_status = Status::UNDERFLOW | Status::INEXACT;
+
+ let special_cases = [
+ (p_inf, p_inf, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_inf, "-inf", Status::OK, Category::Infinity),
+ (p_inf, p_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (p_inf, m_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (p_inf, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_inf, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_inf, p_normal_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_normal_value, "-inf", Status::OK, Category::Infinity),
+ (p_inf, p_largest_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_largest_value, "-inf", Status::OK, Category::Infinity),
+ (p_inf, p_smallest_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_smallest_value, "-inf", Status::OK, Category::Infinity),
+ (p_inf, p_smallest_normalized, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_smallest_normalized, "-inf", Status::OK, Category::Infinity),
+ (m_inf, p_inf, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_inf, "inf", Status::OK, Category::Infinity),
+ (m_inf, p_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (m_inf, m_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (m_inf, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_inf, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_inf, p_normal_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_normal_value, "inf", Status::OK, Category::Infinity),
+ (m_inf, p_largest_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_largest_value, "inf", Status::OK, Category::Infinity),
+ (m_inf, p_smallest_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_smallest_value, "inf", Status::OK, Category::Infinity),
+ (m_inf, p_smallest_normalized, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_smallest_normalized, "inf", Status::OK, Category::Infinity),
+ (p_zero, p_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (p_zero, m_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (p_zero, p_zero, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, m_zero, "-0x0p+0", Status::OK, Category::Zero),
+ (p_zero, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_zero, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_zero, p_normal_value, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, m_normal_value, "-0x0p+0", Status::OK, Category::Zero),
+ (p_zero, p_largest_value, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, m_largest_value, "-0x0p+0", Status::OK, Category::Zero),
+ (p_zero, p_smallest_value, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, m_smallest_value, "-0x0p+0", Status::OK, Category::Zero),
+ (p_zero, p_smallest_normalized, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, m_smallest_normalized, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, p_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (m_zero, m_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (m_zero, p_zero, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, m_zero, "0x0p+0", Status::OK, Category::Zero),
+ (m_zero, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_zero, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_zero, p_normal_value, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, m_normal_value, "0x0p+0", Status::OK, Category::Zero),
+ (m_zero, p_largest_value, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, m_largest_value, "0x0p+0", Status::OK, Category::Zero),
+ (m_zero, p_smallest_value, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, m_smallest_value, "0x0p+0", Status::OK, Category::Zero),
+ (m_zero, p_smallest_normalized, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, m_smallest_normalized, "0x0p+0", Status::OK, Category::Zero),
+ (qnan, p_inf, "nan", Status::OK, Category::NaN),
+ (qnan, m_inf, "nan", Status::OK, Category::NaN),
+ (qnan, p_zero, "nan", Status::OK, Category::NaN),
+ (qnan, m_zero, "nan", Status::OK, Category::NaN),
+ (qnan, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (qnan, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (qnan, p_normal_value, "nan", Status::OK, Category::NaN),
+ (qnan, m_normal_value, "nan", Status::OK, Category::NaN),
+ (qnan, p_largest_value, "nan", Status::OK, Category::NaN),
+ (qnan, m_largest_value, "nan", Status::OK, Category::NaN),
+ (qnan, p_smallest_value, "nan", Status::OK, Category::NaN),
+ (qnan, m_smallest_value, "nan", Status::OK, Category::NaN),
+ (qnan, p_smallest_normalized, "nan", Status::OK, Category::NaN),
+ (qnan, m_smallest_normalized, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (snan, p_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, qnan, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, snan, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_normal_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_normal_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_largest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_largest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_smallest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_smallest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_smallest_normalized, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_smallest_normalized, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_normal_value, p_inf, "inf", Status::OK, Category::Infinity),
+ (p_normal_value, m_inf, "-inf", Status::OK, Category::Infinity),
+ (p_normal_value, p_zero, "0x0p+0", Status::OK, Category::Zero),
+ (p_normal_value, m_zero, "-0x0p+0", Status::OK, Category::Zero),
+ (p_normal_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_normal_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_normal_value, p_normal_value, "0x1p+0", Status::OK, Category::Normal),
+ (p_normal_value, m_normal_value, "-0x1p+0", Status::OK, Category::Normal),
+ (p_normal_value, p_largest_value, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_normal_value, m_largest_value, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_normal_value, p_smallest_value, "0x1p-149", Status::OK, Category::Normal),
+ (p_normal_value, m_smallest_value, "-0x1p-149", Status::OK, Category::Normal),
+ (p_normal_value, p_smallest_normalized, "0x1p-126", Status::OK, Category::Normal),
+ (p_normal_value, m_smallest_normalized, "-0x1p-126", Status::OK, Category::Normal),
+ (m_normal_value, p_inf, "-inf", Status::OK, Category::Infinity),
+ (m_normal_value, m_inf, "inf", Status::OK, Category::Infinity),
+ (m_normal_value, p_zero, "-0x0p+0", Status::OK, Category::Zero),
+ (m_normal_value, m_zero, "0x0p+0", Status::OK, Category::Zero),
+ (m_normal_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_normal_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_normal_value, p_normal_value, "-0x1p+0", Status::OK, Category::Normal),
+ (m_normal_value, m_normal_value, "0x1p+0", Status::OK, Category::Normal),
+ (m_normal_value, p_largest_value, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_normal_value, m_largest_value, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_normal_value, p_smallest_value, "-0x1p-149", Status::OK, Category::Normal),
+ (m_normal_value, m_smallest_value, "0x1p-149", Status::OK, Category::Normal),
+ (m_normal_value, p_smallest_normalized, "-0x1p-126", Status::OK, Category::Normal),
+ (m_normal_value, m_smallest_normalized, "0x1p-126", Status::OK, Category::Normal),
+ (p_largest_value, p_inf, "inf", Status::OK, Category::Infinity),
+ (p_largest_value, m_inf, "-inf", Status::OK, Category::Infinity),
+ (p_largest_value, p_zero, "0x0p+0", Status::OK, Category::Zero),
+ (p_largest_value, m_zero, "-0x0p+0", Status::OK, Category::Zero),
+ (p_largest_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_largest_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_largest_value, p_normal_value, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_largest_value, m_normal_value, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_largest_value, p_largest_value, "inf", overflow_status, Category::Infinity),
+ (p_largest_value, m_largest_value, "-inf", overflow_status, Category::Infinity),
+ (p_largest_value, p_smallest_value, "0x1.fffffep-22", Status::OK, Category::Normal),
+ (p_largest_value, m_smallest_value, "-0x1.fffffep-22", Status::OK, Category::Normal),
+ (p_largest_value, p_smallest_normalized, "0x1.fffffep+1", Status::OK, Category::Normal),
+ (p_largest_value, m_smallest_normalized, "-0x1.fffffep+1", Status::OK, Category::Normal),
+ (m_largest_value, p_inf, "-inf", Status::OK, Category::Infinity),
+ (m_largest_value, m_inf, "inf", Status::OK, Category::Infinity),
+ (m_largest_value, p_zero, "-0x0p+0", Status::OK, Category::Zero),
+ (m_largest_value, m_zero, "0x0p+0", Status::OK, Category::Zero),
+ (m_largest_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_largest_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_largest_value, p_normal_value, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_largest_value, m_normal_value, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_largest_value, p_largest_value, "-inf", overflow_status, Category::Infinity),
+ (m_largest_value, m_largest_value, "inf", overflow_status, Category::Infinity),
+ (m_largest_value, p_smallest_value, "-0x1.fffffep-22", Status::OK, Category::Normal),
+ (m_largest_value, m_smallest_value, "0x1.fffffep-22", Status::OK, Category::Normal),
+ (m_largest_value, p_smallest_normalized, "-0x1.fffffep+1", Status::OK, Category::Normal),
+ (m_largest_value, m_smallest_normalized, "0x1.fffffep+1", Status::OK, Category::Normal),
+ (p_smallest_value, p_inf, "inf", Status::OK, Category::Infinity),
+ (p_smallest_value, m_inf, "-inf", Status::OK, Category::Infinity),
+ (p_smallest_value, p_zero, "0x0p+0", Status::OK, Category::Zero),
+ (p_smallest_value, m_zero, "-0x0p+0", Status::OK, Category::Zero),
+ (p_smallest_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_smallest_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_smallest_value, p_normal_value, "0x1p-149", Status::OK, Category::Normal),
+ (p_smallest_value, m_normal_value, "-0x1p-149", Status::OK, Category::Normal),
+ (p_smallest_value, p_largest_value, "0x1.fffffep-22", Status::OK, Category::Normal),
+ (p_smallest_value, m_largest_value, "-0x1.fffffep-22", Status::OK, Category::Normal),
+ (p_smallest_value, p_smallest_value, "0x0p+0", underflow_status, Category::Zero),
+ (p_smallest_value, m_smallest_value, "-0x0p+0", underflow_status, Category::Zero),
+ (p_smallest_value, p_smallest_normalized, "0x0p+0", underflow_status, Category::Zero),
+ (p_smallest_value, m_smallest_normalized, "-0x0p+0", underflow_status, Category::Zero),
+ (m_smallest_value, p_inf, "-inf", Status::OK, Category::Infinity),
+ (m_smallest_value, m_inf, "inf", Status::OK, Category::Infinity),
+ (m_smallest_value, p_zero, "-0x0p+0", Status::OK, Category::Zero),
+ (m_smallest_value, m_zero, "0x0p+0", Status::OK, Category::Zero),
+ (m_smallest_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_smallest_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_smallest_value, p_normal_value, "-0x1p-149", Status::OK, Category::Normal),
+ (m_smallest_value, m_normal_value, "0x1p-149", Status::OK, Category::Normal),
+ (m_smallest_value, p_largest_value, "-0x1.fffffep-22", Status::OK, Category::Normal),
+ (m_smallest_value, m_largest_value, "0x1.fffffep-22", Status::OK, Category::Normal),
+ (m_smallest_value, p_smallest_value, "-0x0p+0", underflow_status, Category::Zero),
+ (m_smallest_value, m_smallest_value, "0x0p+0", underflow_status, Category::Zero),
+ (m_smallest_value, p_smallest_normalized, "-0x0p+0", underflow_status, Category::Zero),
+ (m_smallest_value, m_smallest_normalized, "0x0p+0", underflow_status, Category::Zero),
+ (p_smallest_normalized, p_inf, "inf", Status::OK, Category::Infinity),
+ (p_smallest_normalized, m_inf, "-inf", Status::OK, Category::Infinity),
+ (p_smallest_normalized, p_zero, "0x0p+0", Status::OK, Category::Zero),
+ (p_smallest_normalized, m_zero, "-0x0p+0", Status::OK, Category::Zero),
+ (p_smallest_normalized, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_smallest_normalized, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_smallest_normalized, p_normal_value, "0x1p-126", Status::OK, Category::Normal),
+ (p_smallest_normalized, m_normal_value, "-0x1p-126", Status::OK, Category::Normal),
+ (p_smallest_normalized, p_largest_value, "0x1.fffffep+1", Status::OK, Category::Normal),
+ (p_smallest_normalized, m_largest_value, "-0x1.fffffep+1", Status::OK, Category::Normal),
+ (p_smallest_normalized, p_smallest_value, "0x0p+0", underflow_status, Category::Zero),
+ (p_smallest_normalized, m_smallest_value, "-0x0p+0", underflow_status, Category::Zero),
+ (p_smallest_normalized, p_smallest_normalized, "0x0p+0", underflow_status, Category::Zero),
+ (p_smallest_normalized, m_smallest_normalized, "-0x0p+0", underflow_status, Category::Zero),
+ (m_smallest_normalized, p_inf, "-inf", Status::OK, Category::Infinity),
+ (m_smallest_normalized, m_inf, "inf", Status::OK, Category::Infinity),
+ (m_smallest_normalized, p_zero, "-0x0p+0", Status::OK, Category::Zero),
+ (m_smallest_normalized, m_zero, "0x0p+0", Status::OK, Category::Zero),
+ (m_smallest_normalized, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_smallest_normalized, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_smallest_normalized, p_normal_value, "-0x1p-126", Status::OK, Category::Normal),
+ (m_smallest_normalized, m_normal_value, "0x1p-126", Status::OK, Category::Normal),
+ (m_smallest_normalized, p_largest_value, "-0x1.fffffep+1", Status::OK, Category::Normal),
+ (m_smallest_normalized, m_largest_value, "0x1.fffffep+1", Status::OK, Category::Normal),
+ (m_smallest_normalized, p_smallest_value, "-0x0p+0", underflow_status, Category::Zero),
+ (m_smallest_normalized, m_smallest_value, "0x0p+0", underflow_status, Category::Zero),
+ (m_smallest_normalized, p_smallest_normalized, "-0x0p+0", underflow_status, Category::Zero),
+ (m_smallest_normalized, m_smallest_normalized, "0x0p+0", underflow_status, Category::Zero),
+ ];
+
+ for (x, y, e_result, e_status, e_category) in special_cases {
+ let status;
+ let result = unpack!(status=, x * y);
+ assert_eq!(status, e_status);
+ assert_eq!(result.category(), e_category);
+ assert!(result.bitwise_eq(e_result.parse::<Single>().unwrap()));
+ }
+}
+
+#[test]
+fn divide() {
+ // Test Special Cases against each other and normal values.
+
+ // FIXMES/NOTES:
+ // 1. Since we perform only default exception handling all operations with
+ // signaling NaNs should have a result that is a quiet NaN. Currently they
+ // return sNaN.
+
+ let p_inf = Single::INFINITY;
+ let m_inf = -Single::INFINITY;
+ let p_zero = Single::ZERO;
+ let m_zero = -Single::ZERO;
+ let qnan = Single::NAN;
+ let p_normal_value = "0x1p+0".parse::<Single>().unwrap();
+ let m_normal_value = "-0x1p+0".parse::<Single>().unwrap();
+ let p_largest_value = Single::largest();
+ let m_largest_value = -Single::largest();
+ let p_smallest_value = Single::SMALLEST;
+ let m_smallest_value = -Single::SMALLEST;
+ let p_smallest_normalized = Single::smallest_normalized();
+ let m_smallest_normalized = -Single::smallest_normalized();
+
+ let overflow_status = Status::OVERFLOW | Status::INEXACT;
+ let underflow_status = Status::UNDERFLOW | Status::INEXACT;
+
+ let special_cases = [
+ (p_inf, p_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (p_inf, m_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (p_inf, p_zero, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_zero, "-inf", Status::OK, Category::Infinity),
+ (p_inf, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_inf, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_inf, p_normal_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_normal_value, "-inf", Status::OK, Category::Infinity),
+ (p_inf, p_largest_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_largest_value, "-inf", Status::OK, Category::Infinity),
+ (p_inf, p_smallest_value, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_smallest_value, "-inf", Status::OK, Category::Infinity),
+ (p_inf, p_smallest_normalized, "inf", Status::OK, Category::Infinity),
+ (p_inf, m_smallest_normalized, "-inf", Status::OK, Category::Infinity),
+ (m_inf, p_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (m_inf, m_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (m_inf, p_zero, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_zero, "inf", Status::OK, Category::Infinity),
+ (m_inf, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_inf, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_inf, p_normal_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_normal_value, "inf", Status::OK, Category::Infinity),
+ (m_inf, p_largest_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_largest_value, "inf", Status::OK, Category::Infinity),
+ (m_inf, p_smallest_value, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_smallest_value, "inf", Status::OK, Category::Infinity),
+ (m_inf, p_smallest_normalized, "-inf", Status::OK, Category::Infinity),
+ (m_inf, m_smallest_normalized, "inf", Status::OK, Category::Infinity),
+ (p_zero, p_inf, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, m_inf, "-0x0p+0", Status::OK, Category::Zero),
+ (p_zero, p_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (p_zero, m_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (p_zero, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_zero, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_zero, p_normal_value, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, m_normal_value, "-0x0p+0", Status::OK, Category::Zero),
+ (p_zero, p_largest_value, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, m_largest_value, "-0x0p+0", Status::OK, Category::Zero),
+ (p_zero, p_smallest_value, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, m_smallest_value, "-0x0p+0", Status::OK, Category::Zero),
+ (p_zero, p_smallest_normalized, "0x0p+0", Status::OK, Category::Zero),
+ (p_zero, m_smallest_normalized, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, p_inf, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, m_inf, "0x0p+0", Status::OK, Category::Zero),
+ (m_zero, p_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (m_zero, m_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (m_zero, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_zero, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_zero, p_normal_value, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, m_normal_value, "0x0p+0", Status::OK, Category::Zero),
+ (m_zero, p_largest_value, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, m_largest_value, "0x0p+0", Status::OK, Category::Zero),
+ (m_zero, p_smallest_value, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, m_smallest_value, "0x0p+0", Status::OK, Category::Zero),
+ (m_zero, p_smallest_normalized, "-0x0p+0", Status::OK, Category::Zero),
+ (m_zero, m_smallest_normalized, "0x0p+0", Status::OK, Category::Zero),
+ (qnan, p_inf, "nan", Status::OK, Category::NaN),
+ (qnan, m_inf, "nan", Status::OK, Category::NaN),
+ (qnan, p_zero, "nan", Status::OK, Category::NaN),
+ (qnan, m_zero, "nan", Status::OK, Category::NaN),
+ (qnan, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (qnan, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (qnan, p_normal_value, "nan", Status::OK, Category::NaN),
+ (qnan, m_normal_value, "nan", Status::OK, Category::NaN),
+ (qnan, p_largest_value, "nan", Status::OK, Category::NaN),
+ (qnan, m_largest_value, "nan", Status::OK, Category::NaN),
+ (qnan, p_smallest_value, "nan", Status::OK, Category::NaN),
+ (qnan, m_smallest_value, "nan", Status::OK, Category::NaN),
+ (qnan, p_smallest_normalized, "nan", Status::OK, Category::NaN),
+ (qnan, m_smallest_normalized, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (snan, p_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_inf, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_zero, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, qnan, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, snan, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_normal_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_normal_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_largest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_largest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_smallest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_smallest_value, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, p_smallest_normalized, "nan", Status::INVALID_OP, Category::NaN),
+ (snan, m_smallest_normalized, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_normal_value, p_inf, "0x0p+0", Status::OK, Category::Zero),
+ (p_normal_value, m_inf, "-0x0p+0", Status::OK, Category::Zero),
+ (p_normal_value, p_zero, "inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (p_normal_value, m_zero, "-inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (p_normal_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_normal_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_normal_value, p_normal_value, "0x1p+0", Status::OK, Category::Normal),
+ (p_normal_value, m_normal_value, "-0x1p+0", Status::OK, Category::Normal),
+ (p_normal_value, p_largest_value, "0x1p-128", underflow_status, Category::Normal),
+ (p_normal_value, m_largest_value, "-0x1p-128", underflow_status, Category::Normal),
+ (p_normal_value, p_smallest_value, "inf", overflow_status, Category::Infinity),
+ (p_normal_value, m_smallest_value, "-inf", overflow_status, Category::Infinity),
+ (p_normal_value, p_smallest_normalized, "0x1p+126", Status::OK, Category::Normal),
+ (p_normal_value, m_smallest_normalized, "-0x1p+126", Status::OK, Category::Normal),
+ (m_normal_value, p_inf, "-0x0p+0", Status::OK, Category::Zero),
+ (m_normal_value, m_inf, "0x0p+0", Status::OK, Category::Zero),
+ (m_normal_value, p_zero, "-inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (m_normal_value, m_zero, "inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (m_normal_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_normal_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_normal_value, p_normal_value, "-0x1p+0", Status::OK, Category::Normal),
+ (m_normal_value, m_normal_value, "0x1p+0", Status::OK, Category::Normal),
+ (m_normal_value, p_largest_value, "-0x1p-128", underflow_status, Category::Normal),
+ (m_normal_value, m_largest_value, "0x1p-128", underflow_status, Category::Normal),
+ (m_normal_value, p_smallest_value, "-inf", overflow_status, Category::Infinity),
+ (m_normal_value, m_smallest_value, "inf", overflow_status, Category::Infinity),
+ (m_normal_value, p_smallest_normalized, "-0x1p+126", Status::OK, Category::Normal),
+ (m_normal_value, m_smallest_normalized, "0x1p+126", Status::OK, Category::Normal),
+ (p_largest_value, p_inf, "0x0p+0", Status::OK, Category::Zero),
+ (p_largest_value, m_inf, "-0x0p+0", Status::OK, Category::Zero),
+ (p_largest_value, p_zero, "inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (p_largest_value, m_zero, "-inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (p_largest_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_largest_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_largest_value, p_normal_value, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_largest_value, m_normal_value, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (p_largest_value, p_largest_value, "0x1p+0", Status::OK, Category::Normal),
+ (p_largest_value, m_largest_value, "-0x1p+0", Status::OK, Category::Normal),
+ (p_largest_value, p_smallest_value, "inf", overflow_status, Category::Infinity),
+ (p_largest_value, m_smallest_value, "-inf", overflow_status, Category::Infinity),
+ (p_largest_value, p_smallest_normalized, "inf", overflow_status, Category::Infinity),
+ (p_largest_value, m_smallest_normalized, "-inf", overflow_status, Category::Infinity),
+ (m_largest_value, p_inf, "-0x0p+0", Status::OK, Category::Zero),
+ (m_largest_value, m_inf, "0x0p+0", Status::OK, Category::Zero),
+ (m_largest_value, p_zero, "-inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (m_largest_value, m_zero, "inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (m_largest_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_largest_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_largest_value, p_normal_value, "-0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_largest_value, m_normal_value, "0x1.fffffep+127", Status::OK, Category::Normal),
+ (m_largest_value, p_largest_value, "-0x1p+0", Status::OK, Category::Normal),
+ (m_largest_value, m_largest_value, "0x1p+0", Status::OK, Category::Normal),
+ (m_largest_value, p_smallest_value, "-inf", overflow_status, Category::Infinity),
+ (m_largest_value, m_smallest_value, "inf", overflow_status, Category::Infinity),
+ (m_largest_value, p_smallest_normalized, "-inf", overflow_status, Category::Infinity),
+ (m_largest_value, m_smallest_normalized, "inf", overflow_status, Category::Infinity),
+ (p_smallest_value, p_inf, "0x0p+0", Status::OK, Category::Zero),
+ (p_smallest_value, m_inf, "-0x0p+0", Status::OK, Category::Zero),
+ (p_smallest_value, p_zero, "inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (p_smallest_value, m_zero, "-inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (p_smallest_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_smallest_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_smallest_value, p_normal_value, "0x1p-149", Status::OK, Category::Normal),
+ (p_smallest_value, m_normal_value, "-0x1p-149", Status::OK, Category::Normal),
+ (p_smallest_value, p_largest_value, "0x0p+0", underflow_status, Category::Zero),
+ (p_smallest_value, m_largest_value, "-0x0p+0", underflow_status, Category::Zero),
+ (p_smallest_value, p_smallest_value, "0x1p+0", Status::OK, Category::Normal),
+ (p_smallest_value, m_smallest_value, "-0x1p+0", Status::OK, Category::Normal),
+ (p_smallest_value, p_smallest_normalized, "0x1p-23", Status::OK, Category::Normal),
+ (p_smallest_value, m_smallest_normalized, "-0x1p-23", Status::OK, Category::Normal),
+ (m_smallest_value, p_inf, "-0x0p+0", Status::OK, Category::Zero),
+ (m_smallest_value, m_inf, "0x0p+0", Status::OK, Category::Zero),
+ (m_smallest_value, p_zero, "-inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (m_smallest_value, m_zero, "inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (m_smallest_value, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_smallest_value, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_smallest_value, p_normal_value, "-0x1p-149", Status::OK, Category::Normal),
+ (m_smallest_value, m_normal_value, "0x1p-149", Status::OK, Category::Normal),
+ (m_smallest_value, p_largest_value, "-0x0p+0", underflow_status, Category::Zero),
+ (m_smallest_value, m_largest_value, "0x0p+0", underflow_status, Category::Zero),
+ (m_smallest_value, p_smallest_value, "-0x1p+0", Status::OK, Category::Normal),
+ (m_smallest_value, m_smallest_value, "0x1p+0", Status::OK, Category::Normal),
+ (m_smallest_value, p_smallest_normalized, "-0x1p-23", Status::OK, Category::Normal),
+ (m_smallest_value, m_smallest_normalized, "0x1p-23", Status::OK, Category::Normal),
+ (p_smallest_normalized, p_inf, "0x0p+0", Status::OK, Category::Zero),
+ (p_smallest_normalized, m_inf, "-0x0p+0", Status::OK, Category::Zero),
+ (p_smallest_normalized, p_zero, "inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (p_smallest_normalized, m_zero, "-inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (p_smallest_normalized, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (p_smallest_normalized, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (p_smallest_normalized, p_normal_value, "0x1p-126", Status::OK, Category::Normal),
+ (p_smallest_normalized, m_normal_value, "-0x1p-126", Status::OK, Category::Normal),
+ (p_smallest_normalized, p_largest_value, "0x0p+0", underflow_status, Category::Zero),
+ (p_smallest_normalized, m_largest_value, "-0x0p+0", underflow_status, Category::Zero),
+ (p_smallest_normalized, p_smallest_value, "0x1p+23", Status::OK, Category::Normal),
+ (p_smallest_normalized, m_smallest_value, "-0x1p+23", Status::OK, Category::Normal),
+ (p_smallest_normalized, p_smallest_normalized, "0x1p+0", Status::OK, Category::Normal),
+ (p_smallest_normalized, m_smallest_normalized, "-0x1p+0", Status::OK, Category::Normal),
+ (m_smallest_normalized, p_inf, "-0x0p+0", Status::OK, Category::Zero),
+ (m_smallest_normalized, m_inf, "0x0p+0", Status::OK, Category::Zero),
+ (m_smallest_normalized, p_zero, "-inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (m_smallest_normalized, m_zero, "inf", Status::DIV_BY_ZERO, Category::Infinity),
+ (m_smallest_normalized, qnan, "nan", Status::OK, Category::NaN),
+ /*
+ // See Note 1.
+ (m_smallest_normalized, snan, "nan", Status::INVALID_OP, Category::NaN),
+ */
+ (m_smallest_normalized, p_normal_value, "-0x1p-126", Status::OK, Category::Normal),
+ (m_smallest_normalized, m_normal_value, "0x1p-126", Status::OK, Category::Normal),
+ (m_smallest_normalized, p_largest_value, "-0x0p+0", underflow_status, Category::Zero),
+ (m_smallest_normalized, m_largest_value, "0x0p+0", underflow_status, Category::Zero),
+ (m_smallest_normalized, p_smallest_value, "-0x1p+23", Status::OK, Category::Normal),
+ (m_smallest_normalized, m_smallest_value, "0x1p+23", Status::OK, Category::Normal),
+ (m_smallest_normalized, p_smallest_normalized, "-0x1p+0", Status::OK, Category::Normal),
+ (m_smallest_normalized, m_smallest_normalized, "0x1p+0", Status::OK, Category::Normal),
+ ];
+
+ for (x, y, e_result, e_status, e_category) in special_cases {
+ let status;
+ let result = unpack!(status=, x / y);
+ assert_eq!(status, e_status);
+ assert_eq!(result.category(), e_category);
+ assert!(result.bitwise_eq(e_result.parse::<Single>().unwrap()));
+ }
+}
+
+#[test]
+fn operator_overloads() {
+ // This is mostly testing that these operator overloads compile.
+ let one = "0x1p+0".parse::<Single>().unwrap();
+ let two = "0x2p+0".parse::<Single>().unwrap();
+ assert!(two.bitwise_eq((one + one).value));
+ assert!(one.bitwise_eq((two - one).value));
+ assert!(two.bitwise_eq((one * two).value));
+ assert!(one.bitwise_eq((two / two).value));
+}
+
+#[test]
+fn abs() {
+ let p_inf = Single::INFINITY;
+ let m_inf = -Single::INFINITY;
+ let p_zero = Single::ZERO;
+ let m_zero = -Single::ZERO;
+ let p_qnan = Single::NAN;
+ let m_qnan = -Single::NAN;
+ let p_snan = Single::snan(None);
+ let m_snan = -Single::snan(None);
+ let p_normal_value = "0x1p+0".parse::<Single>().unwrap();
+ let m_normal_value = "-0x1p+0".parse::<Single>().unwrap();
+ let p_largest_value = Single::largest();
+ let m_largest_value = -Single::largest();
+ let p_smallest_value = Single::SMALLEST;
+ let m_smallest_value = -Single::SMALLEST;
+ let p_smallest_normalized = Single::smallest_normalized();
+ let m_smallest_normalized = -Single::smallest_normalized();
+
+ assert!(p_inf.bitwise_eq(p_inf.abs()));
+ assert!(p_inf.bitwise_eq(m_inf.abs()));
+ assert!(p_zero.bitwise_eq(p_zero.abs()));
+ assert!(p_zero.bitwise_eq(m_zero.abs()));
+ assert!(p_qnan.bitwise_eq(p_qnan.abs()));
+ assert!(p_qnan.bitwise_eq(m_qnan.abs()));
+ assert!(p_snan.bitwise_eq(p_snan.abs()));
+ assert!(p_snan.bitwise_eq(m_snan.abs()));
+ assert!(p_normal_value.bitwise_eq(p_normal_value.abs()));
+ assert!(p_normal_value.bitwise_eq(m_normal_value.abs()));
+ assert!(p_largest_value.bitwise_eq(p_largest_value.abs()));
+ assert!(p_largest_value.bitwise_eq(m_largest_value.abs()));
+ assert!(p_smallest_value.bitwise_eq(p_smallest_value.abs()));
+ assert!(p_smallest_value.bitwise_eq(m_smallest_value.abs()));
+ assert!(p_smallest_normalized.bitwise_eq(p_smallest_normalized.abs(),));
+ assert!(p_smallest_normalized.bitwise_eq(m_smallest_normalized.abs(),));
+}
+
+#[test]
+fn neg() {
+ let one = "1.0".parse::<Single>().unwrap();
+ let neg_one = "-1.0".parse::<Single>().unwrap();
+ let zero = Single::ZERO;
+ let neg_zero = -Single::ZERO;
+ let inf = Single::INFINITY;
+ let neg_inf = -Single::INFINITY;
+ let qnan = Single::NAN;
+ let neg_qnan = -Single::NAN;
+
+ assert!(neg_one.bitwise_eq(-one));
+ assert!(one.bitwise_eq(-neg_one));
+ assert!(neg_zero.bitwise_eq(-zero));
+ assert!(zero.bitwise_eq(-neg_zero));
+ assert!(neg_inf.bitwise_eq(-inf));
+ assert!(inf.bitwise_eq(-neg_inf));
+ assert!(neg_inf.bitwise_eq(-inf));
+ assert!(inf.bitwise_eq(-neg_inf));
+ assert!(neg_qnan.bitwise_eq(-qnan));
+ assert!(qnan.bitwise_eq(-neg_qnan));
+}
+
+#[test]
+fn ilogb() {
+ assert_eq!(-1074, Double::SMALLEST.ilogb());
+ assert_eq!(-1074, (-Double::SMALLEST).ilogb());
+ assert_eq!(-1023, "0x1.ffffffffffffep-1024".parse::<Double>().unwrap().ilogb());
+ assert_eq!(-1023, "0x1.ffffffffffffep-1023".parse::<Double>().unwrap().ilogb());
+ assert_eq!(-1023, "-0x1.ffffffffffffep-1023".parse::<Double>().unwrap().ilogb());
+ assert_eq!(-51, "0x1p-51".parse::<Double>().unwrap().ilogb());
+ assert_eq!(-1023, "0x1.c60f120d9f87cp-1023".parse::<Double>().unwrap().ilogb());
+ assert_eq!(-2, "0x0.ffffp-1".parse::<Double>().unwrap().ilogb());
+ assert_eq!(-1023, "0x1.fffep-1023".parse::<Double>().unwrap().ilogb());
+ assert_eq!(1023, Double::largest().ilogb());
+ assert_eq!(1023, (-Double::largest()).ilogb());
+
+ assert_eq!(0, "0x1p+0".parse::<Single>().unwrap().ilogb());
+ assert_eq!(0, "-0x1p+0".parse::<Single>().unwrap().ilogb());
+ assert_eq!(42, "0x1p+42".parse::<Single>().unwrap().ilogb());
+ assert_eq!(-42, "0x1p-42".parse::<Single>().unwrap().ilogb());
+
+ assert_eq!(IEK_INF, Single::INFINITY.ilogb());
+ assert_eq!(IEK_INF, (-Single::INFINITY).ilogb());
+ assert_eq!(IEK_ZERO, Single::ZERO.ilogb());
+ assert_eq!(IEK_ZERO, (-Single::ZERO).ilogb());
+ assert_eq!(IEK_NAN, Single::NAN.ilogb());
+ assert_eq!(IEK_NAN, Single::snan(None).ilogb());
+
+ assert_eq!(127, Single::largest().ilogb());
+ assert_eq!(127, (-Single::largest()).ilogb());
+
+ assert_eq!(-149, Single::SMALLEST.ilogb());
+ assert_eq!(-149, (-Single::SMALLEST).ilogb());
+ assert_eq!(-126, Single::smallest_normalized().ilogb());
+ assert_eq!(-126, (-Single::smallest_normalized()).ilogb());
+}
+
+#[test]
+fn scalbn() {
+ assert!(
+ "0x1p+0"
+ .parse::<Single>()
+ .unwrap()
+ .bitwise_eq("0x1p+0".parse::<Single>().unwrap().scalbn(0),)
+ );
+ assert!(
+ "0x1p+42"
+ .parse::<Single>()
+ .unwrap()
+ .bitwise_eq("0x1p+0".parse::<Single>().unwrap().scalbn(42),)
+ );
+ assert!(
+ "0x1p-42"
+ .parse::<Single>()
+ .unwrap()
+ .bitwise_eq("0x1p+0".parse::<Single>().unwrap().scalbn(-42),)
+ );
+
+ let p_inf = Single::INFINITY;
+ let m_inf = -Single::INFINITY;
+ let p_zero = Single::ZERO;
+ let m_zero = -Single::ZERO;
+ let p_qnan = Single::NAN;
+ let m_qnan = -Single::NAN;
+ let snan = Single::snan(None);
+
+ assert!(p_inf.bitwise_eq(p_inf.scalbn(0)));
+ assert!(m_inf.bitwise_eq(m_inf.scalbn(0)));
+ assert!(p_zero.bitwise_eq(p_zero.scalbn(0)));
+ assert!(m_zero.bitwise_eq(m_zero.scalbn(0)));
+ assert!(p_qnan.bitwise_eq(p_qnan.scalbn(0)));
+ assert!(m_qnan.bitwise_eq(m_qnan.scalbn(0)));
+ assert!(!snan.scalbn(0).is_signaling());
+
+ let scalbn_snan = snan.scalbn(1);
+ assert!(scalbn_snan.is_nan() && !scalbn_snan.is_signaling());
+
+ // Make sure highest bit of payload is preserved.
+ let payload = (1 << 50) | (1 << 49) | (1234 << 32) | 1;
+
+ let snan_with_payload = Double::snan(Some(payload));
+ let quiet_payload = snan_with_payload.scalbn(1);
+ assert!(quiet_payload.is_nan() && !quiet_payload.is_signaling());
+ assert_eq!(payload, quiet_payload.to_bits() & ((1 << 51) - 1));
+
+ assert!(p_inf.bitwise_eq("0x1p+0".parse::<Single>().unwrap().scalbn(128),));
+ assert!(m_inf.bitwise_eq("-0x1p+0".parse::<Single>().unwrap().scalbn(128),));
+ assert!(p_inf.bitwise_eq("0x1p+127".parse::<Single>().unwrap().scalbn(1),));
+ assert!(p_zero.bitwise_eq("0x1p-127".parse::<Single>().unwrap().scalbn(-127),));
+ assert!(m_zero.bitwise_eq("-0x1p-127".parse::<Single>().unwrap().scalbn(-127),));
+ assert!(
+ "-0x1p-149"
+ .parse::<Single>()
+ .unwrap()
+ .bitwise_eq("-0x1p-127".parse::<Single>().unwrap().scalbn(-22),)
+ );
+ assert!(p_zero.bitwise_eq("0x1p-126".parse::<Single>().unwrap().scalbn(-24),));
+
+ let smallest_f64 = Double::SMALLEST;
+ let neg_smallest_f64 = -Double::SMALLEST;
+
+ let largest_f64 = Double::largest();
+ let neg_largest_f64 = -Double::largest();
+
+ let largest_denormal_f64 = "0x1.ffffffffffffep-1023".parse::<Double>().unwrap();
+ let neg_largest_denormal_f64 = "-0x1.ffffffffffffep-1023".parse::<Double>().unwrap();
+
+ assert!(smallest_f64.bitwise_eq("0x1p-1074".parse::<Double>().unwrap().scalbn(0),));
+ assert!(neg_smallest_f64.bitwise_eq("-0x1p-1074".parse::<Double>().unwrap().scalbn(0),));
+
+ assert!("0x1p+1023".parse::<Double>().unwrap().bitwise_eq(smallest_f64.scalbn(2097,),));
+
+ assert!(smallest_f64.scalbn(-2097).is_pos_zero());
+ assert!(smallest_f64.scalbn(-2098).is_pos_zero());
+ assert!(smallest_f64.scalbn(-2099).is_pos_zero());
+ assert!("0x1p+1022".parse::<Double>().unwrap().bitwise_eq(smallest_f64.scalbn(2096,),));
+ assert!("0x1p+1023".parse::<Double>().unwrap().bitwise_eq(smallest_f64.scalbn(2097,),));
+ assert!(smallest_f64.scalbn(2098).is_infinite());
+ assert!(smallest_f64.scalbn(2099).is_infinite());
+
+ // Test for integer overflows when adding to exponent.
+ assert!(smallest_f64.scalbn(-ExpInt::MAX).is_pos_zero());
+ assert!(largest_f64.scalbn(ExpInt::MAX).is_infinite());
+
+ assert!(largest_denormal_f64.bitwise_eq(largest_denormal_f64.scalbn(0),));
+ assert!(neg_largest_denormal_f64.bitwise_eq(neg_largest_denormal_f64.scalbn(0),));
+
+ assert!(
+ "0x1.ffffffffffffep-1022"
+ .parse::<Double>()
+ .unwrap()
+ .bitwise_eq(largest_denormal_f64.scalbn(1))
+ );
+ assert!(
+ "-0x1.ffffffffffffep-1021"
+ .parse::<Double>()
+ .unwrap()
+ .bitwise_eq(neg_largest_denormal_f64.scalbn(2))
+ );
+
+ assert!(
+ "0x1.ffffffffffffep+1"
+ .parse::<Double>()
+ .unwrap()
+ .bitwise_eq(largest_denormal_f64.scalbn(1024))
+ );
+ assert!(largest_denormal_f64.scalbn(-1023).is_pos_zero());
+ assert!(largest_denormal_f64.scalbn(-1024).is_pos_zero());
+ assert!(largest_denormal_f64.scalbn(-2048).is_pos_zero());
+ assert!(largest_denormal_f64.scalbn(2047).is_infinite());
+ assert!(largest_denormal_f64.scalbn(2098).is_infinite());
+ assert!(largest_denormal_f64.scalbn(2099).is_infinite());
+
+ assert!(
+ "0x1.ffffffffffffep-2"
+ .parse::<Double>()
+ .unwrap()
+ .bitwise_eq(largest_denormal_f64.scalbn(1021))
+ );
+ assert!(
+ "0x1.ffffffffffffep-1"
+ .parse::<Double>()
+ .unwrap()
+ .bitwise_eq(largest_denormal_f64.scalbn(1022))
+ );
+ assert!(
+ "0x1.ffffffffffffep+0"
+ .parse::<Double>()
+ .unwrap()
+ .bitwise_eq(largest_denormal_f64.scalbn(1023))
+ );
+ assert!(
+ "0x1.ffffffffffffep+1023"
+ .parse::<Double>()
+ .unwrap()
+ .bitwise_eq(largest_denormal_f64.scalbn(2046))
+ );
+ assert!("0x1p+974".parse::<Double>().unwrap().bitwise_eq(smallest_f64.scalbn(2048,),));
+
+ let random_denormal_f64 = "0x1.c60f120d9f87cp+51".parse::<Double>().unwrap();
+ assert!(
+ "0x1.c60f120d9f87cp-972"
+ .parse::<Double>()
+ .unwrap()
+ .bitwise_eq(random_denormal_f64.scalbn(-1023))
+ );
+ assert!(
+ "0x1.c60f120d9f87cp-1"
+ .parse::<Double>()
+ .unwrap()
+ .bitwise_eq(random_denormal_f64.scalbn(-52))
+ );
+ assert!(
+ "0x1.c60f120d9f87cp-2"
+ .parse::<Double>()
+ .unwrap()
+ .bitwise_eq(random_denormal_f64.scalbn(-53))
+ );
+ assert!(
+ "0x1.c60f120d9f87cp+0"
+ .parse::<Double>()
+ .unwrap()
+ .bitwise_eq(random_denormal_f64.scalbn(-51))
+ );
+
+ assert!(random_denormal_f64.scalbn(-2097).is_pos_zero());
+ assert!(random_denormal_f64.scalbn(-2090).is_pos_zero());
+
+ assert!("-0x1p-1073".parse::<Double>().unwrap().bitwise_eq(neg_largest_f64.scalbn(-2097),));
+
+ assert!("-0x1p-1024".parse::<Double>().unwrap().bitwise_eq(neg_largest_f64.scalbn(-2048),));
+
+ assert!("0x1p-1073".parse::<Double>().unwrap().bitwise_eq(largest_f64.scalbn(-2097,),));
+
+ assert!("0x1p-1074".parse::<Double>().unwrap().bitwise_eq(largest_f64.scalbn(-2098,),));
+ assert!("-0x1p-1074".parse::<Double>().unwrap().bitwise_eq(neg_largest_f64.scalbn(-2098),));
+ assert!(neg_largest_f64.scalbn(-2099).is_neg_zero());
+ assert!(largest_f64.scalbn(1).is_infinite());
+
+ assert!(
+ "0x1p+0"
+ .parse::<Double>()
+ .unwrap()
+ .bitwise_eq("0x1p+52".parse::<Double>().unwrap().scalbn(-52),)
+ );
+
+ assert!(
+ "0x1p-103"
+ .parse::<Double>()
+ .unwrap()
+ .bitwise_eq("0x1p-51".parse::<Double>().unwrap().scalbn(-52),)
+ );
+}
+
+#[test]
+fn frexp() {
+ let p_zero = Double::ZERO;
+ let m_zero = -Double::ZERO;
+ let one = Double::from_f64(1.0);
+ let m_one = Double::from_f64(-1.0);
+
+ let largest_denormal = "0x1.ffffffffffffep-1023".parse::<Double>().unwrap();
+ let neg_largest_denormal = "-0x1.ffffffffffffep-1023".parse::<Double>().unwrap();
+
+ let smallest = Double::SMALLEST;
+ let neg_smallest = -Double::SMALLEST;
+
+ let largest = Double::largest();
+ let neg_largest = -Double::largest();
+
+ let p_inf = Double::INFINITY;
+ let m_inf = -Double::INFINITY;
+
+ let p_qnan = Double::NAN;
+ let m_qnan = -Double::NAN;
+ let snan = Double::snan(None);
+
+ // Make sure highest bit of payload is preserved.
+ let payload = (1 << 50) | (1 << 49) | (1234 << 32) | 1;
+
+ let snan_with_payload = Double::snan(Some(payload));
+
+ let mut exp = 0;
+
+ let frac = p_zero.frexp(&mut exp);
+ assert_eq!(0, exp);
+ assert!(frac.is_pos_zero());
+
+ let frac = m_zero.frexp(&mut exp);
+ assert_eq!(0, exp);
+ assert!(frac.is_neg_zero());
+
+ let frac = one.frexp(&mut exp);
+ assert_eq!(1, exp);
+ assert!("0x1p-1".parse::<Double>().unwrap().bitwise_eq(frac));
+
+ let frac = m_one.frexp(&mut exp);
+ assert_eq!(1, exp);
+ assert!("-0x1p-1".parse::<Double>().unwrap().bitwise_eq(frac));
+
+ let frac = largest_denormal.frexp(&mut exp);
+ assert_eq!(-1022, exp);
+ assert!("0x1.ffffffffffffep-1".parse::<Double>().unwrap().bitwise_eq(frac));
+
+ let frac = neg_largest_denormal.frexp(&mut exp);
+ assert_eq!(-1022, exp);
+ assert!("-0x1.ffffffffffffep-1".parse::<Double>().unwrap().bitwise_eq(frac));
+
+ let frac = smallest.frexp(&mut exp);
+ assert_eq!(-1073, exp);
+ assert!("0x1p-1".parse::<Double>().unwrap().bitwise_eq(frac));
+
+ let frac = neg_smallest.frexp(&mut exp);
+ assert_eq!(-1073, exp);
+ assert!("-0x1p-1".parse::<Double>().unwrap().bitwise_eq(frac));
+
+ let frac = largest.frexp(&mut exp);
+ assert_eq!(1024, exp);
+ assert!("0x1.fffffffffffffp-1".parse::<Double>().unwrap().bitwise_eq(frac));
+
+ let frac = neg_largest.frexp(&mut exp);
+ assert_eq!(1024, exp);
+ assert!("-0x1.fffffffffffffp-1".parse::<Double>().unwrap().bitwise_eq(frac));
+
+ let frac = p_inf.frexp(&mut exp);
+ assert_eq!(IEK_INF, exp);
+ assert!(frac.is_infinite() && !frac.is_negative());
+
+ let frac = m_inf.frexp(&mut exp);
+ assert_eq!(IEK_INF, exp);
+ assert!(frac.is_infinite() && frac.is_negative());
+
+ let frac = p_qnan.frexp(&mut exp);
+ assert_eq!(IEK_NAN, exp);
+ assert!(frac.is_nan());
+
+ let frac = m_qnan.frexp(&mut exp);
+ assert_eq!(IEK_NAN, exp);
+ assert!(frac.is_nan());
+
+ let frac = snan.frexp(&mut exp);
+ assert_eq!(IEK_NAN, exp);
+ assert!(frac.is_nan() && !frac.is_signaling());
+
+ let frac = snan_with_payload.frexp(&mut exp);
+ assert_eq!(IEK_NAN, exp);
+ assert!(frac.is_nan() && !frac.is_signaling());
+ assert_eq!(payload, frac.to_bits() & ((1 << 51) - 1));
+
+ let frac = "0x0.ffffp-1".parse::<Double>().unwrap().frexp(&mut exp);
+ assert_eq!(-1, exp);
+ assert!("0x1.fffep-1".parse::<Double>().unwrap().bitwise_eq(frac));
+
+ let frac = "0x1p-51".parse::<Double>().unwrap().frexp(&mut exp);
+ assert_eq!(-50, exp);
+ assert!("0x1p-1".parse::<Double>().unwrap().bitwise_eq(frac));
+
+ let frac = "0x1.c60f120d9f87cp+51".parse::<Double>().unwrap().frexp(&mut exp);
+ assert_eq!(52, exp);
+ assert!("0x1.c60f120d9f87cp-1".parse::<Double>().unwrap().bitwise_eq(frac));
+}
+
+#[test]
+fn modulo() {
+ let mut status;
+ {
+ let f1 = "1.5".parse::<Double>().unwrap();
+ let f2 = "1.0".parse::<Double>().unwrap();
+ let expected = "0.5".parse::<Double>().unwrap();
+ assert!(unpack!(status=, f1 % f2).bitwise_eq(expected));
+ assert_eq!(status, Status::OK);
+ }
+ {
+ let f1 = "0.5".parse::<Double>().unwrap();
+ let f2 = "1.0".parse::<Double>().unwrap();
+ let expected = "0.5".parse::<Double>().unwrap();
+ assert!(unpack!(status=, f1 % f2).bitwise_eq(expected));
+ assert_eq!(status, Status::OK);
+ }
+ {
+ let f1 = "0x1.3333333333333p-2".parse::<Double>().unwrap(); // 0.3
+ let f2 = "0x1.47ae147ae147bp-7".parse::<Double>().unwrap(); // 0.01
+ // 0.009999999999999983
+ let expected = "0x1.47ae147ae1471p-7".parse::<Double>().unwrap();
+ assert!(unpack!(status=, f1 % f2).bitwise_eq(expected));
+ assert_eq!(status, Status::OK);
+ }
+ {
+ let f1 = "0x1p64".parse::<Double>().unwrap(); // 1.8446744073709552e19
+ let f2 = "1.5".parse::<Double>().unwrap();
+ let expected = "1.0".parse::<Double>().unwrap();
+ assert!(unpack!(status=, f1 % f2).bitwise_eq(expected));
+ assert_eq!(status, Status::OK);
+ }
+ {
+ let f1 = "0x1p1000".parse::<Double>().unwrap();
+ let f2 = "0x1p-1000".parse::<Double>().unwrap();
+ let expected = "0.0".parse::<Double>().unwrap();
+ assert!(unpack!(status=, f1 % f2).bitwise_eq(expected));
+ assert_eq!(status, Status::OK);
+ }
+ {
+ let f1 = "0.0".parse::<Double>().unwrap();
+ let f2 = "1.0".parse::<Double>().unwrap();
+ let expected = "0.0".parse::<Double>().unwrap();
+ assert!(unpack!(status=, f1 % f2).bitwise_eq(expected));
+ assert_eq!(status, Status::OK);
+ }
+ {
+ let f1 = "1.0".parse::<Double>().unwrap();
+ let f2 = "0.0".parse::<Double>().unwrap();
+ assert!(unpack!(status=, f1 % f2).is_nan());
+ assert_eq!(status, Status::INVALID_OP);
+ }
+ {
+ let f1 = "0.0".parse::<Double>().unwrap();
+ let f2 = "0.0".parse::<Double>().unwrap();
+ assert!(unpack!(status=, f1 % f2).is_nan());
+ assert_eq!(status, Status::INVALID_OP);
+ }
+ {
+ let f1 = Double::INFINITY;
+ let f2 = "1.0".parse::<Double>().unwrap();
+ assert!(unpack!(status=, f1 % f2).is_nan());
+ assert_eq!(status, Status::INVALID_OP);
+ }
+}
diff --git a/compiler/rustc_apfloat/tests/ppc.rs b/compiler/rustc_apfloat/tests/ppc.rs
new file mode 100644
index 000000000..c769d2654
--- /dev/null
+++ b/compiler/rustc_apfloat/tests/ppc.rs
@@ -0,0 +1,530 @@
+use rustc_apfloat::ppc::DoubleDouble;
+use rustc_apfloat::{Category, Float, Round};
+
+use std::cmp::Ordering;
+
+#[test]
+fn ppc_double_double() {
+ let test = DoubleDouble::ZERO;
+ let expected = "0x0p+0".parse::<DoubleDouble>().unwrap();
+ assert!(test.is_zero());
+ assert!(!test.is_negative());
+ assert!(test.bitwise_eq(expected));
+ assert_eq!(0, test.to_bits());
+
+ let test = -DoubleDouble::ZERO;
+ let expected = "-0x0p+0".parse::<DoubleDouble>().unwrap();
+ assert!(test.is_zero());
+ assert!(test.is_negative());
+ assert!(test.bitwise_eq(expected));
+ assert_eq!(0x8000000000000000, test.to_bits());
+
+ let test = "1.0".parse::<DoubleDouble>().unwrap();
+ assert_eq!(0x3ff0000000000000, test.to_bits());
+
+ // LDBL_MAX
+ let test = "1.79769313486231580793728971405301e+308".parse::<DoubleDouble>().unwrap();
+ assert_eq!(0x7c8ffffffffffffe_7fefffffffffffff, test.to_bits());
+
+ // LDBL_MIN
+ let test = "2.00416836000897277799610805135016e-292".parse::<DoubleDouble>().unwrap();
+ assert_eq!(0x0000000000000000_0360000000000000, test.to_bits());
+}
+
+#[test]
+fn ppc_double_double_add_special() {
+ let data = [
+ // (1 + 0) + (-1 + 0) = Category::Zero
+ (0x3ff0000000000000, 0xbff0000000000000, Category::Zero, Round::NearestTiesToEven),
+ // LDBL_MAX + (1.1 >> (1023 - 106) + 0)) = Category::Infinity
+ (
+ 0x7c8ffffffffffffe_7fefffffffffffff,
+ 0x7948000000000000,
+ Category::Infinity,
+ Round::NearestTiesToEven,
+ ),
+ // FIXME: change the 4th 0x75effffffffffffe to 0x75efffffffffffff when
+ // DoubleDouble's fallback is gone.
+ // LDBL_MAX + (1.011111... >> (1023 - 106) + (1.1111111...0 >> (1023 -
+ // 160))) = Category::Normal
+ (
+ 0x7c8ffffffffffffe_7fefffffffffffff,
+ 0x75effffffffffffe_7947ffffffffffff,
+ Category::Normal,
+ Round::NearestTiesToEven,
+ ),
+ // LDBL_MAX + (1.1 >> (1023 - 106) + 0)) = Category::Infinity
+ (
+ 0x7c8ffffffffffffe_7fefffffffffffff,
+ 0x7c8ffffffffffffe_7fefffffffffffff,
+ Category::Infinity,
+ Round::NearestTiesToEven,
+ ),
+ // NaN + (1 + 0) = Category::NaN
+ (0x7ff8000000000000, 0x3ff0000000000000, Category::NaN, Round::NearestTiesToEven),
+ ];
+
+ for (op1, op2, expected, round) in data {
+ {
+ let mut a1 = DoubleDouble::from_bits(op1);
+ let a2 = DoubleDouble::from_bits(op2);
+ a1 = a1.add_r(a2, round).value;
+
+ assert_eq!(expected, a1.category(), "{:#x} + {:#x}", op1, op2);
+ }
+ {
+ let a1 = DoubleDouble::from_bits(op1);
+ let mut a2 = DoubleDouble::from_bits(op2);
+ a2 = a2.add_r(a1, round).value;
+
+ assert_eq!(expected, a2.category(), "{:#x} + {:#x}", op2, op1);
+ }
+ }
+}
+
+#[test]
+fn ppc_double_double_add() {
+ let data = [
+ // (1 + 0) + (1e-105 + 0) = (1 + 1e-105)
+ (
+ 0x3ff0000000000000,
+ 0x3960000000000000,
+ 0x3960000000000000_3ff0000000000000,
+ Round::NearestTiesToEven,
+ ),
+ // (1 + 0) + (1e-106 + 0) = (1 + 1e-106)
+ (
+ 0x3ff0000000000000,
+ 0x3950000000000000,
+ 0x3950000000000000_3ff0000000000000,
+ Round::NearestTiesToEven,
+ ),
+ // (1 + 1e-106) + (1e-106 + 0) = (1 + 1e-105)
+ (
+ 0x3950000000000000_3ff0000000000000,
+ 0x3950000000000000,
+ 0x3960000000000000_3ff0000000000000,
+ Round::NearestTiesToEven,
+ ),
+ // (1 + 0) + (epsilon + 0) = (1 + epsilon)
+ (
+ 0x3ff0000000000000,
+ 0x0000000000000001,
+ 0x0000000000000001_3ff0000000000000,
+ Round::NearestTiesToEven,
+ ),
+ // FIXME: change 0xf950000000000000 to 0xf940000000000000, when
+ // DoubleDouble's fallback is gone.
+ // (DBL_MAX - 1 << (1023 - 105)) + (1 << (1023 - 53) + 0) = DBL_MAX +
+ // 1.11111... << (1023 - 52)
+ (
+ 0xf950000000000000_7fefffffffffffff,
+ 0x7c90000000000000,
+ 0x7c8ffffffffffffe_7fefffffffffffff,
+ Round::NearestTiesToEven,
+ ),
+ // FIXME: change 0xf950000000000000 to 0xf940000000000000, when
+ // DoubleDouble's fallback is gone.
+ // (1 << (1023 - 53) + 0) + (DBL_MAX - 1 << (1023 - 105)) = DBL_MAX +
+ // 1.11111... << (1023 - 52)
+ (
+ 0x7c90000000000000,
+ 0xf950000000000000_7fefffffffffffff,
+ 0x7c8ffffffffffffe_7fefffffffffffff,
+ Round::NearestTiesToEven,
+ ),
+ ];
+
+ for (op1, op2, expected, round) in data {
+ {
+ let mut a1 = DoubleDouble::from_bits(op1);
+ let a2 = DoubleDouble::from_bits(op2);
+ a1 = a1.add_r(a2, round).value;
+
+ assert_eq!(expected, a1.to_bits(), "{:#x} + {:#x}", op1, op2);
+ }
+ {
+ let a1 = DoubleDouble::from_bits(op1);
+ let mut a2 = DoubleDouble::from_bits(op2);
+ a2 = a2.add_r(a1, round).value;
+
+ assert_eq!(expected, a2.to_bits(), "{:#x} + {:#x}", op2, op1);
+ }
+ }
+}
+
+#[test]
+fn ppc_double_double_subtract() {
+ let data = [
+ // (1 + 0) - (-1e-105 + 0) = (1 + 1e-105)
+ (
+ 0x3ff0000000000000,
+ 0xb960000000000000,
+ 0x3960000000000000_3ff0000000000000,
+ Round::NearestTiesToEven,
+ ),
+ // (1 + 0) - (-1e-106 + 0) = (1 + 1e-106)
+ (
+ 0x3ff0000000000000,
+ 0xb950000000000000,
+ 0x3950000000000000_3ff0000000000000,
+ Round::NearestTiesToEven,
+ ),
+ ];
+
+ for (op1, op2, expected, round) in data {
+ let mut a1 = DoubleDouble::from_bits(op1);
+ let a2 = DoubleDouble::from_bits(op2);
+ a1 = a1.sub_r(a2, round).value;
+
+ assert_eq!(expected, a1.to_bits(), "{:#x} - {:#x}", op1, op2);
+ }
+}
+
+#[test]
+fn ppc_double_double_multiply_special() {
+ let data = [
+ // Category::NaN * Category::NaN = Category::NaN
+ (0x7ff8000000000000, 0x7ff8000000000000, Category::NaN, Round::NearestTiesToEven),
+ // Category::NaN * Category::Zero = Category::NaN
+ (0x7ff8000000000000, 0, Category::NaN, Round::NearestTiesToEven),
+ // Category::NaN * Category::Infinity = Category::NaN
+ (0x7ff8000000000000, 0x7ff0000000000000, Category::NaN, Round::NearestTiesToEven),
+ // Category::NaN * Category::Normal = Category::NaN
+ (0x7ff8000000000000, 0x3ff0000000000000, Category::NaN, Round::NearestTiesToEven),
+ // Category::Infinity * Category::Infinity = Category::Infinity
+ (0x7ff0000000000000, 0x7ff0000000000000, Category::Infinity, Round::NearestTiesToEven),
+ // Category::Infinity * Category::Zero = Category::NaN
+ (0x7ff0000000000000, 0, Category::NaN, Round::NearestTiesToEven),
+ // Category::Infinity * Category::Normal = Category::Infinity
+ (0x7ff0000000000000, 0x3ff0000000000000, Category::Infinity, Round::NearestTiesToEven),
+ // Category::Zero * Category::Zero = Category::Zero
+ (0, 0, Category::Zero, Round::NearestTiesToEven),
+ // Category::Zero * Category::Normal = Category::Zero
+ (0, 0x3ff0000000000000, Category::Zero, Round::NearestTiesToEven),
+ ];
+
+ for (op1, op2, expected, round) in data {
+ {
+ let mut a1 = DoubleDouble::from_bits(op1);
+ let a2 = DoubleDouble::from_bits(op2);
+ a1 = a1.mul_r(a2, round).value;
+
+ assert_eq!(expected, a1.category(), "{:#x} * {:#x}", op1, op2);
+ }
+ {
+ let a1 = DoubleDouble::from_bits(op1);
+ let mut a2 = DoubleDouble::from_bits(op2);
+ a2 = a2.mul_r(a1, round).value;
+
+ assert_eq!(expected, a2.category(), "{:#x} * {:#x}", op2, op1);
+ }
+ }
+}
+
+#[test]
+fn ppc_double_double_multiply() {
+ let data = [
+ // 1/3 * 3 = 1.0
+ (
+ 0x3c75555555555556_3fd5555555555555,
+ 0x4008000000000000,
+ 0x3ff0000000000000,
+ Round::NearestTiesToEven,
+ ),
+ // (1 + epsilon) * (1 + 0) = Category::Zero
+ (
+ 0x0000000000000001_3ff0000000000000,
+ 0x3ff0000000000000,
+ 0x0000000000000001_3ff0000000000000,
+ Round::NearestTiesToEven,
+ ),
+ // (1 + epsilon) * (1 + epsilon) = 1 + 2 * epsilon
+ (
+ 0x0000000000000001_3ff0000000000000,
+ 0x0000000000000001_3ff0000000000000,
+ 0x0000000000000002_3ff0000000000000,
+ Round::NearestTiesToEven,
+ ),
+ // -(1 + epsilon) * (1 + epsilon) = -1
+ (
+ 0x0000000000000001_bff0000000000000,
+ 0x0000000000000001_3ff0000000000000,
+ 0xbff0000000000000,
+ Round::NearestTiesToEven,
+ ),
+ // (0.5 + 0) * (1 + 2 * epsilon) = 0.5 + epsilon
+ (
+ 0x3fe0000000000000,
+ 0x0000000000000002_3ff0000000000000,
+ 0x0000000000000001_3fe0000000000000,
+ Round::NearestTiesToEven,
+ ),
+ // (0.5 + 0) * (1 + epsilon) = 0.5
+ (
+ 0x3fe0000000000000,
+ 0x0000000000000001_3ff0000000000000,
+ 0x3fe0000000000000,
+ Round::NearestTiesToEven,
+ ),
+ // __LDBL_MAX__ * (1 + 1 << 106) = inf
+ (
+ 0x7c8ffffffffffffe_7fefffffffffffff,
+ 0x3950000000000000_3ff0000000000000,
+ 0x7ff0000000000000,
+ Round::NearestTiesToEven,
+ ),
+ // __LDBL_MAX__ * (1 + 1 << 107) > __LDBL_MAX__, but not inf, yes =_=|||
+ (
+ 0x7c8ffffffffffffe_7fefffffffffffff,
+ 0x3940000000000000_3ff0000000000000,
+ 0x7c8fffffffffffff_7fefffffffffffff,
+ Round::NearestTiesToEven,
+ ),
+ // __LDBL_MAX__ * (1 + 1 << 108) = __LDBL_MAX__
+ (
+ 0x7c8ffffffffffffe_7fefffffffffffff,
+ 0x3930000000000000_3ff0000000000000,
+ 0x7c8ffffffffffffe_7fefffffffffffff,
+ Round::NearestTiesToEven,
+ ),
+ ];
+
+ for (op1, op2, expected, round) in data {
+ {
+ let mut a1 = DoubleDouble::from_bits(op1);
+ let a2 = DoubleDouble::from_bits(op2);
+ a1 = a1.mul_r(a2, round).value;
+
+ assert_eq!(expected, a1.to_bits(), "{:#x} * {:#x}", op1, op2);
+ }
+ {
+ let a1 = DoubleDouble::from_bits(op1);
+ let mut a2 = DoubleDouble::from_bits(op2);
+ a2 = a2.mul_r(a1, round).value;
+
+ assert_eq!(expected, a2.to_bits(), "{:#x} * {:#x}", op2, op1);
+ }
+ }
+}
+
+#[test]
+fn ppc_double_double_divide() {
+ // FIXME: Only a sanity check for now. Add more edge cases when the
+ // double-double algorithm is implemented.
+ let data = [
+ // 1 / 3 = 1/3
+ (
+ 0x3ff0000000000000,
+ 0x4008000000000000,
+ 0x3c75555555555556_3fd5555555555555,
+ Round::NearestTiesToEven,
+ ),
+ ];
+
+ for (op1, op2, expected, round) in data {
+ let mut a1 = DoubleDouble::from_bits(op1);
+ let a2 = DoubleDouble::from_bits(op2);
+ a1 = a1.div_r(a2, round).value;
+
+ assert_eq!(expected, a1.to_bits(), "{:#x} / {:#x}", op1, op2);
+ }
+}
+
+#[test]
+fn ppc_double_double_remainder() {
+ let data = [
+ // ieee_rem(3.0 + 3.0 << 53, 1.25 + 1.25 << 53) = (0.5 + 0.5 << 53)
+ (
+ 0x3cb8000000000000_4008000000000000,
+ 0x3ca4000000000000_3ff4000000000000,
+ 0x3c90000000000000_3fe0000000000000,
+ ),
+ // ieee_rem(3.0 + 3.0 << 53, 1.75 + 1.75 << 53) = (-0.5 - 0.5 << 53)
+ (
+ 0x3cb8000000000000_4008000000000000,
+ 0x3cac000000000000_3ffc000000000000,
+ 0xbc90000000000000_bfe0000000000000,
+ ),
+ ];
+
+ for (op1, op2, expected) in data {
+ let a1 = DoubleDouble::from_bits(op1);
+ let a2 = DoubleDouble::from_bits(op2);
+ let result = a1.ieee_rem(a2).value;
+
+ assert_eq!(expected, result.to_bits(), "ieee_rem({:#x}, {:#x})", op1, op2);
+ }
+}
+
+#[test]
+fn ppc_double_double_mod() {
+ let data = [
+ // mod(3.0 + 3.0 << 53, 1.25 + 1.25 << 53) = (0.5 + 0.5 << 53)
+ (
+ 0x3cb8000000000000_4008000000000000,
+ 0x3ca4000000000000_3ff4000000000000,
+ 0x3c90000000000000_3fe0000000000000,
+ ),
+ // mod(3.0 + 3.0 << 53, 1.75 + 1.75 << 53) = (1.25 + 1.25 << 53)
+ // 0xbc98000000000000 doesn't seem right, but it's what we currently have.
+ // FIXME: investigate
+ (
+ 0x3cb8000000000000_4008000000000000,
+ 0x3cac000000000000_3ffc000000000000,
+ 0xbc98000000000000_3ff4000000000001,
+ ),
+ ];
+
+ for (op1, op2, expected) in data {
+ let a1 = DoubleDouble::from_bits(op1);
+ let a2 = DoubleDouble::from_bits(op2);
+ let r = (a1 % a2).value;
+
+ assert_eq!(expected, r.to_bits(), "fmod({:#x}, {:#x})", op1, op2);
+ }
+}
+
+#[test]
+fn ppc_double_double_fma() {
+ // Sanity check for now.
+ let mut a = "2".parse::<DoubleDouble>().unwrap();
+ a = a.mul_add("3".parse::<DoubleDouble>().unwrap(), "4".parse::<DoubleDouble>().unwrap()).value;
+ assert_eq!(Some(Ordering::Equal), "10".parse::<DoubleDouble>().unwrap().partial_cmp(&a));
+}
+
+#[test]
+fn ppc_double_double_round_to_integral() {
+ {
+ let a = "1.5".parse::<DoubleDouble>().unwrap();
+ let a = a.round_to_integral(Round::NearestTiesToEven).value;
+ assert_eq!(Some(Ordering::Equal), "2".parse::<DoubleDouble>().unwrap().partial_cmp(&a));
+ }
+ {
+ let a = "2.5".parse::<DoubleDouble>().unwrap();
+ let a = a.round_to_integral(Round::NearestTiesToEven).value;
+ assert_eq!(Some(Ordering::Equal), "2".parse::<DoubleDouble>().unwrap().partial_cmp(&a));
+ }
+}
+
+#[test]
+fn ppc_double_double_compare() {
+ let data = [
+ // (1 + 0) = (1 + 0)
+ (0x3ff0000000000000, 0x3ff0000000000000, Some(Ordering::Equal)),
+ // (1 + 0) < (1.00...1 + 0)
+ (0x3ff0000000000000, 0x3ff0000000000001, Some(Ordering::Less)),
+ // (1.00...1 + 0) > (1 + 0)
+ (0x3ff0000000000001, 0x3ff0000000000000, Some(Ordering::Greater)),
+ // (1 + 0) < (1 + epsilon)
+ (0x3ff0000000000000, 0x0000000000000001_3ff0000000000001, Some(Ordering::Less)),
+ // NaN != NaN
+ (0x7ff8000000000000, 0x7ff8000000000000, None),
+ // (1 + 0) != NaN
+ (0x3ff0000000000000, 0x7ff8000000000000, None),
+ // Inf = Inf
+ (0x7ff0000000000000, 0x7ff0000000000000, Some(Ordering::Equal)),
+ ];
+
+ for (op1, op2, expected) in data {
+ let a1 = DoubleDouble::from_bits(op1);
+ let a2 = DoubleDouble::from_bits(op2);
+ assert_eq!(expected, a1.partial_cmp(&a2), "compare({:#x}, {:#x})", op1, op2,);
+ }
+}
+
+#[test]
+fn ppc_double_double_bitwise_eq() {
+ let data = [
+ // (1 + 0) = (1 + 0)
+ (0x3ff0000000000000, 0x3ff0000000000000, true),
+ // (1 + 0) != (1.00...1 + 0)
+ (0x3ff0000000000000, 0x3ff0000000000001, false),
+ // NaN = NaN
+ (0x7ff8000000000000, 0x7ff8000000000000, true),
+ // NaN != NaN with a different bit pattern
+ (0x7ff8000000000000, 0x3ff0000000000000_7ff8000000000000, false),
+ // Inf = Inf
+ (0x7ff0000000000000, 0x7ff0000000000000, true),
+ ];
+
+ for (op1, op2, expected) in data {
+ let a1 = DoubleDouble::from_bits(op1);
+ let a2 = DoubleDouble::from_bits(op2);
+ assert_eq!(expected, a1.bitwise_eq(a2), "{:#x} = {:#x}", op1, op2);
+ }
+}
+
+#[test]
+fn ppc_double_double_change_sign() {
+ let float = DoubleDouble::from_bits(0xbcb0000000000000_400f000000000000);
+ {
+ let actual = float.copy_sign("1".parse::<DoubleDouble>().unwrap());
+ assert_eq!(0xbcb0000000000000_400f000000000000, actual.to_bits());
+ }
+ {
+ let actual = float.copy_sign("-1".parse::<DoubleDouble>().unwrap());
+ assert_eq!(0x3cb0000000000000_c00f000000000000, actual.to_bits());
+ }
+}
+
+#[test]
+fn ppc_double_double_factories() {
+ assert_eq!(0, DoubleDouble::ZERO.to_bits());
+ assert_eq!(0x7c8ffffffffffffe_7fefffffffffffff, DoubleDouble::largest().to_bits());
+ assert_eq!(0x0000000000000001, DoubleDouble::SMALLEST.to_bits());
+ assert_eq!(0x0360000000000000, DoubleDouble::smallest_normalized().to_bits());
+ assert_eq!(0x0000000000000000_8000000000000000, (-DoubleDouble::ZERO).to_bits());
+ assert_eq!(0xfc8ffffffffffffe_ffefffffffffffff, (-DoubleDouble::largest()).to_bits());
+ assert_eq!(0x0000000000000000_8000000000000001, (-DoubleDouble::SMALLEST).to_bits());
+ assert_eq!(
+ 0x0000000000000000_8360000000000000,
+ (-DoubleDouble::smallest_normalized()).to_bits()
+ );
+ assert!(DoubleDouble::SMALLEST.is_smallest());
+ assert!(DoubleDouble::largest().is_largest());
+}
+
+#[test]
+fn ppc_double_double_is_denormal() {
+ assert!(DoubleDouble::SMALLEST.is_denormal());
+ assert!(!DoubleDouble::largest().is_denormal());
+ assert!(!DoubleDouble::smallest_normalized().is_denormal());
+ {
+ // (4 + 3) is not normalized
+ let data = 0x4008000000000000_4010000000000000;
+ assert!(DoubleDouble::from_bits(data).is_denormal());
+ }
+}
+
+#[test]
+fn ppc_double_double_exact_inverse() {
+ assert!(
+ "2.0"
+ .parse::<DoubleDouble>()
+ .unwrap()
+ .get_exact_inverse()
+ .unwrap()
+ .bitwise_eq("0.5".parse::<DoubleDouble>().unwrap())
+ );
+}
+
+#[test]
+fn ppc_double_double_scalbn() {
+ // 3.0 + 3.0 << 53
+ let input = 0x3cb8000000000000_4008000000000000;
+ let result = DoubleDouble::from_bits(input).scalbn(1);
+ // 6.0 + 6.0 << 53
+ assert_eq!(0x3cc8000000000000_4018000000000000, result.to_bits());
+}
+
+#[test]
+fn ppc_double_double_frexp() {
+ // 3.0 + 3.0 << 53
+ let input = 0x3cb8000000000000_4008000000000000;
+ let mut exp = 0;
+ // 0.75 + 0.75 << 53
+ let result = DoubleDouble::from_bits(input).frexp(&mut exp);
+ assert_eq!(2, exp);
+ assert_eq!(0x3c98000000000000_3fe8000000000000, result.to_bits());
+}