summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_arena/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--compiler/rustc_arena/src/lib.rs645
1 files changed, 645 insertions, 0 deletions
diff --git a/compiler/rustc_arena/src/lib.rs b/compiler/rustc_arena/src/lib.rs
new file mode 100644
index 000000000..a5f1cbc96
--- /dev/null
+++ b/compiler/rustc_arena/src/lib.rs
@@ -0,0 +1,645 @@
+//! The arena, a fast but limited type of allocator.
+//!
+//! Arenas are a type of allocator that destroy the objects within, all at
+//! once, once the arena itself is destroyed. They do not support deallocation
+//! of individual objects while the arena itself is still alive. The benefit
+//! of an arena is very fast allocation; just a pointer bump.
+//!
+//! This crate implements several kinds of arena.
+
+#![doc(
+ html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/",
+ test(no_crate_inject, attr(deny(warnings)))
+)]
+#![feature(dropck_eyepatch)]
+#![feature(new_uninit)]
+#![feature(maybe_uninit_slice)]
+#![feature(min_specialization)]
+#![feature(decl_macro)]
+#![feature(rustc_attrs)]
+#![cfg_attr(test, feature(test))]
+#![feature(strict_provenance)]
+#![feature(ptr_const_cast)]
+
+use smallvec::SmallVec;
+
+use std::alloc::Layout;
+use std::cell::{Cell, RefCell};
+use std::cmp;
+use std::marker::{PhantomData, Send};
+use std::mem::{self, MaybeUninit};
+use std::ptr::{self, NonNull};
+use std::slice;
+
+#[inline(never)]
+#[cold]
+fn cold_path<F: FnOnce() -> R, R>(f: F) -> R {
+ f()
+}
+
+/// An arena that can hold objects of only one type.
+pub struct TypedArena<T> {
+ /// A pointer to the next object to be allocated.
+ ptr: Cell<*mut T>,
+
+ /// A pointer to the end of the allocated area. When this pointer is
+ /// reached, a new chunk is allocated.
+ end: Cell<*mut T>,
+
+ /// A vector of arena chunks.
+ chunks: RefCell<Vec<ArenaChunk<T>>>,
+
+ /// Marker indicating that dropping the arena causes its owned
+ /// instances of `T` to be dropped.
+ _own: PhantomData<T>,
+}
+
+struct ArenaChunk<T = u8> {
+ /// The raw storage for the arena chunk.
+ storage: NonNull<[MaybeUninit<T>]>,
+ /// The number of valid entries in the chunk.
+ entries: usize,
+}
+
+unsafe impl<#[may_dangle] T> Drop for ArenaChunk<T> {
+ fn drop(&mut self) {
+ unsafe { Box::from_raw(self.storage.as_mut()) };
+ }
+}
+
+impl<T> ArenaChunk<T> {
+ #[inline]
+ unsafe fn new(capacity: usize) -> ArenaChunk<T> {
+ ArenaChunk {
+ storage: NonNull::new(Box::into_raw(Box::new_uninit_slice(capacity))).unwrap(),
+ entries: 0,
+ }
+ }
+
+ /// Destroys this arena chunk.
+ #[inline]
+ unsafe fn destroy(&mut self, len: usize) {
+ // The branch on needs_drop() is an -O1 performance optimization.
+ // Without the branch, dropping TypedArena<u8> takes linear time.
+ if mem::needs_drop::<T>() {
+ let slice = &mut *(self.storage.as_mut());
+ ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(&mut slice[..len]));
+ }
+ }
+
+ // Returns a pointer to the first allocated object.
+ #[inline]
+ fn start(&mut self) -> *mut T {
+ self.storage.as_ptr() as *mut T
+ }
+
+ // Returns a pointer to the end of the allocated space.
+ #[inline]
+ fn end(&mut self) -> *mut T {
+ unsafe {
+ if mem::size_of::<T>() == 0 {
+ // A pointer as large as possible for zero-sized elements.
+ ptr::invalid_mut(!0)
+ } else {
+ self.start().add((*self.storage.as_ptr()).len())
+ }
+ }
+ }
+}
+
+// The arenas start with PAGE-sized chunks, and then each new chunk is twice as
+// big as its predecessor, up until we reach HUGE_PAGE-sized chunks, whereupon
+// we stop growing. This scales well, from arenas that are barely used up to
+// arenas that are used for 100s of MiBs. Note also that the chosen sizes match
+// the usual sizes of pages and huge pages on Linux.
+const PAGE: usize = 4096;
+const HUGE_PAGE: usize = 2 * 1024 * 1024;
+
+impl<T> Default for TypedArena<T> {
+ /// Creates a new `TypedArena`.
+ fn default() -> TypedArena<T> {
+ TypedArena {
+ // We set both `ptr` and `end` to 0 so that the first call to
+ // alloc() will trigger a grow().
+ ptr: Cell::new(ptr::null_mut()),
+ end: Cell::new(ptr::null_mut()),
+ chunks: Default::default(),
+ _own: PhantomData,
+ }
+ }
+}
+
+trait IterExt<T> {
+ fn alloc_from_iter(self, arena: &TypedArena<T>) -> &mut [T];
+}
+
+impl<I, T> IterExt<T> for I
+where
+ I: IntoIterator<Item = T>,
+{
+ // This default collects into a `SmallVec` and then allocates by copying
+ // from it. The specializations below for types like `Vec` are more
+ // efficient, copying directly without the intermediate collecting step.
+ // This default could be made more efficient, like
+ // `DroplessArena::alloc_from_iter`, but it's not hot enough to bother.
+ #[inline]
+ default fn alloc_from_iter(self, arena: &TypedArena<T>) -> &mut [T] {
+ let vec: SmallVec<[_; 8]> = self.into_iter().collect();
+ vec.alloc_from_iter(arena)
+ }
+}
+
+impl<T, const N: usize> IterExt<T> for std::array::IntoIter<T, N> {
+ #[inline]
+ fn alloc_from_iter(self, arena: &TypedArena<T>) -> &mut [T] {
+ let len = self.len();
+ if len == 0 {
+ return &mut [];
+ }
+ // Move the content to the arena by copying and then forgetting it.
+ unsafe {
+ let start_ptr = arena.alloc_raw_slice(len);
+ self.as_slice().as_ptr().copy_to_nonoverlapping(start_ptr, len);
+ mem::forget(self);
+ slice::from_raw_parts_mut(start_ptr, len)
+ }
+ }
+}
+
+impl<T> IterExt<T> for Vec<T> {
+ #[inline]
+ fn alloc_from_iter(mut self, arena: &TypedArena<T>) -> &mut [T] {
+ let len = self.len();
+ if len == 0 {
+ return &mut [];
+ }
+ // Move the content to the arena by copying and then forgetting it.
+ unsafe {
+ let start_ptr = arena.alloc_raw_slice(len);
+ self.as_ptr().copy_to_nonoverlapping(start_ptr, len);
+ self.set_len(0);
+ slice::from_raw_parts_mut(start_ptr, len)
+ }
+ }
+}
+
+impl<A: smallvec::Array> IterExt<A::Item> for SmallVec<A> {
+ #[inline]
+ fn alloc_from_iter(mut self, arena: &TypedArena<A::Item>) -> &mut [A::Item] {
+ let len = self.len();
+ if len == 0 {
+ return &mut [];
+ }
+ // Move the content to the arena by copying and then forgetting it.
+ unsafe {
+ let start_ptr = arena.alloc_raw_slice(len);
+ self.as_ptr().copy_to_nonoverlapping(start_ptr, len);
+ self.set_len(0);
+ slice::from_raw_parts_mut(start_ptr, len)
+ }
+ }
+}
+
+impl<T> TypedArena<T> {
+ /// Allocates an object in the `TypedArena`, returning a reference to it.
+ #[inline]
+ pub fn alloc(&self, object: T) -> &mut T {
+ if self.ptr == self.end {
+ self.grow(1)
+ }
+
+ unsafe {
+ if mem::size_of::<T>() == 0 {
+ self.ptr.set((self.ptr.get() as *mut u8).wrapping_offset(1) as *mut T);
+ let ptr = ptr::NonNull::<T>::dangling().as_ptr();
+ // Don't drop the object. This `write` is equivalent to `forget`.
+ ptr::write(ptr, object);
+ &mut *ptr
+ } else {
+ let ptr = self.ptr.get();
+ // Advance the pointer.
+ self.ptr.set(self.ptr.get().offset(1));
+ // Write into uninitialized memory.
+ ptr::write(ptr, object);
+ &mut *ptr
+ }
+ }
+ }
+
+ #[inline]
+ fn can_allocate(&self, additional: usize) -> bool {
+ // FIXME: this should *likely* use `offset_from`, but more
+ // investigation is needed (including running tests in miri).
+ let available_bytes = self.end.get().addr() - self.ptr.get().addr();
+ let additional_bytes = additional.checked_mul(mem::size_of::<T>()).unwrap();
+ available_bytes >= additional_bytes
+ }
+
+ /// Ensures there's enough space in the current chunk to fit `len` objects.
+ #[inline]
+ fn ensure_capacity(&self, additional: usize) {
+ if !self.can_allocate(additional) {
+ self.grow(additional);
+ debug_assert!(self.can_allocate(additional));
+ }
+ }
+
+ #[inline]
+ unsafe fn alloc_raw_slice(&self, len: usize) -> *mut T {
+ assert!(mem::size_of::<T>() != 0);
+ assert!(len != 0);
+
+ self.ensure_capacity(len);
+
+ let start_ptr = self.ptr.get();
+ self.ptr.set(start_ptr.add(len));
+ start_ptr
+ }
+
+ #[inline]
+ pub fn alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
+ assert!(mem::size_of::<T>() != 0);
+ iter.alloc_from_iter(self)
+ }
+
+ /// Grows the arena.
+ #[inline(never)]
+ #[cold]
+ fn grow(&self, additional: usize) {
+ unsafe {
+ // We need the element size to convert chunk sizes (ranging from
+ // PAGE to HUGE_PAGE bytes) to element counts.
+ let elem_size = cmp::max(1, mem::size_of::<T>());
+ let mut chunks = self.chunks.borrow_mut();
+ let mut new_cap;
+ if let Some(last_chunk) = chunks.last_mut() {
+ // If a type is `!needs_drop`, we don't need to keep track of how many elements
+ // the chunk stores - the field will be ignored anyway.
+ if mem::needs_drop::<T>() {
+ // FIXME: this should *likely* use `offset_from`, but more
+ // investigation is needed (including running tests in miri).
+ let used_bytes = self.ptr.get().addr() - last_chunk.start().addr();
+ last_chunk.entries = used_bytes / mem::size_of::<T>();
+ }
+
+ // If the previous chunk's len is less than HUGE_PAGE
+ // bytes, then this chunk will be least double the previous
+ // chunk's size.
+ new_cap = (*last_chunk.storage.as_ptr()).len().min(HUGE_PAGE / elem_size / 2);
+ new_cap *= 2;
+ } else {
+ new_cap = PAGE / elem_size;
+ }
+ // Also ensure that this chunk can fit `additional`.
+ new_cap = cmp::max(additional, new_cap);
+
+ let mut chunk = ArenaChunk::<T>::new(new_cap);
+ self.ptr.set(chunk.start());
+ self.end.set(chunk.end());
+ chunks.push(chunk);
+ }
+ }
+
+ // Drops the contents of the last chunk. The last chunk is partially empty, unlike all other
+ // chunks.
+ fn clear_last_chunk(&self, last_chunk: &mut ArenaChunk<T>) {
+ // Determine how much was filled.
+ let start = last_chunk.start().addr();
+ // We obtain the value of the pointer to the first uninitialized element.
+ let end = self.ptr.get().addr();
+ // We then calculate the number of elements to be dropped in the last chunk,
+ // which is the filled area's length.
+ let diff = if mem::size_of::<T>() == 0 {
+ // `T` is ZST. It can't have a drop flag, so the value here doesn't matter. We get
+ // the number of zero-sized values in the last and only chunk, just out of caution.
+ // Recall that `end` was incremented for each allocated value.
+ end - start
+ } else {
+ // FIXME: this should *likely* use `offset_from`, but more
+ // investigation is needed (including running tests in miri).
+ (end - start) / mem::size_of::<T>()
+ };
+ // Pass that to the `destroy` method.
+ unsafe {
+ last_chunk.destroy(diff);
+ }
+ // Reset the chunk.
+ self.ptr.set(last_chunk.start());
+ }
+}
+
+unsafe impl<#[may_dangle] T> Drop for TypedArena<T> {
+ fn drop(&mut self) {
+ unsafe {
+ // Determine how much was filled.
+ let mut chunks_borrow = self.chunks.borrow_mut();
+ if let Some(mut last_chunk) = chunks_borrow.pop() {
+ // Drop the contents of the last chunk.
+ self.clear_last_chunk(&mut last_chunk);
+ // The last chunk will be dropped. Destroy all other chunks.
+ for chunk in chunks_borrow.iter_mut() {
+ chunk.destroy(chunk.entries);
+ }
+ }
+ // Box handles deallocation of `last_chunk` and `self.chunks`.
+ }
+ }
+}
+
+unsafe impl<T: Send> Send for TypedArena<T> {}
+
+/// An arena that can hold objects of multiple different types that impl `Copy`
+/// and/or satisfy `!mem::needs_drop`.
+pub struct DroplessArena {
+ /// A pointer to the start of the free space.
+ start: Cell<*mut u8>,
+
+ /// A pointer to the end of free space.
+ ///
+ /// The allocation proceeds downwards from the end of the chunk towards the
+ /// start. (This is slightly simpler and faster than allocating upwards,
+ /// see <https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html>.)
+ /// When this pointer crosses the start pointer, a new chunk is allocated.
+ end: Cell<*mut u8>,
+
+ /// A vector of arena chunks.
+ chunks: RefCell<Vec<ArenaChunk>>,
+}
+
+unsafe impl Send for DroplessArena {}
+
+impl Default for DroplessArena {
+ #[inline]
+ fn default() -> DroplessArena {
+ DroplessArena {
+ start: Cell::new(ptr::null_mut()),
+ end: Cell::new(ptr::null_mut()),
+ chunks: Default::default(),
+ }
+ }
+}
+
+impl DroplessArena {
+ #[inline(never)]
+ #[cold]
+ fn grow(&self, additional: usize) {
+ unsafe {
+ let mut chunks = self.chunks.borrow_mut();
+ let mut new_cap;
+ if let Some(last_chunk) = chunks.last_mut() {
+ // There is no need to update `last_chunk.entries` because that
+ // field isn't used by `DroplessArena`.
+
+ // If the previous chunk's len is less than HUGE_PAGE
+ // bytes, then this chunk will be least double the previous
+ // chunk's size.
+ new_cap = (*last_chunk.storage.as_ptr()).len().min(HUGE_PAGE / 2);
+ new_cap *= 2;
+ } else {
+ new_cap = PAGE;
+ }
+ // Also ensure that this chunk can fit `additional`.
+ new_cap = cmp::max(additional, new_cap);
+
+ let mut chunk = ArenaChunk::new(new_cap);
+ self.start.set(chunk.start());
+ self.end.set(chunk.end());
+ chunks.push(chunk);
+ }
+ }
+
+ /// Allocates a byte slice with specified layout from the current memory
+ /// chunk. Returns `None` if there is no free space left to satisfy the
+ /// request.
+ #[inline]
+ fn alloc_raw_without_grow(&self, layout: Layout) -> Option<*mut u8> {
+ let start = self.start.get().addr();
+ let old_end = self.end.get();
+ let end = old_end.addr();
+
+ let align = layout.align();
+ let bytes = layout.size();
+
+ let new_end = end.checked_sub(bytes)? & !(align - 1);
+ if start <= new_end {
+ let new_end = old_end.with_addr(new_end);
+ self.end.set(new_end);
+ Some(new_end)
+ } else {
+ None
+ }
+ }
+
+ #[inline]
+ pub fn alloc_raw(&self, layout: Layout) -> *mut u8 {
+ assert!(layout.size() != 0);
+ loop {
+ if let Some(a) = self.alloc_raw_without_grow(layout) {
+ break a;
+ }
+ // No free space left. Allocate a new chunk to satisfy the request.
+ // On failure the grow will panic or abort.
+ self.grow(layout.size());
+ }
+ }
+
+ #[inline]
+ pub fn alloc<T>(&self, object: T) -> &mut T {
+ assert!(!mem::needs_drop::<T>());
+
+ let mem = self.alloc_raw(Layout::for_value::<T>(&object)) as *mut T;
+
+ unsafe {
+ // Write into uninitialized memory.
+ ptr::write(mem, object);
+ &mut *mem
+ }
+ }
+
+ /// Allocates a slice of objects that are copied into the `DroplessArena`, returning a mutable
+ /// reference to it. Will panic if passed a zero-sized type.
+ ///
+ /// Panics:
+ ///
+ /// - Zero-sized types
+ /// - Zero-length slices
+ #[inline]
+ pub fn alloc_slice<T>(&self, slice: &[T]) -> &mut [T]
+ where
+ T: Copy,
+ {
+ assert!(!mem::needs_drop::<T>());
+ assert!(mem::size_of::<T>() != 0);
+ assert!(!slice.is_empty());
+
+ let mem = self.alloc_raw(Layout::for_value::<[T]>(slice)) as *mut T;
+
+ unsafe {
+ mem.copy_from_nonoverlapping(slice.as_ptr(), slice.len());
+ slice::from_raw_parts_mut(mem, slice.len())
+ }
+ }
+
+ #[inline]
+ unsafe fn write_from_iter<T, I: Iterator<Item = T>>(
+ &self,
+ mut iter: I,
+ len: usize,
+ mem: *mut T,
+ ) -> &mut [T] {
+ let mut i = 0;
+ // Use a manual loop since LLVM manages to optimize it better for
+ // slice iterators
+ loop {
+ let value = iter.next();
+ if i >= len || value.is_none() {
+ // We only return as many items as the iterator gave us, even
+ // though it was supposed to give us `len`
+ return slice::from_raw_parts_mut(mem, i);
+ }
+ ptr::write(mem.add(i), value.unwrap());
+ i += 1;
+ }
+ }
+
+ #[inline]
+ pub fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
+ let iter = iter.into_iter();
+ assert!(mem::size_of::<T>() != 0);
+ assert!(!mem::needs_drop::<T>());
+
+ let size_hint = iter.size_hint();
+
+ match size_hint {
+ (min, Some(max)) if min == max => {
+ // We know the exact number of elements the iterator will produce here
+ let len = min;
+
+ if len == 0 {
+ return &mut [];
+ }
+
+ let mem = self.alloc_raw(Layout::array::<T>(len).unwrap()) as *mut T;
+ unsafe { self.write_from_iter(iter, len, mem) }
+ }
+ (_, _) => {
+ cold_path(move || -> &mut [T] {
+ let mut vec: SmallVec<[_; 8]> = iter.collect();
+ if vec.is_empty() {
+ return &mut [];
+ }
+ // Move the content to the arena by copying it and then forgetting
+ // the content of the SmallVec
+ unsafe {
+ let len = vec.len();
+ let start_ptr =
+ self.alloc_raw(Layout::for_value::<[T]>(vec.as_slice())) as *mut T;
+ vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
+ vec.set_len(0);
+ slice::from_raw_parts_mut(start_ptr, len)
+ }
+ })
+ }
+ }
+ }
+}
+
+/// Declare an `Arena` containing one dropless arena and many typed arenas (the
+/// types of the typed arenas are specified by the arguments).
+///
+/// There are three cases of interest.
+/// - Types that are `Copy`: these need not be specified in the arguments. They
+/// will use the `DroplessArena`.
+/// - Types that are `!Copy` and `!Drop`: these must be specified in the
+/// arguments. An empty `TypedArena` will be created for each one, but the
+/// `DroplessArena` will always be used and the `TypedArena` will stay empty.
+/// This is odd but harmless, because an empty arena allocates no memory.
+/// - Types that are `!Copy` and `Drop`: these must be specified in the
+/// arguments. The `TypedArena` will be used for them.
+///
+#[rustc_macro_transparency = "semitransparent"]
+pub macro declare_arena([$($a:tt $name:ident: $ty:ty,)*]) {
+ #[derive(Default)]
+ pub struct Arena<'tcx> {
+ pub dropless: $crate::DroplessArena,
+ $($name: $crate::TypedArena<$ty>,)*
+ }
+
+ pub trait ArenaAllocatable<'tcx, C = rustc_arena::IsNotCopy>: Sized {
+ fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self;
+ fn allocate_from_iter<'a>(
+ arena: &'a Arena<'tcx>,
+ iter: impl ::std::iter::IntoIterator<Item = Self>,
+ ) -> &'a mut [Self];
+ }
+
+ // Any type that impls `Copy` can be arena-allocated in the `DroplessArena`.
+ impl<'tcx, T: Copy> ArenaAllocatable<'tcx, rustc_arena::IsCopy> for T {
+ #[inline]
+ fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self {
+ arena.dropless.alloc(self)
+ }
+ #[inline]
+ fn allocate_from_iter<'a>(
+ arena: &'a Arena<'tcx>,
+ iter: impl ::std::iter::IntoIterator<Item = Self>,
+ ) -> &'a mut [Self] {
+ arena.dropless.alloc_from_iter(iter)
+ }
+ }
+ $(
+ impl<'tcx> ArenaAllocatable<'tcx, rustc_arena::IsNotCopy> for $ty {
+ #[inline]
+ fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self {
+ if !::std::mem::needs_drop::<Self>() {
+ arena.dropless.alloc(self)
+ } else {
+ arena.$name.alloc(self)
+ }
+ }
+
+ #[inline]
+ fn allocate_from_iter<'a>(
+ arena: &'a Arena<'tcx>,
+ iter: impl ::std::iter::IntoIterator<Item = Self>,
+ ) -> &'a mut [Self] {
+ if !::std::mem::needs_drop::<Self>() {
+ arena.dropless.alloc_from_iter(iter)
+ } else {
+ arena.$name.alloc_from_iter(iter)
+ }
+ }
+ }
+ )*
+
+ impl<'tcx> Arena<'tcx> {
+ #[inline]
+ pub fn alloc<T: ArenaAllocatable<'tcx, C>, C>(&self, value: T) -> &mut T {
+ value.allocate_on(self)
+ }
+
+ // Any type that impls `Copy` can have slices be arena-allocated in the `DroplessArena`.
+ #[inline]
+ pub fn alloc_slice<T: ::std::marker::Copy>(&self, value: &[T]) -> &mut [T] {
+ if value.is_empty() {
+ return &mut [];
+ }
+ self.dropless.alloc_slice(value)
+ }
+
+ pub fn alloc_from_iter<'a, T: ArenaAllocatable<'tcx, C>, C>(
+ &'a self,
+ iter: impl ::std::iter::IntoIterator<Item = T>,
+ ) -> &'a mut [T] {
+ T::allocate_from_iter(self, iter)
+ }
+ }
+}
+
+// Marker types that let us give different behaviour for arenas allocating
+// `Copy` types vs `!Copy` types.
+pub struct IsCopy;
+pub struct IsNotCopy;
+
+#[cfg(test)]
+mod tests;