summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_codegen_ssa/src/traits/builder.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_codegen_ssa/src/traits/builder.rs')
-rw-r--r--compiler/rustc_codegen_ssa/src/traits/builder.rs157
1 files changed, 3 insertions, 154 deletions
diff --git a/compiler/rustc_codegen_ssa/src/traits/builder.rs b/compiler/rustc_codegen_ssa/src/traits/builder.rs
index 9f49749bb..10cf8948b 100644
--- a/compiler/rustc_codegen_ssa/src/traits/builder.rs
+++ b/compiler/rustc_codegen_ssa/src/traits/builder.rs
@@ -1,6 +1,5 @@
use super::abi::AbiBuilderMethods;
use super::asm::AsmBuilderMethods;
-use super::consts::ConstMethods;
use super::coverageinfo::CoverageInfoBuilderMethods;
use super::debuginfo::DebugInfoBuilderMethods;
use super::intrinsic::IntrinsicCallMethods;
@@ -15,7 +14,6 @@ use crate::mir::operand::OperandRef;
use crate::mir::place::PlaceRef;
use crate::MemFlags;
-use rustc_apfloat::{ieee, Float, Round, Status};
use rustc_middle::ty::layout::{HasParamEnv, TyAndLayout};
use rustc_middle::ty::Ty;
use rustc_span::Span;
@@ -188,8 +186,8 @@ pub trait BuilderMethods<'a, 'tcx>:
fn trunc(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
fn sext(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
- fn fptoui_sat(&mut self, val: Self::Value, dest_ty: Self::Type) -> Option<Self::Value>;
- fn fptosi_sat(&mut self, val: Self::Value, dest_ty: Self::Type) -> Option<Self::Value>;
+ fn fptoui_sat(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
+ fn fptosi_sat(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
fn fptoui(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
fn fptosi(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
fn uitofp(&mut self, val: Self::Value, dest_ty: Self::Type) -> Self::Value;
@@ -223,156 +221,7 @@ pub trait BuilderMethods<'a, 'tcx>:
return if signed { self.fptosi(x, dest_ty) } else { self.fptoui(x, dest_ty) };
}
- let try_sat_result =
- if signed { self.fptosi_sat(x, dest_ty) } else { self.fptoui_sat(x, dest_ty) };
- if let Some(try_sat_result) = try_sat_result {
- return try_sat_result;
- }
-
- let int_width = self.cx().int_width(int_ty);
- let float_width = self.cx().float_width(float_ty);
- // LLVM's fpto[su]i returns undef when the input x is infinite, NaN, or does not fit into the
- // destination integer type after rounding towards zero. This `undef` value can cause UB in
- // safe code (see issue #10184), so we implement a saturating conversion on top of it:
- // Semantically, the mathematical value of the input is rounded towards zero to the next
- // mathematical integer, and then the result is clamped into the range of the destination
- // integer type. Positive and negative infinity are mapped to the maximum and minimum value of
- // the destination integer type. NaN is mapped to 0.
- //
- // Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to
- // a value representable in int_ty.
- // They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits.
- // Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two.
- // int_ty::MIN, however, is either zero or a negative power of two and is thus exactly
- // representable. Note that this only works if float_ty's exponent range is sufficiently large.
- // f16 or 256 bit integers would break this property. Right now the smallest float type is f32
- // with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127.
- // On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because
- // we're rounding towards zero, we just get float_ty::MAX (which is always an integer).
- // This already happens today with u128::MAX = 2^128 - 1 > f32::MAX.
- let int_max = |signed: bool, int_width: u64| -> u128 {
- let shift_amount = 128 - int_width;
- if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount }
- };
- let int_min = |signed: bool, int_width: u64| -> i128 {
- if signed { i128::MIN >> (128 - int_width) } else { 0 }
- };
-
- let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) {
- let rounded_min =
- ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero);
- assert_eq!(rounded_min.status, Status::OK);
- let rounded_max =
- ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero);
- assert!(rounded_max.value.is_finite());
- (rounded_min.value.to_bits(), rounded_max.value.to_bits())
- };
- let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) {
- let rounded_min =
- ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero);
- assert_eq!(rounded_min.status, Status::OK);
- let rounded_max =
- ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero);
- assert!(rounded_max.value.is_finite());
- (rounded_min.value.to_bits(), rounded_max.value.to_bits())
- };
- // To implement saturation, we perform the following steps:
- //
- // 1. Cast x to an integer with fpto[su]i. This may result in undef.
- // 2. Compare x to f_min and f_max, and use the comparison results to select:
- // a) int_ty::MIN if x < f_min or x is NaN
- // b) int_ty::MAX if x > f_max
- // c) the result of fpto[su]i otherwise
- // 3. If x is NaN, return 0.0, otherwise return the result of step 2.
- //
- // This avoids resulting undef because values in range [f_min, f_max] by definition fit into the
- // destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of
- // undef does not introduce any non-determinism either.
- // More importantly, the above procedure correctly implements saturating conversion.
- // Proof (sketch):
- // If x is NaN, 0 is returned by definition.
- // Otherwise, x is finite or infinite and thus can be compared with f_min and f_max.
- // This yields three cases to consider:
- // (1) if x in [f_min, f_max], the result of fpto[su]i is returned, which agrees with
- // saturating conversion for inputs in that range.
- // (2) if x > f_max, then x is larger than int_ty::MAX. This holds even if f_max is rounded
- // (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger
- // than int_ty::MAX. Because x is larger than int_ty::MAX, the return value of int_ty::MAX
- // is correct.
- // (3) if x < f_min, then x is smaller than int_ty::MIN. As shown earlier, f_min exactly equals
- // int_ty::MIN and therefore the return value of int_ty::MIN is correct.
- // QED.
-
- let float_bits_to_llval = |bx: &mut Self, bits| {
- let bits_llval = match float_width {
- 32 => bx.cx().const_u32(bits as u32),
- 64 => bx.cx().const_u64(bits as u64),
- n => bug!("unsupported float width {}", n),
- };
- bx.bitcast(bits_llval, float_ty)
- };
- let (f_min, f_max) = match float_width {
- 32 => compute_clamp_bounds_single(signed, int_width),
- 64 => compute_clamp_bounds_double(signed, int_width),
- n => bug!("unsupported float width {}", n),
- };
- let f_min = float_bits_to_llval(self, f_min);
- let f_max = float_bits_to_llval(self, f_max);
- let int_max = self.cx().const_uint_big(int_ty, int_max(signed, int_width));
- let int_min = self.cx().const_uint_big(int_ty, int_min(signed, int_width) as u128);
- let zero = self.cx().const_uint(int_ty, 0);
-
- // If we're working with vectors, constants must be "splatted": the constant is duplicated
- // into each lane of the vector. The algorithm stays the same, we are just using the
- // same constant across all lanes.
- let maybe_splat = |bx: &mut Self, val| {
- if bx.cx().type_kind(dest_ty) == TypeKind::Vector {
- bx.vector_splat(bx.vector_length(dest_ty), val)
- } else {
- val
- }
- };
- let f_min = maybe_splat(self, f_min);
- let f_max = maybe_splat(self, f_max);
- let int_max = maybe_splat(self, int_max);
- let int_min = maybe_splat(self, int_min);
- let zero = maybe_splat(self, zero);
-
- // Step 1 ...
- let fptosui_result = if signed { self.fptosi(x, dest_ty) } else { self.fptoui(x, dest_ty) };
- let less_or_nan = self.fcmp(RealPredicate::RealULT, x, f_min);
- let greater = self.fcmp(RealPredicate::RealOGT, x, f_max);
-
- // Step 2: We use two comparisons and two selects, with %s1 being the
- // result:
- // %less_or_nan = fcmp ult %x, %f_min
- // %greater = fcmp olt %x, %f_max
- // %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result
- // %s1 = select %greater, int_ty::MAX, %s0
- // Note that %less_or_nan uses an *unordered* comparison. This
- // comparison is true if the operands are not comparable (i.e., if x is
- // NaN). The unordered comparison ensures that s1 becomes int_ty::MIN if
- // x is NaN.
- //
- // Performance note: Unordered comparison can be lowered to a "flipped"
- // comparison and a negation, and the negation can be merged into the
- // select. Therefore, it not necessarily any more expensive than an
- // ordered ("normal") comparison. Whether these optimizations will be
- // performed is ultimately up to the backend, but at least x86 does
- // perform them.
- let s0 = self.select(less_or_nan, int_min, fptosui_result);
- let s1 = self.select(greater, int_max, s0);
-
- // Step 3: NaN replacement.
- // For unsigned types, the above step already yielded int_ty::MIN == 0 if x is NaN.
- // Therefore we only need to execute this step for signed integer types.
- if signed {
- // LLVM has no isNaN predicate, so we use (x == x) instead
- let cmp = self.fcmp(RealPredicate::RealOEQ, x, x);
- self.select(cmp, s1, zero)
- } else {
- s1
- }
+ if signed { self.fptosi_sat(x, dest_ty) } else { self.fptoui_sat(x, dest_ty) }
}
fn icmp(&mut self, op: IntPredicate, lhs: Self::Value, rhs: Self::Value) -> Self::Value;