summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_const_eval/src/transform/check_consts/check.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_const_eval/src/transform/check_consts/check.rs')
-rw-r--r--compiler/rustc_const_eval/src/transform/check_consts/check.rs1032
1 files changed, 1032 insertions, 0 deletions
diff --git a/compiler/rustc_const_eval/src/transform/check_consts/check.rs b/compiler/rustc_const_eval/src/transform/check_consts/check.rs
new file mode 100644
index 000000000..0adb88a18
--- /dev/null
+++ b/compiler/rustc_const_eval/src/transform/check_consts/check.rs
@@ -0,0 +1,1032 @@
+//! The `Visitor` responsible for actually checking a `mir::Body` for invalid operations.
+
+use rustc_errors::{Diagnostic, ErrorGuaranteed};
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_index::bit_set::BitSet;
+use rustc_infer::infer::TyCtxtInferExt;
+use rustc_infer::traits::{ImplSource, Obligation, ObligationCause};
+use rustc_middle::mir::visit::{MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor};
+use rustc_middle::mir::*;
+use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts};
+use rustc_middle::ty::{self, adjustment::PointerCast, Instance, InstanceDef, Ty, TyCtxt};
+use rustc_middle::ty::{Binder, TraitPredicate, TraitRef, TypeVisitable};
+use rustc_mir_dataflow::{self, Analysis};
+use rustc_span::{sym, Span, Symbol};
+use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
+use rustc_trait_selection::traits::SelectionContext;
+
+use std::mem;
+use std::ops::Deref;
+
+use super::ops::{self, NonConstOp, Status};
+use super::qualifs::{self, CustomEq, HasMutInterior, NeedsDrop, NeedsNonConstDrop};
+use super::resolver::FlowSensitiveAnalysis;
+use super::{ConstCx, Qualif};
+use crate::const_eval::is_unstable_const_fn;
+use crate::errors::UnstableInStable;
+
+type QualifResults<'mir, 'tcx, Q> =
+ rustc_mir_dataflow::ResultsCursor<'mir, 'tcx, FlowSensitiveAnalysis<'mir, 'mir, 'tcx, Q>>;
+
+#[derive(Default)]
+pub struct Qualifs<'mir, 'tcx> {
+ has_mut_interior: Option<QualifResults<'mir, 'tcx, HasMutInterior>>,
+ needs_drop: Option<QualifResults<'mir, 'tcx, NeedsDrop>>,
+ needs_non_const_drop: Option<QualifResults<'mir, 'tcx, NeedsNonConstDrop>>,
+}
+
+impl<'mir, 'tcx> Qualifs<'mir, 'tcx> {
+ /// Returns `true` if `local` is `NeedsDrop` at the given `Location`.
+ ///
+ /// Only updates the cursor if absolutely necessary
+ pub fn needs_drop(
+ &mut self,
+ ccx: &'mir ConstCx<'mir, 'tcx>,
+ local: Local,
+ location: Location,
+ ) -> bool {
+ let ty = ccx.body.local_decls[local].ty;
+ // Peeking into opaque types causes cycles if the current function declares said opaque
+ // type. Thus we avoid short circuiting on the type and instead run the more expensive
+ // analysis that looks at the actual usage within this function
+ if !ty.has_opaque_types() && !NeedsDrop::in_any_value_of_ty(ccx, ty) {
+ return false;
+ }
+
+ let needs_drop = self.needs_drop.get_or_insert_with(|| {
+ let ConstCx { tcx, body, .. } = *ccx;
+
+ FlowSensitiveAnalysis::new(NeedsDrop, ccx)
+ .into_engine(tcx, &body)
+ .iterate_to_fixpoint()
+ .into_results_cursor(&body)
+ });
+
+ needs_drop.seek_before_primary_effect(location);
+ needs_drop.get().contains(local)
+ }
+
+ /// Returns `true` if `local` is `NeedsNonConstDrop` at the given `Location`.
+ ///
+ /// Only updates the cursor if absolutely necessary
+ pub fn needs_non_const_drop(
+ &mut self,
+ ccx: &'mir ConstCx<'mir, 'tcx>,
+ local: Local,
+ location: Location,
+ ) -> bool {
+ let ty = ccx.body.local_decls[local].ty;
+ if !NeedsNonConstDrop::in_any_value_of_ty(ccx, ty) {
+ return false;
+ }
+
+ let needs_non_const_drop = self.needs_non_const_drop.get_or_insert_with(|| {
+ let ConstCx { tcx, body, .. } = *ccx;
+
+ FlowSensitiveAnalysis::new(NeedsNonConstDrop, ccx)
+ .into_engine(tcx, &body)
+ .iterate_to_fixpoint()
+ .into_results_cursor(&body)
+ });
+
+ needs_non_const_drop.seek_before_primary_effect(location);
+ needs_non_const_drop.get().contains(local)
+ }
+
+ /// Returns `true` if `local` is `HasMutInterior` at the given `Location`.
+ ///
+ /// Only updates the cursor if absolutely necessary.
+ pub fn has_mut_interior(
+ &mut self,
+ ccx: &'mir ConstCx<'mir, 'tcx>,
+ local: Local,
+ location: Location,
+ ) -> bool {
+ let ty = ccx.body.local_decls[local].ty;
+ // Peeking into opaque types causes cycles if the current function declares said opaque
+ // type. Thus we avoid short circuiting on the type and instead run the more expensive
+ // analysis that looks at the actual usage within this function
+ if !ty.has_opaque_types() && !HasMutInterior::in_any_value_of_ty(ccx, ty) {
+ return false;
+ }
+
+ let has_mut_interior = self.has_mut_interior.get_or_insert_with(|| {
+ let ConstCx { tcx, body, .. } = *ccx;
+
+ FlowSensitiveAnalysis::new(HasMutInterior, ccx)
+ .into_engine(tcx, &body)
+ .iterate_to_fixpoint()
+ .into_results_cursor(&body)
+ });
+
+ has_mut_interior.seek_before_primary_effect(location);
+ has_mut_interior.get().contains(local)
+ }
+
+ fn in_return_place(
+ &mut self,
+ ccx: &'mir ConstCx<'mir, 'tcx>,
+ tainted_by_errors: Option<ErrorGuaranteed>,
+ ) -> ConstQualifs {
+ // Find the `Return` terminator if one exists.
+ //
+ // If no `Return` terminator exists, this MIR is divergent. Just return the conservative
+ // qualifs for the return type.
+ let return_block = ccx
+ .body
+ .basic_blocks()
+ .iter_enumerated()
+ .find(|(_, block)| matches!(block.terminator().kind, TerminatorKind::Return))
+ .map(|(bb, _)| bb);
+
+ let Some(return_block) = return_block else {
+ return qualifs::in_any_value_of_ty(ccx, ccx.body.return_ty(), tainted_by_errors);
+ };
+
+ let return_loc = ccx.body.terminator_loc(return_block);
+
+ let custom_eq = match ccx.const_kind() {
+ // We don't care whether a `const fn` returns a value that is not structurally
+ // matchable. Functions calls are opaque and always use type-based qualification, so
+ // this value should never be used.
+ hir::ConstContext::ConstFn => true,
+
+ // If we know that all values of the return type are structurally matchable, there's no
+ // need to run dataflow.
+ // Opaque types do not participate in const generics or pattern matching, so we can safely count them out.
+ _ if ccx.body.return_ty().has_opaque_types()
+ || !CustomEq::in_any_value_of_ty(ccx, ccx.body.return_ty()) =>
+ {
+ false
+ }
+
+ hir::ConstContext::Const | hir::ConstContext::Static(_) => {
+ let mut cursor = FlowSensitiveAnalysis::new(CustomEq, ccx)
+ .into_engine(ccx.tcx, &ccx.body)
+ .iterate_to_fixpoint()
+ .into_results_cursor(&ccx.body);
+
+ cursor.seek_after_primary_effect(return_loc);
+ cursor.get().contains(RETURN_PLACE)
+ }
+ };
+
+ ConstQualifs {
+ needs_drop: self.needs_drop(ccx, RETURN_PLACE, return_loc),
+ needs_non_const_drop: self.needs_non_const_drop(ccx, RETURN_PLACE, return_loc),
+ has_mut_interior: self.has_mut_interior(ccx, RETURN_PLACE, return_loc),
+ custom_eq,
+ tainted_by_errors,
+ }
+ }
+}
+
+pub struct Checker<'mir, 'tcx> {
+ ccx: &'mir ConstCx<'mir, 'tcx>,
+ qualifs: Qualifs<'mir, 'tcx>,
+
+ /// The span of the current statement.
+ span: Span,
+
+ /// A set that stores for each local whether it has a `StorageDead` for it somewhere.
+ local_has_storage_dead: Option<BitSet<Local>>,
+
+ error_emitted: Option<ErrorGuaranteed>,
+ secondary_errors: Vec<Diagnostic>,
+}
+
+impl<'mir, 'tcx> Deref for Checker<'mir, 'tcx> {
+ type Target = ConstCx<'mir, 'tcx>;
+
+ fn deref(&self) -> &Self::Target {
+ &self.ccx
+ }
+}
+
+impl<'mir, 'tcx> Checker<'mir, 'tcx> {
+ pub fn new(ccx: &'mir ConstCx<'mir, 'tcx>) -> Self {
+ Checker {
+ span: ccx.body.span,
+ ccx,
+ qualifs: Default::default(),
+ local_has_storage_dead: None,
+ error_emitted: None,
+ secondary_errors: Vec::new(),
+ }
+ }
+
+ pub fn check_body(&mut self) {
+ let ConstCx { tcx, body, .. } = *self.ccx;
+ let def_id = self.ccx.def_id();
+
+ // `async` functions cannot be `const fn`. This is checked during AST lowering, so there's
+ // no need to emit duplicate errors here.
+ if self.ccx.is_async() || body.generator.is_some() {
+ tcx.sess.delay_span_bug(body.span, "`async` functions cannot be `const fn`");
+ return;
+ }
+
+ // The local type and predicate checks are not free and only relevant for `const fn`s.
+ if self.const_kind() == hir::ConstContext::ConstFn {
+ for (idx, local) in body.local_decls.iter_enumerated() {
+ // Handle the return place below.
+ if idx == RETURN_PLACE || local.internal {
+ continue;
+ }
+
+ self.span = local.source_info.span;
+ self.check_local_or_return_ty(local.ty, idx);
+ }
+
+ // impl trait is gone in MIR, so check the return type of a const fn by its signature
+ // instead of the type of the return place.
+ self.span = body.local_decls[RETURN_PLACE].source_info.span;
+ let return_ty = tcx.fn_sig(def_id).output();
+ self.check_local_or_return_ty(return_ty.skip_binder(), RETURN_PLACE);
+ }
+
+ if !tcx.has_attr(def_id.to_def_id(), sym::rustc_do_not_const_check) {
+ self.visit_body(&body);
+ }
+
+ // If we got through const-checking without emitting any "primary" errors, emit any
+ // "secondary" errors if they occurred.
+ let secondary_errors = mem::take(&mut self.secondary_errors);
+ if self.error_emitted.is_none() {
+ for mut error in secondary_errors {
+ self.tcx.sess.diagnostic().emit_diagnostic(&mut error);
+ }
+ } else {
+ assert!(self.tcx.sess.has_errors().is_some());
+ }
+ }
+
+ fn local_has_storage_dead(&mut self, local: Local) -> bool {
+ let ccx = self.ccx;
+ self.local_has_storage_dead
+ .get_or_insert_with(|| {
+ struct StorageDeads {
+ locals: BitSet<Local>,
+ }
+ impl<'tcx> Visitor<'tcx> for StorageDeads {
+ fn visit_statement(&mut self, stmt: &Statement<'tcx>, _: Location) {
+ if let StatementKind::StorageDead(l) = stmt.kind {
+ self.locals.insert(l);
+ }
+ }
+ }
+ let mut v = StorageDeads { locals: BitSet::new_empty(ccx.body.local_decls.len()) };
+ v.visit_body(ccx.body);
+ v.locals
+ })
+ .contains(local)
+ }
+
+ pub fn qualifs_in_return_place(&mut self) -> ConstQualifs {
+ self.qualifs.in_return_place(self.ccx, self.error_emitted)
+ }
+
+ /// Emits an error if an expression cannot be evaluated in the current context.
+ pub fn check_op(&mut self, op: impl NonConstOp<'tcx>) {
+ self.check_op_spanned(op, self.span);
+ }
+
+ /// Emits an error at the given `span` if an expression cannot be evaluated in the current
+ /// context.
+ pub fn check_op_spanned<O: NonConstOp<'tcx>>(&mut self, op: O, span: Span) {
+ let gate = match op.status_in_item(self.ccx) {
+ Status::Allowed => return,
+
+ Status::Unstable(gate) if self.tcx.features().enabled(gate) => {
+ let unstable_in_stable = self.ccx.is_const_stable_const_fn()
+ && !super::rustc_allow_const_fn_unstable(self.tcx, self.def_id(), gate);
+ if unstable_in_stable {
+ emit_unstable_in_stable_error(self.ccx, span, gate);
+ }
+
+ return;
+ }
+
+ Status::Unstable(gate) => Some(gate),
+ Status::Forbidden => None,
+ };
+
+ if self.tcx.sess.opts.unstable_opts.unleash_the_miri_inside_of_you {
+ self.tcx.sess.miri_unleashed_feature(span, gate);
+ return;
+ }
+
+ let mut err = op.build_error(self.ccx, span);
+ assert!(err.is_error());
+
+ match op.importance() {
+ ops::DiagnosticImportance::Primary => {
+ let reported = err.emit();
+ self.error_emitted = Some(reported);
+ }
+
+ ops::DiagnosticImportance::Secondary => err.buffer(&mut self.secondary_errors),
+ }
+ }
+
+ fn check_static(&mut self, def_id: DefId, span: Span) {
+ if self.tcx.is_thread_local_static(def_id) {
+ self.tcx.sess.delay_span_bug(span, "tls access is checked in `Rvalue::ThreadLocalRef");
+ }
+ self.check_op_spanned(ops::StaticAccess, span)
+ }
+
+ fn check_local_or_return_ty(&mut self, ty: Ty<'tcx>, local: Local) {
+ let kind = self.body.local_kind(local);
+
+ for ty in ty.walk() {
+ let ty = match ty.unpack() {
+ GenericArgKind::Type(ty) => ty,
+
+ // No constraints on lifetimes or constants, except potentially
+ // constants' types, but `walk` will get to them as well.
+ GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => continue,
+ };
+
+ match *ty.kind() {
+ ty::Ref(_, _, hir::Mutability::Mut) => self.check_op(ops::ty::MutRef(kind)),
+ _ => {}
+ }
+ }
+ }
+
+ fn check_mut_borrow(&mut self, local: Local, kind: hir::BorrowKind) {
+ match self.const_kind() {
+ // In a const fn all borrows are transient or point to the places given via
+ // references in the arguments (so we already checked them with
+ // TransientMutBorrow/MutBorrow as appropriate).
+ // The borrow checker guarantees that no new non-transient borrows are created.
+ // NOTE: Once we have heap allocations during CTFE we need to figure out
+ // how to prevent `const fn` to create long-lived allocations that point
+ // to mutable memory.
+ hir::ConstContext::ConstFn => self.check_op(ops::TransientMutBorrow(kind)),
+ _ => {
+ // Locals with StorageDead do not live beyond the evaluation and can
+ // thus safely be borrowed without being able to be leaked to the final
+ // value of the constant.
+ if self.local_has_storage_dead(local) {
+ self.check_op(ops::TransientMutBorrow(kind));
+ } else {
+ self.check_op(ops::MutBorrow(kind));
+ }
+ }
+ }
+ }
+}
+
+impl<'tcx> Visitor<'tcx> for Checker<'_, 'tcx> {
+ fn visit_basic_block_data(&mut self, bb: BasicBlock, block: &BasicBlockData<'tcx>) {
+ trace!("visit_basic_block_data: bb={:?} is_cleanup={:?}", bb, block.is_cleanup);
+
+ // We don't const-check basic blocks on the cleanup path since we never unwind during
+ // const-eval: a panic causes an immediate compile error. In other words, cleanup blocks
+ // are unreachable during const-eval.
+ //
+ // We can't be more conservative (e.g., by const-checking cleanup blocks anyways) because
+ // locals that would never be dropped during normal execution are sometimes dropped during
+ // unwinding, which means backwards-incompatible live-drop errors.
+ if block.is_cleanup {
+ return;
+ }
+
+ self.super_basic_block_data(bb, block);
+ }
+
+ fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) {
+ trace!("visit_rvalue: rvalue={:?} location={:?}", rvalue, location);
+
+ // Special-case reborrows to be more like a copy of a reference.
+ match *rvalue {
+ Rvalue::Ref(_, kind, place) => {
+ if let Some(reborrowed_place_ref) = place_as_reborrow(self.tcx, self.body, place) {
+ let ctx = match kind {
+ BorrowKind::Shared => {
+ PlaceContext::NonMutatingUse(NonMutatingUseContext::SharedBorrow)
+ }
+ BorrowKind::Shallow => {
+ PlaceContext::NonMutatingUse(NonMutatingUseContext::ShallowBorrow)
+ }
+ BorrowKind::Unique => {
+ PlaceContext::NonMutatingUse(NonMutatingUseContext::UniqueBorrow)
+ }
+ BorrowKind::Mut { .. } => {
+ PlaceContext::MutatingUse(MutatingUseContext::Borrow)
+ }
+ };
+ self.visit_local(reborrowed_place_ref.local, ctx, location);
+ self.visit_projection(reborrowed_place_ref, ctx, location);
+ return;
+ }
+ }
+ Rvalue::AddressOf(mutbl, place) => {
+ if let Some(reborrowed_place_ref) = place_as_reborrow(self.tcx, self.body, place) {
+ let ctx = match mutbl {
+ Mutability::Not => {
+ PlaceContext::NonMutatingUse(NonMutatingUseContext::AddressOf)
+ }
+ Mutability::Mut => PlaceContext::MutatingUse(MutatingUseContext::AddressOf),
+ };
+ self.visit_local(reborrowed_place_ref.local, ctx, location);
+ self.visit_projection(reborrowed_place_ref, ctx, location);
+ return;
+ }
+ }
+ _ => {}
+ }
+
+ self.super_rvalue(rvalue, location);
+
+ match *rvalue {
+ Rvalue::ThreadLocalRef(_) => self.check_op(ops::ThreadLocalAccess),
+
+ Rvalue::Use(_)
+ | Rvalue::CopyForDeref(..)
+ | Rvalue::Repeat(..)
+ | Rvalue::Discriminant(..)
+ | Rvalue::Len(_)
+ | Rvalue::Aggregate(..) => {}
+
+ Rvalue::Ref(_, kind @ BorrowKind::Mut { .. }, ref place)
+ | Rvalue::Ref(_, kind @ BorrowKind::Unique, ref place) => {
+ let ty = place.ty(self.body, self.tcx).ty;
+ let is_allowed = match ty.kind() {
+ // Inside a `static mut`, `&mut [...]` is allowed.
+ ty::Array(..) | ty::Slice(_)
+ if self.const_kind() == hir::ConstContext::Static(hir::Mutability::Mut) =>
+ {
+ true
+ }
+
+ // FIXME(ecstaticmorse): We could allow `&mut []` inside a const context given
+ // that this is merely a ZST and it is already eligible for promotion.
+ // This may require an RFC?
+ /*
+ ty::Array(_, len) if len.try_eval_usize(cx.tcx, cx.param_env) == Some(0)
+ => true,
+ */
+ _ => false,
+ };
+
+ if !is_allowed {
+ if let BorrowKind::Mut { .. } = kind {
+ self.check_mut_borrow(place.local, hir::BorrowKind::Ref)
+ } else {
+ self.check_op(ops::CellBorrow);
+ }
+ }
+ }
+
+ Rvalue::AddressOf(Mutability::Mut, ref place) => {
+ self.check_mut_borrow(place.local, hir::BorrowKind::Raw)
+ }
+
+ Rvalue::Ref(_, BorrowKind::Shared | BorrowKind::Shallow, ref place)
+ | Rvalue::AddressOf(Mutability::Not, ref place) => {
+ let borrowed_place_has_mut_interior = qualifs::in_place::<HasMutInterior, _>(
+ &self.ccx,
+ &mut |local| self.qualifs.has_mut_interior(self.ccx, local, location),
+ place.as_ref(),
+ );
+
+ if borrowed_place_has_mut_interior {
+ match self.const_kind() {
+ // In a const fn all borrows are transient or point to the places given via
+ // references in the arguments (so we already checked them with
+ // TransientCellBorrow/CellBorrow as appropriate).
+ // The borrow checker guarantees that no new non-transient borrows are created.
+ // NOTE: Once we have heap allocations during CTFE we need to figure out
+ // how to prevent `const fn` to create long-lived allocations that point
+ // to (interior) mutable memory.
+ hir::ConstContext::ConstFn => self.check_op(ops::TransientCellBorrow),
+ _ => {
+ // Locals with StorageDead are definitely not part of the final constant value, and
+ // it is thus inherently safe to permit such locals to have their
+ // address taken as we can't end up with a reference to them in the
+ // final value.
+ // Note: This is only sound if every local that has a `StorageDead` has a
+ // `StorageDead` in every control flow path leading to a `return` terminator.
+ if self.local_has_storage_dead(place.local) {
+ self.check_op(ops::TransientCellBorrow);
+ } else {
+ self.check_op(ops::CellBorrow);
+ }
+ }
+ }
+ }
+ }
+
+ Rvalue::Cast(
+ CastKind::Pointer(
+ PointerCast::MutToConstPointer
+ | PointerCast::ArrayToPointer
+ | PointerCast::UnsafeFnPointer
+ | PointerCast::ClosureFnPointer(_)
+ | PointerCast::ReifyFnPointer,
+ ),
+ _,
+ _,
+ ) => {
+ // These are all okay; they only change the type, not the data.
+ }
+
+ Rvalue::Cast(CastKind::Pointer(PointerCast::Unsize), _, _) => {
+ // Unsizing is implemented for CTFE.
+ }
+
+ Rvalue::Cast(CastKind::PointerExposeAddress, _, _) => {
+ self.check_op(ops::RawPtrToIntCast);
+ }
+ Rvalue::Cast(CastKind::PointerFromExposedAddress, _, _) => {
+ // Since no pointer can ever get exposed (rejected above), this is easy to support.
+ }
+
+ Rvalue::Cast(CastKind::Misc, _, _) => {}
+
+ Rvalue::NullaryOp(NullOp::SizeOf | NullOp::AlignOf, _) => {}
+ Rvalue::ShallowInitBox(_, _) => {}
+
+ Rvalue::UnaryOp(_, ref operand) => {
+ let ty = operand.ty(self.body, self.tcx);
+ if is_int_bool_or_char(ty) {
+ // Int, bool, and char operations are fine.
+ } else if ty.is_floating_point() {
+ self.check_op(ops::FloatingPointOp);
+ } else {
+ span_bug!(self.span, "non-primitive type in `Rvalue::UnaryOp`: {:?}", ty);
+ }
+ }
+
+ Rvalue::BinaryOp(op, box (ref lhs, ref rhs))
+ | Rvalue::CheckedBinaryOp(op, box (ref lhs, ref rhs)) => {
+ let lhs_ty = lhs.ty(self.body, self.tcx);
+ let rhs_ty = rhs.ty(self.body, self.tcx);
+
+ if is_int_bool_or_char(lhs_ty) && is_int_bool_or_char(rhs_ty) {
+ // Int, bool, and char operations are fine.
+ } else if lhs_ty.is_fn_ptr() || lhs_ty.is_unsafe_ptr() {
+ assert_eq!(lhs_ty, rhs_ty);
+ assert!(
+ op == BinOp::Eq
+ || op == BinOp::Ne
+ || op == BinOp::Le
+ || op == BinOp::Lt
+ || op == BinOp::Ge
+ || op == BinOp::Gt
+ || op == BinOp::Offset
+ );
+
+ self.check_op(ops::RawPtrComparison);
+ } else if lhs_ty.is_floating_point() || rhs_ty.is_floating_point() {
+ self.check_op(ops::FloatingPointOp);
+ } else {
+ span_bug!(
+ self.span,
+ "non-primitive type in `Rvalue::BinaryOp`: {:?} ⚬ {:?}",
+ lhs_ty,
+ rhs_ty
+ );
+ }
+ }
+ }
+ }
+
+ fn visit_operand(&mut self, op: &Operand<'tcx>, location: Location) {
+ self.super_operand(op, location);
+ if let Operand::Constant(c) = op {
+ if let Some(def_id) = c.check_static_ptr(self.tcx) {
+ self.check_static(def_id, self.span);
+ }
+ }
+ }
+ fn visit_projection_elem(
+ &mut self,
+ place_local: Local,
+ proj_base: &[PlaceElem<'tcx>],
+ elem: PlaceElem<'tcx>,
+ context: PlaceContext,
+ location: Location,
+ ) {
+ trace!(
+ "visit_projection_elem: place_local={:?} proj_base={:?} elem={:?} \
+ context={:?} location={:?}",
+ place_local,
+ proj_base,
+ elem,
+ context,
+ location,
+ );
+
+ self.super_projection_elem(place_local, proj_base, elem, context, location);
+
+ match elem {
+ ProjectionElem::Deref => {
+ let base_ty = Place::ty_from(place_local, proj_base, self.body, self.tcx).ty;
+ if base_ty.is_unsafe_ptr() {
+ if proj_base.is_empty() {
+ let decl = &self.body.local_decls[place_local];
+ if let Some(box LocalInfo::StaticRef { def_id, .. }) = decl.local_info {
+ let span = decl.source_info.span;
+ self.check_static(def_id, span);
+ return;
+ }
+ }
+
+ // `*const T` is stable, `*mut T` is not
+ if !base_ty.is_mutable_ptr() {
+ return;
+ }
+
+ self.check_op(ops::RawMutPtrDeref);
+ }
+
+ if context.is_mutating_use() {
+ self.check_op(ops::MutDeref);
+ }
+ }
+
+ ProjectionElem::ConstantIndex { .. }
+ | ProjectionElem::Downcast(..)
+ | ProjectionElem::Subslice { .. }
+ | ProjectionElem::Field(..)
+ | ProjectionElem::Index(_) => {}
+ }
+ }
+
+ fn visit_source_info(&mut self, source_info: &SourceInfo) {
+ trace!("visit_source_info: source_info={:?}", source_info);
+ self.span = source_info.span;
+ }
+
+ fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
+ trace!("visit_statement: statement={:?} location={:?}", statement, location);
+
+ self.super_statement(statement, location);
+
+ match statement.kind {
+ StatementKind::Assign(..)
+ | StatementKind::SetDiscriminant { .. }
+ | StatementKind::Deinit(..)
+ | StatementKind::FakeRead(..)
+ | StatementKind::StorageLive(_)
+ | StatementKind::StorageDead(_)
+ | StatementKind::Retag { .. }
+ | StatementKind::AscribeUserType(..)
+ | StatementKind::Coverage(..)
+ | StatementKind::CopyNonOverlapping(..)
+ | StatementKind::Nop => {}
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
+ self.super_terminator(terminator, location);
+
+ match &terminator.kind {
+ TerminatorKind::Call { func, args, fn_span, from_hir_call, .. } => {
+ let ConstCx { tcx, body, param_env, .. } = *self.ccx;
+ let caller = self.def_id();
+
+ let fn_ty = func.ty(body, tcx);
+
+ let (mut callee, mut substs) = match *fn_ty.kind() {
+ ty::FnDef(def_id, substs) => (def_id, substs),
+
+ ty::FnPtr(_) => {
+ self.check_op(ops::FnCallIndirect);
+ return;
+ }
+ _ => {
+ span_bug!(terminator.source_info.span, "invalid callee of type {:?}", fn_ty)
+ }
+ };
+
+ // Attempting to call a trait method?
+ if let Some(trait_id) = tcx.trait_of_item(callee) {
+ trace!("attempting to call a trait method");
+ if !self.tcx.features().const_trait_impl {
+ self.check_op(ops::FnCallNonConst {
+ caller,
+ callee,
+ substs,
+ span: *fn_span,
+ from_hir_call: *from_hir_call,
+ });
+ return;
+ }
+
+ let trait_ref = TraitRef::from_method(tcx, trait_id, substs);
+ let poly_trait_pred = Binder::dummy(TraitPredicate {
+ trait_ref,
+ constness: ty::BoundConstness::ConstIfConst,
+ polarity: ty::ImplPolarity::Positive,
+ });
+ let obligation =
+ Obligation::new(ObligationCause::dummy(), param_env, poly_trait_pred);
+
+ let implsrc = tcx.infer_ctxt().enter(|infcx| {
+ let mut selcx = SelectionContext::new(&infcx);
+ selcx.select(&obligation)
+ });
+
+ match implsrc {
+ Ok(Some(ImplSource::Param(_, ty::BoundConstness::ConstIfConst))) => {
+ debug!(
+ "const_trait_impl: provided {:?} via where-clause in {:?}",
+ trait_ref, param_env
+ );
+ return;
+ }
+ Ok(Some(ImplSource::UserDefined(data))) => {
+ let callee_name = tcx.item_name(callee);
+ if let Some(&did) = tcx
+ .associated_item_def_ids(data.impl_def_id)
+ .iter()
+ .find(|did| tcx.item_name(**did) == callee_name)
+ {
+ // using internal substs is ok here, since this is only
+ // used for the `resolve` call below
+ substs = InternalSubsts::identity_for_item(tcx, did);
+ callee = did;
+ }
+
+ if let hir::Constness::NotConst = tcx.constness(data.impl_def_id) {
+ self.check_op(ops::FnCallNonConst {
+ caller,
+ callee,
+ substs,
+ span: *fn_span,
+ from_hir_call: *from_hir_call,
+ });
+ return;
+ }
+ }
+ _ if !tcx.is_const_fn_raw(callee) => {
+ // At this point, it is only legal when the caller is in a trait
+ // marked with #[const_trait], and the callee is in the same trait.
+ let mut nonconst_call_permission = false;
+ if let Some(callee_trait) = tcx.trait_of_item(callee)
+ && tcx.has_attr(callee_trait, sym::const_trait)
+ && Some(callee_trait) == tcx.trait_of_item(caller.to_def_id())
+ // Can only call methods when it's `<Self as TheTrait>::f`.
+ && tcx.types.self_param == substs.type_at(0)
+ {
+ nonconst_call_permission = true;
+ }
+
+ if !nonconst_call_permission {
+ let obligation = Obligation::new(
+ ObligationCause::dummy_with_span(*fn_span),
+ param_env,
+ tcx.mk_predicate(
+ poly_trait_pred.map_bound(ty::PredicateKind::Trait),
+ ),
+ );
+
+ // improve diagnostics by showing what failed. Our requirements are stricter this time
+ // as we are going to error again anyways.
+ tcx.infer_ctxt().enter(|infcx| {
+ if let Err(e) = implsrc {
+ infcx.report_selection_error(
+ obligation.clone(),
+ &obligation,
+ &e,
+ false,
+ );
+ }
+ });
+
+ self.check_op(ops::FnCallNonConst {
+ caller,
+ callee,
+ substs,
+ span: *fn_span,
+ from_hir_call: *from_hir_call,
+ });
+ return;
+ }
+ }
+ _ => {}
+ }
+
+ // Resolve a trait method call to its concrete implementation, which may be in a
+ // `const` trait impl.
+ let instance = Instance::resolve(tcx, param_env, callee, substs);
+ debug!("Resolving ({:?}) -> {:?}", callee, instance);
+ if let Ok(Some(func)) = instance {
+ if let InstanceDef::Item(def) = func.def {
+ callee = def.did;
+ }
+ }
+ }
+
+ // At this point, we are calling a function, `callee`, whose `DefId` is known...
+
+ // `begin_panic` and `panic_display` are generic functions that accept
+ // types other than str. Check to enforce that only str can be used in
+ // const-eval.
+
+ // const-eval of the `begin_panic` fn assumes the argument is `&str`
+ if Some(callee) == tcx.lang_items().begin_panic_fn() {
+ match args[0].ty(&self.ccx.body.local_decls, tcx).kind() {
+ ty::Ref(_, ty, _) if ty.is_str() => return,
+ _ => self.check_op(ops::PanicNonStr),
+ }
+ }
+
+ // const-eval of the `panic_display` fn assumes the argument is `&&str`
+ if Some(callee) == tcx.lang_items().panic_display() {
+ match args[0].ty(&self.ccx.body.local_decls, tcx).kind() {
+ ty::Ref(_, ty, _) if matches!(ty.kind(), ty::Ref(_, ty, _) if ty.is_str()) =>
+ {
+ return;
+ }
+ _ => self.check_op(ops::PanicNonStr),
+ }
+ }
+
+ if Some(callee) == tcx.lang_items().exchange_malloc_fn() {
+ self.check_op(ops::HeapAllocation);
+ return;
+ }
+
+ // `async` blocks get lowered to `std::future::from_generator(/* a closure */)`.
+ let is_async_block = Some(callee) == tcx.lang_items().from_generator_fn();
+ if is_async_block {
+ let kind = hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Block);
+ self.check_op(ops::Generator(kind));
+ return;
+ }
+
+ let is_intrinsic = tcx.is_intrinsic(callee);
+
+ if !tcx.is_const_fn_raw(callee) {
+ if !tcx.is_const_default_method(callee) {
+ // To get to here we must have already found a const impl for the
+ // trait, but for it to still be non-const can be that the impl is
+ // using default method bodies.
+ self.check_op(ops::FnCallNonConst {
+ caller,
+ callee,
+ substs,
+ span: *fn_span,
+ from_hir_call: *from_hir_call,
+ });
+ return;
+ }
+ }
+
+ // If the `const fn` we are trying to call is not const-stable, ensure that we have
+ // the proper feature gate enabled.
+ if let Some(gate) = is_unstable_const_fn(tcx, callee) {
+ trace!(?gate, "calling unstable const fn");
+ if self.span.allows_unstable(gate) {
+ return;
+ }
+
+ // Calling an unstable function *always* requires that the corresponding gate
+ // be enabled, even if the function has `#[rustc_allow_const_fn_unstable(the_gate)]`.
+ if !tcx.features().declared_lib_features.iter().any(|&(sym, _)| sym == gate) {
+ self.check_op(ops::FnCallUnstable(callee, Some(gate)));
+ return;
+ }
+
+ // If this crate is not using stability attributes, or the caller is not claiming to be a
+ // stable `const fn`, that is all that is required.
+ if !self.ccx.is_const_stable_const_fn() {
+ trace!("crate not using stability attributes or caller not stably const");
+ return;
+ }
+
+ // Otherwise, we are something const-stable calling a const-unstable fn.
+
+ if super::rustc_allow_const_fn_unstable(tcx, caller, gate) {
+ trace!("rustc_allow_const_fn_unstable gate active");
+ return;
+ }
+
+ self.check_op(ops::FnCallUnstable(callee, Some(gate)));
+ return;
+ }
+
+ // FIXME(ecstaticmorse); For compatibility, we consider `unstable` callees that
+ // have no `rustc_const_stable` attributes to be const-unstable as well. This
+ // should be fixed later.
+ let callee_is_unstable_unmarked = tcx.lookup_const_stability(callee).is_none()
+ && tcx.lookup_stability(callee).map_or(false, |s| s.is_unstable());
+ if callee_is_unstable_unmarked {
+ trace!("callee_is_unstable_unmarked");
+ // We do not use `const` modifiers for intrinsic "functions", as intrinsics are
+ // `extern` functions, and these have no way to get marked `const`. So instead we
+ // use `rustc_const_(un)stable` attributes to mean that the intrinsic is `const`
+ if self.ccx.is_const_stable_const_fn() || is_intrinsic {
+ self.check_op(ops::FnCallUnstable(callee, None));
+ return;
+ }
+ }
+ trace!("permitting call");
+ }
+
+ // Forbid all `Drop` terminators unless the place being dropped is a local with no
+ // projections that cannot be `NeedsNonConstDrop`.
+ TerminatorKind::Drop { place: dropped_place, .. }
+ | TerminatorKind::DropAndReplace { place: dropped_place, .. } => {
+ // If we are checking live drops after drop-elaboration, don't emit duplicate
+ // errors here.
+ if super::post_drop_elaboration::checking_enabled(self.ccx) {
+ return;
+ }
+
+ let mut err_span = self.span;
+ let ty_of_dropped_place = dropped_place.ty(self.body, self.tcx).ty;
+
+ let ty_needs_non_const_drop =
+ qualifs::NeedsNonConstDrop::in_any_value_of_ty(self.ccx, ty_of_dropped_place);
+
+ debug!(?ty_of_dropped_place, ?ty_needs_non_const_drop);
+
+ if !ty_needs_non_const_drop {
+ return;
+ }
+
+ let needs_non_const_drop = if let Some(local) = dropped_place.as_local() {
+ // Use the span where the local was declared as the span of the drop error.
+ err_span = self.body.local_decls[local].source_info.span;
+ self.qualifs.needs_non_const_drop(self.ccx, local, location)
+ } else {
+ true
+ };
+
+ if needs_non_const_drop {
+ self.check_op_spanned(
+ ops::LiveDrop { dropped_at: Some(terminator.source_info.span) },
+ err_span,
+ );
+ }
+ }
+
+ TerminatorKind::InlineAsm { .. } => self.check_op(ops::InlineAsm),
+
+ TerminatorKind::GeneratorDrop | TerminatorKind::Yield { .. } => {
+ self.check_op(ops::Generator(hir::GeneratorKind::Gen))
+ }
+
+ TerminatorKind::Abort => {
+ // Cleanup blocks are skipped for const checking (see `visit_basic_block_data`).
+ span_bug!(self.span, "`Abort` terminator outside of cleanup block")
+ }
+
+ TerminatorKind::Assert { .. }
+ | TerminatorKind::FalseEdge { .. }
+ | TerminatorKind::FalseUnwind { .. }
+ | TerminatorKind::Goto { .. }
+ | TerminatorKind::Resume
+ | TerminatorKind::Return
+ | TerminatorKind::SwitchInt { .. }
+ | TerminatorKind::Unreachable => {}
+ }
+ }
+}
+
+fn place_as_reborrow<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ body: &Body<'tcx>,
+ place: Place<'tcx>,
+) -> Option<PlaceRef<'tcx>> {
+ match place.as_ref().last_projection() {
+ Some((place_base, ProjectionElem::Deref)) => {
+ // A borrow of a `static` also looks like `&(*_1)` in the MIR, but `_1` is a `const`
+ // that points to the allocation for the static. Don't treat these as reborrows.
+ if body.local_decls[place_base.local].is_ref_to_static() {
+ None
+ } else {
+ // Ensure the type being derefed is a reference and not a raw pointer.
+ // This is sufficient to prevent an access to a `static mut` from being marked as a
+ // reborrow, even if the check above were to disappear.
+ let inner_ty = place_base.ty(body, tcx).ty;
+
+ if let ty::Ref(..) = inner_ty.kind() {
+ return Some(place_base);
+ } else {
+ return None;
+ }
+ }
+ }
+ _ => None,
+ }
+}
+
+fn is_int_bool_or_char(ty: Ty<'_>) -> bool {
+ ty.is_bool() || ty.is_integral() || ty.is_char()
+}
+
+fn emit_unstable_in_stable_error(ccx: &ConstCx<'_, '_>, span: Span, gate: Symbol) {
+ let attr_span = ccx.tcx.def_span(ccx.def_id()).shrink_to_lo();
+
+ ccx.tcx.sess.emit_err(UnstableInStable { gate: gate.to_string(), span, attr_span });
+}