summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_data_structures/src/owning_ref/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_data_structures/src/owning_ref/mod.rs')
-rw-r--r--compiler/rustc_data_structures/src/owning_ref/mod.rs1214
1 files changed, 1214 insertions, 0 deletions
diff --git a/compiler/rustc_data_structures/src/owning_ref/mod.rs b/compiler/rustc_data_structures/src/owning_ref/mod.rs
new file mode 100644
index 000000000..ed5e56618
--- /dev/null
+++ b/compiler/rustc_data_structures/src/owning_ref/mod.rs
@@ -0,0 +1,1214 @@
+#![warn(missing_docs)]
+
+/*!
+# An owning reference.
+
+This crate provides the _owning reference_ types `OwningRef` and `OwningRefMut`
+that enables it to bundle a reference together with the owner of the data it points to.
+This allows moving and dropping of an `OwningRef` without needing to recreate the reference.
+
+This can sometimes be useful because Rust borrowing rules normally prevent
+moving a type that has been moved from. For example, this kind of code gets rejected:
+
+```compile_fail,E0515
+fn return_owned_and_referenced<'a>() -> (Vec<u8>, &'a [u8]) {
+ let v = vec![1, 2, 3, 4];
+ let s = &v[1..3];
+ (v, s)
+}
+```
+
+Even though, from a memory-layout point of view, this can be entirely safe
+if the new location of the vector still lives longer than the lifetime `'a`
+of the reference because the backing allocation of the vector does not change.
+
+This library enables this safe usage by keeping the owner and the reference
+bundled together in a wrapper type that ensure that lifetime constraint:
+
+```
+# use rustc_data_structures::owning_ref::OwningRef;
+# fn main() {
+fn return_owned_and_referenced() -> OwningRef<Vec<u8>, [u8]> {
+ let v = vec![1, 2, 3, 4];
+ let or = OwningRef::new(v);
+ let or = or.map(|v| &v[1..3]);
+ or
+}
+# }
+```
+
+It works by requiring owner types to dereference to stable memory locations
+and preventing mutable access to root containers, which in practice requires heap allocation
+as provided by `Box<T>`, `Rc<T>`, etc.
+
+Also provided are typedefs for common owner type combinations,
+which allow for less verbose type signatures.
+For example, `BoxRef<T>` instead of `OwningRef<Box<T>, T>`.
+
+The crate also provides the more advanced `OwningHandle` type,
+which allows more freedom in bundling a dependent handle object
+along with the data it depends on, at the cost of some unsafe needed in the API.
+See the documentation around `OwningHandle` for more details.
+
+# Examples
+
+## Basics
+
+```
+use rustc_data_structures::owning_ref::BoxRef;
+
+fn main() {
+ // Create an array owned by a Box.
+ let arr = Box::new([1, 2, 3, 4]) as Box<[i32]>;
+
+ // Transfer into a BoxRef.
+ let arr: BoxRef<[i32]> = BoxRef::new(arr);
+ assert_eq!(&*arr, &[1, 2, 3, 4]);
+
+ // We can slice the array without losing ownership or changing type.
+ let arr: BoxRef<[i32]> = arr.map(|arr| &arr[1..3]);
+ assert_eq!(&*arr, &[2, 3]);
+
+ // Also works for Arc, Rc, String and Vec!
+}
+```
+
+## Caching a reference to a struct field
+
+```
+use rustc_data_structures::owning_ref::BoxRef;
+
+fn main() {
+ struct Foo {
+ tag: u32,
+ x: u16,
+ y: u16,
+ z: u16,
+ }
+ let foo = Foo { tag: 1, x: 100, y: 200, z: 300 };
+
+ let or = BoxRef::new(Box::new(foo)).map(|foo| {
+ match foo.tag {
+ 0 => &foo.x,
+ 1 => &foo.y,
+ 2 => &foo.z,
+ _ => panic!(),
+ }
+ });
+
+ assert_eq!(*or, 200);
+}
+```
+
+## Caching a reference to an entry in a vector
+
+```
+use rustc_data_structures::owning_ref::VecRef;
+
+fn main() {
+ let v = VecRef::new(vec![1, 2, 3, 4, 5]).map(|v| &v[3]);
+ assert_eq!(*v, 4);
+}
+```
+
+## Caching a subslice of a String
+
+```
+use rustc_data_structures::owning_ref::StringRef;
+
+fn main() {
+ let s = StringRef::new("hello world".to_owned())
+ .map(|s| s.split(' ').nth(1).unwrap());
+
+ assert_eq!(&*s, "world");
+}
+```
+
+## Reference counted slices that share ownership of the backing storage
+
+```
+use rustc_data_structures::owning_ref::RcRef;
+use std::rc::Rc;
+
+fn main() {
+ let rc: RcRef<[i32]> = RcRef::new(Rc::new([1, 2, 3, 4]) as Rc<[i32]>);
+ assert_eq!(&*rc, &[1, 2, 3, 4]);
+
+ let rc_a: RcRef<[i32]> = rc.clone().map(|s| &s[0..2]);
+ let rc_b = rc.clone().map(|s| &s[1..3]);
+ let rc_c = rc.clone().map(|s| &s[2..4]);
+ assert_eq!(&*rc_a, &[1, 2]);
+ assert_eq!(&*rc_b, &[2, 3]);
+ assert_eq!(&*rc_c, &[3, 4]);
+
+ let rc_c_a = rc_c.clone().map(|s| &s[1]);
+ assert_eq!(&*rc_c_a, &4);
+}
+```
+
+## Atomic reference counted slices that share ownership of the backing storage
+
+```
+use rustc_data_structures::owning_ref::ArcRef;
+use std::sync::Arc;
+
+fn main() {
+ use std::thread;
+
+ fn par_sum(rc: ArcRef<[i32]>) -> i32 {
+ if rc.len() == 0 {
+ return 0;
+ } else if rc.len() == 1 {
+ return rc[0];
+ }
+ let mid = rc.len() / 2;
+ let left = rc.clone().map(|s| &s[..mid]);
+ let right = rc.map(|s| &s[mid..]);
+
+ let left = thread::spawn(move || par_sum(left));
+ let right = thread::spawn(move || par_sum(right));
+
+ left.join().unwrap() + right.join().unwrap()
+ }
+
+ let rc: Arc<[i32]> = Arc::new([1, 2, 3, 4]);
+ let rc: ArcRef<[i32]> = rc.into();
+
+ assert_eq!(par_sum(rc), 10);
+}
+```
+
+## References into RAII locks
+
+```
+use rustc_data_structures::owning_ref::RefRef;
+use std::cell::{RefCell, Ref};
+
+fn main() {
+ let refcell = RefCell::new((1, 2, 3, 4));
+ // Also works with Mutex and RwLock
+
+ let refref = {
+ let refref = RefRef::new(refcell.borrow()).map(|x| &x.3);
+ assert_eq!(*refref, 4);
+
+ // We move the RAII lock and the reference to one of
+ // the subfields in the data it guards here:
+ refref
+ };
+
+ assert_eq!(*refref, 4);
+
+ drop(refref);
+
+ assert_eq!(*refcell.borrow(), (1, 2, 3, 4));
+}
+```
+
+## Mutable reference
+
+When the owned container implements `DerefMut`, it is also possible to make
+a _mutable owning reference_. (e.g., with `Box`, `RefMut`, `MutexGuard`)
+
+```
+use rustc_data_structures::owning_ref::RefMutRefMut;
+use std::cell::{RefCell, RefMut};
+
+fn main() {
+ let refcell = RefCell::new((1, 2, 3, 4));
+
+ let mut refmut_refmut = {
+ let mut refmut_refmut = RefMutRefMut::new(refcell.borrow_mut()).map_mut(|x| &mut x.3);
+ assert_eq!(*refmut_refmut, 4);
+ *refmut_refmut *= 2;
+
+ refmut_refmut
+ };
+
+ assert_eq!(*refmut_refmut, 8);
+ *refmut_refmut *= 2;
+
+ drop(refmut_refmut);
+
+ assert_eq!(*refcell.borrow(), (1, 2, 3, 16));
+}
+```
+*/
+
+pub use stable_deref_trait::{
+ CloneStableDeref as CloneStableAddress, StableDeref as StableAddress,
+};
+use std::mem;
+
+/// An owning reference.
+///
+/// This wraps an owner `O` and a reference `&T` pointing
+/// at something reachable from `O::Target` while keeping
+/// the ability to move `self` around.
+///
+/// The owner is usually a pointer that points at some base type.
+///
+/// For more details and examples, see the module and method docs.
+pub struct OwningRef<O, T: ?Sized> {
+ owner: O,
+ reference: *const T,
+}
+
+/// An mutable owning reference.
+///
+/// This wraps an owner `O` and a reference `&mut T` pointing
+/// at something reachable from `O::Target` while keeping
+/// the ability to move `self` around.
+///
+/// The owner is usually a pointer that points at some base type.
+///
+/// For more details and examples, see the module and method docs.
+pub struct OwningRefMut<O, T: ?Sized> {
+ owner: O,
+ reference: *mut T,
+}
+
+/// Helper trait for an erased concrete type an owner dereferences to.
+/// This is used in form of a trait object for keeping
+/// something around to (virtually) call the destructor.
+pub trait Erased {}
+impl<T> Erased for T {}
+
+/// Helper trait for erasing the concrete type of what an owner dereferences to,
+/// for example `Box<T> -> Box<Erased>`. This would be unneeded with
+/// higher kinded types support in the language.
+#[allow(unused_lifetimes)]
+pub unsafe trait IntoErased<'a> {
+ /// Owner with the dereference type substituted to `Erased`.
+ type Erased;
+ /// Performs the type erasure.
+ fn into_erased(self) -> Self::Erased;
+}
+
+/// Helper trait for erasing the concrete type of what an owner dereferences to,
+/// for example `Box<T> -> Box<Erased + Send>`. This would be unneeded with
+/// higher kinded types support in the language.
+#[allow(unused_lifetimes)]
+pub unsafe trait IntoErasedSend<'a> {
+ /// Owner with the dereference type substituted to `Erased + Send`.
+ type Erased: Send;
+ /// Performs the type erasure.
+ fn into_erased_send(self) -> Self::Erased;
+}
+
+/// Helper trait for erasing the concrete type of what an owner dereferences to,
+/// for example `Box<T> -> Box<Erased + Send + Sync>`. This would be unneeded with
+/// higher kinded types support in the language.
+#[allow(unused_lifetimes)]
+pub unsafe trait IntoErasedSendSync<'a> {
+ /// Owner with the dereference type substituted to `Erased + Send + Sync`.
+ type Erased: Send + Sync;
+ /// Performs the type erasure.
+ fn into_erased_send_sync(self) -> Self::Erased;
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// OwningRef
+/////////////////////////////////////////////////////////////////////////////
+
+impl<O, T: ?Sized> OwningRef<O, T> {
+ /// Creates a new owning reference from an owner
+ /// initialized to the direct dereference of it.
+ ///
+ /// # Example
+ /// ```
+ /// use rustc_data_structures::owning_ref::OwningRef;
+ ///
+ /// fn main() {
+ /// let owning_ref = OwningRef::new(Box::new(42));
+ /// assert_eq!(*owning_ref, 42);
+ /// }
+ /// ```
+ pub fn new(o: O) -> Self
+ where
+ O: StableAddress,
+ O: Deref<Target = T>,
+ {
+ OwningRef { reference: &*o, owner: o }
+ }
+
+ /// Like `new`, but doesn’t require `O` to implement the `StableAddress` trait.
+ /// Instead, the caller is responsible to make the same promises as implementing the trait.
+ ///
+ /// This is useful for cases where coherence rules prevents implementing the trait
+ /// without adding a dependency to this crate in a third-party library.
+ pub unsafe fn new_assert_stable_address(o: O) -> Self
+ where
+ O: Deref<Target = T>,
+ {
+ OwningRef { reference: &*o, owner: o }
+ }
+
+ /// Converts `self` into a new owning reference that points at something reachable
+ /// from the previous one.
+ ///
+ /// This can be a reference to a field of `U`, something reachable from a field of
+ /// `U`, or even something unrelated with a `'static` lifetime.
+ ///
+ /// # Example
+ /// ```
+ /// use rustc_data_structures::owning_ref::OwningRef;
+ ///
+ /// fn main() {
+ /// let owning_ref = OwningRef::new(Box::new([1, 2, 3, 4]));
+ ///
+ /// // create an owning reference that points at the
+ /// // third element of the array.
+ /// let owning_ref = owning_ref.map(|array| &array[2]);
+ /// assert_eq!(*owning_ref, 3);
+ /// }
+ /// ```
+ pub fn map<F, U: ?Sized>(self, f: F) -> OwningRef<O, U>
+ where
+ O: StableAddress,
+ F: FnOnce(&T) -> &U,
+ {
+ OwningRef { reference: f(&self), owner: self.owner }
+ }
+
+ /// Tries to convert `self` into a new owning reference that points
+ /// at something reachable from the previous one.
+ ///
+ /// This can be a reference to a field of `U`, something reachable from a field of
+ /// `U`, or even something unrelated with a `'static` lifetime.
+ ///
+ /// # Example
+ /// ```
+ /// use rustc_data_structures::owning_ref::OwningRef;
+ ///
+ /// fn main() {
+ /// let owning_ref = OwningRef::new(Box::new([1, 2, 3, 4]));
+ ///
+ /// // create an owning reference that points at the
+ /// // third element of the array.
+ /// let owning_ref = owning_ref.try_map(|array| {
+ /// if array[2] == 3 { Ok(&array[2]) } else { Err(()) }
+ /// });
+ /// assert_eq!(*owning_ref.unwrap(), 3);
+ /// }
+ /// ```
+ pub fn try_map<F, U: ?Sized, E>(self, f: F) -> Result<OwningRef<O, U>, E>
+ where
+ O: StableAddress,
+ F: FnOnce(&T) -> Result<&U, E>,
+ {
+ Ok(OwningRef { reference: f(&self)?, owner: self.owner })
+ }
+
+ /// Converts `self` into a new owning reference with a different owner type.
+ ///
+ /// The new owner type needs to still contain the original owner in some way
+ /// so that the reference into it remains valid. This function is marked unsafe
+ /// because the user needs to manually uphold this guarantee.
+ pub unsafe fn map_owner<F, P>(self, f: F) -> OwningRef<P, T>
+ where
+ O: StableAddress,
+ P: StableAddress,
+ F: FnOnce(O) -> P,
+ {
+ OwningRef { reference: self.reference, owner: f(self.owner) }
+ }
+
+ /// Converts `self` into a new owning reference where the owner is wrapped
+ /// in an additional `Box<O>`.
+ ///
+ /// This can be used to safely erase the owner of any `OwningRef<O, T>`
+ /// to an `OwningRef<Box<Erased>, T>`.
+ pub fn map_owner_box(self) -> OwningRef<Box<O>, T> {
+ OwningRef { reference: self.reference, owner: Box::new(self.owner) }
+ }
+
+ /// Erases the concrete base type of the owner with a trait object.
+ ///
+ /// This allows mixing of owned references with different owner base types.
+ ///
+ /// # Example
+ /// ```
+ /// use rustc_data_structures::owning_ref::{OwningRef, Erased};
+ ///
+ /// fn main() {
+ /// // N.B., using the concrete types here for explicitness.
+ /// // For less verbose code type aliases like `BoxRef` are provided.
+ ///
+ /// let owning_ref_a: OwningRef<Box<[i32; 4]>, [i32; 4]>
+ /// = OwningRef::new(Box::new([1, 2, 3, 4]));
+ ///
+ /// let owning_ref_b: OwningRef<Box<Vec<(i32, bool)>>, Vec<(i32, bool)>>
+ /// = OwningRef::new(Box::new(vec![(0, false), (1, true)]));
+ ///
+ /// let owning_ref_a: OwningRef<Box<[i32; 4]>, i32>
+ /// = owning_ref_a.map(|a| &a[0]);
+ ///
+ /// let owning_ref_b: OwningRef<Box<Vec<(i32, bool)>>, i32>
+ /// = owning_ref_b.map(|a| &a[1].0);
+ ///
+ /// let owning_refs: [OwningRef<Box<dyn Erased>, i32>; 2]
+ /// = [owning_ref_a.erase_owner(), owning_ref_b.erase_owner()];
+ ///
+ /// assert_eq!(*owning_refs[0], 1);
+ /// assert_eq!(*owning_refs[1], 1);
+ /// }
+ /// ```
+ pub fn erase_owner<'a>(self) -> OwningRef<O::Erased, T>
+ where
+ O: IntoErased<'a>,
+ {
+ OwningRef { reference: self.reference, owner: self.owner.into_erased() }
+ }
+
+ /// Erases the concrete base type of the owner with a trait object which implements `Send`.
+ ///
+ /// This allows mixing of owned references with different owner base types.
+ pub fn erase_send_owner<'a>(self) -> OwningRef<O::Erased, T>
+ where
+ O: IntoErasedSend<'a>,
+ {
+ OwningRef { reference: self.reference, owner: self.owner.into_erased_send() }
+ }
+
+ /// Erases the concrete base type of the owner with a trait object
+ /// which implements `Send` and `Sync`.
+ ///
+ /// This allows mixing of owned references with different owner base types.
+ pub fn erase_send_sync_owner<'a>(self) -> OwningRef<O::Erased, T>
+ where
+ O: IntoErasedSendSync<'a>,
+ {
+ OwningRef { reference: self.reference, owner: self.owner.into_erased_send_sync() }
+ }
+
+ // UNIMPLEMENTED: wrap_owner
+
+ // FIXME: Naming convention?
+ /// A getter for the underlying owner.
+ pub fn owner(&self) -> &O {
+ &self.owner
+ }
+
+ // FIXME: Naming convention?
+ /// Discards the reference and retrieves the owner.
+ pub fn into_inner(self) -> O {
+ self.owner
+ }
+}
+
+impl<O, T: ?Sized> OwningRefMut<O, T> {
+ /// Creates a new owning reference from an owner
+ /// initialized to the direct dereference of it.
+ ///
+ /// # Example
+ /// ```
+ /// use rustc_data_structures::owning_ref::OwningRefMut;
+ ///
+ /// fn main() {
+ /// let owning_ref_mut = OwningRefMut::new(Box::new(42));
+ /// assert_eq!(*owning_ref_mut, 42);
+ /// }
+ /// ```
+ pub fn new(mut o: O) -> Self
+ where
+ O: StableAddress,
+ O: DerefMut<Target = T>,
+ {
+ OwningRefMut { reference: &mut *o, owner: o }
+ }
+
+ /// Like `new`, but doesn’t require `O` to implement the `StableAddress` trait.
+ /// Instead, the caller is responsible to make the same promises as implementing the trait.
+ ///
+ /// This is useful for cases where coherence rules prevents implementing the trait
+ /// without adding a dependency to this crate in a third-party library.
+ pub unsafe fn new_assert_stable_address(mut o: O) -> Self
+ where
+ O: DerefMut<Target = T>,
+ {
+ OwningRefMut { reference: &mut *o, owner: o }
+ }
+
+ /// Converts `self` into a new _shared_ owning reference that points at
+ /// something reachable from the previous one.
+ ///
+ /// This can be a reference to a field of `U`, something reachable from a field of
+ /// `U`, or even something unrelated with a `'static` lifetime.
+ ///
+ /// # Example
+ /// ```
+ /// use rustc_data_structures::owning_ref::OwningRefMut;
+ ///
+ /// fn main() {
+ /// let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
+ ///
+ /// // create an owning reference that points at the
+ /// // third element of the array.
+ /// let owning_ref = owning_ref_mut.map(|array| &array[2]);
+ /// assert_eq!(*owning_ref, 3);
+ /// }
+ /// ```
+ pub fn map<F, U: ?Sized>(mut self, f: F) -> OwningRef<O, U>
+ where
+ O: StableAddress,
+ F: FnOnce(&mut T) -> &U,
+ {
+ OwningRef { reference: f(&mut self), owner: self.owner }
+ }
+
+ /// Converts `self` into a new _mutable_ owning reference that points at
+ /// something reachable from the previous one.
+ ///
+ /// This can be a reference to a field of `U`, something reachable from a field of
+ /// `U`, or even something unrelated with a `'static` lifetime.
+ ///
+ /// # Example
+ /// ```
+ /// use rustc_data_structures::owning_ref::OwningRefMut;
+ ///
+ /// fn main() {
+ /// let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
+ ///
+ /// // create an owning reference that points at the
+ /// // third element of the array.
+ /// let owning_ref_mut = owning_ref_mut.map_mut(|array| &mut array[2]);
+ /// assert_eq!(*owning_ref_mut, 3);
+ /// }
+ /// ```
+ pub fn map_mut<F, U: ?Sized>(mut self, f: F) -> OwningRefMut<O, U>
+ where
+ O: StableAddress,
+ F: FnOnce(&mut T) -> &mut U,
+ {
+ OwningRefMut { reference: f(&mut self), owner: self.owner }
+ }
+
+ /// Tries to convert `self` into a new _shared_ owning reference that points
+ /// at something reachable from the previous one.
+ ///
+ /// This can be a reference to a field of `U`, something reachable from a field of
+ /// `U`, or even something unrelated with a `'static` lifetime.
+ ///
+ /// # Example
+ /// ```
+ /// use rustc_data_structures::owning_ref::OwningRefMut;
+ ///
+ /// fn main() {
+ /// let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
+ ///
+ /// // create an owning reference that points at the
+ /// // third element of the array.
+ /// let owning_ref = owning_ref_mut.try_map(|array| {
+ /// if array[2] == 3 { Ok(&array[2]) } else { Err(()) }
+ /// });
+ /// assert_eq!(*owning_ref.unwrap(), 3);
+ /// }
+ /// ```
+ pub fn try_map<F, U: ?Sized, E>(mut self, f: F) -> Result<OwningRef<O, U>, E>
+ where
+ O: StableAddress,
+ F: FnOnce(&mut T) -> Result<&U, E>,
+ {
+ Ok(OwningRef { reference: f(&mut self)?, owner: self.owner })
+ }
+
+ /// Tries to convert `self` into a new _mutable_ owning reference that points
+ /// at something reachable from the previous one.
+ ///
+ /// This can be a reference to a field of `U`, something reachable from a field of
+ /// `U`, or even something unrelated with a `'static` lifetime.
+ ///
+ /// # Example
+ /// ```
+ /// use rustc_data_structures::owning_ref::OwningRefMut;
+ ///
+ /// fn main() {
+ /// let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));
+ ///
+ /// // create an owning reference that points at the
+ /// // third element of the array.
+ /// let owning_ref_mut = owning_ref_mut.try_map_mut(|array| {
+ /// if array[2] == 3 { Ok(&mut array[2]) } else { Err(()) }
+ /// });
+ /// assert_eq!(*owning_ref_mut.unwrap(), 3);
+ /// }
+ /// ```
+ pub fn try_map_mut<F, U: ?Sized, E>(mut self, f: F) -> Result<OwningRefMut<O, U>, E>
+ where
+ O: StableAddress,
+ F: FnOnce(&mut T) -> Result<&mut U, E>,
+ {
+ Ok(OwningRefMut { reference: f(&mut self)?, owner: self.owner })
+ }
+
+ /// Converts `self` into a new owning reference with a different owner type.
+ ///
+ /// The new owner type needs to still contain the original owner in some way
+ /// so that the reference into it remains valid. This function is marked unsafe
+ /// because the user needs to manually uphold this guarantee.
+ pub unsafe fn map_owner<F, P>(self, f: F) -> OwningRefMut<P, T>
+ where
+ O: StableAddress,
+ P: StableAddress,
+ F: FnOnce(O) -> P,
+ {
+ OwningRefMut { reference: self.reference, owner: f(self.owner) }
+ }
+
+ /// Converts `self` into a new owning reference where the owner is wrapped
+ /// in an additional `Box<O>`.
+ ///
+ /// This can be used to safely erase the owner of any `OwningRefMut<O, T>`
+ /// to an `OwningRefMut<Box<Erased>, T>`.
+ pub fn map_owner_box(self) -> OwningRefMut<Box<O>, T> {
+ OwningRefMut { reference: self.reference, owner: Box::new(self.owner) }
+ }
+
+ /// Erases the concrete base type of the owner with a trait object.
+ ///
+ /// This allows mixing of owned references with different owner base types.
+ ///
+ /// # Example
+ /// ```
+ /// use rustc_data_structures::owning_ref::{OwningRefMut, Erased};
+ ///
+ /// fn main() {
+ /// // N.B., using the concrete types here for explicitness.
+ /// // For less verbose code type aliases like `BoxRef` are provided.
+ ///
+ /// let owning_ref_mut_a: OwningRefMut<Box<[i32; 4]>, [i32; 4]>
+ /// = OwningRefMut::new(Box::new([1, 2, 3, 4]));
+ ///
+ /// let owning_ref_mut_b: OwningRefMut<Box<Vec<(i32, bool)>>, Vec<(i32, bool)>>
+ /// = OwningRefMut::new(Box::new(vec![(0, false), (1, true)]));
+ ///
+ /// let owning_ref_mut_a: OwningRefMut<Box<[i32; 4]>, i32>
+ /// = owning_ref_mut_a.map_mut(|a| &mut a[0]);
+ ///
+ /// let owning_ref_mut_b: OwningRefMut<Box<Vec<(i32, bool)>>, i32>
+ /// = owning_ref_mut_b.map_mut(|a| &mut a[1].0);
+ ///
+ /// let owning_refs_mut: [OwningRefMut<Box<dyn Erased>, i32>; 2]
+ /// = [owning_ref_mut_a.erase_owner(), owning_ref_mut_b.erase_owner()];
+ ///
+ /// assert_eq!(*owning_refs_mut[0], 1);
+ /// assert_eq!(*owning_refs_mut[1], 1);
+ /// }
+ /// ```
+ pub fn erase_owner<'a>(self) -> OwningRefMut<O::Erased, T>
+ where
+ O: IntoErased<'a>,
+ {
+ OwningRefMut { reference: self.reference, owner: self.owner.into_erased() }
+ }
+
+ // UNIMPLEMENTED: wrap_owner
+
+ // FIXME: Naming convention?
+ /// A getter for the underlying owner.
+ pub fn owner(&self) -> &O {
+ &self.owner
+ }
+
+ // FIXME: Naming convention?
+ /// Discards the reference and retrieves the owner.
+ pub fn into_inner(self) -> O {
+ self.owner
+ }
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// OwningHandle
+/////////////////////////////////////////////////////////////////////////////
+
+use std::ops::{Deref, DerefMut};
+
+/// `OwningHandle` is a complement to `OwningRef`. Where `OwningRef` allows
+/// consumers to pass around an owned object and a dependent reference,
+/// `OwningHandle` contains an owned object and a dependent _object_.
+///
+/// `OwningHandle` can encapsulate a `RefMut` along with its associated
+/// `RefCell`, or an `RwLockReadGuard` along with its associated `RwLock`.
+/// However, the API is completely generic and there are no restrictions on
+/// what types of owning and dependent objects may be used.
+///
+/// `OwningHandle` is created by passing an owner object (which dereferences
+/// to a stable address) along with a callback which receives a pointer to
+/// that stable location. The callback may then dereference the pointer and
+/// mint a dependent object, with the guarantee that the returned object will
+/// not outlive the referent of the pointer.
+///
+/// Since the callback needs to dereference a raw pointer, it requires `unsafe`
+/// code. To avoid forcing this unsafety on most callers, the `ToHandle` trait is
+/// implemented for common data structures. Types that implement `ToHandle` can
+/// be wrapped into an `OwningHandle` without passing a callback.
+pub struct OwningHandle<O, H>
+where
+ O: StableAddress,
+ H: Deref,
+{
+ handle: H,
+ _owner: O,
+}
+
+impl<O, H> Deref for OwningHandle<O, H>
+where
+ O: StableAddress,
+ H: Deref,
+{
+ type Target = H::Target;
+ fn deref(&self) -> &H::Target {
+ self.handle.deref()
+ }
+}
+
+unsafe impl<O, H> StableAddress for OwningHandle<O, H>
+where
+ O: StableAddress,
+ H: StableAddress,
+{
+}
+
+impl<O, H> DerefMut for OwningHandle<O, H>
+where
+ O: StableAddress,
+ H: DerefMut,
+{
+ fn deref_mut(&mut self) -> &mut H::Target {
+ self.handle.deref_mut()
+ }
+}
+
+/// Trait to implement the conversion of owner to handle for common types.
+pub trait ToHandle {
+ /// The type of handle to be encapsulated by the OwningHandle.
+ type Handle: Deref;
+
+ /// Given an appropriately-long-lived pointer to ourselves, create a
+ /// handle to be encapsulated by the `OwningHandle`.
+ unsafe fn to_handle(x: *const Self) -> Self::Handle;
+}
+
+/// Trait to implement the conversion of owner to mutable handle for common types.
+pub trait ToHandleMut {
+ /// The type of handle to be encapsulated by the OwningHandle.
+ type HandleMut: DerefMut;
+
+ /// Given an appropriately-long-lived pointer to ourselves, create a
+ /// mutable handle to be encapsulated by the `OwningHandle`.
+ unsafe fn to_handle_mut(x: *const Self) -> Self::HandleMut;
+}
+
+impl<O, H> OwningHandle<O, H>
+where
+ O: StableAddress<Target: ToHandle<Handle = H>>,
+ H: Deref,
+{
+ /// Creates a new `OwningHandle` for a type that implements `ToHandle`. For types
+ /// that don't implement `ToHandle`, callers may invoke `new_with_fn`, which accepts
+ /// a callback to perform the conversion.
+ pub fn new(o: O) -> Self {
+ OwningHandle::new_with_fn(o, |x| unsafe { O::Target::to_handle(x) })
+ }
+}
+
+impl<O, H> OwningHandle<O, H>
+where
+ O: StableAddress<Target: ToHandleMut<HandleMut = H>>,
+ H: DerefMut,
+{
+ /// Creates a new mutable `OwningHandle` for a type that implements `ToHandleMut`.
+ pub fn new_mut(o: O) -> Self {
+ OwningHandle::new_with_fn(o, |x| unsafe { O::Target::to_handle_mut(x) })
+ }
+}
+
+impl<O, H> OwningHandle<O, H>
+where
+ O: StableAddress,
+ H: Deref,
+{
+ /// Creates a new OwningHandle. The provided callback will be invoked with
+ /// a pointer to the object owned by `o`, and the returned value is stored
+ /// as the object to which this `OwningHandle` will forward `Deref` and
+ /// `DerefMut`.
+ pub fn new_with_fn<F>(o: O, f: F) -> Self
+ where
+ F: FnOnce(*const O::Target) -> H,
+ {
+ let h: H;
+ {
+ h = f(o.deref() as *const O::Target);
+ }
+
+ OwningHandle { handle: h, _owner: o }
+ }
+
+ /// Creates a new OwningHandle. The provided callback will be invoked with
+ /// a pointer to the object owned by `o`, and the returned value is stored
+ /// as the object to which this `OwningHandle` will forward `Deref` and
+ /// `DerefMut`.
+ pub fn try_new<F, E>(o: O, f: F) -> Result<Self, E>
+ where
+ F: FnOnce(*const O::Target) -> Result<H, E>,
+ {
+ let h: H;
+ {
+ h = f(o.deref() as *const O::Target)?;
+ }
+
+ Ok(OwningHandle { handle: h, _owner: o })
+ }
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// std traits
+/////////////////////////////////////////////////////////////////////////////
+
+use std::borrow::Borrow;
+use std::cmp::{Eq, Ord, Ordering, PartialEq, PartialOrd};
+use std::convert::From;
+use std::fmt::{self, Debug};
+use std::hash::{Hash, Hasher};
+use std::marker::{Send, Sync};
+
+impl<O, T: ?Sized> Deref for OwningRef<O, T> {
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ unsafe { &*self.reference }
+ }
+}
+
+impl<O, T: ?Sized> Deref for OwningRefMut<O, T> {
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ unsafe { &*self.reference }
+ }
+}
+
+impl<O, T: ?Sized> DerefMut for OwningRefMut<O, T> {
+ fn deref_mut(&mut self) -> &mut T {
+ unsafe { &mut *self.reference }
+ }
+}
+
+unsafe impl<O, T: ?Sized> StableAddress for OwningRef<O, T> {}
+
+impl<O, T: ?Sized> AsRef<T> for OwningRef<O, T> {
+ fn as_ref(&self) -> &T {
+ &*self
+ }
+}
+
+impl<O, T: ?Sized> AsRef<T> for OwningRefMut<O, T> {
+ fn as_ref(&self) -> &T {
+ &*self
+ }
+}
+
+impl<O, T: ?Sized> AsMut<T> for OwningRefMut<O, T> {
+ fn as_mut(&mut self) -> &mut T {
+ &mut *self
+ }
+}
+
+impl<O, T: ?Sized> Borrow<T> for OwningRef<O, T> {
+ fn borrow(&self) -> &T {
+ &*self
+ }
+}
+
+impl<O, T: ?Sized> From<O> for OwningRef<O, T>
+where
+ O: StableAddress,
+ O: Deref<Target = T>,
+{
+ fn from(owner: O) -> Self {
+ OwningRef::new(owner)
+ }
+}
+
+impl<O, T: ?Sized> From<O> for OwningRefMut<O, T>
+where
+ O: StableAddress,
+ O: DerefMut<Target = T>,
+{
+ fn from(owner: O) -> Self {
+ OwningRefMut::new(owner)
+ }
+}
+
+impl<O, T: ?Sized> From<OwningRefMut<O, T>> for OwningRef<O, T>
+where
+ O: StableAddress,
+ O: DerefMut<Target = T>,
+{
+ fn from(other: OwningRefMut<O, T>) -> Self {
+ OwningRef { owner: other.owner, reference: other.reference }
+ }
+}
+
+// ^ FIXME: Is an Into impl for calling into_inner() possible as well?
+
+impl<O, T: ?Sized> Debug for OwningRef<O, T>
+where
+ O: Debug,
+ T: Debug,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "OwningRef {{ owner: {:?}, reference: {:?} }}", self.owner(), &**self)
+ }
+}
+
+impl<O, T: ?Sized> Debug for OwningRefMut<O, T>
+where
+ O: Debug,
+ T: Debug,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "OwningRefMut {{ owner: {:?}, reference: {:?} }}", self.owner(), &**self)
+ }
+}
+
+impl<O, T: ?Sized> Clone for OwningRef<O, T>
+where
+ O: CloneStableAddress,
+{
+ fn clone(&self) -> Self {
+ OwningRef { owner: self.owner.clone(), reference: self.reference }
+ }
+}
+
+unsafe impl<O, T: ?Sized> CloneStableAddress for OwningRef<O, T> where O: CloneStableAddress {}
+
+unsafe impl<O, T: ?Sized> Send for OwningRef<O, T>
+where
+ O: Send,
+ for<'a> &'a T: Send,
+{
+}
+unsafe impl<O, T: ?Sized> Sync for OwningRef<O, T>
+where
+ O: Sync,
+ for<'a> &'a T: Sync,
+{
+}
+
+unsafe impl<O, T: ?Sized> Send for OwningRefMut<O, T>
+where
+ O: Send,
+ for<'a> &'a mut T: Send,
+{
+}
+unsafe impl<O, T: ?Sized> Sync for OwningRefMut<O, T>
+where
+ O: Sync,
+ for<'a> &'a mut T: Sync,
+{
+}
+
+impl Debug for dyn Erased {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ write!(f, "<Erased>",)
+ }
+}
+
+impl<O, T: ?Sized> PartialEq for OwningRef<O, T>
+where
+ T: PartialEq,
+{
+ fn eq(&self, other: &Self) -> bool {
+ (&*self as &T).eq(&*other as &T)
+ }
+}
+
+impl<O, T: ?Sized> Eq for OwningRef<O, T> where T: Eq {}
+
+impl<O, T: ?Sized> PartialOrd for OwningRef<O, T>
+where
+ T: PartialOrd,
+{
+ fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
+ (&*self as &T).partial_cmp(&*other as &T)
+ }
+}
+
+impl<O, T: ?Sized> Ord for OwningRef<O, T>
+where
+ T: Ord,
+{
+ fn cmp(&self, other: &Self) -> Ordering {
+ (&*self as &T).cmp(&*other as &T)
+ }
+}
+
+impl<O, T: ?Sized> Hash for OwningRef<O, T>
+where
+ T: Hash,
+{
+ fn hash<H: Hasher>(&self, state: &mut H) {
+ (&*self as &T).hash(state);
+ }
+}
+
+impl<O, T: ?Sized> PartialEq for OwningRefMut<O, T>
+where
+ T: PartialEq,
+{
+ fn eq(&self, other: &Self) -> bool {
+ (&*self as &T).eq(&*other as &T)
+ }
+}
+
+impl<O, T: ?Sized> Eq for OwningRefMut<O, T> where T: Eq {}
+
+impl<O, T: ?Sized> PartialOrd for OwningRefMut<O, T>
+where
+ T: PartialOrd,
+{
+ fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
+ (&*self as &T).partial_cmp(&*other as &T)
+ }
+}
+
+impl<O, T: ?Sized> Ord for OwningRefMut<O, T>
+where
+ T: Ord,
+{
+ fn cmp(&self, other: &Self) -> Ordering {
+ (&*self as &T).cmp(&*other as &T)
+ }
+}
+
+impl<O, T: ?Sized> Hash for OwningRefMut<O, T>
+where
+ T: Hash,
+{
+ fn hash<H: Hasher>(&self, state: &mut H) {
+ (&*self as &T).hash(state);
+ }
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// std types integration and convenience type defs
+/////////////////////////////////////////////////////////////////////////////
+
+use std::boxed::Box;
+use std::cell::{Ref, RefCell, RefMut};
+use std::rc::Rc;
+use std::sync::Arc;
+use std::sync::{MutexGuard, RwLockReadGuard, RwLockWriteGuard};
+
+impl<T: 'static> ToHandle for RefCell<T> {
+ type Handle = Ref<'static, T>;
+ unsafe fn to_handle(x: *const Self) -> Self::Handle {
+ (*x).borrow()
+ }
+}
+
+impl<T: 'static> ToHandleMut for RefCell<T> {
+ type HandleMut = RefMut<'static, T>;
+ unsafe fn to_handle_mut(x: *const Self) -> Self::HandleMut {
+ (*x).borrow_mut()
+ }
+}
+
+// N.B., implementing ToHandle{,Mut} for Mutex and RwLock requires a decision
+// about which handle creation to use (i.e., read() vs try_read()) as well as
+// what to do with error results.
+
+/// Typedef of an owning reference that uses a `Box` as the owner.
+pub type BoxRef<T, U = T> = OwningRef<Box<T>, U>;
+/// Typedef of an owning reference that uses a `Vec` as the owner.
+pub type VecRef<T, U = T> = OwningRef<Vec<T>, U>;
+/// Typedef of an owning reference that uses a `String` as the owner.
+pub type StringRef = OwningRef<String, str>;
+
+/// Typedef of an owning reference that uses an `Rc` as the owner.
+pub type RcRef<T, U = T> = OwningRef<Rc<T>, U>;
+/// Typedef of an owning reference that uses an `Arc` as the owner.
+pub type ArcRef<T, U = T> = OwningRef<Arc<T>, U>;
+
+/// Typedef of an owning reference that uses a `Ref` as the owner.
+pub type RefRef<'a, T, U = T> = OwningRef<Ref<'a, T>, U>;
+/// Typedef of an owning reference that uses a `RefMut` as the owner.
+pub type RefMutRef<'a, T, U = T> = OwningRef<RefMut<'a, T>, U>;
+/// Typedef of an owning reference that uses a `MutexGuard` as the owner.
+pub type MutexGuardRef<'a, T, U = T> = OwningRef<MutexGuard<'a, T>, U>;
+/// Typedef of an owning reference that uses an `RwLockReadGuard` as the owner.
+pub type RwLockReadGuardRef<'a, T, U = T> = OwningRef<RwLockReadGuard<'a, T>, U>;
+/// Typedef of an owning reference that uses an `RwLockWriteGuard` as the owner.
+pub type RwLockWriteGuardRef<'a, T, U = T> = OwningRef<RwLockWriteGuard<'a, T>, U>;
+
+/// Typedef of a mutable owning reference that uses a `Box` as the owner.
+pub type BoxRefMut<T, U = T> = OwningRefMut<Box<T>, U>;
+/// Typedef of a mutable owning reference that uses a `Vec` as the owner.
+pub type VecRefMut<T, U = T> = OwningRefMut<Vec<T>, U>;
+/// Typedef of a mutable owning reference that uses a `String` as the owner.
+pub type StringRefMut = OwningRefMut<String, str>;
+
+/// Typedef of a mutable owning reference that uses a `RefMut` as the owner.
+pub type RefMutRefMut<'a, T, U = T> = OwningRefMut<RefMut<'a, T>, U>;
+/// Typedef of a mutable owning reference that uses a `MutexGuard` as the owner.
+pub type MutexGuardRefMut<'a, T, U = T> = OwningRefMut<MutexGuard<'a, T>, U>;
+/// Typedef of a mutable owning reference that uses an `RwLockWriteGuard` as the owner.
+pub type RwLockWriteGuardRefMut<'a, T, U = T> = OwningRef<RwLockWriteGuard<'a, T>, U>;
+
+unsafe impl<'a, T: 'a> IntoErased<'a> for Box<T> {
+ type Erased = Box<dyn Erased + 'a>;
+ fn into_erased(self) -> Self::Erased {
+ self
+ }
+}
+unsafe impl<'a, T: 'a> IntoErased<'a> for Rc<T> {
+ type Erased = Rc<dyn Erased + 'a>;
+ fn into_erased(self) -> Self::Erased {
+ self
+ }
+}
+unsafe impl<'a, T: 'a> IntoErased<'a> for Arc<T> {
+ type Erased = Arc<dyn Erased + 'a>;
+ fn into_erased(self) -> Self::Erased {
+ self
+ }
+}
+
+unsafe impl<'a, T: Send + 'a> IntoErasedSend<'a> for Box<T> {
+ type Erased = Box<dyn Erased + Send + 'a>;
+ fn into_erased_send(self) -> Self::Erased {
+ self
+ }
+}
+
+unsafe impl<'a, T: Send + 'a> IntoErasedSendSync<'a> for Box<T> {
+ type Erased = Box<dyn Erased + Sync + Send + 'a>;
+ fn into_erased_send_sync(self) -> Self::Erased {
+ let result: Box<dyn Erased + Send + 'a> = self;
+ // This is safe since Erased can always implement Sync
+ // Only the destructor is available and it takes &mut self
+ unsafe { mem::transmute(result) }
+ }
+}
+
+unsafe impl<'a, T: Send + Sync + 'a> IntoErasedSendSync<'a> for Arc<T> {
+ type Erased = Arc<dyn Erased + Send + Sync + 'a>;
+ fn into_erased_send_sync(self) -> Self::Erased {
+ self
+ }
+}
+
+/// Typedef of an owning reference that uses an erased `Box` as the owner.
+pub type ErasedBoxRef<U> = OwningRef<Box<dyn Erased>, U>;
+/// Typedef of an owning reference that uses an erased `Rc` as the owner.
+pub type ErasedRcRef<U> = OwningRef<Rc<dyn Erased>, U>;
+/// Typedef of an owning reference that uses an erased `Arc` as the owner.
+pub type ErasedArcRef<U> = OwningRef<Arc<dyn Erased>, U>;
+
+/// Typedef of a mutable owning reference that uses an erased `Box` as the owner.
+pub type ErasedBoxRefMut<U> = OwningRefMut<Box<dyn Erased>, U>;
+
+#[cfg(test)]
+mod tests;