summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_hir
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--compiler/rustc_hir/Cargo.toml1
-rw-r--r--compiler/rustc_hir/src/def.rs144
-rw-r--r--compiler/rustc_hir/src/definitions.rs1
-rw-r--r--compiler/rustc_hir/src/errors.rs10
-rw-r--r--compiler/rustc_hir/src/hir.rs302
-rw-r--r--compiler/rustc_hir/src/hir_id.rs70
-rw-r--r--compiler/rustc_hir/src/intravisit.rs186
-rw-r--r--compiler/rustc_hir/src/lang_items.rs15
-rw-r--r--compiler/rustc_hir/src/lib.rs9
-rw-r--r--compiler/rustc_hir/src/pat_util.rs19
-rw-r--r--compiler/rustc_hir/src/stable_hash_impls.rs27
-rw-r--r--compiler/rustc_hir/src/target.rs15
-rw-r--r--compiler/rustc_hir/src/weak_lang_items.rs6
-rw-r--r--compiler/rustc_hir_analysis/Cargo.toml32
-rw-r--r--compiler/rustc_hir_analysis/README.md (renamed from compiler/rustc_typeck/README.md)0
-rw-r--r--compiler/rustc_hir_analysis/src/astconv/errors.rs411
-rw-r--r--compiler/rustc_hir_analysis/src/astconv/generics.rs662
-rw-r--r--compiler/rustc_hir_analysis/src/astconv/mod.rs3136
-rw-r--r--compiler/rustc_hir_analysis/src/bounds.rs (renamed from compiler/rustc_typeck/src/bounds.rs)0
-rw-r--r--compiler/rustc_hir_analysis/src/check/check.rs1443
-rw-r--r--compiler/rustc_hir_analysis/src/check/compare_method.rs1825
-rw-r--r--compiler/rustc_hir_analysis/src/check/dropck.rs (renamed from compiler/rustc_typeck/src/check/dropck.rs)14
-rw-r--r--compiler/rustc_hir_analysis/src/check/intrinsic.rs (renamed from compiler/rustc_typeck/src/check/intrinsic.rs)60
-rw-r--r--compiler/rustc_hir_analysis/src/check/intrinsicck.rs437
-rw-r--r--compiler/rustc_hir_analysis/src/check/mod.rs515
-rw-r--r--compiler/rustc_hir_analysis/src/check/region.rs (renamed from compiler/rustc_typeck/src/check/region.rs)51
-rw-r--r--compiler/rustc_hir_analysis/src/check/wfcheck.rs (renamed from compiler/rustc_typeck/src/check/wfcheck.rs)367
-rw-r--r--compiler/rustc_hir_analysis/src/check_unused.rs192
-rw-r--r--compiler/rustc_hir_analysis/src/coherence/builtin.rs572
-rw-r--r--compiler/rustc_hir_analysis/src/coherence/inherent_impls.rs (renamed from compiler/rustc_typeck/src/coherence/inherent_impls.rs)18
-rw-r--r--compiler/rustc_hir_analysis/src/coherence/inherent_impls_overlap.rs (renamed from compiler/rustc_typeck/src/coherence/inherent_impls_overlap.rs)58
-rw-r--r--compiler/rustc_hir_analysis/src/coherence/mod.rs (renamed from compiler/rustc_typeck/src/coherence/mod.rs)0
-rw-r--r--compiler/rustc_hir_analysis/src/coherence/orphan.rs (renamed from compiler/rustc_typeck/src/coherence/orphan.rs)38
-rw-r--r--compiler/rustc_hir_analysis/src/coherence/unsafety.rs96
-rw-r--r--compiler/rustc_hir_analysis/src/collect.rs2263
-rw-r--r--compiler/rustc_hir_analysis/src/collect/generics_of.rs481
-rw-r--r--compiler/rustc_hir_analysis/src/collect/item_bounds.rs (renamed from compiler/rustc_typeck/src/collect/item_bounds.rs)16
-rw-r--r--compiler/rustc_hir_analysis/src/collect/lifetimes.rs1888
-rw-r--r--compiler/rustc_hir_analysis/src/collect/predicates_of.rs707
-rw-r--r--compiler/rustc_hir_analysis/src/collect/type_of.rs (renamed from compiler/rustc_typeck/src/collect/type_of.rs)265
-rw-r--r--compiler/rustc_hir_analysis/src/constrained_generic_params.rs (renamed from compiler/rustc_typeck/src/constrained_generic_params.rs)10
-rw-r--r--compiler/rustc_hir_analysis/src/errors.rs282
-rw-r--r--compiler/rustc_hir_analysis/src/hir_wf_check.rs (renamed from compiler/rustc_typeck/src/hir_wf_check.rs)68
-rw-r--r--compiler/rustc_hir_analysis/src/impl_wf_check.rs (renamed from compiler/rustc_typeck/src/impl_wf_check.rs)43
-rw-r--r--compiler/rustc_hir_analysis/src/impl_wf_check/min_specialization.rs (renamed from compiler/rustc_typeck/src/impl_wf_check/min_specialization.rs)83
-rw-r--r--compiler/rustc_hir_analysis/src/lib.rs552
-rw-r--r--compiler/rustc_hir_analysis/src/outlives/explicit.rs (renamed from compiler/rustc_typeck/src/outlives/explicit.rs)0
-rw-r--r--compiler/rustc_hir_analysis/src/outlives/implicit_infer.rs (renamed from compiler/rustc_typeck/src/outlives/implicit_infer.rs)4
-rw-r--r--compiler/rustc_hir_analysis/src/outlives/mod.rs129
-rw-r--r--compiler/rustc_hir_analysis/src/outlives/test.rs21
-rw-r--r--compiler/rustc_hir_analysis/src/outlives/utils.rs186
-rw-r--r--compiler/rustc_hir_analysis/src/structured_errors.rs (renamed from compiler/rustc_typeck/src/structured_errors.rs)0
-rw-r--r--compiler/rustc_hir_analysis/src/structured_errors/missing_cast_for_variadic_arg.rs (renamed from compiler/rustc_typeck/src/structured_errors/missing_cast_for_variadic_arg.rs)0
-rw-r--r--compiler/rustc_hir_analysis/src/structured_errors/sized_unsized_cast.rs (renamed from compiler/rustc_typeck/src/structured_errors/sized_unsized_cast.rs)0
-rw-r--r--compiler/rustc_hir_analysis/src/structured_errors/wrong_number_of_generic_args.rs (renamed from compiler/rustc_typeck/src/structured_errors/wrong_number_of_generic_args.rs)255
-rw-r--r--compiler/rustc_hir_analysis/src/variance/constraints.rs (renamed from compiler/rustc_typeck/src/variance/constraints.rs)14
-rw-r--r--compiler/rustc_hir_analysis/src/variance/mod.rs (renamed from compiler/rustc_typeck/src/variance/mod.rs)0
-rw-r--r--compiler/rustc_hir_analysis/src/variance/solve.rs (renamed from compiler/rustc_typeck/src/variance/solve.rs)0
-rw-r--r--compiler/rustc_hir_analysis/src/variance/terms.rs (renamed from compiler/rustc_typeck/src/variance/terms.rs)0
-rw-r--r--compiler/rustc_hir_analysis/src/variance/test.rs15
-rw-r--r--compiler/rustc_hir_analysis/src/variance/xform.rs (renamed from compiler/rustc_typeck/src/variance/xform.rs)0
-rw-r--r--compiler/rustc_hir_pretty/Cargo.toml1
-rw-r--r--compiler/rustc_hir_pretty/src/lib.rs158
-rw-r--r--compiler/rustc_hir_typeck/Cargo.toml28
-rw-r--r--compiler/rustc_hir_typeck/src/_match.rs (renamed from compiler/rustc_typeck/src/check/_match.rs)131
-rw-r--r--compiler/rustc_hir_typeck/src/autoderef.rs (renamed from compiler/rustc_typeck/src/check/autoderef.rs)0
-rw-r--r--compiler/rustc_hir_typeck/src/callee.rs831
-rw-r--r--compiler/rustc_hir_typeck/src/cast.rs (renamed from compiler/rustc_typeck/src/check/cast.rs)139
-rw-r--r--compiler/rustc_hir_typeck/src/check.rs324
-rw-r--r--compiler/rustc_hir_typeck/src/closure.rs824
-rw-r--r--compiler/rustc_hir_typeck/src/coercion.rs (renamed from compiler/rustc_typeck/src/check/coercion.rs)172
-rw-r--r--compiler/rustc_hir_typeck/src/demand.rs (renamed from compiler/rustc_typeck/src/check/demand.rs)218
-rw-r--r--compiler/rustc_hir_typeck/src/diverges.rs (renamed from compiler/rustc_typeck/src/check/diverges.rs)0
-rw-r--r--compiler/rustc_hir_typeck/src/errors.rs126
-rw-r--r--compiler/rustc_hir_typeck/src/expectation.rs (renamed from compiler/rustc_typeck/src/check/expectation.rs)0
-rw-r--r--compiler/rustc_hir_typeck/src/expr.rs2896
-rw-r--r--compiler/rustc_hir_typeck/src/expr_use_visitor.rs (renamed from compiler/rustc_typeck/src/expr_use_visitor.rs)20
-rw-r--r--compiler/rustc_hir_typeck/src/fallback.rs (renamed from compiler/rustc_typeck/src/check/fallback.rs)4
-rw-r--r--compiler/rustc_hir_typeck/src/fn_ctxt/_impl.rs (renamed from compiler/rustc_typeck/src/check/fn_ctxt/_impl.rs)198
-rw-r--r--compiler/rustc_hir_typeck/src/fn_ctxt/arg_matrix.rs (renamed from compiler/rustc_typeck/src/check/fn_ctxt/arg_matrix.rs)25
-rw-r--r--compiler/rustc_hir_typeck/src/fn_ctxt/checks.rs2236
-rw-r--r--compiler/rustc_hir_typeck/src/fn_ctxt/mod.rs312
-rw-r--r--compiler/rustc_hir_typeck/src/fn_ctxt/suggestions.rs1250
-rw-r--r--compiler/rustc_hir_typeck/src/gather_locals.rs (renamed from compiler/rustc_typeck/src/check/gather_locals.rs)3
-rw-r--r--compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/cfg_build.rs (renamed from compiler/rustc_typeck/src/check/generator_interior/drop_ranges/cfg_build.rs)7
-rw-r--r--compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/cfg_propagate.rs (renamed from compiler/rustc_typeck/src/check/generator_interior/drop_ranges/cfg_propagate.rs)0
-rw-r--r--compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/cfg_visualize.rs (renamed from compiler/rustc_typeck/src/check/generator_interior/drop_ranges/cfg_visualize.rs)0
-rw-r--r--compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/mod.rs309
-rw-r--r--compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/record_consumed_borrow.rs (renamed from compiler/rustc_typeck/src/check/generator_interior/drop_ranges/record_consumed_borrow.rs)19
-rw-r--r--compiler/rustc_hir_typeck/src/generator_interior/mod.rs647
-rw-r--r--compiler/rustc_hir_typeck/src/inherited.rs213
-rw-r--r--compiler/rustc_hir_typeck/src/intrinsicck.rs108
-rw-r--r--compiler/rustc_hir_typeck/src/lib.rs507
-rw-r--r--compiler/rustc_hir_typeck/src/mem_categorization.rs (renamed from compiler/rustc_typeck/src/mem_categorization.rs)24
-rw-r--r--compiler/rustc_hir_typeck/src/method/confirm.rs (renamed from compiler/rustc_typeck/src/check/method/confirm.rs)20
-rw-r--r--compiler/rustc_hir_typeck/src/method/mod.rs625
-rw-r--r--compiler/rustc_hir_typeck/src/method/prelude2021.rs (renamed from compiler/rustc_typeck/src/check/method/prelude2021.rs)122
-rw-r--r--compiler/rustc_hir_typeck/src/method/probe.rs (renamed from compiler/rustc_typeck/src/check/method/probe.rs)180
-rw-r--r--compiler/rustc_hir_typeck/src/method/suggest.rs (renamed from compiler/rustc_typeck/src/check/method/suggest.rs)663
-rw-r--r--compiler/rustc_hir_typeck/src/op.rs994
-rw-r--r--compiler/rustc_hir_typeck/src/pat.rs (renamed from compiler/rustc_typeck/src/check/pat.rs)77
-rw-r--r--compiler/rustc_hir_typeck/src/place_op.rs (renamed from compiler/rustc_typeck/src/check/place_op.rs)4
-rw-r--r--compiler/rustc_hir_typeck/src/rvalue_scopes.rs (renamed from compiler/rustc_typeck/src/check/rvalue_scopes.rs)0
-rw-r--r--compiler/rustc_hir_typeck/src/upvar.rs (renamed from compiler/rustc_typeck/src/check/upvar.rs)34
-rw-r--r--compiler/rustc_hir_typeck/src/writeback.rs (renamed from compiler/rustc_typeck/src/check/writeback.rs)118
105 files changed, 30861 insertions, 1720 deletions
diff --git a/compiler/rustc_hir/Cargo.toml b/compiler/rustc_hir/Cargo.toml
index 69ad623b7..129f8d235 100644
--- a/compiler/rustc_hir/Cargo.toml
+++ b/compiler/rustc_hir/Cargo.toml
@@ -4,7 +4,6 @@ version = "0.0.0"
edition = "2021"
[lib]
-doctest = false
[dependencies]
rustc_arena = { path = "../rustc_arena" }
diff --git a/compiler/rustc_hir/src/def.rs b/compiler/rustc_hir/src/def.rs
index be5b7eccb..4ef4aad90 100644
--- a/compiler/rustc_hir/src/def.rs
+++ b/compiler/rustc_hir/src/def.rs
@@ -45,8 +45,6 @@ pub enum NonMacroAttrKind {
/// Single-segment custom attribute registered by a derive macro
/// but used before that derive macro was expanded (deprecated).
DeriveHelperCompat,
- /// Single-segment custom attribute registered with `#[register_attr]`.
- Registered,
}
/// What kind of definition something is; e.g., `mod` vs `struct`.
@@ -111,6 +109,8 @@ pub enum DefKind {
InlineConst,
/// Opaque type, aka `impl Trait`.
OpaqueTy,
+ /// A return-position `impl Trait` in a trait definition
+ ImplTraitPlaceholder,
Field,
/// Lifetime parameter: the `'a` in `struct Foo<'a> { ... }`
LifetimeParam,
@@ -140,6 +140,7 @@ impl DefKind {
panic!("impossible struct constructor")
}
DefKind::OpaqueTy => "opaque type",
+ DefKind::ImplTraitPlaceholder => "opaque type in trait",
DefKind::TyAlias => "type alias",
DefKind::TraitAlias => "trait alias",
DefKind::AssocTy => "associated type",
@@ -219,7 +220,8 @@ impl DefKind {
| DefKind::Use
| DefKind::ForeignMod
| DefKind::GlobalAsm
- | DefKind::Impl => None,
+ | DefKind::Impl
+ | DefKind::ImplTraitPlaceholder => None,
}
}
@@ -256,6 +258,7 @@ impl DefKind {
| DefKind::Use
| DefKind::ForeignMod
| DefKind::OpaqueTy
+ | DefKind::ImplTraitPlaceholder
| DefKind::Impl
| DefKind::Field
| DefKind::TyParam
@@ -310,72 +313,76 @@ pub enum Res<Id = hir::HirId> {
///
/// **Belongs to the type namespace.**
PrimTy(hir::PrimTy),
- /// The `Self` type, optionally with the [`DefId`] of the trait it belongs to and
- /// optionally with the [`DefId`] of the item introducing the `Self` type alias.
+
+ /// The `Self` type, as used within a trait.
+ ///
+ /// **Belongs to the type namespace.**
+ ///
+ /// See the examples on [`Res::SelfTyAlias`] for details.
+ SelfTyParam {
+ /// The trait this `Self` is a generic parameter for.
+ trait_: DefId,
+ },
+
+ /// The `Self` type, as used somewhere other than within a trait.
///
/// **Belongs to the type namespace.**
///
/// Examples:
/// ```
- /// struct Bar(Box<Self>);
- /// // `Res::SelfTy { trait_: None, alias_of: Some(Bar) }`
+ /// struct Bar(Box<Self>); // SelfTyAlias
///
/// trait Foo {
- /// fn foo() -> Box<Self>;
- /// // `Res::SelfTy { trait_: Some(Foo), alias_of: None }`
+ /// fn foo() -> Box<Self>; // SelfTyParam
/// }
///
/// impl Bar {
/// fn blah() {
- /// let _: Self;
- /// // `Res::SelfTy { trait_: None, alias_of: Some(::{impl#0}) }`
+ /// let _: Self; // SelfTyAlias
/// }
/// }
///
/// impl Foo for Bar {
- /// fn foo() -> Box<Self> {
- /// // `Res::SelfTy { trait_: Some(Foo), alias_of: Some(::{impl#1}) }`
- /// let _: Self;
- /// // `Res::SelfTy { trait_: Some(Foo), alias_of: Some(::{impl#1}) }`
+ /// fn foo() -> Box<Self> { // SelfTyAlias
+ /// let _: Self; // SelfTyAlias
///
/// todo!()
/// }
/// }
/// ```
- ///
/// *See also [`Res::SelfCtor`].*
///
- /// -----
- ///
- /// HACK(min_const_generics): self types also have an optional requirement to **not** mention
- /// any generic parameters to allow the following with `min_const_generics`:
- /// ```
- /// # struct Foo;
- /// impl Foo { fn test() -> [u8; std::mem::size_of::<Self>()] { todo!() } }
- ///
- /// struct Bar([u8; baz::<Self>()]);
- /// const fn baz<T>() -> usize { 10 }
- /// ```
- /// We do however allow `Self` in repeat expression even if it is generic to not break code
- /// which already works on stable while causing the `const_evaluatable_unchecked` future compat lint:
- /// ```
- /// fn foo<T>() {
- /// let _bar = [1_u8; std::mem::size_of::<*mut T>()];
- /// }
- /// ```
- // FIXME(generic_const_exprs): Remove this bodge once that feature is stable.
- SelfTy {
- /// The trait this `Self` is a generic arg for.
- trait_: Option<DefId>,
+ SelfTyAlias {
/// The item introducing the `Self` type alias. Can be used in the `type_of` query
- /// to get the underlying type. Additionally whether the `Self` type is disallowed
- /// from mentioning generics (i.e. when used in an anonymous constant).
- alias_to: Option<(DefId, bool)>,
+ /// to get the underlying type.
+ alias_to: DefId,
+
+ /// Whether the `Self` type is disallowed from mentioning generics (i.e. when used in an
+ /// anonymous constant).
+ ///
+ /// HACK(min_const_generics): self types also have an optional requirement to **not**
+ /// mention any generic parameters to allow the following with `min_const_generics`:
+ /// ```
+ /// # struct Foo;
+ /// impl Foo { fn test() -> [u8; std::mem::size_of::<Self>()] { todo!() } }
+ ///
+ /// struct Bar([u8; baz::<Self>()]);
+ /// const fn baz<T>() -> usize { 10 }
+ /// ```
+ /// We do however allow `Self` in repeat expression even if it is generic to not break code
+ /// which already works on stable while causing the `const_evaluatable_unchecked` future
+ /// compat lint:
+ /// ```
+ /// fn foo<T>() {
+ /// let _bar = [1_u8; std::mem::size_of::<*mut T>()];
+ /// }
+ /// ```
+ // FIXME(generic_const_exprs): Remove this bodge once that feature is stable.
+ forbid_generic: bool,
+
+ /// Is this within an `impl Foo for bar`?
+ is_trait_impl: bool,
},
- /// A tool attribute module; e.g., the `rustfmt` in `#[rustfmt::skip]`.
- ///
- /// **Belongs to the type namespace.**
- ToolMod,
// Value namespace
/// The `Self` constructor, along with the [`DefId`]
@@ -383,13 +390,19 @@ pub enum Res<Id = hir::HirId> {
///
/// **Belongs to the value namespace.**
///
- /// *See also [`Res::SelfTy`].*
+ /// *See also [`Res::SelfTyParam`] and [`Res::SelfTyAlias`].*
SelfCtor(DefId),
+
/// A local variable or function parameter.
///
/// **Belongs to the value namespace.**
Local(Id),
+ /// A tool attribute module; e.g., the `rustfmt` in `#[rustfmt::skip]`.
+ ///
+ /// **Belongs to the type namespace.**
+ ToolMod,
+
// Macro namespace
/// An attribute that is *not* implemented via macro.
/// E.g., `#[inline]` and `#[rustfmt::skip]`, which are essentially directives,
@@ -451,11 +464,21 @@ impl PartialRes {
pub fn unresolved_segments(&self) -> usize {
self.unresolved_segments
}
+
+ #[inline]
+ pub fn full_res(&self) -> Option<Res<NodeId>> {
+ (self.unresolved_segments == 0).then_some(self.base_res)
+ }
+
+ #[inline]
+ pub fn expect_full_res(&self) -> Res<NodeId> {
+ self.full_res().expect("unexpected unresolved segments")
+ }
}
/// Different kinds of symbols can coexist even if they share the same textual name.
/// Therefore, they each have a separate universe (known as a "namespace").
-#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
+#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub enum Namespace {
/// The type namespace includes `struct`s, `enum`s, `union`s, `trait`s, and `mod`s
/// (and, by extension, crates).
@@ -564,15 +587,11 @@ impl NonMacroAttrKind {
NonMacroAttrKind::DeriveHelper | NonMacroAttrKind::DeriveHelperCompat => {
"derive helper attribute"
}
- NonMacroAttrKind::Registered => "explicitly registered attribute",
}
}
pub fn article(self) -> &'static str {
- match self {
- NonMacroAttrKind::Registered => "an",
- _ => "a",
- }
+ "a"
}
/// Users of some attributes cannot mark them as used, so they are considered always used.
@@ -581,7 +600,7 @@ impl NonMacroAttrKind {
NonMacroAttrKind::Tool
| NonMacroAttrKind::DeriveHelper
| NonMacroAttrKind::DeriveHelperCompat => true,
- NonMacroAttrKind::Builtin(..) | NonMacroAttrKind::Registered => false,
+ NonMacroAttrKind::Builtin(..) => false,
}
}
}
@@ -603,7 +622,8 @@ impl<Id> Res<Id> {
Res::Local(..)
| Res::PrimTy(..)
- | Res::SelfTy { .. }
+ | Res::SelfTyParam { .. }
+ | Res::SelfTyAlias { .. }
| Res::SelfCtor(..)
| Res::ToolMod
| Res::NonMacroAttr(..)
@@ -626,7 +646,7 @@ impl<Id> Res<Id> {
Res::SelfCtor(..) => "self constructor",
Res::PrimTy(..) => "builtin type",
Res::Local(..) => "local variable",
- Res::SelfTy { .. } => "self type",
+ Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } => "self type",
Res::ToolMod => "tool module",
Res::NonMacroAttr(attr_kind) => attr_kind.descr(),
Res::Err => "unresolved item",
@@ -649,7 +669,10 @@ impl<Id> Res<Id> {
Res::SelfCtor(id) => Res::SelfCtor(id),
Res::PrimTy(id) => Res::PrimTy(id),
Res::Local(id) => Res::Local(map(id)),
- Res::SelfTy { trait_, alias_to } => Res::SelfTy { trait_, alias_to },
+ Res::SelfTyParam { trait_ } => Res::SelfTyParam { trait_ },
+ Res::SelfTyAlias { alias_to, forbid_generic, is_trait_impl } => {
+ Res::SelfTyAlias { alias_to, forbid_generic, is_trait_impl }
+ }
Res::ToolMod => Res::ToolMod,
Res::NonMacroAttr(attr_kind) => Res::NonMacroAttr(attr_kind),
Res::Err => Res::Err,
@@ -662,7 +685,10 @@ impl<Id> Res<Id> {
Res::SelfCtor(id) => Res::SelfCtor(id),
Res::PrimTy(id) => Res::PrimTy(id),
Res::Local(id) => Res::Local(map(id)?),
- Res::SelfTy { trait_, alias_to } => Res::SelfTy { trait_, alias_to },
+ Res::SelfTyParam { trait_ } => Res::SelfTyParam { trait_ },
+ Res::SelfTyAlias { alias_to, forbid_generic, is_trait_impl } => {
+ Res::SelfTyAlias { alias_to, forbid_generic, is_trait_impl }
+ }
Res::ToolMod => Res::ToolMod,
Res::NonMacroAttr(attr_kind) => Res::NonMacroAttr(attr_kind),
Res::Err => Res::Err,
@@ -689,7 +715,9 @@ impl<Id> Res<Id> {
pub fn ns(&self) -> Option<Namespace> {
match self {
Res::Def(kind, ..) => kind.ns(),
- Res::PrimTy(..) | Res::SelfTy { .. } | Res::ToolMod => Some(Namespace::TypeNS),
+ Res::PrimTy(..) | Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } | Res::ToolMod => {
+ Some(Namespace::TypeNS)
+ }
Res::SelfCtor(..) | Res::Local(..) => Some(Namespace::ValueNS),
Res::NonMacroAttr(..) => Some(Namespace::MacroNS),
Res::Err => None,
diff --git a/compiler/rustc_hir/src/definitions.rs b/compiler/rustc_hir/src/definitions.rs
index c2c551e78..d85ac960f 100644
--- a/compiler/rustc_hir/src/definitions.rs
+++ b/compiler/rustc_hir/src/definitions.rs
@@ -15,7 +15,6 @@ use rustc_span::symbol::{kw, sym, Symbol};
use std::fmt::{self, Write};
use std::hash::Hash;
-use tracing::debug;
/// The `DefPathTable` maps `DefIndex`es to `DefKey`s and vice versa.
/// Internally the `DefPathTable` holds a tree of `DefKey`s, where each `DefKey`
diff --git a/compiler/rustc_hir/src/errors.rs b/compiler/rustc_hir/src/errors.rs
new file mode 100644
index 000000000..e593ed104
--- /dev/null
+++ b/compiler/rustc_hir/src/errors.rs
@@ -0,0 +1,10 @@
+use crate::LangItem;
+
+#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, Encodable, Decodable)]
+pub struct LangItemError(pub LangItem);
+
+impl ToString for LangItemError {
+ fn to_string(&self) -> String {
+ format!("requires `{}` lang_item", self.0.name())
+ }
+}
diff --git a/compiler/rustc_hir/src/hir.rs b/compiler/rustc_hir/src/hir.rs
index 617433a98..ef00c1ffc 100644
--- a/compiler/rustc_hir/src/hir.rs
+++ b/compiler/rustc_hir/src/hir.rs
@@ -1,13 +1,13 @@
use crate::def::{CtorKind, DefKind, Res};
use crate::def_id::DefId;
-pub(crate) use crate::hir_id::{HirId, ItemLocalId};
+pub(crate) use crate::hir_id::{HirId, ItemLocalId, OwnerId};
use crate::intravisit::FnKind;
use crate::LangItem;
use rustc_ast as ast;
use rustc_ast::util::parser::ExprPrecedence;
use rustc_ast::{Attribute, FloatTy, IntTy, Label, LitKind, TraitObjectSyntax, UintTy};
-pub use rustc_ast::{BorrowKind, ImplPolarity, IsAuto};
+pub use rustc_ast::{BindingAnnotation, BorrowKind, ByRef, ImplPolarity, IsAuto};
pub use rustc_ast::{CaptureBy, Movability, Mutability};
use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece};
use rustc_data_structures::fingerprint::Fingerprint;
@@ -139,11 +139,10 @@ impl LifetimeName {
match self {
LifetimeName::ImplicitObjectLifetimeDefault | LifetimeName::Infer => true,
- // It might seem surprising that `Fresh` counts as
- // *not* elided -- but this is because, as far as the code
- // in the compiler is concerned -- `Fresh` variants act
- // equivalently to "some fresh name". They correspond to
- // early-bound regions on an impl, in other words.
+ // It might seem surprising that `Fresh` counts as not *elided*
+ // -- but this is because, as far as the code in the compiler is
+ // concerned -- `Fresh` variants act equivalently to "some fresh name".
+ // They correspond to early-bound regions on an impl, in other words.
LifetimeName::Error | LifetimeName::Param(..) | LifetimeName::Static => false,
}
}
@@ -202,13 +201,8 @@ impl Path<'_> {
pub struct PathSegment<'hir> {
/// The identifier portion of this path segment.
pub ident: Ident,
- // `id` and `res` are optional. We currently only use these in save-analysis,
- // any path segments without these will not have save-analysis info and
- // therefore will not have 'jump to def' in IDEs, but otherwise will not be
- // affected. (In general, we don't bother to get the defs for synthesized
- // segments, only for segments which have come from the AST).
- pub hir_id: Option<HirId>,
- pub res: Option<Res>,
+ pub hir_id: HirId,
+ pub res: Res,
/// Type/lifetime parameters attached to this path. They come in
/// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`. Note that
@@ -226,12 +220,12 @@ pub struct PathSegment<'hir> {
impl<'hir> PathSegment<'hir> {
/// Converts an identifier to the corresponding segment.
- pub fn from_ident(ident: Ident) -> PathSegment<'hir> {
- PathSegment { ident, hir_id: None, res: None, infer_args: true, args: None }
+ pub fn new(ident: Ident, hir_id: HirId, res: Res) -> PathSegment<'hir> {
+ PathSegment { ident, hir_id, res, infer_args: true, args: None }
}
pub fn invalid() -> Self {
- Self::from_ident(Ident::empty())
+ Self::new(Ident::empty(), HirId::INVALID, Res::Err)
}
pub fn args(&self) -> &GenericArgs<'hir> {
@@ -264,8 +258,8 @@ impl InferArg {
#[derive(Debug, HashStable_Generic)]
pub enum GenericArg<'hir> {
- Lifetime(Lifetime),
- Type(Ty<'hir>),
+ Lifetime(&'hir Lifetime),
+ Type(&'hir Ty<'hir>),
Const(ConstArg),
Infer(InferArg),
}
@@ -280,7 +274,7 @@ impl GenericArg<'_> {
}
}
- pub fn id(&self) -> HirId {
+ pub fn hir_id(&self) -> HirId {
match self {
GenericArg::Lifetime(l) => l.hir_id,
GenericArg::Type(t) => t.hir_id,
@@ -305,9 +299,9 @@ impl GenericArg<'_> {
pub fn to_ord(&self) -> ast::ParamKindOrd {
match self {
GenericArg::Lifetime(_) => ast::ParamKindOrd::Lifetime,
- GenericArg::Type(_) => ast::ParamKindOrd::Type,
- GenericArg::Const(_) => ast::ParamKindOrd::Const,
- GenericArg::Infer(_) => ast::ParamKindOrd::Infer,
+ GenericArg::Type(_) | GenericArg::Const(_) | GenericArg::Infer(_) => {
+ ast::ParamKindOrd::TypeOrConst
+ }
}
}
@@ -435,7 +429,7 @@ pub enum GenericBound<'hir> {
Trait(PolyTraitRef<'hir>, TraitBoundModifier),
// FIXME(davidtwco): Introduce `PolyTraitRef::LangItem`
LangItemTrait(LangItem, Span, HirId, &'hir GenericArgs<'hir>),
- Outlives(Lifetime),
+ Outlives(&'hir Lifetime),
}
impl GenericBound<'_> {
@@ -581,8 +575,7 @@ impl<'hir> Generics<'hir> {
if self.has_where_clause_predicates {
self.predicates
.iter()
- .filter(|p| p.in_where_clause())
- .last()
+ .rfind(|&p| p.in_where_clause())
.map_or(end, |p| p.span())
.shrink_to_hi()
.to(end)
@@ -738,6 +731,7 @@ pub enum PredicateOrigin {
/// A type bound (e.g., `for<'c> Foo: Send + Clone + 'c`).
#[derive(Debug, HashStable_Generic)]
pub struct WhereBoundPredicate<'hir> {
+ pub hir_id: HirId,
pub span: Span,
/// Origin of the predicate.
pub origin: PredicateOrigin,
@@ -761,7 +755,7 @@ impl<'hir> WhereBoundPredicate<'hir> {
pub struct WhereRegionPredicate<'hir> {
pub span: Span,
pub in_where_clause: bool,
- pub lifetime: Lifetime,
+ pub lifetime: &'hir Lifetime,
pub bounds: GenericBounds<'hir>,
}
@@ -778,7 +772,6 @@ impl<'hir> WhereRegionPredicate<'hir> {
/// An equality predicate (e.g., `T = int`); currently unsupported.
#[derive(Debug, HashStable_Generic)]
pub struct WhereEqPredicate<'hir> {
- pub hir_id: HirId,
pub span: Span,
pub lhs_ty: &'hir Ty<'hir>,
pub rhs_ty: &'hir Ty<'hir>,
@@ -841,7 +834,16 @@ impl<'tcx> OwnerNodes<'tcx> {
impl fmt::Debug for OwnerNodes<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("OwnerNodes")
+ // Do not print all the pointers to all the nodes, as it would be unreadable.
.field("node", &self.nodes[ItemLocalId::from_u32(0)])
+ .field(
+ "parents",
+ &self
+ .nodes
+ .iter_enumerated()
+ .map(|(id, parented_node)| (id, parented_node.as_ref().map(|node| node.parent)))
+ .collect::<Vec<_>>(),
+ )
.field("bodies", &self.bodies)
.field("local_id_to_def_id", &self.local_id_to_def_id)
.field("hash_without_bodies", &self.hash_without_bodies)
@@ -1050,30 +1052,6 @@ pub struct PatField<'hir> {
pub span: Span,
}
-/// Explicit binding annotations given in the HIR for a binding. Note
-/// that this is not the final binding *mode* that we infer after type
-/// inference.
-#[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)]
-pub enum BindingAnnotation {
- /// No binding annotation given: this means that the final binding mode
- /// will depend on whether we have skipped through a `&` reference
- /// when matching. For example, the `x` in `Some(x)` will have binding
- /// mode `None`; if you do `let Some(x) = &Some(22)`, it will
- /// ultimately be inferred to be by-reference.
- ///
- /// Note that implicit reference skipping is not implemented yet (#42640).
- Unannotated,
-
- /// Annotated with `mut x` -- could be either ref or not, similar to `None`.
- Mutable,
-
- /// Annotated as `ref`, like `ref x`
- Ref,
-
- /// Annotated as `ref mut x`.
- RefMut,
-}
-
#[derive(Copy, Clone, PartialEq, Encodable, Debug, HashStable_Generic)]
pub enum RangeEnd {
Included,
@@ -1089,6 +1067,35 @@ impl fmt::Display for RangeEnd {
}
}
+// Equivalent to `Option<usize>`. That type takes up 16 bytes on 64-bit, but
+// this type only takes up 4 bytes, at the cost of being restricted to a
+// maximum value of `u32::MAX - 1`. In practice, this is more than enough.
+#[derive(Clone, Copy, PartialEq, Eq, Hash, HashStable_Generic)]
+pub struct DotDotPos(u32);
+
+impl DotDotPos {
+ // Panics if n >= u32::MAX.
+ pub fn new(n: Option<usize>) -> Self {
+ match n {
+ Some(n) => {
+ assert!(n < u32::MAX as usize);
+ Self(n as u32)
+ }
+ None => Self(u32::MAX),
+ }
+ }
+
+ pub fn as_opt_usize(&self) -> Option<usize> {
+ if self.0 == u32::MAX { None } else { Some(self.0 as usize) }
+ }
+}
+
+impl fmt::Debug for DotDotPos {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ self.as_opt_usize().fmt(f)
+ }
+}
+
#[derive(Debug, HashStable_Generic)]
pub enum PatKind<'hir> {
/// Represents a wildcard pattern (i.e., `_`).
@@ -1105,9 +1112,9 @@ pub enum PatKind<'hir> {
Struct(QPath<'hir>, &'hir [PatField<'hir>], bool),
/// A tuple struct/variant pattern `Variant(x, y, .., z)`.
- /// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
+ /// If the `..` pattern fragment is present, then `DotDotPos` denotes its position.
/// `0 <= position <= subpats.len()`
- TupleStruct(QPath<'hir>, &'hir [Pat<'hir>], Option<usize>),
+ TupleStruct(QPath<'hir>, &'hir [Pat<'hir>], DotDotPos),
/// An or-pattern `A | B | C`.
/// Invariant: `pats.len() >= 2`.
@@ -1119,7 +1126,7 @@ pub enum PatKind<'hir> {
/// A tuple pattern (e.g., `(a, b)`).
/// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
/// `0 <= position <= subpats.len()`
- Tuple(&'hir [Pat<'hir>], Option<usize>),
+ Tuple(&'hir [Pat<'hir>], DotDotPos),
/// A `box` pattern.
Box(&'hir Pat<'hir>),
@@ -1322,7 +1329,7 @@ pub enum StmtKind<'hir> {
Semi(&'hir Expr<'hir>),
}
-/// Represents a `let` statement (i.e., `let <pat>:<ty> = <expr>;`).
+/// Represents a `let` statement (i.e., `let <pat>:<ty> = <init>;`).
#[derive(Debug, HashStable_Generic)]
pub struct Local<'hir> {
pub pat: &'hir Pat<'hir>,
@@ -1439,7 +1446,7 @@ pub struct BodyId {
#[derive(Debug, HashStable_Generic)]
pub struct Body<'hir> {
pub params: &'hir [Param<'hir>],
- pub value: Expr<'hir>,
+ pub value: &'hir Expr<'hir>,
pub generator_kind: Option<GeneratorKind>,
}
@@ -1626,7 +1633,7 @@ pub struct AnonConst {
}
/// An expression.
-#[derive(Debug)]
+#[derive(Debug, HashStable_Generic)]
pub struct Expr<'hir> {
pub hir_id: HirId,
pub kind: ExprKind<'hir>,
@@ -1882,11 +1889,11 @@ pub enum ExprKind<'hir> {
///
/// The `PathSegment` represents the method name and its generic arguments
/// (within the angle brackets).
- /// The first element of the `&[Expr]` is the expression that evaluates
+ /// The `&Expr` is the expression that evaluates
/// to the object on which the method is being called on (the receiver),
- /// and the remaining elements are the rest of the arguments.
+ /// and the `&[Expr]` is the rest of the arguments.
/// Thus, `x.foo::<Bar, Baz>(a, b, c, d)` is represented as
- /// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, [x, a, b, c, d], span)`.
+ /// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, x, [a, b, c, d], span)`.
/// The final `Span` represents the span of the function and arguments
/// (e.g. `foo::<Bar, Baz>(a, b, c, d)` in `x.foo::<Bar, Baz>(a, b, c, d)`
///
@@ -1894,7 +1901,7 @@ pub enum ExprKind<'hir> {
/// the `hir_id` of the `MethodCall` node itself.
///
/// [`type_dependent_def_id`]: ../../rustc_middle/ty/struct.TypeckResults.html#method.type_dependent_def_id
- MethodCall(&'hir PathSegment<'hir>, &'hir [Expr<'hir>], Span),
+ MethodCall(&'hir PathSegment<'hir>, &'hir Expr<'hir>, &'hir [Expr<'hir>], Span),
/// A tuple (e.g., `(a, b, c, d)`).
Tup(&'hir [Expr<'hir>]),
/// A binary operation (e.g., `a + b`, `a * b`).
@@ -2200,14 +2207,14 @@ pub struct FnSig<'hir> {
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct TraitItemId {
- pub def_id: LocalDefId,
+ pub owner_id: OwnerId,
}
impl TraitItemId {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
- HirId::make_owner(self.def_id)
+ HirId::make_owner(self.owner_id.def_id)
}
}
@@ -2218,7 +2225,7 @@ impl TraitItemId {
#[derive(Debug, HashStable_Generic)]
pub struct TraitItem<'hir> {
pub ident: Ident,
- pub def_id: LocalDefId,
+ pub owner_id: OwnerId,
pub generics: &'hir Generics<'hir>,
pub kind: TraitItemKind<'hir>,
pub span: Span,
@@ -2229,11 +2236,11 @@ impl TraitItem<'_> {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
- HirId::make_owner(self.def_id)
+ HirId::make_owner(self.owner_id.def_id)
}
pub fn trait_item_id(&self) -> TraitItemId {
- TraitItemId { def_id: self.def_id }
+ TraitItemId { owner_id: self.owner_id }
}
}
@@ -2264,14 +2271,14 @@ pub enum TraitItemKind<'hir> {
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct ImplItemId {
- pub def_id: LocalDefId,
+ pub owner_id: OwnerId,
}
impl ImplItemId {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
- HirId::make_owner(self.def_id)
+ HirId::make_owner(self.owner_id.def_id)
}
}
@@ -2279,7 +2286,7 @@ impl ImplItemId {
#[derive(Debug, HashStable_Generic)]
pub struct ImplItem<'hir> {
pub ident: Ident,
- pub def_id: LocalDefId,
+ pub owner_id: OwnerId,
pub generics: &'hir Generics<'hir>,
pub kind: ImplItemKind<'hir>,
pub defaultness: Defaultness,
@@ -2291,11 +2298,11 @@ impl ImplItem<'_> {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
- HirId::make_owner(self.def_id)
+ HirId::make_owner(self.owner_id.def_id)
}
pub fn impl_item_id(&self) -> ImplItemId {
- ImplItemId { def_id: self.def_id }
+ ImplItemId { owner_id: self.owner_id }
}
}
@@ -2308,7 +2315,7 @@ pub enum ImplItemKind<'hir> {
/// An associated function implementation with the given signature and body.
Fn(FnSig<'hir>, BodyId),
/// An associated type.
- TyAlias(&'hir Ty<'hir>),
+ Type(&'hir Ty<'hir>),
}
// The name of the associated type for `Fn` return types.
@@ -2380,7 +2387,7 @@ impl TypeBinding<'_> {
}
}
-#[derive(Debug)]
+#[derive(Debug, HashStable_Generic)]
pub struct Ty<'hir> {
pub hir_id: HirId,
pub kind: TyKind<'hir>,
@@ -2397,11 +2404,44 @@ impl<'hir> Ty<'hir> {
return None;
};
match path.res {
- Res::Def(DefKind::TyParam, def_id)
- | Res::SelfTy { trait_: Some(def_id), alias_to: None } => Some((def_id, segment.ident)),
+ Res::Def(DefKind::TyParam, def_id) | Res::SelfTyParam { trait_: def_id } => {
+ Some((def_id, segment.ident))
+ }
_ => None,
}
}
+
+ pub fn peel_refs(&self) -> &Self {
+ let mut final_ty = self;
+ while let TyKind::Rptr(_, MutTy { ty, .. }) = &final_ty.kind {
+ final_ty = &ty;
+ }
+ final_ty
+ }
+
+ pub fn find_self_aliases(&self) -> Vec<Span> {
+ use crate::intravisit::Visitor;
+ struct MyVisitor(Vec<Span>);
+ impl<'v> Visitor<'v> for MyVisitor {
+ fn visit_ty(&mut self, t: &'v Ty<'v>) {
+ if matches!(
+ &t.kind,
+ TyKind::Path(QPath::Resolved(
+ _,
+ Path { res: crate::def::Res::SelfTyAlias { .. }, .. },
+ ))
+ ) {
+ self.0.push(t.span);
+ return;
+ }
+ crate::intravisit::walk_ty(self, t);
+ }
+ }
+
+ let mut my_visitor = MyVisitor(vec![]);
+ my_visitor.visit_ty(self);
+ my_visitor.0
+ }
}
/// Not represented directly in the AST; referred to by name through a `ty_path`.
@@ -2506,6 +2546,7 @@ pub struct OpaqueTy<'hir> {
pub generics: &'hir Generics<'hir>,
pub bounds: GenericBounds<'hir>,
pub origin: OpaqueTyOrigin,
+ pub in_trait: bool,
}
/// From whence the opaque type came.
@@ -2529,7 +2570,7 @@ pub enum TyKind<'hir> {
/// A raw pointer (i.e., `*const T` or `*mut T`).
Ptr(MutTy<'hir>),
/// A reference (i.e., `&'a T` or `&'a mut T`).
- Rptr(Lifetime, MutTy<'hir>),
+ Rptr(&'hir Lifetime, MutTy<'hir>),
/// A bare function (e.g., `fn(usize) -> bool`).
BareFn(&'hir BareFnTy<'hir>),
/// The never type (`!`).
@@ -2545,10 +2586,12 @@ pub enum TyKind<'hir> {
///
/// The generic argument list contains the lifetimes (and in the future
/// possibly parameters) that are actually bound on the `impl Trait`.
- OpaqueDef(ItemId, &'hir [GenericArg<'hir>]),
+ ///
+ /// The last parameter specifies whether this opaque appears in a trait definition.
+ OpaqueDef(ItemId, &'hir [GenericArg<'hir>], bool),
/// A trait object type `Bound1 + Bound2 + Bound3`
/// where `Bound` is a trait or a lifetime.
- TraitObject(&'hir [PolyTraitRef<'hir>], Lifetime, TraitObjectSyntax),
+ TraitObject(&'hir [PolyTraitRef<'hir>], &'hir Lifetime, TraitObjectSyntax),
/// Unused for now.
Typeof(AnonConst),
/// `TyKind::Infer` means the type should be inferred instead of it having been
@@ -2562,23 +2605,23 @@ pub enum TyKind<'hir> {
pub enum InlineAsmOperand<'hir> {
In {
reg: InlineAsmRegOrRegClass,
- expr: Expr<'hir>,
+ expr: &'hir Expr<'hir>,
},
Out {
reg: InlineAsmRegOrRegClass,
late: bool,
- expr: Option<Expr<'hir>>,
+ expr: Option<&'hir Expr<'hir>>,
},
InOut {
reg: InlineAsmRegOrRegClass,
late: bool,
- expr: Expr<'hir>,
+ expr: &'hir Expr<'hir>,
},
SplitInOut {
reg: InlineAsmRegOrRegClass,
late: bool,
- in_expr: Expr<'hir>,
- out_expr: Option<Expr<'hir>>,
+ in_expr: &'hir Expr<'hir>,
+ out_expr: Option<&'hir Expr<'hir>>,
},
Const {
anon_const: AnonConst,
@@ -2643,7 +2686,7 @@ pub struct FnDecl<'hir> {
}
/// Represents what type of implicit self a function has, if any.
-#[derive(Copy, Clone, Encodable, Decodable, Debug, HashStable_Generic)]
+#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
pub enum ImplicitSelfKind {
/// Represents a `fn x(self);`.
Imm,
@@ -2871,14 +2914,14 @@ impl<'hir> VariantData<'hir> {
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, Hash, HashStable_Generic)]
pub struct ItemId {
- pub def_id: LocalDefId,
+ pub owner_id: OwnerId,
}
impl ItemId {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
- HirId::make_owner(self.def_id)
+ HirId::make_owner(self.owner_id.def_id)
}
}
@@ -2888,7 +2931,7 @@ impl ItemId {
#[derive(Debug, HashStable_Generic)]
pub struct Item<'hir> {
pub ident: Ident,
- pub def_id: LocalDefId,
+ pub owner_id: OwnerId,
pub kind: ItemKind<'hir>,
pub span: Span,
pub vis_span: Span,
@@ -2898,11 +2941,11 @@ impl Item<'_> {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
- HirId::make_owner(self.def_id)
+ HirId::make_owner(self.owner_id.def_id)
}
pub fn item_id(&self) -> ItemId {
- ItemId { def_id: self.def_id }
+ ItemId { owner_id: self.owner_id }
}
}
@@ -2992,7 +3035,7 @@ pub enum ItemKind<'hir> {
/// A MBE macro definition (`macro_rules!` or `macro`).
Macro(ast::MacroDef, MacroKind),
/// A module.
- Mod(Mod<'hir>),
+ Mod(&'hir Mod<'hir>),
/// An external module, e.g. `extern { .. }`.
ForeignMod { abi: Abi, items: &'hir [ForeignItemRef] },
/// Module-level inline assembly (from `global_asm!`).
@@ -3115,14 +3158,14 @@ pub enum AssocItemKind {
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
pub struct ForeignItemId {
- pub def_id: LocalDefId,
+ pub owner_id: OwnerId,
}
impl ForeignItemId {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
- HirId::make_owner(self.def_id)
+ HirId::make_owner(self.owner_id.def_id)
}
}
@@ -3143,7 +3186,7 @@ pub struct ForeignItemRef {
pub struct ForeignItem<'hir> {
pub ident: Ident,
pub kind: ForeignItemKind<'hir>,
- pub def_id: LocalDefId,
+ pub owner_id: OwnerId,
pub span: Span,
pub vis_span: Span,
}
@@ -3152,11 +3195,11 @@ impl ForeignItem<'_> {
#[inline]
pub fn hir_id(&self) -> HirId {
// Items are always HIR owners.
- HirId::make_owner(self.def_id)
+ HirId::make_owner(self.owner_id.def_id)
}
pub fn foreign_item_id(&self) -> ForeignItemId {
- ForeignItemId { def_id: self.def_id }
+ ForeignItemId { owner_id: self.owner_id }
}
}
@@ -3217,7 +3260,7 @@ impl<'hir> OwnerNode<'hir> {
}
}
- pub fn fn_decl(&self) -> Option<&FnDecl<'hir>> {
+ pub fn fn_decl(self) -> Option<&'hir FnDecl<'hir>> {
match self {
OwnerNode::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. })
| OwnerNode::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. })
@@ -3246,12 +3289,12 @@ impl<'hir> OwnerNode<'hir> {
Node::generics(self.into())
}
- pub fn def_id(self) -> LocalDefId {
+ pub fn def_id(self) -> OwnerId {
match self {
- OwnerNode::Item(Item { def_id, .. })
- | OwnerNode::TraitItem(TraitItem { def_id, .. })
- | OwnerNode::ImplItem(ImplItem { def_id, .. })
- | OwnerNode::ForeignItem(ForeignItem { def_id, .. }) => *def_id,
+ OwnerNode::Item(Item { owner_id, .. })
+ | OwnerNode::TraitItem(TraitItem { owner_id, .. })
+ | OwnerNode::ImplItem(ImplItem { owner_id, .. })
+ | OwnerNode::ForeignItem(ForeignItem { owner_id, .. }) => *owner_id,
OwnerNode::Crate(..) => crate::CRATE_HIR_ID.owner,
}
}
@@ -3332,12 +3375,14 @@ pub enum Node<'hir> {
Field(&'hir FieldDef<'hir>),
AnonConst(&'hir AnonConst),
Expr(&'hir Expr<'hir>),
+ ExprField(&'hir ExprField<'hir>),
Stmt(&'hir Stmt<'hir>),
PathSegment(&'hir PathSegment<'hir>),
Ty(&'hir Ty<'hir>),
TypeBinding(&'hir TypeBinding<'hir>),
TraitRef(&'hir TraitRef<'hir>),
Pat(&'hir Pat<'hir>),
+ PatField(&'hir PatField<'hir>),
Arm(&'hir Arm<'hir>),
Block(&'hir Block<'hir>),
Local(&'hir Local<'hir>),
@@ -3388,6 +3433,8 @@ impl<'hir> Node<'hir> {
| Node::Block(..)
| Node::Ctor(..)
| Node::Pat(..)
+ | Node::PatField(..)
+ | Node::ExprField(..)
| Node::Arm(..)
| Node::Local(..)
| Node::Crate(..)
@@ -3397,19 +3444,20 @@ impl<'hir> Node<'hir> {
}
}
- pub fn fn_decl(&self) -> Option<&'hir FnDecl<'hir>> {
+ pub fn fn_decl(self) -> Option<&'hir FnDecl<'hir>> {
match self {
Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. })
| Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. })
| Node::Item(Item { kind: ItemKind::Fn(fn_sig, _, _), .. }) => Some(fn_sig.decl),
- Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _), .. }) => {
+ Node::Expr(Expr { kind: ExprKind::Closure(Closure { fn_decl, .. }), .. })
+ | Node::ForeignItem(ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _), .. }) => {
Some(fn_decl)
}
_ => None,
}
}
- pub fn fn_sig(&self) -> Option<&'hir FnSig<'hir>> {
+ pub fn fn_sig(self) -> Option<&'hir FnSig<'hir>> {
match self {
Node::TraitItem(TraitItem { kind: TraitItemKind::Fn(fn_sig, _), .. })
| Node::ImplItem(ImplItem { kind: ImplItemKind::Fn(fn_sig, _), .. })
@@ -3490,17 +3538,35 @@ impl<'hir> Node<'hir> {
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
mod size_asserts {
use super::*;
- // These are in alphabetical order, which is easy to maintain.
- rustc_data_structures::static_assert_size!(Block<'static>, 48);
- rustc_data_structures::static_assert_size!(Expr<'static>, 56);
- rustc_data_structures::static_assert_size!(ForeignItem<'static>, 72);
- rustc_data_structures::static_assert_size!(GenericBound<'_>, 48);
- rustc_data_structures::static_assert_size!(Generics<'static>, 56);
- rustc_data_structures::static_assert_size!(ImplItem<'static>, 88);
- rustc_data_structures::static_assert_size!(Impl<'static>, 80);
- rustc_data_structures::static_assert_size!(Item<'static>, 80);
- rustc_data_structures::static_assert_size!(Pat<'static>, 88);
- rustc_data_structures::static_assert_size!(QPath<'static>, 24);
- rustc_data_structures::static_assert_size!(TraitItem<'static>, 96);
- rustc_data_structures::static_assert_size!(Ty<'static>, 72);
+ // tidy-alphabetical-start
+ static_assert_size!(Block<'_>, 48);
+ static_assert_size!(Body<'_>, 32);
+ static_assert_size!(Expr<'_>, 64);
+ static_assert_size!(ExprKind<'_>, 48);
+ static_assert_size!(FnDecl<'_>, 40);
+ static_assert_size!(ForeignItem<'_>, 72);
+ static_assert_size!(ForeignItemKind<'_>, 40);
+ static_assert_size!(GenericArg<'_>, 24);
+ static_assert_size!(GenericBound<'_>, 48);
+ static_assert_size!(Generics<'_>, 56);
+ static_assert_size!(Impl<'_>, 80);
+ static_assert_size!(ImplItem<'_>, 80);
+ static_assert_size!(ImplItemKind<'_>, 32);
+ static_assert_size!(Item<'_>, 80);
+ static_assert_size!(ItemKind<'_>, 48);
+ static_assert_size!(Local<'_>, 64);
+ static_assert_size!(Param<'_>, 32);
+ static_assert_size!(Pat<'_>, 72);
+ static_assert_size!(Path<'_>, 40);
+ static_assert_size!(PathSegment<'_>, 48);
+ static_assert_size!(PatKind<'_>, 48);
+ static_assert_size!(QPath<'_>, 24);
+ static_assert_size!(Res, 12);
+ static_assert_size!(Stmt<'_>, 32);
+ static_assert_size!(StmtKind<'_>, 16);
+ static_assert_size!(TraitItem<'_>, 88);
+ static_assert_size!(TraitItemKind<'_>, 48);
+ static_assert_size!(Ty<'_>, 48);
+ static_assert_size!(TyKind<'_>, 32);
+ // tidy-alphabetical-end
}
diff --git a/compiler/rustc_hir/src/hir_id.rs b/compiler/rustc_hir/src/hir_id.rs
index 346ac9e96..752f760ea 100644
--- a/compiler/rustc_hir/src/hir_id.rs
+++ b/compiler/rustc_hir/src/hir_id.rs
@@ -1,6 +1,43 @@
-use crate::def_id::{LocalDefId, CRATE_DEF_ID};
+use crate::def_id::{DefId, LocalDefId, CRATE_DEF_ID};
+use rustc_data_structures::stable_hasher::{HashStable, StableHasher, ToStableHashKey};
+use rustc_span::{def_id::DefPathHash, HashStableContext};
use std::fmt;
+#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
+#[derive(Encodable, Decodable)]
+pub struct OwnerId {
+ pub def_id: LocalDefId,
+}
+
+impl From<OwnerId> for HirId {
+ fn from(owner: OwnerId) -> HirId {
+ HirId { owner, local_id: ItemLocalId::from_u32(0) }
+ }
+}
+
+impl OwnerId {
+ #[inline]
+ pub fn to_def_id(self) -> DefId {
+ self.def_id.to_def_id()
+ }
+}
+
+impl<CTX: HashStableContext> HashStable<CTX> for OwnerId {
+ #[inline]
+ fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
+ self.to_stable_hash_key(hcx).hash_stable(hcx, hasher);
+ }
+}
+
+impl<CTX: HashStableContext> ToStableHashKey<CTX> for OwnerId {
+ type KeyType = DefPathHash;
+
+ #[inline]
+ fn to_stable_hash_key(&self, hcx: &CTX) -> DefPathHash {
+ hcx.def_path_hash(self.to_def_id())
+ }
+}
+
/// Uniquely identifies a node in the HIR of the current crate. It is
/// composed of the `owner`, which is the `LocalDefId` of the directly enclosing
/// `hir::Item`, `hir::TraitItem`, or `hir::ImplItem` (i.e., the closest "item-like"),
@@ -15,19 +52,23 @@ use std::fmt;
#[derive(Encodable, Decodable, HashStable_Generic)]
#[rustc_pass_by_value]
pub struct HirId {
- pub owner: LocalDefId,
+ pub owner: OwnerId,
pub local_id: ItemLocalId,
}
impl HirId {
+ /// Signal local id which should never be used.
+ pub const INVALID: HirId =
+ HirId { owner: OwnerId { def_id: CRATE_DEF_ID }, local_id: ItemLocalId::INVALID };
+
#[inline]
- pub fn expect_owner(self) -> LocalDefId {
+ pub fn expect_owner(self) -> OwnerId {
assert_eq!(self.local_id.index(), 0);
self.owner
}
#[inline]
- pub fn as_owner(self) -> Option<LocalDefId> {
+ pub fn as_owner(self) -> Option<OwnerId> {
if self.local_id.index() == 0 { Some(self.owner) } else { None }
}
@@ -38,11 +79,14 @@ impl HirId {
#[inline]
pub fn make_owner(owner: LocalDefId) -> Self {
- Self { owner, local_id: ItemLocalId::from_u32(0) }
+ Self { owner: OwnerId { def_id: owner }, local_id: ItemLocalId::from_u32(0) }
}
pub fn index(self) -> (usize, usize) {
- (rustc_index::vec::Idx::index(self.owner), rustc_index::vec::Idx::index(self.local_id))
+ (
+ rustc_index::vec::Idx::index(self.owner.def_id),
+ rustc_index::vec::Idx::index(self.local_id),
+ )
}
}
@@ -64,8 +108,13 @@ impl PartialOrd for HirId {
}
}
-rustc_data_structures::define_id_collections!(HirIdMap, HirIdSet, HirId);
-rustc_data_structures::define_id_collections!(ItemLocalMap, ItemLocalSet, ItemLocalId);
+rustc_data_structures::define_stable_id_collections!(HirIdMap, HirIdSet, HirIdMapEntry, HirId);
+rustc_data_structures::define_id_collections!(
+ ItemLocalMap,
+ ItemLocalSet,
+ ItemLocalMapEntry,
+ ItemLocalId
+);
rustc_index::newtype_index! {
/// An `ItemLocalId` uniquely identifies something within a given "item-like";
@@ -86,4 +135,7 @@ impl ItemLocalId {
}
/// The `HirId` corresponding to `CRATE_NODE_ID` and `CRATE_DEF_ID`.
-pub const CRATE_HIR_ID: HirId = HirId { owner: CRATE_DEF_ID, local_id: ItemLocalId::from_u32(0) };
+pub const CRATE_HIR_ID: HirId =
+ HirId { owner: OwnerId { def_id: CRATE_DEF_ID }, local_id: ItemLocalId::from_u32(0) };
+
+pub const CRATE_OWNER_ID: OwnerId = OwnerId { def_id: CRATE_DEF_ID };
diff --git a/compiler/rustc_hir/src/intravisit.rs b/compiler/rustc_hir/src/intravisit.rs
index e676acebe..be77e6fd3 100644
--- a/compiler/rustc_hir/src/intravisit.rs
+++ b/compiler/rustc_hir/src/intravisit.rs
@@ -298,7 +298,7 @@ pub trait Visitor<'v>: Sized {
fn visit_id(&mut self, _hir_id: HirId) {
// Nothing to do.
}
- fn visit_name(&mut self, _span: Span, _name: Symbol) {
+ fn visit_name(&mut self, _name: Symbol) {
// Nothing to do.
}
fn visit_ident(&mut self, ident: Ident) {
@@ -325,6 +325,9 @@ pub trait Visitor<'v>: Sized {
fn visit_pat(&mut self, p: &'v Pat<'v>) {
walk_pat(self, p)
}
+ fn visit_pat_field(&mut self, f: &'v PatField<'v>) {
+ walk_pat_field(self, f)
+ }
fn visit_array_length(&mut self, len: &'v ArrayLen) {
walk_array_len(self, len)
}
@@ -337,6 +340,9 @@ pub trait Visitor<'v>: Sized {
fn visit_let_expr(&mut self, lex: &'v Let<'v>) {
walk_let_expr(self, lex)
}
+ fn visit_expr_field(&mut self, field: &'v ExprField<'v>) {
+ walk_expr_field(self, field)
+ }
fn visit_ty(&mut self, t: &'v Ty<'v>) {
walk_ty(self, t)
}
@@ -355,8 +361,8 @@ pub trait Visitor<'v>: Sized {
fn visit_fn_decl(&mut self, fd: &'v FnDecl<'v>) {
walk_fn_decl(self, fd)
}
- fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v FnDecl<'v>, b: BodyId, s: Span, id: HirId) {
- walk_fn(self, fk, fd, b, s, id)
+ fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v FnDecl<'v>, b: BodyId, _: Span, id: HirId) {
+ walk_fn(self, fk, fd, b, id)
}
fn visit_use(&mut self, path: &'v Path<'v>, hir_id: HirId) {
walk_use(self, path, hir_id)
@@ -382,33 +388,20 @@ pub trait Visitor<'v>: Sized {
fn visit_param_bound(&mut self, bounds: &'v GenericBound<'v>) {
walk_param_bound(self, bounds)
}
- fn visit_poly_trait_ref(&mut self, t: &'v PolyTraitRef<'v>, m: TraitBoundModifier) {
- walk_poly_trait_ref(self, t, m)
- }
- fn visit_variant_data(
- &mut self,
- s: &'v VariantData<'v>,
- _: Symbol,
- _: &'v Generics<'v>,
- _parent_id: HirId,
- _: Span,
- ) {
+ fn visit_poly_trait_ref(&mut self, t: &'v PolyTraitRef<'v>) {
+ walk_poly_trait_ref(self, t)
+ }
+ fn visit_variant_data(&mut self, s: &'v VariantData<'v>) {
walk_struct_def(self, s)
}
fn visit_field_def(&mut self, s: &'v FieldDef<'v>) {
walk_field_def(self, s)
}
- fn visit_enum_def(
- &mut self,
- enum_definition: &'v EnumDef<'v>,
- generics: &'v Generics<'v>,
- item_id: HirId,
- _: Span,
- ) {
- walk_enum_def(self, enum_definition, generics, item_id)
+ fn visit_enum_def(&mut self, enum_definition: &'v EnumDef<'v>, item_id: HirId) {
+ walk_enum_def(self, enum_definition, item_id)
}
- fn visit_variant(&mut self, v: &'v Variant<'v>, g: &'v Generics<'v>, item_id: HirId) {
- walk_variant(self, v, g, item_id)
+ fn visit_variant(&mut self, v: &'v Variant<'v>) {
+ walk_variant(self, v)
}
fn visit_label(&mut self, label: &'v Label) {
walk_label(self, label)
@@ -427,17 +420,18 @@ pub trait Visitor<'v>: Sized {
fn visit_lifetime(&mut self, lifetime: &'v Lifetime) {
walk_lifetime(self, lifetime)
}
- fn visit_qpath(&mut self, qpath: &'v QPath<'v>, id: HirId, span: Span) {
- walk_qpath(self, qpath, id, span)
+ // The span is that of the surrounding type/pattern/expr/whatever.
+ fn visit_qpath(&mut self, qpath: &'v QPath<'v>, id: HirId, _span: Span) {
+ walk_qpath(self, qpath, id)
}
fn visit_path(&mut self, path: &'v Path<'v>, _id: HirId) {
walk_path(self, path)
}
- fn visit_path_segment(&mut self, path_span: Span, path_segment: &'v PathSegment<'v>) {
- walk_path_segment(self, path_span, path_segment)
+ fn visit_path_segment(&mut self, path_segment: &'v PathSegment<'v>) {
+ walk_path_segment(self, path_segment)
}
- fn visit_generic_args(&mut self, path_span: Span, generic_args: &'v GenericArgs<'v>) {
- walk_generic_args(self, path_span, generic_args)
+ fn visit_generic_args(&mut self, generic_args: &'v GenericArgs<'v>) {
+ walk_generic_args(self, generic_args)
}
fn visit_assoc_type_binding(&mut self, type_binding: &'v TypeBinding<'v>) {
walk_assoc_type_binding(self, type_binding)
@@ -479,7 +473,7 @@ pub fn walk_local<'v, V: Visitor<'v>>(visitor: &mut V, local: &'v Local<'v>) {
}
pub fn walk_ident<'v, V: Visitor<'v>>(visitor: &mut V, ident: Ident) {
- visitor.visit_name(ident.span, ident.name);
+ visitor.visit_name(ident.name);
}
pub fn walk_label<'v, V: Visitor<'v>>(visitor: &mut V, label: &'v Label) {
@@ -501,11 +495,7 @@ pub fn walk_lifetime<'v, V: Visitor<'v>>(visitor: &mut V, lifetime: &'v Lifetime
}
}
-pub fn walk_poly_trait_ref<'v, V: Visitor<'v>>(
- visitor: &mut V,
- trait_ref: &'v PolyTraitRef<'v>,
- _modifier: TraitBoundModifier,
-) {
+pub fn walk_poly_trait_ref<'v, V: Visitor<'v>>(visitor: &mut V, trait_ref: &'v PolyTraitRef<'v>) {
walk_list!(visitor, visit_generic_param, trait_ref.bound_generic_params);
visitor.visit_trait_ref(&trait_ref.trait_ref);
}
@@ -526,7 +516,7 @@ pub fn walk_item<'v, V: Visitor<'v>>(visitor: &mut V, item: &'v Item<'v>) {
ItemKind::ExternCrate(orig_name) => {
visitor.visit_id(item.hir_id());
if let Some(orig_name) = orig_name {
- visitor.visit_name(item.span, orig_name);
+ visitor.visit_name(orig_name);
}
}
ItemKind::Use(ref path, _) => {
@@ -572,7 +562,7 @@ pub fn walk_item<'v, V: Visitor<'v>>(visitor: &mut V, item: &'v Item<'v>) {
ItemKind::Enum(ref enum_definition, ref generics) => {
visitor.visit_generics(generics);
// `visit_enum_def()` takes care of visiting the `Item`'s `HirId`.
- visitor.visit_enum_def(enum_definition, generics, item.hir_id(), item.span)
+ visitor.visit_enum_def(enum_definition, item.hir_id())
}
ItemKind::Impl(Impl {
unsafety: _,
@@ -595,13 +585,7 @@ pub fn walk_item<'v, V: Visitor<'v>>(visitor: &mut V, item: &'v Item<'v>) {
| ItemKind::Union(ref struct_definition, ref generics) => {
visitor.visit_generics(generics);
visitor.visit_id(item.hir_id());
- visitor.visit_variant_data(
- struct_definition,
- item.ident.name,
- generics,
- item.hir_id(),
- item.span,
- );
+ visitor.visit_variant_data(struct_definition);
}
ItemKind::Trait(.., ref generics, bounds, trait_item_refs) => {
visitor.visit_id(item.hir_id());
@@ -649,28 +633,16 @@ pub fn walk_use<'v, V: Visitor<'v>>(visitor: &mut V, path: &'v Path<'v>, hir_id:
pub fn walk_enum_def<'v, V: Visitor<'v>>(
visitor: &mut V,
enum_definition: &'v EnumDef<'v>,
- generics: &'v Generics<'v>,
item_id: HirId,
) {
visitor.visit_id(item_id);
- walk_list!(visitor, visit_variant, enum_definition.variants, generics, item_id);
+ walk_list!(visitor, visit_variant, enum_definition.variants);
}
-pub fn walk_variant<'v, V: Visitor<'v>>(
- visitor: &mut V,
- variant: &'v Variant<'v>,
- generics: &'v Generics<'v>,
- parent_item_id: HirId,
-) {
+pub fn walk_variant<'v, V: Visitor<'v>>(visitor: &mut V, variant: &'v Variant<'v>) {
visitor.visit_ident(variant.ident);
visitor.visit_id(variant.id);
- visitor.visit_variant_data(
- &variant.data,
- variant.ident.name,
- generics,
- parent_item_id,
- variant.span,
- );
+ visitor.visit_variant_data(&variant.data);
walk_list!(visitor, visit_anon_const, &variant.disr_expr);
}
@@ -695,7 +667,7 @@ pub fn walk_ty<'v, V: Visitor<'v>>(visitor: &mut V, typ: &'v Ty<'v>) {
TyKind::Path(ref qpath) => {
visitor.visit_qpath(qpath, typ.hir_id, typ.span);
}
- TyKind::OpaqueDef(item_id, lifetimes) => {
+ TyKind::OpaqueDef(item_id, lifetimes, _in_trait) => {
visitor.visit_nested_item(item_id);
walk_list!(visitor, visit_generic_arg, lifetimes);
}
@@ -705,7 +677,7 @@ pub fn walk_ty<'v, V: Visitor<'v>>(visitor: &mut V, typ: &'v Ty<'v>) {
}
TyKind::TraitObject(bounds, ref lifetime, _syntax) => {
for bound in bounds {
- visitor.visit_poly_trait_ref(bound, TraitBoundModifier::None);
+ visitor.visit_poly_trait_ref(bound);
}
visitor.visit_lifetime(lifetime);
}
@@ -718,12 +690,7 @@ pub fn walk_inf<'v, V: Visitor<'v>>(visitor: &mut V, inf: &'v InferArg) {
visitor.visit_id(inf.hir_id);
}
-pub fn walk_qpath<'v, V: Visitor<'v>>(
- visitor: &mut V,
- qpath: &'v QPath<'v>,
- id: HirId,
- span: Span,
-) {
+pub fn walk_qpath<'v, V: Visitor<'v>>(visitor: &mut V, qpath: &'v QPath<'v>, id: HirId) {
match *qpath {
QPath::Resolved(ref maybe_qself, ref path) => {
walk_list!(visitor, visit_ty, maybe_qself);
@@ -731,7 +698,7 @@ pub fn walk_qpath<'v, V: Visitor<'v>>(
}
QPath::TypeRelative(ref qself, ref segment) => {
visitor.visit_ty(qself);
- visitor.visit_path_segment(span, segment);
+ visitor.visit_path_segment(segment);
}
QPath::LangItem(..) => {}
}
@@ -739,27 +706,19 @@ pub fn walk_qpath<'v, V: Visitor<'v>>(
pub fn walk_path<'v, V: Visitor<'v>>(visitor: &mut V, path: &'v Path<'v>) {
for segment in path.segments {
- visitor.visit_path_segment(path.span, segment);
+ visitor.visit_path_segment(segment);
}
}
-pub fn walk_path_segment<'v, V: Visitor<'v>>(
- visitor: &mut V,
- path_span: Span,
- segment: &'v PathSegment<'v>,
-) {
+pub fn walk_path_segment<'v, V: Visitor<'v>>(visitor: &mut V, segment: &'v PathSegment<'v>) {
visitor.visit_ident(segment.ident);
- walk_list!(visitor, visit_id, segment.hir_id);
+ visitor.visit_id(segment.hir_id);
if let Some(ref args) = segment.args {
- visitor.visit_generic_args(path_span, args);
+ visitor.visit_generic_args(args);
}
}
-pub fn walk_generic_args<'v, V: Visitor<'v>>(
- visitor: &mut V,
- _path_span: Span,
- generic_args: &'v GenericArgs<'v>,
-) {
+pub fn walk_generic_args<'v, V: Visitor<'v>>(visitor: &mut V, generic_args: &'v GenericArgs<'v>) {
walk_list!(visitor, visit_generic_arg, generic_args.args);
walk_list!(visitor, visit_assoc_type_binding, generic_args.bindings);
}
@@ -770,7 +729,7 @@ pub fn walk_assoc_type_binding<'v, V: Visitor<'v>>(
) {
visitor.visit_id(type_binding.hir_id);
visitor.visit_ident(type_binding.ident);
- visitor.visit_generic_args(type_binding.span, type_binding.gen_args);
+ visitor.visit_generic_args(type_binding.gen_args);
match type_binding.kind {
TypeBindingKind::Equality { ref term } => match term {
Term::Ty(ref ty) => visitor.visit_ty(ty),
@@ -792,11 +751,7 @@ pub fn walk_pat<'v, V: Visitor<'v>>(visitor: &mut V, pattern: &'v Pat<'v>) {
}
PatKind::Struct(ref qpath, fields, _) => {
visitor.visit_qpath(qpath, pattern.hir_id, pattern.span);
- for field in fields {
- visitor.visit_id(field.hir_id);
- visitor.visit_ident(field.ident);
- visitor.visit_pat(&field.pat)
- }
+ walk_list!(visitor, visit_pat_field, fields);
}
PatKind::Or(pats) => walk_list!(visitor, visit_pat, pats),
PatKind::Tuple(tuple_elements, _) => {
@@ -823,6 +778,12 @@ pub fn walk_pat<'v, V: Visitor<'v>>(visitor: &mut V, pattern: &'v Pat<'v>) {
}
}
+pub fn walk_pat_field<'v, V: Visitor<'v>>(visitor: &mut V, field: &'v PatField<'v>) {
+ visitor.visit_id(field.hir_id);
+ visitor.visit_ident(field.ident);
+ visitor.visit_pat(&field.pat)
+}
+
pub fn walk_foreign_item<'v, V: Visitor<'v>>(visitor: &mut V, foreign_item: &'v ForeignItem<'v>) {
visitor.visit_id(foreign_item.hir_id());
visitor.visit_ident(foreign_item.ident);
@@ -842,12 +803,12 @@ pub fn walk_foreign_item<'v, V: Visitor<'v>>(visitor: &mut V, foreign_item: &'v
pub fn walk_param_bound<'v, V: Visitor<'v>>(visitor: &mut V, bound: &'v GenericBound<'v>) {
match *bound {
- GenericBound::Trait(ref typ, modifier) => {
- visitor.visit_poly_trait_ref(typ, modifier);
+ GenericBound::Trait(ref typ, _modifier) => {
+ visitor.visit_poly_trait_ref(typ);
}
- GenericBound::LangItemTrait(_, span, hir_id, args) => {
+ GenericBound::LangItemTrait(_, _span, hir_id, args) => {
visitor.visit_id(hir_id);
- visitor.visit_generic_args(span, args);
+ visitor.visit_generic_args(args);
}
GenericBound::Outlives(ref lifetime) => visitor.visit_lifetime(lifetime),
}
@@ -886,23 +847,28 @@ pub fn walk_where_predicate<'v, V: Visitor<'v>>(
) {
match *predicate {
WherePredicate::BoundPredicate(WhereBoundPredicate {
+ hir_id,
ref bounded_ty,
bounds,
bound_generic_params,
- ..
+ origin: _,
+ span: _,
}) => {
+ visitor.visit_id(hir_id);
visitor.visit_ty(bounded_ty);
walk_list!(visitor, visit_param_bound, bounds);
walk_list!(visitor, visit_generic_param, bound_generic_params);
}
- WherePredicate::RegionPredicate(WhereRegionPredicate { ref lifetime, bounds, .. }) => {
+ WherePredicate::RegionPredicate(WhereRegionPredicate {
+ ref lifetime,
+ bounds,
+ span: _,
+ in_where_clause: _,
+ }) => {
visitor.visit_lifetime(lifetime);
walk_list!(visitor, visit_param_bound, bounds);
}
- WherePredicate::EqPredicate(WhereEqPredicate {
- hir_id, ref lhs_ty, ref rhs_ty, ..
- }) => {
- visitor.visit_id(hir_id);
+ WherePredicate::EqPredicate(WhereEqPredicate { ref lhs_ty, ref rhs_ty, span: _ }) => {
visitor.visit_ty(lhs_ty);
visitor.visit_ty(rhs_ty);
}
@@ -936,7 +902,6 @@ pub fn walk_fn<'v, V: Visitor<'v>>(
function_kind: FnKind<'v>,
function_declaration: &'v FnDecl<'v>,
body_id: BodyId,
- _span: Span,
id: HirId,
) {
visitor.visit_id(id);
@@ -947,7 +912,7 @@ pub fn walk_fn<'v, V: Visitor<'v>>(
pub fn walk_trait_item<'v, V: Visitor<'v>>(visitor: &mut V, trait_item: &'v TraitItem<'v>) {
// N.B., deliberately force a compilation error if/when new fields are added.
- let TraitItem { ident, generics, ref defaultness, ref kind, span, def_id: _ } = *trait_item;
+ let TraitItem { ident, generics, ref defaultness, ref kind, span, owner_id: _ } = *trait_item;
let hir_id = trait_item.hir_id();
visitor.visit_ident(ident);
visitor.visit_generics(&generics);
@@ -987,7 +952,7 @@ pub fn walk_trait_item_ref<'v, V: Visitor<'v>>(visitor: &mut V, trait_item_ref:
pub fn walk_impl_item<'v, V: Visitor<'v>>(visitor: &mut V, impl_item: &'v ImplItem<'v>) {
// N.B., deliberately force a compilation error if/when new fields are added.
let ImplItem {
- def_id: _,
+ owner_id: _,
ident,
ref generics,
ref kind,
@@ -1014,7 +979,7 @@ pub fn walk_impl_item<'v, V: Visitor<'v>>(visitor: &mut V, impl_item: &'v ImplIt
impl_item.hir_id(),
);
}
- ImplItemKind::TyAlias(ref ty) => {
+ ImplItemKind::Type(ref ty) => {
visitor.visit_id(impl_item.hir_id());
visitor.visit_ty(ty);
}
@@ -1090,6 +1055,12 @@ pub fn walk_let_expr<'v, V: Visitor<'v>>(visitor: &mut V, let_expr: &'v Let<'v>)
walk_list!(visitor, visit_ty, let_expr.ty);
}
+pub fn walk_expr_field<'v, V: Visitor<'v>>(visitor: &mut V, field: &'v ExprField<'v>) {
+ visitor.visit_id(field.hir_id);
+ visitor.visit_ident(field.ident);
+ visitor.visit_expr(&field.expr)
+}
+
pub fn walk_expr<'v, V: Visitor<'v>>(visitor: &mut V, expression: &'v Expr<'v>) {
visitor.visit_id(expression.hir_id);
match expression.kind {
@@ -1104,11 +1075,7 @@ pub fn walk_expr<'v, V: Visitor<'v>>(visitor: &mut V, expression: &'v Expr<'v>)
}
ExprKind::Struct(ref qpath, fields, ref optional_base) => {
visitor.visit_qpath(qpath, expression.hir_id, expression.span);
- for field in fields {
- visitor.visit_id(field.hir_id);
- visitor.visit_ident(field.ident);
- visitor.visit_expr(&field.expr)
- }
+ walk_list!(visitor, visit_expr_field, fields);
walk_list!(visitor, visit_expr, optional_base);
}
ExprKind::Tup(subexpressions) => {
@@ -1118,8 +1085,9 @@ pub fn walk_expr<'v, V: Visitor<'v>>(visitor: &mut V, expression: &'v Expr<'v>)
visitor.visit_expr(callee_expression);
walk_list!(visitor, visit_expr, arguments);
}
- ExprKind::MethodCall(ref segment, arguments, _) => {
- visitor.visit_path_segment(expression.span, segment);
+ ExprKind::MethodCall(ref segment, receiver, arguments, _) => {
+ visitor.visit_path_segment(segment);
+ visitor.visit_expr(receiver);
walk_list!(visitor, visit_expr, arguments);
}
ExprKind::Binary(_, ref left_expression, ref right_expression) => {
diff --git a/compiler/rustc_hir/src/lang_items.rs b/compiler/rustc_hir/src/lang_items.rs
index c337be12a..ca615a491 100644
--- a/compiler/rustc_hir/src/lang_items.rs
+++ b/compiler/rustc_hir/src/lang_items.rs
@@ -8,6 +8,7 @@
//! * Functions called by the compiler itself.
use crate::def_id::DefId;
+use crate::errors::LangItemError;
use crate::{MethodKind, Target};
use rustc_ast as ast;
@@ -115,9 +116,9 @@ macro_rules! language_item_table {
/// Requires that a given `LangItem` was bound and returns the corresponding `DefId`.
/// If it wasn't bound, e.g. due to a missing `#[lang = "<it.name()>"]`,
- /// returns an error message as a string.
- pub fn require(&self, it: LangItem) -> Result<DefId, String> {
- self.items[it as usize].ok_or_else(|| format!("requires `{}` lang_item", it.name()))
+ /// returns an error encapsulating the `LangItem`.
+ pub fn require(&self, it: LangItem) -> Result<DefId, LangItemError> {
+ self.items[it as usize].ok_or_else(|| LangItemError(it))
}
/// Returns the [`DefId`]s of all lang items in a group.
@@ -192,7 +193,8 @@ language_item_table! {
DispatchFromDyn, sym::dispatch_from_dyn, dispatch_from_dyn_trait, Target::Trait, GenericRequirement::Minimum(1);
// language items relating to transmutability
- TransmuteTrait, sym::transmute_trait, transmute_trait, Target::Trait, GenericRequirement::Exact(6);
+ TransmuteOpts, sym::transmute_opts, transmute_opts, Target::Struct, GenericRequirement::Exact(0);
+ TransmuteTrait, sym::transmute_trait, transmute_trait, Target::Trait, GenericRequirement::Exact(3);
Add(Op), sym::add, add_trait, Target::Trait, GenericRequirement::Exact(1);
Sub(Op), sym::sub, sub_trait, Target::Trait, GenericRequirement::Exact(1);
@@ -236,7 +238,6 @@ language_item_table! {
Future, sym::future_trait, future_trait, Target::Trait, GenericRequirement::Exact(0);
GeneratorState, sym::generator_state, gen_state, Target::Enum, GenericRequirement::None;
Generator, sym::generator, gen_trait, Target::Trait, GenericRequirement::Minimum(1);
- GeneratorReturn, sym::generator_return, generator_return, Target::AssocTy, GenericRequirement::None;
Unpin, sym::unpin, unpin_trait, Target::Trait, GenericRequirement::None;
Pin, sym::pin, pin_type, Target::Struct, GenericRequirement::None;
@@ -267,8 +268,6 @@ language_item_table! {
DropInPlace, sym::drop_in_place, drop_in_place_fn, Target::Fn, GenericRequirement::Minimum(1);
Oom, sym::oom, oom, Target::Fn, GenericRequirement::None;
AllocLayout, sym::alloc_layout, alloc_layout, Target::Struct, GenericRequirement::None;
- ConstEvalSelect, sym::const_eval_select, const_eval_select, Target::Fn, GenericRequirement::Exact(4);
- ConstConstEvalSelect, sym::const_eval_select_ct,const_eval_select_ct, Target::Fn, GenericRequirement::Exact(4);
Start, sym::start, start_fn, Target::Fn, GenericRequirement::Exact(1);
@@ -290,6 +289,8 @@ language_item_table! {
Try, sym::Try, try_trait, Target::Trait, GenericRequirement::None;
+ Tuple, sym::tuple_trait, tuple_trait, Target::Trait, GenericRequirement::Exact(0);
+
SliceLen, sym::slice_len_fn, slice_len_fn, Target::Method(MethodKind::Inherent), GenericRequirement::None;
// Language items from AST lowering
diff --git a/compiler/rustc_hir/src/lib.rs b/compiler/rustc_hir/src/lib.rs
index 0f9e6fa7b..1c4aa420c 100644
--- a/compiler/rustc_hir/src/lib.rs
+++ b/compiler/rustc_hir/src/lib.rs
@@ -4,18 +4,22 @@
#![feature(associated_type_defaults)]
#![feature(closure_track_caller)]
-#![feature(const_btree_new)]
-#![feature(let_else)]
+#![feature(const_btree_len)]
#![feature(once_cell)]
#![feature(min_specialization)]
#![feature(never_type)]
#![feature(rustc_attrs)]
#![recursion_limit = "256"]
+#![deny(rustc::untranslatable_diagnostic)]
+#![deny(rustc::diagnostic_outside_of_impl)]
#[macro_use]
extern crate rustc_macros;
#[macro_use]
+extern crate tracing;
+
+#[macro_use]
extern crate rustc_data_structures;
extern crate self as rustc_hir;
@@ -25,6 +29,7 @@ pub mod def;
pub mod def_path_hash_map;
pub mod definitions;
pub mod diagnostic_items;
+pub mod errors;
pub use rustc_span::def_id;
mod hir;
pub mod hir_id;
diff --git a/compiler/rustc_hir/src/pat_util.rs b/compiler/rustc_hir/src/pat_util.rs
index 93112199b..0c1819bb0 100644
--- a/compiler/rustc_hir/src/pat_util.rs
+++ b/compiler/rustc_hir/src/pat_util.rs
@@ -1,6 +1,6 @@
use crate::def::{CtorOf, DefKind, Res};
use crate::def_id::DefId;
-use crate::hir::{self, HirId, PatKind};
+use crate::hir::{self, BindingAnnotation, ByRef, HirId, PatKind};
use rustc_data_structures::fx::FxHashSet;
use rustc_span::hygiene::DesugaringKind;
use rustc_span::symbol::Ident;
@@ -35,7 +35,7 @@ pub trait EnumerateAndAdjustIterator {
fn enumerate_and_adjust(
self,
expected_len: usize,
- gap_pos: Option<usize>,
+ gap_pos: hir::DotDotPos,
) -> EnumerateAndAdjust<Self>
where
Self: Sized;
@@ -45,7 +45,7 @@ impl<T: ExactSizeIterator> EnumerateAndAdjustIterator for T {
fn enumerate_and_adjust(
self,
expected_len: usize,
- gap_pos: Option<usize>,
+ gap_pos: hir::DotDotPos,
) -> EnumerateAndAdjust<Self>
where
Self: Sized,
@@ -53,7 +53,7 @@ impl<T: ExactSizeIterator> EnumerateAndAdjustIterator for T {
let actual_len = self.len();
EnumerateAndAdjust {
enumerate: self.enumerate(),
- gap_pos: gap_pos.unwrap_or(expected_len),
+ gap_pos: gap_pos.as_opt_usize().unwrap_or(expected_len),
gap_len: expected_len - actual_len,
}
}
@@ -93,12 +93,7 @@ impl hir::Pat<'_> {
pub fn simple_ident(&self) -> Option<Ident> {
match self.kind {
- PatKind::Binding(
- hir::BindingAnnotation::Unannotated | hir::BindingAnnotation::Mutable,
- _,
- ident,
- None,
- ) => Some(ident),
+ PatKind::Binding(BindingAnnotation(ByRef::No, _), _, ident, None) => Some(ident),
_ => None,
}
}
@@ -135,11 +130,11 @@ impl hir::Pat<'_> {
pub fn contains_explicit_ref_binding(&self) -> Option<hir::Mutability> {
let mut result = None;
self.each_binding(|annotation, _, _, _| match annotation {
- hir::BindingAnnotation::Ref => match result {
+ hir::BindingAnnotation::REF => match result {
None | Some(hir::Mutability::Not) => result = Some(hir::Mutability::Not),
_ => {}
},
- hir::BindingAnnotation::RefMut => result = Some(hir::Mutability::Mut),
+ hir::BindingAnnotation::REF_MUT => result = Some(hir::Mutability::Mut),
_ => {}
});
result
diff --git a/compiler/rustc_hir/src/stable_hash_impls.rs b/compiler/rustc_hir/src/stable_hash_impls.rs
index 8ccd59e8e..23423e8f3 100644
--- a/compiler/rustc_hir/src/stable_hash_impls.rs
+++ b/compiler/rustc_hir/src/stable_hash_impls.rs
@@ -1,8 +1,7 @@
use rustc_data_structures::stable_hasher::{HashStable, StableHasher, ToStableHashKey};
use crate::hir::{
- AttributeMap, BodyId, Crate, Expr, ForeignItemId, ImplItemId, ItemId, OwnerNodes, TraitItemId,
- Ty,
+ AttributeMap, BodyId, Crate, ForeignItemId, ImplItemId, ItemId, OwnerNodes, TraitItemId,
};
use crate::hir_id::{HirId, ItemLocalId};
use rustc_span::def_id::DefPathHash;
@@ -14,8 +13,6 @@ pub trait HashStableContext:
rustc_ast::HashStableContext + rustc_target::HashStableContext
{
fn hash_body_id(&mut self, _: BodyId, hasher: &mut StableHasher);
- fn hash_hir_expr(&mut self, _: &Expr<'_>, hasher: &mut StableHasher);
- fn hash_hir_ty(&mut self, _: &Ty<'_>, hasher: &mut StableHasher);
}
impl<HirCtx: crate::HashStableContext> ToStableHashKey<HirCtx> for HirId {
@@ -23,7 +20,7 @@ impl<HirCtx: crate::HashStableContext> ToStableHashKey<HirCtx> for HirId {
#[inline]
fn to_stable_hash_key(&self, hcx: &HirCtx) -> (DefPathHash, ItemLocalId) {
- let def_path_hash = self.owner.to_stable_hash_key(hcx);
+ let def_path_hash = self.owner.def_id.to_stable_hash_key(hcx);
(def_path_hash, self.local_id)
}
}
@@ -52,7 +49,7 @@ impl<HirCtx: crate::HashStableContext> ToStableHashKey<HirCtx> for ItemId {
#[inline]
fn to_stable_hash_key(&self, hcx: &HirCtx) -> DefPathHash {
- self.def_id.to_stable_hash_key(hcx)
+ self.owner_id.def_id.to_stable_hash_key(hcx)
}
}
@@ -61,7 +58,7 @@ impl<HirCtx: crate::HashStableContext> ToStableHashKey<HirCtx> for TraitItemId {
#[inline]
fn to_stable_hash_key(&self, hcx: &HirCtx) -> DefPathHash {
- self.def_id.to_stable_hash_key(hcx)
+ self.owner_id.def_id.to_stable_hash_key(hcx)
}
}
@@ -70,7 +67,7 @@ impl<HirCtx: crate::HashStableContext> ToStableHashKey<HirCtx> for ImplItemId {
#[inline]
fn to_stable_hash_key(&self, hcx: &HirCtx) -> DefPathHash {
- self.def_id.to_stable_hash_key(hcx)
+ self.owner_id.def_id.to_stable_hash_key(hcx)
}
}
@@ -79,7 +76,7 @@ impl<HirCtx: crate::HashStableContext> ToStableHashKey<HirCtx> for ForeignItemId
#[inline]
fn to_stable_hash_key(&self, hcx: &HirCtx) -> DefPathHash {
- self.def_id.to_stable_hash_key(hcx)
+ self.owner_id.def_id.to_stable_hash_key(hcx)
}
}
@@ -96,18 +93,6 @@ impl<HirCtx: crate::HashStableContext> HashStable<HirCtx> for BodyId {
// want to pick up on a reference changing its target, so we hash the NodeIds
// in "DefPath Mode".
-impl<HirCtx: crate::HashStableContext> HashStable<HirCtx> for Expr<'_> {
- fn hash_stable(&self, hcx: &mut HirCtx, hasher: &mut StableHasher) {
- hcx.hash_hir_expr(self, hasher)
- }
-}
-
-impl<HirCtx: crate::HashStableContext> HashStable<HirCtx> for Ty<'_> {
- fn hash_stable(&self, hcx: &mut HirCtx, hasher: &mut StableHasher) {
- hcx.hash_hir_ty(self, hasher)
- }
-}
-
impl<'tcx, HirCtx: crate::HashStableContext> HashStable<HirCtx> for OwnerNodes<'tcx> {
fn hash_stable(&self, hcx: &mut HirCtx, hasher: &mut StableHasher) {
// We ignore the `nodes` and `bodies` fields since these refer to information included in
diff --git a/compiler/rustc_hir/src/target.rs b/compiler/rustc_hir/src/target.rs
index 6236dea10..5917d5e34 100644
--- a/compiler/rustc_hir/src/target.rs
+++ b/compiler/rustc_hir/src/target.rs
@@ -36,6 +36,7 @@ pub enum Target {
GlobalAsm,
TyAlias,
OpaqueTy,
+ ImplTraitPlaceholder,
Enum,
Variant,
Struct,
@@ -56,6 +57,8 @@ pub enum Target {
GenericParam(GenericParamKind),
MacroDef,
Param,
+ PatField,
+ ExprField,
}
impl Display for Target {
@@ -77,7 +80,13 @@ impl Target {
ItemKind::ForeignMod { .. } => Target::ForeignMod,
ItemKind::GlobalAsm(..) => Target::GlobalAsm,
ItemKind::TyAlias(..) => Target::TyAlias,
- ItemKind::OpaqueTy(..) => Target::OpaqueTy,
+ ItemKind::OpaqueTy(ref opaque) => {
+ if opaque.in_trait {
+ Target::ImplTraitPlaceholder
+ } else {
+ Target::OpaqueTy
+ }
+ }
ItemKind::Enum(..) => Target::Enum,
ItemKind::Struct(..) => Target::Struct,
ItemKind::Union(..) => Target::Union,
@@ -101,6 +110,7 @@ impl Target {
DefKind::GlobalAsm => Target::GlobalAsm,
DefKind::TyAlias => Target::TyAlias,
DefKind::OpaqueTy => Target::OpaqueTy,
+ DefKind::ImplTraitPlaceholder => Target::ImplTraitPlaceholder,
DefKind::Enum => Target::Enum,
DefKind::Struct => Target::Struct,
DefKind::Union => Target::Union,
@@ -155,6 +165,7 @@ impl Target {
Target::GlobalAsm => "global asm",
Target::TyAlias => "type alias",
Target::OpaqueTy => "opaque type",
+ Target::ImplTraitPlaceholder => "opaque type in trait",
Target::Enum => "enum",
Target::Variant => "enum variant",
Target::Struct => "struct",
@@ -183,6 +194,8 @@ impl Target {
},
Target::MacroDef => "macro def",
Target::Param => "function param",
+ Target::PatField => "pattern field",
+ Target::ExprField => "struct field",
}
}
}
diff --git a/compiler/rustc_hir/src/weak_lang_items.rs b/compiler/rustc_hir/src/weak_lang_items.rs
index b6a85c047..da9c9c121 100644
--- a/compiler/rustc_hir/src/weak_lang_items.rs
+++ b/compiler/rustc_hir/src/weak_lang_items.rs
@@ -18,6 +18,12 @@ pub static WEAK_ITEMS_REFS: LazyLock<FxIndexMap<Symbol, LangItem>> = LazyLock::n
map
});
+pub static WEAK_ITEMS_SYMBOLS: LazyLock<FxIndexMap<LangItem, Symbol>> = LazyLock::new(|| {
+ let mut map = FxIndexMap::default();
+ $(map.insert(LangItem::$item, sym::$sym);)*
+ map
+});
+
pub fn link_name(attrs: &[ast::Attribute]) -> Option<Symbol>
{
lang_items::extract(attrs).and_then(|(name, _)| {
diff --git a/compiler/rustc_hir_analysis/Cargo.toml b/compiler/rustc_hir_analysis/Cargo.toml
new file mode 100644
index 000000000..0761d8cdb
--- /dev/null
+++ b/compiler/rustc_hir_analysis/Cargo.toml
@@ -0,0 +1,32 @@
+[package]
+name = "rustc_hir_analysis"
+version = "0.0.0"
+edition = "2021"
+
+[lib]
+test = false
+doctest = false
+
+[dependencies]
+rustc_arena = { path = "../rustc_arena" }
+tracing = "0.1"
+rustc_macros = { path = "../rustc_macros" }
+rustc_middle = { path = "../rustc_middle" }
+rustc_attr = { path = "../rustc_attr" }
+rustc_data_structures = { path = "../rustc_data_structures" }
+rustc_errors = { path = "../rustc_errors" }
+rustc_graphviz = { path = "../rustc_graphviz" }
+rustc_hir = { path = "../rustc_hir" }
+rustc_hir_pretty = { path = "../rustc_hir_pretty" }
+rustc_target = { path = "../rustc_target" }
+rustc_session = { path = "../rustc_session" }
+smallvec = { version = "1.8.1", features = ["union", "may_dangle"] }
+rustc_ast = { path = "../rustc_ast" }
+rustc_span = { path = "../rustc_span" }
+rustc_index = { path = "../rustc_index" }
+rustc_infer = { path = "../rustc_infer" }
+rustc_trait_selection = { path = "../rustc_trait_selection" }
+rustc_lint = { path = "../rustc_lint" }
+rustc_serialize = { path = "../rustc_serialize" }
+rustc_type_ir = { path = "../rustc_type_ir" }
+rustc_feature = { path = "../rustc_feature" }
diff --git a/compiler/rustc_typeck/README.md b/compiler/rustc_hir_analysis/README.md
index b61dbd8c9..b61dbd8c9 100644
--- a/compiler/rustc_typeck/README.md
+++ b/compiler/rustc_hir_analysis/README.md
diff --git a/compiler/rustc_hir_analysis/src/astconv/errors.rs b/compiler/rustc_hir_analysis/src/astconv/errors.rs
new file mode 100644
index 000000000..a9152bdc5
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/astconv/errors.rs
@@ -0,0 +1,411 @@
+use crate::astconv::AstConv;
+use crate::errors::{ManualImplementation, MissingTypeParams};
+use rustc_data_structures::fx::FxHashMap;
+use rustc_errors::{pluralize, struct_span_err, Applicability, ErrorGuaranteed};
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_middle::ty;
+use rustc_session::parse::feature_err;
+use rustc_span::lev_distance::find_best_match_for_name;
+use rustc_span::symbol::{sym, Ident};
+use rustc_span::{Span, Symbol, DUMMY_SP};
+
+use std::collections::BTreeSet;
+
+impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
+ /// On missing type parameters, emit an E0393 error and provide a structured suggestion using
+ /// the type parameter's name as a placeholder.
+ pub(crate) fn complain_about_missing_type_params(
+ &self,
+ missing_type_params: Vec<Symbol>,
+ def_id: DefId,
+ span: Span,
+ empty_generic_args: bool,
+ ) {
+ if missing_type_params.is_empty() {
+ return;
+ }
+
+ self.tcx().sess.emit_err(MissingTypeParams {
+ span,
+ def_span: self.tcx().def_span(def_id),
+ span_snippet: self.tcx().sess.source_map().span_to_snippet(span).ok(),
+ missing_type_params,
+ empty_generic_args,
+ });
+ }
+
+ /// When the code is using the `Fn` traits directly, instead of the `Fn(A) -> B` syntax, emit
+ /// an error and attempt to build a reasonable structured suggestion.
+ pub(crate) fn complain_about_internal_fn_trait(
+ &self,
+ span: Span,
+ trait_def_id: DefId,
+ trait_segment: &'_ hir::PathSegment<'_>,
+ is_impl: bool,
+ ) {
+ if self.tcx().features().unboxed_closures {
+ return;
+ }
+
+ let trait_def = self.tcx().trait_def(trait_def_id);
+ if !trait_def.paren_sugar {
+ if trait_segment.args().parenthesized {
+ // For now, require that parenthetical notation be used only with `Fn()` etc.
+ let mut err = feature_err(
+ &self.tcx().sess.parse_sess,
+ sym::unboxed_closures,
+ span,
+ "parenthetical notation is only stable when used with `Fn`-family traits",
+ );
+ err.emit();
+ }
+
+ return;
+ }
+
+ let sess = self.tcx().sess;
+
+ if !trait_segment.args().parenthesized {
+ // For now, require that parenthetical notation be used only with `Fn()` etc.
+ let mut err = feature_err(
+ &sess.parse_sess,
+ sym::unboxed_closures,
+ span,
+ "the precise format of `Fn`-family traits' type parameters is subject to change",
+ );
+ // Do not suggest the other syntax if we are in trait impl:
+ // the desugaring would contain an associated type constraint.
+ if !is_impl {
+ let args = trait_segment
+ .args
+ .as_ref()
+ .and_then(|args| args.args.get(0))
+ .and_then(|arg| match arg {
+ hir::GenericArg::Type(ty) => match ty.kind {
+ hir::TyKind::Tup(t) => t
+ .iter()
+ .map(|e| sess.source_map().span_to_snippet(e.span))
+ .collect::<Result<Vec<_>, _>>()
+ .map(|a| a.join(", ")),
+ _ => sess.source_map().span_to_snippet(ty.span),
+ }
+ .map(|s| format!("({})", s))
+ .ok(),
+ _ => None,
+ })
+ .unwrap_or_else(|| "()".to_string());
+ let ret = trait_segment
+ .args()
+ .bindings
+ .iter()
+ .find_map(|b| match (b.ident.name == sym::Output, &b.kind) {
+ (true, hir::TypeBindingKind::Equality { term }) => {
+ let span = match term {
+ hir::Term::Ty(ty) => ty.span,
+ hir::Term::Const(c) => self.tcx().hir().span(c.hir_id),
+ };
+ sess.source_map().span_to_snippet(span).ok()
+ }
+ _ => None,
+ })
+ .unwrap_or_else(|| "()".to_string());
+ err.span_suggestion(
+ span,
+ "use parenthetical notation instead",
+ format!("{}{} -> {}", trait_segment.ident, args, ret),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ err.emit();
+ }
+
+ if is_impl {
+ let trait_name = self.tcx().def_path_str(trait_def_id);
+ self.tcx().sess.emit_err(ManualImplementation { span, trait_name });
+ }
+ }
+
+ pub(crate) fn complain_about_assoc_type_not_found<I>(
+ &self,
+ all_candidates: impl Fn() -> I,
+ ty_param_name: &str,
+ assoc_name: Ident,
+ span: Span,
+ ) -> ErrorGuaranteed
+ where
+ I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
+ {
+ // The fallback span is needed because `assoc_name` might be an `Fn()`'s `Output` without a
+ // valid span, so we point at the whole path segment instead.
+ let span = if assoc_name.span != DUMMY_SP { assoc_name.span } else { span };
+ let mut err = struct_span_err!(
+ self.tcx().sess,
+ span,
+ E0220,
+ "associated type `{}` not found for `{}`",
+ assoc_name,
+ ty_param_name
+ );
+
+ let all_candidate_names: Vec<_> = all_candidates()
+ .flat_map(|r| self.tcx().associated_items(r.def_id()).in_definition_order())
+ .filter_map(
+ |item| if item.kind == ty::AssocKind::Type { Some(item.name) } else { None },
+ )
+ .collect();
+
+ if let (Some(suggested_name), true) = (
+ find_best_match_for_name(&all_candidate_names, assoc_name.name, None),
+ assoc_name.span != DUMMY_SP,
+ ) {
+ err.span_suggestion(
+ assoc_name.span,
+ "there is an associated type with a similar name",
+ suggested_name,
+ Applicability::MaybeIncorrect,
+ );
+ return err.emit();
+ }
+
+ // If we didn't find a good item in the supertraits (or couldn't get
+ // the supertraits), like in ItemCtxt, then look more generally from
+ // all visible traits. If there's one clear winner, just suggest that.
+
+ let visible_traits: Vec<_> = self
+ .tcx()
+ .all_traits()
+ .filter(|trait_def_id| {
+ let viz = self.tcx().visibility(*trait_def_id);
+ if let Some(def_id) = self.item_def_id() {
+ viz.is_accessible_from(def_id, self.tcx())
+ } else {
+ viz.is_visible_locally()
+ }
+ })
+ .collect();
+
+ let wider_candidate_names: Vec<_> = visible_traits
+ .iter()
+ .flat_map(|trait_def_id| {
+ self.tcx().associated_items(*trait_def_id).in_definition_order()
+ })
+ .filter_map(
+ |item| if item.kind == ty::AssocKind::Type { Some(item.name) } else { None },
+ )
+ .collect();
+
+ if let (Some(suggested_name), true) = (
+ find_best_match_for_name(&wider_candidate_names, assoc_name.name, None),
+ assoc_name.span != DUMMY_SP,
+ ) {
+ if let [best_trait] = visible_traits
+ .iter()
+ .filter(|trait_def_id| {
+ self.tcx()
+ .associated_items(*trait_def_id)
+ .filter_by_name_unhygienic(suggested_name)
+ .any(|item| item.kind == ty::AssocKind::Type)
+ })
+ .collect::<Vec<_>>()[..]
+ {
+ err.span_label(
+ assoc_name.span,
+ format!(
+ "there is a similarly named associated type `{suggested_name}` in the trait `{}`",
+ self.tcx().def_path_str(*best_trait)
+ ),
+ );
+ return err.emit();
+ }
+ }
+
+ err.span_label(span, format!("associated type `{}` not found", assoc_name));
+ err.emit()
+ }
+
+ /// When there are any missing associated types, emit an E0191 error and attempt to supply a
+ /// reasonable suggestion on how to write it. For the case of multiple associated types in the
+ /// same trait bound have the same name (as they come from different supertraits), we instead
+ /// emit a generic note suggesting using a `where` clause to constraint instead.
+ pub(crate) fn complain_about_missing_associated_types(
+ &self,
+ associated_types: FxHashMap<Span, BTreeSet<DefId>>,
+ potential_assoc_types: Vec<Span>,
+ trait_bounds: &[hir::PolyTraitRef<'_>],
+ ) {
+ if associated_types.values().all(|v| v.is_empty()) {
+ return;
+ }
+ let tcx = self.tcx();
+ // FIXME: Marked `mut` so that we can replace the spans further below with a more
+ // appropriate one, but this should be handled earlier in the span assignment.
+ let mut associated_types: FxHashMap<Span, Vec<_>> = associated_types
+ .into_iter()
+ .map(|(span, def_ids)| {
+ (span, def_ids.into_iter().map(|did| tcx.associated_item(did)).collect())
+ })
+ .collect();
+ let mut names = vec![];
+
+ // Account for things like `dyn Foo + 'a`, like in tests `issue-22434.rs` and
+ // `issue-22560.rs`.
+ let mut trait_bound_spans: Vec<Span> = vec![];
+ for (span, items) in &associated_types {
+ if !items.is_empty() {
+ trait_bound_spans.push(*span);
+ }
+ for assoc_item in items {
+ let trait_def_id = assoc_item.container_id(tcx);
+ names.push(format!(
+ "`{}` (from trait `{}`)",
+ assoc_item.name,
+ tcx.def_path_str(trait_def_id),
+ ));
+ }
+ }
+ if let ([], [bound]) = (&potential_assoc_types[..], &trait_bounds) {
+ match bound.trait_ref.path.segments {
+ // FIXME: `trait_ref.path.span` can point to a full path with multiple
+ // segments, even though `trait_ref.path.segments` is of length `1`. Work
+ // around that bug here, even though it should be fixed elsewhere.
+ // This would otherwise cause an invalid suggestion. For an example, look at
+ // `src/test/ui/issues/issue-28344.rs` where instead of the following:
+ //
+ // error[E0191]: the value of the associated type `Output`
+ // (from trait `std::ops::BitXor`) must be specified
+ // --> $DIR/issue-28344.rs:4:17
+ // |
+ // LL | let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
+ // | ^^^^^^ help: specify the associated type:
+ // | `BitXor<Output = Type>`
+ //
+ // we would output:
+ //
+ // error[E0191]: the value of the associated type `Output`
+ // (from trait `std::ops::BitXor`) must be specified
+ // --> $DIR/issue-28344.rs:4:17
+ // |
+ // LL | let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
+ // | ^^^^^^^^^^^^^ help: specify the associated type:
+ // | `BitXor::bitor<Output = Type>`
+ [segment] if segment.args.is_none() => {
+ trait_bound_spans = vec![segment.ident.span];
+ associated_types = associated_types
+ .into_iter()
+ .map(|(_, items)| (segment.ident.span, items))
+ .collect();
+ }
+ _ => {}
+ }
+ }
+ names.sort();
+ trait_bound_spans.sort();
+ let mut err = struct_span_err!(
+ tcx.sess,
+ trait_bound_spans,
+ E0191,
+ "the value of the associated type{} {} must be specified",
+ pluralize!(names.len()),
+ names.join(", "),
+ );
+ let mut suggestions = vec![];
+ let mut types_count = 0;
+ let mut where_constraints = vec![];
+ let mut already_has_generics_args_suggestion = false;
+ for (span, assoc_items) in &associated_types {
+ let mut names: FxHashMap<_, usize> = FxHashMap::default();
+ for item in assoc_items {
+ types_count += 1;
+ *names.entry(item.name).or_insert(0) += 1;
+ }
+ let mut dupes = false;
+ for item in assoc_items {
+ let prefix = if names[&item.name] > 1 {
+ let trait_def_id = item.container_id(tcx);
+ dupes = true;
+ format!("{}::", tcx.def_path_str(trait_def_id))
+ } else {
+ String::new()
+ };
+ if let Some(sp) = tcx.hir().span_if_local(item.def_id) {
+ err.span_label(sp, format!("`{}{}` defined here", prefix, item.name));
+ }
+ }
+ if potential_assoc_types.len() == assoc_items.len() {
+ // When the amount of missing associated types equals the number of
+ // extra type arguments present. A suggesting to replace the generic args with
+ // associated types is already emitted.
+ already_has_generics_args_suggestion = true;
+ } else if let (Ok(snippet), false) =
+ (tcx.sess.source_map().span_to_snippet(*span), dupes)
+ {
+ let types: Vec<_> =
+ assoc_items.iter().map(|item| format!("{} = Type", item.name)).collect();
+ let code = if snippet.ends_with('>') {
+ // The user wrote `Trait<'a>` or similar and we don't have a type we can
+ // suggest, but at least we can clue them to the correct syntax
+ // `Trait<'a, Item = Type>` while accounting for the `<'a>` in the
+ // suggestion.
+ format!("{}, {}>", &snippet[..snippet.len() - 1], types.join(", "))
+ } else {
+ // The user wrote `Iterator`, so we don't have a type we can suggest, but at
+ // least we can clue them to the correct syntax `Iterator<Item = Type>`.
+ format!("{}<{}>", snippet, types.join(", "))
+ };
+ suggestions.push((*span, code));
+ } else if dupes {
+ where_constraints.push(*span);
+ }
+ }
+ let where_msg = "consider introducing a new type parameter, adding `where` constraints \
+ using the fully-qualified path to the associated types";
+ if !where_constraints.is_empty() && suggestions.is_empty() {
+ // If there are duplicates associated type names and a single trait bound do not
+ // use structured suggestion, it means that there are multiple supertraits with
+ // the same associated type name.
+ err.help(where_msg);
+ }
+ if suggestions.len() != 1 || already_has_generics_args_suggestion {
+ // We don't need this label if there's an inline suggestion, show otherwise.
+ for (span, assoc_items) in &associated_types {
+ let mut names: FxHashMap<_, usize> = FxHashMap::default();
+ for item in assoc_items {
+ types_count += 1;
+ *names.entry(item.name).or_insert(0) += 1;
+ }
+ let mut label = vec![];
+ for item in assoc_items {
+ let postfix = if names[&item.name] > 1 {
+ let trait_def_id = item.container_id(tcx);
+ format!(" (from trait `{}`)", tcx.def_path_str(trait_def_id))
+ } else {
+ String::new()
+ };
+ label.push(format!("`{}`{}", item.name, postfix));
+ }
+ if !label.is_empty() {
+ err.span_label(
+ *span,
+ format!(
+ "associated type{} {} must be specified",
+ pluralize!(label.len()),
+ label.join(", "),
+ ),
+ );
+ }
+ }
+ }
+ if !suggestions.is_empty() {
+ err.multipart_suggestion(
+ &format!("specify the associated type{}", pluralize!(types_count)),
+ suggestions,
+ Applicability::HasPlaceholders,
+ );
+ if !where_constraints.is_empty() {
+ err.span_help(where_constraints, where_msg);
+ }
+ }
+ err.emit();
+ }
+}
diff --git a/compiler/rustc_hir_analysis/src/astconv/generics.rs b/compiler/rustc_hir_analysis/src/astconv/generics.rs
new file mode 100644
index 000000000..47915b4bd
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/astconv/generics.rs
@@ -0,0 +1,662 @@
+use super::IsMethodCall;
+use crate::astconv::{
+ AstConv, CreateSubstsForGenericArgsCtxt, ExplicitLateBound, GenericArgCountMismatch,
+ GenericArgCountResult, GenericArgPosition,
+};
+use crate::errors::AssocTypeBindingNotAllowed;
+use crate::structured_errors::{GenericArgsInfo, StructuredDiagnostic, WrongNumberOfGenericArgs};
+use rustc_ast::ast::ParamKindOrd;
+use rustc_errors::{struct_span_err, Applicability, Diagnostic, MultiSpan};
+use rustc_hir as hir;
+use rustc_hir::def::{DefKind, Res};
+use rustc_hir::def_id::DefId;
+use rustc_hir::GenericArg;
+use rustc_infer::infer::TyCtxtInferExt;
+use rustc_middle::ty::{
+ self, subst, subst::SubstsRef, GenericParamDef, GenericParamDefKind, IsSuggestable, Ty, TyCtxt,
+};
+use rustc_session::lint::builtin::LATE_BOUND_LIFETIME_ARGUMENTS;
+use rustc_span::{symbol::kw, Span};
+use smallvec::SmallVec;
+
+impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
+ /// Report an error that a generic argument did not match the generic parameter that was
+ /// expected.
+ fn generic_arg_mismatch_err(
+ tcx: TyCtxt<'_>,
+ arg: &GenericArg<'_>,
+ param: &GenericParamDef,
+ possible_ordering_error: bool,
+ help: Option<&str>,
+ ) {
+ let sess = tcx.sess;
+ let mut err = struct_span_err!(
+ sess,
+ arg.span(),
+ E0747,
+ "{} provided when a {} was expected",
+ arg.descr(),
+ param.kind.descr(),
+ );
+
+ if let GenericParamDefKind::Const { .. } = param.kind {
+ if matches!(arg, GenericArg::Type(hir::Ty { kind: hir::TyKind::Infer, .. })) {
+ err.help("const arguments cannot yet be inferred with `_`");
+ if sess.is_nightly_build() {
+ err.help(
+ "add `#![feature(generic_arg_infer)]` to the crate attributes to enable",
+ );
+ }
+ }
+ }
+
+ let add_braces_suggestion = |arg: &GenericArg<'_>, err: &mut Diagnostic| {
+ let suggestions = vec![
+ (arg.span().shrink_to_lo(), String::from("{ ")),
+ (arg.span().shrink_to_hi(), String::from(" }")),
+ ];
+ err.multipart_suggestion(
+ "if this generic argument was intended as a const parameter, \
+ surround it with braces",
+ suggestions,
+ Applicability::MaybeIncorrect,
+ );
+ };
+
+ // Specific suggestion set for diagnostics
+ match (arg, &param.kind) {
+ (
+ GenericArg::Type(hir::Ty {
+ kind: hir::TyKind::Path(rustc_hir::QPath::Resolved(_, path)),
+ ..
+ }),
+ GenericParamDefKind::Const { .. },
+ ) => match path.res {
+ Res::Err => {
+ add_braces_suggestion(arg, &mut err);
+ err.set_primary_message(
+ "unresolved item provided when a constant was expected",
+ )
+ .emit();
+ return;
+ }
+ Res::Def(DefKind::TyParam, src_def_id) => {
+ if let Some(param_local_id) = param.def_id.as_local() {
+ let param_name = tcx.hir().ty_param_name(param_local_id);
+ let infcx = tcx.infer_ctxt().build();
+ let param_type =
+ infcx.resolve_numeric_literals_with_default(tcx.type_of(param.def_id));
+ if param_type.is_suggestable(tcx, false) {
+ err.span_suggestion(
+ tcx.def_span(src_def_id),
+ "consider changing this type parameter to be a `const` generic",
+ format!("const {}: {}", param_name, param_type),
+ Applicability::MaybeIncorrect,
+ );
+ };
+ }
+ }
+ _ => add_braces_suggestion(arg, &mut err),
+ },
+ (
+ GenericArg::Type(hir::Ty { kind: hir::TyKind::Path(_), .. }),
+ GenericParamDefKind::Const { .. },
+ ) => add_braces_suggestion(arg, &mut err),
+ (
+ GenericArg::Type(hir::Ty { kind: hir::TyKind::Array(_, len), .. }),
+ GenericParamDefKind::Const { .. },
+ ) if tcx.type_of(param.def_id) == tcx.types.usize => {
+ let snippet = sess.source_map().span_to_snippet(tcx.hir().span(len.hir_id()));
+ if let Ok(snippet) = snippet {
+ err.span_suggestion(
+ arg.span(),
+ "array type provided where a `usize` was expected, try",
+ format!("{{ {} }}", snippet),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ (GenericArg::Const(cnst), GenericParamDefKind::Type { .. }) => {
+ let body = tcx.hir().body(cnst.value.body);
+ if let rustc_hir::ExprKind::Path(rustc_hir::QPath::Resolved(_, path)) =
+ body.value.kind
+ {
+ if let Res::Def(DefKind::Fn { .. }, id) = path.res {
+ err.help(&format!(
+ "`{}` is a function item, not a type",
+ tcx.item_name(id)
+ ));
+ err.help("function item types cannot be named directly");
+ }
+ }
+ }
+ _ => {}
+ }
+
+ let kind_ord = param.kind.to_ord();
+ let arg_ord = arg.to_ord();
+
+ // This note is only true when generic parameters are strictly ordered by their kind.
+ if possible_ordering_error && kind_ord.cmp(&arg_ord) != core::cmp::Ordering::Equal {
+ let (first, last) = if kind_ord < arg_ord {
+ (param.kind.descr(), arg.descr())
+ } else {
+ (arg.descr(), param.kind.descr())
+ };
+ err.note(&format!("{} arguments must be provided before {} arguments", first, last));
+ if let Some(help) = help {
+ err.help(help);
+ }
+ }
+
+ err.emit();
+ }
+
+ /// Creates the relevant generic argument substitutions
+ /// corresponding to a set of generic parameters. This is a
+ /// rather complex function. Let us try to explain the role
+ /// of each of its parameters:
+ ///
+ /// To start, we are given the `def_id` of the thing we are
+ /// creating the substitutions for, and a partial set of
+ /// substitutions `parent_substs`. In general, the substitutions
+ /// for an item begin with substitutions for all the "parents" of
+ /// that item -- e.g., for a method it might include the
+ /// parameters from the impl.
+ ///
+ /// Therefore, the method begins by walking down these parents,
+ /// starting with the outermost parent and proceed inwards until
+ /// it reaches `def_id`. For each parent `P`, it will check `parent_substs`
+ /// first to see if the parent's substitutions are listed in there. If so,
+ /// we can append those and move on. Otherwise, it invokes the
+ /// three callback functions:
+ ///
+ /// - `args_for_def_id`: given the `DefId` `P`, supplies back the
+ /// generic arguments that were given to that parent from within
+ /// the path; so e.g., if you have `<T as Foo>::Bar`, the `DefId`
+ /// might refer to the trait `Foo`, and the arguments might be
+ /// `[T]`. The boolean value indicates whether to infer values
+ /// for arguments whose values were not explicitly provided.
+ /// - `provided_kind`: given the generic parameter and the value from `args_for_def_id`,
+ /// instantiate a `GenericArg`.
+ /// - `inferred_kind`: if no parameter was provided, and inference is enabled, then
+ /// creates a suitable inference variable.
+ pub fn create_substs_for_generic_args<'a>(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+ parent_substs: &[subst::GenericArg<'tcx>],
+ has_self: bool,
+ self_ty: Option<Ty<'tcx>>,
+ arg_count: &GenericArgCountResult,
+ ctx: &mut impl CreateSubstsForGenericArgsCtxt<'a, 'tcx>,
+ ) -> SubstsRef<'tcx> {
+ // Collect the segments of the path; we need to substitute arguments
+ // for parameters throughout the entire path (wherever there are
+ // generic parameters).
+ let mut parent_defs = tcx.generics_of(def_id);
+ let count = parent_defs.count();
+ let mut stack = vec![(def_id, parent_defs)];
+ while let Some(def_id) = parent_defs.parent {
+ parent_defs = tcx.generics_of(def_id);
+ stack.push((def_id, parent_defs));
+ }
+
+ // We manually build up the substitution, rather than using convenience
+ // methods in `subst.rs`, so that we can iterate over the arguments and
+ // parameters in lock-step linearly, instead of trying to match each pair.
+ let mut substs: SmallVec<[subst::GenericArg<'tcx>; 8]> = SmallVec::with_capacity(count);
+ // Iterate over each segment of the path.
+ while let Some((def_id, defs)) = stack.pop() {
+ let mut params = defs.params.iter().peekable();
+
+ // If we have already computed substitutions for parents, we can use those directly.
+ while let Some(&param) = params.peek() {
+ if let Some(&kind) = parent_substs.get(param.index as usize) {
+ substs.push(kind);
+ params.next();
+ } else {
+ break;
+ }
+ }
+
+ // `Self` is handled first, unless it's been handled in `parent_substs`.
+ if has_self {
+ if let Some(&param) = params.peek() {
+ if param.index == 0 {
+ if let GenericParamDefKind::Type { .. } = param.kind {
+ substs.push(
+ self_ty
+ .map(|ty| ty.into())
+ .unwrap_or_else(|| ctx.inferred_kind(None, param, true)),
+ );
+ params.next();
+ }
+ }
+ }
+ }
+
+ // Check whether this segment takes generic arguments and the user has provided any.
+ let (generic_args, infer_args) = ctx.args_for_def_id(def_id);
+
+ let args_iter = generic_args.iter().flat_map(|generic_args| generic_args.args.iter());
+ let mut args = args_iter.clone().peekable();
+
+ // If we encounter a type or const when we expect a lifetime, we infer the lifetimes.
+ // If we later encounter a lifetime, we know that the arguments were provided in the
+ // wrong order. `force_infer_lt` records the type or const that forced lifetimes to be
+ // inferred, so we can use it for diagnostics later.
+ let mut force_infer_lt = None;
+
+ loop {
+ // We're going to iterate through the generic arguments that the user
+ // provided, matching them with the generic parameters we expect.
+ // Mismatches can occur as a result of elided lifetimes, or for malformed
+ // input. We try to handle both sensibly.
+ match (args.peek(), params.peek()) {
+ (Some(&arg), Some(&param)) => {
+ match (arg, &param.kind, arg_count.explicit_late_bound) {
+ (GenericArg::Lifetime(_), GenericParamDefKind::Lifetime, _)
+ | (
+ GenericArg::Type(_) | GenericArg::Infer(_),
+ GenericParamDefKind::Type { .. },
+ _,
+ )
+ | (
+ GenericArg::Const(_) | GenericArg::Infer(_),
+ GenericParamDefKind::Const { .. },
+ _,
+ ) => {
+ substs.push(ctx.provided_kind(param, arg));
+ args.next();
+ params.next();
+ }
+ (
+ GenericArg::Infer(_) | GenericArg::Type(_) | GenericArg::Const(_),
+ GenericParamDefKind::Lifetime,
+ _,
+ ) => {
+ // We expected a lifetime argument, but got a type or const
+ // argument. That means we're inferring the lifetimes.
+ substs.push(ctx.inferred_kind(None, param, infer_args));
+ force_infer_lt = Some((arg, param));
+ params.next();
+ }
+ (GenericArg::Lifetime(_), _, ExplicitLateBound::Yes) => {
+ // We've come across a lifetime when we expected something else in
+ // the presence of explicit late bounds. This is most likely
+ // due to the presence of the explicit bound so we're just going to
+ // ignore it.
+ args.next();
+ }
+ (_, _, _) => {
+ // We expected one kind of parameter, but the user provided
+ // another. This is an error. However, if we already know that
+ // the arguments don't match up with the parameters, we won't issue
+ // an additional error, as the user already knows what's wrong.
+ if arg_count.correct.is_ok() {
+ // We're going to iterate over the parameters to sort them out, and
+ // show that order to the user as a possible order for the parameters
+ let mut param_types_present = defs
+ .params
+ .iter()
+ .map(|param| (param.kind.to_ord(), param.clone()))
+ .collect::<Vec<(ParamKindOrd, GenericParamDef)>>();
+ param_types_present.sort_by_key(|(ord, _)| *ord);
+ let (mut param_types_present, ordered_params): (
+ Vec<ParamKindOrd>,
+ Vec<GenericParamDef>,
+ ) = param_types_present.into_iter().unzip();
+ param_types_present.dedup();
+
+ Self::generic_arg_mismatch_err(
+ tcx,
+ arg,
+ param,
+ !args_iter.clone().is_sorted_by_key(|arg| arg.to_ord()),
+ Some(&format!(
+ "reorder the arguments: {}: `<{}>`",
+ param_types_present
+ .into_iter()
+ .map(|ord| format!("{}s", ord))
+ .collect::<Vec<String>>()
+ .join(", then "),
+ ordered_params
+ .into_iter()
+ .filter_map(|param| {
+ if param.name == kw::SelfUpper {
+ None
+ } else {
+ Some(param.name.to_string())
+ }
+ })
+ .collect::<Vec<String>>()
+ .join(", ")
+ )),
+ );
+ }
+
+ // We've reported the error, but we want to make sure that this
+ // problem doesn't bubble down and create additional, irrelevant
+ // errors. In this case, we're simply going to ignore the argument
+ // and any following arguments. The rest of the parameters will be
+ // inferred.
+ while args.next().is_some() {}
+ }
+ }
+ }
+
+ (Some(&arg), None) => {
+ // We should never be able to reach this point with well-formed input.
+ // There are three situations in which we can encounter this issue.
+ //
+ // 1. The number of arguments is incorrect. In this case, an error
+ // will already have been emitted, and we can ignore it.
+ // 2. There are late-bound lifetime parameters present, yet the
+ // lifetime arguments have also been explicitly specified by the
+ // user.
+ // 3. We've inferred some lifetimes, which have been provided later (i.e.
+ // after a type or const). We want to throw an error in this case.
+
+ if arg_count.correct.is_ok()
+ && arg_count.explicit_late_bound == ExplicitLateBound::No
+ {
+ let kind = arg.descr();
+ assert_eq!(kind, "lifetime");
+ let (provided_arg, param) =
+ force_infer_lt.expect("lifetimes ought to have been inferred");
+ Self::generic_arg_mismatch_err(tcx, provided_arg, param, false, None);
+ }
+
+ break;
+ }
+
+ (None, Some(&param)) => {
+ // If there are fewer arguments than parameters, it means
+ // we're inferring the remaining arguments.
+ substs.push(ctx.inferred_kind(Some(&substs), param, infer_args));
+ params.next();
+ }
+
+ (None, None) => break,
+ }
+ }
+ }
+
+ tcx.intern_substs(&substs)
+ }
+
+ /// Checks that the correct number of generic arguments have been provided.
+ /// Used specifically for function calls.
+ pub fn check_generic_arg_count_for_call(
+ tcx: TyCtxt<'_>,
+ span: Span,
+ def_id: DefId,
+ generics: &ty::Generics,
+ seg: &hir::PathSegment<'_>,
+ is_method_call: IsMethodCall,
+ ) -> GenericArgCountResult {
+ let empty_args = hir::GenericArgs::none();
+ let gen_args = seg.args.unwrap_or(&empty_args);
+ let gen_pos = if is_method_call == IsMethodCall::Yes {
+ GenericArgPosition::MethodCall
+ } else {
+ GenericArgPosition::Value
+ };
+ let has_self = generics.parent.is_none() && generics.has_self;
+
+ Self::check_generic_arg_count(
+ tcx,
+ span,
+ def_id,
+ seg,
+ generics,
+ gen_args,
+ gen_pos,
+ has_self,
+ seg.infer_args,
+ )
+ }
+
+ /// Checks that the correct number of generic arguments have been provided.
+ /// This is used both for datatypes and function calls.
+ #[instrument(skip(tcx, gen_pos), level = "debug")]
+ pub(crate) fn check_generic_arg_count(
+ tcx: TyCtxt<'_>,
+ span: Span,
+ def_id: DefId,
+ seg: &hir::PathSegment<'_>,
+ gen_params: &ty::Generics,
+ gen_args: &hir::GenericArgs<'_>,
+ gen_pos: GenericArgPosition,
+ has_self: bool,
+ infer_args: bool,
+ ) -> GenericArgCountResult {
+ let default_counts = gen_params.own_defaults();
+ let param_counts = gen_params.own_counts();
+
+ // Subtracting from param count to ensure type params synthesized from `impl Trait`
+ // cannot be explicitly specified.
+ let synth_type_param_count = gen_params
+ .params
+ .iter()
+ .filter(|param| {
+ matches!(param.kind, ty::GenericParamDefKind::Type { synthetic: true, .. })
+ })
+ .count();
+ let named_type_param_count =
+ param_counts.types - has_self as usize - synth_type_param_count;
+ let infer_lifetimes =
+ (gen_pos != GenericArgPosition::Type || infer_args) && !gen_args.has_lifetime_params();
+
+ if gen_pos != GenericArgPosition::Type && let Some(b) = gen_args.bindings.first() {
+ Self::prohibit_assoc_ty_binding(tcx, b.span);
+ }
+
+ let explicit_late_bound =
+ Self::prohibit_explicit_late_bound_lifetimes(tcx, gen_params, gen_args, gen_pos);
+
+ let mut invalid_args = vec![];
+
+ let mut check_lifetime_args =
+ |min_expected_args: usize,
+ max_expected_args: usize,
+ provided_args: usize,
+ late_bounds_ignore: bool| {
+ if (min_expected_args..=max_expected_args).contains(&provided_args) {
+ return Ok(());
+ }
+
+ if late_bounds_ignore {
+ return Ok(());
+ }
+
+ if provided_args > max_expected_args {
+ invalid_args.extend(
+ gen_args.args[max_expected_args..provided_args]
+ .iter()
+ .map(|arg| arg.span()),
+ );
+ };
+
+ let gen_args_info = if provided_args > min_expected_args {
+ invalid_args.extend(
+ gen_args.args[min_expected_args..provided_args]
+ .iter()
+ .map(|arg| arg.span()),
+ );
+ let num_redundant_args = provided_args - min_expected_args;
+ GenericArgsInfo::ExcessLifetimes { num_redundant_args }
+ } else {
+ let num_missing_args = min_expected_args - provided_args;
+ GenericArgsInfo::MissingLifetimes { num_missing_args }
+ };
+
+ let reported = WrongNumberOfGenericArgs::new(
+ tcx,
+ gen_args_info,
+ seg,
+ gen_params,
+ has_self as usize,
+ gen_args,
+ def_id,
+ )
+ .diagnostic()
+ .emit();
+
+ Err(reported)
+ };
+
+ let min_expected_lifetime_args = if infer_lifetimes { 0 } else { param_counts.lifetimes };
+ let max_expected_lifetime_args = param_counts.lifetimes;
+ let num_provided_lifetime_args = gen_args.num_lifetime_params();
+
+ let lifetimes_correct = check_lifetime_args(
+ min_expected_lifetime_args,
+ max_expected_lifetime_args,
+ num_provided_lifetime_args,
+ explicit_late_bound == ExplicitLateBound::Yes,
+ );
+
+ let mut check_types_and_consts = |expected_min,
+ expected_max,
+ expected_max_with_synth,
+ provided,
+ params_offset,
+ args_offset| {
+ debug!(
+ ?expected_min,
+ ?expected_max,
+ ?provided,
+ ?params_offset,
+ ?args_offset,
+ "check_types_and_consts"
+ );
+ if (expected_min..=expected_max).contains(&provided) {
+ return Ok(());
+ }
+
+ let num_default_params = expected_max - expected_min;
+
+ let gen_args_info = if provided > expected_max {
+ invalid_args.extend(
+ gen_args.args[args_offset + expected_max..args_offset + provided]
+ .iter()
+ .map(|arg| arg.span()),
+ );
+ let num_redundant_args = provided - expected_max;
+
+ // Provide extra note if synthetic arguments like `impl Trait` are specified.
+ let synth_provided = provided <= expected_max_with_synth;
+
+ GenericArgsInfo::ExcessTypesOrConsts {
+ num_redundant_args,
+ num_default_params,
+ args_offset,
+ synth_provided,
+ }
+ } else {
+ let num_missing_args = expected_max - provided;
+
+ GenericArgsInfo::MissingTypesOrConsts {
+ num_missing_args,
+ num_default_params,
+ args_offset,
+ }
+ };
+
+ debug!(?gen_args_info);
+
+ let reported = WrongNumberOfGenericArgs::new(
+ tcx,
+ gen_args_info,
+ seg,
+ gen_params,
+ params_offset,
+ gen_args,
+ def_id,
+ )
+ .diagnostic()
+ .emit_unless(gen_args.has_err());
+
+ Err(reported)
+ };
+
+ let args_correct = {
+ let expected_min = if infer_args {
+ 0
+ } else {
+ param_counts.consts + named_type_param_count
+ - default_counts.types
+ - default_counts.consts
+ };
+ debug!(?expected_min);
+ debug!(arg_counts.lifetimes=?gen_args.num_lifetime_params());
+
+ check_types_and_consts(
+ expected_min,
+ param_counts.consts + named_type_param_count,
+ param_counts.consts + named_type_param_count + synth_type_param_count,
+ gen_args.num_generic_params(),
+ param_counts.lifetimes + has_self as usize,
+ gen_args.num_lifetime_params(),
+ )
+ };
+
+ GenericArgCountResult {
+ explicit_late_bound,
+ correct: lifetimes_correct.and(args_correct).map_err(|reported| {
+ GenericArgCountMismatch { reported: Some(reported), invalid_args }
+ }),
+ }
+ }
+
+ /// Emits an error regarding forbidden type binding associations
+ pub fn prohibit_assoc_ty_binding(tcx: TyCtxt<'_>, span: Span) {
+ tcx.sess.emit_err(AssocTypeBindingNotAllowed { span });
+ }
+
+ /// Prohibits explicit lifetime arguments if late-bound lifetime parameters
+ /// are present. This is used both for datatypes and function calls.
+ pub(crate) fn prohibit_explicit_late_bound_lifetimes(
+ tcx: TyCtxt<'_>,
+ def: &ty::Generics,
+ args: &hir::GenericArgs<'_>,
+ position: GenericArgPosition,
+ ) -> ExplicitLateBound {
+ let param_counts = def.own_counts();
+ let infer_lifetimes = position != GenericArgPosition::Type && !args.has_lifetime_params();
+
+ if infer_lifetimes {
+ return ExplicitLateBound::No;
+ }
+
+ if let Some(span_late) = def.has_late_bound_regions {
+ let msg = "cannot specify lifetime arguments explicitly \
+ if late bound lifetime parameters are present";
+ let note = "the late bound lifetime parameter is introduced here";
+ let span = args.args[0].span();
+
+ if position == GenericArgPosition::Value
+ && args.num_lifetime_params() != param_counts.lifetimes
+ {
+ let mut err = tcx.sess.struct_span_err(span, msg);
+ err.span_note(span_late, note);
+ err.emit();
+ } else {
+ let mut multispan = MultiSpan::from_span(span);
+ multispan.push_span_label(span_late, note);
+ tcx.struct_span_lint_hir(
+ LATE_BOUND_LIFETIME_ARGUMENTS,
+ args.args[0].hir_id(),
+ multispan,
+ msg,
+ |lint| lint,
+ );
+ }
+
+ ExplicitLateBound::Yes
+ } else {
+ ExplicitLateBound::No
+ }
+ }
+}
diff --git a/compiler/rustc_hir_analysis/src/astconv/mod.rs b/compiler/rustc_hir_analysis/src/astconv/mod.rs
new file mode 100644
index 000000000..38f195dab
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/astconv/mod.rs
@@ -0,0 +1,3136 @@
+//! Conversion from AST representation of types to the `ty.rs` representation.
+//! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
+//! instance of `AstConv`.
+
+mod errors;
+mod generics;
+
+use crate::bounds::Bounds;
+use crate::collect::HirPlaceholderCollector;
+use crate::errors::{
+ AmbiguousLifetimeBound, MultipleRelaxedDefaultBounds, TraitObjectDeclaredWithNoTraits,
+ TypeofReservedKeywordUsed, ValueOfAssociatedStructAlreadySpecified,
+};
+use crate::middle::resolve_lifetime as rl;
+use crate::require_c_abi_if_c_variadic;
+use rustc_ast::TraitObjectSyntax;
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_errors::{
+ struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, FatalError,
+ MultiSpan,
+};
+use rustc_hir as hir;
+use rustc_hir::def::{CtorOf, DefKind, Namespace, Res};
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_hir::intravisit::{walk_generics, Visitor as _};
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::{GenericArg, GenericArgs, OpaqueTyOrigin};
+use rustc_middle::middle::stability::AllowUnstable;
+use rustc_middle::ty::subst::{self, GenericArgKind, InternalSubsts, SubstsRef};
+use rustc_middle::ty::DynKind;
+use rustc_middle::ty::GenericParamDefKind;
+use rustc_middle::ty::{
+ self, Const, DefIdTree, EarlyBinder, IsSuggestable, Ty, TyCtxt, TypeVisitable,
+};
+use rustc_session::lint::builtin::{AMBIGUOUS_ASSOCIATED_ITEMS, BARE_TRAIT_OBJECTS};
+use rustc_span::edition::Edition;
+use rustc_span::lev_distance::find_best_match_for_name;
+use rustc_span::symbol::{kw, Ident, Symbol};
+use rustc_span::{sym, Span};
+use rustc_target::spec::abi;
+use rustc_trait_selection::traits;
+use rustc_trait_selection::traits::astconv_object_safety_violations;
+use rustc_trait_selection::traits::error_reporting::{
+ report_object_safety_error, suggestions::NextTypeParamName,
+};
+use rustc_trait_selection::traits::wf::object_region_bounds;
+
+use smallvec::{smallvec, SmallVec};
+use std::collections::BTreeSet;
+use std::slice;
+
+#[derive(Debug)]
+pub struct PathSeg(pub DefId, pub usize);
+
+pub trait AstConv<'tcx> {
+ fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
+
+ fn item_def_id(&self) -> Option<DefId>;
+
+ /// Returns predicates in scope of the form `X: Foo<T>`, where `X`
+ /// is a type parameter `X` with the given id `def_id` and T
+ /// matches `assoc_name`. This is a subset of the full set of
+ /// predicates.
+ ///
+ /// This is used for one specific purpose: resolving "short-hand"
+ /// associated type references like `T::Item`. In principle, we
+ /// would do that by first getting the full set of predicates in
+ /// scope and then filtering down to find those that apply to `T`,
+ /// but this can lead to cycle errors. The problem is that we have
+ /// to do this resolution *in order to create the predicates in
+ /// the first place*. Hence, we have this "special pass".
+ fn get_type_parameter_bounds(
+ &self,
+ span: Span,
+ def_id: DefId,
+ assoc_name: Ident,
+ ) -> ty::GenericPredicates<'tcx>;
+
+ /// Returns the lifetime to use when a lifetime is omitted (and not elided).
+ fn re_infer(&self, param: Option<&ty::GenericParamDef>, span: Span)
+ -> Option<ty::Region<'tcx>>;
+
+ /// Returns the type to use when a type is omitted.
+ fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;
+
+ /// Returns `true` if `_` is allowed in type signatures in the current context.
+ fn allow_ty_infer(&self) -> bool;
+
+ /// Returns the const to use when a const is omitted.
+ fn ct_infer(
+ &self,
+ ty: Ty<'tcx>,
+ param: Option<&ty::GenericParamDef>,
+ span: Span,
+ ) -> Const<'tcx>;
+
+ /// Projecting an associated type from a (potentially)
+ /// higher-ranked trait reference is more complicated, because of
+ /// the possibility of late-bound regions appearing in the
+ /// associated type binding. This is not legal in function
+ /// signatures for that reason. In a function body, we can always
+ /// handle it because we can use inference variables to remove the
+ /// late-bound regions.
+ fn projected_ty_from_poly_trait_ref(
+ &self,
+ span: Span,
+ item_def_id: DefId,
+ item_segment: &hir::PathSegment<'_>,
+ poly_trait_ref: ty::PolyTraitRef<'tcx>,
+ ) -> Ty<'tcx>;
+
+ /// Normalize an associated type coming from the user.
+ fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
+
+ /// Invoked when we encounter an error from some prior pass
+ /// (e.g., resolve) that is translated into a ty-error. This is
+ /// used to help suppress derived errors typeck might otherwise
+ /// report.
+ fn set_tainted_by_errors(&self);
+
+ fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
+}
+
+#[derive(Debug)]
+struct ConvertedBinding<'a, 'tcx> {
+ hir_id: hir::HirId,
+ item_name: Ident,
+ kind: ConvertedBindingKind<'a, 'tcx>,
+ gen_args: &'a GenericArgs<'a>,
+ span: Span,
+}
+
+#[derive(Debug)]
+enum ConvertedBindingKind<'a, 'tcx> {
+ Equality(ty::Term<'tcx>),
+ Constraint(&'a [hir::GenericBound<'a>]),
+}
+
+/// New-typed boolean indicating whether explicit late-bound lifetimes
+/// are present in a set of generic arguments.
+///
+/// For example if we have some method `fn f<'a>(&'a self)` implemented
+/// for some type `T`, although `f` is generic in the lifetime `'a`, `'a`
+/// is late-bound so should not be provided explicitly. Thus, if `f` is
+/// instantiated with some generic arguments providing `'a` explicitly,
+/// we taint those arguments with `ExplicitLateBound::Yes` so that we
+/// can provide an appropriate diagnostic later.
+#[derive(Copy, Clone, PartialEq, Debug)]
+pub enum ExplicitLateBound {
+ Yes,
+ No,
+}
+
+#[derive(Copy, Clone, PartialEq)]
+pub enum IsMethodCall {
+ Yes,
+ No,
+}
+
+/// Denotes the "position" of a generic argument, indicating if it is a generic type,
+/// generic function or generic method call.
+#[derive(Copy, Clone, PartialEq)]
+pub(crate) enum GenericArgPosition {
+ Type,
+ Value, // e.g., functions
+ MethodCall,
+}
+
+/// A marker denoting that the generic arguments that were
+/// provided did not match the respective generic parameters.
+#[derive(Clone, Default, Debug)]
+pub struct GenericArgCountMismatch {
+ /// Indicates whether a fatal error was reported (`Some`), or just a lint (`None`).
+ pub reported: Option<ErrorGuaranteed>,
+ /// A list of spans of arguments provided that were not valid.
+ pub invalid_args: Vec<Span>,
+}
+
+/// Decorates the result of a generic argument count mismatch
+/// check with whether explicit late bounds were provided.
+#[derive(Clone, Debug)]
+pub struct GenericArgCountResult {
+ pub explicit_late_bound: ExplicitLateBound,
+ pub correct: Result<(), GenericArgCountMismatch>,
+}
+
+pub trait CreateSubstsForGenericArgsCtxt<'a, 'tcx> {
+ fn args_for_def_id(&mut self, def_id: DefId) -> (Option<&'a GenericArgs<'a>>, bool);
+
+ fn provided_kind(
+ &mut self,
+ param: &ty::GenericParamDef,
+ arg: &GenericArg<'_>,
+ ) -> subst::GenericArg<'tcx>;
+
+ fn inferred_kind(
+ &mut self,
+ substs: Option<&[subst::GenericArg<'tcx>]>,
+ param: &ty::GenericParamDef,
+ infer_args: bool,
+ ) -> subst::GenericArg<'tcx>;
+}
+
+impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
+ #[instrument(level = "debug", skip(self), ret)]
+ pub fn ast_region_to_region(
+ &self,
+ lifetime: &hir::Lifetime,
+ def: Option<&ty::GenericParamDef>,
+ ) -> ty::Region<'tcx> {
+ let tcx = self.tcx();
+ let lifetime_name = |def_id| tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id));
+
+ match tcx.named_region(lifetime.hir_id) {
+ Some(rl::Region::Static) => tcx.lifetimes.re_static,
+
+ Some(rl::Region::LateBound(debruijn, index, def_id)) => {
+ let name = lifetime_name(def_id.expect_local());
+ let br = ty::BoundRegion {
+ var: ty::BoundVar::from_u32(index),
+ kind: ty::BrNamed(def_id, name),
+ };
+ tcx.mk_region(ty::ReLateBound(debruijn, br))
+ }
+
+ Some(rl::Region::EarlyBound(def_id)) => {
+ let name = tcx.hir().ty_param_name(def_id.expect_local());
+ let item_def_id = tcx.hir().ty_param_owner(def_id.expect_local());
+ let generics = tcx.generics_of(item_def_id);
+ let index = generics.param_def_id_to_index[&def_id];
+ tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion { def_id, index, name }))
+ }
+
+ Some(rl::Region::Free(scope, id)) => {
+ let name = lifetime_name(id.expect_local());
+ tcx.mk_region(ty::ReFree(ty::FreeRegion {
+ scope,
+ bound_region: ty::BrNamed(id, name),
+ }))
+
+ // (*) -- not late-bound, won't change
+ }
+
+ None => {
+ self.re_infer(def, lifetime.span).unwrap_or_else(|| {
+ debug!(?lifetime, "unelided lifetime in signature");
+
+ // This indicates an illegal lifetime
+ // elision. `resolve_lifetime` should have
+ // reported an error in this case -- but if
+ // not, let's error out.
+ tcx.sess.delay_span_bug(lifetime.span, "unelided lifetime in signature");
+
+ // Supply some dummy value. We don't have an
+ // `re_error`, annoyingly, so use `'static`.
+ tcx.lifetimes.re_static
+ })
+ }
+ }
+ }
+
+ /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
+ /// returns an appropriate set of substitutions for this particular reference to `I`.
+ pub fn ast_path_substs_for_ty(
+ &self,
+ span: Span,
+ def_id: DefId,
+ item_segment: &hir::PathSegment<'_>,
+ ) -> SubstsRef<'tcx> {
+ let (substs, _) = self.create_substs_for_ast_path(
+ span,
+ def_id,
+ &[],
+ item_segment,
+ item_segment.args(),
+ item_segment.infer_args,
+ None,
+ None,
+ );
+ if let Some(b) = item_segment.args().bindings.first() {
+ Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
+ }
+
+ substs
+ }
+
+ /// Given the type/lifetime/const arguments provided to some path (along with
+ /// an implicit `Self`, if this is a trait reference), returns the complete
+ /// set of substitutions. This may involve applying defaulted type parameters.
+ /// Constraints on associated types are created from `create_assoc_bindings_for_generic_args`.
+ ///
+ /// Example:
+ ///
+ /// ```ignore (illustrative)
+ /// T: std::ops::Index<usize, Output = u32>
+ /// // ^1 ^^^^^^^^^^^^^^2 ^^^^3 ^^^^^^^^^^^4
+ /// ```
+ ///
+ /// 1. The `self_ty` here would refer to the type `T`.
+ /// 2. The path in question is the path to the trait `std::ops::Index`,
+ /// which will have been resolved to a `def_id`
+ /// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
+ /// parameters are returned in the `SubstsRef`, the associated type bindings like
+ /// `Output = u32` are returned from `create_assoc_bindings_for_generic_args`.
+ ///
+ /// Note that the type listing given here is *exactly* what the user provided.
+ ///
+ /// For (generic) associated types
+ ///
+ /// ```ignore (illustrative)
+ /// <Vec<u8> as Iterable<u8>>::Iter::<'a>
+ /// ```
+ ///
+ /// We have the parent substs are the substs for the parent trait:
+ /// `[Vec<u8>, u8]` and `generic_args` are the arguments for the associated
+ /// type itself: `['a]`. The returned `SubstsRef` concatenates these two
+ /// lists: `[Vec<u8>, u8, 'a]`.
+ #[instrument(level = "debug", skip(self, span), ret)]
+ fn create_substs_for_ast_path<'a>(
+ &self,
+ span: Span,
+ def_id: DefId,
+ parent_substs: &[subst::GenericArg<'tcx>],
+ seg: &hir::PathSegment<'_>,
+ generic_args: &'a hir::GenericArgs<'_>,
+ infer_args: bool,
+ self_ty: Option<Ty<'tcx>>,
+ constness: Option<ty::BoundConstness>,
+ ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
+ // If the type is parameterized by this region, then replace this
+ // region with the current anon region binding (in other words,
+ // whatever & would get replaced with).
+
+ let tcx = self.tcx();
+ let generics = tcx.generics_of(def_id);
+ debug!("generics: {:?}", generics);
+
+ if generics.has_self {
+ if generics.parent.is_some() {
+ // The parent is a trait so it should have at least one subst
+ // for the `Self` type.
+ assert!(!parent_substs.is_empty())
+ } else {
+ // This item (presumably a trait) needs a self-type.
+ assert!(self_ty.is_some());
+ }
+ } else {
+ assert!(self_ty.is_none() && parent_substs.is_empty());
+ }
+
+ let arg_count = Self::check_generic_arg_count(
+ tcx,
+ span,
+ def_id,
+ seg,
+ generics,
+ generic_args,
+ GenericArgPosition::Type,
+ self_ty.is_some(),
+ infer_args,
+ );
+
+ // Skip processing if type has no generic parameters.
+ // Traits always have `Self` as a generic parameter, which means they will not return early
+ // here and so associated type bindings will be handled regardless of whether there are any
+ // non-`Self` generic parameters.
+ if generics.params.is_empty() {
+ return (tcx.intern_substs(parent_substs), arg_count);
+ }
+
+ struct SubstsForAstPathCtxt<'a, 'tcx> {
+ astconv: &'a (dyn AstConv<'tcx> + 'a),
+ def_id: DefId,
+ generic_args: &'a GenericArgs<'a>,
+ span: Span,
+ inferred_params: Vec<Span>,
+ infer_args: bool,
+ }
+
+ impl<'a, 'tcx> CreateSubstsForGenericArgsCtxt<'a, 'tcx> for SubstsForAstPathCtxt<'a, 'tcx> {
+ fn args_for_def_id(&mut self, did: DefId) -> (Option<&'a GenericArgs<'a>>, bool) {
+ if did == self.def_id {
+ (Some(self.generic_args), self.infer_args)
+ } else {
+ // The last component of this tuple is unimportant.
+ (None, false)
+ }
+ }
+
+ fn provided_kind(
+ &mut self,
+ param: &ty::GenericParamDef,
+ arg: &GenericArg<'_>,
+ ) -> subst::GenericArg<'tcx> {
+ let tcx = self.astconv.tcx();
+
+ let mut handle_ty_args = |has_default, ty: &hir::Ty<'_>| {
+ if has_default {
+ tcx.check_optional_stability(
+ param.def_id,
+ Some(arg.hir_id()),
+ arg.span(),
+ None,
+ AllowUnstable::No,
+ |_, _| {
+ // Default generic parameters may not be marked
+ // with stability attributes, i.e. when the
+ // default parameter was defined at the same time
+ // as the rest of the type. As such, we ignore missing
+ // stability attributes.
+ },
+ );
+ }
+ if let (hir::TyKind::Infer, false) = (&ty.kind, self.astconv.allow_ty_infer()) {
+ self.inferred_params.push(ty.span);
+ tcx.ty_error().into()
+ } else {
+ self.astconv.ast_ty_to_ty(ty).into()
+ }
+ };
+
+ match (&param.kind, arg) {
+ (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
+ self.astconv.ast_region_to_region(lt, Some(param)).into()
+ }
+ (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Type(ty)) => {
+ handle_ty_args(has_default, ty)
+ }
+ (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Infer(inf)) => {
+ handle_ty_args(has_default, &inf.to_ty())
+ }
+ (GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
+ ty::Const::from_opt_const_arg_anon_const(
+ tcx,
+ ty::WithOptConstParam {
+ did: tcx.hir().local_def_id(ct.value.hir_id),
+ const_param_did: Some(param.def_id),
+ },
+ )
+ .into()
+ }
+ (&GenericParamDefKind::Const { .. }, hir::GenericArg::Infer(inf)) => {
+ let ty = tcx.at(self.span).type_of(param.def_id);
+ if self.astconv.allow_ty_infer() {
+ self.astconv.ct_infer(ty, Some(param), inf.span).into()
+ } else {
+ self.inferred_params.push(inf.span);
+ tcx.const_error(ty).into()
+ }
+ }
+ _ => unreachable!(),
+ }
+ }
+
+ fn inferred_kind(
+ &mut self,
+ substs: Option<&[subst::GenericArg<'tcx>]>,
+ param: &ty::GenericParamDef,
+ infer_args: bool,
+ ) -> subst::GenericArg<'tcx> {
+ let tcx = self.astconv.tcx();
+ match param.kind {
+ GenericParamDefKind::Lifetime => self
+ .astconv
+ .re_infer(Some(param), self.span)
+ .unwrap_or_else(|| {
+ debug!(?param, "unelided lifetime in signature");
+
+ // This indicates an illegal lifetime in a non-assoc-trait position
+ tcx.sess.delay_span_bug(self.span, "unelided lifetime in signature");
+
+ // Supply some dummy value. We don't have an
+ // `re_error`, annoyingly, so use `'static`.
+ tcx.lifetimes.re_static
+ })
+ .into(),
+ GenericParamDefKind::Type { has_default, .. } => {
+ if !infer_args && has_default {
+ // No type parameter provided, but a default exists.
+ let substs = substs.unwrap();
+ if substs.iter().any(|arg| match arg.unpack() {
+ GenericArgKind::Type(ty) => ty.references_error(),
+ _ => false,
+ }) {
+ // Avoid ICE #86756 when type error recovery goes awry.
+ return tcx.ty_error().into();
+ }
+ self.astconv
+ .normalize_ty(
+ self.span,
+ EarlyBinder(tcx.at(self.span).type_of(param.def_id))
+ .subst(tcx, substs),
+ )
+ .into()
+ } else if infer_args {
+ self.astconv.ty_infer(Some(param), self.span).into()
+ } else {
+ // We've already errored above about the mismatch.
+ tcx.ty_error().into()
+ }
+ }
+ GenericParamDefKind::Const { has_default } => {
+ let ty = tcx.at(self.span).type_of(param.def_id);
+ if !infer_args && has_default {
+ tcx.bound_const_param_default(param.def_id)
+ .subst(tcx, substs.unwrap())
+ .into()
+ } else {
+ if infer_args {
+ self.astconv.ct_infer(ty, Some(param), self.span).into()
+ } else {
+ // We've already errored above about the mismatch.
+ tcx.const_error(ty).into()
+ }
+ }
+ }
+ }
+ }
+ }
+
+ let mut substs_ctx = SubstsForAstPathCtxt {
+ astconv: self,
+ def_id,
+ span,
+ generic_args,
+ inferred_params: vec![],
+ infer_args,
+ };
+ let substs = Self::create_substs_for_generic_args(
+ tcx,
+ def_id,
+ parent_substs,
+ self_ty.is_some(),
+ self_ty,
+ &arg_count,
+ &mut substs_ctx,
+ );
+
+ if let Some(ty::BoundConstness::ConstIfConst) = constness
+ && generics.has_self && !tcx.has_attr(def_id, sym::const_trait)
+ {
+ tcx.sess.emit_err(crate::errors::ConstBoundForNonConstTrait { span } );
+ }
+
+ (substs, arg_count)
+ }
+
+ fn create_assoc_bindings_for_generic_args<'a>(
+ &self,
+ generic_args: &'a hir::GenericArgs<'_>,
+ ) -> Vec<ConvertedBinding<'a, 'tcx>> {
+ // Convert associated-type bindings or constraints into a separate vector.
+ // Example: Given this:
+ //
+ // T: Iterator<Item = u32>
+ //
+ // The `T` is passed in as a self-type; the `Item = u32` is
+ // not a "type parameter" of the `Iterator` trait, but rather
+ // a restriction on `<T as Iterator>::Item`, so it is passed
+ // back separately.
+ let assoc_bindings = generic_args
+ .bindings
+ .iter()
+ .map(|binding| {
+ let kind = match binding.kind {
+ hir::TypeBindingKind::Equality { ref term } => match term {
+ hir::Term::Ty(ref ty) => {
+ ConvertedBindingKind::Equality(self.ast_ty_to_ty(ty).into())
+ }
+ hir::Term::Const(ref c) => {
+ let local_did = self.tcx().hir().local_def_id(c.hir_id);
+ let c = Const::from_anon_const(self.tcx(), local_did);
+ ConvertedBindingKind::Equality(c.into())
+ }
+ },
+ hir::TypeBindingKind::Constraint { ref bounds } => {
+ ConvertedBindingKind::Constraint(bounds)
+ }
+ };
+ ConvertedBinding {
+ hir_id: binding.hir_id,
+ item_name: binding.ident,
+ kind,
+ gen_args: binding.gen_args,
+ span: binding.span,
+ }
+ })
+ .collect();
+
+ assoc_bindings
+ }
+
+ pub fn create_substs_for_associated_item(
+ &self,
+ span: Span,
+ item_def_id: DefId,
+ item_segment: &hir::PathSegment<'_>,
+ parent_substs: SubstsRef<'tcx>,
+ ) -> SubstsRef<'tcx> {
+ debug!(
+ "create_substs_for_associated_item(span: {:?}, item_def_id: {:?}, item_segment: {:?}",
+ span, item_def_id, item_segment
+ );
+ let (args, _) = self.create_substs_for_ast_path(
+ span,
+ item_def_id,
+ parent_substs,
+ item_segment,
+ item_segment.args(),
+ item_segment.infer_args,
+ None,
+ None,
+ );
+
+ if let Some(b) = item_segment.args().bindings.first() {
+ Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
+ }
+
+ args
+ }
+
+ /// Instantiates the path for the given trait reference, assuming that it's
+ /// bound to a valid trait type. Returns the `DefId` of the defining trait.
+ /// The type _cannot_ be a type other than a trait type.
+ ///
+ /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
+ /// are disallowed. Otherwise, they are pushed onto the vector given.
+ pub fn instantiate_mono_trait_ref(
+ &self,
+ trait_ref: &hir::TraitRef<'_>,
+ self_ty: Ty<'tcx>,
+ constness: ty::BoundConstness,
+ ) -> ty::TraitRef<'tcx> {
+ self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1.iter(), |_| {});
+
+ self.ast_path_to_mono_trait_ref(
+ trait_ref.path.span,
+ trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
+ self_ty,
+ trait_ref.path.segments.last().unwrap(),
+ true,
+ Some(constness),
+ )
+ }
+
+ fn instantiate_poly_trait_ref_inner(
+ &self,
+ hir_id: hir::HirId,
+ span: Span,
+ binding_span: Option<Span>,
+ constness: ty::BoundConstness,
+ bounds: &mut Bounds<'tcx>,
+ speculative: bool,
+ trait_ref_span: Span,
+ trait_def_id: DefId,
+ trait_segment: &hir::PathSegment<'_>,
+ args: &GenericArgs<'_>,
+ infer_args: bool,
+ self_ty: Ty<'tcx>,
+ ) -> GenericArgCountResult {
+ let (substs, arg_count) = self.create_substs_for_ast_path(
+ trait_ref_span,
+ trait_def_id,
+ &[],
+ trait_segment,
+ args,
+ infer_args,
+ Some(self_ty),
+ Some(constness),
+ );
+
+ let tcx = self.tcx();
+ let bound_vars = tcx.late_bound_vars(hir_id);
+ debug!(?bound_vars);
+
+ let assoc_bindings = self.create_assoc_bindings_for_generic_args(args);
+
+ let poly_trait_ref =
+ ty::Binder::bind_with_vars(ty::TraitRef::new(trait_def_id, substs), bound_vars);
+
+ debug!(?poly_trait_ref, ?assoc_bindings);
+ bounds.trait_bounds.push((poly_trait_ref, span, constness));
+
+ let mut dup_bindings = FxHashMap::default();
+ for binding in &assoc_bindings {
+ // Specify type to assert that error was already reported in `Err` case.
+ let _: Result<_, ErrorGuaranteed> = self.add_predicates_for_ast_type_binding(
+ hir_id,
+ poly_trait_ref,
+ binding,
+ bounds,
+ speculative,
+ &mut dup_bindings,
+ binding_span.unwrap_or(binding.span),
+ constness,
+ );
+ // Okay to ignore `Err` because of `ErrorGuaranteed` (see above).
+ }
+
+ arg_count
+ }
+
+ /// Given a trait bound like `Debug`, applies that trait bound the given self-type to construct
+ /// a full trait reference. The resulting trait reference is returned. This may also generate
+ /// auxiliary bounds, which are added to `bounds`.
+ ///
+ /// Example:
+ ///
+ /// ```ignore (illustrative)
+ /// poly_trait_ref = Iterator<Item = u32>
+ /// self_ty = Foo
+ /// ```
+ ///
+ /// this would return `Foo: Iterator` and add `<Foo as Iterator>::Item = u32` into `bounds`.
+ ///
+ /// **A note on binders:** against our usual convention, there is an implied bounder around
+ /// the `self_ty` and `poly_trait_ref` parameters here. So they may reference bound regions.
+ /// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
+ /// where `'a` is a bound region at depth 0. Similarly, the `poly_trait_ref` would be
+ /// `Bar<'a>`. The returned poly-trait-ref will have this binder instantiated explicitly,
+ /// however.
+ #[instrument(level = "debug", skip(self, span, constness, bounds, speculative))]
+ pub(crate) fn instantiate_poly_trait_ref(
+ &self,
+ trait_ref: &hir::TraitRef<'_>,
+ span: Span,
+ constness: ty::BoundConstness,
+ self_ty: Ty<'tcx>,
+ bounds: &mut Bounds<'tcx>,
+ speculative: bool,
+ ) -> GenericArgCountResult {
+ let hir_id = trait_ref.hir_ref_id;
+ let binding_span = None;
+ let trait_ref_span = trait_ref.path.span;
+ let trait_def_id = trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise());
+ let trait_segment = trait_ref.path.segments.last().unwrap();
+ let args = trait_segment.args();
+ let infer_args = trait_segment.infer_args;
+
+ self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1.iter(), |_| {});
+ self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment, false);
+
+ self.instantiate_poly_trait_ref_inner(
+ hir_id,
+ span,
+ binding_span,
+ constness,
+ bounds,
+ speculative,
+ trait_ref_span,
+ trait_def_id,
+ trait_segment,
+ args,
+ infer_args,
+ self_ty,
+ )
+ }
+
+ pub(crate) fn instantiate_lang_item_trait_ref(
+ &self,
+ lang_item: hir::LangItem,
+ span: Span,
+ hir_id: hir::HirId,
+ args: &GenericArgs<'_>,
+ self_ty: Ty<'tcx>,
+ bounds: &mut Bounds<'tcx>,
+ ) {
+ let binding_span = Some(span);
+ let constness = ty::BoundConstness::NotConst;
+ let speculative = false;
+ let trait_ref_span = span;
+ let trait_def_id = self.tcx().require_lang_item(lang_item, Some(span));
+ let trait_segment = &hir::PathSegment::invalid();
+ let infer_args = false;
+
+ self.instantiate_poly_trait_ref_inner(
+ hir_id,
+ span,
+ binding_span,
+ constness,
+ bounds,
+ speculative,
+ trait_ref_span,
+ trait_def_id,
+ trait_segment,
+ args,
+ infer_args,
+ self_ty,
+ );
+ }
+
+ fn ast_path_to_mono_trait_ref(
+ &self,
+ span: Span,
+ trait_def_id: DefId,
+ self_ty: Ty<'tcx>,
+ trait_segment: &hir::PathSegment<'_>,
+ is_impl: bool,
+ constness: Option<ty::BoundConstness>,
+ ) -> ty::TraitRef<'tcx> {
+ let (substs, _) = self.create_substs_for_ast_trait_ref(
+ span,
+ trait_def_id,
+ self_ty,
+ trait_segment,
+ is_impl,
+ constness,
+ );
+ if let Some(b) = trait_segment.args().bindings.first() {
+ Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
+ }
+ ty::TraitRef::new(trait_def_id, substs)
+ }
+
+ #[instrument(level = "debug", skip(self, span))]
+ fn create_substs_for_ast_trait_ref<'a>(
+ &self,
+ span: Span,
+ trait_def_id: DefId,
+ self_ty: Ty<'tcx>,
+ trait_segment: &'a hir::PathSegment<'a>,
+ is_impl: bool,
+ constness: Option<ty::BoundConstness>,
+ ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
+ self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment, is_impl);
+
+ self.create_substs_for_ast_path(
+ span,
+ trait_def_id,
+ &[],
+ trait_segment,
+ trait_segment.args(),
+ trait_segment.infer_args,
+ Some(self_ty),
+ constness,
+ )
+ }
+
+ fn trait_defines_associated_type_named(&self, trait_def_id: DefId, assoc_name: Ident) -> bool {
+ self.tcx()
+ .associated_items(trait_def_id)
+ .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, trait_def_id)
+ .is_some()
+ }
+ fn trait_defines_associated_const_named(&self, trait_def_id: DefId, assoc_name: Ident) -> bool {
+ self.tcx()
+ .associated_items(trait_def_id)
+ .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Const, trait_def_id)
+ .is_some()
+ }
+
+ // Sets `implicitly_sized` to true on `Bounds` if necessary
+ pub(crate) fn add_implicitly_sized<'hir>(
+ &self,
+ bounds: &mut Bounds<'hir>,
+ ast_bounds: &'hir [hir::GenericBound<'hir>],
+ self_ty_where_predicates: Option<(hir::HirId, &'hir [hir::WherePredicate<'hir>])>,
+ span: Span,
+ ) {
+ let tcx = self.tcx();
+
+ // Try to find an unbound in bounds.
+ let mut unbound = None;
+ let mut search_bounds = |ast_bounds: &'hir [hir::GenericBound<'hir>]| {
+ for ab in ast_bounds {
+ if let hir::GenericBound::Trait(ptr, hir::TraitBoundModifier::Maybe) = ab {
+ if unbound.is_none() {
+ unbound = Some(&ptr.trait_ref);
+ } else {
+ tcx.sess.emit_err(MultipleRelaxedDefaultBounds { span });
+ }
+ }
+ }
+ };
+ search_bounds(ast_bounds);
+ if let Some((self_ty, where_clause)) = self_ty_where_predicates {
+ let self_ty_def_id = tcx.hir().local_def_id(self_ty).to_def_id();
+ for clause in where_clause {
+ if let hir::WherePredicate::BoundPredicate(pred) = clause {
+ if pred.is_param_bound(self_ty_def_id) {
+ search_bounds(pred.bounds);
+ }
+ }
+ }
+ }
+
+ let sized_def_id = tcx.lang_items().require(LangItem::Sized);
+ match (&sized_def_id, unbound) {
+ (Ok(sized_def_id), Some(tpb))
+ if tpb.path.res == Res::Def(DefKind::Trait, *sized_def_id) =>
+ {
+ // There was in fact a `?Sized` bound, return without doing anything
+ return;
+ }
+ (_, Some(_)) => {
+ // There was a `?Trait` bound, but it was not `?Sized`; warn.
+ tcx.sess.span_warn(
+ span,
+ "default bound relaxed for a type parameter, but \
+ this does nothing because the given bound is not \
+ a default; only `?Sized` is supported",
+ );
+ // Otherwise, add implicitly sized if `Sized` is available.
+ }
+ _ => {
+ // There was no `?Sized` bound; add implicitly sized if `Sized` is available.
+ }
+ }
+ if sized_def_id.is_err() {
+ // No lang item for `Sized`, so we can't add it as a bound.
+ return;
+ }
+ bounds.implicitly_sized = Some(span);
+ }
+
+ /// This helper takes a *converted* parameter type (`param_ty`)
+ /// and an *unconverted* list of bounds:
+ ///
+ /// ```text
+ /// fn foo<T: Debug>
+ /// ^ ^^^^^ `ast_bounds` parameter, in HIR form
+ /// |
+ /// `param_ty`, in ty form
+ /// ```
+ ///
+ /// It adds these `ast_bounds` into the `bounds` structure.
+ ///
+ /// **A note on binders:** there is an implied binder around
+ /// `param_ty` and `ast_bounds`. See `instantiate_poly_trait_ref`
+ /// for more details.
+ #[instrument(level = "debug", skip(self, ast_bounds, bounds))]
+ pub(crate) fn add_bounds<'hir, I: Iterator<Item = &'hir hir::GenericBound<'hir>>>(
+ &self,
+ param_ty: Ty<'tcx>,
+ ast_bounds: I,
+ bounds: &mut Bounds<'tcx>,
+ bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
+ ) {
+ for ast_bound in ast_bounds {
+ match ast_bound {
+ hir::GenericBound::Trait(poly_trait_ref, modifier) => {
+ let constness = match modifier {
+ hir::TraitBoundModifier::MaybeConst => ty::BoundConstness::ConstIfConst,
+ hir::TraitBoundModifier::None => ty::BoundConstness::NotConst,
+ hir::TraitBoundModifier::Maybe => continue,
+ };
+
+ let _ = self.instantiate_poly_trait_ref(
+ &poly_trait_ref.trait_ref,
+ poly_trait_ref.span,
+ constness,
+ param_ty,
+ bounds,
+ false,
+ );
+ }
+ &hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => {
+ self.instantiate_lang_item_trait_ref(
+ lang_item, span, hir_id, args, param_ty, bounds,
+ );
+ }
+ hir::GenericBound::Outlives(lifetime) => {
+ let region = self.ast_region_to_region(lifetime, None);
+ bounds
+ .region_bounds
+ .push((ty::Binder::bind_with_vars(region, bound_vars), lifetime.span));
+ }
+ }
+ }
+ }
+
+ /// Translates a list of bounds from the HIR into the `Bounds` data structure.
+ /// The self-type for the bounds is given by `param_ty`.
+ ///
+ /// Example:
+ ///
+ /// ```ignore (illustrative)
+ /// fn foo<T: Bar + Baz>() { }
+ /// // ^ ^^^^^^^^^ ast_bounds
+ /// // param_ty
+ /// ```
+ ///
+ /// The `sized_by_default` parameter indicates if, in this context, the `param_ty` should be
+ /// considered `Sized` unless there is an explicit `?Sized` bound. This would be true in the
+ /// example above, but is not true in supertrait listings like `trait Foo: Bar + Baz`.
+ ///
+ /// `span` should be the declaration size of the parameter.
+ pub(crate) fn compute_bounds(
+ &self,
+ param_ty: Ty<'tcx>,
+ ast_bounds: &[hir::GenericBound<'_>],
+ ) -> Bounds<'tcx> {
+ self.compute_bounds_inner(param_ty, ast_bounds)
+ }
+
+ /// Convert the bounds in `ast_bounds` that refer to traits which define an associated type
+ /// named `assoc_name` into ty::Bounds. Ignore the rest.
+ pub(crate) fn compute_bounds_that_match_assoc_type(
+ &self,
+ param_ty: Ty<'tcx>,
+ ast_bounds: &[hir::GenericBound<'_>],
+ assoc_name: Ident,
+ ) -> Bounds<'tcx> {
+ let mut result = Vec::new();
+
+ for ast_bound in ast_bounds {
+ if let Some(trait_ref) = ast_bound.trait_ref()
+ && let Some(trait_did) = trait_ref.trait_def_id()
+ && self.tcx().trait_may_define_assoc_type(trait_did, assoc_name)
+ {
+ result.push(ast_bound.clone());
+ }
+ }
+
+ self.compute_bounds_inner(param_ty, &result)
+ }
+
+ fn compute_bounds_inner(
+ &self,
+ param_ty: Ty<'tcx>,
+ ast_bounds: &[hir::GenericBound<'_>],
+ ) -> Bounds<'tcx> {
+ let mut bounds = Bounds::default();
+
+ self.add_bounds(param_ty, ast_bounds.iter(), &mut bounds, ty::List::empty());
+ debug!(?bounds);
+
+ bounds
+ }
+
+ /// Given an HIR binding like `Item = Foo` or `Item: Foo`, pushes the corresponding predicates
+ /// onto `bounds`.
+ ///
+ /// **A note on binders:** given something like `T: for<'a> Iterator<Item = &'a u32>`, the
+ /// `trait_ref` here will be `for<'a> T: Iterator`. The `binding` data however is from *inside*
+ /// the binder (e.g., `&'a u32`) and hence may reference bound regions.
+ #[instrument(level = "debug", skip(self, bounds, speculative, dup_bindings, path_span))]
+ fn add_predicates_for_ast_type_binding(
+ &self,
+ hir_ref_id: hir::HirId,
+ trait_ref: ty::PolyTraitRef<'tcx>,
+ binding: &ConvertedBinding<'_, 'tcx>,
+ bounds: &mut Bounds<'tcx>,
+ speculative: bool,
+ dup_bindings: &mut FxHashMap<DefId, Span>,
+ path_span: Span,
+ constness: ty::BoundConstness,
+ ) -> Result<(), ErrorGuaranteed> {
+ // Given something like `U: SomeTrait<T = X>`, we want to produce a
+ // predicate like `<U as SomeTrait>::T = X`. This is somewhat
+ // subtle in the event that `T` is defined in a supertrait of
+ // `SomeTrait`, because in that case we need to upcast.
+ //
+ // That is, consider this case:
+ //
+ // ```
+ // trait SubTrait: SuperTrait<i32> { }
+ // trait SuperTrait<A> { type T; }
+ //
+ // ... B: SubTrait<T = foo> ...
+ // ```
+ //
+ // We want to produce `<B as SuperTrait<i32>>::T == foo`.
+
+ let tcx = self.tcx();
+
+ let candidate =
+ if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
+ // Simple case: X is defined in the current trait.
+ trait_ref
+ } else {
+ // Otherwise, we have to walk through the supertraits to find
+ // those that do.
+ self.one_bound_for_assoc_type(
+ || traits::supertraits(tcx, trait_ref),
+ || trait_ref.print_only_trait_path().to_string(),
+ binding.item_name,
+ path_span,
+ || match binding.kind {
+ ConvertedBindingKind::Equality(ty) => Some(ty.to_string()),
+ _ => None,
+ },
+ )?
+ };
+
+ let (assoc_ident, def_scope) =
+ tcx.adjust_ident_and_get_scope(binding.item_name, candidate.def_id(), hir_ref_id);
+
+ // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
+ // of calling `filter_by_name_and_kind`.
+ let find_item_of_kind = |kind| {
+ tcx.associated_items(candidate.def_id())
+ .filter_by_name_unhygienic(assoc_ident.name)
+ .find(|i| i.kind == kind && i.ident(tcx).normalize_to_macros_2_0() == assoc_ident)
+ };
+ let assoc_item = find_item_of_kind(ty::AssocKind::Type)
+ .or_else(|| find_item_of_kind(ty::AssocKind::Const))
+ .expect("missing associated type");
+
+ if !assoc_item.visibility(tcx).is_accessible_from(def_scope, tcx) {
+ tcx.sess
+ .struct_span_err(
+ binding.span,
+ &format!("{} `{}` is private", assoc_item.kind, binding.item_name),
+ )
+ .span_label(binding.span, &format!("private {}", assoc_item.kind))
+ .emit();
+ }
+ tcx.check_stability(assoc_item.def_id, Some(hir_ref_id), binding.span, None);
+
+ if !speculative {
+ dup_bindings
+ .entry(assoc_item.def_id)
+ .and_modify(|prev_span| {
+ self.tcx().sess.emit_err(ValueOfAssociatedStructAlreadySpecified {
+ span: binding.span,
+ prev_span: *prev_span,
+ item_name: binding.item_name,
+ def_path: tcx.def_path_str(assoc_item.container_id(tcx)),
+ });
+ })
+ .or_insert(binding.span);
+ }
+
+ // Include substitutions for generic parameters of associated types
+ let projection_ty = candidate.map_bound(|trait_ref| {
+ let ident = Ident::new(assoc_item.name, binding.item_name.span);
+ let item_segment = hir::PathSegment {
+ ident,
+ hir_id: binding.hir_id,
+ res: Res::Err,
+ args: Some(binding.gen_args),
+ infer_args: false,
+ };
+
+ let substs_trait_ref_and_assoc_item = self.create_substs_for_associated_item(
+ path_span,
+ assoc_item.def_id,
+ &item_segment,
+ trait_ref.substs,
+ );
+
+ debug!(?substs_trait_ref_and_assoc_item);
+
+ ty::ProjectionTy {
+ item_def_id: assoc_item.def_id,
+ substs: substs_trait_ref_and_assoc_item,
+ }
+ });
+
+ if !speculative {
+ // Find any late-bound regions declared in `ty` that are not
+ // declared in the trait-ref or assoc_item. These are not well-formed.
+ //
+ // Example:
+ //
+ // for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
+ // for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
+ if let ConvertedBindingKind::Equality(ty) = binding.kind {
+ let late_bound_in_trait_ref =
+ tcx.collect_constrained_late_bound_regions(&projection_ty);
+ let late_bound_in_ty =
+ tcx.collect_referenced_late_bound_regions(&trait_ref.rebind(ty));
+ debug!(?late_bound_in_trait_ref);
+ debug!(?late_bound_in_ty);
+
+ // FIXME: point at the type params that don't have appropriate lifetimes:
+ // struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
+ // ---- ---- ^^^^^^^
+ self.validate_late_bound_regions(
+ late_bound_in_trait_ref,
+ late_bound_in_ty,
+ |br_name| {
+ struct_span_err!(
+ tcx.sess,
+ binding.span,
+ E0582,
+ "binding for associated type `{}` references {}, \
+ which does not appear in the trait input types",
+ binding.item_name,
+ br_name
+ )
+ },
+ );
+ }
+ }
+
+ match binding.kind {
+ ConvertedBindingKind::Equality(mut term) => {
+ // "Desugar" a constraint like `T: Iterator<Item = u32>` this to
+ // the "projection predicate" for:
+ //
+ // `<T as Iterator>::Item = u32`
+ let assoc_item_def_id = projection_ty.skip_binder().item_def_id;
+ let def_kind = tcx.def_kind(assoc_item_def_id);
+ match (def_kind, term.unpack()) {
+ (hir::def::DefKind::AssocTy, ty::TermKind::Ty(_))
+ | (hir::def::DefKind::AssocConst, ty::TermKind::Const(_)) => (),
+ (_, _) => {
+ let got = if let Some(_) = term.ty() { "type" } else { "constant" };
+ let expected = def_kind.descr(assoc_item_def_id);
+ tcx.sess
+ .struct_span_err(
+ binding.span,
+ &format!("expected {expected} bound, found {got}"),
+ )
+ .span_note(
+ tcx.def_span(assoc_item_def_id),
+ &format!("{expected} defined here"),
+ )
+ .emit();
+ term = match def_kind {
+ hir::def::DefKind::AssocTy => tcx.ty_error().into(),
+ hir::def::DefKind::AssocConst => tcx
+ .const_error(
+ tcx.bound_type_of(assoc_item_def_id)
+ .subst(tcx, projection_ty.skip_binder().substs),
+ )
+ .into(),
+ _ => unreachable!(),
+ };
+ }
+ }
+ bounds.projection_bounds.push((
+ projection_ty.map_bound(|projection_ty| ty::ProjectionPredicate {
+ projection_ty,
+ term: term,
+ }),
+ binding.span,
+ ));
+ }
+ ConvertedBindingKind::Constraint(ast_bounds) => {
+ // "Desugar" a constraint like `T: Iterator<Item: Debug>` to
+ //
+ // `<T as Iterator>::Item: Debug`
+ //
+ // Calling `skip_binder` is okay, because `add_bounds` expects the `param_ty`
+ // parameter to have a skipped binder.
+ let param_ty = tcx.mk_ty(ty::Projection(projection_ty.skip_binder()));
+ self.add_bounds(param_ty, ast_bounds.iter(), bounds, candidate.bound_vars());
+ }
+ }
+ Ok(())
+ }
+
+ fn ast_path_to_ty(
+ &self,
+ span: Span,
+ did: DefId,
+ item_segment: &hir::PathSegment<'_>,
+ ) -> Ty<'tcx> {
+ let substs = self.ast_path_substs_for_ty(span, did, item_segment);
+ self.normalize_ty(
+ span,
+ EarlyBinder(self.tcx().at(span).type_of(did)).subst(self.tcx(), substs),
+ )
+ }
+
+ fn conv_object_ty_poly_trait_ref(
+ &self,
+ span: Span,
+ trait_bounds: &[hir::PolyTraitRef<'_>],
+ lifetime: &hir::Lifetime,
+ borrowed: bool,
+ representation: DynKind,
+ ) -> Ty<'tcx> {
+ let tcx = self.tcx();
+
+ let mut bounds = Bounds::default();
+ let mut potential_assoc_types = Vec::new();
+ let dummy_self = self.tcx().types.trait_object_dummy_self;
+ for trait_bound in trait_bounds.iter().rev() {
+ if let GenericArgCountResult {
+ correct:
+ Err(GenericArgCountMismatch { invalid_args: cur_potential_assoc_types, .. }),
+ ..
+ } = self.instantiate_poly_trait_ref(
+ &trait_bound.trait_ref,
+ trait_bound.span,
+ ty::BoundConstness::NotConst,
+ dummy_self,
+ &mut bounds,
+ false,
+ ) {
+ potential_assoc_types.extend(cur_potential_assoc_types);
+ }
+ }
+
+ // Expand trait aliases recursively and check that only one regular (non-auto) trait
+ // is used and no 'maybe' bounds are used.
+ let expanded_traits =
+ traits::expand_trait_aliases(tcx, bounds.trait_bounds.iter().map(|&(a, b, _)| (a, b)));
+ let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) = expanded_traits
+ .filter(|i| i.trait_ref().self_ty().skip_binder() == dummy_self)
+ .partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
+ if regular_traits.len() > 1 {
+ let first_trait = &regular_traits[0];
+ let additional_trait = &regular_traits[1];
+ let mut err = struct_span_err!(
+ tcx.sess,
+ additional_trait.bottom().1,
+ E0225,
+ "only auto traits can be used as additional traits in a trait object"
+ );
+ additional_trait.label_with_exp_info(
+ &mut err,
+ "additional non-auto trait",
+ "additional use",
+ );
+ first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
+ err.help(&format!(
+ "consider creating a new trait with all of these as supertraits and using that \
+ trait here instead: `trait NewTrait: {} {{}}`",
+ regular_traits
+ .iter()
+ .map(|t| t.trait_ref().print_only_trait_path().to_string())
+ .collect::<Vec<_>>()
+ .join(" + "),
+ ));
+ err.note(
+ "auto-traits like `Send` and `Sync` are traits that have special properties; \
+ for more information on them, visit \
+ <https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits>",
+ );
+ err.emit();
+ }
+
+ if regular_traits.is_empty() && auto_traits.is_empty() {
+ let trait_alias_span = bounds
+ .trait_bounds
+ .iter()
+ .map(|&(trait_ref, _, _)| trait_ref.def_id())
+ .find(|&trait_ref| tcx.is_trait_alias(trait_ref))
+ .map(|trait_ref| tcx.def_span(trait_ref));
+ tcx.sess.emit_err(TraitObjectDeclaredWithNoTraits { span, trait_alias_span });
+ return tcx.ty_error();
+ }
+
+ // Check that there are no gross object safety violations;
+ // most importantly, that the supertraits don't contain `Self`,
+ // to avoid ICEs.
+ for item in &regular_traits {
+ let object_safety_violations =
+ astconv_object_safety_violations(tcx, item.trait_ref().def_id());
+ if !object_safety_violations.is_empty() {
+ report_object_safety_error(
+ tcx,
+ span,
+ item.trait_ref().def_id(),
+ &object_safety_violations,
+ )
+ .emit();
+ return tcx.ty_error();
+ }
+ }
+
+ // Use a `BTreeSet` to keep output in a more consistent order.
+ let mut associated_types: FxHashMap<Span, BTreeSet<DefId>> = FxHashMap::default();
+
+ let regular_traits_refs_spans = bounds
+ .trait_bounds
+ .into_iter()
+ .filter(|(trait_ref, _, _)| !tcx.trait_is_auto(trait_ref.def_id()));
+
+ for (base_trait_ref, span, constness) in regular_traits_refs_spans {
+ assert_eq!(constness, ty::BoundConstness::NotConst);
+
+ for obligation in traits::elaborate_trait_ref(tcx, base_trait_ref) {
+ debug!(
+ "conv_object_ty_poly_trait_ref: observing object predicate `{:?}`",
+ obligation.predicate
+ );
+
+ let bound_predicate = obligation.predicate.kind();
+ match bound_predicate.skip_binder() {
+ ty::PredicateKind::Trait(pred) => {
+ let pred = bound_predicate.rebind(pred);
+ associated_types.entry(span).or_default().extend(
+ tcx.associated_items(pred.def_id())
+ .in_definition_order()
+ .filter(|item| item.kind == ty::AssocKind::Type)
+ .map(|item| item.def_id),
+ );
+ }
+ ty::PredicateKind::Projection(pred) => {
+ let pred = bound_predicate.rebind(pred);
+ // A `Self` within the original bound will be substituted with a
+ // `trait_object_dummy_self`, so check for that.
+ let references_self = match pred.skip_binder().term.unpack() {
+ ty::TermKind::Ty(ty) => ty.walk().any(|arg| arg == dummy_self.into()),
+ ty::TermKind::Const(c) => {
+ c.ty().walk().any(|arg| arg == dummy_self.into())
+ }
+ };
+
+ // If the projection output contains `Self`, force the user to
+ // elaborate it explicitly to avoid a lot of complexity.
+ //
+ // The "classically useful" case is the following:
+ // ```
+ // trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
+ // type MyOutput;
+ // }
+ // ```
+ //
+ // Here, the user could theoretically write `dyn MyTrait<Output = X>`,
+ // but actually supporting that would "expand" to an infinitely-long type
+ // `fix $ τ → dyn MyTrait<MyOutput = X, Output = <τ as MyTrait>::MyOutput`.
+ //
+ // Instead, we force the user to write
+ // `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
+ // the discussion in #56288 for alternatives.
+ if !references_self {
+ // Include projections defined on supertraits.
+ bounds.projection_bounds.push((pred, span));
+ }
+ }
+ _ => (),
+ }
+ }
+ }
+
+ for (projection_bound, _) in &bounds.projection_bounds {
+ for def_ids in associated_types.values_mut() {
+ def_ids.remove(&projection_bound.projection_def_id());
+ }
+ }
+
+ self.complain_about_missing_associated_types(
+ associated_types,
+ potential_assoc_types,
+ trait_bounds,
+ );
+
+ // De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
+ // `dyn Trait + Send`.
+ // We remove duplicates by inserting into a `FxHashSet` to avoid re-ordering
+ // the bounds
+ let mut duplicates = FxHashSet::default();
+ auto_traits.retain(|i| duplicates.insert(i.trait_ref().def_id()));
+ debug!("regular_traits: {:?}", regular_traits);
+ debug!("auto_traits: {:?}", auto_traits);
+
+ // Erase the `dummy_self` (`trait_object_dummy_self`) used above.
+ let existential_trait_refs = regular_traits.iter().map(|i| {
+ i.trait_ref().map_bound(|trait_ref: ty::TraitRef<'tcx>| {
+ assert_eq!(trait_ref.self_ty(), dummy_self);
+
+ // Verify that `dummy_self` did not leak inside default type parameters. This
+ // could not be done at path creation, since we need to see through trait aliases.
+ let mut missing_type_params = vec![];
+ let mut references_self = false;
+ let generics = tcx.generics_of(trait_ref.def_id);
+ let substs: Vec<_> = trait_ref
+ .substs
+ .iter()
+ .enumerate()
+ .skip(1) // Remove `Self` for `ExistentialPredicate`.
+ .map(|(index, arg)| {
+ if arg == dummy_self.into() {
+ let param = &generics.params[index];
+ missing_type_params.push(param.name);
+ return tcx.ty_error().into();
+ } else if arg.walk().any(|arg| arg == dummy_self.into()) {
+ references_self = true;
+ return tcx.ty_error().into();
+ }
+ arg
+ })
+ .collect();
+ let substs = tcx.intern_substs(&substs[..]);
+
+ let span = i.bottom().1;
+ let empty_generic_args = trait_bounds.iter().any(|hir_bound| {
+ hir_bound.trait_ref.path.res == Res::Def(DefKind::Trait, trait_ref.def_id)
+ && hir_bound.span.contains(span)
+ });
+ self.complain_about_missing_type_params(
+ missing_type_params,
+ trait_ref.def_id,
+ span,
+ empty_generic_args,
+ );
+
+ if references_self {
+ let def_id = i.bottom().0.def_id();
+ let mut err = struct_span_err!(
+ tcx.sess,
+ i.bottom().1,
+ E0038,
+ "the {} `{}` cannot be made into an object",
+ tcx.def_kind(def_id).descr(def_id),
+ tcx.item_name(def_id),
+ );
+ err.note(
+ rustc_middle::traits::ObjectSafetyViolation::SupertraitSelf(smallvec![])
+ .error_msg(),
+ );
+ err.emit();
+ }
+
+ ty::ExistentialTraitRef { def_id: trait_ref.def_id, substs }
+ })
+ });
+
+ let existential_projections = bounds.projection_bounds.iter().map(|(bound, _)| {
+ bound.map_bound(|mut b| {
+ assert_eq!(b.projection_ty.self_ty(), dummy_self);
+
+ // Like for trait refs, verify that `dummy_self` did not leak inside default type
+ // parameters.
+ let references_self = b.projection_ty.substs.iter().skip(1).any(|arg| {
+ if arg.walk().any(|arg| arg == dummy_self.into()) {
+ return true;
+ }
+ false
+ });
+ if references_self {
+ tcx.sess
+ .delay_span_bug(span, "trait object projection bounds reference `Self`");
+ let substs: Vec<_> = b
+ .projection_ty
+ .substs
+ .iter()
+ .map(|arg| {
+ if arg.walk().any(|arg| arg == dummy_self.into()) {
+ return tcx.ty_error().into();
+ }
+ arg
+ })
+ .collect();
+ b.projection_ty.substs = tcx.intern_substs(&substs[..]);
+ }
+
+ ty::ExistentialProjection::erase_self_ty(tcx, b)
+ })
+ });
+
+ let regular_trait_predicates = existential_trait_refs
+ .map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait));
+ let auto_trait_predicates = auto_traits.into_iter().map(|trait_ref| {
+ ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()))
+ });
+ // N.b. principal, projections, auto traits
+ // FIXME: This is actually wrong with multiple principals in regards to symbol mangling
+ let mut v = regular_trait_predicates
+ .chain(
+ existential_projections.map(|x| x.map_bound(ty::ExistentialPredicate::Projection)),
+ )
+ .chain(auto_trait_predicates)
+ .collect::<SmallVec<[_; 8]>>();
+ v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
+ v.dedup();
+ let existential_predicates = tcx.mk_poly_existential_predicates(v.into_iter());
+
+ // Use explicitly-specified region bound.
+ let region_bound = if !lifetime.is_elided() {
+ self.ast_region_to_region(lifetime, None)
+ } else {
+ self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
+ if tcx.named_region(lifetime.hir_id).is_some() {
+ self.ast_region_to_region(lifetime, None)
+ } else {
+ self.re_infer(None, span).unwrap_or_else(|| {
+ let mut err = struct_span_err!(
+ tcx.sess,
+ span,
+ E0228,
+ "the lifetime bound for this object type cannot be deduced \
+ from context; please supply an explicit bound"
+ );
+ if borrowed {
+ // We will have already emitted an error E0106 complaining about a
+ // missing named lifetime in `&dyn Trait`, so we elide this one.
+ err.delay_as_bug();
+ } else {
+ err.emit();
+ }
+ tcx.lifetimes.re_static
+ })
+ }
+ })
+ };
+ debug!("region_bound: {:?}", region_bound);
+
+ let ty = tcx.mk_dynamic(existential_predicates, region_bound, representation);
+ debug!("trait_object_type: {:?}", ty);
+ ty
+ }
+
+ fn report_ambiguous_associated_type(
+ &self,
+ span: Span,
+ type_str: &str,
+ trait_str: &str,
+ name: Symbol,
+ ) -> ErrorGuaranteed {
+ let mut err = struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type");
+ if self
+ .tcx()
+ .resolutions(())
+ .confused_type_with_std_module
+ .keys()
+ .any(|full_span| full_span.contains(span))
+ {
+ err.span_suggestion(
+ span.shrink_to_lo(),
+ "you are looking for the module in `std`, not the primitive type",
+ "std::",
+ Applicability::MachineApplicable,
+ );
+ } else {
+ err.span_suggestion(
+ span,
+ "use fully-qualified syntax",
+ format!("<{} as {}>::{}", type_str, trait_str, name),
+ Applicability::HasPlaceholders,
+ );
+ }
+ err.emit()
+ }
+
+ // Search for a bound on a type parameter which includes the associated item
+ // given by `assoc_name`. `ty_param_def_id` is the `DefId` of the type parameter
+ // This function will fail if there are no suitable bounds or there is
+ // any ambiguity.
+ fn find_bound_for_assoc_item(
+ &self,
+ ty_param_def_id: LocalDefId,
+ assoc_name: Ident,
+ span: Span,
+ ) -> Result<ty::PolyTraitRef<'tcx>, ErrorGuaranteed> {
+ let tcx = self.tcx();
+
+ debug!(
+ "find_bound_for_assoc_item(ty_param_def_id={:?}, assoc_name={:?}, span={:?})",
+ ty_param_def_id, assoc_name, span,
+ );
+
+ let predicates = &self
+ .get_type_parameter_bounds(span, ty_param_def_id.to_def_id(), assoc_name)
+ .predicates;
+
+ debug!("find_bound_for_assoc_item: predicates={:#?}", predicates);
+
+ let param_name = tcx.hir().ty_param_name(ty_param_def_id);
+ self.one_bound_for_assoc_type(
+ || {
+ traits::transitive_bounds_that_define_assoc_type(
+ tcx,
+ predicates.iter().filter_map(|(p, _)| {
+ Some(p.to_opt_poly_trait_pred()?.map_bound(|t| t.trait_ref))
+ }),
+ assoc_name,
+ )
+ },
+ || param_name.to_string(),
+ assoc_name,
+ span,
+ || None,
+ )
+ }
+
+ // Checks that `bounds` contains exactly one element and reports appropriate
+ // errors otherwise.
+ #[instrument(level = "debug", skip(self, all_candidates, ty_param_name, is_equality), ret)]
+ fn one_bound_for_assoc_type<I>(
+ &self,
+ all_candidates: impl Fn() -> I,
+ ty_param_name: impl Fn() -> String,
+ assoc_name: Ident,
+ span: Span,
+ is_equality: impl Fn() -> Option<String>,
+ ) -> Result<ty::PolyTraitRef<'tcx>, ErrorGuaranteed>
+ where
+ I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
+ {
+ let mut matching_candidates = all_candidates()
+ .filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_name));
+ let mut const_candidates = all_candidates()
+ .filter(|r| self.trait_defines_associated_const_named(r.def_id(), assoc_name));
+
+ let (bound, next_cand) = match (matching_candidates.next(), const_candidates.next()) {
+ (Some(bound), _) => (bound, matching_candidates.next()),
+ (None, Some(bound)) => (bound, const_candidates.next()),
+ (None, None) => {
+ let reported = self.complain_about_assoc_type_not_found(
+ all_candidates,
+ &ty_param_name(),
+ assoc_name,
+ span,
+ );
+ return Err(reported);
+ }
+ };
+ debug!(?bound);
+
+ if let Some(bound2) = next_cand {
+ debug!(?bound2);
+
+ let is_equality = is_equality();
+ let bounds = IntoIterator::into_iter([bound, bound2]).chain(matching_candidates);
+ let mut err = if is_equality.is_some() {
+ // More specific Error Index entry.
+ struct_span_err!(
+ self.tcx().sess,
+ span,
+ E0222,
+ "ambiguous associated type `{}` in bounds of `{}`",
+ assoc_name,
+ ty_param_name()
+ )
+ } else {
+ struct_span_err!(
+ self.tcx().sess,
+ span,
+ E0221,
+ "ambiguous associated type `{}` in bounds of `{}`",
+ assoc_name,
+ ty_param_name()
+ )
+ };
+ err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));
+
+ let mut where_bounds = vec![];
+ for bound in bounds {
+ let bound_id = bound.def_id();
+ let bound_span = self
+ .tcx()
+ .associated_items(bound_id)
+ .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, bound_id)
+ .and_then(|item| self.tcx().hir().span_if_local(item.def_id));
+
+ if let Some(bound_span) = bound_span {
+ err.span_label(
+ bound_span,
+ format!(
+ "ambiguous `{}` from `{}`",
+ assoc_name,
+ bound.print_only_trait_path(),
+ ),
+ );
+ if let Some(constraint) = &is_equality {
+ where_bounds.push(format!(
+ " T: {trait}::{assoc} = {constraint}",
+ trait=bound.print_only_trait_path(),
+ assoc=assoc_name,
+ constraint=constraint,
+ ));
+ } else {
+ err.span_suggestion_verbose(
+ span.with_hi(assoc_name.span.lo()),
+ "use fully qualified syntax to disambiguate",
+ format!(
+ "<{} as {}>::",
+ ty_param_name(),
+ bound.print_only_trait_path(),
+ ),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ } else {
+ err.note(&format!(
+ "associated type `{}` could derive from `{}`",
+ ty_param_name(),
+ bound.print_only_trait_path(),
+ ));
+ }
+ }
+ if !where_bounds.is_empty() {
+ err.help(&format!(
+ "consider introducing a new type parameter `T` and adding `where` constraints:\
+ \n where\n T: {},\n{}",
+ ty_param_name(),
+ where_bounds.join(",\n"),
+ ));
+ }
+ let reported = err.emit();
+ if !where_bounds.is_empty() {
+ return Err(reported);
+ }
+ }
+
+ Ok(bound)
+ }
+
+ // Create a type from a path to an associated type.
+ // For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
+ // and item_segment is the path segment for `D`. We return a type and a def for
+ // the whole path.
+ // Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
+ // parameter or `Self`.
+ // NOTE: When this function starts resolving `Trait::AssocTy` successfully
+ // it should also start reporting the `BARE_TRAIT_OBJECTS` lint.
+ #[instrument(level = "debug", skip(self, hir_ref_id, span, qself, assoc_segment), fields(assoc_ident=?assoc_segment.ident), ret)]
+ pub fn associated_path_to_ty(
+ &self,
+ hir_ref_id: hir::HirId,
+ span: Span,
+ qself_ty: Ty<'tcx>,
+ qself: &hir::Ty<'_>,
+ assoc_segment: &hir::PathSegment<'_>,
+ permit_variants: bool,
+ ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorGuaranteed> {
+ let tcx = self.tcx();
+ let assoc_ident = assoc_segment.ident;
+ let qself_res = if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = qself.kind {
+ path.res
+ } else {
+ Res::Err
+ };
+
+ // Check if we have an enum variant.
+ let mut variant_resolution = None;
+ if let ty::Adt(adt_def, _) = qself_ty.kind() {
+ if adt_def.is_enum() {
+ let variant_def = adt_def
+ .variants()
+ .iter()
+ .find(|vd| tcx.hygienic_eq(assoc_ident, vd.ident(tcx), adt_def.did()));
+ if let Some(variant_def) = variant_def {
+ if permit_variants {
+ tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span, None);
+ self.prohibit_generics(slice::from_ref(assoc_segment).iter(), |err| {
+ err.note("enum variants can't have type parameters");
+ let type_name = tcx.item_name(adt_def.did());
+ let msg = format!(
+ "you might have meant to specity type parameters on enum \
+ `{type_name}`"
+ );
+ let Some(args) = assoc_segment.args else { return; };
+ // Get the span of the generics args *including* the leading `::`.
+ let args_span = assoc_segment.ident.span.shrink_to_hi().to(args.span_ext);
+ if tcx.generics_of(adt_def.did()).count() == 0 {
+ // FIXME(estebank): we could also verify that the arguments being
+ // work for the `enum`, instead of just looking if it takes *any*.
+ err.span_suggestion_verbose(
+ args_span,
+ &format!("{type_name} doesn't have generic parameters"),
+ "",
+ Applicability::MachineApplicable,
+ );
+ return;
+ }
+ let Ok(snippet) = tcx.sess.source_map().span_to_snippet(args_span) else {
+ err.note(&msg);
+ return;
+ };
+ let (qself_sugg_span, is_self) = if let hir::TyKind::Path(
+ hir::QPath::Resolved(_, ref path)
+ ) = qself.kind {
+ // If the path segment already has type params, we want to overwrite
+ // them.
+ match &path.segments[..] {
+ // `segment` is the previous to last element on the path,
+ // which would normally be the `enum` itself, while the last
+ // `_` `PathSegment` corresponds to the variant.
+ [.., hir::PathSegment {
+ ident,
+ args,
+ res: Res::Def(DefKind::Enum, _),
+ ..
+ }, _] => (
+ // We need to include the `::` in `Type::Variant::<Args>`
+ // to point the span to `::<Args>`, not just `<Args>`.
+ ident.span.shrink_to_hi().to(args.map_or(
+ ident.span.shrink_to_hi(),
+ |a| a.span_ext)),
+ false,
+ ),
+ [segment] => (
+ // We need to include the `::` in `Type::Variant::<Args>`
+ // to point the span to `::<Args>`, not just `<Args>`.
+ segment.ident.span.shrink_to_hi().to(segment.args.map_or(
+ segment.ident.span.shrink_to_hi(),
+ |a| a.span_ext)),
+ kw::SelfUpper == segment.ident.name,
+ ),
+ _ => {
+ err.note(&msg);
+ return;
+ }
+ }
+ } else {
+ err.note(&msg);
+ return;
+ };
+ let suggestion = vec![
+ if is_self {
+ // Account for people writing `Self::Variant::<Args>`, where
+ // `Self` is the enum, and suggest replacing `Self` with the
+ // appropriate type: `Type::<Args>::Variant`.
+ (qself.span, format!("{type_name}{snippet}"))
+ } else {
+ (qself_sugg_span, snippet)
+ },
+ (args_span, String::new()),
+ ];
+ err.multipart_suggestion_verbose(
+ &msg,
+ suggestion,
+ Applicability::MaybeIncorrect,
+ );
+ });
+ return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
+ } else {
+ variant_resolution = Some(variant_def.def_id);
+ }
+ }
+ }
+ }
+
+ // Find the type of the associated item, and the trait where the associated
+ // item is declared.
+ let bound = match (&qself_ty.kind(), qself_res) {
+ (_, Res::SelfTyAlias { alias_to: impl_def_id, is_trait_impl: true, .. }) => {
+ // `Self` in an impl of a trait -- we have a concrete self type and a
+ // trait reference.
+ let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) else {
+ // A cycle error occurred, most likely.
+ let guar = tcx.sess.delay_span_bug(span, "expected cycle error");
+ return Err(guar);
+ };
+
+ self.one_bound_for_assoc_type(
+ || traits::supertraits(tcx, ty::Binder::dummy(trait_ref)),
+ || "Self".to_string(),
+ assoc_ident,
+ span,
+ || None,
+ )?
+ }
+ (
+ &ty::Param(_),
+ Res::SelfTyParam { trait_: param_did } | Res::Def(DefKind::TyParam, param_did),
+ ) => self.find_bound_for_assoc_item(param_did.expect_local(), assoc_ident, span)?,
+ _ => {
+ let reported = if variant_resolution.is_some() {
+ // Variant in type position
+ let msg = format!("expected type, found variant `{}`", assoc_ident);
+ tcx.sess.span_err(span, &msg)
+ } else if qself_ty.is_enum() {
+ let mut err = struct_span_err!(
+ tcx.sess,
+ assoc_ident.span,
+ E0599,
+ "no variant named `{}` found for enum `{}`",
+ assoc_ident,
+ qself_ty,
+ );
+
+ let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
+ if let Some(suggested_name) = find_best_match_for_name(
+ &adt_def
+ .variants()
+ .iter()
+ .map(|variant| variant.name)
+ .collect::<Vec<Symbol>>(),
+ assoc_ident.name,
+ None,
+ ) {
+ err.span_suggestion(
+ assoc_ident.span,
+ "there is a variant with a similar name",
+ suggested_name,
+ Applicability::MaybeIncorrect,
+ );
+ } else {
+ err.span_label(
+ assoc_ident.span,
+ format!("variant not found in `{}`", qself_ty),
+ );
+ }
+
+ if let Some(sp) = tcx.hir().span_if_local(adt_def.did()) {
+ err.span_label(sp, format!("variant `{}` not found here", assoc_ident));
+ }
+
+ err.emit()
+ } else if let Some(reported) = qself_ty.error_reported() {
+ reported
+ } else {
+ // Don't print `TyErr` to the user.
+ self.report_ambiguous_associated_type(
+ span,
+ &qself_ty.to_string(),
+ "Trait",
+ assoc_ident.name,
+ )
+ };
+ return Err(reported);
+ }
+ };
+
+ let trait_did = bound.def_id();
+ let (assoc_ident, def_scope) =
+ tcx.adjust_ident_and_get_scope(assoc_ident, trait_did, hir_ref_id);
+
+ // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
+ // of calling `filter_by_name_and_kind`.
+ let item = tcx.associated_items(trait_did).in_definition_order().find(|i| {
+ i.kind.namespace() == Namespace::TypeNS
+ && i.ident(tcx).normalize_to_macros_2_0() == assoc_ident
+ });
+ // Assume that if it's not matched, there must be a const defined with the same name
+ // but it was used in a type position.
+ let Some(item) = item else {
+ let msg = format!("found associated const `{assoc_ident}` when type was expected");
+ let guar = tcx.sess.struct_span_err(span, &msg).emit();
+ return Err(guar);
+ };
+
+ let ty = self.projected_ty_from_poly_trait_ref(span, item.def_id, assoc_segment, bound);
+ let ty = self.normalize_ty(span, ty);
+
+ let kind = DefKind::AssocTy;
+ if !item.visibility(tcx).is_accessible_from(def_scope, tcx) {
+ let kind = kind.descr(item.def_id);
+ let msg = format!("{} `{}` is private", kind, assoc_ident);
+ tcx.sess
+ .struct_span_err(span, &msg)
+ .span_label(span, &format!("private {}", kind))
+ .emit();
+ }
+ tcx.check_stability(item.def_id, Some(hir_ref_id), span, None);
+
+ if let Some(variant_def_id) = variant_resolution {
+ tcx.struct_span_lint_hir(
+ AMBIGUOUS_ASSOCIATED_ITEMS,
+ hir_ref_id,
+ span,
+ "ambiguous associated item",
+ |lint| {
+ let mut could_refer_to = |kind: DefKind, def_id, also| {
+ let note_msg = format!(
+ "`{}` could{} refer to the {} defined here",
+ assoc_ident,
+ also,
+ kind.descr(def_id)
+ );
+ lint.span_note(tcx.def_span(def_id), &note_msg);
+ };
+
+ could_refer_to(DefKind::Variant, variant_def_id, "");
+ could_refer_to(kind, item.def_id, " also");
+
+ lint.span_suggestion(
+ span,
+ "use fully-qualified syntax",
+ format!("<{} as {}>::{}", qself_ty, tcx.item_name(trait_did), assoc_ident),
+ Applicability::MachineApplicable,
+ );
+
+ lint
+ },
+ );
+ }
+ Ok((ty, kind, item.def_id))
+ }
+
+ fn qpath_to_ty(
+ &self,
+ span: Span,
+ opt_self_ty: Option<Ty<'tcx>>,
+ item_def_id: DefId,
+ trait_segment: &hir::PathSegment<'_>,
+ item_segment: &hir::PathSegment<'_>,
+ constness: ty::BoundConstness,
+ ) -> Ty<'tcx> {
+ let tcx = self.tcx();
+
+ let trait_def_id = tcx.parent(item_def_id);
+
+ debug!("qpath_to_ty: trait_def_id={:?}", trait_def_id);
+
+ let Some(self_ty) = opt_self_ty else {
+ let path_str = tcx.def_path_str(trait_def_id);
+
+ let def_id = self.item_def_id();
+
+ debug!("qpath_to_ty: self.item_def_id()={:?}", def_id);
+
+ let parent_def_id = def_id
+ .and_then(|def_id| {
+ def_id.as_local().map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id))
+ })
+ .map(|hir_id| tcx.hir().get_parent_item(hir_id).to_def_id());
+
+ debug!("qpath_to_ty: parent_def_id={:?}", parent_def_id);
+
+ // If the trait in segment is the same as the trait defining the item,
+ // use the `<Self as ..>` syntax in the error.
+ let is_part_of_self_trait_constraints = def_id == Some(trait_def_id);
+ let is_part_of_fn_in_self_trait = parent_def_id == Some(trait_def_id);
+
+ let type_name = if is_part_of_self_trait_constraints || is_part_of_fn_in_self_trait {
+ "Self"
+ } else {
+ "Type"
+ };
+
+ self.report_ambiguous_associated_type(
+ span,
+ type_name,
+ &path_str,
+ item_segment.ident.name,
+ );
+ return tcx.ty_error();
+ };
+
+ debug!("qpath_to_ty: self_type={:?}", self_ty);
+
+ let trait_ref = self.ast_path_to_mono_trait_ref(
+ span,
+ trait_def_id,
+ self_ty,
+ trait_segment,
+ false,
+ Some(constness),
+ );
+
+ let item_substs = self.create_substs_for_associated_item(
+ span,
+ item_def_id,
+ item_segment,
+ trait_ref.substs,
+ );
+
+ debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
+
+ self.normalize_ty(span, tcx.mk_projection(item_def_id, item_substs))
+ }
+
+ pub fn prohibit_generics<'a>(
+ &self,
+ segments: impl Iterator<Item = &'a hir::PathSegment<'a>> + Clone,
+ extend: impl Fn(&mut Diagnostic),
+ ) -> bool {
+ let args = segments.clone().flat_map(|segment| segment.args().args);
+
+ let (lt, ty, ct, inf) =
+ args.clone().fold((false, false, false, false), |(lt, ty, ct, inf), arg| match arg {
+ hir::GenericArg::Lifetime(_) => (true, ty, ct, inf),
+ hir::GenericArg::Type(_) => (lt, true, ct, inf),
+ hir::GenericArg::Const(_) => (lt, ty, true, inf),
+ hir::GenericArg::Infer(_) => (lt, ty, ct, true),
+ });
+ let mut emitted = false;
+ if lt || ty || ct || inf {
+ let types_and_spans: Vec<_> = segments
+ .clone()
+ .flat_map(|segment| {
+ if segment.args().args.is_empty() {
+ None
+ } else {
+ Some((
+ match segment.res {
+ Res::PrimTy(ty) => format!("{} `{}`", segment.res.descr(), ty.name()),
+ Res::Def(_, def_id)
+ if let Some(name) = self.tcx().opt_item_name(def_id) => {
+ format!("{} `{name}`", segment.res.descr())
+ }
+ Res::Err => "this type".to_string(),
+ _ => segment.res.descr().to_string(),
+ },
+ segment.ident.span,
+ ))
+ }
+ })
+ .collect();
+ let this_type = match &types_and_spans[..] {
+ [.., _, (last, _)] => format!(
+ "{} and {last}",
+ types_and_spans[..types_and_spans.len() - 1]
+ .iter()
+ .map(|(x, _)| x.as_str())
+ .intersperse(&", ")
+ .collect::<String>()
+ ),
+ [(only, _)] => only.to_string(),
+ [] => "this type".to_string(),
+ };
+
+ let arg_spans: Vec<Span> = args.map(|arg| arg.span()).collect();
+
+ let mut kinds = Vec::with_capacity(4);
+ if lt {
+ kinds.push("lifetime");
+ }
+ if ty {
+ kinds.push("type");
+ }
+ if ct {
+ kinds.push("const");
+ }
+ if inf {
+ kinds.push("generic");
+ }
+ let (kind, s) = match kinds[..] {
+ [.., _, last] => (
+ format!(
+ "{} and {last}",
+ kinds[..kinds.len() - 1]
+ .iter()
+ .map(|&x| x)
+ .intersperse(", ")
+ .collect::<String>()
+ ),
+ "s",
+ ),
+ [only] => (format!("{only}"), ""),
+ [] => unreachable!(),
+ };
+ let last_span = *arg_spans.last().unwrap();
+ let span: MultiSpan = arg_spans.into();
+ let mut err = struct_span_err!(
+ self.tcx().sess,
+ span,
+ E0109,
+ "{kind} arguments are not allowed on {this_type}",
+ );
+ err.span_label(last_span, format!("{kind} argument{s} not allowed"));
+ for (what, span) in types_and_spans {
+ err.span_label(span, format!("not allowed on {what}"));
+ }
+ extend(&mut err);
+ err.emit();
+ emitted = true;
+ }
+
+ for segment in segments {
+ // Only emit the first error to avoid overloading the user with error messages.
+ if let Some(b) = segment.args().bindings.first() {
+ Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
+ return true;
+ }
+ }
+ emitted
+ }
+
+ // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
+ pub fn def_ids_for_value_path_segments(
+ &self,
+ segments: &[hir::PathSegment<'_>],
+ self_ty: Option<Ty<'tcx>>,
+ kind: DefKind,
+ def_id: DefId,
+ ) -> Vec<PathSeg> {
+ // We need to extract the type parameters supplied by the user in
+ // the path `path`. Due to the current setup, this is a bit of a
+ // tricky-process; the problem is that resolve only tells us the
+ // end-point of the path resolution, and not the intermediate steps.
+ // Luckily, we can (at least for now) deduce the intermediate steps
+ // just from the end-point.
+ //
+ // There are basically five cases to consider:
+ //
+ // 1. Reference to a constructor of a struct:
+ //
+ // struct Foo<T>(...)
+ //
+ // In this case, the parameters are declared in the type space.
+ //
+ // 2. Reference to a constructor of an enum variant:
+ //
+ // enum E<T> { Foo(...) }
+ //
+ // In this case, the parameters are defined in the type space,
+ // but may be specified either on the type or the variant.
+ //
+ // 3. Reference to a fn item or a free constant:
+ //
+ // fn foo<T>() { }
+ //
+ // In this case, the path will again always have the form
+ // `a::b::foo::<T>` where only the final segment should have
+ // type parameters. However, in this case, those parameters are
+ // declared on a value, and hence are in the `FnSpace`.
+ //
+ // 4. Reference to a method or an associated constant:
+ //
+ // impl<A> SomeStruct<A> {
+ // fn foo<B>(...)
+ // }
+ //
+ // Here we can have a path like
+ // `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
+ // may appear in two places. The penultimate segment,
+ // `SomeStruct::<A>`, contains parameters in TypeSpace, and the
+ // final segment, `foo::<B>` contains parameters in fn space.
+ //
+ // The first step then is to categorize the segments appropriately.
+
+ let tcx = self.tcx();
+
+ assert!(!segments.is_empty());
+ let last = segments.len() - 1;
+
+ let mut path_segs = vec![];
+
+ match kind {
+ // Case 1. Reference to a struct constructor.
+ DefKind::Ctor(CtorOf::Struct, ..) => {
+ // Everything but the final segment should have no
+ // parameters at all.
+ let generics = tcx.generics_of(def_id);
+ // Variant and struct constructors use the
+ // generics of their parent type definition.
+ let generics_def_id = generics.parent.unwrap_or(def_id);
+ path_segs.push(PathSeg(generics_def_id, last));
+ }
+
+ // Case 2. Reference to a variant constructor.
+ DefKind::Ctor(CtorOf::Variant, ..) | DefKind::Variant => {
+ let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
+ let (generics_def_id, index) = if let Some(adt_def) = adt_def {
+ debug_assert!(adt_def.is_enum());
+ (adt_def.did(), last)
+ } else if last >= 1 && segments[last - 1].args.is_some() {
+ // Everything but the penultimate segment should have no
+ // parameters at all.
+ let mut def_id = def_id;
+
+ // `DefKind::Ctor` -> `DefKind::Variant`
+ if let DefKind::Ctor(..) = kind {
+ def_id = tcx.parent(def_id);
+ }
+
+ // `DefKind::Variant` -> `DefKind::Enum`
+ let enum_def_id = tcx.parent(def_id);
+ (enum_def_id, last - 1)
+ } else {
+ // FIXME: lint here recommending `Enum::<...>::Variant` form
+ // instead of `Enum::Variant::<...>` form.
+
+ // Everything but the final segment should have no
+ // parameters at all.
+ let generics = tcx.generics_of(def_id);
+ // Variant and struct constructors use the
+ // generics of their parent type definition.
+ (generics.parent.unwrap_or(def_id), last)
+ };
+ path_segs.push(PathSeg(generics_def_id, index));
+ }
+
+ // Case 3. Reference to a top-level value.
+ DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static(_) => {
+ path_segs.push(PathSeg(def_id, last));
+ }
+
+ // Case 4. Reference to a method or associated const.
+ DefKind::AssocFn | DefKind::AssocConst => {
+ if segments.len() >= 2 {
+ let generics = tcx.generics_of(def_id);
+ path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
+ }
+ path_segs.push(PathSeg(def_id, last));
+ }
+
+ kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
+ }
+
+ debug!("path_segs = {:?}", path_segs);
+
+ path_segs
+ }
+
+ // Check a type `Path` and convert it to a `Ty`.
+ pub fn res_to_ty(
+ &self,
+ opt_self_ty: Option<Ty<'tcx>>,
+ path: &hir::Path<'_>,
+ permit_variants: bool,
+ ) -> Ty<'tcx> {
+ let tcx = self.tcx();
+
+ debug!(
+ "res_to_ty(res={:?}, opt_self_ty={:?}, path_segments={:?})",
+ path.res, opt_self_ty, path.segments
+ );
+
+ let span = path.span;
+ match path.res {
+ Res::Def(DefKind::OpaqueTy | DefKind::ImplTraitPlaceholder, did) => {
+ // Check for desugared `impl Trait`.
+ assert!(ty::is_impl_trait_defn(tcx, did).is_none());
+ let item_segment = path.segments.split_last().unwrap();
+ self.prohibit_generics(item_segment.1.iter(), |err| {
+ err.note("`impl Trait` types can't have type parameters");
+ });
+ let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
+ self.normalize_ty(span, tcx.mk_opaque(did, substs))
+ }
+ Res::Def(
+ DefKind::Enum
+ | DefKind::TyAlias
+ | DefKind::Struct
+ | DefKind::Union
+ | DefKind::ForeignTy,
+ did,
+ ) => {
+ assert_eq!(opt_self_ty, None);
+ self.prohibit_generics(path.segments.split_last().unwrap().1.iter(), |_| {});
+ self.ast_path_to_ty(span, did, path.segments.last().unwrap())
+ }
+ Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
+ // Convert "variant type" as if it were a real type.
+ // The resulting `Ty` is type of the variant's enum for now.
+ assert_eq!(opt_self_ty, None);
+
+ let path_segs =
+ self.def_ids_for_value_path_segments(path.segments, None, kind, def_id);
+ let generic_segs: FxHashSet<_> =
+ path_segs.iter().map(|PathSeg(_, index)| index).collect();
+ self.prohibit_generics(
+ path.segments.iter().enumerate().filter_map(|(index, seg)| {
+ if !generic_segs.contains(&index) { Some(seg) } else { None }
+ }),
+ |err| {
+ err.note("enum variants can't have type parameters");
+ },
+ );
+
+ let PathSeg(def_id, index) = path_segs.last().unwrap();
+ self.ast_path_to_ty(span, *def_id, &path.segments[*index])
+ }
+ Res::Def(DefKind::TyParam, def_id) => {
+ assert_eq!(opt_self_ty, None);
+ self.prohibit_generics(path.segments.iter(), |err| {
+ if let Some(span) = tcx.def_ident_span(def_id) {
+ let name = tcx.item_name(def_id);
+ err.span_note(span, &format!("type parameter `{name}` defined here"));
+ }
+ });
+
+ let def_id = def_id.expect_local();
+ let item_def_id = tcx.hir().ty_param_owner(def_id);
+ let generics = tcx.generics_of(item_def_id);
+ let index = generics.param_def_id_to_index[&def_id.to_def_id()];
+ tcx.mk_ty_param(index, tcx.hir().ty_param_name(def_id))
+ }
+ Res::SelfTyParam { .. } => {
+ // `Self` in trait or type alias.
+ assert_eq!(opt_self_ty, None);
+ self.prohibit_generics(path.segments.iter(), |err| {
+ if let [hir::PathSegment { args: Some(args), ident, .. }] = &path.segments[..] {
+ err.span_suggestion_verbose(
+ ident.span.shrink_to_hi().to(args.span_ext),
+ "the `Self` type doesn't accept type parameters",
+ "",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ });
+ tcx.types.self_param
+ }
+ Res::SelfTyAlias { alias_to: def_id, forbid_generic, .. } => {
+ // `Self` in impl (we know the concrete type).
+ assert_eq!(opt_self_ty, None);
+ // Try to evaluate any array length constants.
+ let ty = tcx.at(span).type_of(def_id);
+ let span_of_impl = tcx.span_of_impl(def_id);
+ self.prohibit_generics(path.segments.iter(), |err| {
+ let def_id = match *ty.kind() {
+ ty::Adt(self_def, _) => self_def.did(),
+ _ => return,
+ };
+
+ let type_name = tcx.item_name(def_id);
+ let span_of_ty = tcx.def_ident_span(def_id);
+ let generics = tcx.generics_of(def_id).count();
+
+ let msg = format!("`Self` is of type `{ty}`");
+ if let (Ok(i_sp), Some(t_sp)) = (span_of_impl, span_of_ty) {
+ let mut span: MultiSpan = vec![t_sp].into();
+ span.push_span_label(
+ i_sp,
+ &format!("`Self` is on type `{type_name}` in this `impl`"),
+ );
+ let mut postfix = "";
+ if generics == 0 {
+ postfix = ", which doesn't have generic parameters";
+ }
+ span.push_span_label(
+ t_sp,
+ &format!("`Self` corresponds to this type{postfix}"),
+ );
+ err.span_note(span, &msg);
+ } else {
+ err.note(&msg);
+ }
+ for segment in path.segments {
+ if let Some(args) = segment.args && segment.ident.name == kw::SelfUpper {
+ if generics == 0 {
+ // FIXME(estebank): we could also verify that the arguments being
+ // work for the `enum`, instead of just looking if it takes *any*.
+ err.span_suggestion_verbose(
+ segment.ident.span.shrink_to_hi().to(args.span_ext),
+ "the `Self` type doesn't accept type parameters",
+ "",
+ Applicability::MachineApplicable,
+ );
+ return;
+ } else {
+ err.span_suggestion_verbose(
+ segment.ident.span,
+ format!(
+ "the `Self` type doesn't accept type parameters, use the \
+ concrete type's name `{type_name}` instead if you want to \
+ specify its type parameters"
+ ),
+ type_name,
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ }
+ });
+ // HACK(min_const_generics): Forbid generic `Self` types
+ // here as we can't easily do that during nameres.
+ //
+ // We do this before normalization as we otherwise allow
+ // ```rust
+ // trait AlwaysApplicable { type Assoc; }
+ // impl<T: ?Sized> AlwaysApplicable for T { type Assoc = usize; }
+ //
+ // trait BindsParam<T> {
+ // type ArrayTy;
+ // }
+ // impl<T> BindsParam<T> for <T as AlwaysApplicable>::Assoc {
+ // type ArrayTy = [u8; Self::MAX];
+ // }
+ // ```
+ // Note that the normalization happens in the param env of
+ // the anon const, which is empty. This is why the
+ // `AlwaysApplicable` impl needs a `T: ?Sized` bound for
+ // this to compile if we were to normalize here.
+ if forbid_generic && ty.needs_subst() {
+ let mut err = tcx.sess.struct_span_err(
+ path.span,
+ "generic `Self` types are currently not permitted in anonymous constants",
+ );
+ if let Some(hir::Node::Item(&hir::Item {
+ kind: hir::ItemKind::Impl(ref impl_),
+ ..
+ })) = tcx.hir().get_if_local(def_id)
+ {
+ err.span_note(impl_.self_ty.span, "not a concrete type");
+ }
+ err.emit();
+ tcx.ty_error()
+ } else {
+ self.normalize_ty(span, ty)
+ }
+ }
+ Res::Def(DefKind::AssocTy, def_id) => {
+ debug_assert!(path.segments.len() >= 2);
+ self.prohibit_generics(path.segments[..path.segments.len() - 2].iter(), |_| {});
+ // HACK: until we support `<Type as ~const Trait>`, assume all of them are.
+ let constness = if tcx.has_attr(tcx.parent(def_id), sym::const_trait) {
+ ty::BoundConstness::ConstIfConst
+ } else {
+ ty::BoundConstness::NotConst
+ };
+ self.qpath_to_ty(
+ span,
+ opt_self_ty,
+ def_id,
+ &path.segments[path.segments.len() - 2],
+ path.segments.last().unwrap(),
+ constness,
+ )
+ }
+ Res::PrimTy(prim_ty) => {
+ assert_eq!(opt_self_ty, None);
+ self.prohibit_generics(path.segments.iter(), |err| {
+ let name = prim_ty.name_str();
+ for segment in path.segments {
+ if let Some(args) = segment.args {
+ err.span_suggestion_verbose(
+ segment.ident.span.shrink_to_hi().to(args.span_ext),
+ &format!("primitive type `{name}` doesn't have generic parameters"),
+ "",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ });
+ match prim_ty {
+ hir::PrimTy::Bool => tcx.types.bool,
+ hir::PrimTy::Char => tcx.types.char,
+ hir::PrimTy::Int(it) => tcx.mk_mach_int(ty::int_ty(it)),
+ hir::PrimTy::Uint(uit) => tcx.mk_mach_uint(ty::uint_ty(uit)),
+ hir::PrimTy::Float(ft) => tcx.mk_mach_float(ty::float_ty(ft)),
+ hir::PrimTy::Str => tcx.types.str_,
+ }
+ }
+ Res::Err => {
+ self.set_tainted_by_errors();
+ self.tcx().ty_error()
+ }
+ _ => span_bug!(span, "unexpected resolution: {:?}", path.res),
+ }
+ }
+
+ /// Parses the programmer's textual representation of a type into our
+ /// internal notion of a type.
+ pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
+ self.ast_ty_to_ty_inner(ast_ty, false, false)
+ }
+
+ /// Parses the programmer's textual representation of a type into our
+ /// internal notion of a type. This is meant to be used within a path.
+ pub fn ast_ty_to_ty_in_path(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
+ self.ast_ty_to_ty_inner(ast_ty, false, true)
+ }
+
+ /// Turns a `hir::Ty` into a `Ty`. For diagnostics' purposes we keep track of whether trait
+ /// objects are borrowed like `&dyn Trait` to avoid emitting redundant errors.
+ #[instrument(level = "debug", skip(self), ret)]
+ fn ast_ty_to_ty_inner(&self, ast_ty: &hir::Ty<'_>, borrowed: bool, in_path: bool) -> Ty<'tcx> {
+ let tcx = self.tcx();
+
+ let result_ty = match ast_ty.kind {
+ hir::TyKind::Slice(ref ty) => tcx.mk_slice(self.ast_ty_to_ty(ty)),
+ hir::TyKind::Ptr(ref mt) => {
+ tcx.mk_ptr(ty::TypeAndMut { ty: self.ast_ty_to_ty(mt.ty), mutbl: mt.mutbl })
+ }
+ hir::TyKind::Rptr(ref region, ref mt) => {
+ let r = self.ast_region_to_region(region, None);
+ debug!(?r);
+ let t = self.ast_ty_to_ty_inner(mt.ty, true, false);
+ tcx.mk_ref(r, ty::TypeAndMut { ty: t, mutbl: mt.mutbl })
+ }
+ hir::TyKind::Never => tcx.types.never,
+ hir::TyKind::Tup(fields) => tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(t))),
+ hir::TyKind::BareFn(bf) => {
+ require_c_abi_if_c_variadic(tcx, bf.decl, bf.abi, ast_ty.span);
+
+ tcx.mk_fn_ptr(self.ty_of_fn(
+ ast_ty.hir_id,
+ bf.unsafety,
+ bf.abi,
+ bf.decl,
+ None,
+ Some(ast_ty),
+ ))
+ }
+ hir::TyKind::TraitObject(bounds, ref lifetime, repr) => {
+ self.maybe_lint_bare_trait(ast_ty, in_path);
+ let repr = match repr {
+ TraitObjectSyntax::Dyn | TraitObjectSyntax::None => ty::Dyn,
+ TraitObjectSyntax::DynStar => ty::DynStar,
+ };
+ self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime, borrowed, repr)
+ }
+ hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
+ debug!(?maybe_qself, ?path);
+ let opt_self_ty = maybe_qself.as_ref().map(|qself| self.ast_ty_to_ty(qself));
+ self.res_to_ty(opt_self_ty, path, false)
+ }
+ hir::TyKind::OpaqueDef(item_id, lifetimes, in_trait) => {
+ let opaque_ty = tcx.hir().item(item_id);
+ let def_id = item_id.owner_id.to_def_id();
+
+ match opaque_ty.kind {
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) => {
+ self.impl_trait_ty_to_ty(def_id, lifetimes, origin, in_trait)
+ }
+ ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
+ }
+ }
+ hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
+ debug!(?qself, ?segment);
+ let ty = self.ast_ty_to_ty_inner(qself, false, true);
+ self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, qself, segment, false)
+ .map(|(ty, _, _)| ty)
+ .unwrap_or_else(|_| tcx.ty_error())
+ }
+ hir::TyKind::Path(hir::QPath::LangItem(lang_item, span, _)) => {
+ let def_id = tcx.require_lang_item(lang_item, Some(span));
+ let (substs, _) = self.create_substs_for_ast_path(
+ span,
+ def_id,
+ &[],
+ &hir::PathSegment::invalid(),
+ &GenericArgs::none(),
+ true,
+ None,
+ None,
+ );
+ EarlyBinder(self.normalize_ty(span, tcx.at(span).type_of(def_id)))
+ .subst(tcx, substs)
+ }
+ hir::TyKind::Array(ref ty, ref length) => {
+ let length = match length {
+ &hir::ArrayLen::Infer(_, span) => self.ct_infer(tcx.types.usize, None, span),
+ hir::ArrayLen::Body(constant) => {
+ let length_def_id = tcx.hir().local_def_id(constant.hir_id);
+ ty::Const::from_anon_const(tcx, length_def_id)
+ }
+ };
+
+ let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(ty), length));
+ self.normalize_ty(ast_ty.span, array_ty)
+ }
+ hir::TyKind::Typeof(ref e) => {
+ let ty_erased = tcx.type_of(tcx.hir().local_def_id(e.hir_id));
+ let ty = tcx.fold_regions(ty_erased, |r, _| {
+ if r.is_erased() { tcx.lifetimes.re_static } else { r }
+ });
+ let span = ast_ty.span;
+ tcx.sess.emit_err(TypeofReservedKeywordUsed {
+ span,
+ ty,
+ opt_sugg: Some((span, Applicability::MachineApplicable))
+ .filter(|_| ty.is_suggestable(tcx, false)),
+ });
+
+ ty
+ }
+ hir::TyKind::Infer => {
+ // Infer also appears as the type of arguments or return
+ // values in an ExprKind::Closure, or as
+ // the type of local variables. Both of these cases are
+ // handled specially and will not descend into this routine.
+ self.ty_infer(None, ast_ty.span)
+ }
+ hir::TyKind::Err => tcx.ty_error(),
+ };
+
+ self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
+ result_ty
+ }
+
+ #[instrument(level = "debug", skip(self), ret)]
+ fn impl_trait_ty_to_ty(
+ &self,
+ def_id: DefId,
+ lifetimes: &[hir::GenericArg<'_>],
+ origin: OpaqueTyOrigin,
+ in_trait: bool,
+ ) -> Ty<'tcx> {
+ debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
+ let tcx = self.tcx();
+
+ let generics = tcx.generics_of(def_id);
+
+ debug!("impl_trait_ty_to_ty: generics={:?}", generics);
+ let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
+ if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
+ // Our own parameters are the resolved lifetimes.
+ if let GenericParamDefKind::Lifetime = param.kind {
+ if let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] {
+ self.ast_region_to_region(lifetime, None).into()
+ } else {
+ bug!()
+ }
+ } else {
+ bug!()
+ }
+ } else {
+ match param.kind {
+ // For RPIT (return position impl trait), only lifetimes
+ // mentioned in the impl Trait predicate are captured by
+ // the opaque type, so the lifetime parameters from the
+ // parent item need to be replaced with `'static`.
+ //
+ // For `impl Trait` in the types of statics, constants,
+ // locals and type aliases. These capture all parent
+ // lifetimes, so they can use their identity subst.
+ GenericParamDefKind::Lifetime
+ if matches!(
+ origin,
+ hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..)
+ ) =>
+ {
+ tcx.lifetimes.re_static.into()
+ }
+ _ => tcx.mk_param_from_def(param),
+ }
+ }
+ });
+ debug!("impl_trait_ty_to_ty: substs={:?}", substs);
+
+ if in_trait { tcx.mk_projection(def_id, substs) } else { tcx.mk_opaque(def_id, substs) }
+ }
+
+ pub fn ty_of_arg(&self, ty: &hir::Ty<'_>, expected_ty: Option<Ty<'tcx>>) -> Ty<'tcx> {
+ match ty.kind {
+ hir::TyKind::Infer if expected_ty.is_some() => {
+ self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
+ expected_ty.unwrap()
+ }
+ _ => self.ast_ty_to_ty(ty),
+ }
+ }
+
+ #[instrument(level = "debug", skip(self, hir_id, unsafety, abi, decl, generics, hir_ty), ret)]
+ pub fn ty_of_fn(
+ &self,
+ hir_id: hir::HirId,
+ unsafety: hir::Unsafety,
+ abi: abi::Abi,
+ decl: &hir::FnDecl<'_>,
+ generics: Option<&hir::Generics<'_>>,
+ hir_ty: Option<&hir::Ty<'_>>,
+ ) -> ty::PolyFnSig<'tcx> {
+ let tcx = self.tcx();
+ let bound_vars = tcx.late_bound_vars(hir_id);
+ debug!(?bound_vars);
+
+ // We proactively collect all the inferred type params to emit a single error per fn def.
+ let mut visitor = HirPlaceholderCollector::default();
+ let mut infer_replacements = vec![];
+
+ if let Some(generics) = generics {
+ walk_generics(&mut visitor, generics);
+ }
+
+ let input_tys: Vec<_> = decl
+ .inputs
+ .iter()
+ .enumerate()
+ .map(|(i, a)| {
+ if let hir::TyKind::Infer = a.kind && !self.allow_ty_infer() {
+ if let Some(suggested_ty) =
+ self.suggest_trait_fn_ty_for_impl_fn_infer(hir_id, Some(i))
+ {
+ infer_replacements.push((a.span, suggested_ty.to_string()));
+ return suggested_ty;
+ }
+ }
+
+ // Only visit the type looking for `_` if we didn't fix the type above
+ visitor.visit_ty(a);
+ self.ty_of_arg(a, None)
+ })
+ .collect();
+
+ let output_ty = match decl.output {
+ hir::FnRetTy::Return(output) => {
+ if let hir::TyKind::Infer = output.kind
+ && !self.allow_ty_infer()
+ && let Some(suggested_ty) =
+ self.suggest_trait_fn_ty_for_impl_fn_infer(hir_id, None)
+ {
+ infer_replacements.push((output.span, suggested_ty.to_string()));
+ suggested_ty
+ } else {
+ visitor.visit_ty(output);
+ self.ast_ty_to_ty(output)
+ }
+ }
+ hir::FnRetTy::DefaultReturn(..) => tcx.mk_unit(),
+ };
+
+ debug!(?output_ty);
+
+ let fn_ty = tcx.mk_fn_sig(input_tys.into_iter(), output_ty, decl.c_variadic, unsafety, abi);
+ let bare_fn_ty = ty::Binder::bind_with_vars(fn_ty, bound_vars);
+
+ if !self.allow_ty_infer() && !(visitor.0.is_empty() && infer_replacements.is_empty()) {
+ // We always collect the spans for placeholder types when evaluating `fn`s, but we
+ // only want to emit an error complaining about them if infer types (`_`) are not
+ // allowed. `allow_ty_infer` gates this behavior. We check for the presence of
+ // `ident_span` to not emit an error twice when we have `fn foo(_: fn() -> _)`.
+
+ let mut diag = crate::collect::placeholder_type_error_diag(
+ tcx,
+ generics,
+ visitor.0,
+ infer_replacements.iter().map(|(s, _)| *s).collect(),
+ true,
+ hir_ty,
+ "function",
+ );
+
+ if !infer_replacements.is_empty() {
+ diag.multipart_suggestion(
+ &format!(
+ "try replacing `_` with the type{} in the corresponding trait method signature",
+ rustc_errors::pluralize!(infer_replacements.len()),
+ ),
+ infer_replacements,
+ Applicability::MachineApplicable,
+ );
+ }
+
+ diag.emit();
+ }
+
+ // Find any late-bound regions declared in return type that do
+ // not appear in the arguments. These are not well-formed.
+ //
+ // Example:
+ // for<'a> fn() -> &'a str <-- 'a is bad
+ // for<'a> fn(&'a String) -> &'a str <-- 'a is ok
+ let inputs = bare_fn_ty.inputs();
+ let late_bound_in_args =
+ tcx.collect_constrained_late_bound_regions(&inputs.map_bound(|i| i.to_owned()));
+ let output = bare_fn_ty.output();
+ let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
+
+ self.validate_late_bound_regions(late_bound_in_args, late_bound_in_ret, |br_name| {
+ struct_span_err!(
+ tcx.sess,
+ decl.output.span(),
+ E0581,
+ "return type references {}, which is not constrained by the fn input types",
+ br_name
+ )
+ });
+
+ bare_fn_ty
+ }
+
+ /// Given a fn_hir_id for a impl function, suggest the type that is found on the
+ /// corresponding function in the trait that the impl implements, if it exists.
+ /// If arg_idx is Some, then it corresponds to an input type index, otherwise it
+ /// corresponds to the return type.
+ fn suggest_trait_fn_ty_for_impl_fn_infer(
+ &self,
+ fn_hir_id: hir::HirId,
+ arg_idx: Option<usize>,
+ ) -> Option<Ty<'tcx>> {
+ let tcx = self.tcx();
+ let hir = tcx.hir();
+
+ let hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), ident, .. }) =
+ hir.get(fn_hir_id) else { return None };
+ let hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(i), .. }) =
+ hir.get(hir.get_parent_node(fn_hir_id)) else { bug!("ImplItem should have Impl parent") };
+
+ let trait_ref = self.instantiate_mono_trait_ref(
+ i.of_trait.as_ref()?,
+ self.ast_ty_to_ty(i.self_ty),
+ ty::BoundConstness::NotConst,
+ );
+
+ let assoc = tcx.associated_items(trait_ref.def_id).find_by_name_and_kind(
+ tcx,
+ *ident,
+ ty::AssocKind::Fn,
+ trait_ref.def_id,
+ )?;
+
+ let fn_sig = tcx.bound_fn_sig(assoc.def_id).subst(
+ tcx,
+ trait_ref.substs.extend_to(tcx, assoc.def_id, |param, _| tcx.mk_param_from_def(param)),
+ );
+
+ let ty = if let Some(arg_idx) = arg_idx { fn_sig.input(arg_idx) } else { fn_sig.output() };
+
+ Some(tcx.liberate_late_bound_regions(fn_hir_id.expect_owner().to_def_id(), ty))
+ }
+
+ fn validate_late_bound_regions(
+ &self,
+ constrained_regions: FxHashSet<ty::BoundRegionKind>,
+ referenced_regions: FxHashSet<ty::BoundRegionKind>,
+ generate_err: impl Fn(&str) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>,
+ ) {
+ for br in referenced_regions.difference(&constrained_regions) {
+ let br_name = match *br {
+ ty::BrNamed(_, kw::UnderscoreLifetime) | ty::BrAnon(_) | ty::BrEnv => {
+ "an anonymous lifetime".to_string()
+ }
+ ty::BrNamed(_, name) => format!("lifetime `{}`", name),
+ };
+
+ let mut err = generate_err(&br_name);
+
+ if let ty::BrNamed(_, kw::UnderscoreLifetime) | ty::BrAnon(_) = *br {
+ // The only way for an anonymous lifetime to wind up
+ // in the return type but **also** be unconstrained is
+ // if it only appears in "associated types" in the
+ // input. See #47511 and #62200 for examples. In this case,
+ // though we can easily give a hint that ought to be
+ // relevant.
+ err.note(
+ "lifetimes appearing in an associated or opaque type are not considered constrained",
+ );
+ err.note("consider introducing a named lifetime parameter");
+ }
+
+ err.emit();
+ }
+ }
+
+ /// Given the bounds on an object, determines what single region bound (if any) we can
+ /// use to summarize this type. The basic idea is that we will use the bound the user
+ /// provided, if they provided one, and otherwise search the supertypes of trait bounds
+ /// for region bounds. It may be that we can derive no bound at all, in which case
+ /// we return `None`.
+ fn compute_object_lifetime_bound(
+ &self,
+ span: Span,
+ existential_predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
+ ) -> Option<ty::Region<'tcx>> // if None, use the default
+ {
+ let tcx = self.tcx();
+
+ debug!("compute_opt_region_bound(existential_predicates={:?})", existential_predicates);
+
+ // No explicit region bound specified. Therefore, examine trait
+ // bounds and see if we can derive region bounds from those.
+ let derived_region_bounds = object_region_bounds(tcx, existential_predicates);
+
+ // If there are no derived region bounds, then report back that we
+ // can find no region bound. The caller will use the default.
+ if derived_region_bounds.is_empty() {
+ return None;
+ }
+
+ // If any of the derived region bounds are 'static, that is always
+ // the best choice.
+ if derived_region_bounds.iter().any(|r| r.is_static()) {
+ return Some(tcx.lifetimes.re_static);
+ }
+
+ // Determine whether there is exactly one unique region in the set
+ // of derived region bounds. If so, use that. Otherwise, report an
+ // error.
+ let r = derived_region_bounds[0];
+ if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
+ tcx.sess.emit_err(AmbiguousLifetimeBound { span });
+ }
+ Some(r)
+ }
+
+ /// Make sure that we are in the condition to suggest the blanket implementation.
+ fn maybe_lint_blanket_trait_impl(&self, self_ty: &hir::Ty<'_>, diag: &mut Diagnostic) {
+ let tcx = self.tcx();
+ let parent_id = tcx.hir().get_parent_item(self_ty.hir_id).def_id;
+ if let hir::Node::Item(hir::Item {
+ kind:
+ hir::ItemKind::Impl(hir::Impl {
+ self_ty: impl_self_ty, of_trait: Some(of_trait_ref), generics, ..
+ }),
+ ..
+ }) = tcx.hir().get_by_def_id(parent_id) && self_ty.hir_id == impl_self_ty.hir_id
+ {
+ if !of_trait_ref.trait_def_id().map_or(false, |def_id| def_id.is_local()) {
+ return;
+ }
+ let of_trait_span = of_trait_ref.path.span;
+ // make sure that we are not calling unwrap to abort during the compilation
+ let Ok(impl_trait_name) = tcx.sess.source_map().span_to_snippet(self_ty.span) else { return; };
+ let Ok(of_trait_name) = tcx.sess.source_map().span_to_snippet(of_trait_span) else { return; };
+ // check if the trait has generics, to make a correct suggestion
+ let param_name = generics.params.next_type_param_name(None);
+
+ let add_generic_sugg = if let Some(span) = generics.span_for_param_suggestion() {
+ (span, format!(", {}: {}", param_name, impl_trait_name))
+ } else {
+ (generics.span, format!("<{}: {}>", param_name, impl_trait_name))
+ };
+ diag.multipart_suggestion(
+ format!("alternatively use a blanket \
+ implementation to implement `{of_trait_name}` for \
+ all types that also implement `{impl_trait_name}`"),
+ vec![
+ (self_ty.span, param_name),
+ add_generic_sugg,
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+
+ fn maybe_lint_bare_trait(&self, self_ty: &hir::Ty<'_>, in_path: bool) {
+ let tcx = self.tcx();
+ if let hir::TyKind::TraitObject([poly_trait_ref, ..], _, TraitObjectSyntax::None) =
+ self_ty.kind
+ {
+ let needs_bracket = in_path
+ && !tcx
+ .sess
+ .source_map()
+ .span_to_prev_source(self_ty.span)
+ .ok()
+ .map_or(false, |s| s.trim_end().ends_with('<'));
+
+ let is_global = poly_trait_ref.trait_ref.path.is_global();
+
+ let mut sugg = Vec::from_iter([(
+ self_ty.span.shrink_to_lo(),
+ format!(
+ "{}dyn {}",
+ if needs_bracket { "<" } else { "" },
+ if is_global { "(" } else { "" },
+ ),
+ )]);
+
+ if is_global || needs_bracket {
+ sugg.push((
+ self_ty.span.shrink_to_hi(),
+ format!(
+ "{}{}",
+ if is_global { ")" } else { "" },
+ if needs_bracket { ">" } else { "" },
+ ),
+ ));
+ }
+
+ if self_ty.span.edition() >= Edition::Edition2021 {
+ let msg = "trait objects must include the `dyn` keyword";
+ let label = "add `dyn` keyword before this trait";
+ let mut diag =
+ rustc_errors::struct_span_err!(tcx.sess, self_ty.span, E0782, "{}", msg);
+ diag.multipart_suggestion_verbose(label, sugg, Applicability::MachineApplicable);
+ // check if the impl trait that we are considering is a impl of a local trait
+ self.maybe_lint_blanket_trait_impl(&self_ty, &mut diag);
+ diag.emit();
+ } else {
+ let msg = "trait objects without an explicit `dyn` are deprecated";
+ tcx.struct_span_lint_hir(
+ BARE_TRAIT_OBJECTS,
+ self_ty.hir_id,
+ self_ty.span,
+ msg,
+ |lint| {
+ lint.multipart_suggestion_verbose(
+ "use `dyn`",
+ sugg,
+ Applicability::MachineApplicable,
+ );
+ self.maybe_lint_blanket_trait_impl(&self_ty, lint);
+ lint
+ },
+ );
+ }
+ }
+ }
+}
diff --git a/compiler/rustc_typeck/src/bounds.rs b/compiler/rustc_hir_analysis/src/bounds.rs
index 6a28bb16a..6a28bb16a 100644
--- a/compiler/rustc_typeck/src/bounds.rs
+++ b/compiler/rustc_hir_analysis/src/bounds.rs
diff --git a/compiler/rustc_hir_analysis/src/check/check.rs b/compiler/rustc_hir_analysis/src/check/check.rs
new file mode 100644
index 000000000..b70ac0205
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/check/check.rs
@@ -0,0 +1,1443 @@
+use crate::check::intrinsicck::InlineAsmCtxt;
+
+use super::compare_method::check_type_bounds;
+use super::compare_method::{compare_impl_method, compare_ty_impl};
+use super::*;
+use rustc_attr as attr;
+use rustc_errors::{Applicability, ErrorGuaranteed, MultiSpan};
+use rustc_hir as hir;
+use rustc_hir::def::{DefKind, Res};
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_hir::intravisit::Visitor;
+use rustc_hir::{ItemKind, Node, PathSegment};
+use rustc_infer::infer::outlives::env::OutlivesEnvironment;
+use rustc_infer::infer::{DefiningAnchor, RegionVariableOrigin, TyCtxtInferExt};
+use rustc_infer::traits::Obligation;
+use rustc_lint::builtin::REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS;
+use rustc_middle::hir::nested_filter;
+use rustc_middle::middle::stability::EvalResult;
+use rustc_middle::ty::layout::{LayoutError, MAX_SIMD_LANES};
+use rustc_middle::ty::subst::GenericArgKind;
+use rustc_middle::ty::util::{Discr, IntTypeExt};
+use rustc_middle::ty::{
+ self, ParamEnv, ToPredicate, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable,
+};
+use rustc_session::lint::builtin::{UNINHABITED_STATIC, UNSUPPORTED_CALLING_CONVENTIONS};
+use rustc_span::symbol::sym;
+use rustc_span::{self, Span};
+use rustc_target::spec::abi::Abi;
+use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
+use rustc_trait_selection::traits::{self, ObligationCtxt};
+
+use std::ops::ControlFlow;
+
+pub fn check_abi(tcx: TyCtxt<'_>, hir_id: hir::HirId, span: Span, abi: Abi) {
+ match tcx.sess.target.is_abi_supported(abi) {
+ Some(true) => (),
+ Some(false) => {
+ struct_span_err!(
+ tcx.sess,
+ span,
+ E0570,
+ "`{abi}` is not a supported ABI for the current target",
+ )
+ .emit();
+ }
+ None => {
+ tcx.struct_span_lint_hir(
+ UNSUPPORTED_CALLING_CONVENTIONS,
+ hir_id,
+ span,
+ "use of calling convention not supported on this target",
+ |lint| lint,
+ );
+ }
+ }
+
+ // This ABI is only allowed on function pointers
+ if abi == Abi::CCmseNonSecureCall {
+ struct_span_err!(
+ tcx.sess,
+ span,
+ E0781,
+ "the `\"C-cmse-nonsecure-call\"` ABI is only allowed on function pointers"
+ )
+ .emit();
+ }
+}
+
+fn check_struct(tcx: TyCtxt<'_>, def_id: LocalDefId) {
+ let def = tcx.adt_def(def_id);
+ let span = tcx.def_span(def_id);
+ def.destructor(tcx); // force the destructor to be evaluated
+
+ if def.repr().simd() {
+ check_simd(tcx, span, def_id);
+ }
+
+ check_transparent(tcx, span, def);
+ check_packed(tcx, span, def);
+}
+
+fn check_union(tcx: TyCtxt<'_>, def_id: LocalDefId) {
+ let def = tcx.adt_def(def_id);
+ let span = tcx.def_span(def_id);
+ def.destructor(tcx); // force the destructor to be evaluated
+ check_transparent(tcx, span, def);
+ check_union_fields(tcx, span, def_id);
+ check_packed(tcx, span, def);
+}
+
+/// Check that the fields of the `union` do not need dropping.
+fn check_union_fields(tcx: TyCtxt<'_>, span: Span, item_def_id: LocalDefId) -> bool {
+ let item_type = tcx.type_of(item_def_id);
+ if let ty::Adt(def, substs) = item_type.kind() {
+ assert!(def.is_union());
+
+ fn allowed_union_field<'tcx>(
+ ty: Ty<'tcx>,
+ tcx: TyCtxt<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ span: Span,
+ ) -> bool {
+ // We don't just accept all !needs_drop fields, due to semver concerns.
+ match ty.kind() {
+ ty::Ref(..) => true, // references never drop (even mutable refs, which are non-Copy and hence fail the later check)
+ ty::Tuple(tys) => {
+ // allow tuples of allowed types
+ tys.iter().all(|ty| allowed_union_field(ty, tcx, param_env, span))
+ }
+ ty::Array(elem, _len) => {
+ // Like `Copy`, we do *not* special-case length 0.
+ allowed_union_field(*elem, tcx, param_env, span)
+ }
+ _ => {
+ // Fallback case: allow `ManuallyDrop` and things that are `Copy`.
+ ty.ty_adt_def().is_some_and(|adt_def| adt_def.is_manually_drop())
+ || ty.is_copy_modulo_regions(tcx, param_env)
+ }
+ }
+ }
+
+ let param_env = tcx.param_env(item_def_id);
+ for field in &def.non_enum_variant().fields {
+ let field_ty = field.ty(tcx, substs);
+
+ if !allowed_union_field(field_ty, tcx, param_env, span) {
+ let (field_span, ty_span) = match tcx.hir().get_if_local(field.did) {
+ // We are currently checking the type this field came from, so it must be local.
+ Some(Node::Field(field)) => (field.span, field.ty.span),
+ _ => unreachable!("mir field has to correspond to hir field"),
+ };
+ struct_span_err!(
+ tcx.sess,
+ field_span,
+ E0740,
+ "unions cannot contain fields that may need dropping"
+ )
+ .note(
+ "a type is guaranteed not to need dropping \
+ when it implements `Copy`, or when it is the special `ManuallyDrop<_>` type",
+ )
+ .multipart_suggestion_verbose(
+ "when the type does not implement `Copy`, \
+ wrap it inside a `ManuallyDrop<_>` and ensure it is manually dropped",
+ vec![
+ (ty_span.shrink_to_lo(), "std::mem::ManuallyDrop<".into()),
+ (ty_span.shrink_to_hi(), ">".into()),
+ ],
+ Applicability::MaybeIncorrect,
+ )
+ .emit();
+ return false;
+ } else if field_ty.needs_drop(tcx, param_env) {
+ // This should never happen. But we can get here e.g. in case of name resolution errors.
+ tcx.sess.delay_span_bug(span, "we should never accept maybe-dropping union fields");
+ }
+ }
+ } else {
+ span_bug!(span, "unions must be ty::Adt, but got {:?}", item_type.kind());
+ }
+ true
+}
+
+/// Check that a `static` is inhabited.
+fn check_static_inhabited<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) {
+ // Make sure statics are inhabited.
+ // Other parts of the compiler assume that there are no uninhabited places. In principle it
+ // would be enough to check this for `extern` statics, as statics with an initializer will
+ // have UB during initialization if they are uninhabited, but there also seems to be no good
+ // reason to allow any statics to be uninhabited.
+ let ty = tcx.type_of(def_id);
+ let span = tcx.def_span(def_id);
+ let layout = match tcx.layout_of(ParamEnv::reveal_all().and(ty)) {
+ Ok(l) => l,
+ // Foreign statics that overflow their allowed size should emit an error
+ Err(LayoutError::SizeOverflow(_))
+ if {
+ let node = tcx.hir().get_by_def_id(def_id);
+ matches!(
+ node,
+ hir::Node::ForeignItem(hir::ForeignItem {
+ kind: hir::ForeignItemKind::Static(..),
+ ..
+ })
+ )
+ } =>
+ {
+ tcx.sess
+ .struct_span_err(span, "extern static is too large for the current architecture")
+ .emit();
+ return;
+ }
+ // Generic statics are rejected, but we still reach this case.
+ Err(e) => {
+ tcx.sess.delay_span_bug(span, &e.to_string());
+ return;
+ }
+ };
+ if layout.abi.is_uninhabited() {
+ tcx.struct_span_lint_hir(
+ UNINHABITED_STATIC,
+ tcx.hir().local_def_id_to_hir_id(def_id),
+ span,
+ "static of uninhabited type",
+ |lint| {
+ lint
+ .note("uninhabited statics cannot be initialized, and any access would be an immediate error")
+ },
+ );
+ }
+}
+
+/// Checks that an opaque type does not contain cycles and does not use `Self` or `T::Foo`
+/// projections that would result in "inheriting lifetimes".
+fn check_opaque<'tcx>(tcx: TyCtxt<'tcx>, id: hir::ItemId) {
+ let item = tcx.hir().item(id);
+ let hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) = item.kind else {
+ tcx.sess.delay_span_bug(tcx.hir().span(id.hir_id()), "expected opaque item");
+ return;
+ };
+
+ // HACK(jynelson): trying to infer the type of `impl trait` breaks documenting
+ // `async-std` (and `pub async fn` in general).
+ // Since rustdoc doesn't care about the concrete type behind `impl Trait`, just don't look at it!
+ // See https://github.com/rust-lang/rust/issues/75100
+ if tcx.sess.opts.actually_rustdoc {
+ return;
+ }
+
+ let substs = InternalSubsts::identity_for_item(tcx, item.owner_id.to_def_id());
+ let span = tcx.def_span(item.owner_id.def_id);
+
+ check_opaque_for_inheriting_lifetimes(tcx, item.owner_id.def_id, span);
+ if tcx.type_of(item.owner_id.def_id).references_error() {
+ return;
+ }
+ if check_opaque_for_cycles(tcx, item.owner_id.def_id, substs, span, &origin).is_err() {
+ return;
+ }
+ check_opaque_meets_bounds(tcx, item.owner_id.def_id, substs, span, &origin);
+}
+/// Checks that an opaque type does not use `Self` or `T::Foo` projections that would result
+/// in "inheriting lifetimes".
+#[instrument(level = "debug", skip(tcx, span))]
+pub(super) fn check_opaque_for_inheriting_lifetimes<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: LocalDefId,
+ span: Span,
+) {
+ let item = tcx.hir().expect_item(def_id);
+ debug!(?item, ?span);
+
+ struct FoundParentLifetime;
+ struct FindParentLifetimeVisitor<'tcx>(&'tcx ty::Generics);
+ impl<'tcx> ty::visit::TypeVisitor<'tcx> for FindParentLifetimeVisitor<'tcx> {
+ type BreakTy = FoundParentLifetime;
+
+ fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
+ debug!("FindParentLifetimeVisitor: r={:?}", r);
+ if let ty::ReEarlyBound(ty::EarlyBoundRegion { index, .. }) = *r {
+ if index < self.0.parent_count as u32 {
+ return ControlFlow::Break(FoundParentLifetime);
+ } else {
+ return ControlFlow::CONTINUE;
+ }
+ }
+
+ r.super_visit_with(self)
+ }
+
+ fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
+ if let ty::ConstKind::Unevaluated(..) = c.kind() {
+ // FIXME(#72219) We currently don't detect lifetimes within substs
+ // which would violate this check. Even though the particular substitution is not used
+ // within the const, this should still be fixed.
+ return ControlFlow::CONTINUE;
+ }
+ c.super_visit_with(self)
+ }
+ }
+
+ struct ProhibitOpaqueVisitor<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ opaque_identity_ty: Ty<'tcx>,
+ generics: &'tcx ty::Generics,
+ selftys: Vec<(Span, Option<String>)>,
+ }
+
+ impl<'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueVisitor<'tcx> {
+ type BreakTy = Ty<'tcx>;
+
+ fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+ debug!("check_opaque_for_inheriting_lifetimes: (visit_ty) t={:?}", t);
+ if t == self.opaque_identity_ty {
+ ControlFlow::CONTINUE
+ } else {
+ t.super_visit_with(&mut FindParentLifetimeVisitor(self.generics))
+ .map_break(|FoundParentLifetime| t)
+ }
+ }
+ }
+
+ impl<'tcx> Visitor<'tcx> for ProhibitOpaqueVisitor<'tcx> {
+ type NestedFilter = nested_filter::OnlyBodies;
+
+ fn nested_visit_map(&mut self) -> Self::Map {
+ self.tcx.hir()
+ }
+
+ fn visit_ty(&mut self, arg: &'tcx hir::Ty<'tcx>) {
+ match arg.kind {
+ hir::TyKind::Path(hir::QPath::Resolved(None, path)) => match &path.segments {
+ [PathSegment { res: Res::SelfTyParam { .. }, .. }] => {
+ let impl_ty_name = None;
+ self.selftys.push((path.span, impl_ty_name));
+ }
+ [PathSegment { res: Res::SelfTyAlias { alias_to: def_id, .. }, .. }] => {
+ let impl_ty_name = Some(self.tcx.def_path_str(*def_id));
+ self.selftys.push((path.span, impl_ty_name));
+ }
+ _ => {}
+ },
+ _ => {}
+ }
+ hir::intravisit::walk_ty(self, arg);
+ }
+ }
+
+ if let ItemKind::OpaqueTy(hir::OpaqueTy {
+ origin: hir::OpaqueTyOrigin::AsyncFn(..) | hir::OpaqueTyOrigin::FnReturn(..),
+ ..
+ }) = item.kind
+ {
+ let mut visitor = ProhibitOpaqueVisitor {
+ opaque_identity_ty: tcx.mk_opaque(
+ def_id.to_def_id(),
+ InternalSubsts::identity_for_item(tcx, def_id.to_def_id()),
+ ),
+ generics: tcx.generics_of(def_id),
+ tcx,
+ selftys: vec![],
+ };
+ let prohibit_opaque = tcx
+ .explicit_item_bounds(def_id)
+ .iter()
+ .try_for_each(|(predicate, _)| predicate.visit_with(&mut visitor));
+ debug!(
+ "check_opaque_for_inheriting_lifetimes: prohibit_opaque={:?}, visitor.opaque_identity_ty={:?}, visitor.generics={:?}",
+ prohibit_opaque, visitor.opaque_identity_ty, visitor.generics
+ );
+
+ if let Some(ty) = prohibit_opaque.break_value() {
+ visitor.visit_item(&item);
+ let is_async = match item.kind {
+ ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) => {
+ matches!(origin, hir::OpaqueTyOrigin::AsyncFn(..))
+ }
+ _ => unreachable!(),
+ };
+
+ let mut err = struct_span_err!(
+ tcx.sess,
+ span,
+ E0760,
+ "`{}` return type cannot contain a projection or `Self` that references lifetimes from \
+ a parent scope",
+ if is_async { "async fn" } else { "impl Trait" },
+ );
+
+ for (span, name) in visitor.selftys {
+ err.span_suggestion(
+ span,
+ "consider spelling out the type instead",
+ name.unwrap_or_else(|| format!("{:?}", ty)),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ err.emit();
+ }
+ }
+}
+
+/// Checks that an opaque type does not contain cycles.
+pub(super) fn check_opaque_for_cycles<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: LocalDefId,
+ substs: SubstsRef<'tcx>,
+ span: Span,
+ origin: &hir::OpaqueTyOrigin,
+) -> Result<(), ErrorGuaranteed> {
+ if tcx.try_expand_impl_trait_type(def_id.to_def_id(), substs).is_err() {
+ let reported = match origin {
+ hir::OpaqueTyOrigin::AsyncFn(..) => async_opaque_type_cycle_error(tcx, span),
+ _ => opaque_type_cycle_error(tcx, def_id, span),
+ };
+ Err(reported)
+ } else {
+ Ok(())
+ }
+}
+
+/// Check that the concrete type behind `impl Trait` actually implements `Trait`.
+///
+/// This is mostly checked at the places that specify the opaque type, but we
+/// check those cases in the `param_env` of that function, which may have
+/// bounds not on this opaque type:
+///
+/// ```ignore (illustrative)
+/// type X<T> = impl Clone;
+/// fn f<T: Clone>(t: T) -> X<T> {
+/// t
+/// }
+/// ```
+///
+/// Without this check the above code is incorrectly accepted: we would ICE if
+/// some tried, for example, to clone an `Option<X<&mut ()>>`.
+#[instrument(level = "debug", skip(tcx))]
+fn check_opaque_meets_bounds<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: LocalDefId,
+ substs: SubstsRef<'tcx>,
+ span: Span,
+ origin: &hir::OpaqueTyOrigin,
+) {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let defining_use_anchor = match *origin {
+ hir::OpaqueTyOrigin::FnReturn(did) | hir::OpaqueTyOrigin::AsyncFn(did) => did,
+ hir::OpaqueTyOrigin::TyAlias => def_id,
+ };
+ let param_env = tcx.param_env(defining_use_anchor);
+
+ let infcx = tcx
+ .infer_ctxt()
+ .with_opaque_type_inference(DefiningAnchor::Bind(defining_use_anchor))
+ .build();
+ let ocx = ObligationCtxt::new(&infcx);
+ let opaque_ty = tcx.mk_opaque(def_id.to_def_id(), substs);
+
+ // `ReErased` regions appear in the "parent_substs" of closures/generators.
+ // We're ignoring them here and replacing them with fresh region variables.
+ // See tests in ui/type-alias-impl-trait/closure_{parent_substs,wf_outlives}.rs.
+ //
+ // FIXME: Consider wrapping the hidden type in an existential `Binder` and instantiating it
+ // here rather than using ReErased.
+ let hidden_ty = tcx.bound_type_of(def_id.to_def_id()).subst(tcx, substs);
+ let hidden_ty = tcx.fold_regions(hidden_ty, |re, _dbi| match re.kind() {
+ ty::ReErased => infcx.next_region_var(RegionVariableOrigin::MiscVariable(span)),
+ _ => re,
+ });
+
+ let misc_cause = traits::ObligationCause::misc(span, hir_id);
+
+ match infcx.at(&misc_cause, param_env).eq(opaque_ty, hidden_ty) {
+ Ok(infer_ok) => ocx.register_infer_ok_obligations(infer_ok),
+ Err(ty_err) => {
+ tcx.sess.delay_span_bug(
+ span,
+ &format!("could not unify `{hidden_ty}` with revealed type:\n{ty_err}"),
+ );
+ }
+ }
+
+ // Additionally require the hidden type to be well-formed with only the generics of the opaque type.
+ // Defining use functions may have more bounds than the opaque type, which is ok, as long as the
+ // hidden type is well formed even without those bounds.
+ let predicate =
+ ty::Binder::dummy(ty::PredicateKind::WellFormed(hidden_ty.into())).to_predicate(tcx);
+ ocx.register_obligation(Obligation::new(misc_cause, param_env, predicate));
+
+ // Check that all obligations are satisfied by the implementation's
+ // version.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
+ }
+ match origin {
+ // Checked when type checking the function containing them.
+ hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..) => {}
+ // Can have different predicates to their defining use
+ hir::OpaqueTyOrigin::TyAlias => {
+ let outlives_environment = OutlivesEnvironment::new(param_env);
+ infcx.check_region_obligations_and_report_errors(
+ defining_use_anchor,
+ &outlives_environment,
+ );
+ }
+ }
+ // Clean up after ourselves
+ let _ = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
+}
+
+fn check_item_type<'tcx>(tcx: TyCtxt<'tcx>, id: hir::ItemId) {
+ debug!(
+ "check_item_type(it.def_id={:?}, it.name={})",
+ id.owner_id,
+ tcx.def_path_str(id.owner_id.to_def_id())
+ );
+ let _indenter = indenter();
+ match tcx.def_kind(id.owner_id) {
+ DefKind::Static(..) => {
+ tcx.ensure().typeck(id.owner_id.def_id);
+ maybe_check_static_with_link_section(tcx, id.owner_id.def_id);
+ check_static_inhabited(tcx, id.owner_id.def_id);
+ }
+ DefKind::Const => {
+ tcx.ensure().typeck(id.owner_id.def_id);
+ }
+ DefKind::Enum => {
+ let item = tcx.hir().item(id);
+ let hir::ItemKind::Enum(ref enum_definition, _) = item.kind else {
+ return;
+ };
+ check_enum(tcx, &enum_definition.variants, item.owner_id.def_id);
+ }
+ DefKind::Fn => {} // entirely within check_item_body
+ DefKind::Impl => {
+ let it = tcx.hir().item(id);
+ let hir::ItemKind::Impl(ref impl_) = it.kind else {
+ return;
+ };
+ debug!("ItemKind::Impl {} with id {:?}", it.ident, it.owner_id);
+ if let Some(impl_trait_ref) = tcx.impl_trait_ref(it.owner_id) {
+ check_impl_items_against_trait(
+ tcx,
+ it.span,
+ it.owner_id.def_id,
+ impl_trait_ref,
+ &impl_.items,
+ );
+ check_on_unimplemented(tcx, it);
+ }
+ }
+ DefKind::Trait => {
+ let it = tcx.hir().item(id);
+ let hir::ItemKind::Trait(_, _, _, _, ref items) = it.kind else {
+ return;
+ };
+ check_on_unimplemented(tcx, it);
+
+ for item in items.iter() {
+ let item = tcx.hir().trait_item(item.id);
+ match item.kind {
+ hir::TraitItemKind::Fn(ref sig, _) => {
+ let abi = sig.header.abi;
+ fn_maybe_err(tcx, item.ident.span, abi);
+ }
+ hir::TraitItemKind::Type(.., Some(default)) => {
+ let assoc_item = tcx.associated_item(item.owner_id);
+ let trait_substs =
+ InternalSubsts::identity_for_item(tcx, it.owner_id.to_def_id());
+ let _: Result<_, rustc_errors::ErrorGuaranteed> = check_type_bounds(
+ tcx,
+ assoc_item,
+ assoc_item,
+ default.span,
+ ty::TraitRef { def_id: it.owner_id.to_def_id(), substs: trait_substs },
+ );
+ }
+ _ => {}
+ }
+ }
+ }
+ DefKind::Struct => {
+ check_struct(tcx, id.owner_id.def_id);
+ }
+ DefKind::Union => {
+ check_union(tcx, id.owner_id.def_id);
+ }
+ DefKind::OpaqueTy => {
+ check_opaque(tcx, id);
+ }
+ DefKind::ImplTraitPlaceholder => {
+ let parent = tcx.impl_trait_in_trait_parent(id.owner_id.to_def_id());
+ // Only check the validity of this opaque type if the function has a default body
+ if let hir::Node::TraitItem(hir::TraitItem {
+ kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
+ ..
+ }) = tcx.hir().get_by_def_id(parent.expect_local())
+ {
+ check_opaque(tcx, id);
+ }
+ }
+ DefKind::TyAlias => {
+ let pty_ty = tcx.type_of(id.owner_id);
+ let generics = tcx.generics_of(id.owner_id);
+ check_type_params_are_used(tcx, &generics, pty_ty);
+ }
+ DefKind::ForeignMod => {
+ let it = tcx.hir().item(id);
+ let hir::ItemKind::ForeignMod { abi, items } = it.kind else {
+ return;
+ };
+ check_abi(tcx, it.hir_id(), it.span, abi);
+
+ if abi == Abi::RustIntrinsic {
+ for item in items {
+ let item = tcx.hir().foreign_item(item.id);
+ intrinsic::check_intrinsic_type(tcx, item);
+ }
+ } else if abi == Abi::PlatformIntrinsic {
+ for item in items {
+ let item = tcx.hir().foreign_item(item.id);
+ intrinsic::check_platform_intrinsic_type(tcx, item);
+ }
+ } else {
+ for item in items {
+ let def_id = item.id.owner_id.def_id;
+ let generics = tcx.generics_of(def_id);
+ let own_counts = generics.own_counts();
+ if generics.params.len() - own_counts.lifetimes != 0 {
+ let (kinds, kinds_pl, egs) = match (own_counts.types, own_counts.consts) {
+ (_, 0) => ("type", "types", Some("u32")),
+ // We don't specify an example value, because we can't generate
+ // a valid value for any type.
+ (0, _) => ("const", "consts", None),
+ _ => ("type or const", "types or consts", None),
+ };
+ struct_span_err!(
+ tcx.sess,
+ item.span,
+ E0044,
+ "foreign items may not have {kinds} parameters",
+ )
+ .span_label(item.span, &format!("can't have {kinds} parameters"))
+ .help(
+ // FIXME: once we start storing spans for type arguments, turn this
+ // into a suggestion.
+ &format!(
+ "replace the {} parameters with concrete {}{}",
+ kinds,
+ kinds_pl,
+ egs.map(|egs| format!(" like `{}`", egs)).unwrap_or_default(),
+ ),
+ )
+ .emit();
+ }
+
+ let item = tcx.hir().foreign_item(item.id);
+ match item.kind {
+ hir::ForeignItemKind::Fn(ref fn_decl, _, _) => {
+ require_c_abi_if_c_variadic(tcx, fn_decl, abi, item.span);
+ }
+ hir::ForeignItemKind::Static(..) => {
+ check_static_inhabited(tcx, def_id);
+ }
+ _ => {}
+ }
+ }
+ }
+ }
+ DefKind::GlobalAsm => {
+ let it = tcx.hir().item(id);
+ let hir::ItemKind::GlobalAsm(asm) = it.kind else { span_bug!(it.span, "DefKind::GlobalAsm but got {:#?}", it) };
+ InlineAsmCtxt::new_global_asm(tcx).check_asm(asm, id.hir_id());
+ }
+ _ => {}
+ }
+}
+
+pub(super) fn check_on_unimplemented(tcx: TyCtxt<'_>, item: &hir::Item<'_>) {
+ // an error would be reported if this fails.
+ let _ = traits::OnUnimplementedDirective::of_item(tcx, item.owner_id.to_def_id());
+}
+
+pub(super) fn check_specialization_validity<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_def: &ty::TraitDef,
+ trait_item: &ty::AssocItem,
+ impl_id: DefId,
+ impl_item: &hir::ImplItemRef,
+) {
+ let Ok(ancestors) = trait_def.ancestors(tcx, impl_id) else { return };
+ let mut ancestor_impls = ancestors.skip(1).filter_map(|parent| {
+ if parent.is_from_trait() {
+ None
+ } else {
+ Some((parent, parent.item(tcx, trait_item.def_id)))
+ }
+ });
+
+ let opt_result = ancestor_impls.find_map(|(parent_impl, parent_item)| {
+ match parent_item {
+ // Parent impl exists, and contains the parent item we're trying to specialize, but
+ // doesn't mark it `default`.
+ Some(parent_item) if traits::impl_item_is_final(tcx, &parent_item) => {
+ Some(Err(parent_impl.def_id()))
+ }
+
+ // Parent impl contains item and makes it specializable.
+ Some(_) => Some(Ok(())),
+
+ // Parent impl doesn't mention the item. This means it's inherited from the
+ // grandparent. In that case, if parent is a `default impl`, inherited items use the
+ // "defaultness" from the grandparent, else they are final.
+ None => {
+ if tcx.impl_defaultness(parent_impl.def_id()).is_default() {
+ None
+ } else {
+ Some(Err(parent_impl.def_id()))
+ }
+ }
+ }
+ });
+
+ // If `opt_result` is `None`, we have only encountered `default impl`s that don't contain the
+ // item. This is allowed, the item isn't actually getting specialized here.
+ let result = opt_result.unwrap_or(Ok(()));
+
+ if let Err(parent_impl) = result {
+ report_forbidden_specialization(tcx, impl_item, parent_impl);
+ }
+}
+
+fn check_impl_items_against_trait<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ full_impl_span: Span,
+ impl_id: LocalDefId,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+ impl_item_refs: &[hir::ImplItemRef],
+) {
+ // If the trait reference itself is erroneous (so the compilation is going
+ // to fail), skip checking the items here -- the `impl_item` table in `tcx`
+ // isn't populated for such impls.
+ if impl_trait_ref.references_error() {
+ return;
+ }
+
+ // Negative impls are not expected to have any items
+ match tcx.impl_polarity(impl_id) {
+ ty::ImplPolarity::Reservation | ty::ImplPolarity::Positive => {}
+ ty::ImplPolarity::Negative => {
+ if let [first_item_ref, ..] = impl_item_refs {
+ let first_item_span = tcx.hir().impl_item(first_item_ref.id).span;
+ struct_span_err!(
+ tcx.sess,
+ first_item_span,
+ E0749,
+ "negative impls cannot have any items"
+ )
+ .emit();
+ }
+ return;
+ }
+ }
+
+ let trait_def = tcx.trait_def(impl_trait_ref.def_id);
+
+ for impl_item in impl_item_refs {
+ let ty_impl_item = tcx.associated_item(impl_item.id.owner_id);
+ let ty_trait_item = if let Some(trait_item_id) = ty_impl_item.trait_item_def_id {
+ tcx.associated_item(trait_item_id)
+ } else {
+ // Checked in `associated_item`.
+ tcx.sess.delay_span_bug(impl_item.span, "missing associated item in trait");
+ continue;
+ };
+ let impl_item_full = tcx.hir().impl_item(impl_item.id);
+ match impl_item_full.kind {
+ hir::ImplItemKind::Const(..) => {
+ let _ = tcx.compare_assoc_const_impl_item_with_trait_item((
+ impl_item.id.owner_id.def_id,
+ ty_impl_item.trait_item_def_id.unwrap(),
+ ));
+ }
+ hir::ImplItemKind::Fn(..) => {
+ let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id);
+ compare_impl_method(
+ tcx,
+ &ty_impl_item,
+ &ty_trait_item,
+ impl_trait_ref,
+ opt_trait_span,
+ );
+ }
+ hir::ImplItemKind::Type(impl_ty) => {
+ let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id);
+ compare_ty_impl(
+ tcx,
+ &ty_impl_item,
+ impl_ty.span,
+ &ty_trait_item,
+ impl_trait_ref,
+ opt_trait_span,
+ );
+ }
+ }
+
+ check_specialization_validity(
+ tcx,
+ trait_def,
+ &ty_trait_item,
+ impl_id.to_def_id(),
+ impl_item,
+ );
+ }
+
+ if let Ok(ancestors) = trait_def.ancestors(tcx, impl_id.to_def_id()) {
+ // Check for missing items from trait
+ let mut missing_items = Vec::new();
+
+ let mut must_implement_one_of: Option<&[Ident]> =
+ trait_def.must_implement_one_of.as_deref();
+
+ for &trait_item_id in tcx.associated_item_def_ids(impl_trait_ref.def_id) {
+ let is_implemented = ancestors
+ .leaf_def(tcx, trait_item_id)
+ .map_or(false, |node_item| node_item.item.defaultness(tcx).has_value());
+
+ if !is_implemented && tcx.impl_defaultness(impl_id).is_final() {
+ missing_items.push(tcx.associated_item(trait_item_id));
+ }
+
+ // true if this item is specifically implemented in this impl
+ let is_implemented_here = ancestors
+ .leaf_def(tcx, trait_item_id)
+ .map_or(false, |node_item| !node_item.defining_node.is_from_trait());
+
+ if !is_implemented_here {
+ match tcx.eval_default_body_stability(trait_item_id, full_impl_span) {
+ EvalResult::Deny { feature, reason, issue, .. } => default_body_is_unstable(
+ tcx,
+ full_impl_span,
+ trait_item_id,
+ feature,
+ reason,
+ issue,
+ ),
+
+ // Unmarked default bodies are considered stable (at least for now).
+ EvalResult::Allow | EvalResult::Unmarked => {}
+ }
+ }
+
+ if let Some(required_items) = &must_implement_one_of {
+ if is_implemented_here {
+ let trait_item = tcx.associated_item(trait_item_id);
+ if required_items.contains(&trait_item.ident(tcx)) {
+ must_implement_one_of = None;
+ }
+ }
+ }
+ }
+
+ if !missing_items.is_empty() {
+ missing_items_err(tcx, tcx.def_span(impl_id), &missing_items, full_impl_span);
+ }
+
+ if let Some(missing_items) = must_implement_one_of {
+ let attr_span = tcx
+ .get_attr(impl_trait_ref.def_id, sym::rustc_must_implement_one_of)
+ .map(|attr| attr.span);
+
+ missing_items_must_implement_one_of_err(
+ tcx,
+ tcx.def_span(impl_id),
+ missing_items,
+ attr_span,
+ );
+ }
+ }
+}
+
+pub fn check_simd(tcx: TyCtxt<'_>, sp: Span, def_id: LocalDefId) {
+ let t = tcx.type_of(def_id);
+ if let ty::Adt(def, substs) = t.kind()
+ && def.is_struct()
+ {
+ let fields = &def.non_enum_variant().fields;
+ if fields.is_empty() {
+ struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
+ return;
+ }
+ let e = fields[0].ty(tcx, substs);
+ if !fields.iter().all(|f| f.ty(tcx, substs) == e) {
+ struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous")
+ .span_label(sp, "SIMD elements must have the same type")
+ .emit();
+ return;
+ }
+
+ let len = if let ty::Array(_ty, c) = e.kind() {
+ c.try_eval_usize(tcx, tcx.param_env(def.did()))
+ } else {
+ Some(fields.len() as u64)
+ };
+ if let Some(len) = len {
+ if len == 0 {
+ struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
+ return;
+ } else if len > MAX_SIMD_LANES {
+ struct_span_err!(
+ tcx.sess,
+ sp,
+ E0075,
+ "SIMD vector cannot have more than {MAX_SIMD_LANES} elements",
+ )
+ .emit();
+ return;
+ }
+ }
+
+ // Check that we use types valid for use in the lanes of a SIMD "vector register"
+ // These are scalar types which directly match a "machine" type
+ // Yes: Integers, floats, "thin" pointers
+ // No: char, "fat" pointers, compound types
+ match e.kind() {
+ ty::Param(_) => (), // pass struct<T>(T, T, T, T) through, let monomorphization catch errors
+ ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_) => (), // struct(u8, u8, u8, u8) is ok
+ ty::Array(t, _) if matches!(t.kind(), ty::Param(_)) => (), // pass struct<T>([T; N]) through, let monomorphization catch errors
+ ty::Array(t, _clen)
+ if matches!(
+ t.kind(),
+ ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_)
+ ) =>
+ { /* struct([f32; 4]) is ok */ }
+ _ => {
+ struct_span_err!(
+ tcx.sess,
+ sp,
+ E0077,
+ "SIMD vector element type should be a \
+ primitive scalar (integer/float/pointer) type"
+ )
+ .emit();
+ return;
+ }
+ }
+ }
+}
+
+pub(super) fn check_packed(tcx: TyCtxt<'_>, sp: Span, def: ty::AdtDef<'_>) {
+ let repr = def.repr();
+ if repr.packed() {
+ for attr in tcx.get_attrs(def.did(), sym::repr) {
+ for r in attr::parse_repr_attr(&tcx.sess, attr) {
+ if let attr::ReprPacked(pack) = r
+ && let Some(repr_pack) = repr.pack
+ && pack as u64 != repr_pack.bytes()
+ {
+ struct_span_err!(
+ tcx.sess,
+ sp,
+ E0634,
+ "type has conflicting packed representation hints"
+ )
+ .emit();
+ }
+ }
+ }
+ if repr.align.is_some() {
+ struct_span_err!(
+ tcx.sess,
+ sp,
+ E0587,
+ "type has conflicting packed and align representation hints"
+ )
+ .emit();
+ } else {
+ if let Some(def_spans) = check_packed_inner(tcx, def.did(), &mut vec![]) {
+ let mut err = struct_span_err!(
+ tcx.sess,
+ sp,
+ E0588,
+ "packed type cannot transitively contain a `#[repr(align)]` type"
+ );
+
+ err.span_note(
+ tcx.def_span(def_spans[0].0),
+ &format!(
+ "`{}` has a `#[repr(align)]` attribute",
+ tcx.item_name(def_spans[0].0)
+ ),
+ );
+
+ if def_spans.len() > 2 {
+ let mut first = true;
+ for (adt_def, span) in def_spans.iter().skip(1).rev() {
+ let ident = tcx.item_name(*adt_def);
+ err.span_note(
+ *span,
+ &if first {
+ format!(
+ "`{}` contains a field of type `{}`",
+ tcx.type_of(def.did()),
+ ident
+ )
+ } else {
+ format!("...which contains a field of type `{ident}`")
+ },
+ );
+ first = false;
+ }
+ }
+
+ err.emit();
+ }
+ }
+ }
+}
+
+pub(super) fn check_packed_inner(
+ tcx: TyCtxt<'_>,
+ def_id: DefId,
+ stack: &mut Vec<DefId>,
+) -> Option<Vec<(DefId, Span)>> {
+ if let ty::Adt(def, substs) = tcx.type_of(def_id).kind() {
+ if def.is_struct() || def.is_union() {
+ if def.repr().align.is_some() {
+ return Some(vec![(def.did(), DUMMY_SP)]);
+ }
+
+ stack.push(def_id);
+ for field in &def.non_enum_variant().fields {
+ if let ty::Adt(def, _) = field.ty(tcx, substs).kind()
+ && !stack.contains(&def.did())
+ && let Some(mut defs) = check_packed_inner(tcx, def.did(), stack)
+ {
+ defs.push((def.did(), field.ident(tcx).span));
+ return Some(defs);
+ }
+ }
+ stack.pop();
+ }
+ }
+
+ None
+}
+
+pub(super) fn check_transparent<'tcx>(tcx: TyCtxt<'tcx>, sp: Span, adt: ty::AdtDef<'tcx>) {
+ if !adt.repr().transparent() {
+ return;
+ }
+
+ if adt.is_union() && !tcx.features().transparent_unions {
+ feature_err(
+ &tcx.sess.parse_sess,
+ sym::transparent_unions,
+ sp,
+ "transparent unions are unstable",
+ )
+ .emit();
+ }
+
+ if adt.variants().len() != 1 {
+ bad_variant_count(tcx, adt, sp, adt.did());
+ if adt.variants().is_empty() {
+ // Don't bother checking the fields. No variants (and thus no fields) exist.
+ return;
+ }
+ }
+
+ // For each field, figure out if it's known to be a ZST and align(1), with "known"
+ // respecting #[non_exhaustive] attributes.
+ let field_infos = adt.all_fields().map(|field| {
+ let ty = field.ty(tcx, InternalSubsts::identity_for_item(tcx, field.did));
+ let param_env = tcx.param_env(field.did);
+ let layout = tcx.layout_of(param_env.and(ty));
+ // We are currently checking the type this field came from, so it must be local
+ let span = tcx.hir().span_if_local(field.did).unwrap();
+ let zst = layout.map_or(false, |layout| layout.is_zst());
+ let align1 = layout.map_or(false, |layout| layout.align.abi.bytes() == 1);
+ if !zst {
+ return (span, zst, align1, None);
+ }
+
+ fn check_non_exhaustive<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ t: Ty<'tcx>,
+ ) -> ControlFlow<(&'static str, DefId, SubstsRef<'tcx>, bool)> {
+ match t.kind() {
+ ty::Tuple(list) => list.iter().try_for_each(|t| check_non_exhaustive(tcx, t)),
+ ty::Array(ty, _) => check_non_exhaustive(tcx, *ty),
+ ty::Adt(def, subst) => {
+ if !def.did().is_local() {
+ let non_exhaustive = def.is_variant_list_non_exhaustive()
+ || def
+ .variants()
+ .iter()
+ .any(ty::VariantDef::is_field_list_non_exhaustive);
+ let has_priv = def.all_fields().any(|f| !f.vis.is_public());
+ if non_exhaustive || has_priv {
+ return ControlFlow::Break((
+ def.descr(),
+ def.did(),
+ subst,
+ non_exhaustive,
+ ));
+ }
+ }
+ def.all_fields()
+ .map(|field| field.ty(tcx, subst))
+ .try_for_each(|t| check_non_exhaustive(tcx, t))
+ }
+ _ => ControlFlow::Continue(()),
+ }
+ }
+
+ (span, zst, align1, check_non_exhaustive(tcx, ty).break_value())
+ });
+
+ let non_zst_fields = field_infos
+ .clone()
+ .filter_map(|(span, zst, _align1, _non_exhaustive)| if !zst { Some(span) } else { None });
+ let non_zst_count = non_zst_fields.clone().count();
+ if non_zst_count >= 2 {
+ bad_non_zero_sized_fields(tcx, adt, non_zst_count, non_zst_fields, sp);
+ }
+ let incompatible_zst_fields =
+ field_infos.clone().filter(|(_, _, _, opt)| opt.is_some()).count();
+ let incompat = incompatible_zst_fields + non_zst_count >= 2 && non_zst_count < 2;
+ for (span, zst, align1, non_exhaustive) in field_infos {
+ if zst && !align1 {
+ struct_span_err!(
+ tcx.sess,
+ span,
+ E0691,
+ "zero-sized field in transparent {} has alignment larger than 1",
+ adt.descr(),
+ )
+ .span_label(span, "has alignment larger than 1")
+ .emit();
+ }
+ if incompat && let Some((descr, def_id, substs, non_exhaustive)) = non_exhaustive {
+ tcx.struct_span_lint_hir(
+ REPR_TRANSPARENT_EXTERNAL_PRIVATE_FIELDS,
+ tcx.hir().local_def_id_to_hir_id(adt.did().expect_local()),
+ span,
+ "zero-sized fields in `repr(transparent)` cannot contain external non-exhaustive types",
+ |lint| {
+ let note = if non_exhaustive {
+ "is marked with `#[non_exhaustive]`"
+ } else {
+ "contains private fields"
+ };
+ let field_ty = tcx.def_path_str_with_substs(def_id, substs);
+ lint
+ .note(format!("this {descr} contains `{field_ty}`, which {note}, \
+ and makes it not a breaking change to become non-zero-sized in the future."))
+ },
+ )
+ }
+ }
+}
+
+#[allow(trivial_numeric_casts)]
+fn check_enum<'tcx>(tcx: TyCtxt<'tcx>, vs: &'tcx [hir::Variant<'tcx>], def_id: LocalDefId) {
+ let def = tcx.adt_def(def_id);
+ let sp = tcx.def_span(def_id);
+ def.destructor(tcx); // force the destructor to be evaluated
+
+ if vs.is_empty() {
+ if let Some(attr) = tcx.get_attrs(def_id.to_def_id(), sym::repr).next() {
+ struct_span_err!(
+ tcx.sess,
+ attr.span,
+ E0084,
+ "unsupported representation for zero-variant enum"
+ )
+ .span_label(sp, "zero-variant enum")
+ .emit();
+ }
+ }
+
+ let repr_type_ty = def.repr().discr_type().to_ty(tcx);
+ if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 {
+ if !tcx.features().repr128 {
+ feature_err(
+ &tcx.sess.parse_sess,
+ sym::repr128,
+ sp,
+ "repr with 128-bit type is unstable",
+ )
+ .emit();
+ }
+ }
+
+ for v in vs {
+ if let Some(ref e) = v.disr_expr {
+ tcx.ensure().typeck(tcx.hir().local_def_id(e.hir_id));
+ }
+ }
+
+ if tcx.adt_def(def_id).repr().int.is_none() {
+ let is_unit = |var: &hir::Variant<'_>| matches!(var.data, hir::VariantData::Unit(..));
+
+ let has_disr = |var: &hir::Variant<'_>| var.disr_expr.is_some();
+ let has_non_units = vs.iter().any(|var| !is_unit(var));
+ let disr_units = vs.iter().any(|var| is_unit(&var) && has_disr(&var));
+ let disr_non_unit = vs.iter().any(|var| !is_unit(&var) && has_disr(&var));
+
+ if disr_non_unit || (disr_units && has_non_units) {
+ let mut err =
+ struct_span_err!(tcx.sess, sp, E0732, "`#[repr(inttype)]` must be specified");
+ err.emit();
+ }
+ }
+
+ detect_discriminant_duplicate(tcx, def.discriminants(tcx).collect(), vs, sp);
+
+ check_transparent(tcx, sp, def);
+}
+
+/// Part of enum check. Given the discriminants of an enum, errors if two or more discriminants are equal
+fn detect_discriminant_duplicate<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ mut discrs: Vec<(VariantIdx, Discr<'tcx>)>,
+ vs: &'tcx [hir::Variant<'tcx>],
+ self_span: Span,
+) {
+ // Helper closure to reduce duplicate code. This gets called everytime we detect a duplicate.
+ // Here `idx` refers to the order of which the discriminant appears, and its index in `vs`
+ let report = |dis: Discr<'tcx>, idx: usize, err: &mut Diagnostic| {
+ let var = &vs[idx]; // HIR for the duplicate discriminant
+ let (span, display_discr) = match var.disr_expr {
+ Some(ref expr) => {
+ // In the case the discriminant is both a duplicate and overflowed, let the user know
+ if let hir::ExprKind::Lit(lit) = &tcx.hir().body(expr.body).value.kind
+ && let rustc_ast::LitKind::Int(lit_value, _int_kind) = &lit.node
+ && *lit_value != dis.val
+ {
+ (tcx.hir().span(expr.hir_id), format!("`{dis}` (overflowed from `{lit_value}`)"))
+ // Otherwise, format the value as-is
+ } else {
+ (tcx.hir().span(expr.hir_id), format!("`{dis}`"))
+ }
+ }
+ None => {
+ // At this point we know this discriminant is a duplicate, and was not explicitly
+ // assigned by the user. Here we iterate backwards to fetch the HIR for the last
+ // explicitly assigned discriminant, and letting the user know that this was the
+ // increment startpoint, and how many steps from there leading to the duplicate
+ if let Some((n, hir::Variant { span, ident, .. })) =
+ vs[..idx].iter().rev().enumerate().find(|v| v.1.disr_expr.is_some())
+ {
+ let ve_ident = var.ident;
+ let n = n + 1;
+ let sp = if n > 1 { "variants" } else { "variant" };
+
+ err.span_label(
+ *span,
+ format!("discriminant for `{ve_ident}` incremented from this startpoint (`{ident}` + {n} {sp} later => `{ve_ident}` = {dis})"),
+ );
+ }
+
+ (vs[idx].span, format!("`{dis}`"))
+ }
+ };
+
+ err.span_label(span, format!("{display_discr} assigned here"));
+ };
+
+ // Here we loop through the discriminants, comparing each discriminant to another.
+ // When a duplicate is detected, we instantiate an error and point to both
+ // initial and duplicate value. The duplicate discriminant is then discarded by swapping
+ // it with the last element and decrementing the `vec.len` (which is why we have to evaluate
+ // `discrs.len()` anew every iteration, and why this could be tricky to do in a functional
+ // style as we are mutating `discrs` on the fly).
+ let mut i = 0;
+ while i < discrs.len() {
+ let hir_var_i_idx = discrs[i].0.index();
+ let mut error: Option<DiagnosticBuilder<'_, _>> = None;
+
+ let mut o = i + 1;
+ while o < discrs.len() {
+ let hir_var_o_idx = discrs[o].0.index();
+
+ if discrs[i].1.val == discrs[o].1.val {
+ let err = error.get_or_insert_with(|| {
+ let mut ret = struct_span_err!(
+ tcx.sess,
+ self_span,
+ E0081,
+ "discriminant value `{}` assigned more than once",
+ discrs[i].1,
+ );
+
+ report(discrs[i].1, hir_var_i_idx, &mut ret);
+
+ ret
+ });
+
+ report(discrs[o].1, hir_var_o_idx, err);
+
+ // Safe to unwrap here, as we wouldn't reach this point if `discrs` was empty
+ discrs[o] = *discrs.last().unwrap();
+ discrs.pop();
+ } else {
+ o += 1;
+ }
+ }
+
+ if let Some(mut e) = error {
+ e.emit();
+ }
+
+ i += 1;
+ }
+}
+
+pub(super) fn check_type_params_are_used<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ generics: &ty::Generics,
+ ty: Ty<'tcx>,
+) {
+ debug!("check_type_params_are_used(generics={:?}, ty={:?})", generics, ty);
+
+ assert_eq!(generics.parent, None);
+
+ if generics.own_counts().types == 0 {
+ return;
+ }
+
+ let mut params_used = BitSet::new_empty(generics.params.len());
+
+ if ty.references_error() {
+ // If there is already another error, do not emit
+ // an error for not using a type parameter.
+ assert!(tcx.sess.has_errors().is_some());
+ return;
+ }
+
+ for leaf in ty.walk() {
+ if let GenericArgKind::Type(leaf_ty) = leaf.unpack()
+ && let ty::Param(param) = leaf_ty.kind()
+ {
+ debug!("found use of ty param {:?}", param);
+ params_used.insert(param.index);
+ }
+ }
+
+ for param in &generics.params {
+ if !params_used.contains(param.index)
+ && let ty::GenericParamDefKind::Type { .. } = param.kind
+ {
+ let span = tcx.def_span(param.def_id);
+ struct_span_err!(
+ tcx.sess,
+ span,
+ E0091,
+ "type parameter `{}` is unused",
+ param.name,
+ )
+ .span_label(span, "unused type parameter")
+ .emit();
+ }
+ }
+}
+
+pub(super) fn check_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
+ let module = tcx.hir_module_items(module_def_id);
+ for id in module.items() {
+ check_item_type(tcx, id);
+ }
+}
+
+fn async_opaque_type_cycle_error(tcx: TyCtxt<'_>, span: Span) -> ErrorGuaranteed {
+ struct_span_err!(tcx.sess, span, E0733, "recursion in an `async fn` requires boxing")
+ .span_label(span, "recursive `async fn`")
+ .note("a recursive `async fn` must be rewritten to return a boxed `dyn Future`")
+ .note(
+ "consider using the `async_recursion` crate: https://crates.io/crates/async_recursion",
+ )
+ .emit()
+}
+
+/// Emit an error for recursive opaque types.
+///
+/// If this is a return `impl Trait`, find the item's return expressions and point at them. For
+/// direct recursion this is enough, but for indirect recursion also point at the last intermediary
+/// `impl Trait`.
+///
+/// If all the return expressions evaluate to `!`, then we explain that the error will go away
+/// after changing it. This can happen when a user uses `panic!()` or similar as a placeholder.
+fn opaque_type_cycle_error(tcx: TyCtxt<'_>, def_id: LocalDefId, span: Span) -> ErrorGuaranteed {
+ let mut err = struct_span_err!(tcx.sess, span, E0720, "cannot resolve opaque type");
+
+ let mut label = false;
+ if let Some((def_id, visitor)) = get_owner_return_paths(tcx, def_id) {
+ let typeck_results = tcx.typeck(def_id);
+ if visitor
+ .returns
+ .iter()
+ .filter_map(|expr| typeck_results.node_type_opt(expr.hir_id))
+ .all(|ty| matches!(ty.kind(), ty::Never))
+ {
+ let spans = visitor
+ .returns
+ .iter()
+ .filter(|expr| typeck_results.node_type_opt(expr.hir_id).is_some())
+ .map(|expr| expr.span)
+ .collect::<Vec<Span>>();
+ let span_len = spans.len();
+ if span_len == 1 {
+ err.span_label(spans[0], "this returned value is of `!` type");
+ } else {
+ let mut multispan: MultiSpan = spans.clone().into();
+ for span in spans {
+ multispan.push_span_label(span, "this returned value is of `!` type");
+ }
+ err.span_note(multispan, "these returned values have a concrete \"never\" type");
+ }
+ err.help("this error will resolve once the item's body returns a concrete type");
+ } else {
+ let mut seen = FxHashSet::default();
+ seen.insert(span);
+ err.span_label(span, "recursive opaque type");
+ label = true;
+ for (sp, ty) in visitor
+ .returns
+ .iter()
+ .filter_map(|e| typeck_results.node_type_opt(e.hir_id).map(|t| (e.span, t)))
+ .filter(|(_, ty)| !matches!(ty.kind(), ty::Never))
+ {
+ struct OpaqueTypeCollector(Vec<DefId>);
+ impl<'tcx> ty::visit::TypeVisitor<'tcx> for OpaqueTypeCollector {
+ fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+ match *t.kind() {
+ ty::Opaque(def, _) => {
+ self.0.push(def);
+ ControlFlow::CONTINUE
+ }
+ _ => t.super_visit_with(self),
+ }
+ }
+ }
+ let mut visitor = OpaqueTypeCollector(vec![]);
+ ty.visit_with(&mut visitor);
+ for def_id in visitor.0 {
+ let ty_span = tcx.def_span(def_id);
+ if !seen.contains(&ty_span) {
+ err.span_label(ty_span, &format!("returning this opaque type `{ty}`"));
+ seen.insert(ty_span);
+ }
+ err.span_label(sp, &format!("returning here with type `{ty}`"));
+ }
+ }
+ }
+ }
+ if !label {
+ err.span_label(span, "cannot resolve opaque type");
+ }
+ err.emit()
+}
diff --git a/compiler/rustc_hir_analysis/src/check/compare_method.rs b/compiler/rustc_hir_analysis/src/check/compare_method.rs
new file mode 100644
index 000000000..32f66b06f
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/check/compare_method.rs
@@ -0,0 +1,1825 @@
+use super::potentially_plural_count;
+use crate::errors::LifetimesOrBoundsMismatchOnTrait;
+use hir::def_id::{DefId, LocalDefId};
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticId, ErrorGuaranteed};
+use rustc_hir as hir;
+use rustc_hir::def::{DefKind, Res};
+use rustc_hir::intravisit;
+use rustc_hir::{GenericParamKind, ImplItemKind, TraitItemKind};
+use rustc_infer::infer::outlives::env::OutlivesEnvironment;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::infer::{self, TyCtxtInferExt};
+use rustc_infer::traits::util;
+use rustc_middle::ty::error::{ExpectedFound, TypeError};
+use rustc_middle::ty::util::ExplicitSelf;
+use rustc_middle::ty::InternalSubsts;
+use rustc_middle::ty::{
+ self, AssocItem, DefIdTree, Ty, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeVisitable,
+};
+use rustc_middle::ty::{GenericParamDefKind, ToPredicate, TyCtxt};
+use rustc_span::Span;
+use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt;
+use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
+use rustc_trait_selection::traits::{
+ self, ObligationCause, ObligationCauseCode, ObligationCtxt, Reveal,
+};
+use std::iter;
+
+/// Checks that a method from an impl conforms to the signature of
+/// the same method as declared in the trait.
+///
+/// # Parameters
+///
+/// - `impl_m`: type of the method we are checking
+/// - `impl_m_span`: span to use for reporting errors
+/// - `trait_m`: the method in the trait
+/// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
+pub(crate) fn compare_impl_method<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ trait_m: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+ trait_item_span: Option<Span>,
+) {
+ debug!("compare_impl_method(impl_trait_ref={:?})", impl_trait_ref);
+
+ let impl_m_span = tcx.def_span(impl_m.def_id);
+
+ if let Err(_) = compare_self_type(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref) {
+ return;
+ }
+
+ if let Err(_) = compare_number_of_generics(tcx, impl_m, impl_m_span, trait_m, trait_item_span) {
+ return;
+ }
+
+ if let Err(_) = compare_generic_param_kinds(tcx, impl_m, trait_m) {
+ return;
+ }
+
+ if let Err(_) =
+ compare_number_of_method_arguments(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
+ {
+ return;
+ }
+
+ if let Err(_) = compare_synthetic_generics(tcx, impl_m, trait_m) {
+ return;
+ }
+
+ if let Err(_) = compare_predicate_entailment(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)
+ {
+ return;
+ }
+}
+
+/// This function is best explained by example. Consider a trait:
+///
+/// trait Trait<'t, T> {
+/// // `trait_m`
+/// fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
+/// }
+///
+/// And an impl:
+///
+/// impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
+/// // `impl_m`
+/// fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo;
+/// }
+///
+/// We wish to decide if those two method types are compatible.
+/// For this we have to show that, assuming the bounds of the impl hold, the
+/// bounds of `trait_m` imply the bounds of `impl_m`.
+///
+/// We start out with `trait_to_impl_substs`, that maps the trait
+/// type parameters to impl type parameters. This is taken from the
+/// impl trait reference:
+///
+/// trait_to_impl_substs = {'t => 'j, T => &'i U, Self => Foo}
+///
+/// We create a mapping `dummy_substs` that maps from the impl type
+/// parameters to fresh types and regions. For type parameters,
+/// this is the identity transform, but we could as well use any
+/// placeholder types. For regions, we convert from bound to free
+/// regions (Note: but only early-bound regions, i.e., those
+/// declared on the impl or used in type parameter bounds).
+///
+/// impl_to_placeholder_substs = {'i => 'i0, U => U0, N => N0 }
+///
+/// Now we can apply `placeholder_substs` to the type of the impl method
+/// to yield a new function type in terms of our fresh, placeholder
+/// types:
+///
+/// <'b> fn(t: &'i0 U0, m: &'b) -> Foo
+///
+/// We now want to extract and substitute the type of the *trait*
+/// method and compare it. To do so, we must create a compound
+/// substitution by combining `trait_to_impl_substs` and
+/// `impl_to_placeholder_substs`, and also adding a mapping for the method
+/// type parameters. We extend the mapping to also include
+/// the method parameters.
+///
+/// trait_to_placeholder_substs = { T => &'i0 U0, Self => Foo, M => N0 }
+///
+/// Applying this to the trait method type yields:
+///
+/// <'a> fn(t: &'i0 U0, m: &'a) -> Foo
+///
+/// This type is also the same but the name of the bound region (`'a`
+/// vs `'b`). However, the normal subtyping rules on fn types handle
+/// this kind of equivalency just fine.
+///
+/// We now use these substitutions to ensure that all declared bounds are
+/// satisfied by the implementation's method.
+///
+/// We do this by creating a parameter environment which contains a
+/// substitution corresponding to `impl_to_placeholder_substs`. We then build
+/// `trait_to_placeholder_substs` and use it to convert the predicates contained
+/// in the `trait_m` generics to the placeholder form.
+///
+/// Finally we register each of these predicates as an obligation and check that
+/// they hold.
+#[instrument(level = "debug", skip(tcx, impl_m_span, impl_trait_ref))]
+fn compare_predicate_entailment<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &AssocItem,
+ impl_m_span: Span,
+ trait_m: &AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+) -> Result<(), ErrorGuaranteed> {
+ let trait_to_impl_substs = impl_trait_ref.substs;
+
+ // This node-id should be used for the `body_id` field on each
+ // `ObligationCause` (and the `FnCtxt`).
+ //
+ // FIXME(@lcnr): remove that after removing `cause.body_id` from
+ // obligations.
+ let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
+ // We sometimes modify the span further down.
+ let mut cause = ObligationCause::new(
+ impl_m_span,
+ impl_m_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_m.def_id.expect_local(),
+ trait_item_def_id: trait_m.def_id,
+ kind: impl_m.kind,
+ },
+ );
+
+ // Create mapping from impl to placeholder.
+ let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
+
+ // Create mapping from trait to placeholder.
+ let trait_to_placeholder_substs =
+ impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container_id(tcx), trait_to_impl_substs);
+ debug!("compare_impl_method: trait_to_placeholder_substs={:?}", trait_to_placeholder_substs);
+
+ let impl_m_generics = tcx.generics_of(impl_m.def_id);
+ let trait_m_generics = tcx.generics_of(trait_m.def_id);
+ let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
+ let trait_m_predicates = tcx.predicates_of(trait_m.def_id);
+
+ // Check region bounds.
+ check_region_bounds_on_impl_item(tcx, impl_m, trait_m, &trait_m_generics, &impl_m_generics)?;
+
+ // Create obligations for each predicate declared by the impl
+ // definition in the context of the trait's parameter
+ // environment. We can't just use `impl_env.caller_bounds`,
+ // however, because we want to replace all late-bound regions with
+ // region variables.
+ let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
+ let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
+
+ debug!("compare_impl_method: impl_bounds={:?}", hybrid_preds);
+
+ // This is the only tricky bit of the new way we check implementation methods
+ // We need to build a set of predicates where only the method-level bounds
+ // are from the trait and we assume all other bounds from the implementation
+ // to be previously satisfied.
+ //
+ // We then register the obligations from the impl_m and check to see
+ // if all constraints hold.
+ hybrid_preds
+ .predicates
+ .extend(trait_m_predicates.instantiate_own(tcx, trait_to_placeholder_substs).predicates);
+
+ // Construct trait parameter environment and then shift it into the placeholder viewpoint.
+ // The key step here is to update the caller_bounds's predicates to be
+ // the new hybrid bounds we computed.
+ let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_hir_id);
+ let param_env = ty::ParamEnv::new(
+ tcx.intern_predicates(&hybrid_preds.predicates),
+ Reveal::UserFacing,
+ hir::Constness::NotConst,
+ );
+ let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
+
+ let infcx = &tcx.infer_ctxt().build();
+ let ocx = ObligationCtxt::new(infcx);
+
+ debug!("compare_impl_method: caller_bounds={:?}", param_env.caller_bounds());
+
+ let mut selcx = traits::SelectionContext::new(&infcx);
+ let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_placeholder_substs);
+ for (predicate, span) in iter::zip(impl_m_own_bounds.predicates, impl_m_own_bounds.spans) {
+ let normalize_cause = traits::ObligationCause::misc(span, impl_m_hir_id);
+ let traits::Normalized { value: predicate, obligations } =
+ traits::normalize(&mut selcx, param_env, normalize_cause, predicate);
+
+ ocx.register_obligations(obligations);
+ let cause = ObligationCause::new(
+ span,
+ impl_m_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_m.def_id.expect_local(),
+ trait_item_def_id: trait_m.def_id,
+ kind: impl_m.kind,
+ },
+ );
+ ocx.register_obligation(traits::Obligation::new(cause, param_env, predicate));
+ }
+
+ // We now need to check that the signature of the impl method is
+ // compatible with that of the trait method. We do this by
+ // checking that `impl_fty <: trait_fty`.
+ //
+ // FIXME. Unfortunately, this doesn't quite work right now because
+ // associated type normalization is not integrated into subtype
+ // checks. For the comparison to be valid, we need to
+ // normalize the associated types in the impl/trait methods
+ // first. However, because function types bind regions, just
+ // calling `normalize_associated_types_in` would have no effect on
+ // any associated types appearing in the fn arguments or return
+ // type.
+
+ // Compute placeholder form of impl and trait method tys.
+ let tcx = infcx.tcx;
+
+ let mut wf_tys = FxHashSet::default();
+
+ let impl_sig = infcx.replace_bound_vars_with_fresh_vars(
+ impl_m_span,
+ infer::HigherRankedType,
+ tcx.fn_sig(impl_m.def_id),
+ );
+
+ let norm_cause = ObligationCause::misc(impl_m_span, impl_m_hir_id);
+ let impl_sig = ocx.normalize(norm_cause.clone(), param_env, impl_sig);
+ let impl_fty = tcx.mk_fn_ptr(ty::Binder::dummy(impl_sig));
+ debug!("compare_impl_method: impl_fty={:?}", impl_fty);
+
+ let trait_sig = tcx.bound_fn_sig(trait_m.def_id).subst(tcx, trait_to_placeholder_substs);
+ let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, trait_sig);
+
+ // Next, add all inputs and output as well-formed tys. Importantly,
+ // we have to do this before normalization, since the normalized ty may
+ // not contain the input parameters. See issue #87748.
+ wf_tys.extend(trait_sig.inputs_and_output.iter());
+ let trait_sig = ocx.normalize(norm_cause, param_env, trait_sig);
+ // We also have to add the normalized trait signature
+ // as we don't normalize during implied bounds computation.
+ wf_tys.extend(trait_sig.inputs_and_output.iter());
+ let trait_fty = tcx.mk_fn_ptr(ty::Binder::dummy(trait_sig));
+
+ debug!("compare_impl_method: trait_fty={:?}", trait_fty);
+
+ // FIXME: We'd want to keep more accurate spans than "the method signature" when
+ // processing the comparison between the trait and impl fn, but we sadly lose them
+ // and point at the whole signature when a trait bound or specific input or output
+ // type would be more appropriate. In other places we have a `Vec<Span>`
+ // corresponding to their `Vec<Predicate>`, but we don't have that here.
+ // Fixing this would improve the output of test `issue-83765.rs`.
+ let mut result = infcx
+ .at(&cause, param_env)
+ .sup(trait_fty, impl_fty)
+ .map(|infer_ok| ocx.register_infer_ok_obligations(infer_ok));
+
+ // HACK(RPITIT): #101614. When we are trying to infer the hidden types for
+ // RPITITs, we need to equate the output tys instead of just subtyping. If
+ // we just use `sup` above, we'll end up `&'static str <: _#1t`, which causes
+ // us to infer `_#1t = #'_#2r str`, where `'_#2r` is unconstrained, which gets
+ // fixed up to `ReEmpty`, and which is certainly not what we want.
+ if trait_fty.has_infer_types() {
+ result = result.and_then(|()| {
+ infcx
+ .at(&cause, param_env)
+ .eq(trait_sig.output(), impl_sig.output())
+ .map(|infer_ok| ocx.register_infer_ok_obligations(infer_ok))
+ });
+ }
+
+ if let Err(terr) = result {
+ debug!("sub_types failed: impl ty {:?}, trait ty {:?}", impl_fty, trait_fty);
+
+ let (impl_err_span, trait_err_span) =
+ extract_spans_for_error_reporting(&infcx, terr, &cause, impl_m, trait_m);
+
+ cause.span = impl_err_span;
+
+ let mut diag = struct_span_err!(
+ tcx.sess,
+ cause.span(),
+ E0053,
+ "method `{}` has an incompatible type for trait",
+ trait_m.name
+ );
+ match &terr {
+ TypeError::ArgumentMutability(0) | TypeError::ArgumentSorts(_, 0)
+ if trait_m.fn_has_self_parameter =>
+ {
+ let ty = trait_sig.inputs()[0];
+ let sugg = match ExplicitSelf::determine(ty, |_| ty == impl_trait_ref.self_ty()) {
+ ExplicitSelf::ByValue => "self".to_owned(),
+ ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
+ ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
+ _ => format!("self: {ty}"),
+ };
+
+ // When the `impl` receiver is an arbitrary self type, like `self: Box<Self>`, the
+ // span points only at the type `Box<Self`>, but we want to cover the whole
+ // argument pattern and type.
+ let span = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
+ ImplItemKind::Fn(ref sig, body) => tcx
+ .hir()
+ .body_param_names(body)
+ .zip(sig.decl.inputs.iter())
+ .map(|(param, ty)| param.span.to(ty.span))
+ .next()
+ .unwrap_or(impl_err_span),
+ _ => bug!("{:?} is not a method", impl_m),
+ };
+
+ diag.span_suggestion(
+ span,
+ "change the self-receiver type to match the trait",
+ sugg,
+ Applicability::MachineApplicable,
+ );
+ }
+ TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(_, i) => {
+ if trait_sig.inputs().len() == *i {
+ // Suggestion to change output type. We do not suggest in `async` functions
+ // to avoid complex logic or incorrect output.
+ match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
+ ImplItemKind::Fn(ref sig, _)
+ if sig.header.asyncness == hir::IsAsync::NotAsync =>
+ {
+ let msg = "change the output type to match the trait";
+ let ap = Applicability::MachineApplicable;
+ match sig.decl.output {
+ hir::FnRetTy::DefaultReturn(sp) => {
+ let sugg = format!("-> {} ", trait_sig.output());
+ diag.span_suggestion_verbose(sp, msg, sugg, ap);
+ }
+ hir::FnRetTy::Return(hir_ty) => {
+ let sugg = trait_sig.output();
+ diag.span_suggestion(hir_ty.span, msg, sugg, ap);
+ }
+ };
+ }
+ _ => {}
+ };
+ } else if let Some(trait_ty) = trait_sig.inputs().get(*i) {
+ diag.span_suggestion(
+ impl_err_span,
+ "change the parameter type to match the trait",
+ trait_ty,
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+ _ => {}
+ }
+
+ infcx.err_ctxt().note_type_err(
+ &mut diag,
+ &cause,
+ trait_err_span.map(|sp| (sp, "type in trait".to_owned())),
+ Some(infer::ValuePairs::Terms(ExpectedFound {
+ expected: trait_fty.into(),
+ found: impl_fty.into(),
+ })),
+ terr,
+ false,
+ false,
+ );
+
+ return Err(diag.emit());
+ }
+
+ // Check that all obligations are satisfied by the implementation's
+ // version.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ let reported = infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
+ return Err(reported);
+ }
+
+ // Finally, resolve all regions. This catches wily misuses of
+ // lifetime parameters.
+ let outlives_environment = OutlivesEnvironment::with_bounds(
+ param_env,
+ Some(infcx),
+ infcx.implied_bounds_tys(param_env, impl_m_hir_id, wf_tys),
+ );
+ infcx.check_region_obligations_and_report_errors(
+ impl_m.def_id.expect_local(),
+ &outlives_environment,
+ );
+
+ Ok(())
+}
+
+pub fn collect_trait_impl_trait_tys<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+) -> Result<&'tcx FxHashMap<DefId, Ty<'tcx>>, ErrorGuaranteed> {
+ let impl_m = tcx.opt_associated_item(def_id).unwrap();
+ let trait_m = tcx.opt_associated_item(impl_m.trait_item_def_id.unwrap()).unwrap();
+ let impl_trait_ref = tcx.impl_trait_ref(impl_m.impl_container(tcx).unwrap()).unwrap();
+ let param_env = tcx.param_env(def_id);
+
+ let trait_to_impl_substs = impl_trait_ref.substs;
+
+ let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
+ let return_span = tcx.hir().fn_decl_by_hir_id(impl_m_hir_id).unwrap().output.span();
+ let cause = ObligationCause::new(
+ return_span,
+ impl_m_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_m.def_id.expect_local(),
+ trait_item_def_id: trait_m.def_id,
+ kind: impl_m.kind,
+ },
+ );
+
+ // Create mapping from impl to placeholder.
+ let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
+
+ // Create mapping from trait to placeholder.
+ let trait_to_placeholder_substs =
+ impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container_id(tcx), trait_to_impl_substs);
+
+ let infcx = &tcx.infer_ctxt().build();
+ let ocx = ObligationCtxt::new(infcx);
+
+ let norm_cause = ObligationCause::misc(return_span, impl_m_hir_id);
+ let impl_sig = ocx.normalize(
+ norm_cause.clone(),
+ param_env,
+ infcx.replace_bound_vars_with_fresh_vars(
+ return_span,
+ infer::HigherRankedType,
+ tcx.fn_sig(impl_m.def_id),
+ ),
+ );
+ let impl_return_ty = impl_sig.output();
+
+ let mut collector = ImplTraitInTraitCollector::new(&ocx, return_span, param_env, impl_m_hir_id);
+ let unnormalized_trait_sig = tcx
+ .liberate_late_bound_regions(
+ impl_m.def_id,
+ tcx.bound_fn_sig(trait_m.def_id).subst(tcx, trait_to_placeholder_substs),
+ )
+ .fold_with(&mut collector);
+ let trait_sig = ocx.normalize(norm_cause.clone(), param_env, unnormalized_trait_sig);
+ let trait_return_ty = trait_sig.output();
+
+ let wf_tys = FxHashSet::from_iter(
+ unnormalized_trait_sig.inputs_and_output.iter().chain(trait_sig.inputs_and_output.iter()),
+ );
+
+ match infcx.at(&cause, param_env).eq(trait_return_ty, impl_return_ty) {
+ Ok(infer::InferOk { value: (), obligations }) => {
+ ocx.register_obligations(obligations);
+ }
+ Err(terr) => {
+ let mut diag = struct_span_err!(
+ tcx.sess,
+ cause.span(),
+ E0053,
+ "method `{}` has an incompatible return type for trait",
+ trait_m.name
+ );
+ let hir = tcx.hir();
+ infcx.err_ctxt().note_type_err(
+ &mut diag,
+ &cause,
+ hir.get_if_local(impl_m.def_id)
+ .and_then(|node| node.fn_decl())
+ .map(|decl| (decl.output.span(), "return type in trait".to_owned())),
+ Some(infer::ValuePairs::Terms(ExpectedFound {
+ expected: trait_return_ty.into(),
+ found: impl_return_ty.into(),
+ })),
+ terr,
+ false,
+ false,
+ );
+ return Err(diag.emit());
+ }
+ }
+
+ // Unify the whole function signature. We need to do this to fully infer
+ // the lifetimes of the return type, but do this after unifying just the
+ // return types, since we want to avoid duplicating errors from
+ // `compare_predicate_entailment`.
+ match infcx
+ .at(&cause, param_env)
+ .eq(tcx.mk_fn_ptr(ty::Binder::dummy(trait_sig)), tcx.mk_fn_ptr(ty::Binder::dummy(impl_sig)))
+ {
+ Ok(infer::InferOk { value: (), obligations }) => {
+ ocx.register_obligations(obligations);
+ }
+ Err(terr) => {
+ let guar = tcx.sess.delay_span_bug(
+ return_span,
+ format!("could not unify `{trait_sig}` and `{impl_sig}`: {terr:?}"),
+ );
+ return Err(guar);
+ }
+ }
+
+ // Check that all obligations are satisfied by the implementation's
+ // RPITs.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ let reported = infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
+ return Err(reported);
+ }
+
+ // Finally, resolve all regions. This catches wily misuses of
+ // lifetime parameters.
+ let outlives_environment = OutlivesEnvironment::with_bounds(
+ param_env,
+ Some(infcx),
+ infcx.implied_bounds_tys(param_env, impl_m_hir_id, wf_tys),
+ );
+ infcx.check_region_obligations_and_report_errors(
+ impl_m.def_id.expect_local(),
+ &outlives_environment,
+ );
+
+ let mut collected_tys = FxHashMap::default();
+ for (def_id, (ty, substs)) in collector.types {
+ match infcx.fully_resolve(ty) {
+ Ok(ty) => {
+ // `ty` contains free regions that we created earlier while liberating the
+ // trait fn signature. However, projection normalization expects `ty` to
+ // contains `def_id`'s early-bound regions.
+ let id_substs = InternalSubsts::identity_for_item(tcx, def_id);
+ debug!(?id_substs, ?substs);
+ let map: FxHashMap<ty::GenericArg<'tcx>, ty::GenericArg<'tcx>> =
+ std::iter::zip(substs, id_substs).collect();
+ debug!(?map);
+
+ // NOTE(compiler-errors): RPITITs, like all other RPITs, have early-bound
+ // region substs that are synthesized during AST lowering. These are substs
+ // that are appended to the parent substs (trait and trait method). However,
+ // we're trying to infer the unsubstituted type value of the RPITIT inside
+ // the *impl*, so we can later use the impl's method substs to normalize
+ // an RPITIT to a concrete type (`confirm_impl_trait_in_trait_candidate`).
+ //
+ // Due to the design of RPITITs, during AST lowering, we have no idea that
+ // an impl method corresponds to a trait method with RPITITs in it. Therefore,
+ // we don't have a list of early-bound region substs for the RPITIT in the impl.
+ // Since early region parameters are index-based, we can't just rebase these
+ // (trait method) early-bound region substs onto the impl, and there's no
+ // guarantee that the indices from the trait substs and impl substs line up.
+ // So to fix this, we subtract the number of trait substs and add the number of
+ // impl substs to *renumber* these early-bound regions to their corresponding
+ // indices in the impl's substitutions list.
+ //
+ // Also, we only need to account for a difference in trait and impl substs,
+ // since we previously enforce that the trait method and impl method have the
+ // same generics.
+ let num_trait_substs = trait_to_impl_substs.len();
+ let num_impl_substs = tcx.generics_of(impl_m.container_id(tcx)).params.len();
+ let ty = tcx.fold_regions(ty, |region, _| {
+ let (ty::ReFree(_) | ty::ReEarlyBound(_)) = region.kind() else { return region; };
+ let Some(ty::ReEarlyBound(e)) = map.get(&region.into()).map(|r| r.expect_region().kind())
+ else {
+ tcx
+ .sess
+ .delay_span_bug(
+ return_span,
+ "expected ReFree to map to ReEarlyBound"
+ );
+ return tcx.lifetimes.re_static;
+ };
+ tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
+ def_id: e.def_id,
+ name: e.name,
+ index: (e.index as usize - num_trait_substs + num_impl_substs) as u32,
+ }))
+ });
+ debug!(%ty);
+ collected_tys.insert(def_id, ty);
+ }
+ Err(err) => {
+ tcx.sess.delay_span_bug(
+ return_span,
+ format!("could not fully resolve: {ty} => {err:?}"),
+ );
+ collected_tys.insert(def_id, tcx.ty_error());
+ }
+ }
+ }
+
+ Ok(&*tcx.arena.alloc(collected_tys))
+}
+
+struct ImplTraitInTraitCollector<'a, 'tcx> {
+ ocx: &'a ObligationCtxt<'a, 'tcx>,
+ types: FxHashMap<DefId, (Ty<'tcx>, ty::SubstsRef<'tcx>)>,
+ span: Span,
+ param_env: ty::ParamEnv<'tcx>,
+ body_id: hir::HirId,
+}
+
+impl<'a, 'tcx> ImplTraitInTraitCollector<'a, 'tcx> {
+ fn new(
+ ocx: &'a ObligationCtxt<'a, 'tcx>,
+ span: Span,
+ param_env: ty::ParamEnv<'tcx>,
+ body_id: hir::HirId,
+ ) -> Self {
+ ImplTraitInTraitCollector { ocx, types: FxHashMap::default(), span, param_env, body_id }
+ }
+}
+
+impl<'tcx> TypeFolder<'tcx> for ImplTraitInTraitCollector<'_, 'tcx> {
+ fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
+ self.ocx.infcx.tcx
+ }
+
+ fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
+ if let ty::Projection(proj) = ty.kind()
+ && self.tcx().def_kind(proj.item_def_id) == DefKind::ImplTraitPlaceholder
+ {
+ if let Some((ty, _)) = self.types.get(&proj.item_def_id) {
+ return *ty;
+ }
+ //FIXME(RPITIT): Deny nested RPITIT in substs too
+ if proj.substs.has_escaping_bound_vars() {
+ bug!("FIXME(RPITIT): error here");
+ }
+ // Replace with infer var
+ let infer_ty = self.ocx.infcx.next_ty_var(TypeVariableOrigin {
+ span: self.span,
+ kind: TypeVariableOriginKind::MiscVariable,
+ });
+ self.types.insert(proj.item_def_id, (infer_ty, proj.substs));
+ // Recurse into bounds
+ for (pred, pred_span) in self.tcx().bound_explicit_item_bounds(proj.item_def_id).subst_iter_copied(self.tcx(), proj.substs) {
+ let pred = pred.fold_with(self);
+ let pred = self.ocx.normalize(
+ ObligationCause::misc(self.span, self.body_id),
+ self.param_env,
+ pred,
+ );
+
+ self.ocx.register_obligation(traits::Obligation::new(
+ ObligationCause::new(
+ self.span,
+ self.body_id,
+ ObligationCauseCode::BindingObligation(proj.item_def_id, pred_span),
+ ),
+ self.param_env,
+ pred,
+ ));
+ }
+ infer_ty
+ } else {
+ ty.super_fold_with(self)
+ }
+ }
+}
+
+fn check_region_bounds_on_impl_item<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ trait_m: &ty::AssocItem,
+ trait_generics: &ty::Generics,
+ impl_generics: &ty::Generics,
+) -> Result<(), ErrorGuaranteed> {
+ let trait_params = trait_generics.own_counts().lifetimes;
+ let impl_params = impl_generics.own_counts().lifetimes;
+
+ debug!(
+ "check_region_bounds_on_impl_item: \
+ trait_generics={:?} \
+ impl_generics={:?}",
+ trait_generics, impl_generics
+ );
+
+ // Must have same number of early-bound lifetime parameters.
+ // Unfortunately, if the user screws up the bounds, then this
+ // will change classification between early and late. E.g.,
+ // if in trait we have `<'a,'b:'a>`, and in impl we just have
+ // `<'a,'b>`, then we have 2 early-bound lifetime parameters
+ // in trait but 0 in the impl. But if we report "expected 2
+ // but found 0" it's confusing, because it looks like there
+ // are zero. Since I don't quite know how to phrase things at
+ // the moment, give a kind of vague error message.
+ if trait_params != impl_params {
+ let span = tcx
+ .hir()
+ .get_generics(impl_m.def_id.expect_local())
+ .expect("expected impl item to have generics or else we can't compare them")
+ .span;
+ let generics_span = if let Some(local_def_id) = trait_m.def_id.as_local() {
+ Some(
+ tcx.hir()
+ .get_generics(local_def_id)
+ .expect("expected trait item to have generics or else we can't compare them")
+ .span,
+ )
+ } else {
+ None
+ };
+
+ let reported = tcx.sess.emit_err(LifetimesOrBoundsMismatchOnTrait {
+ span,
+ item_kind: assoc_item_kind_str(impl_m),
+ ident: impl_m.ident(tcx),
+ generics_span,
+ });
+ return Err(reported);
+ }
+
+ Ok(())
+}
+
+#[instrument(level = "debug", skip(infcx))]
+fn extract_spans_for_error_reporting<'tcx>(
+ infcx: &infer::InferCtxt<'tcx>,
+ terr: TypeError<'_>,
+ cause: &ObligationCause<'tcx>,
+ impl_m: &ty::AssocItem,
+ trait_m: &ty::AssocItem,
+) -> (Span, Option<Span>) {
+ let tcx = infcx.tcx;
+ let mut impl_args = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
+ ImplItemKind::Fn(ref sig, _) => {
+ sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
+ }
+ _ => bug!("{:?} is not a method", impl_m),
+ };
+ let trait_args =
+ trait_m.def_id.as_local().map(|def_id| match tcx.hir().expect_trait_item(def_id).kind {
+ TraitItemKind::Fn(ref sig, _) => {
+ sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
+ }
+ _ => bug!("{:?} is not a TraitItemKind::Fn", trait_m),
+ });
+
+ match terr {
+ TypeError::ArgumentMutability(i) => {
+ (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
+ }
+ TypeError::ArgumentSorts(ExpectedFound { .. }, i) => {
+ (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
+ }
+ _ => (cause.span(), tcx.hir().span_if_local(trait_m.def_id)),
+ }
+}
+
+fn compare_self_type<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ impl_m_span: Span,
+ trait_m: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+) -> Result<(), ErrorGuaranteed> {
+ // Try to give more informative error messages about self typing
+ // mismatches. Note that any mismatch will also be detected
+ // below, where we construct a canonical function type that
+ // includes the self parameter as a normal parameter. It's just
+ // that the error messages you get out of this code are a bit more
+ // inscrutable, particularly for cases where one method has no
+ // self.
+
+ let self_string = |method: &ty::AssocItem| {
+ let untransformed_self_ty = match method.container {
+ ty::ImplContainer => impl_trait_ref.self_ty(),
+ ty::TraitContainer => tcx.types.self_param,
+ };
+ let self_arg_ty = tcx.fn_sig(method.def_id).input(0);
+ let param_env = ty::ParamEnv::reveal_all();
+
+ let infcx = tcx.infer_ctxt().build();
+ let self_arg_ty = tcx.liberate_late_bound_regions(method.def_id, self_arg_ty);
+ let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty).is_ok();
+ match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
+ ExplicitSelf::ByValue => "self".to_owned(),
+ ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
+ ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
+ _ => format!("self: {self_arg_ty}"),
+ }
+ };
+
+ match (trait_m.fn_has_self_parameter, impl_m.fn_has_self_parameter) {
+ (false, false) | (true, true) => {}
+
+ (false, true) => {
+ let self_descr = self_string(impl_m);
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_m_span,
+ E0185,
+ "method `{}` has a `{}` declaration in the impl, but not in the trait",
+ trait_m.name,
+ self_descr
+ );
+ err.span_label(impl_m_span, format!("`{self_descr}` used in impl"));
+ if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
+ err.span_label(span, format!("trait method declared without `{self_descr}`"));
+ } else {
+ err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
+ }
+ let reported = err.emit();
+ return Err(reported);
+ }
+
+ (true, false) => {
+ let self_descr = self_string(trait_m);
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_m_span,
+ E0186,
+ "method `{}` has a `{}` declaration in the trait, but not in the impl",
+ trait_m.name,
+ self_descr
+ );
+ err.span_label(impl_m_span, format!("expected `{self_descr}` in impl"));
+ if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
+ err.span_label(span, format!("`{self_descr}` used in trait"));
+ } else {
+ err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
+ }
+ let reported = err.emit();
+ return Err(reported);
+ }
+ }
+
+ Ok(())
+}
+
+/// Checks that the number of generics on a given assoc item in a trait impl is the same
+/// as the number of generics on the respective assoc item in the trait definition.
+///
+/// For example this code emits the errors in the following code:
+/// ```
+/// trait Trait {
+/// fn foo();
+/// type Assoc<T>;
+/// }
+///
+/// impl Trait for () {
+/// fn foo<T>() {}
+/// //~^ error
+/// type Assoc = u32;
+/// //~^ error
+/// }
+/// ```
+///
+/// Notably this does not error on `foo<T>` implemented as `foo<const N: u8>` or
+/// `foo<const N: u8>` implemented as `foo<const N: u32>`. This is handled in
+/// [`compare_generic_param_kinds`]. This function also does not handle lifetime parameters
+fn compare_number_of_generics<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_: &ty::AssocItem,
+ _impl_span: Span,
+ trait_: &ty::AssocItem,
+ trait_span: Option<Span>,
+) -> Result<(), ErrorGuaranteed> {
+ let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
+ let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();
+
+ // This avoids us erroring on `foo<T>` implemented as `foo<const N: u8>` as this is implemented
+ // in `compare_generic_param_kinds` which will give a nicer error message than something like:
+ // "expected 1 type parameter, found 0 type parameters"
+ if (trait_own_counts.types + trait_own_counts.consts)
+ == (impl_own_counts.types + impl_own_counts.consts)
+ {
+ return Ok(());
+ }
+
+ let matchings = [
+ ("type", trait_own_counts.types, impl_own_counts.types),
+ ("const", trait_own_counts.consts, impl_own_counts.consts),
+ ];
+
+ let item_kind = assoc_item_kind_str(impl_);
+
+ let mut err_occurred = None;
+ for (kind, trait_count, impl_count) in matchings {
+ if impl_count != trait_count {
+ let arg_spans = |kind: ty::AssocKind, generics: &hir::Generics<'_>| {
+ let mut spans = generics
+ .params
+ .iter()
+ .filter(|p| match p.kind {
+ hir::GenericParamKind::Lifetime {
+ kind: hir::LifetimeParamKind::Elided,
+ } => {
+ // A fn can have an arbitrary number of extra elided lifetimes for the
+ // same signature.
+ !matches!(kind, ty::AssocKind::Fn)
+ }
+ _ => true,
+ })
+ .map(|p| p.span)
+ .collect::<Vec<Span>>();
+ if spans.is_empty() {
+ spans = vec![generics.span]
+ }
+ spans
+ };
+ let (trait_spans, impl_trait_spans) = if let Some(def_id) = trait_.def_id.as_local() {
+ let trait_item = tcx.hir().expect_trait_item(def_id);
+ let arg_spans: Vec<Span> = arg_spans(trait_.kind, trait_item.generics);
+ let impl_trait_spans: Vec<Span> = trait_item
+ .generics
+ .params
+ .iter()
+ .filter_map(|p| match p.kind {
+ GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
+ _ => None,
+ })
+ .collect();
+ (Some(arg_spans), impl_trait_spans)
+ } else {
+ (trait_span.map(|s| vec![s]), vec![])
+ };
+
+ let impl_item = tcx.hir().expect_impl_item(impl_.def_id.expect_local());
+ let impl_item_impl_trait_spans: Vec<Span> = impl_item
+ .generics
+ .params
+ .iter()
+ .filter_map(|p| match p.kind {
+ GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
+ _ => None,
+ })
+ .collect();
+ let spans = arg_spans(impl_.kind, impl_item.generics);
+ let span = spans.first().copied();
+
+ let mut err = tcx.sess.struct_span_err_with_code(
+ spans,
+ &format!(
+ "{} `{}` has {} {kind} parameter{} but its trait \
+ declaration has {} {kind} parameter{}",
+ item_kind,
+ trait_.name,
+ impl_count,
+ pluralize!(impl_count),
+ trait_count,
+ pluralize!(trait_count),
+ kind = kind,
+ ),
+ DiagnosticId::Error("E0049".into()),
+ );
+
+ let mut suffix = None;
+
+ if let Some(spans) = trait_spans {
+ let mut spans = spans.iter();
+ if let Some(span) = spans.next() {
+ err.span_label(
+ *span,
+ format!(
+ "expected {} {} parameter{}",
+ trait_count,
+ kind,
+ pluralize!(trait_count),
+ ),
+ );
+ }
+ for span in spans {
+ err.span_label(*span, "");
+ }
+ } else {
+ suffix = Some(format!(", expected {trait_count}"));
+ }
+
+ if let Some(span) = span {
+ err.span_label(
+ span,
+ format!(
+ "found {} {} parameter{}{}",
+ impl_count,
+ kind,
+ pluralize!(impl_count),
+ suffix.unwrap_or_else(String::new),
+ ),
+ );
+ }
+
+ for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
+ err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
+ }
+
+ let reported = err.emit();
+ err_occurred = Some(reported);
+ }
+ }
+
+ if let Some(reported) = err_occurred { Err(reported) } else { Ok(()) }
+}
+
+fn compare_number_of_method_arguments<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ impl_m_span: Span,
+ trait_m: &ty::AssocItem,
+ trait_item_span: Option<Span>,
+) -> Result<(), ErrorGuaranteed> {
+ let impl_m_fty = tcx.fn_sig(impl_m.def_id);
+ let trait_m_fty = tcx.fn_sig(trait_m.def_id);
+ let trait_number_args = trait_m_fty.inputs().skip_binder().len();
+ let impl_number_args = impl_m_fty.inputs().skip_binder().len();
+ if trait_number_args != impl_number_args {
+ let trait_span = if let Some(def_id) = trait_m.def_id.as_local() {
+ match tcx.hir().expect_trait_item(def_id).kind {
+ TraitItemKind::Fn(ref trait_m_sig, _) => {
+ let pos = if trait_number_args > 0 { trait_number_args - 1 } else { 0 };
+ if let Some(arg) = trait_m_sig.decl.inputs.get(pos) {
+ Some(if pos == 0 {
+ arg.span
+ } else {
+ arg.span.with_lo(trait_m_sig.decl.inputs[0].span.lo())
+ })
+ } else {
+ trait_item_span
+ }
+ }
+ _ => bug!("{:?} is not a method", impl_m),
+ }
+ } else {
+ trait_item_span
+ };
+ let impl_span = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
+ ImplItemKind::Fn(ref impl_m_sig, _) => {
+ let pos = if impl_number_args > 0 { impl_number_args - 1 } else { 0 };
+ if let Some(arg) = impl_m_sig.decl.inputs.get(pos) {
+ if pos == 0 {
+ arg.span
+ } else {
+ arg.span.with_lo(impl_m_sig.decl.inputs[0].span.lo())
+ }
+ } else {
+ impl_m_span
+ }
+ }
+ _ => bug!("{:?} is not a method", impl_m),
+ };
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_span,
+ E0050,
+ "method `{}` has {} but the declaration in trait `{}` has {}",
+ trait_m.name,
+ potentially_plural_count(impl_number_args, "parameter"),
+ tcx.def_path_str(trait_m.def_id),
+ trait_number_args
+ );
+ if let Some(trait_span) = trait_span {
+ err.span_label(
+ trait_span,
+ format!(
+ "trait requires {}",
+ potentially_plural_count(trait_number_args, "parameter")
+ ),
+ );
+ } else {
+ err.note_trait_signature(trait_m.name, trait_m.signature(tcx));
+ }
+ err.span_label(
+ impl_span,
+ format!(
+ "expected {}, found {}",
+ potentially_plural_count(trait_number_args, "parameter"),
+ impl_number_args
+ ),
+ );
+ let reported = err.emit();
+ return Err(reported);
+ }
+
+ Ok(())
+}
+
+fn compare_synthetic_generics<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_m: &ty::AssocItem,
+ trait_m: &ty::AssocItem,
+) -> Result<(), ErrorGuaranteed> {
+ // FIXME(chrisvittal) Clean up this function, list of FIXME items:
+ // 1. Better messages for the span labels
+ // 2. Explanation as to what is going on
+ // If we get here, we already have the same number of generics, so the zip will
+ // be okay.
+ let mut error_found = None;
+ let impl_m_generics = tcx.generics_of(impl_m.def_id);
+ let trait_m_generics = tcx.generics_of(trait_m.def_id);
+ let impl_m_type_params = impl_m_generics.params.iter().filter_map(|param| match param.kind {
+ GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
+ GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
+ });
+ let trait_m_type_params = trait_m_generics.params.iter().filter_map(|param| match param.kind {
+ GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
+ GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
+ });
+ for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
+ iter::zip(impl_m_type_params, trait_m_type_params)
+ {
+ if impl_synthetic != trait_synthetic {
+ let impl_def_id = impl_def_id.expect_local();
+ let impl_span = tcx.def_span(impl_def_id);
+ let trait_span = tcx.def_span(trait_def_id);
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_span,
+ E0643,
+ "method `{}` has incompatible signature for trait",
+ trait_m.name
+ );
+ err.span_label(trait_span, "declaration in trait here");
+ match (impl_synthetic, trait_synthetic) {
+ // The case where the impl method uses `impl Trait` but the trait method uses
+ // explicit generics
+ (true, false) => {
+ err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
+ (|| {
+ // try taking the name from the trait impl
+ // FIXME: this is obviously suboptimal since the name can already be used
+ // as another generic argument
+ let new_name = tcx.opt_item_name(trait_def_id)?;
+ let trait_m = trait_m.def_id.as_local()?;
+ let trait_m = tcx.hir().expect_trait_item(trait_m);
+
+ let impl_m = impl_m.def_id.as_local()?;
+ let impl_m = tcx.hir().expect_impl_item(impl_m);
+
+ // in case there are no generics, take the spot between the function name
+ // and the opening paren of the argument list
+ let new_generics_span = tcx.def_ident_span(impl_def_id)?.shrink_to_hi();
+ // in case there are generics, just replace them
+ let generics_span =
+ impl_m.generics.span.substitute_dummy(new_generics_span);
+ // replace with the generics from the trait
+ let new_generics =
+ tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;
+
+ err.multipart_suggestion(
+ "try changing the `impl Trait` argument to a generic parameter",
+ vec![
+ // replace `impl Trait` with `T`
+ (impl_span, new_name.to_string()),
+ // replace impl method generics with trait method generics
+ // This isn't quite right, as users might have changed the names
+ // of the generics, but it works for the common case
+ (generics_span, new_generics),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ Some(())
+ })();
+ }
+ // The case where the trait method uses `impl Trait`, but the impl method uses
+ // explicit generics.
+ (false, true) => {
+ err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
+ (|| {
+ let impl_m = impl_m.def_id.as_local()?;
+ let impl_m = tcx.hir().expect_impl_item(impl_m);
+ let input_tys = match impl_m.kind {
+ hir::ImplItemKind::Fn(ref sig, _) => sig.decl.inputs,
+ _ => unreachable!(),
+ };
+ struct Visitor(Option<Span>, hir::def_id::LocalDefId);
+ impl<'v> intravisit::Visitor<'v> for Visitor {
+ fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
+ intravisit::walk_ty(self, ty);
+ if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) =
+ ty.kind
+ && let Res::Def(DefKind::TyParam, def_id) = path.res
+ && def_id == self.1.to_def_id()
+ {
+ self.0 = Some(ty.span);
+ }
+ }
+ }
+ let mut visitor = Visitor(None, impl_def_id);
+ for ty in input_tys {
+ intravisit::Visitor::visit_ty(&mut visitor, ty);
+ }
+ let span = visitor.0?;
+
+ let bounds = impl_m.generics.bounds_for_param(impl_def_id).next()?.bounds;
+ let bounds = bounds.first()?.span().to(bounds.last()?.span());
+ let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;
+
+ err.multipart_suggestion(
+ "try removing the generic parameter and using `impl Trait` instead",
+ vec![
+ // delete generic parameters
+ (impl_m.generics.span, String::new()),
+ // replace param usage with `impl Trait`
+ (span, format!("impl {bounds}")),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ Some(())
+ })();
+ }
+ _ => unreachable!(),
+ }
+ let reported = err.emit();
+ error_found = Some(reported);
+ }
+ }
+ if let Some(reported) = error_found { Err(reported) } else { Ok(()) }
+}
+
+/// Checks that all parameters in the generics of a given assoc item in a trait impl have
+/// the same kind as the respective generic parameter in the trait def.
+///
+/// For example all 4 errors in the following code are emitted here:
+/// ```
+/// trait Foo {
+/// fn foo<const N: u8>();
+/// type bar<const N: u8>;
+/// fn baz<const N: u32>();
+/// type blah<T>;
+/// }
+///
+/// impl Foo for () {
+/// fn foo<const N: u64>() {}
+/// //~^ error
+/// type bar<const N: u64> {}
+/// //~^ error
+/// fn baz<T>() {}
+/// //~^ error
+/// type blah<const N: i64> = u32;
+/// //~^ error
+/// }
+/// ```
+///
+/// This function does not handle lifetime parameters
+fn compare_generic_param_kinds<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_item: &ty::AssocItem,
+ trait_item: &ty::AssocItem,
+) -> Result<(), ErrorGuaranteed> {
+ assert_eq!(impl_item.kind, trait_item.kind);
+
+ let ty_const_params_of = |def_id| {
+ tcx.generics_of(def_id).params.iter().filter(|param| {
+ matches!(
+ param.kind,
+ GenericParamDefKind::Const { .. } | GenericParamDefKind::Type { .. }
+ )
+ })
+ };
+
+ for (param_impl, param_trait) in
+ iter::zip(ty_const_params_of(impl_item.def_id), ty_const_params_of(trait_item.def_id))
+ {
+ use GenericParamDefKind::*;
+ if match (&param_impl.kind, &param_trait.kind) {
+ (Const { .. }, Const { .. })
+ if tcx.type_of(param_impl.def_id) != tcx.type_of(param_trait.def_id) =>
+ {
+ true
+ }
+ (Const { .. }, Type { .. }) | (Type { .. }, Const { .. }) => true,
+ // this is exhaustive so that anyone adding new generic param kinds knows
+ // to make sure this error is reported for them.
+ (Const { .. }, Const { .. }) | (Type { .. }, Type { .. }) => false,
+ (Lifetime { .. }, _) | (_, Lifetime { .. }) => unreachable!(),
+ } {
+ let param_impl_span = tcx.def_span(param_impl.def_id);
+ let param_trait_span = tcx.def_span(param_trait.def_id);
+
+ let mut err = struct_span_err!(
+ tcx.sess,
+ param_impl_span,
+ E0053,
+ "{} `{}` has an incompatible generic parameter for trait `{}`",
+ assoc_item_kind_str(&impl_item),
+ trait_item.name,
+ &tcx.def_path_str(tcx.parent(trait_item.def_id))
+ );
+
+ let make_param_message = |prefix: &str, param: &ty::GenericParamDef| match param.kind {
+ Const { .. } => {
+ format!("{} const parameter of type `{}`", prefix, tcx.type_of(param.def_id))
+ }
+ Type { .. } => format!("{} type parameter", prefix),
+ Lifetime { .. } => unreachable!(),
+ };
+
+ let trait_header_span = tcx.def_ident_span(tcx.parent(trait_item.def_id)).unwrap();
+ err.span_label(trait_header_span, "");
+ err.span_label(param_trait_span, make_param_message("expected", param_trait));
+
+ let impl_header_span = tcx.def_span(tcx.parent(impl_item.def_id));
+ err.span_label(impl_header_span, "");
+ err.span_label(param_impl_span, make_param_message("found", param_impl));
+
+ let reported = err.emit();
+ return Err(reported);
+ }
+ }
+
+ Ok(())
+}
+
+/// Use `tcx.compare_assoc_const_impl_item_with_trait_item` instead
+pub(crate) fn raw_compare_const_impl<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ (impl_const_item_def, trait_const_item_def): (LocalDefId, DefId),
+) -> Result<(), ErrorGuaranteed> {
+ let impl_const_item = tcx.associated_item(impl_const_item_def);
+ let trait_const_item = tcx.associated_item(trait_const_item_def);
+ let impl_trait_ref = tcx.impl_trait_ref(impl_const_item.container_id(tcx)).unwrap();
+ debug!("compare_const_impl(impl_trait_ref={:?})", impl_trait_ref);
+
+ let impl_c_span = tcx.def_span(impl_const_item_def.to_def_id());
+
+ let infcx = tcx.infer_ctxt().build();
+ let param_env = tcx.param_env(impl_const_item_def.to_def_id());
+ let ocx = ObligationCtxt::new(&infcx);
+
+ // The below is for the most part highly similar to the procedure
+ // for methods above. It is simpler in many respects, especially
+ // because we shouldn't really have to deal with lifetimes or
+ // predicates. In fact some of this should probably be put into
+ // shared functions because of DRY violations...
+ let trait_to_impl_substs = impl_trait_ref.substs;
+
+ // Create a parameter environment that represents the implementation's
+ // method.
+ let impl_c_hir_id = tcx.hir().local_def_id_to_hir_id(impl_const_item_def);
+
+ // Compute placeholder form of impl and trait const tys.
+ let impl_ty = tcx.type_of(impl_const_item_def.to_def_id());
+ let trait_ty = tcx.bound_type_of(trait_const_item_def).subst(tcx, trait_to_impl_substs);
+ let mut cause = ObligationCause::new(
+ impl_c_span,
+ impl_c_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_const_item_def,
+ trait_item_def_id: trait_const_item_def,
+ kind: impl_const_item.kind,
+ },
+ );
+
+ // There is no "body" here, so just pass dummy id.
+ let impl_ty = ocx.normalize(cause.clone(), param_env, impl_ty);
+
+ debug!("compare_const_impl: impl_ty={:?}", impl_ty);
+
+ let trait_ty = ocx.normalize(cause.clone(), param_env, trait_ty);
+
+ debug!("compare_const_impl: trait_ty={:?}", trait_ty);
+
+ let err = infcx
+ .at(&cause, param_env)
+ .sup(trait_ty, impl_ty)
+ .map(|ok| ocx.register_infer_ok_obligations(ok));
+
+ if let Err(terr) = err {
+ debug!(
+ "checking associated const for compatibility: impl ty {:?}, trait ty {:?}",
+ impl_ty, trait_ty
+ );
+
+ // Locate the Span containing just the type of the offending impl
+ match tcx.hir().expect_impl_item(impl_const_item_def).kind {
+ ImplItemKind::Const(ref ty, _) => cause.span = ty.span,
+ _ => bug!("{:?} is not a impl const", impl_const_item),
+ }
+
+ let mut diag = struct_span_err!(
+ tcx.sess,
+ cause.span,
+ E0326,
+ "implemented const `{}` has an incompatible type for trait",
+ trait_const_item.name
+ );
+
+ let trait_c_span = trait_const_item_def.as_local().map(|trait_c_def_id| {
+ // Add a label to the Span containing just the type of the const
+ match tcx.hir().expect_trait_item(trait_c_def_id).kind {
+ TraitItemKind::Const(ref ty, _) => ty.span,
+ _ => bug!("{:?} is not a trait const", trait_const_item),
+ }
+ });
+
+ infcx.err_ctxt().note_type_err(
+ &mut diag,
+ &cause,
+ trait_c_span.map(|span| (span, "type in trait".to_owned())),
+ Some(infer::ValuePairs::Terms(ExpectedFound {
+ expected: trait_ty.into(),
+ found: impl_ty.into(),
+ })),
+ terr,
+ false,
+ false,
+ );
+ return Err(diag.emit());
+ };
+
+ // Check that all obligations are satisfied by the implementation's
+ // version.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ return Err(infcx.err_ctxt().report_fulfillment_errors(&errors, None, false));
+ }
+
+ // FIXME return `ErrorReported` if region obligations error?
+ let outlives_environment = OutlivesEnvironment::new(param_env);
+ infcx.check_region_obligations_and_report_errors(impl_const_item_def, &outlives_environment);
+ Ok(())
+}
+
+pub(crate) fn compare_ty_impl<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_ty: &ty::AssocItem,
+ impl_ty_span: Span,
+ trait_ty: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+ trait_item_span: Option<Span>,
+) {
+ debug!("compare_impl_type(impl_trait_ref={:?})", impl_trait_ref);
+
+ let _: Result<(), ErrorGuaranteed> = (|| {
+ compare_number_of_generics(tcx, impl_ty, impl_ty_span, trait_ty, trait_item_span)?;
+
+ compare_generic_param_kinds(tcx, impl_ty, trait_ty)?;
+
+ let sp = tcx.def_span(impl_ty.def_id);
+ compare_type_predicate_entailment(tcx, impl_ty, sp, trait_ty, impl_trait_ref)?;
+
+ check_type_bounds(tcx, trait_ty, impl_ty, impl_ty_span, impl_trait_ref)
+ })();
+}
+
+/// The equivalent of [compare_predicate_entailment], but for associated types
+/// instead of associated functions.
+fn compare_type_predicate_entailment<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ impl_ty: &ty::AssocItem,
+ impl_ty_span: Span,
+ trait_ty: &ty::AssocItem,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+) -> Result<(), ErrorGuaranteed> {
+ let impl_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
+ let trait_to_impl_substs =
+ impl_substs.rebase_onto(tcx, impl_ty.container_id(tcx), impl_trait_ref.substs);
+
+ let impl_ty_generics = tcx.generics_of(impl_ty.def_id);
+ let trait_ty_generics = tcx.generics_of(trait_ty.def_id);
+ let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
+ let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);
+
+ check_region_bounds_on_impl_item(
+ tcx,
+ impl_ty,
+ trait_ty,
+ &trait_ty_generics,
+ &impl_ty_generics,
+ )?;
+
+ let impl_ty_own_bounds = impl_ty_predicates.instantiate_own(tcx, impl_substs);
+
+ if impl_ty_own_bounds.is_empty() {
+ // Nothing to check.
+ return Ok(());
+ }
+
+ // This `HirId` should be used for the `body_id` field on each
+ // `ObligationCause` (and the `FnCtxt`). This is what
+ // `regionck_item` expects.
+ let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
+ debug!("compare_type_predicate_entailment: trait_to_impl_substs={:?}", trait_to_impl_substs);
+
+ // The predicates declared by the impl definition, the trait and the
+ // associated type in the trait are assumed.
+ let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
+ let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
+ hybrid_preds
+ .predicates
+ .extend(trait_ty_predicates.instantiate_own(tcx, trait_to_impl_substs).predicates);
+
+ debug!("compare_type_predicate_entailment: bounds={:?}", hybrid_preds);
+
+ let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_hir_id);
+ let param_env = ty::ParamEnv::new(
+ tcx.intern_predicates(&hybrid_preds.predicates),
+ Reveal::UserFacing,
+ hir::Constness::NotConst,
+ );
+ let param_env = traits::normalize_param_env_or_error(tcx, param_env, normalize_cause);
+ let infcx = tcx.infer_ctxt().build();
+ let ocx = ObligationCtxt::new(&infcx);
+
+ debug!("compare_type_predicate_entailment: caller_bounds={:?}", param_env.caller_bounds());
+
+ let mut selcx = traits::SelectionContext::new(&infcx);
+
+ assert_eq!(impl_ty_own_bounds.predicates.len(), impl_ty_own_bounds.spans.len());
+ for (span, predicate) in std::iter::zip(impl_ty_own_bounds.spans, impl_ty_own_bounds.predicates)
+ {
+ let cause = ObligationCause::misc(span, impl_ty_hir_id);
+ let traits::Normalized { value: predicate, obligations } =
+ traits::normalize(&mut selcx, param_env, cause, predicate);
+
+ let cause = ObligationCause::new(
+ span,
+ impl_ty_hir_id,
+ ObligationCauseCode::CompareImplItemObligation {
+ impl_item_def_id: impl_ty.def_id.expect_local(),
+ trait_item_def_id: trait_ty.def_id,
+ kind: impl_ty.kind,
+ },
+ );
+ ocx.register_obligations(obligations);
+ ocx.register_obligation(traits::Obligation::new(cause, param_env, predicate));
+ }
+
+ // Check that all obligations are satisfied by the implementation's
+ // version.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ let reported = infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
+ return Err(reported);
+ }
+
+ // Finally, resolve all regions. This catches wily misuses of
+ // lifetime parameters.
+ let outlives_environment = OutlivesEnvironment::new(param_env);
+ infcx.check_region_obligations_and_report_errors(
+ impl_ty.def_id.expect_local(),
+ &outlives_environment,
+ );
+
+ Ok(())
+}
+
+/// Validate that `ProjectionCandidate`s created for this associated type will
+/// be valid.
+///
+/// Usually given
+///
+/// trait X { type Y: Copy } impl X for T { type Y = S; }
+///
+/// We are able to normalize `<T as X>::U` to `S`, and so when we check the
+/// impl is well-formed we have to prove `S: Copy`.
+///
+/// For default associated types the normalization is not possible (the value
+/// from the impl could be overridden). We also can't normalize generic
+/// associated types (yet) because they contain bound parameters.
+#[instrument(level = "debug", skip(tcx))]
+pub fn check_type_bounds<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ty: &ty::AssocItem,
+ impl_ty: &ty::AssocItem,
+ impl_ty_span: Span,
+ impl_trait_ref: ty::TraitRef<'tcx>,
+) -> Result<(), ErrorGuaranteed> {
+ // Given
+ //
+ // impl<A, B> Foo<u32> for (A, B) {
+ // type Bar<C> =...
+ // }
+ //
+ // - `impl_trait_ref` would be `<(A, B) as Foo<u32>>
+ // - `impl_ty_substs` would be `[A, B, ^0.0]` (`^0.0` here is the bound var with db 0 and index 0)
+ // - `rebased_substs` would be `[(A, B), u32, ^0.0]`, combining the substs from
+ // the *trait* with the generic associated type parameters (as bound vars).
+ //
+ // A note regarding the use of bound vars here:
+ // Imagine as an example
+ // ```
+ // trait Family {
+ // type Member<C: Eq>;
+ // }
+ //
+ // impl Family for VecFamily {
+ // type Member<C: Eq> = i32;
+ // }
+ // ```
+ // Here, we would generate
+ // ```notrust
+ // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) }
+ // ```
+ // when we really would like to generate
+ // ```notrust
+ // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) :- Implemented(C: Eq) }
+ // ```
+ // But, this is probably fine, because although the first clause can be used with types C that
+ // do not implement Eq, for it to cause some kind of problem, there would have to be a
+ // VecFamily::Member<X> for some type X where !(X: Eq), that appears in the value of type
+ // Member<C: Eq> = .... That type would fail a well-formedness check that we ought to be doing
+ // elsewhere, which would check that any <T as Family>::Member<X> meets the bounds declared in
+ // the trait (notably, that X: Eq and T: Family).
+ let defs: &ty::Generics = tcx.generics_of(impl_ty.def_id);
+ let mut substs = smallvec::SmallVec::with_capacity(defs.count());
+ if let Some(def_id) = defs.parent {
+ let parent_defs = tcx.generics_of(def_id);
+ InternalSubsts::fill_item(&mut substs, tcx, parent_defs, &mut |param, _| {
+ tcx.mk_param_from_def(param)
+ });
+ }
+ let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
+ smallvec::SmallVec::with_capacity(defs.count());
+ InternalSubsts::fill_single(&mut substs, defs, &mut |param, _| match param.kind {
+ GenericParamDefKind::Type { .. } => {
+ let kind = ty::BoundTyKind::Param(param.name);
+ let bound_var = ty::BoundVariableKind::Ty(kind);
+ bound_vars.push(bound_var);
+ tcx.mk_ty(ty::Bound(
+ ty::INNERMOST,
+ ty::BoundTy { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
+ ))
+ .into()
+ }
+ GenericParamDefKind::Lifetime => {
+ let kind = ty::BoundRegionKind::BrNamed(param.def_id, param.name);
+ let bound_var = ty::BoundVariableKind::Region(kind);
+ bound_vars.push(bound_var);
+ tcx.mk_region(ty::ReLateBound(
+ ty::INNERMOST,
+ ty::BoundRegion { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
+ ))
+ .into()
+ }
+ GenericParamDefKind::Const { .. } => {
+ let bound_var = ty::BoundVariableKind::Const;
+ bound_vars.push(bound_var);
+ tcx.mk_const(ty::ConstS {
+ ty: tcx.type_of(param.def_id),
+ kind: ty::ConstKind::Bound(
+ ty::INNERMOST,
+ ty::BoundVar::from_usize(bound_vars.len() - 1),
+ ),
+ })
+ .into()
+ }
+ });
+ let bound_vars = tcx.mk_bound_variable_kinds(bound_vars.into_iter());
+ let impl_ty_substs = tcx.intern_substs(&substs);
+ let container_id = impl_ty.container_id(tcx);
+
+ let rebased_substs = impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
+ let impl_ty_value = tcx.type_of(impl_ty.def_id);
+
+ let param_env = tcx.param_env(impl_ty.def_id);
+
+ // When checking something like
+ //
+ // trait X { type Y: PartialEq<<Self as X>::Y> }
+ // impl X for T { default type Y = S; }
+ //
+ // We will have to prove the bound S: PartialEq<<T as X>::Y>. In this case
+ // we want <T as X>::Y to normalize to S. This is valid because we are
+ // checking the default value specifically here. Add this equality to the
+ // ParamEnv for normalization specifically.
+ let normalize_param_env = {
+ let mut predicates = param_env.caller_bounds().iter().collect::<Vec<_>>();
+ match impl_ty_value.kind() {
+ ty::Projection(proj)
+ if proj.item_def_id == trait_ty.def_id && proj.substs == rebased_substs =>
+ {
+ // Don't include this predicate if the projected type is
+ // exactly the same as the projection. This can occur in
+ // (somewhat dubious) code like this:
+ //
+ // impl<T> X for T where T: X { type Y = <T as X>::Y; }
+ }
+ _ => predicates.push(
+ ty::Binder::bind_with_vars(
+ ty::ProjectionPredicate {
+ projection_ty: ty::ProjectionTy {
+ item_def_id: trait_ty.def_id,
+ substs: rebased_substs,
+ },
+ term: impl_ty_value.into(),
+ },
+ bound_vars,
+ )
+ .to_predicate(tcx),
+ ),
+ };
+ ty::ParamEnv::new(
+ tcx.intern_predicates(&predicates),
+ Reveal::UserFacing,
+ param_env.constness(),
+ )
+ };
+ debug!(?normalize_param_env);
+
+ let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
+ let impl_ty_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
+ let rebased_substs = impl_ty_substs.rebase_onto(tcx, container_id, impl_trait_ref.substs);
+
+ let infcx = tcx.infer_ctxt().build();
+ let ocx = ObligationCtxt::new(&infcx);
+
+ let assumed_wf_types =
+ ocx.assumed_wf_types(param_env, impl_ty_span, impl_ty.def_id.expect_local());
+
+ let mut selcx = traits::SelectionContext::new(&infcx);
+ let normalize_cause = ObligationCause::new(
+ impl_ty_span,
+ impl_ty_hir_id,
+ ObligationCauseCode::CheckAssociatedTypeBounds {
+ impl_item_def_id: impl_ty.def_id.expect_local(),
+ trait_item_def_id: trait_ty.def_id,
+ },
+ );
+ let mk_cause = |span: Span| {
+ let code = if span.is_dummy() {
+ traits::ItemObligation(trait_ty.def_id)
+ } else {
+ traits::BindingObligation(trait_ty.def_id, span)
+ };
+ ObligationCause::new(impl_ty_span, impl_ty_hir_id, code)
+ };
+
+ let obligations = tcx
+ .bound_explicit_item_bounds(trait_ty.def_id)
+ .subst_iter_copied(tcx, rebased_substs)
+ .map(|(concrete_ty_bound, span)| {
+ debug!("check_type_bounds: concrete_ty_bound = {:?}", concrete_ty_bound);
+ traits::Obligation::new(mk_cause(span), param_env, concrete_ty_bound)
+ })
+ .collect();
+ debug!("check_type_bounds: item_bounds={:?}", obligations);
+
+ for mut obligation in util::elaborate_obligations(tcx, obligations) {
+ let traits::Normalized { value: normalized_predicate, obligations } = traits::normalize(
+ &mut selcx,
+ normalize_param_env,
+ normalize_cause.clone(),
+ obligation.predicate,
+ );
+ debug!("compare_projection_bounds: normalized predicate = {:?}", normalized_predicate);
+ obligation.predicate = normalized_predicate;
+
+ ocx.register_obligations(obligations);
+ ocx.register_obligation(obligation);
+ }
+ // Check that all obligations are satisfied by the implementation's
+ // version.
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ let reported = infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
+ return Err(reported);
+ }
+
+ // Finally, resolve all regions. This catches wily misuses of
+ // lifetime parameters.
+ let implied_bounds = infcx.implied_bounds_tys(param_env, impl_ty_hir_id, assumed_wf_types);
+ let outlives_environment =
+ OutlivesEnvironment::with_bounds(param_env, Some(&infcx), implied_bounds);
+
+ infcx.check_region_obligations_and_report_errors(
+ impl_ty.def_id.expect_local(),
+ &outlives_environment,
+ );
+
+ let constraints = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
+ for (key, value) in constraints {
+ infcx
+ .err_ctxt()
+ .report_mismatched_types(
+ &ObligationCause::misc(
+ value.hidden_type.span,
+ tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local()),
+ ),
+ tcx.mk_opaque(key.def_id.to_def_id(), key.substs),
+ value.hidden_type.ty,
+ TypeError::Mismatch,
+ )
+ .emit();
+ }
+
+ Ok(())
+}
+
+fn assoc_item_kind_str(impl_item: &ty::AssocItem) -> &'static str {
+ match impl_item.kind {
+ ty::AssocKind::Const => "const",
+ ty::AssocKind::Fn => "method",
+ ty::AssocKind::Type => "type",
+ }
+}
diff --git a/compiler/rustc_typeck/src/check/dropck.rs b/compiler/rustc_hir_analysis/src/check/dropck.rs
index 321064ec0..a74016e22 100644
--- a/compiler/rustc_typeck/src/check/dropck.rs
+++ b/compiler/rustc_hir_analysis/src/check/dropck.rs
@@ -1,4 +1,4 @@
-// FIXME(@lcnr): Move this module out of `rustc_typeck`.
+// FIXME(@lcnr): Move this module out of `rustc_hir_analysis`.
//
// We don't do any drop checking during hir typeck.
use crate::hir::def_id::{DefId, LocalDefId};
@@ -144,6 +144,8 @@ fn ensure_drop_predicates_are_implied_by_item_defn<'tcx>(
let assumptions_in_impl_context = generic_assumptions.instantiate(tcx, &self_to_impl_substs);
let assumptions_in_impl_context = assumptions_in_impl_context.predicates;
+ debug!(?assumptions_in_impl_context, ?dtor_predicates.predicates);
+
let self_param_env = tcx.param_env(self_type_did);
// An earlier version of this code attempted to do this checking
@@ -182,13 +184,7 @@ fn ensure_drop_predicates_are_implied_by_item_defn<'tcx>(
let p = p.kind();
match (predicate.skip_binder(), p.skip_binder()) {
(ty::PredicateKind::Trait(a), ty::PredicateKind::Trait(b)) => {
- // Since struct predicates cannot have ~const, project the impl predicate
- // onto one that ignores the constness. This is equivalent to saying that
- // we match a `Trait` bound on the struct with a `Trait` or `~const Trait`
- // in the impl.
- let non_const_a =
- ty::TraitPredicate { constness: ty::BoundConstness::NotConst, ..a };
- relator.relate(predicate.rebind(non_const_a), p.rebind(b)).is_ok()
+ relator.relate(predicate.rebind(a), p.rebind(b)).is_ok()
}
(ty::PredicateKind::Projection(a), ty::PredicateKind::Projection(b)) => {
relator.relate(predicate.rebind(a), p.rebind(b)).is_ok()
@@ -196,7 +192,7 @@ fn ensure_drop_predicates_are_implied_by_item_defn<'tcx>(
(
ty::PredicateKind::ConstEvaluatable(a),
ty::PredicateKind::ConstEvaluatable(b),
- ) => tcx.try_unify_abstract_consts(self_param_env.and((a, b))),
+ ) => relator.relate(predicate.rebind(a), predicate.rebind(b)).is_ok(),
(
ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty_a, lt_a)),
ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty_b, lt_b)),
diff --git a/compiler/rustc_typeck/src/check/intrinsic.rs b/compiler/rustc_hir_analysis/src/check/intrinsic.rs
index 3f2a0da8d..609095c9c 100644
--- a/compiler/rustc_typeck/src/check/intrinsic.rs
+++ b/compiler/rustc_hir_analysis/src/check/intrinsic.rs
@@ -7,10 +7,10 @@ use crate::errors::{
};
use crate::require_same_types;
-use rustc_errors::struct_span_err;
+use hir::def_id::DefId;
+use rustc_errors::{struct_span_err, DiagnosticMessage};
use rustc_hir as hir;
use rustc_middle::traits::{ObligationCause, ObligationCauseCode};
-use rustc_middle::ty::subst::Subst;
use rustc_middle::ty::{self, TyCtxt};
use rustc_span::symbol::{kw, sym, Symbol};
use rustc_target::spec::abi::Abi;
@@ -26,7 +26,7 @@ fn equate_intrinsic_type<'tcx>(
) {
let (own_counts, span) = match &it.kind {
hir::ForeignItemKind::Fn(.., generics) => {
- let own_counts = tcx.generics_of(it.def_id.to_def_id()).own_counts();
+ let own_counts = tcx.generics_of(it.owner_id.to_def_id()).own_counts();
(own_counts, generics.span)
}
_ => {
@@ -57,18 +57,25 @@ fn equate_intrinsic_type<'tcx>(
{
let fty = tcx.mk_fn_ptr(sig);
let cause = ObligationCause::new(it.span, it.hir_id(), ObligationCauseCode::IntrinsicType);
- require_same_types(tcx, &cause, tcx.mk_fn_ptr(tcx.fn_sig(it.def_id)), fty);
+ require_same_types(tcx, &cause, tcx.mk_fn_ptr(tcx.fn_sig(it.owner_id)), fty);
}
}
/// Returns the unsafety of the given intrinsic.
-pub fn intrinsic_operation_unsafety(intrinsic: Symbol) -> hir::Unsafety {
- match intrinsic {
+pub fn intrinsic_operation_unsafety(tcx: TyCtxt<'_>, intrinsic_id: DefId) -> hir::Unsafety {
+ let has_safe_attr = match tcx.has_attr(intrinsic_id, sym::rustc_safe_intrinsic) {
+ true => hir::Unsafety::Normal,
+ false => hir::Unsafety::Unsafe,
+ };
+ let is_in_list = match tcx.item_name(intrinsic_id) {
// When adding a new intrinsic to this list,
// it's usually worth updating that intrinsic's documentation
// to note that it's safe to call, since
// safe extern fns are otherwise unprecedented.
sym::abort
+ | sym::assert_inhabited
+ | sym::assert_zero_valid
+ | sym::assert_uninit_valid
| sym::size_of
| sym::min_align_of
| sym::needs_drop
@@ -92,8 +99,7 @@ pub fn intrinsic_operation_unsafety(intrinsic: Symbol) -> hir::Unsafety {
| sym::type_id
| sym::likely
| sym::unlikely
- | sym::ptr_guaranteed_eq
- | sym::ptr_guaranteed_ne
+ | sym::ptr_guaranteed_cmp
| sym::minnumf32
| sym::minnumf64
| sym::maxnumf32
@@ -102,16 +108,29 @@ pub fn intrinsic_operation_unsafety(intrinsic: Symbol) -> hir::Unsafety {
| sym::type_name
| sym::forget
| sym::black_box
- | sym::variant_count => hir::Unsafety::Normal,
+ | sym::variant_count
+ | sym::ptr_mask => hir::Unsafety::Normal,
_ => hir::Unsafety::Unsafe,
+ };
+
+ if has_safe_attr != is_in_list {
+ tcx.sess.struct_span_err(
+ tcx.def_span(intrinsic_id),
+ DiagnosticMessage::Str(format!(
+ "intrinsic safety mismatch between list of intrinsics within the compiler and core library intrinsics for intrinsic `{}`",
+ tcx.item_name(intrinsic_id)
+ ))).emit();
}
+
+ is_in_list
}
/// Remember to add all intrinsics here, in `compiler/rustc_codegen_llvm/src/intrinsic.rs`,
/// and in `library/core/src/intrinsics.rs`.
pub fn check_intrinsic_type(tcx: TyCtxt<'_>, it: &hir::ForeignItem<'_>) {
let param = |n| tcx.mk_ty_param(n, Symbol::intern(&format!("P{}", n)));
- let intrinsic_name = tcx.item_name(it.def_id.to_def_id());
+ let intrinsic_id = it.owner_id.to_def_id();
+ let intrinsic_name = tcx.item_name(intrinsic_id);
let name_str = intrinsic_name.as_str();
let bound_vars = tcx.mk_bound_variable_kinds(
@@ -158,7 +177,7 @@ pub fn check_intrinsic_type(tcx: TyCtxt<'_>, it: &hir::ForeignItem<'_>) {
};
(n_tps, 0, inputs, output, hir::Unsafety::Unsafe)
} else {
- let unsafety = intrinsic_operation_unsafety(intrinsic_name);
+ let unsafety = intrinsic_operation_unsafety(tcx, intrinsic_id);
let (n_tps, inputs, output) = match intrinsic_name {
sym::abort => (0, Vec::new(), tcx.types.never),
sym::unreachable => (0, Vec::new(), tcx.types.never),
@@ -200,6 +219,15 @@ pub fn check_intrinsic_type(tcx: TyCtxt<'_>, it: &hir::ForeignItem<'_>) {
],
tcx.mk_ptr(ty::TypeAndMut { ty: param(0), mutbl: hir::Mutability::Not }),
),
+ sym::ptr_mask => (
+ 1,
+ vec![
+ tcx.mk_ptr(ty::TypeAndMut { ty: param(0), mutbl: hir::Mutability::Not }),
+ tcx.types.usize,
+ ],
+ tcx.mk_ptr(ty::TypeAndMut { ty: param(0), mutbl: hir::Mutability::Not }),
+ ),
+
sym::copy | sym::copy_nonoverlapping => (
1,
vec![
@@ -289,8 +317,8 @@ pub fn check_intrinsic_type(tcx: TyCtxt<'_>, it: &hir::ForeignItem<'_>) {
(1, vec![param(0), param(0)], tcx.intern_tup(&[param(0), tcx.types.bool]))
}
- sym::ptr_guaranteed_eq | sym::ptr_guaranteed_ne => {
- (1, vec![tcx.mk_imm_ptr(param(0)), tcx.mk_imm_ptr(param(0))], tcx.types.bool)
+ sym::ptr_guaranteed_cmp => {
+ (1, vec![tcx.mk_imm_ptr(param(0)), tcx.mk_imm_ptr(param(0))], tcx.types.u8)
}
sym::const_allocate => {
@@ -465,7 +493,11 @@ pub fn check_platform_intrinsic_type(tcx: TyCtxt<'_>, it: &hir::ForeignItem<'_>)
sym::simd_scatter => (3, vec![param(0), param(1), param(2)], tcx.mk_unit()),
sym::simd_insert => (2, vec![param(0), tcx.types.u32, param(1)], param(0)),
sym::simd_extract => (2, vec![param(0), tcx.types.u32], param(1)),
- sym::simd_cast | sym::simd_as => (2, vec![param(0)], param(1)),
+ sym::simd_cast
+ | sym::simd_as
+ | sym::simd_cast_ptr
+ | sym::simd_expose_addr
+ | sym::simd_from_exposed_addr => (2, vec![param(0)], param(1)),
sym::simd_bitmask => (2, vec![param(0)], param(1)),
sym::simd_select | sym::simd_select_bitmask => {
(2, vec![param(0), param(1), param(1)], param(1))
diff --git a/compiler/rustc_hir_analysis/src/check/intrinsicck.rs b/compiler/rustc_hir_analysis/src/check/intrinsicck.rs
new file mode 100644
index 000000000..17c4d0d48
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/check/intrinsicck.rs
@@ -0,0 +1,437 @@
+use rustc_ast::InlineAsmTemplatePiece;
+use rustc_data_structures::fx::FxHashSet;
+use rustc_hir as hir;
+use rustc_middle::ty::{self, Article, FloatTy, IntTy, Ty, TyCtxt, TypeVisitable, UintTy};
+use rustc_session::lint;
+use rustc_span::{Symbol, DUMMY_SP};
+use rustc_target::asm::{InlineAsmReg, InlineAsmRegClass, InlineAsmRegOrRegClass, InlineAsmType};
+
+pub struct InlineAsmCtxt<'a, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ get_operand_ty: Box<dyn Fn(&'tcx hir::Expr<'tcx>) -> Ty<'tcx> + 'a>,
+}
+
+impl<'a, 'tcx> InlineAsmCtxt<'a, 'tcx> {
+ pub fn new_global_asm(tcx: TyCtxt<'tcx>) -> Self {
+ InlineAsmCtxt {
+ tcx,
+ param_env: ty::ParamEnv::empty(),
+ get_operand_ty: Box::new(|e| bug!("asm operand in global asm: {e:?}")),
+ }
+ }
+
+ pub fn new_in_fn(
+ tcx: TyCtxt<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ get_operand_ty: impl Fn(&'tcx hir::Expr<'tcx>) -> Ty<'tcx> + 'a,
+ ) -> Self {
+ InlineAsmCtxt { tcx, param_env, get_operand_ty: Box::new(get_operand_ty) }
+ }
+
+ // FIXME(compiler-errors): This could use `<$ty as Pointee>::Metadata == ()`
+ fn is_thin_ptr_ty(&self, ty: Ty<'tcx>) -> bool {
+ // Type still may have region variables, but `Sized` does not depend
+ // on those, so just erase them before querying.
+ if ty.is_sized(self.tcx, self.param_env) {
+ return true;
+ }
+ if let ty::Foreign(..) = ty.kind() {
+ return true;
+ }
+ false
+ }
+
+ fn check_asm_operand_type(
+ &self,
+ idx: usize,
+ reg: InlineAsmRegOrRegClass,
+ expr: &'tcx hir::Expr<'tcx>,
+ template: &[InlineAsmTemplatePiece],
+ is_input: bool,
+ tied_input: Option<(&'tcx hir::Expr<'tcx>, Option<InlineAsmType>)>,
+ target_features: &FxHashSet<Symbol>,
+ ) -> Option<InlineAsmType> {
+ let ty = (self.get_operand_ty)(expr);
+ if ty.has_non_region_infer() {
+ bug!("inference variable in asm operand ty: {:?} {:?}", expr, ty);
+ }
+ let asm_ty_isize = match self.tcx.sess.target.pointer_width {
+ 16 => InlineAsmType::I16,
+ 32 => InlineAsmType::I32,
+ 64 => InlineAsmType::I64,
+ _ => unreachable!(),
+ };
+
+ let asm_ty = match *ty.kind() {
+ // `!` is allowed for input but not for output (issue #87802)
+ ty::Never if is_input => return None,
+ ty::Error(_) => return None,
+ ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Some(InlineAsmType::I8),
+ ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Some(InlineAsmType::I16),
+ ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Some(InlineAsmType::I32),
+ ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Some(InlineAsmType::I64),
+ ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => Some(InlineAsmType::I128),
+ ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => Some(asm_ty_isize),
+ ty::Float(FloatTy::F32) => Some(InlineAsmType::F32),
+ ty::Float(FloatTy::F64) => Some(InlineAsmType::F64),
+ ty::FnPtr(_) => Some(asm_ty_isize),
+ ty::RawPtr(ty::TypeAndMut { ty, mutbl: _ }) if self.is_thin_ptr_ty(ty) => {
+ Some(asm_ty_isize)
+ }
+ ty::Adt(adt, substs) if adt.repr().simd() => {
+ let fields = &adt.non_enum_variant().fields;
+ let elem_ty = fields[0].ty(self.tcx, substs);
+ match elem_ty.kind() {
+ ty::Never | ty::Error(_) => return None,
+ ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => {
+ Some(InlineAsmType::VecI8(fields.len() as u64))
+ }
+ ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => {
+ Some(InlineAsmType::VecI16(fields.len() as u64))
+ }
+ ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => {
+ Some(InlineAsmType::VecI32(fields.len() as u64))
+ }
+ ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => {
+ Some(InlineAsmType::VecI64(fields.len() as u64))
+ }
+ ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => {
+ Some(InlineAsmType::VecI128(fields.len() as u64))
+ }
+ ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => {
+ Some(match self.tcx.sess.target.pointer_width {
+ 16 => InlineAsmType::VecI16(fields.len() as u64),
+ 32 => InlineAsmType::VecI32(fields.len() as u64),
+ 64 => InlineAsmType::VecI64(fields.len() as u64),
+ _ => unreachable!(),
+ })
+ }
+ ty::Float(FloatTy::F32) => Some(InlineAsmType::VecF32(fields.len() as u64)),
+ ty::Float(FloatTy::F64) => Some(InlineAsmType::VecF64(fields.len() as u64)),
+ _ => None,
+ }
+ }
+ ty::Infer(_) => unreachable!(),
+ _ => None,
+ };
+ let Some(asm_ty) = asm_ty else {
+ let msg = &format!("cannot use value of type `{ty}` for inline assembly");
+ let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
+ err.note(
+ "only integers, floats, SIMD vectors, pointers and function pointers \
+ can be used as arguments for inline assembly",
+ );
+ err.emit();
+ return None;
+ };
+
+ // Check that the type implements Copy. The only case where this can
+ // possibly fail is for SIMD types which don't #[derive(Copy)].
+ if !ty.is_copy_modulo_regions(self.tcx, self.param_env) {
+ let msg = "arguments for inline assembly must be copyable";
+ let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
+ err.note(&format!("`{ty}` does not implement the Copy trait"));
+ err.emit();
+ }
+
+ // Ideally we wouldn't need to do this, but LLVM's register allocator
+ // really doesn't like it when tied operands have different types.
+ //
+ // This is purely an LLVM limitation, but we have to live with it since
+ // there is no way to hide this with implicit conversions.
+ //
+ // For the purposes of this check we only look at the `InlineAsmType`,
+ // which means that pointers and integers are treated as identical (modulo
+ // size).
+ if let Some((in_expr, Some(in_asm_ty))) = tied_input {
+ if in_asm_ty != asm_ty {
+ let msg = "incompatible types for asm inout argument";
+ let mut err = self.tcx.sess.struct_span_err(vec![in_expr.span, expr.span], msg);
+
+ let in_expr_ty = (self.get_operand_ty)(in_expr);
+ err.span_label(in_expr.span, &format!("type `{in_expr_ty}`"));
+ err.span_label(expr.span, &format!("type `{ty}`"));
+ err.note(
+ "asm inout arguments must have the same type, \
+ unless they are both pointers or integers of the same size",
+ );
+ err.emit();
+ }
+
+ // All of the later checks have already been done on the input, so
+ // let's not emit errors and warnings twice.
+ return Some(asm_ty);
+ }
+
+ // Check the type against the list of types supported by the selected
+ // register class.
+ let asm_arch = self.tcx.sess.asm_arch.unwrap();
+ let reg_class = reg.reg_class();
+ let supported_tys = reg_class.supported_types(asm_arch);
+ let Some((_, feature)) = supported_tys.iter().find(|&&(t, _)| t == asm_ty) else {
+ let msg = &format!("type `{ty}` cannot be used with this register class");
+ let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
+ let supported_tys: Vec<_> =
+ supported_tys.iter().map(|(t, _)| t.to_string()).collect();
+ err.note(&format!(
+ "register class `{}` supports these types: {}",
+ reg_class.name(),
+ supported_tys.join(", "),
+ ));
+ if let Some(suggest) = reg_class.suggest_class(asm_arch, asm_ty) {
+ err.help(&format!(
+ "consider using the `{}` register class instead",
+ suggest.name()
+ ));
+ }
+ err.emit();
+ return Some(asm_ty);
+ };
+
+ // Check whether the selected type requires a target feature. Note that
+ // this is different from the feature check we did earlier. While the
+ // previous check checked that this register class is usable at all
+ // with the currently enabled features, some types may only be usable
+ // with a register class when a certain feature is enabled. We check
+ // this here since it depends on the results of typeck.
+ //
+ // Also note that this check isn't run when the operand type is never
+ // (!). In that case we still need the earlier check to verify that the
+ // register class is usable at all.
+ if let Some(feature) = feature {
+ if !target_features.contains(&feature) {
+ let msg = &format!("`{}` target feature is not enabled", feature);
+ let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
+ err.note(&format!(
+ "this is required to use type `{}` with register class `{}`",
+ ty,
+ reg_class.name(),
+ ));
+ err.emit();
+ return Some(asm_ty);
+ }
+ }
+
+ // Check whether a modifier is suggested for using this type.
+ if let Some((suggested_modifier, suggested_result)) =
+ reg_class.suggest_modifier(asm_arch, asm_ty)
+ {
+ // Search for any use of this operand without a modifier and emit
+ // the suggestion for them.
+ let mut spans = vec![];
+ for piece in template {
+ if let &InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span } = piece
+ {
+ if operand_idx == idx && modifier.is_none() {
+ spans.push(span);
+ }
+ }
+ }
+ if !spans.is_empty() {
+ let (default_modifier, default_result) =
+ reg_class.default_modifier(asm_arch).unwrap();
+ self.tcx.struct_span_lint_hir(
+ lint::builtin::ASM_SUB_REGISTER,
+ expr.hir_id,
+ spans,
+ "formatting may not be suitable for sub-register argument",
+ |lint| {
+ lint.span_label(expr.span, "for this argument");
+ lint.help(&format!(
+ "use `{{{idx}:{suggested_modifier}}}` to have the register formatted as `{suggested_result}`",
+ ));
+ lint.help(&format!(
+ "or use `{{{idx}:{default_modifier}}}` to keep the default formatting of `{default_result}`",
+ ));
+ lint
+ },
+ );
+ }
+ }
+
+ Some(asm_ty)
+ }
+
+ pub fn check_asm(&self, asm: &hir::InlineAsm<'tcx>, enclosing_id: hir::HirId) {
+ let hir = self.tcx.hir();
+ let enclosing_def_id = hir.local_def_id(enclosing_id).to_def_id();
+ let target_features = self.tcx.asm_target_features(enclosing_def_id);
+ let Some(asm_arch) = self.tcx.sess.asm_arch else {
+ self.tcx.sess.delay_span_bug(DUMMY_SP, "target architecture does not support asm");
+ return;
+ };
+ for (idx, (op, op_sp)) in asm.operands.iter().enumerate() {
+ // Validate register classes against currently enabled target
+ // features. We check that at least one type is available for
+ // the enabled features.
+ //
+ // We ignore target feature requirements for clobbers: if the
+ // feature is disabled then the compiler doesn't care what we
+ // do with the registers.
+ //
+ // Note that this is only possible for explicit register
+ // operands, which cannot be used in the asm string.
+ if let Some(reg) = op.reg() {
+ // Some explicit registers cannot be used depending on the
+ // target. Reject those here.
+ if let InlineAsmRegOrRegClass::Reg(reg) = reg {
+ if let InlineAsmReg::Err = reg {
+ // `validate` will panic on `Err`, as an error must
+ // already have been reported.
+ continue;
+ }
+ if let Err(msg) = reg.validate(
+ asm_arch,
+ self.tcx.sess.relocation_model(),
+ &target_features,
+ &self.tcx.sess.target,
+ op.is_clobber(),
+ ) {
+ let msg = format!("cannot use register `{}`: {}", reg.name(), msg);
+ self.tcx.sess.struct_span_err(*op_sp, &msg).emit();
+ continue;
+ }
+ }
+
+ if !op.is_clobber() {
+ let mut missing_required_features = vec![];
+ let reg_class = reg.reg_class();
+ if let InlineAsmRegClass::Err = reg_class {
+ continue;
+ }
+ for &(_, feature) in reg_class.supported_types(asm_arch) {
+ match feature {
+ Some(feature) => {
+ if target_features.contains(&feature) {
+ missing_required_features.clear();
+ break;
+ } else {
+ missing_required_features.push(feature);
+ }
+ }
+ None => {
+ missing_required_features.clear();
+ break;
+ }
+ }
+ }
+
+ // We are sorting primitive strs here and can use unstable sort here
+ missing_required_features.sort_unstable();
+ missing_required_features.dedup();
+ match &missing_required_features[..] {
+ [] => {}
+ [feature] => {
+ let msg = format!(
+ "register class `{}` requires the `{}` target feature",
+ reg_class.name(),
+ feature
+ );
+ self.tcx.sess.struct_span_err(*op_sp, &msg).emit();
+ // register isn't enabled, don't do more checks
+ continue;
+ }
+ features => {
+ let msg = format!(
+ "register class `{}` requires at least one of the following target features: {}",
+ reg_class.name(),
+ features
+ .iter()
+ .map(|f| f.as_str())
+ .intersperse(", ")
+ .collect::<String>(),
+ );
+ self.tcx.sess.struct_span_err(*op_sp, &msg).emit();
+ // register isn't enabled, don't do more checks
+ continue;
+ }
+ }
+ }
+ }
+
+ match *op {
+ hir::InlineAsmOperand::In { reg, ref expr } => {
+ self.check_asm_operand_type(
+ idx,
+ reg,
+ expr,
+ asm.template,
+ true,
+ None,
+ &target_features,
+ );
+ }
+ hir::InlineAsmOperand::Out { reg, late: _, ref expr } => {
+ if let Some(expr) = expr {
+ self.check_asm_operand_type(
+ idx,
+ reg,
+ expr,
+ asm.template,
+ false,
+ None,
+ &target_features,
+ );
+ }
+ }
+ hir::InlineAsmOperand::InOut { reg, late: _, ref expr } => {
+ self.check_asm_operand_type(
+ idx,
+ reg,
+ expr,
+ asm.template,
+ false,
+ None,
+ &target_features,
+ );
+ }
+ hir::InlineAsmOperand::SplitInOut { reg, late: _, ref in_expr, ref out_expr } => {
+ let in_ty = self.check_asm_operand_type(
+ idx,
+ reg,
+ in_expr,
+ asm.template,
+ true,
+ None,
+ &target_features,
+ );
+ if let Some(out_expr) = out_expr {
+ self.check_asm_operand_type(
+ idx,
+ reg,
+ out_expr,
+ asm.template,
+ false,
+ Some((in_expr, in_ty)),
+ &target_features,
+ );
+ }
+ }
+ // No special checking is needed for these:
+ // - Typeck has checked that Const operands are integers.
+ // - AST lowering guarantees that SymStatic points to a static.
+ hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymStatic { .. } => {}
+ // Check that sym actually points to a function. Later passes
+ // depend on this.
+ hir::InlineAsmOperand::SymFn { anon_const } => {
+ let ty = self.tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id);
+ match ty.kind() {
+ ty::Never | ty::Error(_) => {}
+ ty::FnDef(..) => {}
+ _ => {
+ let mut err =
+ self.tcx.sess.struct_span_err(*op_sp, "invalid `sym` operand");
+ err.span_label(
+ self.tcx.hir().span(anon_const.body.hir_id),
+ &format!("is {} `{}`", ty.kind().article(), ty),
+ );
+ err.help("`sym` operands must refer to either a function or a static");
+ err.emit();
+ }
+ };
+ }
+ }
+ }
+ }
+}
diff --git a/compiler/rustc_hir_analysis/src/check/mod.rs b/compiler/rustc_hir_analysis/src/check/mod.rs
new file mode 100644
index 000000000..2e7b10257
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/check/mod.rs
@@ -0,0 +1,515 @@
+/*!
+
+# typeck: check phase
+
+Within the check phase of type check, we check each item one at a time
+(bodies of function expressions are checked as part of the containing
+function). Inference is used to supply types wherever they are unknown.
+
+By far the most complex case is checking the body of a function. This
+can be broken down into several distinct phases:
+
+- gather: creates type variables to represent the type of each local
+ variable and pattern binding.
+
+- main: the main pass does the lion's share of the work: it
+ determines the types of all expressions, resolves
+ methods, checks for most invalid conditions, and so forth. In
+ some cases, where a type is unknown, it may create a type or region
+ variable and use that as the type of an expression.
+
+ In the process of checking, various constraints will be placed on
+ these type variables through the subtyping relationships requested
+ through the `demand` module. The `infer` module is in charge
+ of resolving those constraints.
+
+- regionck: after main is complete, the regionck pass goes over all
+ types looking for regions and making sure that they did not escape
+ into places where they are not in scope. This may also influence the
+ final assignments of the various region variables if there is some
+ flexibility.
+
+- writeback: writes the final types within a function body, replacing
+ type variables with their final inferred types. These final types
+ are written into the `tcx.node_types` table, which should *never* contain
+ any reference to a type variable.
+
+## Intermediate types
+
+While type checking a function, the intermediate types for the
+expressions, blocks, and so forth contained within the function are
+stored in `fcx.node_types` and `fcx.node_substs`. These types
+may contain unresolved type variables. After type checking is
+complete, the functions in the writeback module are used to take the
+types from this table, resolve them, and then write them into their
+permanent home in the type context `tcx`.
+
+This means that during inferencing you should use `fcx.write_ty()`
+and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
+nodes within the function.
+
+The types of top-level items, which never contain unbound type
+variables, are stored directly into the `tcx` typeck_results.
+
+N.B., a type variable is not the same thing as a type parameter. A
+type variable is an instance of a type parameter. That is,
+given a generic function `fn foo<T>(t: T)`, while checking the
+function `foo`, the type `ty_param(0)` refers to the type `T`, which
+is treated in abstract. However, when `foo()` is called, `T` will be
+substituted for a fresh type variable `N`. This variable will
+eventually be resolved to some concrete type (which might itself be
+a type parameter).
+
+*/
+
+mod check;
+mod compare_method;
+pub mod dropck;
+pub mod intrinsic;
+pub mod intrinsicck;
+mod region;
+pub mod wfcheck;
+
+pub use check::check_abi;
+
+use check::check_mod_item_types;
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_errors::{pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder};
+use rustc_hir as hir;
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_hir::intravisit::Visitor;
+use rustc_index::bit_set::BitSet;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_middle::ty::{InternalSubsts, SubstsRef};
+use rustc_session::parse::feature_err;
+use rustc_span::source_map::DUMMY_SP;
+use rustc_span::symbol::{kw, Ident};
+use rustc_span::{self, BytePos, Span, Symbol};
+use rustc_target::abi::VariantIdx;
+use rustc_target::spec::abi::Abi;
+use rustc_trait_selection::traits::error_reporting::suggestions::ReturnsVisitor;
+use std::num::NonZeroU32;
+
+use crate::require_c_abi_if_c_variadic;
+use crate::util::common::indenter;
+
+use self::compare_method::collect_trait_impl_trait_tys;
+use self::region::region_scope_tree;
+
+pub fn provide(providers: &mut Providers) {
+ wfcheck::provide(providers);
+ *providers = Providers {
+ adt_destructor,
+ check_mod_item_types,
+ region_scope_tree,
+ collect_trait_impl_trait_tys,
+ compare_assoc_const_impl_item_with_trait_item: compare_method::raw_compare_const_impl,
+ ..*providers
+ };
+}
+
+fn adt_destructor(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::Destructor> {
+ tcx.calculate_dtor(def_id, dropck::check_drop_impl)
+}
+
+/// Given a `DefId` for an opaque type in return position, find its parent item's return
+/// expressions.
+fn get_owner_return_paths<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: LocalDefId,
+) -> Option<(LocalDefId, ReturnsVisitor<'tcx>)> {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let parent_id = tcx.hir().get_parent_item(hir_id).def_id;
+ tcx.hir().find_by_def_id(parent_id).and_then(|node| node.body_id()).map(|body_id| {
+ let body = tcx.hir().body(body_id);
+ let mut visitor = ReturnsVisitor::default();
+ visitor.visit_body(body);
+ (parent_id, visitor)
+ })
+}
+
+/// Forbid defining intrinsics in Rust code,
+/// as they must always be defined by the compiler.
+// FIXME: Move this to a more appropriate place.
+pub fn fn_maybe_err(tcx: TyCtxt<'_>, sp: Span, abi: Abi) {
+ if let Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
+ tcx.sess.span_err(sp, "intrinsic must be in `extern \"rust-intrinsic\" { ... }` block");
+ }
+}
+
+fn maybe_check_static_with_link_section(tcx: TyCtxt<'_>, id: LocalDefId) {
+ // Only restricted on wasm target for now
+ if !tcx.sess.target.is_like_wasm {
+ return;
+ }
+
+ // If `#[link_section]` is missing, then nothing to verify
+ let attrs = tcx.codegen_fn_attrs(id);
+ if attrs.link_section.is_none() {
+ return;
+ }
+
+ // For the wasm32 target statics with `#[link_section]` are placed into custom
+ // sections of the final output file, but this isn't link custom sections of
+ // other executable formats. Namely we can only embed a list of bytes,
+ // nothing with provenance (pointers to anything else). If any provenance
+ // show up, reject it here.
+ // `#[link_section]` may contain arbitrary, or even undefined bytes, but it is
+ // the consumer's responsibility to ensure all bytes that have been read
+ // have defined values.
+ if let Ok(alloc) = tcx.eval_static_initializer(id.to_def_id())
+ && alloc.inner().provenance().len() != 0
+ {
+ let msg = "statics with a custom `#[link_section]` must be a \
+ simple list of bytes on the wasm target with no \
+ extra levels of indirection such as references";
+ tcx.sess.span_err(tcx.def_span(id), msg);
+ }
+}
+
+fn report_forbidden_specialization(
+ tcx: TyCtxt<'_>,
+ impl_item: &hir::ImplItemRef,
+ parent_impl: DefId,
+) {
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_item.span,
+ E0520,
+ "`{}` specializes an item from a parent `impl`, but \
+ that item is not marked `default`",
+ impl_item.ident
+ );
+ err.span_label(impl_item.span, format!("cannot specialize default item `{}`", impl_item.ident));
+
+ match tcx.span_of_impl(parent_impl) {
+ Ok(span) => {
+ err.span_label(span, "parent `impl` is here");
+ err.note(&format!(
+ "to specialize, `{}` in the parent `impl` must be marked `default`",
+ impl_item.ident
+ ));
+ }
+ Err(cname) => {
+ err.note(&format!("parent implementation is in crate `{cname}`"));
+ }
+ }
+
+ err.emit();
+}
+
+fn missing_items_err(
+ tcx: TyCtxt<'_>,
+ impl_span: Span,
+ missing_items: &[&ty::AssocItem],
+ full_impl_span: Span,
+) {
+ let missing_items_msg = missing_items
+ .iter()
+ .map(|trait_item| trait_item.name.to_string())
+ .collect::<Vec<_>>()
+ .join("`, `");
+
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_span,
+ E0046,
+ "not all trait items implemented, missing: `{missing_items_msg}`",
+ );
+ err.span_label(impl_span, format!("missing `{missing_items_msg}` in implementation"));
+
+ // `Span` before impl block closing brace.
+ let hi = full_impl_span.hi() - BytePos(1);
+ // Point at the place right before the closing brace of the relevant `impl` to suggest
+ // adding the associated item at the end of its body.
+ let sugg_sp = full_impl_span.with_lo(hi).with_hi(hi);
+ // Obtain the level of indentation ending in `sugg_sp`.
+ let padding =
+ tcx.sess.source_map().indentation_before(sugg_sp).unwrap_or_else(|| String::new());
+
+ for trait_item in missing_items {
+ let snippet = suggestion_signature(trait_item, tcx);
+ let code = format!("{}{}\n{}", padding, snippet, padding);
+ let msg = format!("implement the missing item: `{snippet}`");
+ let appl = Applicability::HasPlaceholders;
+ if let Some(span) = tcx.hir().span_if_local(trait_item.def_id) {
+ err.span_label(span, format!("`{}` from trait", trait_item.name));
+ err.tool_only_span_suggestion(sugg_sp, &msg, code, appl);
+ } else {
+ err.span_suggestion_hidden(sugg_sp, &msg, code, appl);
+ }
+ }
+ err.emit();
+}
+
+fn missing_items_must_implement_one_of_err(
+ tcx: TyCtxt<'_>,
+ impl_span: Span,
+ missing_items: &[Ident],
+ annotation_span: Option<Span>,
+) {
+ let missing_items_msg =
+ missing_items.iter().map(Ident::to_string).collect::<Vec<_>>().join("`, `");
+
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_span,
+ E0046,
+ "not all trait items implemented, missing one of: `{missing_items_msg}`",
+ );
+ err.span_label(impl_span, format!("missing one of `{missing_items_msg}` in implementation"));
+
+ if let Some(annotation_span) = annotation_span {
+ err.span_note(annotation_span, "required because of this annotation");
+ }
+
+ err.emit();
+}
+
+fn default_body_is_unstable(
+ tcx: TyCtxt<'_>,
+ impl_span: Span,
+ item_did: DefId,
+ feature: Symbol,
+ reason: Option<Symbol>,
+ issue: Option<NonZeroU32>,
+) {
+ let missing_item_name = &tcx.associated_item(item_did).name;
+ let use_of_unstable_library_feature_note = match reason {
+ Some(r) => format!("use of unstable library feature '{feature}': {r}"),
+ None => format!("use of unstable library feature '{feature}'"),
+ };
+
+ let mut err = struct_span_err!(
+ tcx.sess,
+ impl_span,
+ E0046,
+ "not all trait items implemented, missing: `{missing_item_name}`",
+ );
+ err.note(format!("default implementation of `{missing_item_name}` is unstable"));
+ err.note(use_of_unstable_library_feature_note);
+ rustc_session::parse::add_feature_diagnostics_for_issue(
+ &mut err,
+ &tcx.sess.parse_sess,
+ feature,
+ rustc_feature::GateIssue::Library(issue),
+ );
+ err.emit();
+}
+
+/// Re-sugar `ty::GenericPredicates` in a way suitable to be used in structured suggestions.
+fn bounds_from_generic_predicates<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ predicates: ty::GenericPredicates<'tcx>,
+) -> (String, String) {
+ let mut types: FxHashMap<Ty<'tcx>, Vec<DefId>> = FxHashMap::default();
+ let mut projections = vec![];
+ for (predicate, _) in predicates.predicates {
+ debug!("predicate {:?}", predicate);
+ let bound_predicate = predicate.kind();
+ match bound_predicate.skip_binder() {
+ ty::PredicateKind::Trait(trait_predicate) => {
+ let entry = types.entry(trait_predicate.self_ty()).or_default();
+ let def_id = trait_predicate.def_id();
+ if Some(def_id) != tcx.lang_items().sized_trait() {
+ // Type params are `Sized` by default, do not add that restriction to the list
+ // if it is a positive requirement.
+ entry.push(trait_predicate.def_id());
+ }
+ }
+ ty::PredicateKind::Projection(projection_pred) => {
+ projections.push(bound_predicate.rebind(projection_pred));
+ }
+ _ => {}
+ }
+ }
+ let generics = if types.is_empty() {
+ "".to_string()
+ } else {
+ format!(
+ "<{}>",
+ types
+ .keys()
+ .filter_map(|t| match t.kind() {
+ ty::Param(_) => Some(t.to_string()),
+ // Avoid suggesting the following:
+ // fn foo<T, <T as Trait>::Bar>(_: T) where T: Trait, <T as Trait>::Bar: Other {}
+ _ => None,
+ })
+ .collect::<Vec<_>>()
+ .join(", ")
+ )
+ };
+ let mut where_clauses = vec![];
+ for (ty, bounds) in types {
+ where_clauses
+ .extend(bounds.into_iter().map(|bound| format!("{}: {}", ty, tcx.def_path_str(bound))));
+ }
+ for projection in &projections {
+ let p = projection.skip_binder();
+ // FIXME: this is not currently supported syntax, we should be looking at the `types` and
+ // insert the associated types where they correspond, but for now let's be "lazy" and
+ // propose this instead of the following valid resugaring:
+ // `T: Trait, Trait::Assoc = K` → `T: Trait<Assoc = K>`
+ where_clauses.push(format!(
+ "{} = {}",
+ tcx.def_path_str(p.projection_ty.item_def_id),
+ p.term,
+ ));
+ }
+ let where_clauses = if where_clauses.is_empty() {
+ String::new()
+ } else {
+ format!(" where {}", where_clauses.join(", "))
+ };
+ (generics, where_clauses)
+}
+
+/// Return placeholder code for the given function.
+fn fn_sig_suggestion<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ sig: ty::FnSig<'tcx>,
+ ident: Ident,
+ predicates: ty::GenericPredicates<'tcx>,
+ assoc: &ty::AssocItem,
+) -> String {
+ let args = sig
+ .inputs()
+ .iter()
+ .enumerate()
+ .map(|(i, ty)| {
+ Some(match ty.kind() {
+ ty::Param(_) if assoc.fn_has_self_parameter && i == 0 => "self".to_string(),
+ ty::Ref(reg, ref_ty, mutability) if i == 0 => {
+ let reg = format!("{reg} ");
+ let reg = match &reg[..] {
+ "'_ " | " " => "",
+ reg => reg,
+ };
+ if assoc.fn_has_self_parameter {
+ match ref_ty.kind() {
+ ty::Param(param) if param.name == kw::SelfUpper => {
+ format!("&{}{}self", reg, mutability.prefix_str())
+ }
+
+ _ => format!("self: {ty}"),
+ }
+ } else {
+ format!("_: {ty}")
+ }
+ }
+ _ => {
+ if assoc.fn_has_self_parameter && i == 0 {
+ format!("self: {ty}")
+ } else {
+ format!("_: {ty}")
+ }
+ }
+ })
+ })
+ .chain(std::iter::once(if sig.c_variadic { Some("...".to_string()) } else { None }))
+ .flatten()
+ .collect::<Vec<String>>()
+ .join(", ");
+ let output = sig.output();
+ let output = if !output.is_unit() { format!(" -> {output}") } else { String::new() };
+
+ let unsafety = sig.unsafety.prefix_str();
+ let (generics, where_clauses) = bounds_from_generic_predicates(tcx, predicates);
+
+ // FIXME: this is not entirely correct, as the lifetimes from borrowed params will
+ // not be present in the `fn` definition, not will we account for renamed
+ // lifetimes between the `impl` and the `trait`, but this should be good enough to
+ // fill in a significant portion of the missing code, and other subsequent
+ // suggestions can help the user fix the code.
+ format!("{unsafety}fn {ident}{generics}({args}){output}{where_clauses} {{ todo!() }}")
+}
+
+pub fn ty_kind_suggestion(ty: Ty<'_>) -> Option<&'static str> {
+ Some(match ty.kind() {
+ ty::Bool => "true",
+ ty::Char => "'a'",
+ ty::Int(_) | ty::Uint(_) => "42",
+ ty::Float(_) => "3.14159",
+ ty::Error(_) | ty::Never => return None,
+ _ => "value",
+ })
+}
+
+/// Return placeholder code for the given associated item.
+/// Similar to `ty::AssocItem::suggestion`, but appropriate for use as the code snippet of a
+/// structured suggestion.
+fn suggestion_signature(assoc: &ty::AssocItem, tcx: TyCtxt<'_>) -> String {
+ match assoc.kind {
+ ty::AssocKind::Fn => {
+ // We skip the binder here because the binder would deanonymize all
+ // late-bound regions, and we don't want method signatures to show up
+ // `as for<'r> fn(&'r MyType)`. Pretty-printing handles late-bound
+ // regions just fine, showing `fn(&MyType)`.
+ fn_sig_suggestion(
+ tcx,
+ tcx.fn_sig(assoc.def_id).skip_binder(),
+ assoc.ident(tcx),
+ tcx.predicates_of(assoc.def_id),
+ assoc,
+ )
+ }
+ ty::AssocKind::Type => format!("type {} = Type;", assoc.name),
+ ty::AssocKind::Const => {
+ let ty = tcx.type_of(assoc.def_id);
+ let val = ty_kind_suggestion(ty).unwrap_or("value");
+ format!("const {}: {} = {};", assoc.name, ty, val)
+ }
+ }
+}
+
+/// Emit an error when encountering two or more variants in a transparent enum.
+fn bad_variant_count<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>, sp: Span, did: DefId) {
+ let variant_spans: Vec<_> = adt
+ .variants()
+ .iter()
+ .map(|variant| tcx.hir().span_if_local(variant.def_id).unwrap())
+ .collect();
+ let msg = format!("needs exactly one variant, but has {}", adt.variants().len(),);
+ let mut err = struct_span_err!(tcx.sess, sp, E0731, "transparent enum {msg}");
+ err.span_label(sp, &msg);
+ if let [start @ .., end] = &*variant_spans {
+ for variant_span in start {
+ err.span_label(*variant_span, "");
+ }
+ err.span_label(*end, &format!("too many variants in `{}`", tcx.def_path_str(did)));
+ }
+ err.emit();
+}
+
+/// Emit an error when encountering two or more non-zero-sized fields in a transparent
+/// enum.
+fn bad_non_zero_sized_fields<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ adt: ty::AdtDef<'tcx>,
+ field_count: usize,
+ field_spans: impl Iterator<Item = Span>,
+ sp: Span,
+) {
+ let msg = format!("needs at most one non-zero-sized field, but has {field_count}");
+ let mut err = struct_span_err!(
+ tcx.sess,
+ sp,
+ E0690,
+ "{}transparent {} {}",
+ if adt.is_enum() { "the variant of a " } else { "" },
+ adt.descr(),
+ msg,
+ );
+ err.span_label(sp, &msg);
+ for sp in field_spans {
+ err.span_label(sp, "this field is non-zero-sized");
+ }
+ err.emit();
+}
+
+// FIXME: Consider moving this method to a more fitting place.
+pub fn potentially_plural_count(count: usize, word: &str) -> String {
+ format!("{} {}{}", count, word, pluralize!(count))
+}
diff --git a/compiler/rustc_typeck/src/check/region.rs b/compiler/rustc_hir_analysis/src/check/region.rs
index 0081e9049..ff32329e4 100644
--- a/compiler/rustc_typeck/src/check/region.rs
+++ b/compiler/rustc_hir_analysis/src/check/region.rs
@@ -126,6 +126,29 @@ fn resolve_block<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, blk: &'tcx h
for (i, statement) in blk.stmts.iter().enumerate() {
match statement.kind {
+ hir::StmtKind::Local(hir::Local { els: Some(els), .. }) => {
+ // Let-else has a special lexical structure for variables.
+ // First we take a checkpoint of the current scope context here.
+ let mut prev_cx = visitor.cx;
+
+ visitor.enter_scope(Scope {
+ id: blk.hir_id.local_id,
+ data: ScopeData::Remainder(FirstStatementIndex::new(i)),
+ });
+ visitor.cx.var_parent = visitor.cx.parent;
+ visitor.visit_stmt(statement);
+ // We need to back out temporarily to the last enclosing scope
+ // for the `else` block, so that even the temporaries receiving
+ // extended lifetime will be dropped inside this block.
+ // We are visiting the `else` block in this order so that
+ // the sequence of visits agree with the order in the default
+ // `hir::intravisit` visitor.
+ mem::swap(&mut prev_cx, &mut visitor.cx);
+ visitor.terminating_scopes.insert(els.hir_id.local_id);
+ visitor.visit_block(els);
+ // From now on, we continue normally.
+ visitor.cx = prev_cx;
+ }
hir::StmtKind::Local(..) | hir::StmtKind::Item(..) => {
// Each declaration introduces a subscope for bindings
// introduced by the declaration; this subscope covers a
@@ -138,10 +161,10 @@ fn resolve_block<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, blk: &'tcx h
data: ScopeData::Remainder(FirstStatementIndex::new(i)),
});
visitor.cx.var_parent = visitor.cx.parent;
+ visitor.visit_stmt(statement)
}
- hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => {}
+ hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => visitor.visit_stmt(statement),
}
- visitor.visit_stmt(statement)
}
walk_list!(visitor, visit_expr, &blk.expr);
}
@@ -229,9 +252,13 @@ fn resolve_expr<'tcx>(visitor: &mut RegionResolutionVisitor<'tcx>, expr: &'tcx h
) => {
// For shortcircuiting operators, mark the RHS as a terminating
// scope since it only executes conditionally.
- terminating(r.hir_id.local_id);
- }
+ // `Let` expressions (in a let-chain) shouldn't be terminating, as their temporaries
+ // should live beyond the immediate expression
+ if !matches!(r.kind, hir::ExprKind::Let(_)) {
+ terminating(r.hir_id.local_id);
+ }
+ }
hir::ExprKind::If(_, ref then, Some(ref otherwise)) => {
terminating(then.hir_id.local_id);
terminating(otherwise.hir_id.local_id);
@@ -460,7 +487,6 @@ fn resolve_local<'tcx>(
visitor: &mut RegionResolutionVisitor<'tcx>,
pat: Option<&'tcx hir::Pat<'tcx>>,
init: Option<&'tcx hir::Expr<'tcx>>,
- els: Option<&'tcx hir::Block<'tcx>>,
) {
debug!("resolve_local(pat={:?}, init={:?})", pat, init);
@@ -547,9 +573,6 @@ fn resolve_local<'tcx>(
if let Some(pat) = pat {
visitor.visit_pat(pat);
}
- if let Some(els) = els {
- visitor.visit_block(els);
- }
/// Returns `true` if `pat` match the `P&` non-terminal.
///
@@ -587,8 +610,7 @@ fn resolve_local<'tcx>(
// & expression, and its lifetime would be extended to the end of the block (due
// to a different rule, not the below code).
match pat.kind {
- PatKind::Binding(hir::BindingAnnotation::Ref, ..)
- | PatKind::Binding(hir::BindingAnnotation::RefMut, ..) => true,
+ PatKind::Binding(hir::BindingAnnotation(hir::ByRef::Yes, _), ..) => true,
PatKind::Struct(_, ref field_pats, _) => {
field_pats.iter().any(|fp| is_binding_pat(&fp.pat))
@@ -607,10 +629,7 @@ fn resolve_local<'tcx>(
PatKind::Box(ref subpat) => is_binding_pat(&subpat),
PatKind::Ref(_, _)
- | PatKind::Binding(
- hir::BindingAnnotation::Unannotated | hir::BindingAnnotation::Mutable,
- ..,
- )
+ | PatKind::Binding(hir::BindingAnnotation(hir::ByRef::No, _), ..)
| PatKind::Wild
| PatKind::Path(_)
| PatKind::Lit(_)
@@ -770,7 +789,7 @@ impl<'tcx> Visitor<'tcx> for RegionResolutionVisitor<'tcx> {
// (i.e., `'static`), which means that after `g` returns, it drops,
// and all the associated destruction scope rules apply.
self.cx.var_parent = None;
- resolve_local(self, None, Some(&body.value), None);
+ resolve_local(self, None, Some(&body.value));
}
if body.generator_kind.is_some() {
@@ -797,7 +816,7 @@ impl<'tcx> Visitor<'tcx> for RegionResolutionVisitor<'tcx> {
resolve_expr(self, ex);
}
fn visit_local(&mut self, l: &'tcx Local<'tcx>) {
- resolve_local(self, Some(&l.pat), l.init, l.els)
+ resolve_local(self, Some(&l.pat), l.init)
}
}
diff --git a/compiler/rustc_typeck/src/check/wfcheck.rs b/compiler/rustc_hir_analysis/src/check/wfcheck.rs
index d0334cd0d..a23575004 100644
--- a/compiler/rustc_typeck/src/check/wfcheck.rs
+++ b/compiler/rustc_hir_analysis/src/check/wfcheck.rs
@@ -1,5 +1,5 @@
-use crate::check::regionck::OutlivesEnvironmentExt;
use crate::constrained_generic_params::{identify_constrained_generic_params, Parameter};
+use hir::def::DefKind;
use rustc_ast as ast;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticBuilder, ErrorGuaranteed};
@@ -10,22 +10,21 @@ use rustc_hir::ItemKind;
use rustc_infer::infer::outlives::env::{OutlivesEnvironment, RegionBoundPairs};
use rustc_infer::infer::outlives::obligations::TypeOutlives;
use rustc_infer::infer::{self, InferCtxt, TyCtxtInferExt};
-use rustc_infer::traits::Normalized;
+use rustc_middle::mir::ConstraintCategory;
use rustc_middle::ty::query::Providers;
-use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts, Subst};
use rustc_middle::ty::trait_def::TraitSpecializationKind;
use rustc_middle::ty::{
self, AdtKind, DefIdTree, GenericParamDefKind, ToPredicate, Ty, TyCtxt, TypeFoldable,
TypeSuperVisitable, TypeVisitable, TypeVisitor,
};
+use rustc_middle::ty::{GenericArgKind, InternalSubsts};
use rustc_session::parse::feature_err;
use rustc_span::symbol::{sym, Ident, Symbol};
use rustc_span::{Span, DUMMY_SP};
use rustc_trait_selection::autoderef::Autoderef;
-use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
+use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt;
+use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
-use rustc_trait_selection::traits::query::normalize::AtExt;
-use rustc_trait_selection::traits::query::NoSolution;
use rustc_trait_selection::traits::{
self, ObligationCause, ObligationCauseCode, ObligationCtxt, WellFormedLoc,
};
@@ -72,9 +71,11 @@ impl<'tcx> WfCheckingCtxt<'_, 'tcx> {
) {
let cause =
traits::ObligationCause::new(span, self.body_id, ObligationCauseCode::WellFormed(loc));
+ // for a type to be WF, we do not need to check if const trait predicates satisfy.
+ let param_env = self.param_env.without_const();
self.ocx.register_obligation(traits::Obligation::new(
cause,
- self.param_env,
+ param_env,
ty::Binder::dummy(ty::PredicateKind::WellFormed(arg)).to_predicate(self.tcx()),
));
}
@@ -86,31 +87,35 @@ pub(super) fn enter_wf_checking_ctxt<'tcx, F>(
body_def_id: LocalDefId,
f: F,
) where
- F: for<'a> FnOnce(&WfCheckingCtxt<'a, 'tcx>) -> FxHashSet<Ty<'tcx>>,
+ F: for<'a> FnOnce(&WfCheckingCtxt<'a, 'tcx>),
{
let param_env = tcx.param_env(body_def_id);
let body_id = tcx.hir().local_def_id_to_hir_id(body_def_id);
- tcx.infer_ctxt().enter(|ref infcx| {
- let ocx = ObligationCtxt::new(infcx);
- let mut wfcx = WfCheckingCtxt { ocx, span, body_id, param_env };
+ let infcx = &tcx.infer_ctxt().build();
+ let ocx = ObligationCtxt::new(infcx);
- if !tcx.features().trivial_bounds {
- wfcx.check_false_global_bounds()
- }
- let wf_tys = f(&mut wfcx);
- let errors = wfcx.select_all_or_error();
- if !errors.is_empty() {
- infcx.report_fulfillment_errors(&errors, None, false);
- return;
- }
+ let assumed_wf_types = ocx.assumed_wf_types(param_env, span, body_def_id);
- let mut outlives_environment = OutlivesEnvironment::new(param_env);
- outlives_environment.add_implied_bounds(infcx, wf_tys, body_id);
- infcx.check_region_obligations_and_report_errors(body_def_id, &outlives_environment);
- })
+ let mut wfcx = WfCheckingCtxt { ocx, span, body_id, param_env };
+
+ if !tcx.features().trivial_bounds {
+ wfcx.check_false_global_bounds()
+ }
+ f(&mut wfcx);
+ let errors = wfcx.select_all_or_error();
+ if !errors.is_empty() {
+ infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
+ return;
+ }
+
+ let implied_bounds = infcx.implied_bounds_tys(param_env, body_id, assumed_wf_types);
+ let outlives_environment =
+ OutlivesEnvironment::with_bounds(param_env, Some(infcx), implied_bounds);
+
+ infcx.check_region_obligations_and_report_errors(body_def_id, &outlives_environment);
}
-fn check_well_formed(tcx: TyCtxt<'_>, def_id: LocalDefId) {
+fn check_well_formed(tcx: TyCtxt<'_>, def_id: hir::OwnerId) {
let node = tcx.hir().expect_owner(def_id);
match node {
hir::OwnerNode::Crate(_) => {}
@@ -142,10 +147,10 @@ fn check_well_formed(tcx: TyCtxt<'_>, def_id: LocalDefId) {
/// the types first.
#[instrument(skip(tcx), level = "debug")]
fn check_item<'tcx>(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
- let def_id = item.def_id;
+ let def_id = item.owner_id.def_id;
debug!(
- ?item.def_id,
+ ?item.owner_id,
item.name = ? tcx.def_path_str(def_id.to_def_id())
);
@@ -169,7 +174,7 @@ fn check_item<'tcx>(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
// for `T`
hir::ItemKind::Impl(ref impl_) => {
let is_auto = tcx
- .impl_trait_ref(item.def_id)
+ .impl_trait_ref(def_id)
.map_or(false, |trait_ref| tcx.trait_is_auto(trait_ref.def_id));
if let (hir::Defaultness::Default { .. }, true) = (impl_.defaultness, is_auto) {
let sp = impl_.of_trait.as_ref().map_or(item.span, |t| t.path.span);
@@ -205,13 +210,13 @@ fn check_item<'tcx>(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
}
}
hir::ItemKind::Fn(ref sig, ..) => {
- check_item_fn(tcx, item.def_id, item.ident, item.span, sig.decl);
+ check_item_fn(tcx, def_id, item.ident, item.span, sig.decl);
}
hir::ItemKind::Static(ty, ..) => {
- check_item_type(tcx, item.def_id, ty.span, false);
+ check_item_type(tcx, def_id, ty.span, false);
}
hir::ItemKind::Const(ty, ..) => {
- check_item_type(tcx, item.def_id, ty.span, false);
+ check_item_type(tcx, def_id, ty.span, false);
}
hir::ItemKind::Struct(ref struct_def, ref ast_generics) => {
check_type_defn(tcx, item, false, |wfcx| vec![wfcx.non_enum_variant(struct_def)]);
@@ -241,24 +246,24 @@ fn check_item<'tcx>(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
}
fn check_foreign_item(tcx: TyCtxt<'_>, item: &hir::ForeignItem<'_>) {
- let def_id = item.def_id;
+ let def_id = item.owner_id.def_id;
debug!(
- ?item.def_id,
+ ?item.owner_id,
item.name = ? tcx.def_path_str(def_id.to_def_id())
);
match item.kind {
hir::ForeignItemKind::Fn(decl, ..) => {
- check_item_fn(tcx, item.def_id, item.ident, item.span, decl)
+ check_item_fn(tcx, def_id, item.ident, item.span, decl)
}
- hir::ForeignItemKind::Static(ty, ..) => check_item_type(tcx, item.def_id, ty.span, true),
+ hir::ForeignItemKind::Static(ty, ..) => check_item_type(tcx, def_id, ty.span, true),
hir::ForeignItemKind::Type => (),
}
}
fn check_trait_item(tcx: TyCtxt<'_>, trait_item: &hir::TraitItem<'_>) {
- let def_id = trait_item.def_id;
+ let def_id = trait_item.owner_id.def_id;
let (method_sig, span) = match trait_item.kind {
hir::TraitItemKind::Fn(ref sig, _) => (Some(sig), trait_item.span),
@@ -266,11 +271,11 @@ fn check_trait_item(tcx: TyCtxt<'_>, trait_item: &hir::TraitItem<'_>) {
_ => (None, trait_item.span),
};
check_object_unsafe_self_trait_by_name(tcx, trait_item);
- check_associated_item(tcx, trait_item.def_id, span, method_sig);
+ check_associated_item(tcx, def_id, span, method_sig);
let encl_trait_def_id = tcx.local_parent(def_id);
let encl_trait = tcx.hir().expect_item(encl_trait_def_id);
- let encl_trait_def_id = encl_trait.def_id.to_def_id();
+ let encl_trait_def_id = encl_trait.owner_id.to_def_id();
let fn_lang_item_name = if Some(encl_trait_def_id) == tcx.lang_items().fn_trait() {
Some("fn")
} else if Some(encl_trait_def_id) == tcx.lang_items().fn_mut_trait() {
@@ -343,7 +348,7 @@ fn check_gat_where_clauses(tcx: TyCtxt<'_>, associated_items: &[hir::TraitItemRe
loop {
let mut should_continue = false;
for gat_item in associated_items {
- let gat_def_id = gat_item.id.def_id;
+ let gat_def_id = gat_item.id.owner_id;
let gat_item = tcx.associated_item(gat_def_id);
// If this item is not an assoc ty, or has no substs, then it's not a GAT
if gat_item.kind != ty::AssocKind::Type {
@@ -360,7 +365,7 @@ fn check_gat_where_clauses(tcx: TyCtxt<'_>, associated_items: &[hir::TraitItemRe
// constrains the GAT with individually.
let mut new_required_bounds: Option<FxHashSet<ty::Predicate<'_>>> = None;
for item in associated_items {
- let item_def_id = item.id.def_id;
+ let item_def_id = item.id.owner_id;
// Skip our own GAT, since it does not constrain itself at all.
if item_def_id == gat_def_id {
continue;
@@ -383,11 +388,11 @@ fn check_gat_where_clauses(tcx: TyCtxt<'_>, associated_items: &[hir::TraitItemRe
tcx,
param_env,
item_hir_id,
- sig.output(),
+ sig.inputs_and_output,
// We also assume that all of the function signature's parameter types
// are well formed.
&sig.inputs().iter().copied().collect(),
- gat_def_id,
+ gat_def_id.def_id,
gat_generics,
)
}
@@ -410,7 +415,7 @@ fn check_gat_where_clauses(tcx: TyCtxt<'_>, associated_items: &[hir::TraitItemRe
.copied()
.collect::<Vec<_>>(),
&FxHashSet::default(),
- gat_def_id,
+ gat_def_id.def_id,
gat_generics,
)
}
@@ -450,7 +455,7 @@ fn check_gat_where_clauses(tcx: TyCtxt<'_>, associated_items: &[hir::TraitItemRe
}
for (gat_def_id, required_bounds) in required_bounds_by_item {
- let gat_item_hir = tcx.hir().expect_trait_item(gat_def_id);
+ let gat_item_hir = tcx.hir().expect_trait_item(gat_def_id.def_id);
debug!(?required_bounds);
let param_env = tcx.param_env(gat_def_id);
let gat_hir = gat_item_hir.hir_id();
@@ -658,7 +663,7 @@ fn ty_known_to_outlive<'tcx>(
resolve_regions_with_wf_tys(tcx, id, param_env, &wf_tys, |infcx, region_bound_pairs| {
let origin = infer::RelateParamBound(DUMMY_SP, ty, None);
let outlives = &mut TypeOutlives::new(infcx, tcx, region_bound_pairs, None, param_env);
- outlives.type_must_outlive(origin, ty, region);
+ outlives.type_must_outlive(origin, ty, region, ConstraintCategory::BoringNoLocation);
})
}
@@ -676,7 +681,12 @@ fn region_known_to_outlive<'tcx>(
use rustc_infer::infer::outlives::obligations::TypeOutlivesDelegate;
let origin = infer::RelateRegionParamBound(DUMMY_SP);
// `region_a: region_b` -> `region_b <= region_a`
- infcx.push_sub_region_constraint(origin, region_b, region_a);
+ infcx.push_sub_region_constraint(
+ origin,
+ region_b,
+ region_a,
+ ConstraintCategory::BoringNoLocation,
+ );
})
}
@@ -688,26 +698,32 @@ fn resolve_regions_with_wf_tys<'tcx>(
id: hir::HirId,
param_env: ty::ParamEnv<'tcx>,
wf_tys: &FxHashSet<Ty<'tcx>>,
- add_constraints: impl for<'a> FnOnce(&'a InferCtxt<'a, 'tcx>, &'a RegionBoundPairs<'tcx>),
+ add_constraints: impl for<'a> FnOnce(&'a InferCtxt<'tcx>, &'a RegionBoundPairs<'tcx>),
) -> bool {
// Unfortunately, we have to use a new `InferCtxt` each call, because
// region constraints get added and solved there and we need to test each
// call individually.
- tcx.infer_ctxt().enter(|infcx| {
- let mut outlives_environment = OutlivesEnvironment::new(param_env);
- outlives_environment.add_implied_bounds(&infcx, wf_tys.clone(), id);
- let region_bound_pairs = outlives_environment.region_bound_pairs();
+ let infcx = tcx.infer_ctxt().build();
+ let outlives_environment = OutlivesEnvironment::with_bounds(
+ param_env,
+ Some(&infcx),
+ infcx.implied_bounds_tys(param_env, id, wf_tys.clone()),
+ );
+ let region_bound_pairs = outlives_environment.region_bound_pairs();
- add_constraints(&infcx, region_bound_pairs);
+ add_constraints(&infcx, region_bound_pairs);
- let errors = infcx.resolve_regions(&outlives_environment);
+ infcx.process_registered_region_obligations(
+ outlives_environment.region_bound_pairs(),
+ param_env,
+ );
+ let errors = infcx.resolve_regions(&outlives_environment);
- debug!(?errors, "errors");
+ debug!(?errors, "errors");
- // If we were able to prove that the type outlives the region without
- // an error, it must be because of the implied or explicit bounds...
- errors.is_empty()
- })
+ // If we were able to prove that the type outlives the region without
+ // an error, it must be because of the implied or explicit bounds...
+ errors.is_empty()
}
/// TypeVisitor that looks for uses of GATs like
@@ -761,7 +777,7 @@ impl<'tcx> TypeVisitor<'tcx> for GATSubstCollector<'tcx> {
fn could_be_self(trait_def_id: LocalDefId, ty: &hir::Ty<'_>) -> bool {
match ty.kind {
hir::TyKind::TraitObject([trait_ref], ..) => match trait_ref.trait_ref.path.segments {
- [s] => s.res.and_then(|r| r.opt_def_id()) == Some(trait_def_id.to_def_id()),
+ [s] => s.res.opt_def_id() == Some(trait_def_id.to_def_id()),
_ => false,
},
_ => false,
@@ -772,9 +788,9 @@ fn could_be_self(trait_def_id: LocalDefId, ty: &hir::Ty<'_>) -> bool {
/// When this is done, suggest using `Self` instead.
fn check_object_unsafe_self_trait_by_name(tcx: TyCtxt<'_>, item: &hir::TraitItem<'_>) {
let (trait_name, trait_def_id) =
- match tcx.hir().get_by_def_id(tcx.hir().get_parent_item(item.hir_id())) {
+ match tcx.hir().get_by_def_id(tcx.hir().get_parent_item(item.hir_id()).def_id) {
hir::Node::Item(item) => match item.kind {
- hir::ItemKind::Trait(..) => (item.ident, item.def_id),
+ hir::ItemKind::Trait(..) => (item.ident, item.owner_id),
_ => return,
},
_ => return,
@@ -782,18 +798,18 @@ fn check_object_unsafe_self_trait_by_name(tcx: TyCtxt<'_>, item: &hir::TraitItem
let mut trait_should_be_self = vec![];
match &item.kind {
hir::TraitItemKind::Const(ty, _) | hir::TraitItemKind::Type(_, Some(ty))
- if could_be_self(trait_def_id, ty) =>
+ if could_be_self(trait_def_id.def_id, ty) =>
{
trait_should_be_self.push(ty.span)
}
hir::TraitItemKind::Fn(sig, _) => {
for ty in sig.decl.inputs {
- if could_be_self(trait_def_id, ty) {
+ if could_be_self(trait_def_id.def_id, ty) {
trait_should_be_self.push(ty.span);
}
}
match sig.decl.output {
- hir::FnRetTy::Return(ty) if could_be_self(trait_def_id, ty) => {
+ hir::FnRetTy::Return(ty) if could_be_self(trait_def_id.def_id, ty) => {
trait_should_be_self.push(ty.span);
}
_ => {}
@@ -822,16 +838,14 @@ fn check_object_unsafe_self_trait_by_name(tcx: TyCtxt<'_>, item: &hir::TraitItem
}
fn check_impl_item(tcx: TyCtxt<'_>, impl_item: &hir::ImplItem<'_>) {
- let def_id = impl_item.def_id;
-
let (method_sig, span) = match impl_item.kind {
hir::ImplItemKind::Fn(ref sig, _) => (Some(sig), impl_item.span),
// Constrain binding and overflow error spans to `<Ty>` in `type foo = <Ty>`.
- hir::ImplItemKind::TyAlias(ty) if ty.span != DUMMY_SP => (None, ty.span),
+ hir::ImplItemKind::Type(ty) if ty.span != DUMMY_SP => (None, ty.span),
_ => (None, impl_item.span),
};
- check_associated_item(tcx, def_id, span, method_sig);
+ check_associated_item(tcx, impl_item.owner_id.def_id, span, method_sig);
}
fn check_param_wf(tcx: TyCtxt<'_>, param: &hir::GenericParam<'_>) {
@@ -965,7 +979,7 @@ fn check_param_wf(tcx: TyCtxt<'_>, param: &hir::GenericParam<'_>) {
}
}
-#[tracing::instrument(level = "debug", skip(tcx, span, sig_if_method))]
+#[instrument(level = "debug", skip(tcx, span, sig_if_method))]
fn check_associated_item(
tcx: TyCtxt<'_>,
item_id: LocalDefId,
@@ -976,15 +990,9 @@ fn check_associated_item(
enter_wf_checking_ctxt(tcx, span, item_id, |wfcx| {
let item = tcx.associated_item(item_id);
- let (mut implied_bounds, self_ty) = match item.container {
- ty::TraitContainer => (FxHashSet::default(), tcx.types.self_param),
- ty::ImplContainer => {
- let def_id = item.container_id(tcx);
- (
- impl_implied_bounds(tcx, wfcx.param_env, def_id.expect_local(), span),
- tcx.type_of(def_id),
- )
- }
+ let self_ty = match item.container {
+ ty::TraitContainer => tcx.types.self_param,
+ ty::ImplContainer => tcx.type_of(item.container_id(tcx)),
};
match item.kind {
@@ -1002,7 +1010,6 @@ fn check_associated_item(
sig,
hir_sig.decl,
item.def_id.expect_local(),
- &mut implied_bounds,
);
check_method_receiver(wfcx, hir_sig, item, self_ty);
}
@@ -1017,8 +1024,6 @@ fn check_associated_item(
}
}
}
-
- implied_bounds
})
}
@@ -1040,9 +1045,11 @@ fn check_type_defn<'tcx, F>(
) where
F: FnMut(&WfCheckingCtxt<'_, 'tcx>) -> Vec<AdtVariant<'tcx>>,
{
- enter_wf_checking_ctxt(tcx, item.span, item.def_id, |wfcx| {
+ let _ = tcx.representability(item.owner_id.def_id);
+
+ enter_wf_checking_ctxt(tcx, item.span, item.owner_id.def_id, |wfcx| {
let variants = lookup_fields(wfcx);
- let packed = tcx.adt_def(item.def_id).repr().packed();
+ let packed = tcx.adt_def(item.owner_id).repr().packed();
for variant in &variants {
// All field types must be well-formed.
@@ -1066,7 +1073,7 @@ fn check_type_defn<'tcx, F>(
// Just treat unresolved type expression as if it needs drop.
true
} else {
- ty.needs_drop(tcx, tcx.param_env(item.def_id))
+ ty.needs_drop(tcx, tcx.param_env(item.owner_id))
}
}
};
@@ -1098,8 +1105,6 @@ fn check_type_defn<'tcx, F>(
// Explicit `enum` discriminant values must const-evaluate successfully.
if let Some(discr_def_id) = variant.explicit_discr {
- let discr_substs = InternalSubsts::identity_for_item(tcx, discr_def_id.to_def_id());
-
let cause = traits::ObligationCause::new(
tcx.def_span(discr_def_id),
wfcx.body_id,
@@ -1108,31 +1113,28 @@ fn check_type_defn<'tcx, F>(
wfcx.register_obligation(traits::Obligation::new(
cause,
wfcx.param_env,
- ty::Binder::dummy(ty::PredicateKind::ConstEvaluatable(ty::Unevaluated::new(
- ty::WithOptConstParam::unknown(discr_def_id.to_def_id()),
- discr_substs,
- )))
+ ty::Binder::dummy(ty::PredicateKind::ConstEvaluatable(
+ ty::Const::from_anon_const(tcx, discr_def_id),
+ ))
.to_predicate(tcx),
));
}
}
- check_where_clauses(wfcx, item.span, item.def_id);
-
- // No implied bounds in a struct definition.
- FxHashSet::default()
+ check_where_clauses(wfcx, item.span, item.owner_id.def_id);
});
}
#[instrument(skip(tcx, item))]
fn check_trait(tcx: TyCtxt<'_>, item: &hir::Item<'_>) {
- debug!(?item.def_id);
+ debug!(?item.owner_id);
- let trait_def = tcx.trait_def(item.def_id);
+ let def_id = item.owner_id.def_id;
+ let trait_def = tcx.trait_def(def_id);
if trait_def.is_marker
|| matches!(trait_def.specialization_kind, TraitSpecializationKind::Marker)
{
- for associated_def_id in &*tcx.associated_item_def_ids(item.def_id) {
+ for associated_def_id in &*tcx.associated_item_def_ids(def_id) {
struct_span_err!(
tcx.sess,
tcx.def_span(*associated_def_id),
@@ -1143,10 +1145,8 @@ fn check_trait(tcx: TyCtxt<'_>, item: &hir::Item<'_>) {
}
}
- enter_wf_checking_ctxt(tcx, item.span, item.def_id, |wfcx| {
- check_where_clauses(wfcx, item.span, item.def_id);
-
- FxHashSet::default()
+ enter_wf_checking_ctxt(tcx, item.span, def_id, |wfcx| {
+ check_where_clauses(wfcx, item.span, def_id)
});
// Only check traits, don't check trait aliases
@@ -1186,9 +1186,7 @@ fn check_item_fn(
) {
enter_wf_checking_ctxt(tcx, span, def_id, |wfcx| {
let sig = tcx.fn_sig(def_id);
- let mut implied_bounds = FxHashSet::default();
- check_fn_or_method(wfcx, ident.span, sig, decl, def_id, &mut implied_bounds);
- implied_bounds
+ check_fn_or_method(wfcx, ident.span, sig, decl, def_id);
})
}
@@ -1231,13 +1229,10 @@ fn check_item_type(tcx: TyCtxt<'_>, item_id: LocalDefId, ty_span: Span, allow_fo
tcx.require_lang_item(LangItem::Sync, Some(ty_span)),
);
}
-
- // No implied bounds in a const, etc.
- FxHashSet::default()
});
}
-#[tracing::instrument(level = "debug", skip(tcx, ast_self_ty, ast_trait_ref))]
+#[instrument(level = "debug", skip(tcx, ast_self_ty, ast_trait_ref))]
fn check_impl<'tcx>(
tcx: TyCtxt<'tcx>,
item: &'tcx hir::Item<'tcx>,
@@ -1245,13 +1240,13 @@ fn check_impl<'tcx>(
ast_trait_ref: &Option<hir::TraitRef<'_>>,
constness: hir::Constness,
) {
- enter_wf_checking_ctxt(tcx, item.span, item.def_id, |wfcx| {
+ enter_wf_checking_ctxt(tcx, item.span, item.owner_id.def_id, |wfcx| {
match *ast_trait_ref {
Some(ref ast_trait_ref) => {
// `#[rustc_reservation_impl]` impls are not real impls and
// therefore don't need to be WF (the trait's `Self: Trait` predicate
// won't hold).
- let trait_ref = tcx.impl_trait_ref(item.def_id).unwrap();
+ let trait_ref = tcx.impl_trait_ref(item.owner_id).unwrap();
let trait_ref = wfcx.normalize(ast_trait_ref.path.span, None, trait_ref);
let trait_pred = ty::TraitPredicate {
trait_ref,
@@ -1273,19 +1268,21 @@ fn check_impl<'tcx>(
wfcx.register_obligations(obligations);
}
None => {
- let self_ty = tcx.type_of(item.def_id);
- let self_ty = wfcx.normalize(item.span, None, self_ty);
+ let self_ty = tcx.type_of(item.owner_id);
+ let self_ty = wfcx.normalize(
+ item.span,
+ Some(WellFormedLoc::Ty(item.hir_id().expect_owner().def_id)),
+ self_ty,
+ );
wfcx.register_wf_obligation(
ast_self_ty.span,
- Some(WellFormedLoc::Ty(item.hir_id().expect_owner())),
+ Some(WellFormedLoc::Ty(item.hir_id().expect_owner().def_id)),
self_ty.into(),
);
}
}
- check_where_clauses(wfcx, item.span, item.def_id);
-
- impl_implied_bounds(tcx, wfcx.param_env, item.def_id, item.span)
+ check_where_clauses(wfcx, item.span, item.owner_id.def_id);
});
}
@@ -1321,7 +1318,11 @@ fn check_where_clauses<'tcx>(wfcx: &WfCheckingCtxt<'_, 'tcx>, span: Span, def_id
// parameter includes another (e.g., `<T, U = T>`). In those cases, we can't
// be sure if it will error or not as user might always specify the other.
if !ty.needs_subst() {
- wfcx.register_wf_obligation(tcx.def_span(param.def_id), None, ty.into());
+ wfcx.register_wf_obligation(
+ tcx.def_span(param.def_id),
+ Some(WellFormedLoc::Ty(param.def_id.expect_local())),
+ ty.into(),
+ );
}
}
}
@@ -1426,9 +1427,7 @@ fn check_where_clauses<'tcx>(wfcx: &WfCheckingCtxt<'_, 'tcx>, span: Span, def_id
let substituted_pred = predicates.rebind(pred).subst(tcx, substs);
// Don't check non-defaulted params, dependent defaults (including lifetimes)
// or preds with multiple params.
- if substituted_pred.has_param_types_or_consts()
- || param_count.params.len() > 1
- || has_region
+ if substituted_pred.has_non_region_param() || param_count.params.len() > 1 || has_region
{
None
} else if predicates.0.predicates.iter().any(|&(p, _)| p == substituted_pred) {
@@ -1465,21 +1464,26 @@ fn check_where_clauses<'tcx>(wfcx: &WfCheckingCtxt<'_, 'tcx>, span: Span, def_id
assert_eq!(predicates.predicates.len(), predicates.spans.len());
let wf_obligations =
iter::zip(&predicates.predicates, &predicates.spans).flat_map(|(&p, &sp)| {
- traits::wf::predicate_obligations(infcx, wfcx.param_env, wfcx.body_id, p, sp)
+ traits::wf::predicate_obligations(
+ infcx,
+ wfcx.param_env.without_const(),
+ wfcx.body_id,
+ p,
+ sp,
+ )
});
let obligations: Vec<_> = wf_obligations.chain(default_obligations).collect();
wfcx.register_obligations(obligations);
}
-#[tracing::instrument(level = "debug", skip(wfcx, span, hir_decl))]
+#[instrument(level = "debug", skip(wfcx, span, hir_decl))]
fn check_fn_or_method<'tcx>(
wfcx: &WfCheckingCtxt<'_, 'tcx>,
span: Span,
sig: ty::PolyFnSig<'tcx>,
hir_decl: &hir::FnDecl<'_>,
def_id: LocalDefId,
- implied_bounds: &mut FxHashSet<Ty<'tcx>>,
) {
let tcx = wfcx.tcx();
let sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), sig);
@@ -1521,23 +1525,66 @@ fn check_fn_or_method<'tcx>(
);
}
- implied_bounds.extend(sig.inputs());
-
- wfcx.register_wf_obligation(hir_decl.output.span(), None, sig.output().into());
+ wfcx.register_wf_obligation(
+ hir_decl.output.span(),
+ Some(WellFormedLoc::Param {
+ function: def_id,
+ param_idx: sig.inputs().len().try_into().unwrap(),
+ }),
+ sig.output().into(),
+ );
- // FIXME(#27579) return types should not be implied bounds
- implied_bounds.insert(sig.output());
+ check_where_clauses(wfcx, span, def_id);
- debug!(?implied_bounds);
+ check_return_position_impl_trait_in_trait_bounds(
+ tcx,
+ wfcx,
+ def_id,
+ sig.output(),
+ hir_decl.output.span(),
+ );
+}
- check_where_clauses(wfcx, span, def_id);
+/// Basically `check_associated_type_bounds`, but separated for now and should be
+/// deduplicated when RPITITs get lowered into real associated items.
+fn check_return_position_impl_trait_in_trait_bounds<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ wfcx: &WfCheckingCtxt<'_, 'tcx>,
+ fn_def_id: LocalDefId,
+ fn_output: Ty<'tcx>,
+ span: Span,
+) {
+ if let Some(assoc_item) = tcx.opt_associated_item(fn_def_id.to_def_id())
+ && assoc_item.container == ty::AssocItemContainer::TraitContainer
+ {
+ for arg in fn_output.walk() {
+ if let ty::GenericArgKind::Type(ty) = arg.unpack()
+ && let ty::Projection(proj) = ty.kind()
+ && tcx.def_kind(proj.item_def_id) == DefKind::ImplTraitPlaceholder
+ && tcx.impl_trait_in_trait_parent(proj.item_def_id) == fn_def_id.to_def_id()
+ {
+ let bounds = wfcx.tcx().explicit_item_bounds(proj.item_def_id);
+ let wf_obligations = bounds.iter().flat_map(|&(bound, bound_span)| {
+ let normalized_bound = wfcx.normalize(span, None, bound);
+ traits::wf::predicate_obligations(
+ wfcx.infcx,
+ wfcx.param_env,
+ wfcx.body_id,
+ normalized_bound,
+ bound_span,
+ )
+ });
+ wfcx.register_obligations(wf_obligations);
+ }
+ }
+ }
}
const HELP_FOR_SELF_TYPE: &str = "consider changing to `self`, `&self`, `&mut self`, `self: Box<Self>`, \
`self: Rc<Self>`, `self: Arc<Self>`, or `self: Pin<P>` (where P is one \
of the previous types except `Self`)";
-#[tracing::instrument(level = "debug", skip(wfcx))]
+#[instrument(level = "debug", skip(wfcx))]
fn check_method_receiver<'tcx>(
wfcx: &WfCheckingCtxt<'_, 'tcx>,
fn_sig: &hir::FnSig<'_>,
@@ -1629,7 +1676,7 @@ fn receiver_is_valid<'tcx>(
// `self: Self` is always valid.
if can_eq_self(receiver_ty) {
if let Err(err) = wfcx.equate_types(&cause, wfcx.param_env, self_ty, receiver_ty) {
- infcx.report_mismatched_types(&cause, self_ty, receiver_ty, err).emit();
+ infcx.err_ctxt().report_mismatched_types(&cause, self_ty, receiver_ty, err).emit();
}
return true;
}
@@ -1661,7 +1708,10 @@ fn receiver_is_valid<'tcx>(
if let Err(err) =
wfcx.equate_types(&cause, wfcx.param_env, self_ty, potential_self_ty)
{
- infcx.report_mismatched_types(&cause, self_ty, potential_self_ty, err).emit();
+ infcx
+ .err_ctxt()
+ .report_mismatched_types(&cause, self_ty, potential_self_ty, err)
+ .emit();
}
break;
@@ -1728,14 +1778,14 @@ fn check_variances_for_type_defn<'tcx>(
item: &hir::Item<'tcx>,
hir_generics: &hir::Generics<'_>,
) {
- let ty = tcx.type_of(item.def_id);
+ let ty = tcx.type_of(item.owner_id);
if tcx.has_error_field(ty) {
return;
}
- let ty_predicates = tcx.predicates_of(item.def_id);
+ let ty_predicates = tcx.predicates_of(item.owner_id);
assert_eq!(ty_predicates.parent, None);
- let variances = tcx.variances_of(item.def_id);
+ let variances = tcx.variances_of(item.owner_id);
let mut constrained_parameters: FxHashSet<_> = variances
.iter()
@@ -1748,7 +1798,7 @@ fn check_variances_for_type_defn<'tcx>(
// Lazily calculated because it is only needed in case of an error.
let explicitly_bounded_params = LazyCell::new(|| {
- let icx = crate::collect::ItemCtxt::new(tcx, item.def_id.to_def_id());
+ let icx = crate::collect::ItemCtxt::new(tcx, item.owner_id.to_def_id());
hir_generics
.predicates
.iter()
@@ -1817,6 +1867,7 @@ fn report_bivariance(
impl<'tcx> WfCheckingCtxt<'_, 'tcx> {
/// Feature gates RFC 2056 -- trivial bounds, checking for global bounds that
/// aren't true.
+ #[instrument(level = "debug", skip(self))]
fn check_false_global_bounds(&mut self) {
let tcx = self.ocx.infcx.tcx;
let mut span = self.span;
@@ -1868,10 +1919,10 @@ impl<'tcx> WfCheckingCtxt<'_, 'tcx> {
fn check_mod_type_wf(tcx: TyCtxt<'_>, module: LocalDefId) {
let items = tcx.hir_module_items(module);
- items.par_items(|item| tcx.ensure().check_well_formed(item.def_id));
- items.par_impl_items(|item| tcx.ensure().check_well_formed(item.def_id));
- items.par_trait_items(|item| tcx.ensure().check_well_formed(item.def_id));
- items.par_foreign_items(|item| tcx.ensure().check_well_formed(item.def_id));
+ items.par_items(|item| tcx.ensure().check_well_formed(item.owner_id));
+ items.par_impl_items(|item| tcx.ensure().check_well_formed(item.owner_id));
+ items.par_trait_items(|item| tcx.ensure().check_well_formed(item.owner_id));
+ items.par_foreign_items(|item| tcx.ensure().check_well_formed(item.owner_id));
}
///////////////////////////////////////////////////////////////////////////
@@ -1924,40 +1975,6 @@ impl<'a, 'tcx> WfCheckingCtxt<'a, 'tcx> {
}
}
-pub fn impl_implied_bounds<'tcx>(
- tcx: TyCtxt<'tcx>,
- param_env: ty::ParamEnv<'tcx>,
- impl_def_id: LocalDefId,
- span: Span,
-) -> FxHashSet<Ty<'tcx>> {
- // We completely ignore any obligations caused by normalizing the types
- // we assume to be well formed. Considering that the user of the implied
- // bounds will also normalize them, we leave it to them to emit errors
- // which should result in better causes and spans.
- tcx.infer_ctxt().enter(|infcx| {
- let cause = ObligationCause::misc(span, tcx.hir().local_def_id_to_hir_id(impl_def_id));
- match tcx.impl_trait_ref(impl_def_id) {
- Some(trait_ref) => {
- // Trait impl: take implied bounds from all types that
- // appear in the trait reference.
- match infcx.at(&cause, param_env).normalize(trait_ref) {
- Ok(Normalized { value, obligations: _ }) => value.substs.types().collect(),
- Err(NoSolution) => FxHashSet::default(),
- }
- }
-
- None => {
- // Inherent impl: take implied bounds from the `self` type.
- let self_ty = tcx.type_of(impl_def_id);
- match infcx.at(&cause, param_env).normalize(self_ty) {
- Ok(Normalized { value, obligations: _ }) => FxHashSet::from_iter([value]),
- Err(NoSolution) => FxHashSet::default(),
- }
- }
- }
- })
-}
-
fn error_392(
tcx: TyCtxt<'_>,
span: Span,
diff --git a/compiler/rustc_hir_analysis/src/check_unused.rs b/compiler/rustc_hir_analysis/src/check_unused.rs
new file mode 100644
index 000000000..d0c317334
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/check_unused.rs
@@ -0,0 +1,192 @@
+use crate::errors::{ExternCrateNotIdiomatic, UnusedExternCrate};
+use rustc_data_structures::fx::FxHashMap;
+use rustc_data_structures::unord::UnordSet;
+use rustc_hir as hir;
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_middle::ty::TyCtxt;
+use rustc_session::lint;
+use rustc_span::{Span, Symbol};
+
+pub fn check_crate(tcx: TyCtxt<'_>) {
+ let mut used_trait_imports: UnordSet<LocalDefId> = Default::default();
+
+ for item_def_id in tcx.hir().body_owners() {
+ let imports = tcx.used_trait_imports(item_def_id);
+ debug!("GatherVisitor: item_def_id={:?} with imports {:#?}", item_def_id, imports);
+ used_trait_imports.extend(imports.items().copied());
+ }
+
+ for &id in tcx.maybe_unused_trait_imports(()) {
+ debug_assert_eq!(tcx.def_kind(id), DefKind::Use);
+ if tcx.visibility(id).is_public() {
+ continue;
+ }
+ if used_trait_imports.contains(&id) {
+ continue;
+ }
+ let item = tcx.hir().expect_item(id);
+ if item.span.is_dummy() {
+ continue;
+ }
+ let hir::ItemKind::Use(path, _) = item.kind else { unreachable!() };
+ let msg = if let Ok(snippet) = tcx.sess.source_map().span_to_snippet(path.span) {
+ format!("unused import: `{}`", snippet)
+ } else {
+ "unused import".to_owned()
+ };
+ tcx.struct_span_lint_hir(
+ lint::builtin::UNUSED_IMPORTS,
+ item.hir_id(),
+ path.span,
+ msg,
+ |lint| lint,
+ );
+ }
+
+ unused_crates_lint(tcx);
+}
+
+fn unused_crates_lint(tcx: TyCtxt<'_>) {
+ let lint = lint::builtin::UNUSED_EXTERN_CRATES;
+
+ // Collect first the crates that are completely unused. These we
+ // can always suggest removing (no matter which edition we are
+ // in).
+ let unused_extern_crates: FxHashMap<LocalDefId, Span> = tcx
+ .maybe_unused_extern_crates(())
+ .iter()
+ .filter(|&&(def_id, _)| {
+ // The `def_id` here actually was calculated during resolution (at least
+ // at the time of this writing) and is being shipped to us via a side
+ // channel of the tcx. There may have been extra expansion phases,
+ // however, which ended up removing the `def_id` *after* expansion.
+ //
+ // As a result we need to verify that `def_id` is indeed still valid for
+ // our AST and actually present in the HIR map. If it's not there then
+ // there's safely nothing to warn about, and otherwise we carry on with
+ // our execution.
+ //
+ // Note that if we carry through to the `extern_mod_stmt_cnum` query
+ // below it'll cause a panic because `def_id` is actually bogus at this
+ // point in time otherwise.
+ if tcx.hir().find(tcx.hir().local_def_id_to_hir_id(def_id)).is_none() {
+ return false;
+ }
+ true
+ })
+ .filter(|&&(def_id, _)| {
+ tcx.extern_mod_stmt_cnum(def_id).map_or(true, |cnum| {
+ !tcx.is_compiler_builtins(cnum)
+ && !tcx.is_panic_runtime(cnum)
+ && !tcx.has_global_allocator(cnum)
+ && !tcx.has_panic_handler(cnum)
+ })
+ })
+ .cloned()
+ .collect();
+
+ // Collect all the extern crates (in a reliable order).
+ let mut crates_to_lint = vec![];
+
+ for id in tcx.hir().items() {
+ if matches!(tcx.def_kind(id.owner_id), DefKind::ExternCrate) {
+ let item = tcx.hir().item(id);
+ if let hir::ItemKind::ExternCrate(orig_name) = item.kind {
+ crates_to_lint.push(ExternCrateToLint {
+ def_id: item.owner_id.to_def_id(),
+ span: item.span,
+ orig_name,
+ warn_if_unused: !item.ident.as_str().starts_with('_'),
+ });
+ }
+ }
+ }
+
+ let extern_prelude = &tcx.resolutions(()).extern_prelude;
+
+ for extern_crate in &crates_to_lint {
+ let def_id = extern_crate.def_id.expect_local();
+ let item = tcx.hir().expect_item(def_id);
+
+ // If the crate is fully unused, we suggest removing it altogether.
+ // We do this in any edition.
+ if extern_crate.warn_if_unused {
+ if let Some(&span) = unused_extern_crates.get(&def_id) {
+ // Removal suggestion span needs to include attributes (Issue #54400)
+ let id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let span_with_attrs = tcx
+ .hir()
+ .attrs(id)
+ .iter()
+ .map(|attr| attr.span)
+ .fold(span, |acc, attr_span| acc.to(attr_span));
+
+ tcx.emit_spanned_lint(lint, id, span, UnusedExternCrate { span: span_with_attrs });
+ continue;
+ }
+ }
+
+ // If we are not in Rust 2018 edition, then we don't make any further
+ // suggestions.
+ if !tcx.sess.rust_2018() {
+ continue;
+ }
+
+ // If the extern crate isn't in the extern prelude,
+ // there is no way it can be written as a `use`.
+ let orig_name = extern_crate.orig_name.unwrap_or(item.ident.name);
+ if !extern_prelude.get(&orig_name).map_or(false, |from_item| !from_item) {
+ continue;
+ }
+
+ // If the extern crate is renamed, then we cannot suggest replacing it with a use as this
+ // would not insert the new name into the prelude, where other imports in the crate may be
+ // expecting it.
+ if extern_crate.orig_name.is_some() {
+ continue;
+ }
+
+ let id = tcx.hir().local_def_id_to_hir_id(def_id);
+ // If the extern crate has any attributes, they may have funky
+ // semantics we can't faithfully represent using `use` (most
+ // notably `#[macro_use]`). Ignore it.
+ if !tcx.hir().attrs(id).is_empty() {
+ continue;
+ }
+
+ let base_replacement = match extern_crate.orig_name {
+ Some(orig_name) => format!("use {} as {};", orig_name, item.ident.name),
+ None => format!("use {};", item.ident.name),
+ };
+ let vis = tcx.sess.source_map().span_to_snippet(item.vis_span).unwrap_or_default();
+ let add_vis = |to| if vis.is_empty() { to } else { format!("{} {}", vis, to) };
+ tcx.emit_spanned_lint(
+ lint,
+ id,
+ extern_crate.span,
+ ExternCrateNotIdiomatic {
+ span: extern_crate.span,
+ msg_code: add_vis("use".to_string()),
+ suggestion_code: add_vis(base_replacement),
+ },
+ );
+ }
+}
+
+struct ExternCrateToLint {
+ /// `DefId` of the extern crate
+ def_id: DefId,
+
+ /// span from the item
+ span: Span,
+
+ /// if `Some`, then this is renamed (`extern crate orig_name as
+ /// crate_name`), and -- perhaps surprisingly -- this stores the
+ /// *original* name (`item.name` will contain the new name)
+ orig_name: Option<Symbol>,
+
+ /// if `false`, the original name started with `_`, so we shouldn't lint
+ /// about it going unused (but we should still emit idiom lints).
+ warn_if_unused: bool,
+}
diff --git a/compiler/rustc_hir_analysis/src/coherence/builtin.rs b/compiler/rustc_hir_analysis/src/coherence/builtin.rs
new file mode 100644
index 000000000..b6c91d425
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/coherence/builtin.rs
@@ -0,0 +1,572 @@
+//! Check properties that are required by built-in traits and set
+//! up data structures required by type-checking/codegen.
+
+use crate::errors::{CopyImplOnNonAdt, CopyImplOnTypeWithDtor, DropImplOnWrongItem};
+use rustc_errors::{struct_span_err, MultiSpan};
+use rustc_hir as hir;
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::ItemKind;
+use rustc_infer::infer;
+use rustc_infer::infer::outlives::env::OutlivesEnvironment;
+use rustc_infer::infer::TyCtxtInferExt;
+use rustc_middle::ty::adjustment::CoerceUnsizedInfo;
+use rustc_middle::ty::{self, suggest_constraining_type_params, Ty, TyCtxt, TypeVisitable};
+use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt;
+use rustc_trait_selection::traits::misc::{can_type_implement_copy, CopyImplementationError};
+use rustc_trait_selection::traits::predicate_for_trait_def;
+use rustc_trait_selection::traits::{self, ObligationCause};
+use std::collections::BTreeMap;
+
+pub fn check_trait(tcx: TyCtxt<'_>, trait_def_id: DefId) {
+ let lang_items = tcx.lang_items();
+ Checker { tcx, trait_def_id }
+ .check(lang_items.drop_trait(), visit_implementation_of_drop)
+ .check(lang_items.copy_trait(), visit_implementation_of_copy)
+ .check(lang_items.coerce_unsized_trait(), visit_implementation_of_coerce_unsized)
+ .check(lang_items.dispatch_from_dyn_trait(), visit_implementation_of_dispatch_from_dyn);
+}
+
+struct Checker<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ trait_def_id: DefId,
+}
+
+impl<'tcx> Checker<'tcx> {
+ fn check<F>(&self, trait_def_id: Option<DefId>, mut f: F) -> &Self
+ where
+ F: FnMut(TyCtxt<'tcx>, LocalDefId),
+ {
+ if Some(self.trait_def_id) == trait_def_id {
+ for &impl_def_id in self.tcx.hir().trait_impls(self.trait_def_id) {
+ f(self.tcx, impl_def_id);
+ }
+ }
+ self
+ }
+}
+
+fn visit_implementation_of_drop(tcx: TyCtxt<'_>, impl_did: LocalDefId) {
+ // Destructors only work on local ADT types.
+ match tcx.type_of(impl_did).kind() {
+ ty::Adt(def, _) if def.did().is_local() => return,
+ ty::Error(_) => return,
+ _ => {}
+ }
+
+ let sp = match tcx.hir().expect_item(impl_did).kind {
+ ItemKind::Impl(ref impl_) => impl_.self_ty.span,
+ _ => bug!("expected Drop impl item"),
+ };
+
+ tcx.sess.emit_err(DropImplOnWrongItem { span: sp });
+}
+
+fn visit_implementation_of_copy(tcx: TyCtxt<'_>, impl_did: LocalDefId) {
+ debug!("visit_implementation_of_copy: impl_did={:?}", impl_did);
+
+ let impl_hir_id = tcx.hir().local_def_id_to_hir_id(impl_did);
+
+ let self_type = tcx.type_of(impl_did);
+ debug!("visit_implementation_of_copy: self_type={:?} (bound)", self_type);
+
+ let param_env = tcx.param_env(impl_did);
+ assert!(!self_type.has_escaping_bound_vars());
+
+ debug!("visit_implementation_of_copy: self_type={:?} (free)", self_type);
+
+ let span = match tcx.hir().expect_item(impl_did).kind {
+ ItemKind::Impl(hir::Impl { polarity: hir::ImplPolarity::Negative(_), .. }) => return,
+ ItemKind::Impl(impl_) => impl_.self_ty.span,
+ _ => bug!("expected Copy impl item"),
+ };
+
+ let cause = traits::ObligationCause::misc(span, impl_hir_id);
+ match can_type_implement_copy(tcx, param_env, self_type, cause) {
+ Ok(()) => {}
+ Err(CopyImplementationError::InfrigingFields(fields)) => {
+ let mut err = struct_span_err!(
+ tcx.sess,
+ span,
+ E0204,
+ "the trait `Copy` may not be implemented for this type"
+ );
+
+ // We'll try to suggest constraining type parameters to fulfill the requirements of
+ // their `Copy` implementation.
+ let mut errors: BTreeMap<_, Vec<_>> = Default::default();
+ let mut bounds = vec![];
+
+ for (field, ty) in fields {
+ let field_span = tcx.def_span(field.did);
+ let field_ty_span = match tcx.hir().get_if_local(field.did) {
+ Some(hir::Node::Field(field_def)) => field_def.ty.span,
+ _ => field_span,
+ };
+ err.span_label(field_span, "this field does not implement `Copy`");
+ // Spin up a new FulfillmentContext, so we can get the _precise_ reason
+ // why this field does not implement Copy. This is useful because sometimes
+ // it is not immediately clear why Copy is not implemented for a field, since
+ // all we point at is the field itself.
+ let infcx = tcx.infer_ctxt().ignoring_regions().build();
+ for error in traits::fully_solve_bound(
+ &infcx,
+ traits::ObligationCause::dummy_with_span(field_ty_span),
+ param_env,
+ ty,
+ tcx.lang_items().copy_trait().unwrap(),
+ ) {
+ let error_predicate = error.obligation.predicate;
+ // Only note if it's not the root obligation, otherwise it's trivial and
+ // should be self-explanatory (i.e. a field literally doesn't implement Copy).
+
+ // FIXME: This error could be more descriptive, especially if the error_predicate
+ // contains a foreign type or if it's a deeply nested type...
+ if error_predicate != error.root_obligation.predicate {
+ errors
+ .entry((ty.to_string(), error_predicate.to_string()))
+ .or_default()
+ .push(error.obligation.cause.span);
+ }
+ if let ty::PredicateKind::Trait(ty::TraitPredicate {
+ trait_ref,
+ polarity: ty::ImplPolarity::Positive,
+ ..
+ }) = error_predicate.kind().skip_binder()
+ {
+ let ty = trait_ref.self_ty();
+ if let ty::Param(_) = ty.kind() {
+ bounds.push((
+ format!("{ty}"),
+ trait_ref.print_only_trait_path().to_string(),
+ Some(trait_ref.def_id),
+ ));
+ }
+ }
+ }
+ }
+ for ((ty, error_predicate), spans) in errors {
+ let span: MultiSpan = spans.into();
+ err.span_note(
+ span,
+ &format!("the `Copy` impl for `{}` requires that `{}`", ty, error_predicate),
+ );
+ }
+ suggest_constraining_type_params(
+ tcx,
+ tcx.hir().get_generics(impl_did).expect("impls always have generics"),
+ &mut err,
+ bounds.iter().map(|(param, constraint, def_id)| {
+ (param.as_str(), constraint.as_str(), *def_id)
+ }),
+ );
+ err.emit();
+ }
+ Err(CopyImplementationError::NotAnAdt) => {
+ tcx.sess.emit_err(CopyImplOnNonAdt { span });
+ }
+ Err(CopyImplementationError::HasDestructor) => {
+ tcx.sess.emit_err(CopyImplOnTypeWithDtor { span });
+ }
+ }
+}
+
+fn visit_implementation_of_coerce_unsized<'tcx>(tcx: TyCtxt<'tcx>, impl_did: LocalDefId) {
+ debug!("visit_implementation_of_coerce_unsized: impl_did={:?}", impl_did);
+
+ // Just compute this for the side-effects, in particular reporting
+ // errors; other parts of the code may demand it for the info of
+ // course.
+ let span = tcx.def_span(impl_did);
+ tcx.at(span).coerce_unsized_info(impl_did);
+}
+
+fn visit_implementation_of_dispatch_from_dyn<'tcx>(tcx: TyCtxt<'tcx>, impl_did: LocalDefId) {
+ debug!("visit_implementation_of_dispatch_from_dyn: impl_did={:?}", impl_did);
+
+ let impl_hir_id = tcx.hir().local_def_id_to_hir_id(impl_did);
+ let span = tcx.hir().span(impl_hir_id);
+
+ let dispatch_from_dyn_trait = tcx.require_lang_item(LangItem::DispatchFromDyn, Some(span));
+
+ let source = tcx.type_of(impl_did);
+ assert!(!source.has_escaping_bound_vars());
+ let target = {
+ let trait_ref = tcx.impl_trait_ref(impl_did).unwrap();
+ assert_eq!(trait_ref.def_id, dispatch_from_dyn_trait);
+
+ trait_ref.substs.type_at(1)
+ };
+
+ debug!("visit_implementation_of_dispatch_from_dyn: {:?} -> {:?}", source, target);
+
+ let param_env = tcx.param_env(impl_did);
+
+ let create_err = |msg: &str| struct_span_err!(tcx.sess, span, E0378, "{}", msg);
+
+ let infcx = tcx.infer_ctxt().build();
+ let cause = ObligationCause::misc(span, impl_hir_id);
+
+ use rustc_type_ir::sty::TyKind::*;
+ match (source.kind(), target.kind()) {
+ (&Ref(r_a, _, mutbl_a), Ref(r_b, _, mutbl_b))
+ if infcx.at(&cause, param_env).eq(r_a, *r_b).is_ok() && mutbl_a == *mutbl_b => {}
+ (&RawPtr(tm_a), &RawPtr(tm_b)) if tm_a.mutbl == tm_b.mutbl => (),
+ (&Adt(def_a, substs_a), &Adt(def_b, substs_b))
+ if def_a.is_struct() && def_b.is_struct() =>
+ {
+ if def_a != def_b {
+ let source_path = tcx.def_path_str(def_a.did());
+ let target_path = tcx.def_path_str(def_b.did());
+
+ create_err(&format!(
+ "the trait `DispatchFromDyn` may only be implemented \
+ for a coercion between structures with the same \
+ definition; expected `{}`, found `{}`",
+ source_path, target_path,
+ ))
+ .emit();
+
+ return;
+ }
+
+ if def_a.repr().c() || def_a.repr().packed() {
+ create_err(
+ "structs implementing `DispatchFromDyn` may not have \
+ `#[repr(packed)]` or `#[repr(C)]`",
+ )
+ .emit();
+ }
+
+ let fields = &def_a.non_enum_variant().fields;
+
+ let coerced_fields = fields
+ .iter()
+ .filter(|field| {
+ let ty_a = field.ty(tcx, substs_a);
+ let ty_b = field.ty(tcx, substs_b);
+
+ if let Ok(layout) = tcx.layout_of(param_env.and(ty_a)) {
+ if layout.is_zst() && layout.align.abi.bytes() == 1 {
+ // ignore ZST fields with alignment of 1 byte
+ return false;
+ }
+ }
+
+ if let Ok(ok) = infcx.at(&cause, param_env).eq(ty_a, ty_b) {
+ if ok.obligations.is_empty() {
+ create_err(
+ "the trait `DispatchFromDyn` may only be implemented \
+ for structs containing the field being coerced, \
+ ZST fields with 1 byte alignment, and nothing else",
+ )
+ .note(&format!(
+ "extra field `{}` of type `{}` is not allowed",
+ field.name, ty_a,
+ ))
+ .emit();
+
+ return false;
+ }
+ }
+
+ return true;
+ })
+ .collect::<Vec<_>>();
+
+ if coerced_fields.is_empty() {
+ create_err(
+ "the trait `DispatchFromDyn` may only be implemented \
+ for a coercion between structures with a single field \
+ being coerced, none found",
+ )
+ .emit();
+ } else if coerced_fields.len() > 1 {
+ create_err("implementing the `DispatchFromDyn` trait requires multiple coercions")
+ .note(
+ "the trait `DispatchFromDyn` may only be implemented \
+ for a coercion between structures with a single field \
+ being coerced",
+ )
+ .note(&format!(
+ "currently, {} fields need coercions: {}",
+ coerced_fields.len(),
+ coerced_fields
+ .iter()
+ .map(|field| {
+ format!(
+ "`{}` (`{}` to `{}`)",
+ field.name,
+ field.ty(tcx, substs_a),
+ field.ty(tcx, substs_b),
+ )
+ })
+ .collect::<Vec<_>>()
+ .join(", ")
+ ))
+ .emit();
+ } else {
+ let errors = traits::fully_solve_obligations(
+ &infcx,
+ coerced_fields.into_iter().map(|field| {
+ predicate_for_trait_def(
+ tcx,
+ param_env,
+ cause.clone(),
+ dispatch_from_dyn_trait,
+ 0,
+ field.ty(tcx, substs_a),
+ &[field.ty(tcx, substs_b).into()],
+ )
+ }),
+ );
+ if !errors.is_empty() {
+ infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
+ }
+
+ // Finally, resolve all regions.
+ let outlives_env = OutlivesEnvironment::new(param_env);
+ infcx.check_region_obligations_and_report_errors(impl_did, &outlives_env);
+ }
+ }
+ _ => {
+ create_err(
+ "the trait `DispatchFromDyn` may only be implemented \
+ for a coercion between structures",
+ )
+ .emit();
+ }
+ }
+}
+
+pub fn coerce_unsized_info<'tcx>(tcx: TyCtxt<'tcx>, impl_did: DefId) -> CoerceUnsizedInfo {
+ debug!("compute_coerce_unsized_info(impl_did={:?})", impl_did);
+
+ // this provider should only get invoked for local def-ids
+ let impl_did = impl_did.expect_local();
+ let span = tcx.def_span(impl_did);
+
+ let coerce_unsized_trait = tcx.require_lang_item(LangItem::CoerceUnsized, Some(span));
+
+ let unsize_trait = tcx.lang_items().require(LangItem::Unsize).unwrap_or_else(|err| {
+ tcx.sess.fatal(&format!("`CoerceUnsized` implementation {}", err.to_string()));
+ });
+
+ let source = tcx.type_of(impl_did);
+ let trait_ref = tcx.impl_trait_ref(impl_did).unwrap();
+ assert_eq!(trait_ref.def_id, coerce_unsized_trait);
+ let target = trait_ref.substs.type_at(1);
+ debug!("visit_implementation_of_coerce_unsized: {:?} -> {:?} (bound)", source, target);
+
+ let param_env = tcx.param_env(impl_did);
+ assert!(!source.has_escaping_bound_vars());
+
+ let err_info = CoerceUnsizedInfo { custom_kind: None };
+
+ debug!("visit_implementation_of_coerce_unsized: {:?} -> {:?} (free)", source, target);
+
+ let infcx = tcx.infer_ctxt().build();
+ let impl_hir_id = tcx.hir().local_def_id_to_hir_id(impl_did);
+ let cause = ObligationCause::misc(span, impl_hir_id);
+ let check_mutbl = |mt_a: ty::TypeAndMut<'tcx>,
+ mt_b: ty::TypeAndMut<'tcx>,
+ mk_ptr: &dyn Fn(Ty<'tcx>) -> Ty<'tcx>| {
+ if (mt_a.mutbl, mt_b.mutbl) == (hir::Mutability::Not, hir::Mutability::Mut) {
+ infcx
+ .err_ctxt()
+ .report_mismatched_types(
+ &cause,
+ mk_ptr(mt_b.ty),
+ target,
+ ty::error::TypeError::Mutability,
+ )
+ .emit();
+ }
+ (mt_a.ty, mt_b.ty, unsize_trait, None)
+ };
+ let (source, target, trait_def_id, kind) = match (source.kind(), target.kind()) {
+ (&ty::Ref(r_a, ty_a, mutbl_a), &ty::Ref(r_b, ty_b, mutbl_b)) => {
+ infcx.sub_regions(infer::RelateObjectBound(span), r_b, r_a);
+ let mt_a = ty::TypeAndMut { ty: ty_a, mutbl: mutbl_a };
+ let mt_b = ty::TypeAndMut { ty: ty_b, mutbl: mutbl_b };
+ check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ref(r_b, ty))
+ }
+
+ (&ty::Ref(_, ty_a, mutbl_a), &ty::RawPtr(mt_b)) => {
+ let mt_a = ty::TypeAndMut { ty: ty_a, mutbl: mutbl_a };
+ check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ptr(ty))
+ }
+
+ (&ty::RawPtr(mt_a), &ty::RawPtr(mt_b)) => check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ptr(ty)),
+
+ (&ty::Adt(def_a, substs_a), &ty::Adt(def_b, substs_b))
+ if def_a.is_struct() && def_b.is_struct() =>
+ {
+ if def_a != def_b {
+ let source_path = tcx.def_path_str(def_a.did());
+ let target_path = tcx.def_path_str(def_b.did());
+ struct_span_err!(
+ tcx.sess,
+ span,
+ E0377,
+ "the trait `CoerceUnsized` may only be implemented \
+ for a coercion between structures with the same \
+ definition; expected `{}`, found `{}`",
+ source_path,
+ target_path
+ )
+ .emit();
+ return err_info;
+ }
+
+ // Here we are considering a case of converting
+ // `S<P0...Pn>` to S<Q0...Qn>`. As an example, let's imagine a struct `Foo<T, U>`,
+ // which acts like a pointer to `U`, but carries along some extra data of type `T`:
+ //
+ // struct Foo<T, U> {
+ // extra: T,
+ // ptr: *mut U,
+ // }
+ //
+ // We might have an impl that allows (e.g.) `Foo<T, [i32; 3]>` to be unsized
+ // to `Foo<T, [i32]>`. That impl would look like:
+ //
+ // impl<T, U: Unsize<V>, V> CoerceUnsized<Foo<T, V>> for Foo<T, U> {}
+ //
+ // Here `U = [i32; 3]` and `V = [i32]`. At runtime,
+ // when this coercion occurs, we would be changing the
+ // field `ptr` from a thin pointer of type `*mut [i32;
+ // 3]` to a fat pointer of type `*mut [i32]` (with
+ // extra data `3`). **The purpose of this check is to
+ // make sure that we know how to do this conversion.**
+ //
+ // To check if this impl is legal, we would walk down
+ // the fields of `Foo` and consider their types with
+ // both substitutes. We are looking to find that
+ // exactly one (non-phantom) field has changed its
+ // type, which we will expect to be the pointer that
+ // is becoming fat (we could probably generalize this
+ // to multiple thin pointers of the same type becoming
+ // fat, but we don't). In this case:
+ //
+ // - `extra` has type `T` before and type `T` after
+ // - `ptr` has type `*mut U` before and type `*mut V` after
+ //
+ // Since just one field changed, we would then check
+ // that `*mut U: CoerceUnsized<*mut V>` is implemented
+ // (in other words, that we know how to do this
+ // conversion). This will work out because `U:
+ // Unsize<V>`, and we have a builtin rule that `*mut
+ // U` can be coerced to `*mut V` if `U: Unsize<V>`.
+ let fields = &def_a.non_enum_variant().fields;
+ let diff_fields = fields
+ .iter()
+ .enumerate()
+ .filter_map(|(i, f)| {
+ let (a, b) = (f.ty(tcx, substs_a), f.ty(tcx, substs_b));
+
+ if tcx.type_of(f.did).is_phantom_data() {
+ // Ignore PhantomData fields
+ return None;
+ }
+
+ // Ignore fields that aren't changed; it may
+ // be that we could get away with subtyping or
+ // something more accepting, but we use
+ // equality because we want to be able to
+ // perform this check without computing
+ // variance where possible. (This is because
+ // we may have to evaluate constraint
+ // expressions in the course of execution.)
+ // See e.g., #41936.
+ if let Ok(ok) = infcx.at(&cause, param_env).eq(a, b) {
+ if ok.obligations.is_empty() {
+ return None;
+ }
+ }
+
+ // Collect up all fields that were significantly changed
+ // i.e., those that contain T in coerce_unsized T -> U
+ Some((i, a, b))
+ })
+ .collect::<Vec<_>>();
+
+ if diff_fields.is_empty() {
+ struct_span_err!(
+ tcx.sess,
+ span,
+ E0374,
+ "the trait `CoerceUnsized` may only be implemented \
+ for a coercion between structures with one field \
+ being coerced, none found"
+ )
+ .emit();
+ return err_info;
+ } else if diff_fields.len() > 1 {
+ let item = tcx.hir().expect_item(impl_did);
+ let span =
+ if let ItemKind::Impl(hir::Impl { of_trait: Some(ref t), .. }) = item.kind {
+ t.path.span
+ } else {
+ tcx.def_span(impl_did)
+ };
+
+ struct_span_err!(
+ tcx.sess,
+ span,
+ E0375,
+ "implementing the trait \
+ `CoerceUnsized` requires multiple \
+ coercions"
+ )
+ .note(
+ "`CoerceUnsized` may only be implemented for \
+ a coercion between structures with one field being coerced",
+ )
+ .note(&format!(
+ "currently, {} fields need coercions: {}",
+ diff_fields.len(),
+ diff_fields
+ .iter()
+ .map(|&(i, a, b)| { format!("`{}` (`{}` to `{}`)", fields[i].name, a, b) })
+ .collect::<Vec<_>>()
+ .join(", ")
+ ))
+ .span_label(span, "requires multiple coercions")
+ .emit();
+ return err_info;
+ }
+
+ let (i, a, b) = diff_fields[0];
+ let kind = ty::adjustment::CustomCoerceUnsized::Struct(i);
+ (a, b, coerce_unsized_trait, Some(kind))
+ }
+
+ _ => {
+ struct_span_err!(
+ tcx.sess,
+ span,
+ E0376,
+ "the trait `CoerceUnsized` may only be implemented \
+ for a coercion between structures"
+ )
+ .emit();
+ return err_info;
+ }
+ };
+
+ // Register an obligation for `A: Trait<B>`.
+ let cause = traits::ObligationCause::misc(span, impl_hir_id);
+ let predicate =
+ predicate_for_trait_def(tcx, param_env, cause, trait_def_id, 0, source, &[target.into()]);
+ let errors = traits::fully_solve_obligation(&infcx, predicate);
+ if !errors.is_empty() {
+ infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
+ }
+
+ // Finally, resolve all regions.
+ let outlives_env = OutlivesEnvironment::new(param_env);
+ infcx.check_region_obligations_and_report_errors(impl_did, &outlives_env);
+
+ CoerceUnsizedInfo { custom_kind: kind }
+}
diff --git a/compiler/rustc_typeck/src/coherence/inherent_impls.rs b/compiler/rustc_hir_analysis/src/coherence/inherent_impls.rs
index 52aad636f..2890c149b 100644
--- a/compiler/rustc_typeck/src/coherence/inherent_impls.rs
+++ b/compiler/rustc_hir_analysis/src/coherence/inherent_impls.rs
@@ -58,7 +58,7 @@ const ADD_ATTR: &str =
impl<'tcx> InherentCollect<'tcx> {
fn check_def_id(&mut self, item: &hir::Item<'_>, self_ty: Ty<'tcx>, def_id: DefId) {
- let impl_def_id = item.def_id;
+ let impl_def_id = item.owner_id;
if let Some(def_id) = def_id.as_local() {
// Add the implementation to the mapping from implementation to base
// type def ID, if there is a base type for this implementation and
@@ -89,7 +89,7 @@ impl<'tcx> InherentCollect<'tcx> {
for impl_item in items {
if !self
.tcx
- .has_attr(impl_item.id.def_id.to_def_id(), sym::rustc_allow_incoherent_impl)
+ .has_attr(impl_item.id.owner_id.to_def_id(), sym::rustc_allow_incoherent_impl)
{
struct_span_err!(
self.tcx.sess,
@@ -105,7 +105,7 @@ impl<'tcx> InherentCollect<'tcx> {
}
if let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::AsInfer) {
- self.impls_map.incoherent_impls.entry(simp).or_default().push(impl_def_id);
+ self.impls_map.incoherent_impls.entry(simp).or_default().push(impl_def_id.def_id);
} else {
bug!("unexpected self type: {:?}", self_ty);
}
@@ -135,7 +135,7 @@ impl<'tcx> InherentCollect<'tcx> {
for item in items {
if !self
.tcx
- .has_attr(item.id.def_id.to_def_id(), sym::rustc_allow_incoherent_impl)
+ .has_attr(item.id.owner_id.to_def_id(), sym::rustc_allow_incoherent_impl)
{
struct_span_err!(
self.tcx.sess,
@@ -177,7 +177,7 @@ impl<'tcx> InherentCollect<'tcx> {
}
fn check_item(&mut self, id: hir::ItemId) {
- if !matches!(self.tcx.def_kind(id.def_id), DefKind::Impl) {
+ if !matches!(self.tcx.def_kind(id.owner_id), DefKind::Impl) {
return;
}
@@ -186,7 +186,7 @@ impl<'tcx> InherentCollect<'tcx> {
return;
};
- let self_ty = self.tcx.type_of(item.def_id);
+ let self_ty = self.tcx.type_of(item.owner_id);
match *self_ty.kind() {
ty::Adt(def, _) => {
self.check_def_id(item, self_ty, def.did());
@@ -220,7 +220,9 @@ impl<'tcx> InherentCollect<'tcx> {
| ty::Ref(..)
| ty::Never
| ty::FnPtr(_)
- | ty::Tuple(..) => self.check_primitive_impl(item.def_id, self_ty, items, ty.span),
+ | ty::Tuple(..) => {
+ self.check_primitive_impl(item.owner_id.def_id, self_ty, items, ty.span)
+ }
ty::Projection(..) | ty::Opaque(..) | ty::Param(_) => {
let mut err = struct_span_err!(
self.tcx.sess,
@@ -241,7 +243,7 @@ impl<'tcx> InherentCollect<'tcx> {
| ty::Bound(..)
| ty::Placeholder(_)
| ty::Infer(_) => {
- bug!("unexpected impl self type of impl: {:?} {:?}", item.def_id, self_ty);
+ bug!("unexpected impl self type of impl: {:?} {:?}", item.owner_id, self_ty);
}
ty::Error(_) => {}
}
diff --git a/compiler/rustc_typeck/src/coherence/inherent_impls_overlap.rs b/compiler/rustc_hir_analysis/src/coherence/inherent_impls_overlap.rs
index 03e076bf5..972769eb1 100644
--- a/compiler/rustc_typeck/src/coherence/inherent_impls_overlap.rs
+++ b/compiler/rustc_hir_analysis/src/coherence/inherent_impls_overlap.rs
@@ -58,6 +58,37 @@ impl<'tcx> InherentOverlapChecker<'tcx> {
== item2.ident(self.tcx).normalize_to_macros_2_0()
}
+ fn check_for_duplicate_items_in_impl(&self, impl_: DefId) {
+ let impl_items = self.tcx.associated_items(impl_);
+
+ let mut seen_items = FxHashMap::default();
+ for impl_item in impl_items.in_definition_order() {
+ let span = self.tcx.def_span(impl_item.def_id);
+ let ident = impl_item.ident(self.tcx);
+
+ let norm_ident = ident.normalize_to_macros_2_0();
+ match seen_items.entry(norm_ident) {
+ Entry::Occupied(entry) => {
+ let former = entry.get();
+ let mut err = struct_span_err!(
+ self.tcx.sess,
+ span,
+ E0592,
+ "duplicate definitions with name `{}`",
+ ident,
+ );
+ err.span_label(span, format!("duplicate definitions for `{}`", ident));
+ err.span_label(*former, format!("other definition for `{}`", ident));
+
+ err.emit();
+ }
+ Entry::Vacant(entry) => {
+ entry.insert(span);
+ }
+ }
+ }
+ }
+
fn check_for_common_items_in_impls(
&self,
impl1: DefId,
@@ -117,29 +148,22 @@ impl<'tcx> InherentOverlapChecker<'tcx> {
// inherent impls without warning.
SkipLeakCheck::Yes,
overlap_mode,
- |overlap| {
- self.check_for_common_items_in_impls(impl1_def_id, impl2_def_id, overlap);
- false
- },
- || true,
- );
+ )
+ .map_or(true, |overlap| {
+ self.check_for_common_items_in_impls(impl1_def_id, impl2_def_id, overlap);
+ false
+ });
}
fn check_item(&mut self, id: hir::ItemId) {
- let def_kind = self.tcx.def_kind(id.def_id);
+ let def_kind = self.tcx.def_kind(id.owner_id);
if !matches!(def_kind, DefKind::Enum | DefKind::Struct | DefKind::Trait | DefKind::Union) {
return;
}
- let impls = self.tcx.inherent_impls(id.def_id);
+ let impls = self.tcx.inherent_impls(id.owner_id);
- // If there is only one inherent impl block,
- // there is nothing to overlap check it with
- if impls.len() <= 1 {
- return;
- }
-
- let overlap_mode = OverlapMode::get(self.tcx, id.def_id.to_def_id());
+ let overlap_mode = OverlapMode::get(self.tcx, id.owner_id.to_def_id());
let impls_items = impls
.iter()
@@ -152,6 +176,8 @@ impl<'tcx> InherentOverlapChecker<'tcx> {
const ALLOCATING_ALGO_THRESHOLD: usize = 500;
if impls.len() < ALLOCATING_ALGO_THRESHOLD {
for (i, &(&impl1_def_id, impl_items1)) in impls_items.iter().enumerate() {
+ self.check_for_duplicate_items_in_impl(impl1_def_id);
+
for &(&impl2_def_id, impl_items2) in &impls_items[(i + 1)..] {
if self.impls_have_common_items(impl_items1, impl_items2) {
self.check_for_overlapping_inherent_impls(
@@ -290,6 +316,8 @@ impl<'tcx> InherentOverlapChecker<'tcx> {
impl_blocks.sort_unstable();
for (i, &impl1_items_idx) in impl_blocks.iter().enumerate() {
let &(&impl1_def_id, impl_items1) = &impls_items[impl1_items_idx];
+ self.check_for_duplicate_items_in_impl(impl1_def_id);
+
for &impl2_items_idx in impl_blocks[(i + 1)..].iter() {
let &(&impl2_def_id, impl_items2) = &impls_items[impl2_items_idx];
if self.impls_have_common_items(impl_items1, impl_items2) {
diff --git a/compiler/rustc_typeck/src/coherence/mod.rs b/compiler/rustc_hir_analysis/src/coherence/mod.rs
index ae9ebe590..ae9ebe590 100644
--- a/compiler/rustc_typeck/src/coherence/mod.rs
+++ b/compiler/rustc_hir_analysis/src/coherence/mod.rs
diff --git a/compiler/rustc_typeck/src/coherence/orphan.rs b/compiler/rustc_hir_analysis/src/coherence/orphan.rs
index 1608550aa..bb45c3823 100644
--- a/compiler/rustc_typeck/src/coherence/orphan.rs
+++ b/compiler/rustc_hir_analysis/src/coherence/orphan.rs
@@ -2,10 +2,9 @@
//! crate or pertains to a type defined in this crate.
use rustc_data_structures::fx::FxHashSet;
-use rustc_errors::struct_span_err;
+use rustc_errors::{struct_span_err, DelayDm};
use rustc_errors::{Diagnostic, ErrorGuaranteed};
use rustc_hir as hir;
-use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::ty::subst::GenericArgKind;
use rustc_middle::ty::subst::InternalSubsts;
use rustc_middle::ty::util::IgnoreRegions;
@@ -43,7 +42,7 @@ fn do_orphan_check_impl<'tcx>(
) -> Result<(), ErrorGuaranteed> {
let trait_def_id = trait_ref.def_id;
- let item = tcx.hir().item(hir::ItemId { def_id });
+ let item = tcx.hir().expect_item(def_id);
let hir::ItemKind::Impl(ref impl_) = item.kind else {
bug!("{:?} is not an impl: {:?}", def_id, item);
};
@@ -102,7 +101,7 @@ fn do_orphan_check_impl<'tcx>(
span_bug!(sp, "opaque type not found, but `has_opaque_types` is set")
}
- match traits::orphan_check(tcx, item.def_id.to_def_id()) {
+ match traits::orphan_check(tcx, item.owner_id.to_def_id()) {
Ok(()) => {}
Err(err) => emit_orphan_check_error(
tcx,
@@ -229,12 +228,8 @@ fn emit_orphan_check_error<'tcx>(
"only traits defined in the current crate {msg}"
);
err.span_label(sp, "impl doesn't use only types from inside the current crate");
- for (ty, is_target_ty) in &tys {
- let mut ty = *ty;
- tcx.infer_ctxt().enter(|infcx| {
- // Remove the lifetimes unnecessary for this error.
- ty = infcx.freshen(ty);
- });
+ for &(mut ty, is_target_ty) in &tys {
+ ty = tcx.erase_regions(ty);
ty = match ty.kind() {
// Remove the type arguments from the output, as they are not relevant.
// You can think of this as the reverse of `resolve_vars_if_possible`.
@@ -264,7 +259,7 @@ fn emit_orphan_check_error<'tcx>(
};
let msg = format!("{} is not defined in the current crate{}", ty, postfix);
- if *is_target_ty {
+ if is_target_ty {
// Point at `D<A>` in `impl<A, B> for C<B> in D<A>`
err.span_label(self_ty_span, &msg);
} else {
@@ -417,30 +412,31 @@ fn lint_auto_trait_impl<'tcx>(
lint::builtin::SUSPICIOUS_AUTO_TRAIT_IMPLS,
tcx.hir().local_def_id_to_hir_id(impl_def_id),
tcx.def_span(impl_def_id),
- |err| {
- let item_span = tcx.def_span(self_type_did);
- let self_descr = tcx.def_kind(self_type_did).descr(self_type_did);
- let mut err = err.build(&format!(
+ DelayDm(|| {
+ format!(
"cross-crate traits with a default impl, like `{}`, \
should not be specialized",
tcx.def_path_str(trait_ref.def_id),
- ));
+ )
+ }),
+ |lint| {
+ let item_span = tcx.def_span(self_type_did);
+ let self_descr = tcx.def_kind(self_type_did).descr(self_type_did);
match arg {
ty::util::NotUniqueParam::DuplicateParam(arg) => {
- err.note(&format!("`{}` is mentioned multiple times", arg));
+ lint.note(&format!("`{}` is mentioned multiple times", arg));
}
ty::util::NotUniqueParam::NotParam(arg) => {
- err.note(&format!("`{}` is not a generic parameter", arg));
+ lint.note(&format!("`{}` is not a generic parameter", arg));
}
}
- err.span_note(
+ lint.span_note(
item_span,
&format!(
"try using the same sequence of generic parameters as the {} definition",
self_descr,
),
- );
- err.emit();
+ )
},
);
}
diff --git a/compiler/rustc_hir_analysis/src/coherence/unsafety.rs b/compiler/rustc_hir_analysis/src/coherence/unsafety.rs
new file mode 100644
index 000000000..a34815b45
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/coherence/unsafety.rs
@@ -0,0 +1,96 @@
+//! Unsafety checker: every impl either implements a trait defined in this
+//! crate or pertains to a type defined in this crate.
+
+use rustc_errors::struct_span_err;
+use rustc_hir as hir;
+use rustc_hir::def::DefKind;
+use rustc_hir::Unsafety;
+use rustc_middle::ty::TyCtxt;
+use rustc_span::def_id::LocalDefId;
+
+pub(super) fn check_item(tcx: TyCtxt<'_>, def_id: LocalDefId) {
+ debug_assert!(matches!(tcx.def_kind(def_id), DefKind::Impl));
+ let item = tcx.hir().expect_item(def_id);
+ let hir::ItemKind::Impl(ref impl_) = item.kind else { bug!() };
+
+ if let Some(trait_ref) = tcx.impl_trait_ref(item.owner_id) {
+ let trait_def = tcx.trait_def(trait_ref.def_id);
+ let unsafe_attr =
+ impl_.generics.params.iter().find(|p| p.pure_wrt_drop).map(|_| "may_dangle");
+ match (trait_def.unsafety, unsafe_attr, impl_.unsafety, impl_.polarity) {
+ (Unsafety::Normal, None, Unsafety::Unsafe, hir::ImplPolarity::Positive) => {
+ struct_span_err!(
+ tcx.sess,
+ item.span,
+ E0199,
+ "implementing the trait `{}` is not unsafe",
+ trait_ref.print_only_trait_path()
+ )
+ .span_suggestion_verbose(
+ item.span.with_hi(item.span.lo() + rustc_span::BytePos(7)),
+ "remove `unsafe` from this trait implementation",
+ "",
+ rustc_errors::Applicability::MachineApplicable,
+ )
+ .emit();
+ }
+
+ (Unsafety::Unsafe, _, Unsafety::Normal, hir::ImplPolarity::Positive) => {
+ struct_span_err!(
+ tcx.sess,
+ item.span,
+ E0200,
+ "the trait `{}` requires an `unsafe impl` declaration",
+ trait_ref.print_only_trait_path()
+ )
+ .note(format!(
+ "the trait `{}` enforces invariants that the compiler can't check. \
+ Review the trait documentation and make sure this implementation \
+ upholds those invariants before adding the `unsafe` keyword",
+ trait_ref.print_only_trait_path()
+ ))
+ .span_suggestion_verbose(
+ item.span.shrink_to_lo(),
+ "add `unsafe` to this trait implementation",
+ "unsafe ",
+ rustc_errors::Applicability::MaybeIncorrect,
+ )
+ .emit();
+ }
+
+ (Unsafety::Normal, Some(attr_name), Unsafety::Normal, hir::ImplPolarity::Positive) => {
+ struct_span_err!(
+ tcx.sess,
+ item.span,
+ E0569,
+ "requires an `unsafe impl` declaration due to `#[{}]` attribute",
+ attr_name
+ )
+ .note(format!(
+ "the trait `{}` enforces invariants that the compiler can't check. \
+ Review the trait documentation and make sure this implementation \
+ upholds those invariants before adding the `unsafe` keyword",
+ trait_ref.print_only_trait_path()
+ ))
+ .span_suggestion_verbose(
+ item.span.shrink_to_lo(),
+ "add `unsafe` to this trait implementation",
+ "unsafe ",
+ rustc_errors::Applicability::MaybeIncorrect,
+ )
+ .emit();
+ }
+
+ (_, _, Unsafety::Unsafe, hir::ImplPolarity::Negative(_)) => {
+ // Reported in AST validation
+ tcx.sess.delay_span_bug(item.span, "unsafe negative impl");
+ }
+ (_, _, Unsafety::Normal, hir::ImplPolarity::Negative(_))
+ | (Unsafety::Unsafe, _, Unsafety::Unsafe, hir::ImplPolarity::Positive)
+ | (Unsafety::Normal, Some(_), Unsafety::Unsafe, hir::ImplPolarity::Positive)
+ | (Unsafety::Normal, None, Unsafety::Normal, _) => {
+ // OK
+ }
+ }
+ }
+}
diff --git a/compiler/rustc_hir_analysis/src/collect.rs b/compiler/rustc_hir_analysis/src/collect.rs
new file mode 100644
index 000000000..346d2e2fc
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/collect.rs
@@ -0,0 +1,2263 @@
+//! "Collection" is the process of determining the type and other external
+//! details of each item in Rust. Collection is specifically concerned
+//! with *inter-procedural* things -- for example, for a function
+//! definition, collection will figure out the type and signature of the
+//! function, but it will not visit the *body* of the function in any way,
+//! nor examine type annotations on local variables (that's the job of
+//! type *checking*).
+//!
+//! Collecting is ultimately defined by a bundle of queries that
+//! inquire after various facts about the items in the crate (e.g.,
+//! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
+//! for the full set.
+//!
+//! At present, however, we do run collection across all items in the
+//! crate as a kind of pass. This should eventually be factored away.
+
+use crate::astconv::AstConv;
+use crate::check::intrinsic::intrinsic_operation_unsafety;
+use crate::errors;
+use rustc_ast as ast;
+use rustc_ast::{MetaItemKind, NestedMetaItem};
+use rustc_attr::{list_contains_name, InlineAttr, InstructionSetAttr, OptimizeAttr};
+use rustc_data_structures::captures::Captures;
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder, ErrorGuaranteed, StashKey};
+use rustc_hir as hir;
+use rustc_hir::def::CtorKind;
+use rustc_hir::def_id::{DefId, LocalDefId, LOCAL_CRATE};
+use rustc_hir::intravisit::{self, Visitor};
+use rustc_hir::weak_lang_items;
+use rustc_hir::{GenericParamKind, Node};
+use rustc_middle::hir::nested_filter;
+use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
+use rustc_middle::mir::mono::Linkage;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::util::{Discr, IntTypeExt};
+use rustc_middle::ty::ReprOptions;
+use rustc_middle::ty::{self, AdtKind, Const, DefIdTree, IsSuggestable, Ty, TyCtxt};
+use rustc_session::lint;
+use rustc_session::parse::feature_err;
+use rustc_span::symbol::{kw, sym, Ident, Symbol};
+use rustc_span::Span;
+use rustc_target::spec::{abi, SanitizerSet};
+use rustc_trait_selection::traits::error_reporting::suggestions::NextTypeParamName;
+use std::iter;
+
+mod generics_of;
+mod item_bounds;
+mod lifetimes;
+mod predicates_of;
+mod type_of;
+
+///////////////////////////////////////////////////////////////////////////
+// Main entry point
+
+fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
+ tcx.hir().visit_item_likes_in_module(module_def_id, &mut CollectItemTypesVisitor { tcx });
+}
+
+pub fn provide(providers: &mut Providers) {
+ lifetimes::provide(providers);
+ *providers = Providers {
+ opt_const_param_of: type_of::opt_const_param_of,
+ type_of: type_of::type_of,
+ item_bounds: item_bounds::item_bounds,
+ explicit_item_bounds: item_bounds::explicit_item_bounds,
+ generics_of: generics_of::generics_of,
+ predicates_of: predicates_of::predicates_of,
+ predicates_defined_on,
+ explicit_predicates_of: predicates_of::explicit_predicates_of,
+ super_predicates_of: predicates_of::super_predicates_of,
+ super_predicates_that_define_assoc_type:
+ predicates_of::super_predicates_that_define_assoc_type,
+ trait_explicit_predicates_and_bounds: predicates_of::trait_explicit_predicates_and_bounds,
+ type_param_predicates: predicates_of::type_param_predicates,
+ trait_def,
+ adt_def,
+ fn_sig,
+ impl_trait_ref,
+ impl_polarity,
+ is_foreign_item,
+ generator_kind,
+ codegen_fn_attrs,
+ asm_target_features,
+ collect_mod_item_types,
+ should_inherit_track_caller,
+ ..*providers
+ };
+}
+
+///////////////////////////////////////////////////////////////////////////
+
+/// Context specific to some particular item. This is what implements
+/// [`AstConv`].
+///
+/// # `ItemCtxt` vs `FnCtxt`
+///
+/// `ItemCtxt` is primarily used to type-check item signatures and lower them
+/// from HIR to their [`ty::Ty`] representation, which is exposed using [`AstConv`].
+/// It's also used for the bodies of items like structs where the body (the fields)
+/// are just signatures.
+///
+/// This is in contrast to `FnCtxt`, which is used to type-check bodies of
+/// functions, closures, and `const`s -- anywhere that expressions and statements show up.
+///
+/// An important thing to note is that `ItemCtxt` does no inference -- it has no [`InferCtxt`] --
+/// while `FnCtxt` does do inference.
+///
+/// [`InferCtxt`]: rustc_infer::infer::InferCtxt
+///
+/// # Trait predicates
+///
+/// `ItemCtxt` has information about the predicates that are defined
+/// on the trait. Unfortunately, this predicate information is
+/// available in various different forms at various points in the
+/// process. So we can't just store a pointer to e.g., the AST or the
+/// parsed ty form, we have to be more flexible. To this end, the
+/// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
+/// `get_type_parameter_bounds` requests, drawing the information from
+/// the AST (`hir::Generics`), recursively.
+pub struct ItemCtxt<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ item_def_id: DefId,
+}
+
+///////////////////////////////////////////////////////////////////////////
+
+#[derive(Default)]
+pub(crate) struct HirPlaceholderCollector(pub(crate) Vec<Span>);
+
+impl<'v> Visitor<'v> for HirPlaceholderCollector {
+ fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
+ if let hir::TyKind::Infer = t.kind {
+ self.0.push(t.span);
+ }
+ intravisit::walk_ty(self, t)
+ }
+ fn visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>) {
+ match generic_arg {
+ hir::GenericArg::Infer(inf) => {
+ self.0.push(inf.span);
+ intravisit::walk_inf(self, inf);
+ }
+ hir::GenericArg::Type(t) => self.visit_ty(t),
+ _ => {}
+ }
+ }
+ fn visit_array_length(&mut self, length: &'v hir::ArrayLen) {
+ if let &hir::ArrayLen::Infer(_, span) = length {
+ self.0.push(span);
+ }
+ intravisit::walk_array_len(self, length)
+ }
+}
+
+struct CollectItemTypesVisitor<'tcx> {
+ tcx: TyCtxt<'tcx>,
+}
+
+/// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
+/// and suggest adding type parameters in the appropriate place, taking into consideration any and
+/// all already existing generic type parameters to avoid suggesting a name that is already in use.
+pub(crate) fn placeholder_type_error<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ generics: Option<&hir::Generics<'_>>,
+ placeholder_types: Vec<Span>,
+ suggest: bool,
+ hir_ty: Option<&hir::Ty<'_>>,
+ kind: &'static str,
+) {
+ if placeholder_types.is_empty() {
+ return;
+ }
+
+ placeholder_type_error_diag(tcx, generics, placeholder_types, vec![], suggest, hir_ty, kind)
+ .emit();
+}
+
+pub(crate) fn placeholder_type_error_diag<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ generics: Option<&hir::Generics<'_>>,
+ placeholder_types: Vec<Span>,
+ additional_spans: Vec<Span>,
+ suggest: bool,
+ hir_ty: Option<&hir::Ty<'_>>,
+ kind: &'static str,
+) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
+ if placeholder_types.is_empty() {
+ return bad_placeholder(tcx, additional_spans, kind);
+ }
+
+ let params = generics.map(|g| g.params).unwrap_or_default();
+ let type_name = params.next_type_param_name(None);
+ let mut sugg: Vec<_> =
+ placeholder_types.iter().map(|sp| (*sp, (*type_name).to_string())).collect();
+
+ if let Some(generics) = generics {
+ if let Some(arg) = params.iter().find(|arg| {
+ matches!(arg.name, hir::ParamName::Plain(Ident { name: kw::Underscore, .. }))
+ }) {
+ // Account for `_` already present in cases like `struct S<_>(_);` and suggest
+ // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
+ sugg.push((arg.span, (*type_name).to_string()));
+ } else if let Some(span) = generics.span_for_param_suggestion() {
+ // Account for bounds, we want `fn foo<T: E, K>(_: K)` not `fn foo<T, K: E>(_: K)`.
+ sugg.push((span, format!(", {}", type_name)));
+ } else {
+ sugg.push((generics.span, format!("<{}>", type_name)));
+ }
+ }
+
+ let mut err =
+ bad_placeholder(tcx, placeholder_types.into_iter().chain(additional_spans).collect(), kind);
+
+ // Suggest, but only if it is not a function in const or static
+ if suggest {
+ let mut is_fn = false;
+ let mut is_const_or_static = false;
+
+ if let Some(hir_ty) = hir_ty && let hir::TyKind::BareFn(_) = hir_ty.kind {
+ is_fn = true;
+
+ // Check if parent is const or static
+ let parent_id = tcx.hir().get_parent_node(hir_ty.hir_id);
+ let parent_node = tcx.hir().get(parent_id);
+
+ is_const_or_static = matches!(
+ parent_node,
+ Node::Item(&hir::Item {
+ kind: hir::ItemKind::Const(..) | hir::ItemKind::Static(..),
+ ..
+ }) | Node::TraitItem(&hir::TraitItem {
+ kind: hir::TraitItemKind::Const(..),
+ ..
+ }) | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. })
+ );
+ }
+
+ // if function is wrapped around a const or static,
+ // then don't show the suggestion
+ if !(is_fn && is_const_or_static) {
+ err.multipart_suggestion(
+ "use type parameters instead",
+ sugg,
+ Applicability::HasPlaceholders,
+ );
+ }
+ }
+
+ err
+}
+
+fn reject_placeholder_type_signatures_in_item<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ item: &'tcx hir::Item<'tcx>,
+) {
+ let (generics, suggest) = match &item.kind {
+ hir::ItemKind::Union(_, generics)
+ | hir::ItemKind::Enum(_, generics)
+ | hir::ItemKind::TraitAlias(generics, _)
+ | hir::ItemKind::Trait(_, _, generics, ..)
+ | hir::ItemKind::Impl(hir::Impl { generics, .. })
+ | hir::ItemKind::Struct(_, generics) => (generics, true),
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
+ | hir::ItemKind::TyAlias(_, generics) => (generics, false),
+ // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
+ _ => return,
+ };
+
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_item(item);
+
+ placeholder_type_error(tcx, Some(generics), visitor.0, suggest, None, item.kind.descr());
+}
+
+impl<'tcx> Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
+ type NestedFilter = nested_filter::OnlyBodies;
+
+ fn nested_visit_map(&mut self) -> Self::Map {
+ self.tcx.hir()
+ }
+
+ fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
+ convert_item(self.tcx, item.item_id());
+ reject_placeholder_type_signatures_in_item(self.tcx, item);
+ intravisit::walk_item(self, item);
+ }
+
+ fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
+ for param in generics.params {
+ match param.kind {
+ hir::GenericParamKind::Lifetime { .. } => {}
+ hir::GenericParamKind::Type { default: Some(_), .. } => {
+ let def_id = self.tcx.hir().local_def_id(param.hir_id);
+ self.tcx.ensure().type_of(def_id);
+ }
+ hir::GenericParamKind::Type { .. } => {}
+ hir::GenericParamKind::Const { default, .. } => {
+ let def_id = self.tcx.hir().local_def_id(param.hir_id);
+ self.tcx.ensure().type_of(def_id);
+ if let Some(default) = default {
+ let default_def_id = self.tcx.hir().local_def_id(default.hir_id);
+ // need to store default and type of default
+ self.tcx.ensure().type_of(default_def_id);
+ self.tcx.ensure().const_param_default(def_id);
+ }
+ }
+ }
+ }
+ intravisit::walk_generics(self, generics);
+ }
+
+ fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
+ if let hir::ExprKind::Closure { .. } = expr.kind {
+ let def_id = self.tcx.hir().local_def_id(expr.hir_id);
+ self.tcx.ensure().generics_of(def_id);
+ // We do not call `type_of` for closures here as that
+ // depends on typecheck and would therefore hide
+ // any further errors in case one typeck fails.
+ }
+ intravisit::walk_expr(self, expr);
+ }
+
+ fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
+ convert_trait_item(self.tcx, trait_item.trait_item_id());
+ intravisit::walk_trait_item(self, trait_item);
+ }
+
+ fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
+ convert_impl_item(self.tcx, impl_item.impl_item_id());
+ intravisit::walk_impl_item(self, impl_item);
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Utility types and common code for the above passes.
+
+fn bad_placeholder<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ mut spans: Vec<Span>,
+ kind: &'static str,
+) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
+ let kind = if kind.ends_with('s') { format!("{}es", kind) } else { format!("{}s", kind) };
+
+ spans.sort();
+ let mut err = struct_span_err!(
+ tcx.sess,
+ spans.clone(),
+ E0121,
+ "the placeholder `_` is not allowed within types on item signatures for {}",
+ kind
+ );
+ for span in spans {
+ err.span_label(span, "not allowed in type signatures");
+ }
+ err
+}
+
+impl<'tcx> ItemCtxt<'tcx> {
+ pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
+ ItemCtxt { tcx, item_def_id }
+ }
+
+ pub fn to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
+ <dyn AstConv<'_>>::ast_ty_to_ty(self, ast_ty)
+ }
+
+ pub fn hir_id(&self) -> hir::HirId {
+ self.tcx.hir().local_def_id_to_hir_id(self.item_def_id.expect_local())
+ }
+
+ pub fn node(&self) -> hir::Node<'tcx> {
+ self.tcx.hir().get(self.hir_id())
+ }
+}
+
+impl<'tcx> AstConv<'tcx> for ItemCtxt<'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+
+ fn item_def_id(&self) -> Option<DefId> {
+ Some(self.item_def_id)
+ }
+
+ fn get_type_parameter_bounds(
+ &self,
+ span: Span,
+ def_id: DefId,
+ assoc_name: Ident,
+ ) -> ty::GenericPredicates<'tcx> {
+ self.tcx.at(span).type_param_predicates((
+ self.item_def_id,
+ def_id.expect_local(),
+ assoc_name,
+ ))
+ }
+
+ fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
+ None
+ }
+
+ fn allow_ty_infer(&self) -> bool {
+ false
+ }
+
+ fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
+ self.tcx().ty_error_with_message(span, "bad placeholder type")
+ }
+
+ fn ct_infer(&self, ty: Ty<'tcx>, _: Option<&ty::GenericParamDef>, span: Span) -> Const<'tcx> {
+ let ty = self.tcx.fold_regions(ty, |r, _| match *r {
+ ty::ReErased => self.tcx.lifetimes.re_static,
+ _ => r,
+ });
+ self.tcx().const_error_with_message(ty, span, "bad placeholder constant")
+ }
+
+ fn projected_ty_from_poly_trait_ref(
+ &self,
+ span: Span,
+ item_def_id: DefId,
+ item_segment: &hir::PathSegment<'_>,
+ poly_trait_ref: ty::PolyTraitRef<'tcx>,
+ ) -> Ty<'tcx> {
+ if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
+ let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
+ self,
+ span,
+ item_def_id,
+ item_segment,
+ trait_ref.substs,
+ );
+ self.tcx().mk_projection(item_def_id, item_substs)
+ } else {
+ // There are no late-bound regions; we can just ignore the binder.
+ let mut err = struct_span_err!(
+ self.tcx().sess,
+ span,
+ E0212,
+ "cannot use the associated type of a trait \
+ with uninferred generic parameters"
+ );
+
+ match self.node() {
+ hir::Node::Field(_) | hir::Node::Ctor(_) | hir::Node::Variant(_) => {
+ let item = self
+ .tcx
+ .hir()
+ .expect_item(self.tcx.hir().get_parent_item(self.hir_id()).def_id);
+ match &item.kind {
+ hir::ItemKind::Enum(_, generics)
+ | hir::ItemKind::Struct(_, generics)
+ | hir::ItemKind::Union(_, generics) => {
+ let lt_name = get_new_lifetime_name(self.tcx, poly_trait_ref, generics);
+ let (lt_sp, sugg) = match generics.params {
+ [] => (generics.span, format!("<{}>", lt_name)),
+ [bound, ..] => {
+ (bound.span.shrink_to_lo(), format!("{}, ", lt_name))
+ }
+ };
+ let suggestions = vec![
+ (lt_sp, sugg),
+ (
+ span.with_hi(item_segment.ident.span.lo()),
+ format!(
+ "{}::",
+ // Replace the existing lifetimes with a new named lifetime.
+ self.tcx.replace_late_bound_regions_uncached(
+ poly_trait_ref,
+ |_| {
+ self.tcx.mk_region(ty::ReEarlyBound(
+ ty::EarlyBoundRegion {
+ def_id: item_def_id,
+ index: 0,
+ name: Symbol::intern(&lt_name),
+ },
+ ))
+ }
+ ),
+ ),
+ ),
+ ];
+ err.multipart_suggestion(
+ "use a fully qualified path with explicit lifetimes",
+ suggestions,
+ Applicability::MaybeIncorrect,
+ );
+ }
+ _ => {}
+ }
+ }
+ hir::Node::Item(hir::Item {
+ kind:
+ hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..),
+ ..
+ }) => {}
+ hir::Node::Item(_)
+ | hir::Node::ForeignItem(_)
+ | hir::Node::TraitItem(_)
+ | hir::Node::ImplItem(_) => {
+ err.span_suggestion_verbose(
+ span.with_hi(item_segment.ident.span.lo()),
+ "use a fully qualified path with inferred lifetimes",
+ format!(
+ "{}::",
+ // Erase named lt, we want `<A as B<'_>::C`, not `<A as B<'a>::C`.
+ self.tcx.anonymize_late_bound_regions(poly_trait_ref).skip_binder(),
+ ),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ _ => {}
+ }
+ err.emit();
+ self.tcx().ty_error()
+ }
+ }
+
+ fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
+ // Types in item signatures are not normalized to avoid undue dependencies.
+ ty
+ }
+
+ fn set_tainted_by_errors(&self) {
+ // There's no obvious place to track this, so just let it go.
+ }
+
+ fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
+ // There's no place to record types from signatures?
+ }
+}
+
+/// Synthesize a new lifetime name that doesn't clash with any of the lifetimes already present.
+fn get_new_lifetime_name<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ poly_trait_ref: ty::PolyTraitRef<'tcx>,
+ generics: &hir::Generics<'tcx>,
+) -> String {
+ let existing_lifetimes = tcx
+ .collect_referenced_late_bound_regions(&poly_trait_ref)
+ .into_iter()
+ .filter_map(|lt| {
+ if let ty::BoundRegionKind::BrNamed(_, name) = lt {
+ Some(name.as_str().to_string())
+ } else {
+ None
+ }
+ })
+ .chain(generics.params.iter().filter_map(|param| {
+ if let hir::GenericParamKind::Lifetime { .. } = &param.kind {
+ Some(param.name.ident().as_str().to_string())
+ } else {
+ None
+ }
+ }))
+ .collect::<FxHashSet<String>>();
+
+ let a_to_z_repeat_n = |n| {
+ (b'a'..=b'z').map(move |c| {
+ let mut s = '\''.to_string();
+ s.extend(std::iter::repeat(char::from(c)).take(n));
+ s
+ })
+ };
+
+ // If all single char lifetime names are present, we wrap around and double the chars.
+ (1..).flat_map(a_to_z_repeat_n).find(|lt| !existing_lifetimes.contains(lt.as_str())).unwrap()
+}
+
+fn convert_item(tcx: TyCtxt<'_>, item_id: hir::ItemId) {
+ let it = tcx.hir().item(item_id);
+ debug!("convert: item {} with id {}", it.ident, it.hir_id());
+ let def_id = item_id.owner_id.def_id;
+
+ match it.kind {
+ // These don't define types.
+ hir::ItemKind::ExternCrate(_)
+ | hir::ItemKind::Use(..)
+ | hir::ItemKind::Macro(..)
+ | hir::ItemKind::Mod(_)
+ | hir::ItemKind::GlobalAsm(_) => {}
+ hir::ItemKind::ForeignMod { items, .. } => {
+ for item in items {
+ let item = tcx.hir().foreign_item(item.id);
+ tcx.ensure().generics_of(item.owner_id);
+ tcx.ensure().type_of(item.owner_id);
+ tcx.ensure().predicates_of(item.owner_id);
+ match item.kind {
+ hir::ForeignItemKind::Fn(..) => tcx.ensure().fn_sig(item.owner_id),
+ hir::ForeignItemKind::Static(..) => {
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_foreign_item(item);
+ placeholder_type_error(
+ tcx,
+ None,
+ visitor.0,
+ false,
+ None,
+ "static variable",
+ );
+ }
+ _ => (),
+ }
+ }
+ }
+ hir::ItemKind::Enum(ref enum_definition, _) => {
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ convert_enum_variant_types(tcx, def_id.to_def_id(), enum_definition.variants);
+ }
+ hir::ItemKind::Impl { .. } => {
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().impl_trait_ref(def_id);
+ tcx.ensure().predicates_of(def_id);
+ }
+ hir::ItemKind::Trait(..) => {
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().trait_def(def_id);
+ tcx.at(it.span).super_predicates_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ }
+ hir::ItemKind::TraitAlias(..) => {
+ tcx.ensure().generics_of(def_id);
+ tcx.at(it.span).super_predicates_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ }
+ hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+
+ for f in struct_def.fields() {
+ let def_id = tcx.hir().local_def_id(f.hir_id);
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ }
+
+ if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
+ convert_variant_ctor(tcx, ctor_hir_id);
+ }
+ }
+
+ // Desugared from `impl Trait`, so visited by the function's return type.
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy {
+ origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..),
+ ..
+ }) => {}
+
+ // Don't call `type_of` on opaque types, since that depends on type
+ // checking function bodies. `check_item_type` ensures that it's called
+ // instead.
+ hir::ItemKind::OpaqueTy(..) => {
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ tcx.ensure().explicit_item_bounds(def_id);
+ }
+ hir::ItemKind::TyAlias(..)
+ | hir::ItemKind::Static(..)
+ | hir::ItemKind::Const(..)
+ | hir::ItemKind::Fn(..) => {
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ match it.kind {
+ hir::ItemKind::Fn(..) => tcx.ensure().fn_sig(def_id),
+ hir::ItemKind::OpaqueTy(..) => tcx.ensure().item_bounds(def_id),
+ hir::ItemKind::Const(ty, ..) | hir::ItemKind::Static(ty, ..) => {
+ if !is_suggestable_infer_ty(ty) {
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_item(it);
+ placeholder_type_error(tcx, None, visitor.0, false, None, it.kind.descr());
+ }
+ }
+ _ => (),
+ }
+ }
+ }
+}
+
+fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::TraitItemId) {
+ let trait_item = tcx.hir().trait_item(trait_item_id);
+ let def_id = trait_item_id.owner_id;
+ tcx.ensure().generics_of(def_id);
+
+ match trait_item.kind {
+ hir::TraitItemKind::Fn(..) => {
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().fn_sig(def_id);
+ }
+
+ hir::TraitItemKind::Const(.., Some(_)) => {
+ tcx.ensure().type_of(def_id);
+ }
+
+ hir::TraitItemKind::Const(hir_ty, _) => {
+ tcx.ensure().type_of(def_id);
+ // Account for `const C: _;`.
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_trait_item(trait_item);
+ if !tcx.sess.diagnostic().has_stashed_diagnostic(hir_ty.span, StashKey::ItemNoType) {
+ placeholder_type_error(tcx, None, visitor.0, false, None, "constant");
+ }
+ }
+
+ hir::TraitItemKind::Type(_, Some(_)) => {
+ tcx.ensure().item_bounds(def_id);
+ tcx.ensure().type_of(def_id);
+ // Account for `type T = _;`.
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_trait_item(trait_item);
+ placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
+ }
+
+ hir::TraitItemKind::Type(_, None) => {
+ tcx.ensure().item_bounds(def_id);
+ // #74612: Visit and try to find bad placeholders
+ // even if there is no concrete type.
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_trait_item(trait_item);
+
+ placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
+ }
+ };
+
+ tcx.ensure().predicates_of(def_id);
+}
+
+fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::ImplItemId) {
+ let def_id = impl_item_id.owner_id;
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ let impl_item = tcx.hir().impl_item(impl_item_id);
+ match impl_item.kind {
+ hir::ImplItemKind::Fn(..) => {
+ tcx.ensure().fn_sig(def_id);
+ }
+ hir::ImplItemKind::Type(_) => {
+ // Account for `type T = _;`
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_impl_item(impl_item);
+
+ placeholder_type_error(tcx, None, visitor.0, false, None, "associated type");
+ }
+ hir::ImplItemKind::Const(..) => {}
+ }
+}
+
+fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
+ let def_id = tcx.hir().local_def_id(ctor_id);
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+}
+
+fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
+ let def = tcx.adt_def(def_id);
+ let repr_type = def.repr().discr_type();
+ let initial = repr_type.initial_discriminant(tcx);
+ let mut prev_discr = None::<Discr<'_>>;
+
+ // fill the discriminant values and field types
+ for variant in variants {
+ let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
+ prev_discr = Some(
+ if let Some(ref e) = variant.disr_expr {
+ let expr_did = tcx.hir().local_def_id(e.hir_id);
+ def.eval_explicit_discr(tcx, expr_did.to_def_id())
+ } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
+ Some(discr)
+ } else {
+ struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
+ .span_label(
+ variant.span,
+ format!("overflowed on value after {}", prev_discr.unwrap()),
+ )
+ .note(&format!(
+ "explicitly set `{} = {}` if that is desired outcome",
+ variant.ident, wrapped_discr
+ ))
+ .emit();
+ None
+ }
+ .unwrap_or(wrapped_discr),
+ );
+
+ for f in variant.data.fields() {
+ let def_id = tcx.hir().local_def_id(f.hir_id);
+ tcx.ensure().generics_of(def_id);
+ tcx.ensure().type_of(def_id);
+ tcx.ensure().predicates_of(def_id);
+ }
+
+ // Convert the ctor, if any. This also registers the variant as
+ // an item.
+ if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
+ convert_variant_ctor(tcx, ctor_hir_id);
+ }
+ }
+}
+
+fn convert_variant(
+ tcx: TyCtxt<'_>,
+ variant_did: Option<LocalDefId>,
+ ctor_did: Option<LocalDefId>,
+ ident: Ident,
+ discr: ty::VariantDiscr,
+ def: &hir::VariantData<'_>,
+ adt_kind: ty::AdtKind,
+ parent_did: LocalDefId,
+) -> ty::VariantDef {
+ let mut seen_fields: FxHashMap<Ident, Span> = Default::default();
+ let fields = def
+ .fields()
+ .iter()
+ .map(|f| {
+ let fid = tcx.hir().local_def_id(f.hir_id);
+ let dup_span = seen_fields.get(&f.ident.normalize_to_macros_2_0()).cloned();
+ if let Some(prev_span) = dup_span {
+ tcx.sess.emit_err(errors::FieldAlreadyDeclared {
+ field_name: f.ident,
+ span: f.span,
+ prev_span,
+ });
+ } else {
+ seen_fields.insert(f.ident.normalize_to_macros_2_0(), f.span);
+ }
+
+ ty::FieldDef { did: fid.to_def_id(), name: f.ident.name, vis: tcx.visibility(fid) }
+ })
+ .collect();
+ let recovered = match def {
+ hir::VariantData::Struct(_, r) => *r,
+ _ => false,
+ };
+ ty::VariantDef::new(
+ ident.name,
+ variant_did.map(LocalDefId::to_def_id),
+ ctor_did.map(LocalDefId::to_def_id),
+ discr,
+ fields,
+ CtorKind::from_hir(def),
+ adt_kind,
+ parent_did.to_def_id(),
+ recovered,
+ adt_kind == AdtKind::Struct && tcx.has_attr(parent_did.to_def_id(), sym::non_exhaustive)
+ || variant_did.map_or(false, |variant_did| {
+ tcx.has_attr(variant_did.to_def_id(), sym::non_exhaustive)
+ }),
+ )
+}
+
+fn adt_def<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> ty::AdtDef<'tcx> {
+ use rustc_hir::*;
+
+ let def_id = def_id.expect_local();
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let Node::Item(item) = tcx.hir().get(hir_id) else {
+ bug!();
+ };
+
+ let repr = ReprOptions::new(tcx, def_id.to_def_id());
+ let (kind, variants) = match item.kind {
+ ItemKind::Enum(ref def, _) => {
+ let mut distance_from_explicit = 0;
+ let variants = def
+ .variants
+ .iter()
+ .map(|v| {
+ let variant_did = Some(tcx.hir().local_def_id(v.id));
+ let ctor_did =
+ v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
+
+ let discr = if let Some(ref e) = v.disr_expr {
+ distance_from_explicit = 0;
+ ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id).to_def_id())
+ } else {
+ ty::VariantDiscr::Relative(distance_from_explicit)
+ };
+ distance_from_explicit += 1;
+
+ convert_variant(
+ tcx,
+ variant_did,
+ ctor_did,
+ v.ident,
+ discr,
+ &v.data,
+ AdtKind::Enum,
+ def_id,
+ )
+ })
+ .collect();
+
+ (AdtKind::Enum, variants)
+ }
+ ItemKind::Struct(ref def, _) => {
+ let variant_did = None::<LocalDefId>;
+ let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
+
+ let variants = std::iter::once(convert_variant(
+ tcx,
+ variant_did,
+ ctor_did,
+ item.ident,
+ ty::VariantDiscr::Relative(0),
+ def,
+ AdtKind::Struct,
+ def_id,
+ ))
+ .collect();
+
+ (AdtKind::Struct, variants)
+ }
+ ItemKind::Union(ref def, _) => {
+ let variant_did = None;
+ let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
+
+ let variants = std::iter::once(convert_variant(
+ tcx,
+ variant_did,
+ ctor_did,
+ item.ident,
+ ty::VariantDiscr::Relative(0),
+ def,
+ AdtKind::Union,
+ def_id,
+ ))
+ .collect();
+
+ (AdtKind::Union, variants)
+ }
+ _ => bug!(),
+ };
+ tcx.alloc_adt_def(def_id.to_def_id(), kind, variants, repr)
+}
+
+fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> ty::TraitDef {
+ let item = tcx.hir().expect_item(def_id.expect_local());
+
+ let (is_auto, unsafety, items) = match item.kind {
+ hir::ItemKind::Trait(is_auto, unsafety, .., items) => {
+ (is_auto == hir::IsAuto::Yes, unsafety, items)
+ }
+ hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal, &[][..]),
+ _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
+ };
+
+ let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
+ if paren_sugar && !tcx.features().unboxed_closures {
+ tcx.sess
+ .struct_span_err(
+ item.span,
+ "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
+ which traits can use parenthetical notation",
+ )
+ .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
+ .emit();
+ }
+
+ let is_marker = tcx.has_attr(def_id, sym::marker);
+ let skip_array_during_method_dispatch =
+ tcx.has_attr(def_id, sym::rustc_skip_array_during_method_dispatch);
+ let spec_kind = if tcx.has_attr(def_id, sym::rustc_unsafe_specialization_marker) {
+ ty::trait_def::TraitSpecializationKind::Marker
+ } else if tcx.has_attr(def_id, sym::rustc_specialization_trait) {
+ ty::trait_def::TraitSpecializationKind::AlwaysApplicable
+ } else {
+ ty::trait_def::TraitSpecializationKind::None
+ };
+ let must_implement_one_of = tcx
+ .get_attr(def_id, sym::rustc_must_implement_one_of)
+ // Check that there are at least 2 arguments of `#[rustc_must_implement_one_of]`
+ // and that they are all identifiers
+ .and_then(|attr| match attr.meta_item_list() {
+ Some(items) if items.len() < 2 => {
+ tcx.sess
+ .struct_span_err(
+ attr.span,
+ "the `#[rustc_must_implement_one_of]` attribute must be \
+ used with at least 2 args",
+ )
+ .emit();
+
+ None
+ }
+ Some(items) => items
+ .into_iter()
+ .map(|item| item.ident().ok_or(item.span()))
+ .collect::<Result<Box<[_]>, _>>()
+ .map_err(|span| {
+ tcx.sess
+ .struct_span_err(span, "must be a name of an associated function")
+ .emit();
+ })
+ .ok()
+ .zip(Some(attr.span)),
+ // Error is reported by `rustc_attr!`
+ None => None,
+ })
+ // Check that all arguments of `#[rustc_must_implement_one_of]` reference
+ // functions in the trait with default implementations
+ .and_then(|(list, attr_span)| {
+ let errors = list.iter().filter_map(|ident| {
+ let item = items.iter().find(|item| item.ident == *ident);
+
+ match item {
+ Some(item) if matches!(item.kind, hir::AssocItemKind::Fn { .. }) => {
+ if !tcx.impl_defaultness(item.id.owner_id).has_value() {
+ tcx.sess
+ .struct_span_err(
+ item.span,
+ "This function doesn't have a default implementation",
+ )
+ .span_note(attr_span, "required by this annotation")
+ .emit();
+
+ return Some(());
+ }
+
+ return None;
+ }
+ Some(item) => {
+ tcx.sess
+ .struct_span_err(item.span, "Not a function")
+ .span_note(attr_span, "required by this annotation")
+ .note(
+ "All `#[rustc_must_implement_one_of]` arguments \
+ must be associated function names",
+ )
+ .emit();
+ }
+ None => {
+ tcx.sess
+ .struct_span_err(ident.span, "Function not found in this trait")
+ .emit();
+ }
+ }
+
+ Some(())
+ });
+
+ (errors.count() == 0).then_some(list)
+ })
+ // Check for duplicates
+ .and_then(|list| {
+ let mut set: FxHashMap<Symbol, Span> = FxHashMap::default();
+ let mut no_dups = true;
+
+ for ident in &*list {
+ if let Some(dup) = set.insert(ident.name, ident.span) {
+ tcx.sess
+ .struct_span_err(vec![dup, ident.span], "Functions names are duplicated")
+ .note(
+ "All `#[rustc_must_implement_one_of]` arguments \
+ must be unique",
+ )
+ .emit();
+
+ no_dups = false;
+ }
+ }
+
+ no_dups.then_some(list)
+ });
+
+ ty::TraitDef::new(
+ def_id,
+ unsafety,
+ paren_sugar,
+ is_auto,
+ is_marker,
+ skip_array_during_method_dispatch,
+ spec_kind,
+ must_implement_one_of,
+ )
+}
+
+fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
+ generic_args.iter().any(|arg| match arg {
+ hir::GenericArg::Type(ty) => is_suggestable_infer_ty(ty),
+ hir::GenericArg::Infer(_) => true,
+ _ => false,
+ })
+}
+
+/// Whether `ty` is a type with `_` placeholders that can be inferred. Used in diagnostics only to
+/// use inference to provide suggestions for the appropriate type if possible.
+fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
+ debug!(?ty);
+ use hir::TyKind::*;
+ match &ty.kind {
+ Infer => true,
+ Slice(ty) => is_suggestable_infer_ty(ty),
+ Array(ty, length) => {
+ is_suggestable_infer_ty(ty) || matches!(length, hir::ArrayLen::Infer(_, _))
+ }
+ Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
+ Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
+ OpaqueDef(_, generic_args, _) => are_suggestable_generic_args(generic_args),
+ Path(hir::QPath::TypeRelative(ty, segment)) => {
+ is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.args().args)
+ }
+ Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
+ ty_opt.map_or(false, is_suggestable_infer_ty)
+ || segments.iter().any(|segment| are_suggestable_generic_args(segment.args().args))
+ }
+ _ => false,
+ }
+}
+
+pub fn get_infer_ret_ty<'hir>(output: &'hir hir::FnRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
+ if let hir::FnRetTy::Return(ty) = output {
+ if is_suggestable_infer_ty(ty) {
+ return Some(&*ty);
+ }
+ }
+ None
+}
+
+#[instrument(level = "debug", skip(tcx))]
+fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
+ use rustc_hir::Node::*;
+ use rustc_hir::*;
+
+ let def_id = def_id.expect_local();
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+
+ let icx = ItemCtxt::new(tcx, def_id.to_def_id());
+
+ match tcx.hir().get(hir_id) {
+ TraitItem(hir::TraitItem {
+ kind: TraitItemKind::Fn(sig, TraitFn::Provided(_)),
+ generics,
+ ..
+ })
+ | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), .. }) => {
+ infer_return_ty_for_fn_sig(tcx, sig, generics, def_id, &icx)
+ }
+
+ ImplItem(hir::ImplItem { kind: ImplItemKind::Fn(sig, _), generics, .. }) => {
+ // Do not try to infer the return type for a impl method coming from a trait
+ if let Item(hir::Item { kind: ItemKind::Impl(i), .. }) =
+ tcx.hir().get(tcx.hir().get_parent_node(hir_id))
+ && i.of_trait.is_some()
+ {
+ <dyn AstConv<'_>>::ty_of_fn(
+ &icx,
+ hir_id,
+ sig.header.unsafety,
+ sig.header.abi,
+ sig.decl,
+ Some(generics),
+ None,
+ )
+ } else {
+ infer_return_ty_for_fn_sig(tcx, sig, generics, def_id, &icx)
+ }
+ }
+
+ TraitItem(hir::TraitItem {
+ kind: TraitItemKind::Fn(FnSig { header, decl, span: _ }, _),
+ generics,
+ ..
+ }) => <dyn AstConv<'_>>::ty_of_fn(
+ &icx,
+ hir_id,
+ header.unsafety,
+ header.abi,
+ decl,
+ Some(generics),
+ None,
+ ),
+
+ ForeignItem(&hir::ForeignItem { kind: ForeignItemKind::Fn(fn_decl, _, _), .. }) => {
+ let abi = tcx.hir().get_foreign_abi(hir_id);
+ compute_sig_of_foreign_fn_decl(tcx, def_id.to_def_id(), fn_decl, abi)
+ }
+
+ Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
+ let ty = tcx.type_of(tcx.hir().get_parent_item(hir_id));
+ let inputs =
+ data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
+ ty::Binder::dummy(tcx.mk_fn_sig(
+ inputs,
+ ty,
+ false,
+ hir::Unsafety::Normal,
+ abi::Abi::Rust,
+ ))
+ }
+
+ Expr(&hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => {
+ // Closure signatures are not like other function
+ // signatures and cannot be accessed through `fn_sig`. For
+ // example, a closure signature excludes the `self`
+ // argument. In any case they are embedded within the
+ // closure type as part of the `ClosureSubsts`.
+ //
+ // To get the signature of a closure, you should use the
+ // `sig` method on the `ClosureSubsts`:
+ //
+ // substs.as_closure().sig(def_id, tcx)
+ bug!(
+ "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
+ );
+ }
+
+ x => {
+ bug!("unexpected sort of node in fn_sig(): {:?}", x);
+ }
+ }
+}
+
+fn infer_return_ty_for_fn_sig<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ sig: &hir::FnSig<'_>,
+ generics: &hir::Generics<'_>,
+ def_id: LocalDefId,
+ icx: &ItemCtxt<'tcx>,
+) -> ty::PolyFnSig<'tcx> {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+
+ match get_infer_ret_ty(&sig.decl.output) {
+ Some(ty) => {
+ let fn_sig = tcx.typeck(def_id).liberated_fn_sigs()[hir_id];
+ // Typeck doesn't expect erased regions to be returned from `type_of`.
+ let fn_sig = tcx.fold_regions(fn_sig, |r, _| match *r {
+ ty::ReErased => tcx.lifetimes.re_static,
+ _ => r,
+ });
+ let fn_sig = ty::Binder::dummy(fn_sig);
+
+ let mut visitor = HirPlaceholderCollector::default();
+ visitor.visit_ty(ty);
+ let mut diag = bad_placeholder(tcx, visitor.0, "return type");
+ let ret_ty = fn_sig.skip_binder().output();
+ if ret_ty.is_suggestable(tcx, false) {
+ diag.span_suggestion(
+ ty.span,
+ "replace with the correct return type",
+ ret_ty,
+ Applicability::MachineApplicable,
+ );
+ } else if matches!(ret_ty.kind(), ty::FnDef(..)) {
+ let fn_sig = ret_ty.fn_sig(tcx);
+ if fn_sig
+ .skip_binder()
+ .inputs_and_output
+ .iter()
+ .all(|t| t.is_suggestable(tcx, false))
+ {
+ diag.span_suggestion(
+ ty.span,
+ "replace with the correct return type",
+ fn_sig,
+ Applicability::MachineApplicable,
+ );
+ }
+ } else if ret_ty.is_closure() {
+ // We're dealing with a closure, so we should suggest using `impl Fn` or trait bounds
+ // to prevent the user from getting a papercut while trying to use the unique closure
+ // syntax (e.g. `[closure@src/lib.rs:2:5: 2:9]`).
+ diag.help("consider using an `Fn`, `FnMut`, or `FnOnce` trait bound");
+ diag.note("for more information on `Fn` traits and closure types, see https://doc.rust-lang.org/book/ch13-01-closures.html");
+ }
+ diag.emit();
+
+ fn_sig
+ }
+ None => <dyn AstConv<'_>>::ty_of_fn(
+ icx,
+ hir_id,
+ sig.header.unsafety,
+ sig.header.abi,
+ sig.decl,
+ Some(generics),
+ None,
+ ),
+ }
+}
+
+fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
+ let icx = ItemCtxt::new(tcx, def_id);
+ let item = tcx.hir().expect_item(def_id.expect_local());
+ match item.kind {
+ hir::ItemKind::Impl(ref impl_) => impl_.of_trait.as_ref().map(|ast_trait_ref| {
+ let selfty = tcx.type_of(def_id);
+ <dyn AstConv<'_>>::instantiate_mono_trait_ref(
+ &icx,
+ ast_trait_ref,
+ selfty,
+ check_impl_constness(tcx, impl_.constness, ast_trait_ref),
+ )
+ }),
+ _ => bug!(),
+ }
+}
+
+fn check_impl_constness(
+ tcx: TyCtxt<'_>,
+ constness: hir::Constness,
+ ast_trait_ref: &hir::TraitRef<'_>,
+) -> ty::BoundConstness {
+ match constness {
+ hir::Constness::Const => {
+ if let Some(trait_def_id) = ast_trait_ref.trait_def_id() && !tcx.has_attr(trait_def_id, sym::const_trait) {
+ let trait_name = tcx.item_name(trait_def_id).to_string();
+ tcx.sess.emit_err(errors::ConstImplForNonConstTrait {
+ trait_ref_span: ast_trait_ref.path.span,
+ trait_name,
+ local_trait_span: trait_def_id.as_local().map(|_| tcx.def_span(trait_def_id).shrink_to_lo()),
+ marking: (),
+ adding: (),
+ });
+ ty::BoundConstness::NotConst
+ } else {
+ ty::BoundConstness::ConstIfConst
+ }
+ },
+ hir::Constness::NotConst => ty::BoundConstness::NotConst,
+ }
+}
+
+fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
+ let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
+ let item = tcx.hir().expect_item(def_id.expect_local());
+ match &item.kind {
+ hir::ItemKind::Impl(hir::Impl {
+ polarity: hir::ImplPolarity::Negative(span),
+ of_trait,
+ ..
+ }) => {
+ if is_rustc_reservation {
+ let span = span.to(of_trait.as_ref().map_or(*span, |t| t.path.span));
+ tcx.sess.span_err(span, "reservation impls can't be negative");
+ }
+ ty::ImplPolarity::Negative
+ }
+ hir::ItemKind::Impl(hir::Impl {
+ polarity: hir::ImplPolarity::Positive,
+ of_trait: None,
+ ..
+ }) => {
+ if is_rustc_reservation {
+ tcx.sess.span_err(item.span, "reservation impls can't be inherent");
+ }
+ ty::ImplPolarity::Positive
+ }
+ hir::ItemKind::Impl(hir::Impl {
+ polarity: hir::ImplPolarity::Positive,
+ of_trait: Some(_),
+ ..
+ }) => {
+ if is_rustc_reservation {
+ ty::ImplPolarity::Reservation
+ } else {
+ ty::ImplPolarity::Positive
+ }
+ }
+ item => bug!("impl_polarity: {:?} not an impl", item),
+ }
+}
+
+/// Returns the early-bound lifetimes declared in this generics
+/// listing. For anything other than fns/methods, this is just all
+/// the lifetimes that are declared. For fns or methods, we have to
+/// screen out those that do not appear in any where-clauses etc using
+/// `resolve_lifetime::early_bound_lifetimes`.
+fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
+ tcx: TyCtxt<'tcx>,
+ generics: &'a hir::Generics<'a>,
+) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
+ generics.params.iter().filter(move |param| match param.kind {
+ GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
+ _ => false,
+ })
+}
+
+/// Returns a list of type predicates for the definition with ID `def_id`, including inferred
+/// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
+/// inferred constraints concerning which regions outlive other regions.
+#[instrument(level = "debug", skip(tcx))]
+fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
+ let mut result = tcx.explicit_predicates_of(def_id);
+ debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
+ let inferred_outlives = tcx.inferred_outlives_of(def_id);
+ if !inferred_outlives.is_empty() {
+ debug!(
+ "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
+ def_id, inferred_outlives,
+ );
+ if result.predicates.is_empty() {
+ result.predicates = inferred_outlives;
+ } else {
+ result.predicates = tcx
+ .arena
+ .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
+ }
+ }
+
+ debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
+ result
+}
+
+fn compute_sig_of_foreign_fn_decl<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+ decl: &'tcx hir::FnDecl<'tcx>,
+ abi: abi::Abi,
+) -> ty::PolyFnSig<'tcx> {
+ let unsafety = if abi == abi::Abi::RustIntrinsic {
+ intrinsic_operation_unsafety(tcx, def_id)
+ } else {
+ hir::Unsafety::Unsafe
+ };
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+ let fty = <dyn AstConv<'_>>::ty_of_fn(
+ &ItemCtxt::new(tcx, def_id),
+ hir_id,
+ unsafety,
+ abi,
+ decl,
+ None,
+ None,
+ );
+
+ // Feature gate SIMD types in FFI, since I am not sure that the
+ // ABIs are handled at all correctly. -huonw
+ if abi != abi::Abi::RustIntrinsic
+ && abi != abi::Abi::PlatformIntrinsic
+ && !tcx.features().simd_ffi
+ {
+ let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
+ if ty.is_simd() {
+ let snip = tcx
+ .sess
+ .source_map()
+ .span_to_snippet(ast_ty.span)
+ .map_or_else(|_| String::new(), |s| format!(" `{}`", s));
+ tcx.sess
+ .struct_span_err(
+ ast_ty.span,
+ &format!(
+ "use of SIMD type{} in FFI is highly experimental and \
+ may result in invalid code",
+ snip
+ ),
+ )
+ .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
+ .emit();
+ }
+ };
+ for (input, ty) in iter::zip(decl.inputs, fty.inputs().skip_binder()) {
+ check(input, *ty)
+ }
+ if let hir::FnRetTy::Return(ref ty) = decl.output {
+ check(ty, fty.output().skip_binder())
+ }
+ }
+
+ fty
+}
+
+fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
+ match tcx.hir().get_if_local(def_id) {
+ Some(Node::ForeignItem(..)) => true,
+ Some(_) => false,
+ _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
+ }
+}
+
+fn generator_kind(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::GeneratorKind> {
+ match tcx.hir().get_if_local(def_id) {
+ Some(Node::Expr(&rustc_hir::Expr {
+ kind: rustc_hir::ExprKind::Closure(&rustc_hir::Closure { body, .. }),
+ ..
+ })) => tcx.hir().body(body).generator_kind(),
+ Some(_) => None,
+ _ => bug!("generator_kind applied to non-local def-id {:?}", def_id),
+ }
+}
+
+fn from_target_feature(
+ tcx: TyCtxt<'_>,
+ attr: &ast::Attribute,
+ supported_target_features: &FxHashMap<String, Option<Symbol>>,
+ target_features: &mut Vec<Symbol>,
+) {
+ let Some(list) = attr.meta_item_list() else { return };
+ let bad_item = |span| {
+ let msg = "malformed `target_feature` attribute input";
+ let code = "enable = \"..\"";
+ tcx.sess
+ .struct_span_err(span, msg)
+ .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
+ .emit();
+ };
+ let rust_features = tcx.features();
+ for item in list {
+ // Only `enable = ...` is accepted in the meta-item list.
+ if !item.has_name(sym::enable) {
+ bad_item(item.span());
+ continue;
+ }
+
+ // Must be of the form `enable = "..."` (a string).
+ let Some(value) = item.value_str() else {
+ bad_item(item.span());
+ continue;
+ };
+
+ // We allow comma separation to enable multiple features.
+ target_features.extend(value.as_str().split(',').filter_map(|feature| {
+ let Some(feature_gate) = supported_target_features.get(feature) else {
+ let msg =
+ format!("the feature named `{}` is not valid for this target", feature);
+ let mut err = tcx.sess.struct_span_err(item.span(), &msg);
+ err.span_label(
+ item.span(),
+ format!("`{}` is not valid for this target", feature),
+ );
+ if let Some(stripped) = feature.strip_prefix('+') {
+ let valid = supported_target_features.contains_key(stripped);
+ if valid {
+ err.help("consider removing the leading `+` in the feature name");
+ }
+ }
+ err.emit();
+ return None;
+ };
+
+ // Only allow features whose feature gates have been enabled.
+ let allowed = match feature_gate.as_ref().copied() {
+ Some(sym::arm_target_feature) => rust_features.arm_target_feature,
+ Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
+ Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
+ Some(sym::mips_target_feature) => rust_features.mips_target_feature,
+ Some(sym::riscv_target_feature) => rust_features.riscv_target_feature,
+ Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
+ Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
+ Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
+ Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
+ Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
+ Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
+ Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
+ Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
+ Some(sym::ermsb_target_feature) => rust_features.ermsb_target_feature,
+ Some(sym::bpf_target_feature) => rust_features.bpf_target_feature,
+ Some(sym::aarch64_ver_target_feature) => rust_features.aarch64_ver_target_feature,
+ Some(name) => bug!("unknown target feature gate {}", name),
+ None => true,
+ };
+ if !allowed {
+ feature_err(
+ &tcx.sess.parse_sess,
+ feature_gate.unwrap(),
+ item.span(),
+ &format!("the target feature `{}` is currently unstable", feature),
+ )
+ .emit();
+ }
+ Some(Symbol::intern(feature))
+ }));
+ }
+}
+
+fn linkage_by_name(tcx: TyCtxt<'_>, def_id: LocalDefId, name: &str) -> Linkage {
+ use rustc_middle::mir::mono::Linkage::*;
+
+ // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
+ // applicable to variable declarations and may not really make sense for
+ // Rust code in the first place but allow them anyway and trust that the
+ // user knows what they're doing. Who knows, unanticipated use cases may pop
+ // up in the future.
+ //
+ // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
+ // and don't have to be, LLVM treats them as no-ops.
+ match name {
+ "appending" => Appending,
+ "available_externally" => AvailableExternally,
+ "common" => Common,
+ "extern_weak" => ExternalWeak,
+ "external" => External,
+ "internal" => Internal,
+ "linkonce" => LinkOnceAny,
+ "linkonce_odr" => LinkOnceODR,
+ "private" => Private,
+ "weak" => WeakAny,
+ "weak_odr" => WeakODR,
+ _ => tcx.sess.span_fatal(tcx.def_span(def_id), "invalid linkage specified"),
+ }
+}
+
+fn codegen_fn_attrs(tcx: TyCtxt<'_>, did: DefId) -> CodegenFnAttrs {
+ if cfg!(debug_assertions) {
+ let def_kind = tcx.def_kind(did);
+ assert!(
+ def_kind.has_codegen_attrs(),
+ "unexpected `def_kind` in `codegen_fn_attrs`: {def_kind:?}",
+ );
+ }
+
+ let did = did.expect_local();
+ let attrs = tcx.hir().attrs(tcx.hir().local_def_id_to_hir_id(did));
+ let mut codegen_fn_attrs = CodegenFnAttrs::new();
+ if tcx.should_inherit_track_caller(did) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
+ }
+
+ let supported_target_features = tcx.supported_target_features(LOCAL_CRATE);
+
+ let mut inline_span = None;
+ let mut link_ordinal_span = None;
+ let mut no_sanitize_span = None;
+ for attr in attrs.iter() {
+ if attr.has_name(sym::cold) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
+ } else if attr.has_name(sym::rustc_allocator) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
+ } else if attr.has_name(sym::ffi_returns_twice) {
+ if tcx.is_foreign_item(did) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
+ } else {
+ // `#[ffi_returns_twice]` is only allowed `extern fn`s.
+ struct_span_err!(
+ tcx.sess,
+ attr.span,
+ E0724,
+ "`#[ffi_returns_twice]` may only be used on foreign functions"
+ )
+ .emit();
+ }
+ } else if attr.has_name(sym::ffi_pure) {
+ if tcx.is_foreign_item(did) {
+ if attrs.iter().any(|a| a.has_name(sym::ffi_const)) {
+ // `#[ffi_const]` functions cannot be `#[ffi_pure]`
+ struct_span_err!(
+ tcx.sess,
+ attr.span,
+ E0757,
+ "`#[ffi_const]` function cannot be `#[ffi_pure]`"
+ )
+ .emit();
+ } else {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_PURE;
+ }
+ } else {
+ // `#[ffi_pure]` is only allowed on foreign functions
+ struct_span_err!(
+ tcx.sess,
+ attr.span,
+ E0755,
+ "`#[ffi_pure]` may only be used on foreign functions"
+ )
+ .emit();
+ }
+ } else if attr.has_name(sym::ffi_const) {
+ if tcx.is_foreign_item(did) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_CONST;
+ } else {
+ // `#[ffi_const]` is only allowed on foreign functions
+ struct_span_err!(
+ tcx.sess,
+ attr.span,
+ E0756,
+ "`#[ffi_const]` may only be used on foreign functions"
+ )
+ .emit();
+ }
+ } else if attr.has_name(sym::rustc_nounwind) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
+ } else if attr.has_name(sym::rustc_reallocator) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::REALLOCATOR;
+ } else if attr.has_name(sym::rustc_deallocator) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::DEALLOCATOR;
+ } else if attr.has_name(sym::rustc_allocator_zeroed) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR_ZEROED;
+ } else if attr.has_name(sym::naked) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
+ } else if attr.has_name(sym::no_mangle) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
+ } else if attr.has_name(sym::no_coverage) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_COVERAGE;
+ } else if attr.has_name(sym::rustc_std_internal_symbol) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
+ } else if attr.has_name(sym::used) {
+ let inner = attr.meta_item_list();
+ match inner.as_deref() {
+ Some([item]) if item.has_name(sym::linker) => {
+ if !tcx.features().used_with_arg {
+ feature_err(
+ &tcx.sess.parse_sess,
+ sym::used_with_arg,
+ attr.span,
+ "`#[used(linker)]` is currently unstable",
+ )
+ .emit();
+ }
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED_LINKER;
+ }
+ Some([item]) if item.has_name(sym::compiler) => {
+ if !tcx.features().used_with_arg {
+ feature_err(
+ &tcx.sess.parse_sess,
+ sym::used_with_arg,
+ attr.span,
+ "`#[used(compiler)]` is currently unstable",
+ )
+ .emit();
+ }
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
+ }
+ Some(_) => {
+ tcx.sess.emit_err(errors::ExpectedUsedSymbol { span: attr.span });
+ }
+ None => {
+ // Unfortunately, unconditionally using `llvm.used` causes
+ // issues in handling `.init_array` with the gold linker,
+ // but using `llvm.compiler.used` caused a nontrival amount
+ // of unintentional ecosystem breakage -- particularly on
+ // Mach-O targets.
+ //
+ // As a result, we emit `llvm.compiler.used` only on ELF
+ // targets. This is somewhat ad-hoc, but actually follows
+ // our pre-LLVM 13 behavior (prior to the ecosystem
+ // breakage), and seems to match `clang`'s behavior as well
+ // (both before and after LLVM 13), possibly because they
+ // have similar compatibility concerns to us. See
+ // https://github.com/rust-lang/rust/issues/47384#issuecomment-1019080146
+ // and following comments for some discussion of this, as
+ // well as the comments in `rustc_codegen_llvm` where these
+ // flags are handled.
+ //
+ // Anyway, to be clear: this is still up in the air
+ // somewhat, and is subject to change in the future (which
+ // is a good thing, because this would ideally be a bit
+ // more firmed up).
+ let is_like_elf = !(tcx.sess.target.is_like_osx
+ || tcx.sess.target.is_like_windows
+ || tcx.sess.target.is_like_wasm);
+ codegen_fn_attrs.flags |= if is_like_elf {
+ CodegenFnAttrFlags::USED
+ } else {
+ CodegenFnAttrFlags::USED_LINKER
+ };
+ }
+ }
+ } else if attr.has_name(sym::cmse_nonsecure_entry) {
+ if !matches!(tcx.fn_sig(did).abi(), abi::Abi::C { .. }) {
+ struct_span_err!(
+ tcx.sess,
+ attr.span,
+ E0776,
+ "`#[cmse_nonsecure_entry]` requires C ABI"
+ )
+ .emit();
+ }
+ if !tcx.sess.target.llvm_target.contains("thumbv8m") {
+ struct_span_err!(tcx.sess, attr.span, E0775, "`#[cmse_nonsecure_entry]` is only valid for targets with the TrustZone-M extension")
+ .emit();
+ }
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::CMSE_NONSECURE_ENTRY;
+ } else if attr.has_name(sym::thread_local) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
+ } else if attr.has_name(sym::track_caller) {
+ if !tcx.is_closure(did.to_def_id()) && tcx.fn_sig(did).abi() != abi::Abi::Rust {
+ struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
+ .emit();
+ }
+ if tcx.is_closure(did.to_def_id()) && !tcx.features().closure_track_caller {
+ feature_err(
+ &tcx.sess.parse_sess,
+ sym::closure_track_caller,
+ attr.span,
+ "`#[track_caller]` on closures is currently unstable",
+ )
+ .emit();
+ }
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
+ } else if attr.has_name(sym::export_name) {
+ if let Some(s) = attr.value_str() {
+ if s.as_str().contains('\0') {
+ // `#[export_name = ...]` will be converted to a null-terminated string,
+ // so it may not contain any null characters.
+ struct_span_err!(
+ tcx.sess,
+ attr.span,
+ E0648,
+ "`export_name` may not contain null characters"
+ )
+ .emit();
+ }
+ codegen_fn_attrs.export_name = Some(s);
+ }
+ } else if attr.has_name(sym::target_feature) {
+ if !tcx.is_closure(did.to_def_id())
+ && tcx.fn_sig(did).unsafety() == hir::Unsafety::Normal
+ {
+ if tcx.sess.target.is_like_wasm || tcx.sess.opts.actually_rustdoc {
+ // The `#[target_feature]` attribute is allowed on
+ // WebAssembly targets on all functions, including safe
+ // ones. Other targets require that `#[target_feature]` is
+ // only applied to unsafe functions (pending the
+ // `target_feature_11` feature) because on most targets
+ // execution of instructions that are not supported is
+ // considered undefined behavior. For WebAssembly which is a
+ // 100% safe target at execution time it's not possible to
+ // execute undefined instructions, and even if a future
+ // feature was added in some form for this it would be a
+ // deterministic trap. There is no undefined behavior when
+ // executing WebAssembly so `#[target_feature]` is allowed
+ // on safe functions (but again, only for WebAssembly)
+ //
+ // Note that this is also allowed if `actually_rustdoc` so
+ // if a target is documenting some wasm-specific code then
+ // it's not spuriously denied.
+ } else if !tcx.features().target_feature_11 {
+ let mut err = feature_err(
+ &tcx.sess.parse_sess,
+ sym::target_feature_11,
+ attr.span,
+ "`#[target_feature(..)]` can only be applied to `unsafe` functions",
+ );
+ err.span_label(tcx.def_span(did), "not an `unsafe` function");
+ err.emit();
+ } else {
+ check_target_feature_trait_unsafe(tcx, did, attr.span);
+ }
+ }
+ from_target_feature(
+ tcx,
+ attr,
+ supported_target_features,
+ &mut codegen_fn_attrs.target_features,
+ );
+ } else if attr.has_name(sym::linkage) {
+ if let Some(val) = attr.value_str() {
+ codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, did, val.as_str()));
+ }
+ } else if attr.has_name(sym::link_section) {
+ if let Some(val) = attr.value_str() {
+ if val.as_str().bytes().any(|b| b == 0) {
+ let msg = format!(
+ "illegal null byte in link_section \
+ value: `{}`",
+ &val
+ );
+ tcx.sess.span_err(attr.span, &msg);
+ } else {
+ codegen_fn_attrs.link_section = Some(val);
+ }
+ }
+ } else if attr.has_name(sym::link_name) {
+ codegen_fn_attrs.link_name = attr.value_str();
+ } else if attr.has_name(sym::link_ordinal) {
+ link_ordinal_span = Some(attr.span);
+ if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
+ codegen_fn_attrs.link_ordinal = ordinal;
+ }
+ } else if attr.has_name(sym::no_sanitize) {
+ no_sanitize_span = Some(attr.span);
+ if let Some(list) = attr.meta_item_list() {
+ for item in list.iter() {
+ if item.has_name(sym::address) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::ADDRESS;
+ } else if item.has_name(sym::cfi) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::CFI;
+ } else if item.has_name(sym::memory) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMORY;
+ } else if item.has_name(sym::memtag) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMTAG;
+ } else if item.has_name(sym::shadow_call_stack) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::SHADOWCALLSTACK;
+ } else if item.has_name(sym::thread) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::THREAD;
+ } else if item.has_name(sym::hwaddress) {
+ codegen_fn_attrs.no_sanitize |= SanitizerSet::HWADDRESS;
+ } else {
+ tcx.sess
+ .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
+ .note("expected one of: `address`, `cfi`, `hwaddress`, `memory`, `memtag`, `shadow-call-stack`, or `thread`")
+ .emit();
+ }
+ }
+ }
+ } else if attr.has_name(sym::instruction_set) {
+ codegen_fn_attrs.instruction_set = match attr.meta_kind() {
+ Some(MetaItemKind::List(ref items)) => match items.as_slice() {
+ [NestedMetaItem::MetaItem(set)] => {
+ let segments =
+ set.path.segments.iter().map(|x| x.ident.name).collect::<Vec<_>>();
+ match segments.as_slice() {
+ [sym::arm, sym::a32] | [sym::arm, sym::t32] => {
+ if !tcx.sess.target.has_thumb_interworking {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0779,
+ "target does not support `#[instruction_set]`"
+ )
+ .emit();
+ None
+ } else if segments[1] == sym::a32 {
+ Some(InstructionSetAttr::ArmA32)
+ } else if segments[1] == sym::t32 {
+ Some(InstructionSetAttr::ArmT32)
+ } else {
+ unreachable!()
+ }
+ }
+ _ => {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0779,
+ "invalid instruction set specified",
+ )
+ .emit();
+ None
+ }
+ }
+ }
+ [] => {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0778,
+ "`#[instruction_set]` requires an argument"
+ )
+ .emit();
+ None
+ }
+ _ => {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0779,
+ "cannot specify more than one instruction set"
+ )
+ .emit();
+ None
+ }
+ },
+ _ => {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0778,
+ "must specify an instruction set"
+ )
+ .emit();
+ None
+ }
+ };
+ } else if attr.has_name(sym::repr) {
+ codegen_fn_attrs.alignment = match attr.meta_item_list() {
+ Some(items) => match items.as_slice() {
+ [item] => match item.name_value_literal() {
+ Some((sym::align, literal)) => {
+ let alignment = rustc_attr::parse_alignment(&literal.kind);
+
+ match alignment {
+ Ok(align) => Some(align),
+ Err(msg) => {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0589,
+ "invalid `repr(align)` attribute: {}",
+ msg
+ )
+ .emit();
+
+ None
+ }
+ }
+ }
+ _ => None,
+ },
+ [] => None,
+ _ => None,
+ },
+ None => None,
+ };
+ }
+ }
+
+ codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
+ if !attr.has_name(sym::inline) {
+ return ia;
+ }
+ match attr.meta_kind() {
+ Some(MetaItemKind::Word) => InlineAttr::Hint,
+ Some(MetaItemKind::List(ref items)) => {
+ inline_span = Some(attr.span);
+ if items.len() != 1 {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ attr.span,
+ E0534,
+ "expected one argument"
+ )
+ .emit();
+ InlineAttr::None
+ } else if list_contains_name(&items, sym::always) {
+ InlineAttr::Always
+ } else if list_contains_name(&items, sym::never) {
+ InlineAttr::Never
+ } else {
+ struct_span_err!(
+ tcx.sess.diagnostic(),
+ items[0].span(),
+ E0535,
+ "invalid argument"
+ )
+ .help("valid inline arguments are `always` and `never`")
+ .emit();
+
+ InlineAttr::None
+ }
+ }
+ Some(MetaItemKind::NameValue(_)) => ia,
+ None => ia,
+ }
+ });
+
+ codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
+ if !attr.has_name(sym::optimize) {
+ return ia;
+ }
+ let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
+ match attr.meta_kind() {
+ Some(MetaItemKind::Word) => {
+ err(attr.span, "expected one argument");
+ ia
+ }
+ Some(MetaItemKind::List(ref items)) => {
+ inline_span = Some(attr.span);
+ if items.len() != 1 {
+ err(attr.span, "expected one argument");
+ OptimizeAttr::None
+ } else if list_contains_name(&items, sym::size) {
+ OptimizeAttr::Size
+ } else if list_contains_name(&items, sym::speed) {
+ OptimizeAttr::Speed
+ } else {
+ err(items[0].span(), "invalid argument");
+ OptimizeAttr::None
+ }
+ }
+ Some(MetaItemKind::NameValue(_)) => ia,
+ None => ia,
+ }
+ });
+
+ // #73631: closures inherit `#[target_feature]` annotations
+ if tcx.features().target_feature_11 && tcx.is_closure(did.to_def_id()) {
+ let owner_id = tcx.parent(did.to_def_id());
+ if tcx.def_kind(owner_id).has_codegen_attrs() {
+ codegen_fn_attrs
+ .target_features
+ .extend(tcx.codegen_fn_attrs(owner_id).target_features.iter().copied());
+ }
+ }
+
+ // If a function uses #[target_feature] it can't be inlined into general
+ // purpose functions as they wouldn't have the right target features
+ // enabled. For that reason we also forbid #[inline(always)] as it can't be
+ // respected.
+ if !codegen_fn_attrs.target_features.is_empty() {
+ if codegen_fn_attrs.inline == InlineAttr::Always {
+ if let Some(span) = inline_span {
+ tcx.sess.span_err(
+ span,
+ "cannot use `#[inline(always)]` with \
+ `#[target_feature]`",
+ );
+ }
+ }
+ }
+
+ if !codegen_fn_attrs.no_sanitize.is_empty() {
+ if codegen_fn_attrs.inline == InlineAttr::Always {
+ if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(did);
+ tcx.struct_span_lint_hir(
+ lint::builtin::INLINE_NO_SANITIZE,
+ hir_id,
+ no_sanitize_span,
+ "`no_sanitize` will have no effect after inlining",
+ |lint| lint.span_note(inline_span, "inlining requested here"),
+ )
+ }
+ }
+ }
+
+ // Weak lang items have the same semantics as "std internal" symbols in the
+ // sense that they're preserved through all our LTO passes and only
+ // strippable by the linker.
+ //
+ // Additionally weak lang items have predetermined symbol names.
+ if tcx.is_weak_lang_item(did.to_def_id()) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
+ }
+ if let Some(name) = weak_lang_items::link_name(attrs) {
+ codegen_fn_attrs.export_name = Some(name);
+ codegen_fn_attrs.link_name = Some(name);
+ }
+ check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
+
+ // Internal symbols to the standard library all have no_mangle semantics in
+ // that they have defined symbol names present in the function name. This
+ // also applies to weak symbols where they all have known symbol names.
+ if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
+ }
+
+ // Any linkage to LLVM intrinsics for now forcibly marks them all as never
+ // unwinds since LLVM sometimes can't handle codegen which `invoke`s
+ // intrinsic functions.
+ if let Some(name) = &codegen_fn_attrs.link_name {
+ if name.as_str().starts_with("llvm.") {
+ codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
+ }
+ }
+
+ codegen_fn_attrs
+}
+
+/// Computes the set of target features used in a function for the purposes of
+/// inline assembly.
+fn asm_target_features<'tcx>(tcx: TyCtxt<'tcx>, did: DefId) -> &'tcx FxHashSet<Symbol> {
+ let mut target_features = tcx.sess.unstable_target_features.clone();
+ if tcx.def_kind(did).has_codegen_attrs() {
+ let attrs = tcx.codegen_fn_attrs(did);
+ target_features.extend(&attrs.target_features);
+ match attrs.instruction_set {
+ None => {}
+ Some(InstructionSetAttr::ArmA32) => {
+ target_features.remove(&sym::thumb_mode);
+ }
+ Some(InstructionSetAttr::ArmT32) => {
+ target_features.insert(sym::thumb_mode);
+ }
+ }
+ }
+
+ tcx.arena.alloc(target_features)
+}
+
+/// Checks if the provided DefId is a method in a trait impl for a trait which has track_caller
+/// applied to the method prototype.
+fn should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
+ if let Some(impl_item) = tcx.opt_associated_item(def_id)
+ && let ty::AssocItemContainer::ImplContainer = impl_item.container
+ && let Some(trait_item) = impl_item.trait_item_def_id
+ {
+ return tcx
+ .codegen_fn_attrs(trait_item)
+ .flags
+ .intersects(CodegenFnAttrFlags::TRACK_CALLER);
+ }
+
+ false
+}
+
+fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<u16> {
+ use rustc_ast::{Lit, LitIntType, LitKind};
+ if !tcx.features().raw_dylib && tcx.sess.target.arch == "x86" {
+ feature_err(
+ &tcx.sess.parse_sess,
+ sym::raw_dylib,
+ attr.span,
+ "`#[link_ordinal]` is unstable on x86",
+ )
+ .emit();
+ }
+ let meta_item_list = attr.meta_item_list();
+ let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
+ let sole_meta_list = match meta_item_list {
+ Some([item]) => item.literal(),
+ Some(_) => {
+ tcx.sess
+ .struct_span_err(attr.span, "incorrect number of arguments to `#[link_ordinal]`")
+ .note("the attribute requires exactly one argument")
+ .emit();
+ return None;
+ }
+ _ => None,
+ };
+ if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
+ // According to the table at https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#import-header,
+ // the ordinal must fit into 16 bits. Similarly, the Ordinal field in COFFShortExport (defined
+ // in llvm/include/llvm/Object/COFFImportFile.h), which we use to communicate import information
+ // to LLVM for `#[link(kind = "raw-dylib"_])`, is also defined to be uint16_t.
+ //
+ // FIXME: should we allow an ordinal of 0? The MSVC toolchain has inconsistent support for this:
+ // both LINK.EXE and LIB.EXE signal errors and abort when given a .DEF file that specifies
+ // a zero ordinal. However, llvm-dlltool is perfectly happy to generate an import library
+ // for such a .DEF file, and MSVC's LINK.EXE is also perfectly happy to consume an import
+ // library produced by LLVM with an ordinal of 0, and it generates an .EXE. (I don't know yet
+ // if the resulting EXE runs, as I haven't yet built the necessary DLL -- see earlier comment
+ // about LINK.EXE failing.)
+ if *ordinal <= u16::MAX as u128 {
+ Some(*ordinal as u16)
+ } else {
+ let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
+ tcx.sess
+ .struct_span_err(attr.span, &msg)
+ .note("the value may not exceed `u16::MAX`")
+ .emit();
+ None
+ }
+ } else {
+ tcx.sess
+ .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
+ .note("an unsuffixed integer value, e.g., `1`, is expected")
+ .emit();
+ None
+ }
+}
+
+fn check_link_name_xor_ordinal(
+ tcx: TyCtxt<'_>,
+ codegen_fn_attrs: &CodegenFnAttrs,
+ inline_span: Option<Span>,
+) {
+ if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
+ return;
+ }
+ let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
+ if let Some(span) = inline_span {
+ tcx.sess.span_err(span, msg);
+ } else {
+ tcx.sess.err(msg);
+ }
+}
+
+/// Checks the function annotated with `#[target_feature]` is not a safe
+/// trait method implementation, reporting an error if it is.
+fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(id);
+ let node = tcx.hir().get(hir_id);
+ if let Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) = node {
+ let parent_id = tcx.hir().get_parent_item(hir_id);
+ let parent_item = tcx.hir().expect_item(parent_id.def_id);
+ if let hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) = parent_item.kind {
+ tcx.sess
+ .struct_span_err(
+ attr_span,
+ "`#[target_feature(..)]` cannot be applied to safe trait method",
+ )
+ .span_label(attr_span, "cannot be applied to safe trait method")
+ .span_label(tcx.def_span(id), "not an `unsafe` function")
+ .emit();
+ }
+ }
+}
diff --git a/compiler/rustc_hir_analysis/src/collect/generics_of.rs b/compiler/rustc_hir_analysis/src/collect/generics_of.rs
new file mode 100644
index 000000000..c7777a946
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/collect/generics_of.rs
@@ -0,0 +1,481 @@
+use crate::middle::resolve_lifetime as rl;
+use hir::{
+ intravisit::{self, Visitor},
+ GenericParamKind, HirId, Node,
+};
+use rustc_hir as hir;
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::DefId;
+use rustc_middle::ty::{self, TyCtxt};
+use rustc_session::lint;
+use rustc_span::symbol::{kw, Symbol};
+use rustc_span::Span;
+
+pub(super) fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics {
+ use rustc_hir::*;
+
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+
+ let node = tcx.hir().get(hir_id);
+ let parent_def_id = match node {
+ Node::ImplItem(_)
+ | Node::TraitItem(_)
+ | Node::Variant(_)
+ | Node::Ctor(..)
+ | Node::Field(_) => {
+ let parent_id = tcx.hir().get_parent_item(hir_id);
+ Some(parent_id.to_def_id())
+ }
+ // FIXME(#43408) always enable this once `lazy_normalization` is
+ // stable enough and does not need a feature gate anymore.
+ Node::AnonConst(_) => {
+ let parent_def_id = tcx.hir().get_parent_item(hir_id);
+
+ let mut in_param_ty = false;
+ for (_parent, node) in tcx.hir().parent_iter(hir_id) {
+ if let Some(generics) = node.generics() {
+ let mut visitor = AnonConstInParamTyDetector {
+ in_param_ty: false,
+ found_anon_const_in_param_ty: false,
+ ct: hir_id,
+ };
+
+ visitor.visit_generics(generics);
+ in_param_ty = visitor.found_anon_const_in_param_ty;
+ break;
+ }
+ }
+
+ if in_param_ty {
+ // We do not allow generic parameters in anon consts if we are inside
+ // of a const parameter type, e.g. `struct Foo<const N: usize, const M: [u8; N]>` is not allowed.
+ None
+ } else if tcx.lazy_normalization() {
+ if let Some(param_id) = tcx.hir().opt_const_param_default_param_hir_id(hir_id) {
+ // If the def_id we are calling generics_of on is an anon ct default i.e:
+ //
+ // struct Foo<const N: usize = { .. }>;
+ // ^^^ ^ ^^^^^^ def id of this anon const
+ // ^ ^ param_id
+ // ^ parent_def_id
+ //
+ // then we only want to return generics for params to the left of `N`. If we don't do that we
+ // end up with that const looking like: `ty::ConstKind::Unevaluated(def_id, substs: [N#0])`.
+ //
+ // This causes ICEs (#86580) when building the substs for Foo in `fn foo() -> Foo { .. }` as
+ // we substitute the defaults with the partially built substs when we build the substs. Subst'ing
+ // the `N#0` on the unevaluated const indexes into the empty substs we're in the process of building.
+ //
+ // We fix this by having this function return the parent's generics ourselves and truncating the
+ // generics to only include non-forward declared params (with the exception of the `Self` ty)
+ //
+ // For the above code example that means we want `substs: []`
+ // For the following struct def we want `substs: [N#0]` when generics_of is called on
+ // the def id of the `{ N + 1 }` anon const
+ // struct Foo<const N: usize, const M: usize = { N + 1 }>;
+ //
+ // This has some implications for how we get the predicates available to the anon const
+ // see `explicit_predicates_of` for more information on this
+ let generics = tcx.generics_of(parent_def_id.to_def_id());
+ let param_def = tcx.hir().local_def_id(param_id).to_def_id();
+ let param_def_idx = generics.param_def_id_to_index[&param_def];
+ // In the above example this would be .params[..N#0]
+ let params = generics.params[..param_def_idx as usize].to_owned();
+ let param_def_id_to_index =
+ params.iter().map(|param| (param.def_id, param.index)).collect();
+
+ return ty::Generics {
+ // we set the parent of these generics to be our parent's parent so that we
+ // dont end up with substs: [N, M, N] for the const default on a struct like this:
+ // struct Foo<const N: usize, const M: usize = { ... }>;
+ parent: generics.parent,
+ parent_count: generics.parent_count,
+ params,
+ param_def_id_to_index,
+ has_self: generics.has_self,
+ has_late_bound_regions: generics.has_late_bound_regions,
+ };
+ }
+
+ // HACK(eddyb) this provides the correct generics when
+ // `feature(generic_const_expressions)` is enabled, so that const expressions
+ // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
+ //
+ // Note that we do not supply the parent generics when using
+ // `min_const_generics`.
+ Some(parent_def_id.to_def_id())
+ } else {
+ let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
+ match parent_node {
+ // HACK(eddyb) this provides the correct generics for repeat
+ // expressions' count (i.e. `N` in `[x; N]`), and explicit
+ // `enum` discriminants (i.e. `D` in `enum Foo { Bar = D }`),
+ // as they shouldn't be able to cause query cycle errors.
+ Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
+ if constant.hir_id() == hir_id =>
+ {
+ Some(parent_def_id.to_def_id())
+ }
+ Node::Variant(Variant { disr_expr: Some(ref constant), .. })
+ if constant.hir_id == hir_id =>
+ {
+ Some(parent_def_id.to_def_id())
+ }
+ Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) => {
+ Some(tcx.typeck_root_def_id(def_id))
+ }
+ // Exclude `GlobalAsm` here which cannot have generics.
+ Node::Expr(&Expr { kind: ExprKind::InlineAsm(asm), .. })
+ if asm.operands.iter().any(|(op, _op_sp)| match op {
+ hir::InlineAsmOperand::Const { anon_const }
+ | hir::InlineAsmOperand::SymFn { anon_const } => {
+ anon_const.hir_id == hir_id
+ }
+ _ => false,
+ }) =>
+ {
+ Some(parent_def_id.to_def_id())
+ }
+ _ => None,
+ }
+ }
+ }
+ Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => {
+ Some(tcx.typeck_root_def_id(def_id))
+ }
+ Node::Item(item) => match item.kind {
+ ItemKind::OpaqueTy(hir::OpaqueTy {
+ origin:
+ hir::OpaqueTyOrigin::FnReturn(fn_def_id) | hir::OpaqueTyOrigin::AsyncFn(fn_def_id),
+ in_trait,
+ ..
+ }) => {
+ if in_trait {
+ assert!(matches!(tcx.def_kind(fn_def_id), DefKind::AssocFn))
+ } else {
+ assert!(matches!(tcx.def_kind(fn_def_id), DefKind::AssocFn | DefKind::Fn))
+ }
+ Some(fn_def_id.to_def_id())
+ }
+ ItemKind::OpaqueTy(hir::OpaqueTy { origin: hir::OpaqueTyOrigin::TyAlias, .. }) => {
+ let parent_id = tcx.hir().get_parent_item(hir_id);
+ assert_ne!(parent_id, hir::CRATE_OWNER_ID);
+ debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id);
+ // Opaque types are always nested within another item, and
+ // inherit the generics of the item.
+ Some(parent_id.to_def_id())
+ }
+ _ => None,
+ },
+ _ => None,
+ };
+
+ enum Defaults {
+ Allowed,
+ // See #36887
+ FutureCompatDisallowed,
+ Deny,
+ }
+
+ let no_generics = hir::Generics::empty();
+ let ast_generics = node.generics().unwrap_or(&no_generics);
+ let (opt_self, allow_defaults) = match node {
+ Node::Item(item) => {
+ match item.kind {
+ ItemKind::Trait(..) | ItemKind::TraitAlias(..) => {
+ // Add in the self type parameter.
+ //
+ // Something of a hack: use the node id for the trait, also as
+ // the node id for the Self type parameter.
+ let opt_self = Some(ty::GenericParamDef {
+ index: 0,
+ name: kw::SelfUpper,
+ def_id,
+ pure_wrt_drop: false,
+ kind: ty::GenericParamDefKind::Type {
+ has_default: false,
+ synthetic: false,
+ },
+ });
+
+ (opt_self, Defaults::Allowed)
+ }
+ ItemKind::TyAlias(..)
+ | ItemKind::Enum(..)
+ | ItemKind::Struct(..)
+ | ItemKind::OpaqueTy(..)
+ | ItemKind::Union(..) => (None, Defaults::Allowed),
+ _ => (None, Defaults::FutureCompatDisallowed),
+ }
+ }
+
+ // GATs
+ Node::TraitItem(item) if matches!(item.kind, TraitItemKind::Type(..)) => {
+ (None, Defaults::Deny)
+ }
+ Node::ImplItem(item) if matches!(item.kind, ImplItemKind::Type(..)) => {
+ (None, Defaults::Deny)
+ }
+
+ _ => (None, Defaults::FutureCompatDisallowed),
+ };
+
+ let has_self = opt_self.is_some();
+ let mut parent_has_self = false;
+ let mut own_start = has_self as u32;
+ let parent_count = parent_def_id.map_or(0, |def_id| {
+ let generics = tcx.generics_of(def_id);
+ assert!(!has_self);
+ parent_has_self = generics.has_self;
+ own_start = generics.count() as u32;
+ generics.parent_count + generics.params.len()
+ });
+
+ let mut params: Vec<_> = Vec::with_capacity(ast_generics.params.len() + has_self as usize);
+
+ if let Some(opt_self) = opt_self {
+ params.push(opt_self);
+ }
+
+ let early_lifetimes = super::early_bound_lifetimes_from_generics(tcx, ast_generics);
+ params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
+ name: param.name.ident().name,
+ index: own_start + i as u32,
+ def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
+ pure_wrt_drop: param.pure_wrt_drop,
+ kind: ty::GenericParamDefKind::Lifetime,
+ }));
+
+ // Now create the real type and const parameters.
+ let type_start = own_start - has_self as u32 + params.len() as u32;
+ let mut i = 0;
+ let mut next_index = || {
+ let prev = i;
+ i += 1;
+ prev as u32 + type_start
+ };
+
+ const TYPE_DEFAULT_NOT_ALLOWED: &'static str = "defaults for type parameters are only allowed in \
+ `struct`, `enum`, `type`, or `trait` definitions";
+
+ params.extend(ast_generics.params.iter().filter_map(|param| match param.kind {
+ GenericParamKind::Lifetime { .. } => None,
+ GenericParamKind::Type { ref default, synthetic, .. } => {
+ if default.is_some() {
+ match allow_defaults {
+ Defaults::Allowed => {}
+ Defaults::FutureCompatDisallowed
+ if tcx.features().default_type_parameter_fallback => {}
+ Defaults::FutureCompatDisallowed => {
+ tcx.struct_span_lint_hir(
+ lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
+ param.hir_id,
+ param.span,
+ TYPE_DEFAULT_NOT_ALLOWED,
+ |lint| lint,
+ );
+ }
+ Defaults::Deny => {
+ tcx.sess.span_err(param.span, TYPE_DEFAULT_NOT_ALLOWED);
+ }
+ }
+ }
+
+ let kind = ty::GenericParamDefKind::Type { has_default: default.is_some(), synthetic };
+
+ Some(ty::GenericParamDef {
+ index: next_index(),
+ name: param.name.ident().name,
+ def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
+ pure_wrt_drop: param.pure_wrt_drop,
+ kind,
+ })
+ }
+ GenericParamKind::Const { default, .. } => {
+ if !matches!(allow_defaults, Defaults::Allowed) && default.is_some() {
+ tcx.sess.span_err(
+ param.span,
+ "defaults for const parameters are only allowed in \
+ `struct`, `enum`, `type`, or `trait` definitions",
+ );
+ }
+
+ Some(ty::GenericParamDef {
+ index: next_index(),
+ name: param.name.ident().name,
+ def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
+ pure_wrt_drop: param.pure_wrt_drop,
+ kind: ty::GenericParamDefKind::Const { has_default: default.is_some() },
+ })
+ }
+ }));
+
+ // provide junk type parameter defs - the only place that
+ // cares about anything but the length is instantiation,
+ // and we don't do that for closures.
+ if let Node::Expr(&hir::Expr {
+ kind: hir::ExprKind::Closure(hir::Closure { movability: gen, .. }),
+ ..
+ }) = node
+ {
+ let dummy_args = if gen.is_some() {
+ &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>", "<upvars>"][..]
+ } else {
+ &["<closure_kind>", "<closure_signature>", "<upvars>"][..]
+ };
+
+ params.extend(dummy_args.iter().map(|&arg| ty::GenericParamDef {
+ index: next_index(),
+ name: Symbol::intern(arg),
+ def_id,
+ pure_wrt_drop: false,
+ kind: ty::GenericParamDefKind::Type { has_default: false, synthetic: false },
+ }));
+ }
+
+ // provide junk type parameter defs for const blocks.
+ if let Node::AnonConst(_) = node {
+ let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
+ if let Node::Expr(&Expr { kind: ExprKind::ConstBlock(_), .. }) = parent_node {
+ params.push(ty::GenericParamDef {
+ index: next_index(),
+ name: Symbol::intern("<const_ty>"),
+ def_id,
+ pure_wrt_drop: false,
+ kind: ty::GenericParamDefKind::Type { has_default: false, synthetic: false },
+ });
+ }
+ }
+
+ let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
+
+ ty::Generics {
+ parent: parent_def_id,
+ parent_count,
+ params,
+ param_def_id_to_index,
+ has_self: has_self || parent_has_self,
+ has_late_bound_regions: has_late_bound_regions(tcx, node),
+ }
+}
+
+fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
+ struct LateBoundRegionsDetector<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ outer_index: ty::DebruijnIndex,
+ has_late_bound_regions: Option<Span>,
+ }
+
+ impl<'tcx> Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
+ fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
+ if self.has_late_bound_regions.is_some() {
+ return;
+ }
+ match ty.kind {
+ hir::TyKind::BareFn(..) => {
+ self.outer_index.shift_in(1);
+ intravisit::walk_ty(self, ty);
+ self.outer_index.shift_out(1);
+ }
+ _ => intravisit::walk_ty(self, ty),
+ }
+ }
+
+ fn visit_poly_trait_ref(&mut self, tr: &'tcx hir::PolyTraitRef<'tcx>) {
+ if self.has_late_bound_regions.is_some() {
+ return;
+ }
+ self.outer_index.shift_in(1);
+ intravisit::walk_poly_trait_ref(self, tr);
+ self.outer_index.shift_out(1);
+ }
+
+ fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
+ if self.has_late_bound_regions.is_some() {
+ return;
+ }
+
+ match self.tcx.named_region(lt.hir_id) {
+ Some(rl::Region::Static | rl::Region::EarlyBound(..)) => {}
+ Some(rl::Region::LateBound(debruijn, _, _)) if debruijn < self.outer_index => {}
+ Some(rl::Region::LateBound(..) | rl::Region::Free(..)) | None => {
+ self.has_late_bound_regions = Some(lt.span);
+ }
+ }
+ }
+ }
+
+ fn has_late_bound_regions<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ generics: &'tcx hir::Generics<'tcx>,
+ decl: &'tcx hir::FnDecl<'tcx>,
+ ) -> Option<Span> {
+ let mut visitor = LateBoundRegionsDetector {
+ tcx,
+ outer_index: ty::INNERMOST,
+ has_late_bound_regions: None,
+ };
+ for param in generics.params {
+ if let GenericParamKind::Lifetime { .. } = param.kind {
+ if tcx.is_late_bound(param.hir_id) {
+ return Some(param.span);
+ }
+ }
+ }
+ visitor.visit_fn_decl(decl);
+ visitor.has_late_bound_regions
+ }
+
+ match node {
+ Node::TraitItem(item) => match item.kind {
+ hir::TraitItemKind::Fn(ref sig, _) => {
+ has_late_bound_regions(tcx, &item.generics, sig.decl)
+ }
+ _ => None,
+ },
+ Node::ImplItem(item) => match item.kind {
+ hir::ImplItemKind::Fn(ref sig, _) => {
+ has_late_bound_regions(tcx, &item.generics, sig.decl)
+ }
+ _ => None,
+ },
+ Node::ForeignItem(item) => match item.kind {
+ hir::ForeignItemKind::Fn(fn_decl, _, ref generics) => {
+ has_late_bound_regions(tcx, generics, fn_decl)
+ }
+ _ => None,
+ },
+ Node::Item(item) => match item.kind {
+ hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
+ has_late_bound_regions(tcx, generics, sig.decl)
+ }
+ _ => None,
+ },
+ _ => None,
+ }
+}
+
+struct AnonConstInParamTyDetector {
+ in_param_ty: bool,
+ found_anon_const_in_param_ty: bool,
+ ct: HirId,
+}
+
+impl<'v> Visitor<'v> for AnonConstInParamTyDetector {
+ fn visit_generic_param(&mut self, p: &'v hir::GenericParam<'v>) {
+ if let GenericParamKind::Const { ty, default: _ } = p.kind {
+ let prev = self.in_param_ty;
+ self.in_param_ty = true;
+ self.visit_ty(ty);
+ self.in_param_ty = prev;
+ }
+ }
+
+ fn visit_anon_const(&mut self, c: &'v hir::AnonConst) {
+ if self.in_param_ty && self.ct == c.hir_id {
+ self.found_anon_const_in_param_ty = true;
+ } else {
+ intravisit::walk_anon_const(self, c)
+ }
+ }
+}
diff --git a/compiler/rustc_typeck/src/collect/item_bounds.rs b/compiler/rustc_hir_analysis/src/collect/item_bounds.rs
index 0d2b75d33..0d34a8bfe 100644
--- a/compiler/rustc_typeck/src/collect/item_bounds.rs
+++ b/compiler/rustc_hir_analysis/src/collect/item_bounds.rs
@@ -53,20 +53,28 @@ fn associated_type_bounds<'tcx>(
/// impl trait it isn't possible to write a suitable predicate on the
/// containing function and for type-alias impl trait we don't have a backwards
/// compatibility issue.
+#[instrument(level = "trace", skip(tcx), ret)]
fn opaque_type_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
opaque_def_id: DefId,
ast_bounds: &'tcx [hir::GenericBound<'tcx>],
span: Span,
+ in_trait: bool,
) -> &'tcx [(ty::Predicate<'tcx>, Span)] {
ty::print::with_no_queries!({
- let item_ty =
- tcx.mk_opaque(opaque_def_id, InternalSubsts::identity_for_item(tcx, opaque_def_id));
+ let substs = InternalSubsts::identity_for_item(tcx, opaque_def_id);
+ let item_ty = if in_trait {
+ tcx.mk_projection(opaque_def_id, substs)
+ } else {
+ tcx.mk_opaque(opaque_def_id, substs)
+ };
let icx = ItemCtxt::new(tcx, opaque_def_id);
let mut bounds = <dyn AstConv<'_>>::compute_bounds(&icx, item_ty, ast_bounds);
// Opaque types are implicitly sized unless a `?Sized` bound is found
<dyn AstConv<'_>>::add_implicitly_sized(&icx, &mut bounds, ast_bounds, None, span);
+ debug!(?bounds);
+
tcx.arena.alloc_from_iter(bounds.predicates(tcx, item_ty))
})
}
@@ -83,10 +91,10 @@ pub(super) fn explicit_item_bounds(
..
}) => associated_type_bounds(tcx, def_id, bounds, *span),
hir::Node::Item(hir::Item {
- kind: hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds, .. }),
+ kind: hir::ItemKind::OpaqueTy(hir::OpaqueTy { bounds, in_trait, .. }),
span,
..
- }) => opaque_type_bounds(tcx, def_id, bounds, *span),
+ }) => opaque_type_bounds(tcx, def_id, bounds, *span, *in_trait),
_ => bug!("item_bounds called on {:?}", def_id),
}
}
diff --git a/compiler/rustc_hir_analysis/src/collect/lifetimes.rs b/compiler/rustc_hir_analysis/src/collect/lifetimes.rs
new file mode 100644
index 000000000..3f263a6de
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/collect/lifetimes.rs
@@ -0,0 +1,1888 @@
+//! Resolution of early vs late bound lifetimes.
+//!
+//! Name resolution for lifetimes is performed on the AST and embedded into HIR. From this
+//! information, typechecking needs to transform the lifetime parameters into bound lifetimes.
+//! Lifetimes can be early-bound or late-bound. Construction of typechecking terms needs to visit
+//! the types in HIR to identify late-bound lifetimes and assign their Debruijn indices. This file
+//! is also responsible for assigning their semantics to implicit lifetimes in trait objects.
+
+use rustc_ast::walk_list;
+use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
+use rustc_errors::struct_span_err;
+use rustc_hir as hir;
+use rustc_hir::def::{DefKind, Res};
+use rustc_hir::def_id::LocalDefId;
+use rustc_hir::intravisit::{self, Visitor};
+use rustc_hir::{GenericArg, GenericParam, GenericParamKind, HirIdMap, LifetimeName, Node};
+use rustc_middle::bug;
+use rustc_middle::hir::map::Map;
+use rustc_middle::hir::nested_filter;
+use rustc_middle::middle::resolve_lifetime::*;
+use rustc_middle::ty::{self, DefIdTree, TyCtxt};
+use rustc_span::def_id::DefId;
+use rustc_span::symbol::{sym, Ident};
+use rustc_span::Span;
+use std::fmt;
+
+trait RegionExt {
+ fn early(hir_map: Map<'_>, param: &GenericParam<'_>) -> (LocalDefId, Region);
+
+ fn late(index: u32, hir_map: Map<'_>, param: &GenericParam<'_>) -> (LocalDefId, Region);
+
+ fn id(&self) -> Option<DefId>;
+
+ fn shifted(self, amount: u32) -> Region;
+}
+
+impl RegionExt for Region {
+ fn early(hir_map: Map<'_>, param: &GenericParam<'_>) -> (LocalDefId, Region) {
+ let def_id = hir_map.local_def_id(param.hir_id);
+ debug!("Region::early: def_id={:?}", def_id);
+ (def_id, Region::EarlyBound(def_id.to_def_id()))
+ }
+
+ fn late(idx: u32, hir_map: Map<'_>, param: &GenericParam<'_>) -> (LocalDefId, Region) {
+ let depth = ty::INNERMOST;
+ let def_id = hir_map.local_def_id(param.hir_id);
+ debug!(
+ "Region::late: idx={:?}, param={:?} depth={:?} def_id={:?}",
+ idx, param, depth, def_id,
+ );
+ (def_id, Region::LateBound(depth, idx, def_id.to_def_id()))
+ }
+
+ fn id(&self) -> Option<DefId> {
+ match *self {
+ Region::Static => None,
+
+ Region::EarlyBound(id) | Region::LateBound(_, _, id) | Region::Free(_, id) => Some(id),
+ }
+ }
+
+ fn shifted(self, amount: u32) -> Region {
+ match self {
+ Region::LateBound(debruijn, idx, id) => {
+ Region::LateBound(debruijn.shifted_in(amount), idx, id)
+ }
+ _ => self,
+ }
+ }
+}
+
+/// Maps the id of each lifetime reference to the lifetime decl
+/// that it corresponds to.
+///
+/// FIXME. This struct gets converted to a `ResolveLifetimes` for
+/// actual use. It has the same data, but indexed by `LocalDefId`. This
+/// is silly.
+#[derive(Debug, Default)]
+struct NamedRegionMap {
+ // maps from every use of a named (not anonymous) lifetime to a
+ // `Region` describing how that region is bound
+ defs: HirIdMap<Region>,
+
+ // Maps relevant hir items to the bound vars on them. These include:
+ // - function defs
+ // - function pointers
+ // - closures
+ // - trait refs
+ // - bound types (like `T` in `for<'a> T<'a>: Foo`)
+ late_bound_vars: HirIdMap<Vec<ty::BoundVariableKind>>,
+}
+
+struct LifetimeContext<'a, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ map: &'a mut NamedRegionMap,
+ scope: ScopeRef<'a>,
+
+ /// Indicates that we only care about the definition of a trait. This should
+ /// be false if the `Item` we are resolving lifetimes for is not a trait or
+ /// we eventually need lifetimes resolve for trait items.
+ trait_definition_only: bool,
+}
+
+#[derive(Debug)]
+enum Scope<'a> {
+ /// Declares lifetimes, and each can be early-bound or late-bound.
+ /// The `DebruijnIndex` of late-bound lifetimes starts at `1` and
+ /// it should be shifted by the number of `Binder`s in between the
+ /// declaration `Binder` and the location it's referenced from.
+ Binder {
+ /// We use an IndexMap here because we want these lifetimes in order
+ /// for diagnostics.
+ lifetimes: FxIndexMap<LocalDefId, Region>,
+
+ scope_type: BinderScopeType,
+
+ /// The late bound vars for a given item are stored by `HirId` to be
+ /// queried later. However, if we enter an elision scope, we have to
+ /// later append the elided bound vars to the list and need to know what
+ /// to append to.
+ hir_id: hir::HirId,
+
+ s: ScopeRef<'a>,
+
+ /// If this binder comes from a where clause, specify how it was created.
+ /// This is used to diagnose inaccessible lifetimes in APIT:
+ /// ```ignore (illustrative)
+ /// fn foo(x: impl for<'a> Trait<'a, Assoc = impl Copy + 'a>) {}
+ /// ```
+ where_bound_origin: Option<hir::PredicateOrigin>,
+ },
+
+ /// Lifetimes introduced by a fn are scoped to the call-site for that fn,
+ /// if this is a fn body, otherwise the original definitions are used.
+ /// Unspecified lifetimes are inferred, unless an elision scope is nested,
+ /// e.g., `(&T, fn(&T) -> &T);` becomes `(&'_ T, for<'a> fn(&'a T) -> &'a T)`.
+ Body {
+ id: hir::BodyId,
+ s: ScopeRef<'a>,
+ },
+
+ /// A scope which either determines unspecified lifetimes or errors
+ /// on them (e.g., due to ambiguity).
+ Elision {
+ s: ScopeRef<'a>,
+ },
+
+ /// Use a specific lifetime (if `Some`) or leave it unset (to be
+ /// inferred in a function body or potentially error outside one),
+ /// for the default choice of lifetime in a trait object type.
+ ObjectLifetimeDefault {
+ lifetime: Option<Region>,
+ s: ScopeRef<'a>,
+ },
+
+ /// When we have nested trait refs, we concatenate late bound vars for inner
+ /// trait refs from outer ones. But we also need to include any HRTB
+ /// lifetimes encountered when identifying the trait that an associated type
+ /// is declared on.
+ Supertrait {
+ lifetimes: Vec<ty::BoundVariableKind>,
+ s: ScopeRef<'a>,
+ },
+
+ TraitRefBoundary {
+ s: ScopeRef<'a>,
+ },
+
+ Root,
+}
+
+#[derive(Copy, Clone, Debug)]
+enum BinderScopeType {
+ /// Any non-concatenating binder scopes.
+ Normal,
+ /// Within a syntactic trait ref, there may be multiple poly trait refs that
+ /// are nested (under the `associated_type_bounds` feature). The binders of
+ /// the inner poly trait refs are extended from the outer poly trait refs
+ /// and don't increase the late bound depth. If you had
+ /// `T: for<'a> Foo<Bar: for<'b> Baz<'a, 'b>>`, then the `for<'b>` scope
+ /// would be `Concatenating`. This also used in trait refs in where clauses
+ /// where we have two binders `for<> T: for<> Foo` (I've intentionally left
+ /// out any lifetimes because they aren't needed to show the two scopes).
+ /// The inner `for<>` has a scope of `Concatenating`.
+ Concatenating,
+}
+
+// A helper struct for debugging scopes without printing parent scopes
+struct TruncatedScopeDebug<'a>(&'a Scope<'a>);
+
+impl<'a> fmt::Debug for TruncatedScopeDebug<'a> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ match self.0 {
+ Scope::Binder { lifetimes, scope_type, hir_id, where_bound_origin, s: _ } => f
+ .debug_struct("Binder")
+ .field("lifetimes", lifetimes)
+ .field("scope_type", scope_type)
+ .field("hir_id", hir_id)
+ .field("where_bound_origin", where_bound_origin)
+ .field("s", &"..")
+ .finish(),
+ Scope::Body { id, s: _ } => {
+ f.debug_struct("Body").field("id", id).field("s", &"..").finish()
+ }
+ Scope::Elision { s: _ } => f.debug_struct("Elision").field("s", &"..").finish(),
+ Scope::ObjectLifetimeDefault { lifetime, s: _ } => f
+ .debug_struct("ObjectLifetimeDefault")
+ .field("lifetime", lifetime)
+ .field("s", &"..")
+ .finish(),
+ Scope::Supertrait { lifetimes, s: _ } => f
+ .debug_struct("Supertrait")
+ .field("lifetimes", lifetimes)
+ .field("s", &"..")
+ .finish(),
+ Scope::TraitRefBoundary { s: _ } => f.debug_struct("TraitRefBoundary").finish(),
+ Scope::Root => f.debug_struct("Root").finish(),
+ }
+ }
+}
+
+type ScopeRef<'a> = &'a Scope<'a>;
+
+const ROOT_SCOPE: ScopeRef<'static> = &Scope::Root;
+
+pub(crate) fn provide(providers: &mut ty::query::Providers) {
+ *providers = ty::query::Providers {
+ resolve_lifetimes_trait_definition,
+ resolve_lifetimes,
+
+ named_region_map: |tcx, id| resolve_lifetimes_for(tcx, id).defs.get(&id),
+ is_late_bound_map,
+ object_lifetime_default,
+ late_bound_vars_map: |tcx, id| resolve_lifetimes_for(tcx, id).late_bound_vars.get(&id),
+
+ ..*providers
+ };
+}
+
+/// Like `resolve_lifetimes`, but does not resolve lifetimes for trait items.
+/// Also does not generate any diagnostics.
+///
+/// This is ultimately a subset of the `resolve_lifetimes` work. It effectively
+/// resolves lifetimes only within the trait "header" -- that is, the trait
+/// and supertrait list. In contrast, `resolve_lifetimes` resolves all the
+/// lifetimes within the trait and its items. There is room to refactor this,
+/// for example to resolve lifetimes for each trait item in separate queries,
+/// but it's convenient to do the entire trait at once because the lifetimes
+/// from the trait definition are in scope within the trait items as well.
+///
+/// The reason for this separate call is to resolve what would otherwise
+/// be a cycle. Consider this example:
+///
+/// ```ignore UNSOLVED (maybe @jackh726 knows what lifetime parameter to give Sub)
+/// trait Base<'a> {
+/// type BaseItem;
+/// }
+/// trait Sub<'b>: for<'a> Base<'a> {
+/// type SubItem: Sub<BaseItem = &'b u32>;
+/// }
+/// ```
+///
+/// When we resolve `Sub` and all its items, we also have to resolve `Sub<BaseItem = &'b u32>`.
+/// To figure out the index of `'b`, we have to know about the supertraits
+/// of `Sub` so that we can determine that the `for<'a>` will be in scope.
+/// (This is because we -- currently at least -- flatten all the late-bound
+/// lifetimes into a single binder.) This requires us to resolve the
+/// *trait definition* of `Sub`; basically just enough lifetime information
+/// to look at the supertraits.
+#[instrument(level = "debug", skip(tcx))]
+fn resolve_lifetimes_trait_definition(
+ tcx: TyCtxt<'_>,
+ local_def_id: LocalDefId,
+) -> ResolveLifetimes {
+ convert_named_region_map(do_resolve(tcx, local_def_id, true))
+}
+
+/// Computes the `ResolveLifetimes` map that contains data for an entire `Item`.
+/// You should not read the result of this query directly, but rather use
+/// `named_region_map`, `is_late_bound_map`, etc.
+#[instrument(level = "debug", skip(tcx))]
+fn resolve_lifetimes(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> ResolveLifetimes {
+ convert_named_region_map(do_resolve(tcx, local_def_id, false))
+}
+
+fn do_resolve(
+ tcx: TyCtxt<'_>,
+ local_def_id: LocalDefId,
+ trait_definition_only: bool,
+) -> NamedRegionMap {
+ let item = tcx.hir().expect_item(local_def_id);
+ let mut named_region_map =
+ NamedRegionMap { defs: Default::default(), late_bound_vars: Default::default() };
+ let mut visitor = LifetimeContext {
+ tcx,
+ map: &mut named_region_map,
+ scope: ROOT_SCOPE,
+ trait_definition_only,
+ };
+ visitor.visit_item(item);
+
+ named_region_map
+}
+
+fn convert_named_region_map(named_region_map: NamedRegionMap) -> ResolveLifetimes {
+ let mut rl = ResolveLifetimes::default();
+
+ for (hir_id, v) in named_region_map.defs {
+ let map = rl.defs.entry(hir_id.owner).or_default();
+ map.insert(hir_id.local_id, v);
+ }
+ for (hir_id, v) in named_region_map.late_bound_vars {
+ let map = rl.late_bound_vars.entry(hir_id.owner).or_default();
+ map.insert(hir_id.local_id, v);
+ }
+
+ debug!(?rl.defs);
+ debug!(?rl.late_bound_vars);
+ rl
+}
+
+/// Given `any` owner (structs, traits, trait methods, etc.), does lifetime resolution.
+/// There are two important things this does.
+/// First, we have to resolve lifetimes for
+/// the entire *`Item`* that contains this owner, because that's the largest "scope"
+/// where we can have relevant lifetimes.
+/// Second, if we are asking for lifetimes in a trait *definition*, we use `resolve_lifetimes_trait_definition`
+/// instead of `resolve_lifetimes`, which does not descend into the trait items and does not emit diagnostics.
+/// This allows us to avoid cycles. Importantly, if we ask for lifetimes for lifetimes that have an owner
+/// other than the trait itself (like the trait methods or associated types), then we just use the regular
+/// `resolve_lifetimes`.
+fn resolve_lifetimes_for<'tcx>(tcx: TyCtxt<'tcx>, def_id: hir::OwnerId) -> &'tcx ResolveLifetimes {
+ let item_id = item_for(tcx, def_id.def_id);
+ let local_def_id = item_id.owner_id.def_id;
+ if item_id.owner_id == def_id {
+ let item = tcx.hir().item(item_id);
+ match item.kind {
+ hir::ItemKind::Trait(..) => tcx.resolve_lifetimes_trait_definition(local_def_id),
+ _ => tcx.resolve_lifetimes(local_def_id),
+ }
+ } else {
+ tcx.resolve_lifetimes(local_def_id)
+ }
+}
+
+/// Finds the `Item` that contains the given `LocalDefId`
+fn item_for(tcx: TyCtxt<'_>, local_def_id: LocalDefId) -> hir::ItemId {
+ match tcx.hir().find_by_def_id(local_def_id) {
+ Some(Node::Item(item)) => {
+ return item.item_id();
+ }
+ _ => {}
+ }
+ let item = {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(local_def_id);
+ let mut parent_iter = tcx.hir().parent_iter(hir_id);
+ loop {
+ let node = parent_iter.next().map(|n| n.1);
+ match node {
+ Some(hir::Node::Item(item)) => break item.item_id(),
+ Some(hir::Node::Crate(_)) | None => bug!("Called `item_for` on an Item."),
+ _ => {}
+ }
+ }
+ };
+ item
+}
+
+fn late_region_as_bound_region<'tcx>(tcx: TyCtxt<'tcx>, region: &Region) -> ty::BoundVariableKind {
+ match region {
+ Region::LateBound(_, _, def_id) => {
+ let name = tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id.expect_local()));
+ ty::BoundVariableKind::Region(ty::BrNamed(*def_id, name))
+ }
+ _ => bug!("{:?} is not a late region", region),
+ }
+}
+
+impl<'a, 'tcx> LifetimeContext<'a, 'tcx> {
+ /// Returns the binders in scope and the type of `Binder` that should be created for a poly trait ref.
+ fn poly_trait_ref_binder_info(&mut self) -> (Vec<ty::BoundVariableKind>, BinderScopeType) {
+ let mut scope = self.scope;
+ let mut supertrait_lifetimes = vec![];
+ loop {
+ match scope {
+ Scope::Body { .. } | Scope::Root => {
+ break (vec![], BinderScopeType::Normal);
+ }
+
+ Scope::Elision { s, .. } | Scope::ObjectLifetimeDefault { s, .. } => {
+ scope = s;
+ }
+
+ Scope::Supertrait { s, lifetimes } => {
+ supertrait_lifetimes = lifetimes.clone();
+ scope = s;
+ }
+
+ Scope::TraitRefBoundary { .. } => {
+ // We should only see super trait lifetimes if there is a `Binder` above
+ assert!(supertrait_lifetimes.is_empty());
+ break (vec![], BinderScopeType::Normal);
+ }
+
+ Scope::Binder { hir_id, .. } => {
+ // Nested poly trait refs have the binders concatenated
+ let mut full_binders =
+ self.map.late_bound_vars.entry(*hir_id).or_default().clone();
+ full_binders.extend(supertrait_lifetimes.into_iter());
+ break (full_binders, BinderScopeType::Concatenating);
+ }
+ }
+ }
+ }
+}
+impl<'a, 'tcx> Visitor<'tcx> for LifetimeContext<'a, 'tcx> {
+ type NestedFilter = nested_filter::All;
+
+ fn nested_visit_map(&mut self) -> Self::Map {
+ self.tcx.hir()
+ }
+
+ // We want to nest trait/impl items in their parent, but nothing else.
+ fn visit_nested_item(&mut self, _: hir::ItemId) {}
+
+ fn visit_trait_item_ref(&mut self, ii: &'tcx hir::TraitItemRef) {
+ if !self.trait_definition_only {
+ intravisit::walk_trait_item_ref(self, ii)
+ }
+ }
+
+ fn visit_nested_body(&mut self, body: hir::BodyId) {
+ let body = self.tcx.hir().body(body);
+ self.with(Scope::Body { id: body.id(), s: self.scope }, |this| {
+ this.visit_body(body);
+ });
+ }
+
+ fn visit_expr(&mut self, e: &'tcx hir::Expr<'tcx>) {
+ if let hir::ExprKind::Closure(hir::Closure {
+ binder, bound_generic_params, fn_decl, ..
+ }) = e.kind
+ {
+ if let &hir::ClosureBinder::For { span: for_sp, .. } = binder {
+ fn span_of_infer(ty: &hir::Ty<'_>) -> Option<Span> {
+ struct V(Option<Span>);
+
+ impl<'v> Visitor<'v> for V {
+ fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
+ match t.kind {
+ _ if self.0.is_some() => (),
+ hir::TyKind::Infer => {
+ self.0 = Some(t.span);
+ }
+ _ => intravisit::walk_ty(self, t),
+ }
+ }
+ }
+
+ let mut v = V(None);
+ v.visit_ty(ty);
+ v.0
+ }
+
+ let infer_in_rt_sp = match fn_decl.output {
+ hir::FnRetTy::DefaultReturn(sp) => Some(sp),
+ hir::FnRetTy::Return(ty) => span_of_infer(ty),
+ };
+
+ let infer_spans = fn_decl
+ .inputs
+ .into_iter()
+ .filter_map(span_of_infer)
+ .chain(infer_in_rt_sp)
+ .collect::<Vec<_>>();
+
+ if !infer_spans.is_empty() {
+ self.tcx.sess
+ .struct_span_err(
+ infer_spans,
+ "implicit types in closure signatures are forbidden when `for<...>` is present",
+ )
+ .span_label(for_sp, "`for<...>` is here")
+ .emit();
+ }
+ }
+
+ let (lifetimes, binders): (FxIndexMap<LocalDefId, Region>, Vec<_>) =
+ bound_generic_params
+ .iter()
+ .filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. }))
+ .enumerate()
+ .map(|(late_bound_idx, param)| {
+ let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param);
+ let r = late_region_as_bound_region(self.tcx, &pair.1);
+ (pair, r)
+ })
+ .unzip();
+
+ self.record_late_bound_vars(e.hir_id, binders);
+ let scope = Scope::Binder {
+ hir_id: e.hir_id,
+ lifetimes,
+ s: self.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: None,
+ };
+
+ self.with(scope, |this| {
+ // a closure has no bounds, so everything
+ // contained within is scoped within its binder.
+ intravisit::walk_expr(this, e)
+ });
+ } else {
+ intravisit::walk_expr(self, e)
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
+ match &item.kind {
+ hir::ItemKind::Impl(hir::Impl { of_trait, .. }) => {
+ if let Some(of_trait) = of_trait {
+ self.record_late_bound_vars(of_trait.hir_ref_id, Vec::default());
+ }
+ }
+ _ => {}
+ }
+ match item.kind {
+ hir::ItemKind::Fn(_, ref generics, _) => {
+ self.visit_early_late(item.hir_id(), generics, |this| {
+ intravisit::walk_item(this, item);
+ });
+ }
+
+ hir::ItemKind::ExternCrate(_)
+ | hir::ItemKind::Use(..)
+ | hir::ItemKind::Macro(..)
+ | hir::ItemKind::Mod(..)
+ | hir::ItemKind::ForeignMod { .. }
+ | hir::ItemKind::GlobalAsm(..) => {
+ // These sorts of items have no lifetime parameters at all.
+ intravisit::walk_item(self, item);
+ }
+ hir::ItemKind::Static(..) | hir::ItemKind::Const(..) => {
+ // No lifetime parameters, but implied 'static.
+ self.with(Scope::Elision { s: self.scope }, |this| {
+ intravisit::walk_item(this, item)
+ });
+ }
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy { .. }) => {
+ // Opaque types are visited when we visit the
+ // `TyKind::OpaqueDef`, so that they have the lifetimes from
+ // their parent opaque_ty in scope.
+ //
+ // The core idea here is that since OpaqueTys are generated with the impl Trait as
+ // their owner, we can keep going until we find the Item that owns that. We then
+ // conservatively add all resolved lifetimes. Otherwise we run into problems in
+ // cases like `type Foo<'a> = impl Bar<As = impl Baz + 'a>`.
+ for (_hir_id, node) in self.tcx.hir().parent_iter(item.owner_id.into()) {
+ match node {
+ hir::Node::Item(parent_item) => {
+ let resolved_lifetimes: &ResolveLifetimes = self.tcx.resolve_lifetimes(
+ item_for(self.tcx, parent_item.owner_id.def_id).owner_id.def_id,
+ );
+ // We need to add *all* deps, since opaque tys may want them from *us*
+ for (&owner, defs) in resolved_lifetimes.defs.iter() {
+ defs.iter().for_each(|(&local_id, region)| {
+ self.map.defs.insert(hir::HirId { owner, local_id }, *region);
+ });
+ }
+ for (&owner, late_bound_vars) in
+ resolved_lifetimes.late_bound_vars.iter()
+ {
+ late_bound_vars.iter().for_each(|(&local_id, late_bound_vars)| {
+ self.record_late_bound_vars(
+ hir::HirId { owner, local_id },
+ late_bound_vars.clone(),
+ );
+ });
+ }
+ break;
+ }
+ hir::Node::Crate(_) => bug!("No Item about an OpaqueTy"),
+ _ => {}
+ }
+ }
+ }
+ hir::ItemKind::TyAlias(_, ref generics)
+ | hir::ItemKind::Enum(_, ref generics)
+ | hir::ItemKind::Struct(_, ref generics)
+ | hir::ItemKind::Union(_, ref generics)
+ | hir::ItemKind::Trait(_, _, ref generics, ..)
+ | hir::ItemKind::TraitAlias(ref generics, ..)
+ | hir::ItemKind::Impl(hir::Impl { ref generics, .. }) => {
+ // These kinds of items have only early-bound lifetime parameters.
+ let lifetimes = generics
+ .params
+ .iter()
+ .filter_map(|param| match param.kind {
+ GenericParamKind::Lifetime { .. } => {
+ Some(Region::early(self.tcx.hir(), param))
+ }
+ GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => None,
+ })
+ .collect();
+ self.record_late_bound_vars(item.hir_id(), vec![]);
+ let scope = Scope::Binder {
+ hir_id: item.hir_id(),
+ lifetimes,
+ scope_type: BinderScopeType::Normal,
+ s: ROOT_SCOPE,
+ where_bound_origin: None,
+ };
+ self.with(scope, |this| {
+ let scope = Scope::TraitRefBoundary { s: this.scope };
+ this.with(scope, |this| {
+ intravisit::walk_item(this, item);
+ });
+ });
+ }
+ }
+ }
+
+ fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
+ match item.kind {
+ hir::ForeignItemKind::Fn(_, _, ref generics) => {
+ self.visit_early_late(item.hir_id(), generics, |this| {
+ intravisit::walk_foreign_item(this, item);
+ })
+ }
+ hir::ForeignItemKind::Static(..) => {
+ intravisit::walk_foreign_item(self, item);
+ }
+ hir::ForeignItemKind::Type => {
+ intravisit::walk_foreign_item(self, item);
+ }
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
+ match ty.kind {
+ hir::TyKind::BareFn(ref c) => {
+ let (lifetimes, binders): (FxIndexMap<LocalDefId, Region>, Vec<_>) = c
+ .generic_params
+ .iter()
+ .filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. }))
+ .enumerate()
+ .map(|(late_bound_idx, param)| {
+ let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param);
+ let r = late_region_as_bound_region(self.tcx, &pair.1);
+ (pair, r)
+ })
+ .unzip();
+ self.record_late_bound_vars(ty.hir_id, binders);
+ let scope = Scope::Binder {
+ hir_id: ty.hir_id,
+ lifetimes,
+ s: self.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: None,
+ };
+ self.with(scope, |this| {
+ // a bare fn has no bounds, so everything
+ // contained within is scoped within its binder.
+ intravisit::walk_ty(this, ty);
+ });
+ }
+ hir::TyKind::TraitObject(bounds, ref lifetime, _) => {
+ debug!(?bounds, ?lifetime, "TraitObject");
+ let scope = Scope::TraitRefBoundary { s: self.scope };
+ self.with(scope, |this| {
+ for bound in bounds {
+ this.visit_poly_trait_ref(bound);
+ }
+ });
+ match lifetime.name {
+ LifetimeName::ImplicitObjectLifetimeDefault => {
+ // If the user does not write *anything*, we
+ // use the object lifetime defaulting
+ // rules. So e.g., `Box<dyn Debug>` becomes
+ // `Box<dyn Debug + 'static>`.
+ self.resolve_object_lifetime_default(lifetime)
+ }
+ LifetimeName::Infer => {
+ // If the user writes `'_`, we use the *ordinary* elision
+ // rules. So the `'_` in e.g., `Box<dyn Debug + '_>` will be
+ // resolved the same as the `'_` in `&'_ Foo`.
+ //
+ // cc #48468
+ }
+ LifetimeName::Param(..) | LifetimeName::Static => {
+ // If the user wrote an explicit name, use that.
+ self.visit_lifetime(lifetime);
+ }
+ LifetimeName::Error => {}
+ }
+ }
+ hir::TyKind::Rptr(ref lifetime_ref, ref mt) => {
+ self.visit_lifetime(lifetime_ref);
+ let scope = Scope::ObjectLifetimeDefault {
+ lifetime: self.map.defs.get(&lifetime_ref.hir_id).cloned(),
+ s: self.scope,
+ };
+ self.with(scope, |this| this.visit_ty(&mt.ty));
+ }
+ hir::TyKind::OpaqueDef(item_id, lifetimes, _in_trait) => {
+ // Resolve the lifetimes in the bounds to the lifetime defs in the generics.
+ // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
+ // `type MyAnonTy<'b> = impl MyTrait<'b>;`
+ // ^ ^ this gets resolved in the scope of
+ // the opaque_ty generics
+ let opaque_ty = self.tcx.hir().item(item_id);
+ let (generics, bounds) = match opaque_ty.kind {
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy {
+ origin: hir::OpaqueTyOrigin::TyAlias,
+ ..
+ }) => {
+ intravisit::walk_ty(self, ty);
+
+ // Elided lifetimes are not allowed in non-return
+ // position impl Trait
+ let scope = Scope::TraitRefBoundary { s: self.scope };
+ self.with(scope, |this| {
+ let scope = Scope::Elision { s: this.scope };
+ this.with(scope, |this| {
+ intravisit::walk_item(this, opaque_ty);
+ })
+ });
+
+ return;
+ }
+ hir::ItemKind::OpaqueTy(hir::OpaqueTy {
+ origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..),
+ ref generics,
+ bounds,
+ ..
+ }) => (generics, bounds),
+ ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
+ };
+
+ // Resolve the lifetimes that are applied to the opaque type.
+ // These are resolved in the current scope.
+ // `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
+ // `fn foo<'a>() -> MyAnonTy<'a> { ... }`
+ // ^ ^this gets resolved in the current scope
+ for lifetime in lifetimes {
+ let hir::GenericArg::Lifetime(lifetime) = lifetime else {
+ continue
+ };
+ self.visit_lifetime(lifetime);
+
+ // Check for predicates like `impl for<'a> Trait<impl OtherTrait<'a>>`
+ // and ban them. Type variables instantiated inside binders aren't
+ // well-supported at the moment, so this doesn't work.
+ // In the future, this should be fixed and this error should be removed.
+ let def = self.map.defs.get(&lifetime.hir_id).cloned();
+ let Some(Region::LateBound(_, _, def_id)) = def else {
+ continue
+ };
+ let Some(def_id) = def_id.as_local() else {
+ continue
+ };
+ let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
+ // Ensure that the parent of the def is an item, not HRTB
+ let parent_id = self.tcx.hir().get_parent_node(hir_id);
+ if !parent_id.is_owner() {
+ if !self.trait_definition_only {
+ struct_span_err!(
+ self.tcx.sess,
+ lifetime.span,
+ E0657,
+ "`impl Trait` can only capture lifetimes \
+ bound at the fn or impl level"
+ )
+ .emit();
+ }
+ self.uninsert_lifetime_on_error(lifetime, def.unwrap());
+ }
+ if let hir::Node::Item(hir::Item {
+ kind: hir::ItemKind::OpaqueTy { .. }, ..
+ }) = self.tcx.hir().get(parent_id)
+ {
+ if !self.trait_definition_only {
+ let mut err = self.tcx.sess.struct_span_err(
+ lifetime.span,
+ "higher kinded lifetime bounds on nested opaque types are not supported yet",
+ );
+ err.span_note(self.tcx.def_span(def_id), "lifetime declared here");
+ err.emit();
+ }
+ self.uninsert_lifetime_on_error(lifetime, def.unwrap());
+ }
+ }
+
+ // We want to start our early-bound indices at the end of the parent scope,
+ // not including any parent `impl Trait`s.
+ let mut lifetimes = FxIndexMap::default();
+ debug!(?generics.params);
+ for param in generics.params {
+ match param.kind {
+ GenericParamKind::Lifetime { .. } => {
+ let (def_id, reg) = Region::early(self.tcx.hir(), &param);
+ lifetimes.insert(def_id, reg);
+ }
+ GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {}
+ }
+ }
+ self.record_late_bound_vars(ty.hir_id, vec![]);
+
+ let scope = Scope::Binder {
+ hir_id: ty.hir_id,
+ lifetimes,
+ s: self.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: None,
+ };
+ self.with(scope, |this| {
+ let scope = Scope::TraitRefBoundary { s: this.scope };
+ this.with(scope, |this| {
+ this.visit_generics(generics);
+ for bound in bounds {
+ this.visit_param_bound(bound);
+ }
+ })
+ });
+ }
+ _ => intravisit::walk_ty(self, ty),
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
+ use self::hir::TraitItemKind::*;
+ match trait_item.kind {
+ Fn(_, _) => {
+ self.visit_early_late(trait_item.hir_id(), &trait_item.generics, |this| {
+ intravisit::walk_trait_item(this, trait_item)
+ });
+ }
+ Type(bounds, ref ty) => {
+ let generics = &trait_item.generics;
+ let lifetimes = generics
+ .params
+ .iter()
+ .filter_map(|param| match param.kind {
+ GenericParamKind::Lifetime { .. } => {
+ Some(Region::early(self.tcx.hir(), param))
+ }
+ GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => None,
+ })
+ .collect();
+ self.record_late_bound_vars(trait_item.hir_id(), vec![]);
+ let scope = Scope::Binder {
+ hir_id: trait_item.hir_id(),
+ lifetimes,
+ s: self.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: None,
+ };
+ self.with(scope, |this| {
+ let scope = Scope::TraitRefBoundary { s: this.scope };
+ this.with(scope, |this| {
+ this.visit_generics(generics);
+ for bound in bounds {
+ this.visit_param_bound(bound);
+ }
+ if let Some(ty) = ty {
+ this.visit_ty(ty);
+ }
+ })
+ });
+ }
+ Const(_, _) => {
+ // Only methods and types support generics.
+ assert!(trait_item.generics.params.is_empty());
+ intravisit::walk_trait_item(self, trait_item);
+ }
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
+ use self::hir::ImplItemKind::*;
+ match impl_item.kind {
+ Fn(..) => self.visit_early_late(impl_item.hir_id(), &impl_item.generics, |this| {
+ intravisit::walk_impl_item(this, impl_item)
+ }),
+ Type(ref ty) => {
+ let generics = &impl_item.generics;
+ let lifetimes: FxIndexMap<LocalDefId, Region> = generics
+ .params
+ .iter()
+ .filter_map(|param| match param.kind {
+ GenericParamKind::Lifetime { .. } => {
+ Some(Region::early(self.tcx.hir(), param))
+ }
+ GenericParamKind::Const { .. } | GenericParamKind::Type { .. } => None,
+ })
+ .collect();
+ self.record_late_bound_vars(impl_item.hir_id(), vec![]);
+ let scope = Scope::Binder {
+ hir_id: impl_item.hir_id(),
+ lifetimes,
+ s: self.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: None,
+ };
+ self.with(scope, |this| {
+ let scope = Scope::TraitRefBoundary { s: this.scope };
+ this.with(scope, |this| {
+ this.visit_generics(generics);
+ this.visit_ty(ty);
+ })
+ });
+ }
+ Const(_, _) => {
+ // Only methods and types support generics.
+ assert!(impl_item.generics.params.is_empty());
+ intravisit::walk_impl_item(self, impl_item);
+ }
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
+ match lifetime_ref.name {
+ hir::LifetimeName::Static => self.insert_lifetime(lifetime_ref, Region::Static),
+ hir::LifetimeName::Param(param_def_id, _) => {
+ self.resolve_lifetime_ref(param_def_id, lifetime_ref)
+ }
+ // If we've already reported an error, just ignore `lifetime_ref`.
+ hir::LifetimeName::Error => {}
+ // Those will be resolved by typechecking.
+ hir::LifetimeName::ImplicitObjectLifetimeDefault | hir::LifetimeName::Infer => {}
+ }
+ }
+
+ fn visit_path(&mut self, path: &'tcx hir::Path<'tcx>, _: hir::HirId) {
+ for (i, segment) in path.segments.iter().enumerate() {
+ let depth = path.segments.len() - i - 1;
+ if let Some(ref args) = segment.args {
+ self.visit_segment_args(path.res, depth, args);
+ }
+ }
+ }
+
+ fn visit_fn(
+ &mut self,
+ fk: intravisit::FnKind<'tcx>,
+ fd: &'tcx hir::FnDecl<'tcx>,
+ body_id: hir::BodyId,
+ _: Span,
+ _: hir::HirId,
+ ) {
+ let output = match fd.output {
+ hir::FnRetTy::DefaultReturn(_) => None,
+ hir::FnRetTy::Return(ref ty) => Some(&**ty),
+ };
+ self.visit_fn_like_elision(&fd.inputs, output, matches!(fk, intravisit::FnKind::Closure));
+ intravisit::walk_fn_kind(self, fk);
+ self.visit_nested_body(body_id)
+ }
+
+ fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
+ let scope = Scope::TraitRefBoundary { s: self.scope };
+ self.with(scope, |this| {
+ for param in generics.params {
+ match param.kind {
+ GenericParamKind::Lifetime { .. } => {}
+ GenericParamKind::Type { ref default, .. } => {
+ if let Some(ref ty) = default {
+ this.visit_ty(&ty);
+ }
+ }
+ GenericParamKind::Const { ref ty, default } => {
+ this.visit_ty(&ty);
+ if let Some(default) = default {
+ this.visit_body(this.tcx.hir().body(default.body));
+ }
+ }
+ }
+ }
+ for predicate in generics.predicates {
+ match predicate {
+ &hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
+ hir_id,
+ ref bounded_ty,
+ bounds,
+ ref bound_generic_params,
+ origin,
+ ..
+ }) => {
+ let lifetimes: FxIndexMap<LocalDefId, Region> =
+ bound_generic_params
+ .iter()
+ .filter(|param| {
+ matches!(param.kind, GenericParamKind::Lifetime { .. })
+ })
+ .enumerate()
+ .map(|(late_bound_idx, param)| {
+ Region::late(late_bound_idx as u32, this.tcx.hir(), param)
+ })
+ .collect();
+ let binders: Vec<_> =
+ lifetimes
+ .iter()
+ .map(|(_, region)| {
+ late_region_as_bound_region(this.tcx, region)
+ })
+ .collect();
+ this.record_late_bound_vars(hir_id, binders.clone());
+ // Even if there are no lifetimes defined here, we still wrap it in a binder
+ // scope. If there happens to be a nested poly trait ref (an error), that
+ // will be `Concatenating` anyways, so we don't have to worry about the depth
+ // being wrong.
+ let scope = Scope::Binder {
+ hir_id,
+ lifetimes,
+ s: this.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: Some(origin),
+ };
+ this.with(scope, |this| {
+ this.visit_ty(&bounded_ty);
+ walk_list!(this, visit_param_bound, bounds);
+ })
+ }
+ &hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
+ ref lifetime,
+ bounds,
+ ..
+ }) => {
+ this.visit_lifetime(lifetime);
+ walk_list!(this, visit_param_bound, bounds);
+
+ if lifetime.name != hir::LifetimeName::Static {
+ for bound in bounds {
+ let hir::GenericBound::Outlives(ref lt) = bound else {
+ continue;
+ };
+ if lt.name != hir::LifetimeName::Static {
+ continue;
+ }
+ this.insert_lifetime(lt, Region::Static);
+ this.tcx
+ .sess
+ .struct_span_warn(
+ lifetime.span,
+ &format!(
+ "unnecessary lifetime parameter `{}`",
+ lifetime.name.ident(),
+ ),
+ )
+ .help(&format!(
+ "you can use the `'static` lifetime directly, in place of `{}`",
+ lifetime.name.ident(),
+ ))
+ .emit();
+ }
+ }
+ }
+ &hir::WherePredicate::EqPredicate(hir::WhereEqPredicate {
+ ref lhs_ty,
+ ref rhs_ty,
+ ..
+ }) => {
+ this.visit_ty(lhs_ty);
+ this.visit_ty(rhs_ty);
+ }
+ }
+ }
+ })
+ }
+
+ fn visit_param_bound(&mut self, bound: &'tcx hir::GenericBound<'tcx>) {
+ match bound {
+ hir::GenericBound::LangItemTrait(_, _, hir_id, _) => {
+ // FIXME(jackh726): This is pretty weird. `LangItemTrait` doesn't go
+ // through the regular poly trait ref code, so we don't get another
+ // chance to introduce a binder. For now, I'm keeping the existing logic
+ // of "if there isn't a Binder scope above us, add one", but I
+ // imagine there's a better way to go about this.
+ let (binders, scope_type) = self.poly_trait_ref_binder_info();
+
+ self.record_late_bound_vars(*hir_id, binders);
+ let scope = Scope::Binder {
+ hir_id: *hir_id,
+ lifetimes: FxIndexMap::default(),
+ s: self.scope,
+ scope_type,
+ where_bound_origin: None,
+ };
+ self.with(scope, |this| {
+ intravisit::walk_param_bound(this, bound);
+ });
+ }
+ _ => intravisit::walk_param_bound(self, bound),
+ }
+ }
+
+ fn visit_poly_trait_ref(&mut self, trait_ref: &'tcx hir::PolyTraitRef<'tcx>) {
+ debug!("visit_poly_trait_ref(trait_ref={:?})", trait_ref);
+
+ let (mut binders, scope_type) = self.poly_trait_ref_binder_info();
+
+ let initial_bound_vars = binders.len() as u32;
+ let mut lifetimes: FxIndexMap<LocalDefId, Region> = FxIndexMap::default();
+ let binders_iter = trait_ref
+ .bound_generic_params
+ .iter()
+ .filter(|param| matches!(param.kind, GenericParamKind::Lifetime { .. }))
+ .enumerate()
+ .map(|(late_bound_idx, param)| {
+ let pair =
+ Region::late(initial_bound_vars + late_bound_idx as u32, self.tcx.hir(), param);
+ let r = late_region_as_bound_region(self.tcx, &pair.1);
+ lifetimes.insert(pair.0, pair.1);
+ r
+ });
+ binders.extend(binders_iter);
+
+ debug!(?binders);
+ self.record_late_bound_vars(trait_ref.trait_ref.hir_ref_id, binders);
+
+ // Always introduce a scope here, even if this is in a where clause and
+ // we introduced the binders around the bounded Ty. In that case, we
+ // just reuse the concatenation functionality also present in nested trait
+ // refs.
+ let scope = Scope::Binder {
+ hir_id: trait_ref.trait_ref.hir_ref_id,
+ lifetimes,
+ s: self.scope,
+ scope_type,
+ where_bound_origin: None,
+ };
+ self.with(scope, |this| {
+ walk_list!(this, visit_generic_param, trait_ref.bound_generic_params);
+ this.visit_trait_ref(&trait_ref.trait_ref);
+ });
+ }
+}
+
+fn object_lifetime_default<'tcx>(tcx: TyCtxt<'tcx>, param_def_id: DefId) -> ObjectLifetimeDefault {
+ debug_assert_eq!(tcx.def_kind(param_def_id), DefKind::TyParam);
+ let param_def_id = param_def_id.expect_local();
+ let parent_def_id = tcx.local_parent(param_def_id);
+ let generics = tcx.hir().get_generics(parent_def_id).unwrap();
+ let param_hir_id = tcx.local_def_id_to_hir_id(param_def_id);
+ let param = generics.params.iter().find(|p| p.hir_id == param_hir_id).unwrap();
+
+ // Scan the bounds and where-clauses on parameters to extract bounds
+ // of the form `T:'a` so as to determine the `ObjectLifetimeDefault`
+ // for each type parameter.
+ match param.kind {
+ GenericParamKind::Type { .. } => {
+ let mut set = Set1::Empty;
+
+ // Look for `type: ...` where clauses.
+ for bound in generics.bounds_for_param(param_def_id) {
+ // Ignore `for<'a> type: ...` as they can change what
+ // lifetimes mean (although we could "just" handle it).
+ if !bound.bound_generic_params.is_empty() {
+ continue;
+ }
+
+ for bound in bound.bounds {
+ if let hir::GenericBound::Outlives(ref lifetime) = *bound {
+ set.insert(lifetime.name.normalize_to_macros_2_0());
+ }
+ }
+ }
+
+ match set {
+ Set1::Empty => ObjectLifetimeDefault::Empty,
+ Set1::One(hir::LifetimeName::Static) => ObjectLifetimeDefault::Static,
+ Set1::One(hir::LifetimeName::Param(param_def_id, _)) => {
+ ObjectLifetimeDefault::Param(param_def_id.to_def_id())
+ }
+ _ => ObjectLifetimeDefault::Ambiguous,
+ }
+ }
+ _ => {
+ bug!("object_lifetime_default_raw must only be called on a type parameter")
+ }
+ }
+}
+
+impl<'a, 'tcx> LifetimeContext<'a, 'tcx> {
+ fn with<F>(&mut self, wrap_scope: Scope<'_>, f: F)
+ where
+ F: for<'b> FnOnce(&mut LifetimeContext<'b, 'tcx>),
+ {
+ let LifetimeContext { tcx, map, .. } = self;
+ let mut this = LifetimeContext {
+ tcx: *tcx,
+ map,
+ scope: &wrap_scope,
+ trait_definition_only: self.trait_definition_only,
+ };
+ let span = debug_span!("scope", scope = ?TruncatedScopeDebug(&this.scope));
+ {
+ let _enter = span.enter();
+ f(&mut this);
+ }
+ }
+
+ fn record_late_bound_vars(&mut self, hir_id: hir::HirId, binder: Vec<ty::BoundVariableKind>) {
+ if let Some(old) = self.map.late_bound_vars.insert(hir_id, binder) {
+ bug!(
+ "overwrote bound vars for {hir_id:?}:\nold={old:?}\nnew={:?}",
+ self.map.late_bound_vars[&hir_id]
+ )
+ }
+ }
+
+ /// Visits self by adding a scope and handling recursive walk over the contents with `walk`.
+ ///
+ /// Handles visiting fns and methods. These are a bit complicated because we must distinguish
+ /// early- vs late-bound lifetime parameters. We do this by checking which lifetimes appear
+ /// within type bounds; those are early bound lifetimes, and the rest are late bound.
+ ///
+ /// For example:
+ ///
+ /// fn foo<'a,'b,'c,T:Trait<'b>>(...)
+ ///
+ /// Here `'a` and `'c` are late bound but `'b` is early bound. Note that early- and late-bound
+ /// lifetimes may be interspersed together.
+ ///
+ /// If early bound lifetimes are present, we separate them into their own list (and likewise
+ /// for late bound). They will be numbered sequentially, starting from the lowest index that is
+ /// already in scope (for a fn item, that will be 0, but for a method it might not be). Late
+ /// bound lifetimes are resolved by name and associated with a binder ID (`binder_id`), so the
+ /// ordering is not important there.
+ fn visit_early_late<F>(
+ &mut self,
+ hir_id: hir::HirId,
+ generics: &'tcx hir::Generics<'tcx>,
+ walk: F,
+ ) where
+ F: for<'b, 'c> FnOnce(&'b mut LifetimeContext<'c, 'tcx>),
+ {
+ let mut named_late_bound_vars = 0;
+ let lifetimes: FxIndexMap<LocalDefId, Region> = generics
+ .params
+ .iter()
+ .filter_map(|param| match param.kind {
+ GenericParamKind::Lifetime { .. } => {
+ if self.tcx.is_late_bound(param.hir_id) {
+ let late_bound_idx = named_late_bound_vars;
+ named_late_bound_vars += 1;
+ Some(Region::late(late_bound_idx, self.tcx.hir(), param))
+ } else {
+ Some(Region::early(self.tcx.hir(), param))
+ }
+ }
+ GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => None,
+ })
+ .collect();
+
+ let binders: Vec<_> = generics
+ .params
+ .iter()
+ .filter(|param| {
+ matches!(param.kind, GenericParamKind::Lifetime { .. })
+ && self.tcx.is_late_bound(param.hir_id)
+ })
+ .enumerate()
+ .map(|(late_bound_idx, param)| {
+ let pair = Region::late(late_bound_idx as u32, self.tcx.hir(), param);
+ late_region_as_bound_region(self.tcx, &pair.1)
+ })
+ .collect();
+ self.record_late_bound_vars(hir_id, binders);
+ let scope = Scope::Binder {
+ hir_id,
+ lifetimes,
+ s: self.scope,
+ scope_type: BinderScopeType::Normal,
+ where_bound_origin: None,
+ };
+ self.with(scope, walk);
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn resolve_lifetime_ref(
+ &mut self,
+ region_def_id: LocalDefId,
+ lifetime_ref: &'tcx hir::Lifetime,
+ ) {
+ // Walk up the scope chain, tracking the number of fn scopes
+ // that we pass through, until we find a lifetime with the
+ // given name or we run out of scopes.
+ // search.
+ let mut late_depth = 0;
+ let mut scope = self.scope;
+ let mut outermost_body = None;
+ let result = loop {
+ match *scope {
+ Scope::Body { id, s } => {
+ outermost_body = Some(id);
+ scope = s;
+ }
+
+ Scope::Root => {
+ break None;
+ }
+
+ Scope::Binder { ref lifetimes, scope_type, s, where_bound_origin, .. } => {
+ if let Some(&def) = lifetimes.get(&region_def_id) {
+ break Some(def.shifted(late_depth));
+ }
+ match scope_type {
+ BinderScopeType::Normal => late_depth += 1,
+ BinderScopeType::Concatenating => {}
+ }
+ // Fresh lifetimes in APIT used to be allowed in async fns and forbidden in
+ // regular fns.
+ if let Some(hir::PredicateOrigin::ImplTrait) = where_bound_origin
+ && let hir::LifetimeName::Param(_, hir::ParamName::Fresh) = lifetime_ref.name
+ && let hir::IsAsync::NotAsync = self.tcx.asyncness(lifetime_ref.hir_id.owner.def_id)
+ && !self.tcx.features().anonymous_lifetime_in_impl_trait
+ {
+ let mut diag = rustc_session::parse::feature_err(
+ &self.tcx.sess.parse_sess,
+ sym::anonymous_lifetime_in_impl_trait,
+ lifetime_ref.span,
+ "anonymous lifetimes in `impl Trait` are unstable",
+ );
+
+ match self.tcx.hir().get_generics(lifetime_ref.hir_id.owner.def_id) {
+ Some(generics) => {
+
+ let new_param_sugg_tuple;
+
+ new_param_sugg_tuple = match generics.span_for_param_suggestion() {
+ Some(_) => {
+ Some((self.tcx.sess.source_map().span_through_char(generics.span, '<').shrink_to_hi(), "'a, ".to_owned()))
+ },
+ None => Some((generics.span, "<'a>".to_owned()))
+ };
+
+ let mut multi_sugg_vec = vec![(lifetime_ref.span.shrink_to_hi(), "'a ".to_owned())];
+
+ if let Some(new_tuple) = new_param_sugg_tuple{
+ multi_sugg_vec.push(new_tuple);
+ }
+
+ diag.span_label(lifetime_ref.span, "expected named lifetime parameter");
+ diag.multipart_suggestion("consider introducing a named lifetime parameter",
+ multi_sugg_vec,
+ rustc_errors::Applicability::MaybeIncorrect);
+
+ },
+ None => { }
+ }
+
+ diag.emit();
+ return;
+ }
+ scope = s;
+ }
+
+ Scope::Elision { s, .. }
+ | Scope::ObjectLifetimeDefault { s, .. }
+ | Scope::Supertrait { s, .. }
+ | Scope::TraitRefBoundary { s, .. } => {
+ scope = s;
+ }
+ }
+ };
+
+ if let Some(mut def) = result {
+ if let Region::EarlyBound(..) = def {
+ // Do not free early-bound regions, only late-bound ones.
+ } else if let Some(body_id) = outermost_body {
+ let fn_id = self.tcx.hir().body_owner(body_id);
+ match self.tcx.hir().get(fn_id) {
+ Node::Item(&hir::Item { kind: hir::ItemKind::Fn(..), .. })
+ | Node::TraitItem(&hir::TraitItem {
+ kind: hir::TraitItemKind::Fn(..), ..
+ })
+ | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) => {
+ let scope = self.tcx.hir().local_def_id(fn_id);
+ def = Region::Free(scope.to_def_id(), def.id().unwrap());
+ }
+ _ => {}
+ }
+ }
+
+ self.insert_lifetime(lifetime_ref, def);
+ return;
+ }
+
+ // We may fail to resolve higher-ranked lifetimes that are mentioned by APIT.
+ // AST-based resolution does not care for impl-trait desugaring, which are the
+ // responibility of lowering. This may create a mismatch between the resolution
+ // AST found (`region_def_id`) which points to HRTB, and what HIR allows.
+ // ```
+ // fn foo(x: impl for<'a> Trait<'a, Assoc = impl Copy + 'a>) {}
+ // ```
+ //
+ // In such case, walk back the binders to diagnose it properly.
+ let mut scope = self.scope;
+ loop {
+ match *scope {
+ Scope::Binder {
+ where_bound_origin: Some(hir::PredicateOrigin::ImplTrait), ..
+ } => {
+ let mut err = self.tcx.sess.struct_span_err(
+ lifetime_ref.span,
+ "`impl Trait` can only mention lifetimes bound at the fn or impl level",
+ );
+ err.span_note(self.tcx.def_span(region_def_id), "lifetime declared here");
+ err.emit();
+ return;
+ }
+ Scope::Root => break,
+ Scope::Binder { s, .. }
+ | Scope::Body { s, .. }
+ | Scope::Elision { s, .. }
+ | Scope::ObjectLifetimeDefault { s, .. }
+ | Scope::Supertrait { s, .. }
+ | Scope::TraitRefBoundary { s, .. } => {
+ scope = s;
+ }
+ }
+ }
+
+ self.tcx.sess.delay_span_bug(
+ lifetime_ref.span,
+ &format!("Could not resolve {:?} in scope {:#?}", lifetime_ref, self.scope,),
+ );
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_segment_args(
+ &mut self,
+ res: Res,
+ depth: usize,
+ generic_args: &'tcx hir::GenericArgs<'tcx>,
+ ) {
+ if generic_args.parenthesized {
+ self.visit_fn_like_elision(
+ generic_args.inputs(),
+ Some(generic_args.bindings[0].ty()),
+ false,
+ );
+ return;
+ }
+
+ for arg in generic_args.args {
+ if let hir::GenericArg::Lifetime(lt) = arg {
+ self.visit_lifetime(lt);
+ }
+ }
+
+ // Figure out if this is a type/trait segment,
+ // which requires object lifetime defaults.
+ let type_def_id = match res {
+ Res::Def(DefKind::AssocTy, def_id) if depth == 1 => Some(self.tcx.parent(def_id)),
+ Res::Def(DefKind::Variant, def_id) if depth == 0 => Some(self.tcx.parent(def_id)),
+ Res::Def(
+ DefKind::Struct
+ | DefKind::Union
+ | DefKind::Enum
+ | DefKind::TyAlias
+ | DefKind::Trait,
+ def_id,
+ ) if depth == 0 => Some(def_id),
+ _ => None,
+ };
+
+ debug!(?type_def_id);
+
+ // Compute a vector of defaults, one for each type parameter,
+ // per the rules given in RFCs 599 and 1156. Example:
+ //
+ // ```rust
+ // struct Foo<'a, T: 'a, U> { }
+ // ```
+ //
+ // If you have `Foo<'x, dyn Bar, dyn Baz>`, we want to default
+ // `dyn Bar` to `dyn Bar + 'x` (because of the `T: 'a` bound)
+ // and `dyn Baz` to `dyn Baz + 'static` (because there is no
+ // such bound).
+ //
+ // Therefore, we would compute `object_lifetime_defaults` to a
+ // vector like `['x, 'static]`. Note that the vector only
+ // includes type parameters.
+ let object_lifetime_defaults = type_def_id.map_or_else(Vec::new, |def_id| {
+ let in_body = {
+ let mut scope = self.scope;
+ loop {
+ match *scope {
+ Scope::Root => break false,
+
+ Scope::Body { .. } => break true,
+
+ Scope::Binder { s, .. }
+ | Scope::Elision { s, .. }
+ | Scope::ObjectLifetimeDefault { s, .. }
+ | Scope::Supertrait { s, .. }
+ | Scope::TraitRefBoundary { s, .. } => {
+ scope = s;
+ }
+ }
+ }
+ };
+
+ let map = &self.map;
+ let generics = self.tcx.generics_of(def_id);
+
+ // `type_def_id` points to an item, so there is nothing to inherit generics from.
+ debug_assert_eq!(generics.parent_count, 0);
+
+ let set_to_region = |set: ObjectLifetimeDefault| match set {
+ ObjectLifetimeDefault::Empty => {
+ if in_body {
+ None
+ } else {
+ Some(Region::Static)
+ }
+ }
+ ObjectLifetimeDefault::Static => Some(Region::Static),
+ ObjectLifetimeDefault::Param(param_def_id) => {
+ // This index can be used with `generic_args` since `parent_count == 0`.
+ let index = generics.param_def_id_to_index[&param_def_id] as usize;
+ generic_args.args.get(index).and_then(|arg| match arg {
+ GenericArg::Lifetime(lt) => map.defs.get(&lt.hir_id).copied(),
+ _ => None,
+ })
+ }
+ ObjectLifetimeDefault::Ambiguous => None,
+ };
+ generics
+ .params
+ .iter()
+ .filter_map(|param| {
+ match self.tcx.def_kind(param.def_id) {
+ // Generic consts don't impose any constraints.
+ //
+ // We still store a dummy value here to allow generic parameters
+ // in an arbitrary order.
+ DefKind::ConstParam => Some(ObjectLifetimeDefault::Empty),
+ DefKind::TyParam => Some(self.tcx.object_lifetime_default(param.def_id)),
+ // We may also get a `Trait` or `TraitAlias` because of how generics `Self` parameter
+ // works. Ignore it because it can't have a meaningful lifetime default.
+ DefKind::LifetimeParam | DefKind::Trait | DefKind::TraitAlias => None,
+ dk => bug!("unexpected def_kind {:?}", dk),
+ }
+ })
+ .map(set_to_region)
+ .collect()
+ });
+
+ debug!(?object_lifetime_defaults);
+
+ let mut i = 0;
+ for arg in generic_args.args {
+ match arg {
+ GenericArg::Lifetime(_) => {}
+ GenericArg::Type(ty) => {
+ if let Some(&lt) = object_lifetime_defaults.get(i) {
+ let scope = Scope::ObjectLifetimeDefault { lifetime: lt, s: self.scope };
+ self.with(scope, |this| this.visit_ty(ty));
+ } else {
+ self.visit_ty(ty);
+ }
+ i += 1;
+ }
+ GenericArg::Const(ct) => {
+ self.visit_anon_const(&ct.value);
+ i += 1;
+ }
+ GenericArg::Infer(inf) => {
+ self.visit_id(inf.hir_id);
+ i += 1;
+ }
+ }
+ }
+
+ // Hack: when resolving the type `XX` in binding like `dyn
+ // Foo<'b, Item = XX>`, the current object-lifetime default
+ // would be to examine the trait `Foo` to check whether it has
+ // a lifetime bound declared on `Item`. e.g., if `Foo` is
+ // declared like so, then the default object lifetime bound in
+ // `XX` should be `'b`:
+ //
+ // ```rust
+ // trait Foo<'a> {
+ // type Item: 'a;
+ // }
+ // ```
+ //
+ // but if we just have `type Item;`, then it would be
+ // `'static`. However, we don't get all of this logic correct.
+ //
+ // Instead, we do something hacky: if there are no lifetime parameters
+ // to the trait, then we simply use a default object lifetime
+ // bound of `'static`, because there is no other possibility. On the other hand,
+ // if there ARE lifetime parameters, then we require the user to give an
+ // explicit bound for now.
+ //
+ // This is intended to leave room for us to implement the
+ // correct behavior in the future.
+ let has_lifetime_parameter =
+ generic_args.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)));
+
+ // Resolve lifetimes found in the bindings, so either in the type `XX` in `Item = XX` or
+ // in the trait ref `YY<...>` in `Item: YY<...>`.
+ for binding in generic_args.bindings {
+ let scope = Scope::ObjectLifetimeDefault {
+ lifetime: if has_lifetime_parameter { None } else { Some(Region::Static) },
+ s: self.scope,
+ };
+ if let Some(type_def_id) = type_def_id {
+ let lifetimes = LifetimeContext::supertrait_hrtb_lifetimes(
+ self.tcx,
+ type_def_id,
+ binding.ident,
+ );
+ self.with(scope, |this| {
+ let scope = Scope::Supertrait {
+ lifetimes: lifetimes.unwrap_or_default(),
+ s: this.scope,
+ };
+ this.with(scope, |this| this.visit_assoc_type_binding(binding));
+ });
+ } else {
+ self.with(scope, |this| this.visit_assoc_type_binding(binding));
+ }
+ }
+ }
+
+ /// Returns all the late-bound vars that come into scope from supertrait HRTBs, based on the
+ /// associated type name and starting trait.
+ /// For example, imagine we have
+ /// ```ignore (illustrative)
+ /// trait Foo<'a, 'b> {
+ /// type As;
+ /// }
+ /// trait Bar<'b>: for<'a> Foo<'a, 'b> {}
+ /// trait Bar: for<'b> Bar<'b> {}
+ /// ```
+ /// In this case, if we wanted to the supertrait HRTB lifetimes for `As` on
+ /// the starting trait `Bar`, we would return `Some(['b, 'a])`.
+ fn supertrait_hrtb_lifetimes(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+ assoc_name: Ident,
+ ) -> Option<Vec<ty::BoundVariableKind>> {
+ let trait_defines_associated_type_named = |trait_def_id: DefId| {
+ tcx.associated_items(trait_def_id)
+ .find_by_name_and_kind(tcx, assoc_name, ty::AssocKind::Type, trait_def_id)
+ .is_some()
+ };
+
+ use smallvec::{smallvec, SmallVec};
+ let mut stack: SmallVec<[(DefId, SmallVec<[ty::BoundVariableKind; 8]>); 8]> =
+ smallvec![(def_id, smallvec![])];
+ let mut visited: FxHashSet<DefId> = FxHashSet::default();
+ loop {
+ let Some((def_id, bound_vars)) = stack.pop() else {
+ break None;
+ };
+ // See issue #83753. If someone writes an associated type on a non-trait, just treat it as
+ // there being no supertrait HRTBs.
+ match tcx.def_kind(def_id) {
+ DefKind::Trait | DefKind::TraitAlias | DefKind::Impl => {}
+ _ => break None,
+ }
+
+ if trait_defines_associated_type_named(def_id) {
+ break Some(bound_vars.into_iter().collect());
+ }
+ let predicates =
+ tcx.super_predicates_that_define_assoc_type((def_id, Some(assoc_name)));
+ let obligations = predicates.predicates.iter().filter_map(|&(pred, _)| {
+ let bound_predicate = pred.kind();
+ match bound_predicate.skip_binder() {
+ ty::PredicateKind::Trait(data) => {
+ // The order here needs to match what we would get from `subst_supertrait`
+ let pred_bound_vars = bound_predicate.bound_vars();
+ let mut all_bound_vars = bound_vars.clone();
+ all_bound_vars.extend(pred_bound_vars.iter());
+ let super_def_id = data.trait_ref.def_id;
+ Some((super_def_id, all_bound_vars))
+ }
+ _ => None,
+ }
+ });
+
+ let obligations = obligations.filter(|o| visited.insert(o.0));
+ stack.extend(obligations);
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_fn_like_elision(
+ &mut self,
+ inputs: &'tcx [hir::Ty<'tcx>],
+ output: Option<&'tcx hir::Ty<'tcx>>,
+ in_closure: bool,
+ ) {
+ self.with(Scope::Elision { s: self.scope }, |this| {
+ for input in inputs {
+ this.visit_ty(input);
+ }
+ if !in_closure && let Some(output) = output {
+ this.visit_ty(output);
+ }
+ });
+ if in_closure && let Some(output) = output {
+ self.visit_ty(output);
+ }
+ }
+
+ fn resolve_object_lifetime_default(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
+ debug!("resolve_object_lifetime_default(lifetime_ref={:?})", lifetime_ref);
+ let mut late_depth = 0;
+ let mut scope = self.scope;
+ let lifetime = loop {
+ match *scope {
+ Scope::Binder { s, scope_type, .. } => {
+ match scope_type {
+ BinderScopeType::Normal => late_depth += 1,
+ BinderScopeType::Concatenating => {}
+ }
+ scope = s;
+ }
+
+ Scope::Root | Scope::Elision { .. } => break Region::Static,
+
+ Scope::Body { .. } | Scope::ObjectLifetimeDefault { lifetime: None, .. } => return,
+
+ Scope::ObjectLifetimeDefault { lifetime: Some(l), .. } => break l,
+
+ Scope::Supertrait { s, .. } | Scope::TraitRefBoundary { s, .. } => {
+ scope = s;
+ }
+ }
+ };
+ self.insert_lifetime(lifetime_ref, lifetime.shifted(late_depth));
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn insert_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime, def: Region) {
+ debug!(
+ node = ?self.tcx.hir().node_to_string(lifetime_ref.hir_id),
+ span = ?self.tcx.sess.source_map().span_to_diagnostic_string(lifetime_ref.span)
+ );
+ self.map.defs.insert(lifetime_ref.hir_id, def);
+ }
+
+ /// Sometimes we resolve a lifetime, but later find that it is an
+ /// error (esp. around impl trait). In that case, we remove the
+ /// entry into `map.defs` so as not to confuse later code.
+ fn uninsert_lifetime_on_error(&mut self, lifetime_ref: &'tcx hir::Lifetime, bad_def: Region) {
+ let old_value = self.map.defs.remove(&lifetime_ref.hir_id);
+ assert_eq!(old_value, Some(bad_def));
+ }
+}
+
+/// Detects late-bound lifetimes and inserts them into
+/// `late_bound`.
+///
+/// A region declared on a fn is **late-bound** if:
+/// - it is constrained by an argument type;
+/// - it does not appear in a where-clause.
+///
+/// "Constrained" basically means that it appears in any type but
+/// not amongst the inputs to a projection. In other words, `<&'a
+/// T as Trait<''b>>::Foo` does not constrain `'a` or `'b`.
+fn is_late_bound_map(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option<&FxIndexSet<LocalDefId>> {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let decl = tcx.hir().fn_decl_by_hir_id(hir_id)?;
+ let generics = tcx.hir().get_generics(def_id)?;
+
+ let mut late_bound = FxIndexSet::default();
+
+ let mut constrained_by_input = ConstrainedCollector::default();
+ for arg_ty in decl.inputs {
+ constrained_by_input.visit_ty(arg_ty);
+ }
+
+ let mut appears_in_output = AllCollector::default();
+ intravisit::walk_fn_ret_ty(&mut appears_in_output, &decl.output);
+
+ debug!(?constrained_by_input.regions);
+
+ // Walk the lifetimes that appear in where clauses.
+ //
+ // Subtle point: because we disallow nested bindings, we can just
+ // ignore binders here and scrape up all names we see.
+ let mut appears_in_where_clause = AllCollector::default();
+ appears_in_where_clause.visit_generics(generics);
+ debug!(?appears_in_where_clause.regions);
+
+ // Late bound regions are those that:
+ // - appear in the inputs
+ // - do not appear in the where-clauses
+ // - are not implicitly captured by `impl Trait`
+ for param in generics.params {
+ match param.kind {
+ hir::GenericParamKind::Lifetime { .. } => { /* fall through */ }
+
+ // Neither types nor consts are late-bound.
+ hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => continue,
+ }
+
+ let param_def_id = tcx.hir().local_def_id(param.hir_id);
+
+ // appears in the where clauses? early-bound.
+ if appears_in_where_clause.regions.contains(&param_def_id) {
+ continue;
+ }
+
+ // does not appear in the inputs, but appears in the return type? early-bound.
+ if !constrained_by_input.regions.contains(&param_def_id)
+ && appears_in_output.regions.contains(&param_def_id)
+ {
+ continue;
+ }
+
+ debug!("lifetime {:?} with id {:?} is late-bound", param.name.ident(), param.hir_id);
+
+ let inserted = late_bound.insert(param_def_id);
+ assert!(inserted, "visited lifetime {:?} twice", param.hir_id);
+ }
+
+ debug!(?late_bound);
+ return Some(tcx.arena.alloc(late_bound));
+
+ #[derive(Default)]
+ struct ConstrainedCollector {
+ regions: FxHashSet<LocalDefId>,
+ }
+
+ impl<'v> Visitor<'v> for ConstrainedCollector {
+ fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
+ match ty.kind {
+ hir::TyKind::Path(
+ hir::QPath::Resolved(Some(_), _) | hir::QPath::TypeRelative(..),
+ ) => {
+ // ignore lifetimes appearing in associated type
+ // projections, as they are not *constrained*
+ // (defined above)
+ }
+
+ hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
+ // consider only the lifetimes on the final
+ // segment; I am not sure it's even currently
+ // valid to have them elsewhere, but even if it
+ // is, those would be potentially inputs to
+ // projections
+ if let Some(last_segment) = path.segments.last() {
+ self.visit_path_segment(last_segment);
+ }
+ }
+
+ _ => {
+ intravisit::walk_ty(self, ty);
+ }
+ }
+ }
+
+ fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
+ if let hir::LifetimeName::Param(def_id, _) = lifetime_ref.name {
+ self.regions.insert(def_id);
+ }
+ }
+ }
+
+ #[derive(Default)]
+ struct AllCollector {
+ regions: FxHashSet<LocalDefId>,
+ }
+
+ impl<'v> Visitor<'v> for AllCollector {
+ fn visit_lifetime(&mut self, lifetime_ref: &'v hir::Lifetime) {
+ if let hir::LifetimeName::Param(def_id, _) = lifetime_ref.name {
+ self.regions.insert(def_id);
+ }
+ }
+ }
+}
diff --git a/compiler/rustc_hir_analysis/src/collect/predicates_of.rs b/compiler/rustc_hir_analysis/src/collect/predicates_of.rs
new file mode 100644
index 000000000..2e84e1d01
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/collect/predicates_of.rs
@@ -0,0 +1,707 @@
+use crate::astconv::AstConv;
+use crate::bounds::Bounds;
+use crate::collect::ItemCtxt;
+use crate::constrained_generic_params as cgp;
+use hir::{HirId, Node};
+use rustc_data_structures::fx::FxIndexSet;
+use rustc_hir as hir;
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::{DefId, LocalDefId};
+use rustc_hir::intravisit::{self, Visitor};
+use rustc_middle::ty::subst::InternalSubsts;
+use rustc_middle::ty::ToPredicate;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_span::symbol::{sym, Ident};
+use rustc_span::{Span, DUMMY_SP};
+
+#[derive(Debug)]
+struct OnlySelfBounds(bool);
+
+/// Returns a list of all type predicates (explicit and implicit) for the definition with
+/// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
+/// `Self: Trait` predicates for traits.
+pub(super) fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
+ let mut result = tcx.predicates_defined_on(def_id);
+
+ if tcx.is_trait(def_id) {
+ // For traits, add `Self: Trait` predicate. This is
+ // not part of the predicates that a user writes, but it
+ // is something that one must prove in order to invoke a
+ // method or project an associated type.
+ //
+ // In the chalk setup, this predicate is not part of the
+ // "predicates" for a trait item. But it is useful in
+ // rustc because if you directly (e.g.) invoke a trait
+ // method like `Trait::method(...)`, you must naturally
+ // prove that the trait applies to the types that were
+ // used, and adding the predicate into this list ensures
+ // that this is done.
+ //
+ // We use a DUMMY_SP here as a way to signal trait bounds that come
+ // from the trait itself that *shouldn't* be shown as the source of
+ // an obligation and instead be skipped. Otherwise we'd use
+ // `tcx.def_span(def_id);`
+
+ let constness = if tcx.has_attr(def_id, sym::const_trait) {
+ ty::BoundConstness::ConstIfConst
+ } else {
+ ty::BoundConstness::NotConst
+ };
+
+ let span = rustc_span::DUMMY_SP;
+ result.predicates =
+ tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
+ ty::TraitRef::identity(tcx, def_id).with_constness(constness).to_predicate(tcx),
+ span,
+ ))));
+ }
+ debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
+ result
+}
+
+/// Returns a list of user-specified type predicates for the definition with ID `def_id`.
+/// N.B., this does not include any implied/inferred constraints.
+#[instrument(level = "trace", skip(tcx), ret)]
+fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
+ use rustc_hir::*;
+
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+ let node = tcx.hir().get(hir_id);
+
+ let mut is_trait = None;
+ let mut is_default_impl_trait = None;
+
+ let icx = ItemCtxt::new(tcx, def_id);
+
+ const NO_GENERICS: &hir::Generics<'_> = hir::Generics::empty();
+
+ // We use an `IndexSet` to preserves order of insertion.
+ // Preserving the order of insertion is important here so as not to break UI tests.
+ let mut predicates: FxIndexSet<(ty::Predicate<'_>, Span)> = FxIndexSet::default();
+
+ let ast_generics = match node {
+ Node::TraitItem(item) => item.generics,
+
+ Node::ImplItem(item) => item.generics,
+
+ Node::Item(item) => {
+ match item.kind {
+ ItemKind::Impl(ref impl_) => {
+ if impl_.defaultness.is_default() {
+ is_default_impl_trait = tcx.impl_trait_ref(def_id).map(ty::Binder::dummy);
+ }
+ &impl_.generics
+ }
+ ItemKind::Fn(.., ref generics, _)
+ | ItemKind::TyAlias(_, ref generics)
+ | ItemKind::Enum(_, ref generics)
+ | ItemKind::Struct(_, ref generics)
+ | ItemKind::Union(_, ref generics) => *generics,
+
+ ItemKind::Trait(_, _, ref generics, ..) => {
+ is_trait = Some(ty::TraitRef::identity(tcx, def_id));
+ *generics
+ }
+ ItemKind::TraitAlias(ref generics, _) => {
+ is_trait = Some(ty::TraitRef::identity(tcx, def_id));
+ *generics
+ }
+ ItemKind::OpaqueTy(OpaqueTy {
+ origin: hir::OpaqueTyOrigin::AsyncFn(..) | hir::OpaqueTyOrigin::FnReturn(..),
+ ..
+ }) => {
+ // return-position impl trait
+ //
+ // We don't inherit predicates from the parent here:
+ // If we have, say `fn f<'a, T: 'a>() -> impl Sized {}`
+ // then the return type is `f::<'static, T>::{{opaque}}`.
+ //
+ // If we inherited the predicates of `f` then we would
+ // require that `T: 'static` to show that the return
+ // type is well-formed.
+ //
+ // The only way to have something with this opaque type
+ // is from the return type of the containing function,
+ // which will ensure that the function's predicates
+ // hold.
+ return ty::GenericPredicates { parent: None, predicates: &[] };
+ }
+ ItemKind::OpaqueTy(OpaqueTy {
+ ref generics,
+ origin: hir::OpaqueTyOrigin::TyAlias,
+ ..
+ }) => {
+ // type-alias impl trait
+ generics
+ }
+
+ _ => NO_GENERICS,
+ }
+ }
+
+ Node::ForeignItem(item) => match item.kind {
+ ForeignItemKind::Static(..) => NO_GENERICS,
+ ForeignItemKind::Fn(_, _, ref generics) => *generics,
+ ForeignItemKind::Type => NO_GENERICS,
+ },
+
+ _ => NO_GENERICS,
+ };
+
+ let generics = tcx.generics_of(def_id);
+ let parent_count = generics.parent_count as u32;
+ let has_own_self = generics.has_self && parent_count == 0;
+
+ // Below we'll consider the bounds on the type parameters (including `Self`)
+ // and the explicit where-clauses, but to get the full set of predicates
+ // on a trait we need to add in the supertrait bounds and bounds found on
+ // associated types.
+ if let Some(_trait_ref) = is_trait {
+ predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
+ }
+
+ // In default impls, we can assume that the self type implements
+ // the trait. So in:
+ //
+ // default impl Foo for Bar { .. }
+ //
+ // we add a default where clause `Foo: Bar`. We do a similar thing for traits
+ // (see below). Recall that a default impl is not itself an impl, but rather a
+ // set of defaults that can be incorporated into another impl.
+ if let Some(trait_ref) = is_default_impl_trait {
+ predicates.insert((trait_ref.without_const().to_predicate(tcx), tcx.def_span(def_id)));
+ }
+
+ // Collect the region predicates that were declared inline as
+ // well. In the case of parameters declared on a fn or method, we
+ // have to be careful to only iterate over early-bound regions.
+ let mut index = parent_count
+ + has_own_self as u32
+ + super::early_bound_lifetimes_from_generics(tcx, ast_generics).count() as u32;
+
+ trace!(?predicates);
+ trace!(?ast_generics);
+
+ // Collect the predicates that were written inline by the user on each
+ // type parameter (e.g., `<T: Foo>`).
+ for param in ast_generics.params {
+ match param.kind {
+ // We already dealt with early bound lifetimes above.
+ GenericParamKind::Lifetime { .. } => (),
+ GenericParamKind::Type { .. } => {
+ let name = param.name.ident().name;
+ let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
+ index += 1;
+
+ let mut bounds = Bounds::default();
+ // Params are implicitly sized unless a `?Sized` bound is found
+ <dyn AstConv<'_>>::add_implicitly_sized(
+ &icx,
+ &mut bounds,
+ &[],
+ Some((param.hir_id, ast_generics.predicates)),
+ param.span,
+ );
+ trace!(?bounds);
+ predicates.extend(bounds.predicates(tcx, param_ty));
+ trace!(?predicates);
+ }
+ GenericParamKind::Const { .. } => {
+ // Bounds on const parameters are currently not possible.
+ index += 1;
+ }
+ }
+ }
+
+ trace!(?predicates);
+ // Add in the bounds that appear in the where-clause.
+ for predicate in ast_generics.predicates {
+ match predicate {
+ hir::WherePredicate::BoundPredicate(bound_pred) => {
+ let ty = icx.to_ty(bound_pred.bounded_ty);
+ let bound_vars = icx.tcx.late_bound_vars(bound_pred.hir_id);
+
+ // Keep the type around in a dummy predicate, in case of no bounds.
+ // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
+ // is still checked for WF.
+ if bound_pred.bounds.is_empty() {
+ if let ty::Param(_) = ty.kind() {
+ // This is a `where T:`, which can be in the HIR from the
+ // transformation that moves `?Sized` to `T`'s declaration.
+ // We can skip the predicate because type parameters are
+ // trivially WF, but also we *should*, to avoid exposing
+ // users who never wrote `where Type:,` themselves, to
+ // compiler/tooling bugs from not handling WF predicates.
+ } else {
+ let span = bound_pred.bounded_ty.span;
+ let predicate = ty::Binder::bind_with_vars(
+ ty::PredicateKind::WellFormed(ty.into()),
+ bound_vars,
+ );
+ predicates.insert((predicate.to_predicate(tcx), span));
+ }
+ }
+
+ let mut bounds = Bounds::default();
+ <dyn AstConv<'_>>::add_bounds(
+ &icx,
+ ty,
+ bound_pred.bounds.iter(),
+ &mut bounds,
+ bound_vars,
+ );
+ predicates.extend(bounds.predicates(tcx, ty));
+ }
+
+ hir::WherePredicate::RegionPredicate(region_pred) => {
+ let r1 = <dyn AstConv<'_>>::ast_region_to_region(&icx, &region_pred.lifetime, None);
+ predicates.extend(region_pred.bounds.iter().map(|bound| {
+ let (r2, span) = match bound {
+ hir::GenericBound::Outlives(lt) => {
+ (<dyn AstConv<'_>>::ast_region_to_region(&icx, lt, None), lt.span)
+ }
+ _ => bug!(),
+ };
+ let pred = ty::Binder::dummy(ty::PredicateKind::RegionOutlives(
+ ty::OutlivesPredicate(r1, r2),
+ ))
+ .to_predicate(icx.tcx);
+
+ (pred, span)
+ }))
+ }
+
+ hir::WherePredicate::EqPredicate(..) => {
+ // FIXME(#20041)
+ }
+ }
+ }
+
+ if tcx.features().generic_const_exprs {
+ predicates.extend(const_evaluatable_predicates_of(tcx, def_id.expect_local()));
+ }
+
+ let mut predicates: Vec<_> = predicates.into_iter().collect();
+
+ // Subtle: before we store the predicates into the tcx, we
+ // sort them so that predicates like `T: Foo<Item=U>` come
+ // before uses of `U`. This avoids false ambiguity errors
+ // in trait checking. See `setup_constraining_predicates`
+ // for details.
+ if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
+ let self_ty = tcx.type_of(def_id);
+ let trait_ref = tcx.impl_trait_ref(def_id);
+ cgp::setup_constraining_predicates(
+ tcx,
+ &mut predicates,
+ trait_ref,
+ &mut cgp::parameters_for_impl(self_ty, trait_ref),
+ );
+ }
+
+ ty::GenericPredicates {
+ parent: generics.parent,
+ predicates: tcx.arena.alloc_from_iter(predicates),
+ }
+}
+
+fn const_evaluatable_predicates_of<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: LocalDefId,
+) -> FxIndexSet<(ty::Predicate<'tcx>, Span)> {
+ struct ConstCollector<'tcx> {
+ tcx: TyCtxt<'tcx>,
+ preds: FxIndexSet<(ty::Predicate<'tcx>, Span)>,
+ }
+
+ impl<'tcx> intravisit::Visitor<'tcx> for ConstCollector<'tcx> {
+ fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
+ let def_id = self.tcx.hir().local_def_id(c.hir_id);
+ let ct = ty::Const::from_anon_const(self.tcx, def_id);
+ if let ty::ConstKind::Unevaluated(_) = ct.kind() {
+ let span = self.tcx.hir().span(c.hir_id);
+ self.preds.insert((
+ ty::Binder::dummy(ty::PredicateKind::ConstEvaluatable(ct))
+ .to_predicate(self.tcx),
+ span,
+ ));
+ }
+ }
+
+ fn visit_const_param_default(&mut self, _param: HirId, _ct: &'tcx hir::AnonConst) {
+ // Do not look into const param defaults,
+ // these get checked when they are actually instantiated.
+ //
+ // We do not want the following to error:
+ //
+ // struct Foo<const N: usize, const M: usize = { N + 1 }>;
+ // struct Bar<const N: usize>(Foo<N, 3>);
+ }
+ }
+
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let node = tcx.hir().get(hir_id);
+
+ let mut collector = ConstCollector { tcx, preds: FxIndexSet::default() };
+ if let hir::Node::Item(item) = node && let hir::ItemKind::Impl(ref impl_) = item.kind {
+ if let Some(of_trait) = &impl_.of_trait {
+ debug!("const_evaluatable_predicates_of({:?}): visit impl trait_ref", def_id);
+ collector.visit_trait_ref(of_trait);
+ }
+
+ debug!("const_evaluatable_predicates_of({:?}): visit_self_ty", def_id);
+ collector.visit_ty(impl_.self_ty);
+ }
+
+ if let Some(generics) = node.generics() {
+ debug!("const_evaluatable_predicates_of({:?}): visit_generics", def_id);
+ collector.visit_generics(generics);
+ }
+
+ if let Some(fn_sig) = tcx.hir().fn_sig_by_hir_id(hir_id) {
+ debug!("const_evaluatable_predicates_of({:?}): visit_fn_decl", def_id);
+ collector.visit_fn_decl(fn_sig.decl);
+ }
+ debug!("const_evaluatable_predicates_of({:?}) = {:?}", def_id, collector.preds);
+
+ collector.preds
+}
+
+pub(super) fn trait_explicit_predicates_and_bounds(
+ tcx: TyCtxt<'_>,
+ def_id: LocalDefId,
+) -> ty::GenericPredicates<'_> {
+ assert_eq!(tcx.def_kind(def_id), DefKind::Trait);
+ gather_explicit_predicates_of(tcx, def_id.to_def_id())
+}
+
+pub(super) fn explicit_predicates_of<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+) -> ty::GenericPredicates<'tcx> {
+ let def_kind = tcx.def_kind(def_id);
+ if let DefKind::Trait = def_kind {
+ // Remove bounds on associated types from the predicates, they will be
+ // returned by `explicit_item_bounds`.
+ let predicates_and_bounds = tcx.trait_explicit_predicates_and_bounds(def_id.expect_local());
+ let trait_identity_substs = InternalSubsts::identity_for_item(tcx, def_id);
+
+ let is_assoc_item_ty = |ty: Ty<'tcx>| {
+ // For a predicate from a where clause to become a bound on an
+ // associated type:
+ // * It must use the identity substs of the item.
+ // * Since any generic parameters on the item are not in scope,
+ // this means that the item is not a GAT, and its identity
+ // substs are the same as the trait's.
+ // * It must be an associated type for this trait (*not* a
+ // supertrait).
+ if let ty::Projection(projection) = ty.kind() {
+ projection.substs == trait_identity_substs
+ && tcx.associated_item(projection.item_def_id).container_id(tcx) == def_id
+ } else {
+ false
+ }
+ };
+
+ let predicates: Vec<_> = predicates_and_bounds
+ .predicates
+ .iter()
+ .copied()
+ .filter(|(pred, _)| match pred.kind().skip_binder() {
+ ty::PredicateKind::Trait(tr) => !is_assoc_item_ty(tr.self_ty()),
+ ty::PredicateKind::Projection(proj) => {
+ !is_assoc_item_ty(proj.projection_ty.self_ty())
+ }
+ ty::PredicateKind::TypeOutlives(outlives) => !is_assoc_item_ty(outlives.0),
+ _ => true,
+ })
+ .collect();
+ if predicates.len() == predicates_and_bounds.predicates.len() {
+ predicates_and_bounds
+ } else {
+ ty::GenericPredicates {
+ parent: predicates_and_bounds.parent,
+ predicates: tcx.arena.alloc_slice(&predicates),
+ }
+ }
+ } else {
+ if matches!(def_kind, DefKind::AnonConst) && tcx.lazy_normalization() {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+ if tcx.hir().opt_const_param_default_param_hir_id(hir_id).is_some() {
+ // In `generics_of` we set the generics' parent to be our parent's parent which means that
+ // we lose out on the predicates of our actual parent if we dont return those predicates here.
+ // (See comment in `generics_of` for more information on why the parent shenanigans is necessary)
+ //
+ // struct Foo<T, const N: usize = { <T as Trait>::ASSOC }>(T) where T: Trait;
+ // ^^^ ^^^^^^^^^^^^^^^^^^^^^^^ the def id we are calling
+ // ^^^ explicit_predicates_of on
+ // parent item we dont have set as the
+ // parent of generics returned by `generics_of`
+ //
+ // In the above code we want the anon const to have predicates in its param env for `T: Trait`
+ let item_def_id = tcx.hir().get_parent_item(hir_id);
+ // In the above code example we would be calling `explicit_predicates_of(Foo)` here
+ return tcx.explicit_predicates_of(item_def_id);
+ }
+ }
+ gather_explicit_predicates_of(tcx, def_id)
+ }
+}
+
+/// Ensures that the super-predicates of the trait with a `DefId`
+/// of `trait_def_id` are converted and stored. This also ensures that
+/// the transitive super-predicates are converted.
+pub(super) fn super_predicates_of(
+ tcx: TyCtxt<'_>,
+ trait_def_id: DefId,
+) -> ty::GenericPredicates<'_> {
+ tcx.super_predicates_that_define_assoc_type((trait_def_id, None))
+}
+
+/// Ensures that the super-predicates of the trait with a `DefId`
+/// of `trait_def_id` are converted and stored. This also ensures that
+/// the transitive super-predicates are converted.
+pub(super) fn super_predicates_that_define_assoc_type(
+ tcx: TyCtxt<'_>,
+ (trait_def_id, assoc_name): (DefId, Option<Ident>),
+) -> ty::GenericPredicates<'_> {
+ if trait_def_id.is_local() {
+ debug!("local trait");
+ let trait_hir_id = tcx.hir().local_def_id_to_hir_id(trait_def_id.expect_local());
+
+ let Node::Item(item) = tcx.hir().get(trait_hir_id) else {
+ bug!("trait_node_id {} is not an item", trait_hir_id);
+ };
+
+ let (generics, bounds) = match item.kind {
+ hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
+ hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
+ _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
+ };
+
+ let icx = ItemCtxt::new(tcx, trait_def_id);
+
+ // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
+ let self_param_ty = tcx.types.self_param;
+ let superbounds1 = if let Some(assoc_name) = assoc_name {
+ <dyn AstConv<'_>>::compute_bounds_that_match_assoc_type(
+ &icx,
+ self_param_ty,
+ bounds,
+ assoc_name,
+ )
+ } else {
+ <dyn AstConv<'_>>::compute_bounds(&icx, self_param_ty, bounds)
+ };
+
+ let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
+
+ // Convert any explicit superbounds in the where-clause,
+ // e.g., `trait Foo where Self: Bar`.
+ // In the case of trait aliases, however, we include all bounds in the where-clause,
+ // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
+ // as one of its "superpredicates".
+ let is_trait_alias = tcx.is_trait_alias(trait_def_id);
+ let superbounds2 = icx.type_parameter_bounds_in_generics(
+ generics,
+ item.hir_id(),
+ self_param_ty,
+ OnlySelfBounds(!is_trait_alias),
+ assoc_name,
+ );
+
+ // Combine the two lists to form the complete set of superbounds:
+ let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
+ debug!(?superbounds);
+
+ // Now require that immediate supertraits are converted,
+ // which will, in turn, reach indirect supertraits.
+ if assoc_name.is_none() {
+ // Now require that immediate supertraits are converted,
+ // which will, in turn, reach indirect supertraits.
+ for &(pred, span) in superbounds {
+ debug!("superbound: {:?}", pred);
+ if let ty::PredicateKind::Trait(bound) = pred.kind().skip_binder() {
+ tcx.at(span).super_predicates_of(bound.def_id());
+ }
+ }
+ }
+
+ ty::GenericPredicates { parent: None, predicates: superbounds }
+ } else {
+ // if `assoc_name` is None, then the query should've been redirected to an
+ // external provider
+ assert!(assoc_name.is_some());
+ tcx.super_predicates_of(trait_def_id)
+ }
+}
+
+/// Returns the predicates defined on `item_def_id` of the form
+/// `X: Foo` where `X` is the type parameter `def_id`.
+#[instrument(level = "trace", skip(tcx))]
+pub(super) fn type_param_predicates(
+ tcx: TyCtxt<'_>,
+ (item_def_id, def_id, assoc_name): (DefId, LocalDefId, Ident),
+) -> ty::GenericPredicates<'_> {
+ use rustc_hir::*;
+
+ // In the AST, bounds can derive from two places. Either
+ // written inline like `<T: Foo>` or in a where-clause like
+ // `where T: Foo`.
+
+ let param_id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let param_owner = tcx.hir().ty_param_owner(def_id);
+ let generics = tcx.generics_of(param_owner);
+ let index = generics.param_def_id_to_index[&def_id.to_def_id()];
+ let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(def_id));
+
+ // Don't look for bounds where the type parameter isn't in scope.
+ let parent = if item_def_id == param_owner.to_def_id() {
+ None
+ } else {
+ tcx.generics_of(item_def_id).parent
+ };
+
+ let mut result = parent
+ .map(|parent| {
+ let icx = ItemCtxt::new(tcx, parent);
+ icx.get_type_parameter_bounds(DUMMY_SP, def_id.to_def_id(), assoc_name)
+ })
+ .unwrap_or_default();
+ let mut extend = None;
+
+ let item_hir_id = tcx.hir().local_def_id_to_hir_id(item_def_id.expect_local());
+ let ast_generics = match tcx.hir().get(item_hir_id) {
+ Node::TraitItem(item) => &item.generics,
+
+ Node::ImplItem(item) => &item.generics,
+
+ Node::Item(item) => {
+ match item.kind {
+ ItemKind::Fn(.., ref generics, _)
+ | ItemKind::Impl(hir::Impl { ref generics, .. })
+ | ItemKind::TyAlias(_, ref generics)
+ | ItemKind::OpaqueTy(OpaqueTy {
+ ref generics,
+ origin: hir::OpaqueTyOrigin::TyAlias,
+ ..
+ })
+ | ItemKind::Enum(_, ref generics)
+ | ItemKind::Struct(_, ref generics)
+ | ItemKind::Union(_, ref generics) => generics,
+ ItemKind::Trait(_, _, ref generics, ..) => {
+ // Implied `Self: Trait` and supertrait bounds.
+ if param_id == item_hir_id {
+ let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
+ extend =
+ Some((identity_trait_ref.without_const().to_predicate(tcx), item.span));
+ }
+ generics
+ }
+ _ => return result,
+ }
+ }
+
+ Node::ForeignItem(item) => match item.kind {
+ ForeignItemKind::Fn(_, _, ref generics) => generics,
+ _ => return result,
+ },
+
+ _ => return result,
+ };
+
+ let icx = ItemCtxt::new(tcx, item_def_id);
+ let extra_predicates = extend.into_iter().chain(
+ icx.type_parameter_bounds_in_generics(
+ ast_generics,
+ param_id,
+ ty,
+ OnlySelfBounds(true),
+ Some(assoc_name),
+ )
+ .into_iter()
+ .filter(|(predicate, _)| match predicate.kind().skip_binder() {
+ ty::PredicateKind::Trait(data) => data.self_ty().is_param(index),
+ _ => false,
+ }),
+ );
+ result.predicates =
+ tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
+ result
+}
+
+impl<'tcx> ItemCtxt<'tcx> {
+ /// Finds bounds from `hir::Generics`. This requires scanning through the
+ /// AST. We do this to avoid having to convert *all* the bounds, which
+ /// would create artificial cycles. Instead, we can only convert the
+ /// bounds for a type parameter `X` if `X::Foo` is used.
+ #[instrument(level = "trace", skip(self, ast_generics))]
+ fn type_parameter_bounds_in_generics(
+ &self,
+ ast_generics: &'tcx hir::Generics<'tcx>,
+ param_id: hir::HirId,
+ ty: Ty<'tcx>,
+ only_self_bounds: OnlySelfBounds,
+ assoc_name: Option<Ident>,
+ ) -> Vec<(ty::Predicate<'tcx>, Span)> {
+ let param_def_id = self.tcx.hir().local_def_id(param_id).to_def_id();
+ trace!(?param_def_id);
+ ast_generics
+ .predicates
+ .iter()
+ .filter_map(|wp| match *wp {
+ hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
+ _ => None,
+ })
+ .flat_map(|bp| {
+ let bt = if bp.is_param_bound(param_def_id) {
+ Some(ty)
+ } else if !only_self_bounds.0 {
+ Some(self.to_ty(bp.bounded_ty))
+ } else {
+ None
+ };
+ let bvars = self.tcx.late_bound_vars(bp.hir_id);
+
+ bp.bounds.iter().filter_map(move |b| bt.map(|bt| (bt, b, bvars))).filter(
+ |(_, b, _)| match assoc_name {
+ Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
+ None => true,
+ },
+ )
+ })
+ .flat_map(|(bt, b, bvars)| predicates_from_bound(self, bt, b, bvars))
+ .collect()
+ }
+
+ #[instrument(level = "trace", skip(self))]
+ fn bound_defines_assoc_item(&self, b: &hir::GenericBound<'_>, assoc_name: Ident) -> bool {
+ match b {
+ hir::GenericBound::Trait(poly_trait_ref, _) => {
+ let trait_ref = &poly_trait_ref.trait_ref;
+ if let Some(trait_did) = trait_ref.trait_def_id() {
+ self.tcx.trait_may_define_assoc_type(trait_did, assoc_name)
+ } else {
+ false
+ }
+ }
+ _ => false,
+ }
+ }
+}
+
+/// Converts a specific `GenericBound` from the AST into a set of
+/// predicates that apply to the self type. A vector is returned
+/// because this can be anywhere from zero predicates (`T: ?Sized` adds no
+/// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
+/// and `<T as Bar>::X == i32`).
+fn predicates_from_bound<'tcx>(
+ astconv: &dyn AstConv<'tcx>,
+ param_ty: Ty<'tcx>,
+ bound: &'tcx hir::GenericBound<'tcx>,
+ bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
+) -> Vec<(ty::Predicate<'tcx>, Span)> {
+ let mut bounds = Bounds::default();
+ astconv.add_bounds(param_ty, [bound].into_iter(), &mut bounds, bound_vars);
+ bounds.predicates(astconv.tcx(), param_ty).collect()
+}
diff --git a/compiler/rustc_typeck/src/collect/type_of.rs b/compiler/rustc_hir_analysis/src/collect/type_of.rs
index 534ddfa95..c29a645eb 100644
--- a/compiler/rustc_typeck/src/collect/type_of.rs
+++ b/compiler/rustc_hir_analysis/src/collect/type_of.rs
@@ -1,6 +1,5 @@
use rustc_errors::{Applicability, StashKey};
use rustc_hir as hir;
-use rustc_hir::def::Res;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit;
use rustc_hir::intravisit::Visitor;
@@ -19,7 +18,6 @@ use crate::errors::UnconstrainedOpaqueType;
/// Computes the relevant generic parameter for a potential generic const argument.
///
/// This should be called using the query `tcx.opt_const_param_of`.
-#[instrument(level = "debug", skip(tcx))]
pub(super) fn opt_const_param_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option<DefId> {
use hir::*;
let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
@@ -67,8 +65,8 @@ pub(super) fn opt_const_param_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option<
let ty = item_ctxt.ast_ty_to_ty(hir_ty);
// Iterate through the generics of the projection to find the one that corresponds to
- // the def_id that this query was called with. We filter to only const args here as a
- // precaution for if it's ever allowed to elide lifetimes in GAT's. It currently isn't
+ // the def_id that this query was called with. We filter to only type and const args here
+ // as a precaution for if it's ever allowed to elide lifetimes in GAT's. It currently isn't
// but it can't hurt to be safe ^^
if let ty::Projection(projection) = ty.kind() {
let generics = tcx.generics_of(projection.item_def_id);
@@ -79,7 +77,7 @@ pub(super) fn opt_const_param_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option<
args.args
.iter()
.filter(|arg| arg.is_ty_or_const())
- .position(|arg| arg.id() == hir_id)
+ .position(|arg| arg.hir_id() == hir_id)
})
.unwrap_or_else(|| {
bug!("no arg matching AnonConst in segment");
@@ -112,7 +110,7 @@ pub(super) fn opt_const_param_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option<
args.args
.iter()
.filter(|arg| arg.is_ty_or_const())
- .position(|arg| arg.id() == hir_id)
+ .position(|arg| arg.hir_id() == hir_id)
})
.unwrap_or_else(|| {
bug!("no arg matching AnonConst in segment");
@@ -166,7 +164,7 @@ pub(super) fn opt_const_param_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option<
args.args
.iter()
.filter(|arg| arg.is_ty_or_const())
- .position(|arg| arg.id() == hir_id)
+ .position(|arg| arg.hir_id() == hir_id)
.map(|index| (index, seg)).or_else(|| args.bindings
.iter()
.filter_map(TypeBinding::opt_const)
@@ -180,15 +178,12 @@ pub(super) fn opt_const_param_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Option<
return None;
};
- // Try to use the segment resolution if it is valid, otherwise we
- // default to the path resolution.
- let res = segment.res.filter(|&r| r != Res::Err).unwrap_or(path.res);
- let generics = match tcx.res_generics_def_id(res) {
+ let generics = match tcx.res_generics_def_id(segment.res) {
Some(def_id) => tcx.generics_of(def_id),
None => {
tcx.sess.delay_span_bug(
tcx.def_span(def_id),
- &format!("unexpected anon const res {:?} in path: {:?}", res, path),
+ &format!("unexpected anon const res {:?} in path: {:?}", segment.res, path),
);
return None;
}
@@ -229,7 +224,7 @@ fn get_path_containing_arg_in_pat<'hir>(
.iter()
.filter_map(|seg| seg.args)
.flat_map(|args| args.args)
- .any(|arg| arg.id() == arg_id)
+ .any(|arg| arg.hir_id() == arg_id)
};
let mut arg_path = None;
pat.walk(|pat| match pat.kind {
@@ -289,7 +284,7 @@ pub(super) fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
icx.to_ty(ty)
}
}
- ImplItemKind::TyAlias(ty) => {
+ ImplItemKind::Type(ty) => {
if tcx.impl_trait_ref(tcx.hir().get_parent_item(hir_id)).is_none() {
check_feature_inherent_assoc_ty(tcx, item.span);
}
@@ -324,7 +319,15 @@ pub(super) fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
}
}
ItemKind::TyAlias(self_ty, _) => icx.to_ty(self_ty),
- ItemKind::Impl(hir::Impl { self_ty, .. }) => icx.to_ty(*self_ty),
+ ItemKind::Impl(hir::Impl { self_ty, .. }) => {
+ match self_ty.find_self_aliases() {
+ spans if spans.len() > 0 => {
+ tcx.sess.emit_err(crate::errors::SelfInImplSelf { span: spans.into(), note: (), });
+ tcx.ty_error()
+ },
+ _ => icx.to_ty(*self_ty),
+ }
+ },
ItemKind::Fn(..) => {
let substs = InternalSubsts::identity_for_item(tcx, def_id.to_def_id());
tcx.mk_fn_def(def_id.to_def_id(), substs)
@@ -338,7 +341,15 @@ pub(super) fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
find_opaque_ty_constraints_for_tait(tcx, def_id)
}
// Opaque types desugared from `impl Trait`.
- ItemKind::OpaqueTy(OpaqueTy { origin: hir::OpaqueTyOrigin::FnReturn(owner) | hir::OpaqueTyOrigin::AsyncFn(owner), .. }) => {
+ ItemKind::OpaqueTy(OpaqueTy {
+ origin:
+ hir::OpaqueTyOrigin::FnReturn(owner) | hir::OpaqueTyOrigin::AsyncFn(owner),
+ in_trait,
+ ..
+ }) => {
+ if in_trait {
+ assert!(tcx.impl_defaultness(owner).has_value());
+ }
find_opaque_ty_constraints_for_rpit(tcx, def_id, owner)
}
ItemKind::Trait(..)
@@ -379,7 +390,9 @@ pub(super) fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
Node::Field(field) => icx.to_ty(field.ty),
- Node::Expr(&Expr { kind: ExprKind::Closure{..}, .. }) => tcx.typeck(def_id).node_type(hir_id),
+ Node::Expr(&Expr { kind: ExprKind::Closure { .. }, .. }) => {
+ tcx.typeck(def_id).node_type(hir_id)
+ }
Node::AnonConst(_) if let Some(param) = tcx.opt_const_param_of(def_id) => {
// We defer to `type_of` of the corresponding parameter
@@ -411,40 +424,93 @@ pub(super) fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
| Node::Item(&Item { kind: ItemKind::GlobalAsm(asm), .. })
if asm.operands.iter().any(|(op, _op_sp)| match op {
hir::InlineAsmOperand::Const { anon_const }
- | hir::InlineAsmOperand::SymFn { anon_const } => anon_const.hir_id == hir_id,
+ | hir::InlineAsmOperand::SymFn { anon_const } => {
+ anon_const.hir_id == hir_id
+ }
_ => false,
}) =>
{
tcx.typeck(def_id).node_type(hir_id)
}
- Node::Variant(Variant { disr_expr: Some(ref e), .. }) if e.hir_id == hir_id => tcx
- .adt_def(tcx.hir().get_parent_item(hir_id))
- .repr()
- .discr_type()
- .to_ty(tcx),
+ Node::Variant(Variant { disr_expr: Some(ref e), .. }) if e.hir_id == hir_id => {
+ tcx.adt_def(tcx.hir().get_parent_item(hir_id)).repr().discr_type().to_ty(tcx)
+ }
- Node::TypeBinding(binding @ &TypeBinding { hir_id: binding_id, .. })
- if let Node::TraitRef(trait_ref) = tcx.hir().get(
- tcx.hir().get_parent_node(binding_id)
- ) =>
+ Node::TypeBinding(
+ binding @ &TypeBinding {
+ hir_id: binding_id,
+ kind: TypeBindingKind::Equality { term: Term::Const(ref e) },
+ ..
+ },
+ ) if let Node::TraitRef(trait_ref) =
+ tcx.hir().get(tcx.hir().get_parent_node(binding_id))
+ && e.hir_id == hir_id =>
{
- let Some(trait_def_id) = trait_ref.trait_def_id() else {
- return tcx.ty_error_with_message(DUMMY_SP, "Could not find trait");
- };
- let assoc_items = tcx.associated_items(trait_def_id);
- let assoc_item = assoc_items.find_by_name_and_kind(
- tcx, binding.ident, ty::AssocKind::Const, def_id.to_def_id(),
- );
- if let Some(assoc_item) = assoc_item {
- tcx.type_of(assoc_item.def_id)
- } else {
- // FIXME(associated_const_equality): add a useful error message here.
- tcx.ty_error_with_message(
- DUMMY_SP,
- "Could not find associated const on trait",
- )
- }
+ let Some(trait_def_id) = trait_ref.trait_def_id() else {
+ return tcx.ty_error_with_message(DUMMY_SP, "Could not find trait");
+ };
+ let assoc_items = tcx.associated_items(trait_def_id);
+ let assoc_item = assoc_items.find_by_name_and_kind(
+ tcx,
+ binding.ident,
+ ty::AssocKind::Const,
+ def_id.to_def_id(),
+ );
+ if let Some(assoc_item) = assoc_item {
+ tcx.type_of(assoc_item.def_id)
+ } else {
+ // FIXME(associated_const_equality): add a useful error message here.
+ tcx.ty_error_with_message(
+ DUMMY_SP,
+ "Could not find associated const on trait",
+ )
+ }
+ }
+
+ Node::TypeBinding(
+ binding @ &TypeBinding { hir_id: binding_id, gen_args, ref kind, .. },
+ ) if let Node::TraitRef(trait_ref) =
+ tcx.hir().get(tcx.hir().get_parent_node(binding_id))
+ && let Some((idx, _)) =
+ gen_args.args.iter().enumerate().find(|(_, arg)| {
+ if let GenericArg::Const(ct) = arg {
+ ct.value.hir_id == hir_id
+ } else {
+ false
+ }
+ }) =>
+ {
+ let Some(trait_def_id) = trait_ref.trait_def_id() else {
+ return tcx.ty_error_with_message(DUMMY_SP, "Could not find trait");
+ };
+ let assoc_items = tcx.associated_items(trait_def_id);
+ let assoc_item = assoc_items.find_by_name_and_kind(
+ tcx,
+ binding.ident,
+ match kind {
+ // I think `<A: T>` type bindings requires that `A` is a type
+ TypeBindingKind::Constraint { .. }
+ | TypeBindingKind::Equality { term: Term::Ty(..) } => {
+ ty::AssocKind::Type
+ }
+ TypeBindingKind::Equality { term: Term::Const(..) } => {
+ ty::AssocKind::Const
+ }
+ },
+ def_id.to_def_id(),
+ );
+ if let Some(param)
+ = assoc_item.map(|item| &tcx.generics_of(item.def_id).params[idx]).filter(|param| param.kind.is_ty_or_const())
+ {
+ tcx.type_of(param.def_id)
+ } else {
+ // FIXME(associated_const_equality): add a useful error message here.
+ tcx.ty_error_with_message(
+ DUMMY_SP,
+ "Could not find associated const on trait",
+ )
+ }
}
Node::GenericParam(&GenericParam {
@@ -453,8 +519,7 @@ pub(super) fn type_of(tcx: TyCtxt<'_>, def_id: DefId) -> Ty<'_> {
..
}) if ct.hir_id == hir_id => tcx.type_of(tcx.hir().local_def_id(param_hir_id)),
- x =>
- tcx.ty_error_with_message(
+ x => tcx.ty_error_with_message(
DUMMY_SP,
&format!("unexpected const parent in type_of(): {x:?}"),
),
@@ -508,6 +573,11 @@ fn find_opaque_ty_constraints_for_tait(tcx: TyCtxt<'_>, def_id: LocalDefId) -> T
/// checked against it (we also carry the span of that first
/// type).
found: Option<ty::OpaqueHiddenType<'tcx>>,
+
+ /// In the presence of dead code, typeck may figure out a hidden type
+ /// while borrowck will now. We collect these cases here and check at
+ /// the end that we actually found a type that matches (modulo regions).
+ typeck_types: Vec<ty::OpaqueHiddenType<'tcx>>,
}
impl ConstraintLocator<'_> {
@@ -534,18 +604,23 @@ fn find_opaque_ty_constraints_for_tait(tcx: TyCtxt<'_>, def_id: LocalDefId) -> T
self.found = Some(ty::OpaqueHiddenType { span: DUMMY_SP, ty: self.tcx.ty_error() });
return;
}
- if !tables.concrete_opaque_types.contains_key(&self.def_id) {
+ let Some(&typeck_hidden_ty) = tables.concrete_opaque_types.get(&self.def_id) else {
debug!("no constraints in typeck results");
return;
+ };
+ if self.typeck_types.iter().all(|prev| prev.ty != typeck_hidden_ty.ty) {
+ self.typeck_types.push(typeck_hidden_ty);
}
+
// Use borrowck to get the type with unerased regions.
let concrete_opaque_types = &self.tcx.mir_borrowck(item_def_id).concrete_opaque_types;
debug!(?concrete_opaque_types);
if let Some(&concrete_type) = concrete_opaque_types.get(&self.def_id) {
debug!(?concrete_type, "found constraint");
- if let Some(prev) = self.found {
- if concrete_type.ty != prev.ty && !(concrete_type, prev).references_error() {
+ if let Some(prev) = &mut self.found {
+ if concrete_type.ty != prev.ty && !(concrete_type, prev.ty).references_error() {
prev.report_mismatch(&concrete_type, self.tcx);
+ prev.ty = self.tcx.ty_error();
}
} else {
self.found = Some(concrete_type);
@@ -568,31 +643,31 @@ fn find_opaque_ty_constraints_for_tait(tcx: TyCtxt<'_>, def_id: LocalDefId) -> T
intravisit::walk_expr(self, ex);
}
fn visit_item(&mut self, it: &'tcx Item<'tcx>) {
- trace!(?it.def_id);
+ trace!(?it.owner_id);
// The opaque type itself or its children are not within its reveal scope.
- if it.def_id != self.def_id {
- self.check(it.def_id);
+ if it.owner_id.def_id != self.def_id {
+ self.check(it.owner_id.def_id);
intravisit::walk_item(self, it);
}
}
fn visit_impl_item(&mut self, it: &'tcx ImplItem<'tcx>) {
- trace!(?it.def_id);
+ trace!(?it.owner_id);
// The opaque type itself or its children are not within its reveal scope.
- if it.def_id != self.def_id {
- self.check(it.def_id);
+ if it.owner_id.def_id != self.def_id {
+ self.check(it.owner_id.def_id);
intravisit::walk_impl_item(self, it);
}
}
fn visit_trait_item(&mut self, it: &'tcx TraitItem<'tcx>) {
- trace!(?it.def_id);
- self.check(it.def_id);
+ trace!(?it.owner_id);
+ self.check(it.owner_id.def_id);
intravisit::walk_trait_item(self, it);
}
}
let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
let scope = tcx.hir().get_defining_scope(hir_id);
- let mut locator = ConstraintLocator { def_id: def_id, tcx, found: None };
+ let mut locator = ConstraintLocator { def_id: def_id, tcx, found: None, typeck_types: vec![] };
debug!(?scope);
@@ -622,16 +697,32 @@ fn find_opaque_ty_constraints_for_tait(tcx: TyCtxt<'_>, def_id: LocalDefId) -> T
}
}
- match locator.found {
- Some(hidden) => hidden.ty,
- None => {
- tcx.sess.emit_err(UnconstrainedOpaqueType {
- span: tcx.def_span(def_id),
- name: tcx.item_name(tcx.local_parent(def_id).to_def_id()),
- });
- tcx.ty_error()
+ let Some(hidden) = locator.found else {
+ tcx.sess.emit_err(UnconstrainedOpaqueType {
+ span: tcx.def_span(def_id),
+ name: tcx.item_name(tcx.local_parent(def_id).to_def_id()),
+ what: match tcx.hir().get(scope) {
+ _ if scope == hir::CRATE_HIR_ID => "module",
+ Node::Item(hir::Item { kind: hir::ItemKind::Mod(_), .. }) => "module",
+ Node::Item(hir::Item { kind: hir::ItemKind::Impl(_), .. }) => "impl",
+ _ => "item",
+ },
+ });
+ return tcx.ty_error();
+ };
+
+ // Only check against typeck if we didn't already error
+ if !hidden.ty.references_error() {
+ for concrete_type in locator.typeck_types {
+ if tcx.erase_regions(concrete_type.ty) != tcx.erase_regions(hidden.ty)
+ && !(concrete_type, hidden).references_error()
+ {
+ hidden.report_mismatch(&concrete_type, tcx);
+ }
}
}
+
+ hidden.ty
}
fn find_opaque_ty_constraints_for_rpit(
@@ -687,24 +778,24 @@ fn find_opaque_ty_constraints_for_rpit(
intravisit::walk_expr(self, ex);
}
fn visit_item(&mut self, it: &'tcx Item<'tcx>) {
- trace!(?it.def_id);
+ trace!(?it.owner_id);
// The opaque type itself or its children are not within its reveal scope.
- if it.def_id != self.def_id {
- self.check(it.def_id);
+ if it.owner_id.def_id != self.def_id {
+ self.check(it.owner_id.def_id);
intravisit::walk_item(self, it);
}
}
fn visit_impl_item(&mut self, it: &'tcx ImplItem<'tcx>) {
- trace!(?it.def_id);
+ trace!(?it.owner_id);
// The opaque type itself or its children are not within its reveal scope.
- if it.def_id != self.def_id {
- self.check(it.def_id);
+ if it.owner_id.def_id != self.def_id {
+ self.check(it.owner_id.def_id);
intravisit::walk_impl_item(self, it);
}
}
fn visit_trait_item(&mut self, it: &'tcx TraitItem<'tcx>) {
- trace!(?it.def_id);
- self.check(it.def_id);
+ trace!(?it.owner_id);
+ self.check(it.owner_id.def_id);
intravisit::walk_trait_item(self, it);
}
}
@@ -732,20 +823,15 @@ fn find_opaque_ty_constraints_for_rpit(
// the `concrete_opaque_types` table.
tcx.ty_error()
} else {
- table
- .concrete_opaque_types
- .get(&def_id)
- .copied()
- .unwrap_or_else(|| {
- // We failed to resolve the opaque type or it
- // resolves to itself. We interpret this as the
- // no values of the hidden type ever being constructed,
- // so we can just make the hidden type be `!`.
- // For backwards compatibility reasons, we fall back to
- // `()` until we the diverging default is changed.
- Some(tcx.mk_diverging_default())
- })
- .expect("RPIT always have a hidden type from typeck")
+ table.concrete_opaque_types.get(&def_id).map(|ty| ty.ty).unwrap_or_else(|| {
+ // We failed to resolve the opaque type or it
+ // resolves to itself. We interpret this as the
+ // no values of the hidden type ever being constructed,
+ // so we can just make the hidden type be `!`.
+ // For backwards compatibility reasons, we fall back to
+ // `()` until we the diverging default is changed.
+ tcx.mk_diverging_default()
+ })
}
})
}
@@ -801,6 +887,9 @@ fn infer_placeholder_type<'a>(
match tcx.sess.diagnostic().steal_diagnostic(span, StashKey::ItemNoType) {
Some(mut err) => {
if !ty.references_error() {
+ // Only suggest adding `:` if it was missing (and suggested by parsing diagnostic)
+ let colon = if span == item_ident.span.shrink_to_hi() { ":" } else { "" };
+
// The parser provided a sub-optimal `HasPlaceholders` suggestion for the type.
// We are typeck and have the real type, so remove that and suggest the actual type.
// FIXME(eddyb) this looks like it should be functionality on `Diagnostic`.
@@ -816,7 +905,7 @@ fn infer_placeholder_type<'a>(
err.span_suggestion(
span,
&format!("provide a type for the {item}", item = kind),
- format!("{}: {}", item_ident, sugg_ty),
+ format!("{colon} {sugg_ty}"),
Applicability::MachineApplicable,
);
} else {
diff --git a/compiler/rustc_typeck/src/constrained_generic_params.rs b/compiler/rustc_hir_analysis/src/constrained_generic_params.rs
index 8428e4664..213b89fc7 100644
--- a/compiler/rustc_typeck/src/constrained_generic_params.rs
+++ b/compiler/rustc_hir_analysis/src/constrained_generic_params.rs
@@ -114,9 +114,9 @@ pub fn identify_constrained_generic_params<'tcx>(
/// ```
/// The impl's predicates are collected from left to right. Ignoring
/// the implicit `Sized` bounds, these are
-/// * T: Debug
-/// * U: Iterator
-/// * <U as Iterator>::Item = T -- a desugared ProjectionPredicate
+/// * `T: Debug`
+/// * `U: Iterator`
+/// * `<U as Iterator>::Item = T` -- a desugared ProjectionPredicate
///
/// When we, for example, try to go over the trait-reference
/// `IntoIter<u32> as Trait`, we substitute the impl parameters with fresh
@@ -132,12 +132,16 @@ pub fn identify_constrained_generic_params<'tcx>(
///
/// We *do* have to be somewhat careful when projection targets contain
/// projections themselves, for example in
+///
+/// ```ignore (illustrative)
/// impl<S,U,V,W> Trait for U where
/// /* 0 */ S: Iterator<Item = U>,
/// /* - */ U: Iterator,
/// /* 1 */ <U as Iterator>::Item: ToOwned<Owned=(W,<V as Iterator>::Item)>
/// /* 2 */ W: Iterator<Item = V>
/// /* 3 */ V: Debug
+/// ```
+///
/// we have to evaluate the projections in the order I wrote them:
/// `V: Debug` requires `V` to be evaluated. The only projection that
/// *determines* `V` is 2 (1 contains it, but *does not determine it*,
diff --git a/compiler/rustc_hir_analysis/src/errors.rs b/compiler/rustc_hir_analysis/src/errors.rs
new file mode 100644
index 000000000..d5b1a7ce1
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/errors.rs
@@ -0,0 +1,282 @@
+//! Errors emitted by `rustc_hir_analysis`.
+
+use rustc_errors::{error_code, Applicability, DiagnosticBuilder, ErrorGuaranteed, Handler};
+use rustc_errors::{IntoDiagnostic, MultiSpan};
+use rustc_macros::{Diagnostic, LintDiagnostic};
+use rustc_middle::ty::Ty;
+use rustc_span::{symbol::Ident, Span, Symbol};
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_unrecognized_atomic_operation, code = "E0092")]
+pub struct UnrecognizedAtomicOperation<'a> {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+ pub op: &'a str,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_wrong_number_of_generic_arguments_to_intrinsic, code = "E0094")]
+pub struct WrongNumberOfGenericArgumentsToIntrinsic<'a> {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+ pub found: usize,
+ pub expected: usize,
+ pub descr: &'a str,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_unrecognized_intrinsic_function, code = "E0093")]
+pub struct UnrecognizedIntrinsicFunction {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+ pub name: Symbol,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_lifetimes_or_bounds_mismatch_on_trait, code = "E0195")]
+pub struct LifetimesOrBoundsMismatchOnTrait {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+ #[label(generics_label)]
+ pub generics_span: Option<Span>,
+ pub item_kind: &'static str,
+ pub ident: Ident,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_drop_impl_on_wrong_item, code = "E0120")]
+pub struct DropImplOnWrongItem {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_field_already_declared, code = "E0124")]
+pub struct FieldAlreadyDeclared {
+ pub field_name: Ident,
+ #[primary_span]
+ #[label]
+ pub span: Span,
+ #[label(previous_decl_label)]
+ pub prev_span: Span,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_copy_impl_on_type_with_dtor, code = "E0184")]
+pub struct CopyImplOnTypeWithDtor {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_multiple_relaxed_default_bounds, code = "E0203")]
+pub struct MultipleRelaxedDefaultBounds {
+ #[primary_span]
+ pub span: Span,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_copy_impl_on_non_adt, code = "E0206")]
+pub struct CopyImplOnNonAdt {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_trait_object_declared_with_no_traits, code = "E0224")]
+pub struct TraitObjectDeclaredWithNoTraits {
+ #[primary_span]
+ pub span: Span,
+ #[label(alias_span)]
+ pub trait_alias_span: Option<Span>,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_ambiguous_lifetime_bound, code = "E0227")]
+pub struct AmbiguousLifetimeBound {
+ #[primary_span]
+ pub span: Span,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_assoc_type_binding_not_allowed, code = "E0229")]
+pub struct AssocTypeBindingNotAllowed {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_typeof_reserved_keyword_used, code = "E0516")]
+pub struct TypeofReservedKeywordUsed<'tcx> {
+ pub ty: Ty<'tcx>,
+ #[primary_span]
+ #[label]
+ pub span: Span,
+ #[suggestion_verbose(code = "{ty}")]
+ pub opt_sugg: Option<(Span, Applicability)>,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_value_of_associated_struct_already_specified, code = "E0719")]
+pub struct ValueOfAssociatedStructAlreadySpecified {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+ #[label(previous_bound_label)]
+ pub prev_span: Span,
+ pub item_name: Ident,
+ pub def_path: String,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_unconstrained_opaque_type)]
+#[note]
+pub struct UnconstrainedOpaqueType {
+ #[primary_span]
+ pub span: Span,
+ pub name: Symbol,
+ pub what: &'static str,
+}
+
+pub struct MissingTypeParams {
+ pub span: Span,
+ pub def_span: Span,
+ pub span_snippet: Option<String>,
+ pub missing_type_params: Vec<Symbol>,
+ pub empty_generic_args: bool,
+}
+
+// Manual implementation of `IntoDiagnostic` to be able to call `span_to_snippet`.
+impl<'a> IntoDiagnostic<'a> for MissingTypeParams {
+ fn into_diagnostic(self, handler: &'a Handler) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
+ let mut err = handler.struct_span_err_with_code(
+ self.span,
+ rustc_errors::fluent::hir_analysis_missing_type_params,
+ error_code!(E0393),
+ );
+ err.set_arg("parameterCount", self.missing_type_params.len());
+ err.set_arg(
+ "parameters",
+ self.missing_type_params
+ .iter()
+ .map(|n| format!("`{}`", n))
+ .collect::<Vec<_>>()
+ .join(", "),
+ );
+
+ err.span_label(self.def_span, rustc_errors::fluent::label);
+
+ let mut suggested = false;
+ // Don't suggest setting the type params if there are some already: the order is
+ // tricky to get right and the user will already know what the syntax is.
+ if let Some(snippet) = self.span_snippet && self.empty_generic_args {
+ if snippet.ends_with('>') {
+ // The user wrote `Trait<'a, T>` or similar. To provide an accurate suggestion
+ // we would have to preserve the right order. For now, as clearly the user is
+ // aware of the syntax, we do nothing.
+ } else {
+ // The user wrote `Iterator`, so we don't have a type we can suggest, but at
+ // least we can clue them to the correct syntax `Iterator<Type>`.
+ err.span_suggestion(
+ self.span,
+ rustc_errors::fluent::suggestion,
+ format!(
+ "{}<{}>",
+ snippet,
+ self.missing_type_params
+ .iter()
+ .map(|n| n.to_string())
+ .collect::<Vec<_>>()
+ .join(", ")
+ ),
+ Applicability::HasPlaceholders,
+ );
+ suggested = true;
+ }
+ }
+ if !suggested {
+ err.span_label(self.span, rustc_errors::fluent::no_suggestion_label);
+ }
+
+ err.note(rustc_errors::fluent::note);
+ err
+ }
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_manual_implementation, code = "E0183")]
+#[help]
+pub struct ManualImplementation {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+ pub trait_name: String,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_substs_on_overridden_impl)]
+pub struct SubstsOnOverriddenImpl {
+ #[primary_span]
+ pub span: Span,
+}
+
+#[derive(LintDiagnostic)]
+#[diag(hir_analysis_unused_extern_crate)]
+pub struct UnusedExternCrate {
+ #[suggestion(applicability = "machine-applicable", code = "")]
+ pub span: Span,
+}
+
+#[derive(LintDiagnostic)]
+#[diag(hir_analysis_extern_crate_not_idiomatic)]
+pub struct ExternCrateNotIdiomatic {
+ #[suggestion_short(applicability = "machine-applicable", code = "{suggestion_code}")]
+ pub span: Span,
+ pub msg_code: String,
+ pub suggestion_code: String,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_expected_used_symbol)]
+pub struct ExpectedUsedSymbol {
+ #[primary_span]
+ pub span: Span,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_const_impl_for_non_const_trait)]
+pub struct ConstImplForNonConstTrait {
+ #[primary_span]
+ pub trait_ref_span: Span,
+ pub trait_name: String,
+ #[suggestion(applicability = "machine-applicable", code = "#[const_trait]")]
+ pub local_trait_span: Option<Span>,
+ #[note]
+ pub marking: (),
+ #[note(adding)]
+ pub adding: (),
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_const_bound_for_non_const_trait)]
+pub struct ConstBoundForNonConstTrait {
+ #[primary_span]
+ pub span: Span,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_self_in_impl_self)]
+pub struct SelfInImplSelf {
+ #[primary_span]
+ pub span: MultiSpan,
+ #[note]
+ pub note: (),
+}
diff --git a/compiler/rustc_typeck/src/hir_wf_check.rs b/compiler/rustc_hir_analysis/src/hir_wf_check.rs
index 55c7a15f9..b0fdfcf38 100644
--- a/compiler/rustc_typeck/src/hir_wf_check.rs
+++ b/compiler/rustc_hir_analysis/src/hir_wf_check.rs
@@ -3,11 +3,10 @@ use rustc_hir as hir;
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::{ForeignItem, ForeignItemKind, HirId};
use rustc_infer::infer::TyCtxtInferExt;
-use rustc_infer::traits::TraitEngine;
use rustc_infer::traits::{ObligationCause, WellFormedLoc};
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, Region, ToPredicate, TyCtxt, TypeFoldable, TypeFolder};
-use rustc_trait_selection::traits::{self, TraitEngineExt};
+use rustc_trait_selection::traits;
pub fn provide(providers: &mut Providers) {
*providers = Providers { diagnostic_hir_wf_check, ..*providers };
@@ -65,41 +64,36 @@ fn diagnostic_hir_wf_check<'tcx>(
impl<'tcx> Visitor<'tcx> for HirWfCheck<'tcx> {
fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
- self.tcx.infer_ctxt().enter(|infcx| {
- let mut fulfill = <dyn TraitEngine<'tcx>>::new(self.tcx);
- let tcx_ty =
- self.icx.to_ty(ty).fold_with(&mut EraseAllBoundRegions { tcx: self.tcx });
- let cause = traits::ObligationCause::new(
- ty.span,
- self.hir_id,
- traits::ObligationCauseCode::WellFormed(None),
- );
- fulfill.register_predicate_obligation(
- &infcx,
- traits::Obligation::new(
- cause,
- self.param_env,
- ty::Binder::dummy(ty::PredicateKind::WellFormed(tcx_ty.into()))
- .to_predicate(self.tcx),
- ),
- );
-
- let errors = fulfill.select_all_or_error(&infcx);
- if !errors.is_empty() {
- debug!("Wf-check got errors for {:?}: {:?}", ty, errors);
- for error in errors {
- if error.obligation.predicate == self.predicate {
- // Save the cause from the greatest depth - this corresponds
- // to picking more-specific types (e.g. `MyStruct<u8>`)
- // over less-specific types (e.g. `Option<MyStruct<u8>>`)
- if self.depth >= self.cause_depth {
- self.cause = Some(error.obligation.cause);
- self.cause_depth = self.depth
- }
+ let infcx = self.tcx.infer_ctxt().build();
+ let tcx_ty = self.icx.to_ty(ty).fold_with(&mut EraseAllBoundRegions { tcx: self.tcx });
+ let cause = traits::ObligationCause::new(
+ ty.span,
+ self.hir_id,
+ traits::ObligationCauseCode::WellFormed(None),
+ );
+ let errors = traits::fully_solve_obligation(
+ &infcx,
+ traits::Obligation::new(
+ cause,
+ self.param_env,
+ ty::Binder::dummy(ty::PredicateKind::WellFormed(tcx_ty.into()))
+ .to_predicate(self.tcx),
+ ),
+ );
+ if !errors.is_empty() {
+ debug!("Wf-check got errors for {:?}: {:?}", ty, errors);
+ for error in errors {
+ if error.obligation.predicate == self.predicate {
+ // Save the cause from the greatest depth - this corresponds
+ // to picking more-specific types (e.g. `MyStruct<u8>`)
+ // over less-specific types (e.g. `Option<MyStruct<u8>>`)
+ if self.depth >= self.cause_depth {
+ self.cause = Some(error.obligation.cause);
+ self.cause_depth = self.depth
}
}
}
- });
+ }
self.depth += 1;
intravisit::walk_ty(self, ty);
self.depth -= 1;
@@ -123,7 +117,7 @@ fn diagnostic_hir_wf_check<'tcx>(
let ty = match loc {
WellFormedLoc::Ty(_) => match hir.get(hir_id) {
hir::Node::ImplItem(item) => match item.kind {
- hir::ImplItemKind::TyAlias(ty) => Some(ty),
+ hir::ImplItemKind::Type(ty) => Some(ty),
hir::ImplItemKind::Const(ty, _) => Some(ty),
ref item => bug!("Unexpected ImplItem {:?}", item),
},
@@ -144,6 +138,10 @@ fn diagnostic_hir_wf_check<'tcx>(
hir::Node::ForeignItem(ForeignItem {
kind: ForeignItemKind::Static(ty, _), ..
}) => Some(*ty),
+ hir::Node::GenericParam(hir::GenericParam {
+ kind: hir::GenericParamKind::Type { default: Some(ty), .. },
+ ..
+ }) => Some(*ty),
ref node => bug!("Unexpected node {:?}", node),
},
WellFormedLoc::Param { function: _, param_idx } => {
diff --git a/compiler/rustc_typeck/src/impl_wf_check.rs b/compiler/rustc_hir_analysis/src/impl_wf_check.rs
index 9fee1eaae..136f61999 100644
--- a/compiler/rustc_typeck/src/impl_wf_check.rs
+++ b/compiler/rustc_hir_analysis/src/impl_wf_check.rs
@@ -11,7 +11,7 @@
use crate::constrained_generic_params as cgp;
use min_specialization::check_min_specialization;
-use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_data_structures::fx::FxHashSet;
use rustc_errors::struct_span_err;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::LocalDefId;
@@ -19,8 +19,6 @@ use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, TyCtxt, TypeVisitable};
use rustc_span::{Span, Symbol};
-use std::collections::hash_map::Entry::{Occupied, Vacant};
-
mod min_specialization;
/// Checks that all the type/lifetime parameters on an impl also
@@ -57,11 +55,10 @@ fn check_mod_impl_wf(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
let min_specialization = tcx.features().min_specialization;
let module = tcx.hir_module_items(module_def_id);
for id in module.items() {
- if matches!(tcx.def_kind(id.def_id), DefKind::Impl) {
- enforce_impl_params_are_constrained(tcx, id.def_id);
- enforce_impl_items_are_distinct(tcx, id.def_id);
+ if matches!(tcx.def_kind(id.owner_id), DefKind::Impl) {
+ enforce_impl_params_are_constrained(tcx, id.owner_id.def_id);
if min_specialization {
- check_min_specialization(tcx, id.def_id);
+ check_min_specialization(tcx, id.owner_id.def_id);
}
}
}
@@ -194,35 +191,3 @@ fn report_unused_parameter(tcx: TyCtxt<'_>, span: Span, kind: &str, name: Symbol
}
err.emit();
}
-
-/// Enforce that we do not have two items in an impl with the same name.
-fn enforce_impl_items_are_distinct(tcx: TyCtxt<'_>, impl_def_id: LocalDefId) {
- let mut seen_type_items = FxHashMap::default();
- let mut seen_value_items = FxHashMap::default();
- for &impl_item_ref in tcx.associated_item_def_ids(impl_def_id) {
- let impl_item = tcx.associated_item(impl_item_ref);
- let seen_items = match impl_item.kind {
- ty::AssocKind::Type => &mut seen_type_items,
- _ => &mut seen_value_items,
- };
- let span = tcx.def_span(impl_item_ref);
- let ident = impl_item.ident(tcx);
- match seen_items.entry(ident.normalize_to_macros_2_0()) {
- Occupied(entry) => {
- let mut err = struct_span_err!(
- tcx.sess,
- span,
- E0201,
- "duplicate definitions with name `{}`:",
- ident
- );
- err.span_label(*entry.get(), format!("previous definition of `{}` here", ident));
- err.span_label(span, "duplicate definition");
- err.emit();
- }
- Vacant(entry) => {
- entry.insert(span);
- }
- }
- }
-}
diff --git a/compiler/rustc_typeck/src/impl_wf_check/min_specialization.rs b/compiler/rustc_hir_analysis/src/impl_wf_check/min_specialization.rs
index 74abb71a1..e806e9487 100644
--- a/compiler/rustc_typeck/src/impl_wf_check/min_specialization.rs
+++ b/compiler/rustc_hir_analysis/src/impl_wf_check/min_specialization.rs
@@ -65,27 +65,25 @@
//! cause use after frees with purely safe code in the same way as specializing
//! on traits with methods can.
-use crate::check::regionck::OutlivesEnvironmentExt;
-use crate::check::wfcheck::impl_implied_bounds;
use crate::constrained_generic_params as cgp;
use crate::errors::SubstsOnOverriddenImpl;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
-use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
+use rustc_infer::infer::TyCtxtInferExt;
use rustc_infer::traits::specialization_graph::Node;
use rustc_middle::ty::subst::{GenericArg, InternalSubsts, SubstsRef};
use rustc_middle::ty::trait_def::TraitSpecializationKind;
use rustc_middle::ty::{self, TyCtxt, TypeVisitable};
use rustc_span::Span;
-use rustc_trait_selection::traits::{self, translate_substs, wf};
+use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt;
+use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
+use rustc_trait_selection::traits::{self, translate_substs, wf, ObligationCtxt};
pub(super) fn check_min_specialization(tcx: TyCtxt<'_>, impl_def_id: LocalDefId) {
if let Some(node) = parent_specialization_node(tcx, impl_def_id) {
- tcx.infer_ctxt().enter(|infcx| {
- check_always_applicable(&infcx, impl_def_id, node);
- });
+ check_always_applicable(tcx, impl_def_id, node);
}
}
@@ -105,16 +103,14 @@ fn parent_specialization_node(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId) -> Opti
}
/// Check that `impl1` is a sound specialization
-fn check_always_applicable(infcx: &InferCtxt<'_, '_>, impl1_def_id: LocalDefId, impl2_node: Node) {
- if let Some((impl1_substs, impl2_substs)) = get_impl_substs(infcx, impl1_def_id, impl2_node) {
+fn check_always_applicable(tcx: TyCtxt<'_>, impl1_def_id: LocalDefId, impl2_node: Node) {
+ if let Some((impl1_substs, impl2_substs)) = get_impl_substs(tcx, impl1_def_id, impl2_node) {
let impl2_def_id = impl2_node.def_id();
debug!(
"check_always_applicable(\nimpl1_def_id={:?},\nimpl2_def_id={:?},\nimpl2_substs={:?}\n)",
impl1_def_id, impl2_def_id, impl2_substs
);
- let tcx = infcx.tcx;
-
let parent_substs = if impl2_node.is_from_trait() {
impl2_substs.to_vec()
} else {
@@ -124,7 +120,7 @@ fn check_always_applicable(infcx: &InferCtxt<'_, '_>, impl1_def_id: LocalDefId,
let span = tcx.def_span(impl1_def_id);
check_static_lifetimes(tcx, &parent_substs, span);
check_duplicate_params(tcx, impl1_substs, &parent_substs, span);
- check_predicates(infcx, impl1_def_id, impl1_substs, impl2_node, impl2_substs, span);
+ check_predicates(tcx, impl1_def_id, impl1_substs, impl2_node, impl2_substs, span);
}
}
@@ -134,30 +130,37 @@ fn check_always_applicable(infcx: &InferCtxt<'_, '_>, impl1_def_id: LocalDefId,
///
/// Example
///
+/// ```ignore (illustrative)
/// impl<A, B> Foo<A> for B { /* impl2 */ }
/// impl<C> Foo<Vec<C>> for C { /* impl1 */ }
+/// ```
///
/// Would return `S1 = [C]` and `S2 = [Vec<C>, C]`.
fn get_impl_substs<'tcx>(
- infcx: &InferCtxt<'_, 'tcx>,
+ tcx: TyCtxt<'tcx>,
impl1_def_id: LocalDefId,
impl2_node: Node,
) -> Option<(SubstsRef<'tcx>, SubstsRef<'tcx>)> {
- let tcx = infcx.tcx;
+ let infcx = &tcx.infer_ctxt().build();
+ let ocx = ObligationCtxt::new(infcx);
let param_env = tcx.param_env(impl1_def_id);
+ let impl1_hir_id = tcx.hir().local_def_id_to_hir_id(impl1_def_id);
+
+ let assumed_wf_types =
+ ocx.assumed_wf_types(param_env, tcx.def_span(impl1_def_id), impl1_def_id);
let impl1_substs = InternalSubsts::identity_for_item(tcx, impl1_def_id.to_def_id());
let impl2_substs =
translate_substs(infcx, param_env, impl1_def_id.to_def_id(), impl1_substs, impl2_node);
- let mut outlives_env = OutlivesEnvironment::new(param_env);
- let implied_bounds =
- impl_implied_bounds(infcx.tcx, param_env, impl1_def_id, tcx.def_span(impl1_def_id));
- outlives_env.add_implied_bounds(
- infcx,
- implied_bounds,
- tcx.hir().local_def_id_to_hir_id(impl1_def_id),
- );
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ ocx.infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
+ return None;
+ }
+
+ let implied_bounds = infcx.implied_bounds_tys(param_env, impl1_hir_id, assumed_wf_types);
+ let outlives_env = OutlivesEnvironment::with_bounds(param_env, Some(infcx), implied_bounds);
infcx.check_region_obligations_and_report_errors(impl1_def_id, &outlives_env);
let Ok(impl2_substs) = infcx.fully_resolve(impl2_substs) else {
let span = tcx.def_span(impl1_def_id);
@@ -224,13 +227,17 @@ fn unconstrained_parent_impl_substs<'tcx>(
///
/// For example forbid the following:
///
+/// ```ignore (illustrative)
/// impl<A> Tr for A { }
/// impl<B> Tr for (B, B) { }
+/// ```
///
/// Note that only consider the unconstrained parameters of the base impl:
///
+/// ```ignore (illustrative)
/// impl<S, I: IntoIterator<Item = S>> Tr<S> for I { }
/// impl<T> Tr<T> for Vec<T> { }
+/// ```
///
/// The substs for the parent impl here are `[T, Vec<T>]`, which repeats `T`,
/// but `S` is constrained in the parent impl, so `parent_substs` is only
@@ -255,8 +262,10 @@ fn check_duplicate_params<'tcx>(
///
/// For example forbid the following:
///
+/// ```ignore (illustrative)
/// impl<A> Tr for A { }
/// impl Tr for &'static i32 { }
+/// ```
fn check_static_lifetimes<'tcx>(
tcx: TyCtxt<'tcx>,
parent_substs: &Vec<GenericArg<'tcx>>,
@@ -279,14 +288,13 @@ fn check_static_lifetimes<'tcx>(
/// * a well-formed predicate of a type argument of the trait being implemented,
/// including the `Self`-type.
fn check_predicates<'tcx>(
- infcx: &InferCtxt<'_, 'tcx>,
+ tcx: TyCtxt<'tcx>,
impl1_def_id: LocalDefId,
impl1_substs: SubstsRef<'tcx>,
impl2_node: Node,
impl2_substs: SubstsRef<'tcx>,
span: Span,
) {
- let tcx = infcx.tcx;
let instantiated = tcx.predicates_of(impl1_def_id).instantiate(tcx, impl1_substs);
let impl1_predicates: Vec<_> = traits::elaborate_predicates_with_span(
tcx,
@@ -343,19 +351,21 @@ fn check_predicates<'tcx>(
// Include the well-formed predicates of the type parameters of the impl.
for arg in tcx.impl_trait_ref(impl1_def_id).unwrap().substs {
- if let Some(obligations) = wf::obligations(
+ let infcx = &tcx.infer_ctxt().build();
+ let obligations = wf::obligations(
infcx,
tcx.param_env(impl1_def_id),
tcx.hir().local_def_id_to_hir_id(impl1_def_id),
0,
arg,
span,
- ) {
- impl2_predicates.extend(
- traits::elaborate_obligations(tcx, obligations)
- .map(|obligation| obligation.predicate),
- )
- }
+ )
+ .unwrap();
+
+ assert!(!obligations.needs_infer());
+ impl2_predicates.extend(
+ traits::elaborate_obligations(tcx, obligations).map(|obligation| obligation.predicate),
+ )
}
impl2_predicates.extend(
traits::elaborate_predicates_with_span(tcx, always_applicable_traits)
@@ -418,13 +428,10 @@ fn trait_predicate_kind<'tcx>(
predicate: ty::Predicate<'tcx>,
) -> Option<TraitSpecializationKind> {
match predicate.kind().skip_binder() {
- ty::PredicateKind::Trait(ty::TraitPredicate {
- trait_ref,
- constness: ty::BoundConstness::NotConst,
- polarity: _,
- }) => Some(tcx.trait_def(trait_ref.def_id).specialization_kind),
- ty::PredicateKind::Trait(_)
- | ty::PredicateKind::RegionOutlives(_)
+ ty::PredicateKind::Trait(ty::TraitPredicate { trait_ref, constness: _, polarity: _ }) => {
+ Some(tcx.trait_def(trait_ref.def_id).specialization_kind)
+ }
+ ty::PredicateKind::RegionOutlives(_)
| ty::PredicateKind::TypeOutlives(_)
| ty::PredicateKind::Projection(_)
| ty::PredicateKind::WellFormed(_)
diff --git a/compiler/rustc_hir_analysis/src/lib.rs b/compiler/rustc_hir_analysis/src/lib.rs
new file mode 100644
index 000000000..525cd2419
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/lib.rs
@@ -0,0 +1,552 @@
+/*!
+
+# typeck
+
+The type checker is responsible for:
+
+1. Determining the type of each expression.
+2. Resolving methods and traits.
+3. Guaranteeing that most type rules are met. ("Most?", you say, "why most?"
+ Well, dear reader, read on.)
+
+The main entry point is [`check_crate()`]. Type checking operates in
+several major phases:
+
+1. The collect phase first passes over all items and determines their
+ type, without examining their "innards".
+
+2. Variance inference then runs to compute the variance of each parameter.
+
+3. Coherence checks for overlapping or orphaned impls.
+
+4. Finally, the check phase then checks function bodies and so forth.
+ Within the check phase, we check each function body one at a time
+ (bodies of function expressions are checked as part of the
+ containing function). Inference is used to supply types wherever
+ they are unknown. The actual checking of a function itself has
+ several phases (check, regionck, writeback), as discussed in the
+ documentation for the [`check`] module.
+
+The type checker is defined into various submodules which are documented
+independently:
+
+- astconv: converts the AST representation of types
+ into the `ty` representation.
+
+- collect: computes the types of each top-level item and enters them into
+ the `tcx.types` table for later use.
+
+- coherence: enforces coherence rules, builds some tables.
+
+- variance: variance inference
+
+- outlives: outlives inference
+
+- check: walks over function bodies and type checks them, inferring types for
+ local variables, type parameters, etc as necessary.
+
+- infer: finds the types to use for each type variable such that
+ all subtyping and assignment constraints are met. In essence, the check
+ module specifies the constraints, and the infer module solves them.
+
+## Note
+
+This API is completely unstable and subject to change.
+
+*/
+
+#![allow(rustc::potential_query_instability)]
+#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
+#![feature(box_patterns)]
+#![feature(control_flow_enum)]
+#![feature(drain_filter)]
+#![feature(hash_drain_filter)]
+#![feature(if_let_guard)]
+#![feature(is_sorted)]
+#![feature(iter_intersperse)]
+#![feature(let_chains)]
+#![feature(min_specialization)]
+#![feature(never_type)]
+#![feature(once_cell)]
+#![feature(slice_partition_dedup)]
+#![feature(try_blocks)]
+#![feature(is_some_and)]
+#![feature(type_alias_impl_trait)]
+#![recursion_limit = "256"]
+
+#[macro_use]
+extern crate tracing;
+
+#[macro_use]
+extern crate rustc_middle;
+
+// These are used by Clippy.
+pub mod check;
+
+pub mod astconv;
+mod bounds;
+mod check_unused;
+mod coherence;
+// FIXME: This module shouldn't be public.
+pub mod collect;
+mod constrained_generic_params;
+mod errors;
+pub mod hir_wf_check;
+mod impl_wf_check;
+mod outlives;
+pub mod structured_errors;
+mod variance;
+
+use rustc_errors::{struct_span_err, ErrorGuaranteed};
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_hir::{Node, CRATE_HIR_ID};
+use rustc_infer::infer::{InferOk, TyCtxtInferExt};
+use rustc_middle::middle;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_middle::util;
+use rustc_session::config::EntryFnType;
+use rustc_span::{symbol::sym, Span, DUMMY_SP};
+use rustc_target::spec::abi::Abi;
+use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
+use rustc_trait_selection::traits::{self, ObligationCause, ObligationCauseCode};
+
+use std::iter;
+
+use astconv::AstConv;
+use bounds::Bounds;
+
+fn require_c_abi_if_c_variadic(tcx: TyCtxt<'_>, decl: &hir::FnDecl<'_>, abi: Abi, span: Span) {
+ match (decl.c_variadic, abi) {
+ // The function has the correct calling convention, or isn't a "C-variadic" function.
+ (false, _) | (true, Abi::C { .. }) | (true, Abi::Cdecl { .. }) => {}
+ // The function is a "C-variadic" function with an incorrect calling convention.
+ (true, _) => {
+ let mut err = struct_span_err!(
+ tcx.sess,
+ span,
+ E0045,
+ "C-variadic function must have C or cdecl calling convention"
+ );
+ err.span_label(span, "C-variadics require C or cdecl calling convention").emit();
+ }
+ }
+}
+
+fn require_same_types<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ cause: &ObligationCause<'tcx>,
+ expected: Ty<'tcx>,
+ actual: Ty<'tcx>,
+) -> bool {
+ let infcx = &tcx.infer_ctxt().build();
+ let param_env = ty::ParamEnv::empty();
+ let errors = match infcx.at(cause, param_env).eq(expected, actual) {
+ Ok(InferOk { obligations, .. }) => traits::fully_solve_obligations(infcx, obligations),
+ Err(err) => {
+ infcx.err_ctxt().report_mismatched_types(cause, expected, actual, err).emit();
+ return false;
+ }
+ };
+
+ match &errors[..] {
+ [] => true,
+ errors => {
+ infcx.err_ctxt().report_fulfillment_errors(errors, None, false);
+ false
+ }
+ }
+}
+
+fn check_main_fn_ty(tcx: TyCtxt<'_>, main_def_id: DefId) {
+ let main_fnsig = tcx.fn_sig(main_def_id);
+ let main_span = tcx.def_span(main_def_id);
+
+ fn main_fn_diagnostics_hir_id(tcx: TyCtxt<'_>, def_id: DefId, sp: Span) -> hir::HirId {
+ if let Some(local_def_id) = def_id.as_local() {
+ let hir_id = tcx.hir().local_def_id_to_hir_id(local_def_id);
+ let hir_type = tcx.type_of(local_def_id);
+ if !matches!(hir_type.kind(), ty::FnDef(..)) {
+ span_bug!(sp, "main has a non-function type: found `{}`", hir_type);
+ }
+ hir_id
+ } else {
+ CRATE_HIR_ID
+ }
+ }
+
+ fn main_fn_generics_params_span(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Span> {
+ if !def_id.is_local() {
+ return None;
+ }
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+ match tcx.hir().find(hir_id) {
+ Some(Node::Item(hir::Item { kind: hir::ItemKind::Fn(_, ref generics, _), .. })) => {
+ if !generics.params.is_empty() {
+ Some(generics.span)
+ } else {
+ None
+ }
+ }
+ _ => {
+ span_bug!(tcx.def_span(def_id), "main has a non-function type");
+ }
+ }
+ }
+
+ fn main_fn_where_clauses_span(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Span> {
+ if !def_id.is_local() {
+ return None;
+ }
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+ match tcx.hir().find(hir_id) {
+ Some(Node::Item(hir::Item { kind: hir::ItemKind::Fn(_, ref generics, _), .. })) => {
+ Some(generics.where_clause_span)
+ }
+ _ => {
+ span_bug!(tcx.def_span(def_id), "main has a non-function type");
+ }
+ }
+ }
+
+ fn main_fn_asyncness_span(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Span> {
+ if !def_id.is_local() {
+ return None;
+ }
+ Some(tcx.def_span(def_id))
+ }
+
+ fn main_fn_return_type_span(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Span> {
+ if !def_id.is_local() {
+ return None;
+ }
+ let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
+ match tcx.hir().find(hir_id) {
+ Some(Node::Item(hir::Item { kind: hir::ItemKind::Fn(ref fn_sig, _, _), .. })) => {
+ Some(fn_sig.decl.output.span())
+ }
+ _ => {
+ span_bug!(tcx.def_span(def_id), "main has a non-function type");
+ }
+ }
+ }
+
+ let mut error = false;
+ let main_diagnostics_hir_id = main_fn_diagnostics_hir_id(tcx, main_def_id, main_span);
+ let main_fn_generics = tcx.generics_of(main_def_id);
+ let main_fn_predicates = tcx.predicates_of(main_def_id);
+ if main_fn_generics.count() != 0 || !main_fnsig.bound_vars().is_empty() {
+ let generics_param_span = main_fn_generics_params_span(tcx, main_def_id);
+ let msg = "`main` function is not allowed to have generic \
+ parameters";
+ let mut diag =
+ struct_span_err!(tcx.sess, generics_param_span.unwrap_or(main_span), E0131, "{}", msg);
+ if let Some(generics_param_span) = generics_param_span {
+ let label = "`main` cannot have generic parameters";
+ diag.span_label(generics_param_span, label);
+ }
+ diag.emit();
+ error = true;
+ } else if !main_fn_predicates.predicates.is_empty() {
+ // generics may bring in implicit predicates, so we skip this check if generics is present.
+ let generics_where_clauses_span = main_fn_where_clauses_span(tcx, main_def_id);
+ let mut diag = struct_span_err!(
+ tcx.sess,
+ generics_where_clauses_span.unwrap_or(main_span),
+ E0646,
+ "`main` function is not allowed to have a `where` clause"
+ );
+ if let Some(generics_where_clauses_span) = generics_where_clauses_span {
+ diag.span_label(generics_where_clauses_span, "`main` cannot have a `where` clause");
+ }
+ diag.emit();
+ error = true;
+ }
+
+ let main_asyncness = tcx.asyncness(main_def_id);
+ if let hir::IsAsync::Async = main_asyncness {
+ let mut diag = struct_span_err!(
+ tcx.sess,
+ main_span,
+ E0752,
+ "`main` function is not allowed to be `async`"
+ );
+ let asyncness_span = main_fn_asyncness_span(tcx, main_def_id);
+ if let Some(asyncness_span) = asyncness_span {
+ diag.span_label(asyncness_span, "`main` function is not allowed to be `async`");
+ }
+ diag.emit();
+ error = true;
+ }
+
+ for attr in tcx.get_attrs(main_def_id, sym::track_caller) {
+ tcx.sess
+ .struct_span_err(attr.span, "`main` function is not allowed to be `#[track_caller]`")
+ .span_label(main_span, "`main` function is not allowed to be `#[track_caller]`")
+ .emit();
+ error = true;
+ }
+
+ if error {
+ return;
+ }
+
+ let expected_return_type;
+ if let Some(term_did) = tcx.lang_items().termination() {
+ let return_ty = main_fnsig.output();
+ let return_ty_span = main_fn_return_type_span(tcx, main_def_id).unwrap_or(main_span);
+ if !return_ty.bound_vars().is_empty() {
+ let msg = "`main` function return type is not allowed to have generic \
+ parameters";
+ struct_span_err!(tcx.sess, return_ty_span, E0131, "{}", msg).emit();
+ error = true;
+ }
+ let return_ty = return_ty.skip_binder();
+ let infcx = tcx.infer_ctxt().build();
+ // Main should have no WC, so empty param env is OK here.
+ let param_env = ty::ParamEnv::empty();
+ let cause = traits::ObligationCause::new(
+ return_ty_span,
+ main_diagnostics_hir_id,
+ ObligationCauseCode::MainFunctionType,
+ );
+ let ocx = traits::ObligationCtxt::new(&infcx);
+ let norm_return_ty = ocx.normalize(cause.clone(), param_env, return_ty);
+ ocx.register_bound(cause, param_env, norm_return_ty, term_did);
+ let errors = ocx.select_all_or_error();
+ if !errors.is_empty() {
+ infcx.err_ctxt().report_fulfillment_errors(&errors, None, false);
+ error = true;
+ }
+ // now we can take the return type of the given main function
+ expected_return_type = main_fnsig.output();
+ } else {
+ // standard () main return type
+ expected_return_type = ty::Binder::dummy(tcx.mk_unit());
+ }
+
+ if error {
+ return;
+ }
+
+ let se_ty = tcx.mk_fn_ptr(expected_return_type.map_bound(|expected_return_type| {
+ tcx.mk_fn_sig(iter::empty(), expected_return_type, false, hir::Unsafety::Normal, Abi::Rust)
+ }));
+
+ require_same_types(
+ tcx,
+ &ObligationCause::new(
+ main_span,
+ main_diagnostics_hir_id,
+ ObligationCauseCode::MainFunctionType,
+ ),
+ se_ty,
+ tcx.mk_fn_ptr(main_fnsig),
+ );
+}
+fn check_start_fn_ty(tcx: TyCtxt<'_>, start_def_id: DefId) {
+ let start_def_id = start_def_id.expect_local();
+ let start_id = tcx.hir().local_def_id_to_hir_id(start_def_id);
+ let start_span = tcx.def_span(start_def_id);
+ let start_t = tcx.type_of(start_def_id);
+ match start_t.kind() {
+ ty::FnDef(..) => {
+ if let Some(Node::Item(it)) = tcx.hir().find(start_id) {
+ if let hir::ItemKind::Fn(ref sig, ref generics, _) = it.kind {
+ let mut error = false;
+ if !generics.params.is_empty() {
+ struct_span_err!(
+ tcx.sess,
+ generics.span,
+ E0132,
+ "start function is not allowed to have type parameters"
+ )
+ .span_label(generics.span, "start function cannot have type parameters")
+ .emit();
+ error = true;
+ }
+ if generics.has_where_clause_predicates {
+ struct_span_err!(
+ tcx.sess,
+ generics.where_clause_span,
+ E0647,
+ "start function is not allowed to have a `where` clause"
+ )
+ .span_label(
+ generics.where_clause_span,
+ "start function cannot have a `where` clause",
+ )
+ .emit();
+ error = true;
+ }
+ if let hir::IsAsync::Async = sig.header.asyncness {
+ let span = tcx.def_span(it.owner_id);
+ struct_span_err!(
+ tcx.sess,
+ span,
+ E0752,
+ "`start` is not allowed to be `async`"
+ )
+ .span_label(span, "`start` is not allowed to be `async`")
+ .emit();
+ error = true;
+ }
+
+ let attrs = tcx.hir().attrs(start_id);
+ for attr in attrs {
+ if attr.has_name(sym::track_caller) {
+ tcx.sess
+ .struct_span_err(
+ attr.span,
+ "`start` is not allowed to be `#[track_caller]`",
+ )
+ .span_label(
+ start_span,
+ "`start` is not allowed to be `#[track_caller]`",
+ )
+ .emit();
+ error = true;
+ }
+ }
+
+ if error {
+ return;
+ }
+ }
+ }
+
+ let se_ty = tcx.mk_fn_ptr(ty::Binder::dummy(tcx.mk_fn_sig(
+ [tcx.types.isize, tcx.mk_imm_ptr(tcx.mk_imm_ptr(tcx.types.u8))].iter().cloned(),
+ tcx.types.isize,
+ false,
+ hir::Unsafety::Normal,
+ Abi::Rust,
+ )));
+
+ require_same_types(
+ tcx,
+ &ObligationCause::new(start_span, start_id, ObligationCauseCode::StartFunctionType),
+ se_ty,
+ tcx.mk_fn_ptr(tcx.fn_sig(start_def_id)),
+ );
+ }
+ _ => {
+ span_bug!(start_span, "start has a non-function type: found `{}`", start_t);
+ }
+ }
+}
+
+fn check_for_entry_fn(tcx: TyCtxt<'_>) {
+ match tcx.entry_fn(()) {
+ Some((def_id, EntryFnType::Main { .. })) => check_main_fn_ty(tcx, def_id),
+ Some((def_id, EntryFnType::Start)) => check_start_fn_ty(tcx, def_id),
+ _ => {}
+ }
+}
+
+pub fn provide(providers: &mut Providers) {
+ collect::provide(providers);
+ coherence::provide(providers);
+ check::provide(providers);
+ variance::provide(providers);
+ outlives::provide(providers);
+ impl_wf_check::provide(providers);
+ hir_wf_check::provide(providers);
+}
+
+pub fn check_crate(tcx: TyCtxt<'_>) -> Result<(), ErrorGuaranteed> {
+ let _prof_timer = tcx.sess.timer("type_check_crate");
+
+ // this ensures that later parts of type checking can assume that items
+ // have valid types and not error
+ // FIXME(matthewjasper) We shouldn't need to use `track_errors`.
+ tcx.sess.track_errors(|| {
+ tcx.sess.time("type_collecting", || {
+ tcx.hir().for_each_module(|module| tcx.ensure().collect_mod_item_types(module))
+ });
+ })?;
+
+ if tcx.features().rustc_attrs {
+ tcx.sess.track_errors(|| {
+ tcx.sess.time("outlives_testing", || outlives::test::test_inferred_outlives(tcx));
+ })?;
+ }
+
+ tcx.sess.track_errors(|| {
+ tcx.sess.time("impl_wf_inference", || {
+ tcx.hir().for_each_module(|module| tcx.ensure().check_mod_impl_wf(module))
+ });
+ })?;
+
+ tcx.sess.track_errors(|| {
+ tcx.sess.time("coherence_checking", || {
+ for &trait_def_id in tcx.all_local_trait_impls(()).keys() {
+ tcx.ensure().coherent_trait(trait_def_id);
+ }
+
+ // these queries are executed for side-effects (error reporting):
+ tcx.ensure().crate_inherent_impls(());
+ tcx.ensure().crate_inherent_impls_overlap_check(());
+ });
+ })?;
+
+ if tcx.features().rustc_attrs {
+ tcx.sess.track_errors(|| {
+ tcx.sess.time("variance_testing", || variance::test::test_variance(tcx));
+ })?;
+ }
+
+ tcx.sess.track_errors(|| {
+ tcx.sess.time("wf_checking", || {
+ tcx.hir().par_for_each_module(|module| tcx.ensure().check_mod_type_wf(module))
+ });
+ })?;
+
+ // NOTE: This is copy/pasted in librustdoc/core.rs and should be kept in sync.
+ tcx.sess.time("item_types_checking", || {
+ tcx.hir().for_each_module(|module| tcx.ensure().check_mod_item_types(module))
+ });
+
+ tcx.sess.time("item_bodies_checking", || tcx.typeck_item_bodies(()));
+
+ check_unused::check_crate(tcx);
+ check_for_entry_fn(tcx);
+
+ if let Some(reported) = tcx.sess.has_errors() { Err(reported) } else { Ok(()) }
+}
+
+/// A quasi-deprecated helper used in rustdoc and clippy to get
+/// the type from a HIR node.
+pub fn hir_ty_to_ty<'tcx>(tcx: TyCtxt<'tcx>, hir_ty: &hir::Ty<'_>) -> Ty<'tcx> {
+ // In case there are any projections, etc., find the "environment"
+ // def-ID that will be used to determine the traits/predicates in
+ // scope. This is derived from the enclosing item-like thing.
+ let env_def_id = tcx.hir().get_parent_item(hir_ty.hir_id);
+ let item_cx = self::collect::ItemCtxt::new(tcx, env_def_id.to_def_id());
+ <dyn AstConv<'_>>::ast_ty_to_ty(&item_cx, hir_ty)
+}
+
+pub fn hir_trait_to_predicates<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ hir_trait: &hir::TraitRef<'_>,
+ self_ty: Ty<'tcx>,
+) -> Bounds<'tcx> {
+ // In case there are any projections, etc., find the "environment"
+ // def-ID that will be used to determine the traits/predicates in
+ // scope. This is derived from the enclosing item-like thing.
+ let env_def_id = tcx.hir().get_parent_item(hir_trait.hir_ref_id);
+ let item_cx = self::collect::ItemCtxt::new(tcx, env_def_id.to_def_id());
+ let mut bounds = Bounds::default();
+ let _ = <dyn AstConv<'_>>::instantiate_poly_trait_ref(
+ &item_cx,
+ hir_trait,
+ DUMMY_SP,
+ ty::BoundConstness::NotConst,
+ self_ty,
+ &mut bounds,
+ true,
+ );
+
+ bounds
+}
diff --git a/compiler/rustc_typeck/src/outlives/explicit.rs b/compiler/rustc_hir_analysis/src/outlives/explicit.rs
index 7534482cc..7534482cc 100644
--- a/compiler/rustc_typeck/src/outlives/explicit.rs
+++ b/compiler/rustc_hir_analysis/src/outlives/explicit.rs
diff --git a/compiler/rustc_typeck/src/outlives/implicit_infer.rs b/compiler/rustc_hir_analysis/src/outlives/implicit_infer.rs
index 3b779280e..90c6edb65 100644
--- a/compiler/rustc_typeck/src/outlives/implicit_infer.rs
+++ b/compiler/rustc_hir_analysis/src/outlives/implicit_infer.rs
@@ -1,8 +1,8 @@
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefId;
-use rustc_middle::ty::subst::{GenericArg, GenericArgKind, Subst};
use rustc_middle::ty::{self, DefIdTree, Ty, TyCtxt};
+use rustc_middle::ty::{GenericArg, GenericArgKind};
use rustc_span::Span;
use super::explicit::ExplicitPredicatesMap;
@@ -29,7 +29,7 @@ pub(super) fn infer_predicates<'tcx>(
// Visit all the crates and infer predicates
for id in tcx.hir().items() {
- let item_did = id.def_id;
+ let item_did = id.owner_id;
debug!("InferVisitor::visit_item(item={:?})", item_did);
diff --git a/compiler/rustc_hir_analysis/src/outlives/mod.rs b/compiler/rustc_hir_analysis/src/outlives/mod.rs
new file mode 100644
index 000000000..e50c26765
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/outlives/mod.rs
@@ -0,0 +1,129 @@
+use hir::Node;
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::subst::GenericArgKind;
+use rustc_middle::ty::{self, CratePredicatesMap, ToPredicate, TyCtxt};
+use rustc_span::symbol::sym;
+use rustc_span::Span;
+
+mod explicit;
+mod implicit_infer;
+/// Code to write unit test for outlives.
+pub mod test;
+mod utils;
+
+pub fn provide(providers: &mut Providers) {
+ *providers = Providers { inferred_outlives_of, inferred_outlives_crate, ..*providers };
+}
+
+fn inferred_outlives_of(tcx: TyCtxt<'_>, item_def_id: DefId) -> &[(ty::Predicate<'_>, Span)] {
+ let id = tcx.hir().local_def_id_to_hir_id(item_def_id.expect_local());
+
+ if matches!(tcx.def_kind(item_def_id), hir::def::DefKind::AnonConst) && tcx.lazy_normalization()
+ {
+ if tcx.hir().opt_const_param_default_param_hir_id(id).is_some() {
+ // In `generics_of` we set the generics' parent to be our parent's parent which means that
+ // we lose out on the predicates of our actual parent if we dont return those predicates here.
+ // (See comment in `generics_of` for more information on why the parent shenanigans is necessary)
+ //
+ // struct Foo<'a, 'b, const N: usize = { ... }>(&'a &'b ());
+ // ^^^ ^^^^^^^ the def id we are calling
+ // ^^^ inferred_outlives_of on
+ // parent item we dont have set as the
+ // parent of generics returned by `generics_of`
+ //
+ // In the above code we want the anon const to have predicates in its param env for `'b: 'a`
+ let item_def_id = tcx.hir().get_parent_item(id);
+ // In the above code example we would be calling `inferred_outlives_of(Foo)` here
+ return tcx.inferred_outlives_of(item_def_id);
+ }
+ }
+
+ match tcx.hir().get(id) {
+ Node::Item(item) => match item.kind {
+ hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..) => {
+ let crate_map = tcx.inferred_outlives_crate(());
+
+ let predicates = crate_map.predicates.get(&item_def_id).copied().unwrap_or(&[]);
+
+ if tcx.has_attr(item_def_id, sym::rustc_outlives) {
+ let mut pred: Vec<String> = predicates
+ .iter()
+ .map(|(out_pred, _)| match out_pred.kind().skip_binder() {
+ ty::PredicateKind::RegionOutlives(p) => p.to_string(),
+ ty::PredicateKind::TypeOutlives(p) => p.to_string(),
+ err => bug!("unexpected predicate {:?}", err),
+ })
+ .collect();
+ pred.sort();
+
+ let span = tcx.def_span(item_def_id);
+ let mut err = tcx.sess.struct_span_err(span, "rustc_outlives");
+ for p in &pred {
+ err.note(p);
+ }
+ err.emit();
+ }
+
+ debug!("inferred_outlives_of({:?}) = {:?}", item_def_id, predicates);
+
+ predicates
+ }
+
+ _ => &[],
+ },
+
+ _ => &[],
+ }
+}
+
+fn inferred_outlives_crate(tcx: TyCtxt<'_>, (): ()) -> CratePredicatesMap<'_> {
+ // Compute a map from each struct/enum/union S to the **explicit**
+ // outlives predicates (`T: 'a`, `'a: 'b`) that the user wrote.
+ // Typically there won't be many of these, except in older code where
+ // they were mandatory. Nonetheless, we have to ensure that every such
+ // predicate is satisfied, so they form a kind of base set of requirements
+ // for the type.
+
+ // Compute the inferred predicates
+ let global_inferred_outlives = implicit_infer::infer_predicates(tcx);
+
+ // Convert the inferred predicates into the "collected" form the
+ // global data structure expects.
+ //
+ // FIXME -- consider correcting impedance mismatch in some way,
+ // probably by updating the global data structure.
+ let predicates = global_inferred_outlives
+ .iter()
+ .map(|(&def_id, set)| {
+ let predicates = &*tcx.arena.alloc_from_iter(set.0.iter().filter_map(
+ |(ty::OutlivesPredicate(kind1, region2), &span)| {
+ match kind1.unpack() {
+ GenericArgKind::Type(ty1) => Some((
+ ty::Binder::dummy(ty::PredicateKind::TypeOutlives(
+ ty::OutlivesPredicate(ty1, *region2),
+ ))
+ .to_predicate(tcx),
+ span,
+ )),
+ GenericArgKind::Lifetime(region1) => Some((
+ ty::Binder::dummy(ty::PredicateKind::RegionOutlives(
+ ty::OutlivesPredicate(region1, *region2),
+ ))
+ .to_predicate(tcx),
+ span,
+ )),
+ GenericArgKind::Const(_) => {
+ // Generic consts don't impose any constraints.
+ None
+ }
+ }
+ },
+ ));
+ (def_id, predicates)
+ })
+ .collect();
+
+ ty::CratePredicatesMap { predicates }
+}
diff --git a/compiler/rustc_hir_analysis/src/outlives/test.rs b/compiler/rustc_hir_analysis/src/outlives/test.rs
new file mode 100644
index 000000000..fa2ac5659
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/outlives/test.rs
@@ -0,0 +1,21 @@
+use rustc_errors::struct_span_err;
+use rustc_middle::ty::TyCtxt;
+use rustc_span::symbol::sym;
+
+pub fn test_inferred_outlives(tcx: TyCtxt<'_>) {
+ for id in tcx.hir().items() {
+ // For unit testing: check for a special "rustc_outlives"
+ // attribute and report an error with various results if found.
+ if tcx.has_attr(id.owner_id.to_def_id(), sym::rustc_outlives) {
+ let inferred_outlives_of = tcx.inferred_outlives_of(id.owner_id);
+ struct_span_err!(
+ tcx.sess,
+ tcx.def_span(id.owner_id),
+ E0640,
+ "{:?}",
+ inferred_outlives_of
+ )
+ .emit();
+ }
+ }
+}
diff --git a/compiler/rustc_hir_analysis/src/outlives/utils.rs b/compiler/rustc_hir_analysis/src/outlives/utils.rs
new file mode 100644
index 000000000..0409c7081
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/outlives/utils.rs
@@ -0,0 +1,186 @@
+use rustc_infer::infer::outlives::components::{push_outlives_components, Component};
+use rustc_middle::ty::subst::{GenericArg, GenericArgKind};
+use rustc_middle::ty::{self, Region, Ty, TyCtxt};
+use rustc_span::Span;
+use smallvec::smallvec;
+use std::collections::BTreeMap;
+
+/// Tracks the `T: 'a` or `'a: 'a` predicates that we have inferred
+/// must be added to the struct header.
+pub(crate) type RequiredPredicates<'tcx> =
+ BTreeMap<ty::OutlivesPredicate<GenericArg<'tcx>, ty::Region<'tcx>>, Span>;
+
+/// Given a requirement `T: 'a` or `'b: 'a`, deduce the
+/// outlives_component and add it to `required_predicates`
+pub(crate) fn insert_outlives_predicate<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ kind: GenericArg<'tcx>,
+ outlived_region: Region<'tcx>,
+ span: Span,
+ required_predicates: &mut RequiredPredicates<'tcx>,
+) {
+ // If the `'a` region is bound within the field type itself, we
+ // don't want to propagate this constraint to the header.
+ if !is_free_region(outlived_region) {
+ return;
+ }
+
+ match kind.unpack() {
+ GenericArgKind::Type(ty) => {
+ // `T: 'outlived_region` for some type `T`
+ // But T could be a lot of things:
+ // e.g., if `T = &'b u32`, then `'b: 'outlived_region` is
+ // what we want to add.
+ //
+ // Or if within `struct Foo<U>` you had `T = Vec<U>`, then
+ // we would want to add `U: 'outlived_region`
+ let mut components = smallvec![];
+ push_outlives_components(tcx, ty, &mut components);
+ for component in components {
+ match component {
+ Component::Region(r) => {
+ // This would arise from something like:
+ //
+ // ```
+ // struct Foo<'a, 'b> {
+ // x: &'a &'b u32
+ // }
+ // ```
+ //
+ // Here `outlived_region = 'a` and `kind = &'b
+ // u32`. Decomposing `&'b u32` into
+ // components would yield `'b`, and we add the
+ // where clause that `'b: 'a`.
+ insert_outlives_predicate(
+ tcx,
+ r.into(),
+ outlived_region,
+ span,
+ required_predicates,
+ );
+ }
+
+ Component::Param(param_ty) => {
+ // param_ty: ty::ParamTy
+ // This would arise from something like:
+ //
+ // ```
+ // struct Foo<'a, U> {
+ // x: &'a Vec<U>
+ // }
+ // ```
+ //
+ // Here `outlived_region = 'a` and `kind =
+ // Vec<U>`. Decomposing `Vec<U>` into
+ // components would yield `U`, and we add the
+ // where clause that `U: 'a`.
+ let ty: Ty<'tcx> = param_ty.to_ty(tcx);
+ required_predicates
+ .entry(ty::OutlivesPredicate(ty.into(), outlived_region))
+ .or_insert(span);
+ }
+
+ Component::Projection(proj_ty) => {
+ // This would arise from something like:
+ //
+ // ```
+ // struct Foo<'a, T: Iterator> {
+ // x: &'a <T as Iterator>::Item
+ // }
+ // ```
+ //
+ // Here we want to add an explicit `where <T as Iterator>::Item: 'a`.
+ let ty: Ty<'tcx> = tcx.mk_projection(proj_ty.item_def_id, proj_ty.substs);
+ required_predicates
+ .entry(ty::OutlivesPredicate(ty.into(), outlived_region))
+ .or_insert(span);
+ }
+
+ Component::Opaque(def_id, substs) => {
+ // This would arise from something like:
+ //
+ // ```rust
+ // type Opaque<T> = impl Sized;
+ // fn defining<T>() -> Opaque<T> {}
+ // struct Ss<'a, T>(&'a Opaque<T>);
+ // ```
+ //
+ // Here we want to have an implied bound `Opaque<T>: 'a`
+
+ let ty = tcx.mk_opaque(def_id, substs);
+ required_predicates
+ .entry(ty::OutlivesPredicate(ty.into(), outlived_region))
+ .or_insert(span);
+ }
+
+ Component::EscapingProjection(_) => {
+ // As above, but the projection involves
+ // late-bound regions. Therefore, the WF
+ // requirement is not checked in type definition
+ // but at fn call site, so ignore it.
+ //
+ // ```
+ // struct Foo<'a, T: Iterator> {
+ // x: for<'b> fn(<&'b T as Iterator>::Item)
+ // // ^^^^^^^^^^^^^^^^^^^^^^^^^
+ // }
+ // ```
+ //
+ // Since `'b` is not in scope on `Foo`, can't
+ // do anything here, ignore it.
+ }
+
+ Component::UnresolvedInferenceVariable(_) => bug!("not using infcx"),
+ }
+ }
+ }
+
+ GenericArgKind::Lifetime(r) => {
+ if !is_free_region(r) {
+ return;
+ }
+ required_predicates.entry(ty::OutlivesPredicate(kind, outlived_region)).or_insert(span);
+ }
+
+ GenericArgKind::Const(_) => {
+ // Generic consts don't impose any constraints.
+ }
+ }
+}
+
+fn is_free_region(region: Region<'_>) -> bool {
+ // First, screen for regions that might appear in a type header.
+ match *region {
+ // These correspond to `T: 'a` relationships:
+ //
+ // struct Foo<'a, T> {
+ // field: &'a T, // this would generate a ReEarlyBound referencing `'a`
+ // }
+ //
+ // We care about these, so fall through.
+ ty::ReEarlyBound(_) => true,
+
+ // These correspond to `T: 'static` relationships which can be
+ // rather surprising.
+ //
+ // struct Foo<'a, T> {
+ // field: &'static T, // this would generate a ReStatic
+ // }
+ ty::ReStatic => false,
+
+ // Late-bound regions can appear in `fn` types:
+ //
+ // struct Foo<T> {
+ // field: for<'b> fn(&'b T) // e.g., 'b here
+ // }
+ //
+ // The type above might generate a `T: 'b` bound, but we can
+ // ignore it. We can't put it on the struct header anyway.
+ ty::ReLateBound(..) => false,
+
+ // These regions don't appear in types from type declarations:
+ ty::ReErased | ty::ReVar(..) | ty::RePlaceholder(..) | ty::ReFree(..) => {
+ bug!("unexpected region in outlives inference: {:?}", region);
+ }
+ }
+}
diff --git a/compiler/rustc_typeck/src/structured_errors.rs b/compiler/rustc_hir_analysis/src/structured_errors.rs
index 0b46fce17..0b46fce17 100644
--- a/compiler/rustc_typeck/src/structured_errors.rs
+++ b/compiler/rustc_hir_analysis/src/structured_errors.rs
diff --git a/compiler/rustc_typeck/src/structured_errors/missing_cast_for_variadic_arg.rs b/compiler/rustc_hir_analysis/src/structured_errors/missing_cast_for_variadic_arg.rs
index 324df313e..324df313e 100644
--- a/compiler/rustc_typeck/src/structured_errors/missing_cast_for_variadic_arg.rs
+++ b/compiler/rustc_hir_analysis/src/structured_errors/missing_cast_for_variadic_arg.rs
diff --git a/compiler/rustc_typeck/src/structured_errors/sized_unsized_cast.rs b/compiler/rustc_hir_analysis/src/structured_errors/sized_unsized_cast.rs
index bb6088054..bb6088054 100644
--- a/compiler/rustc_typeck/src/structured_errors/sized_unsized_cast.rs
+++ b/compiler/rustc_hir_analysis/src/structured_errors/sized_unsized_cast.rs
diff --git a/compiler/rustc_typeck/src/structured_errors/wrong_number_of_generic_args.rs b/compiler/rustc_hir_analysis/src/structured_errors/wrong_number_of_generic_args.rs
index 99729391e..435912464 100644
--- a/compiler/rustc_typeck/src/structured_errors/wrong_number_of_generic_args.rs
+++ b/compiler/rustc_hir_analysis/src/structured_errors/wrong_number_of_generic_args.rs
@@ -4,7 +4,6 @@ use rustc_errors::{
MultiSpan,
};
use rustc_hir as hir;
-use rustc_middle::hir::map::fn_sig;
use rustc_middle::ty::{self as ty, AssocItems, AssocKind, TyCtxt};
use rustc_session::Session;
use rustc_span::def_id::DefId;
@@ -292,62 +291,60 @@ impl<'a, 'tcx> WrongNumberOfGenericArgs<'a, 'tcx> {
// Creates lifetime name suggestions from the lifetime parameter names
fn get_lifetime_args_suggestions_from_param_names(
&self,
- path_hir_id: Option<hir::HirId>,
+ path_hir_id: hir::HirId,
num_params_to_take: usize,
) -> String {
debug!(?path_hir_id);
- if let Some(path_hir_id) = path_hir_id {
- let mut ret = Vec::new();
- for (id, node) in self.tcx.hir().parent_iter(path_hir_id) {
- debug!(?id);
- let params = if let Some(generics) = node.generics() {
- generics.params
- } else if let hir::Node::Ty(ty) = node
- && let hir::TyKind::BareFn(bare_fn) = ty.kind
- {
- bare_fn.generic_params
- } else {
- &[]
- };
- ret.extend(params.iter().filter_map(|p| {
- let hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Explicit }
- = p.kind
- else { return None };
- let hir::ParamName::Plain(name) = p.name else { return None };
- Some(name.to_string())
- }));
- // Suggest `'static` when in const/static item-like.
- if let hir::Node::Item(hir::Item {
- kind: hir::ItemKind::Static { .. } | hir::ItemKind::Const { .. },
- ..
- })
- | hir::Node::TraitItem(hir::TraitItem {
- kind: hir::TraitItemKind::Const { .. },
- ..
- })
- | hir::Node::ImplItem(hir::ImplItem {
- kind: hir::ImplItemKind::Const { .. },
- ..
- })
- | hir::Node::ForeignItem(hir::ForeignItem {
- kind: hir::ForeignItemKind::Static { .. },
- ..
- })
- | hir::Node::AnonConst(..) = node
- {
- ret.extend(
- std::iter::repeat("'static".to_owned())
- .take(num_params_to_take.saturating_sub(ret.len())),
- );
- }
- if ret.len() >= num_params_to_take {
- return ret[..num_params_to_take].join(", ");
- }
- // We cannot refer to lifetimes defined in an outer function.
- if let hir::Node::Item(_) = node {
- break;
- }
+ let mut ret = Vec::new();
+ for (id, node) in self.tcx.hir().parent_iter(path_hir_id) {
+ debug!(?id);
+ let params = if let Some(generics) = node.generics() {
+ generics.params
+ } else if let hir::Node::Ty(ty) = node
+ && let hir::TyKind::BareFn(bare_fn) = ty.kind
+ {
+ bare_fn.generic_params
+ } else {
+ &[]
+ };
+ ret.extend(params.iter().filter_map(|p| {
+ let hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Explicit }
+ = p.kind
+ else { return None };
+ let hir::ParamName::Plain(name) = p.name else { return None };
+ Some(name.to_string())
+ }));
+ // Suggest `'static` when in const/static item-like.
+ if let hir::Node::Item(hir::Item {
+ kind: hir::ItemKind::Static { .. } | hir::ItemKind::Const { .. },
+ ..
+ })
+ | hir::Node::TraitItem(hir::TraitItem {
+ kind: hir::TraitItemKind::Const { .. },
+ ..
+ })
+ | hir::Node::ImplItem(hir::ImplItem {
+ kind: hir::ImplItemKind::Const { .. },
+ ..
+ })
+ | hir::Node::ForeignItem(hir::ForeignItem {
+ kind: hir::ForeignItemKind::Static { .. },
+ ..
+ })
+ | hir::Node::AnonConst(..) = node
+ {
+ ret.extend(
+ std::iter::repeat("'static".to_owned())
+ .take(num_params_to_take.saturating_sub(ret.len())),
+ );
+ }
+ if ret.len() >= num_params_to_take {
+ return ret[..num_params_to_take].join(", ");
+ }
+ // We cannot refer to lifetimes defined in an outer function.
+ if let hir::Node::Item(_) = node {
+ break;
}
}
@@ -368,7 +365,7 @@ impl<'a, 'tcx> WrongNumberOfGenericArgs<'a, 'tcx> {
&self,
num_params_to_take: usize,
) -> String {
- let fn_sig = self.tcx.hir().get_if_local(self.def_id).and_then(fn_sig);
+ let fn_sig = self.tcx.hir().get_if_local(self.def_id).and_then(hir::Node::fn_sig);
let is_used_in_input = |def_id| {
fn_sig.map_or(false, |fn_sig| {
fn_sig.decl.inputs.iter().any(|ty| match ty.kind {
@@ -524,6 +521,7 @@ impl<'a, 'tcx> WrongNumberOfGenericArgs<'a, 'tcx> {
if self.not_enough_args_provided() {
self.suggest_adding_args(err);
} else if self.too_many_args_provided() {
+ self.suggest_moving_args_from_assoc_fn_to_trait(err);
self.suggest_removing_args_or_generics(err);
} else {
unreachable!();
@@ -654,6 +652,144 @@ impl<'a, 'tcx> WrongNumberOfGenericArgs<'a, 'tcx> {
}
}
+ /// Suggests moving redundant argument(s) of an associate function to the
+ /// trait it belongs to.
+ ///
+ /// ```compile_fail
+ /// Into::into::<Option<_>>(42) // suggests considering `Into::<Option<_>>::into(42)`
+ /// ```
+ fn suggest_moving_args_from_assoc_fn_to_trait(&self, err: &mut Diagnostic) {
+ let trait_ = match self.tcx.trait_of_item(self.def_id) {
+ Some(def_id) => def_id,
+ None => return,
+ };
+
+ // Skip suggestion when the associated function is itself generic, it is unclear
+ // how to split the provided parameters between those to suggest to the trait and
+ // those to remain on the associated type.
+ let num_assoc_fn_expected_args =
+ self.num_expected_type_or_const_args() + self.num_expected_lifetime_args();
+ if num_assoc_fn_expected_args > 0 {
+ return;
+ }
+
+ let num_assoc_fn_excess_args =
+ self.num_excess_type_or_const_args() + self.num_excess_lifetime_args();
+
+ let trait_generics = self.tcx.generics_of(trait_);
+ let num_trait_generics_except_self =
+ trait_generics.count() - if trait_generics.has_self { 1 } else { 0 };
+
+ let msg = format!(
+ "consider moving {these} generic argument{s} to the `{name}` trait, which takes up to {num} argument{s}",
+ these = pluralize!("this", num_assoc_fn_excess_args),
+ s = pluralize!(num_assoc_fn_excess_args),
+ name = self.tcx.item_name(trait_),
+ num = num_trait_generics_except_self,
+ );
+
+ if let Some(parent_node) = self.tcx.hir().find_parent_node(self.path_segment.hir_id)
+ && let Some(parent_node) = self.tcx.hir().find(parent_node)
+ && let hir::Node::Expr(expr) = parent_node {
+ match expr.kind {
+ hir::ExprKind::Path(ref qpath) => {
+ self.suggest_moving_args_from_assoc_fn_to_trait_for_qualified_path(
+ err,
+ qpath,
+ msg,
+ num_assoc_fn_excess_args,
+ num_trait_generics_except_self
+ )
+ },
+ hir::ExprKind::MethodCall(..) => {
+ self.suggest_moving_args_from_assoc_fn_to_trait_for_method_call(
+ err,
+ trait_,
+ expr,
+ msg,
+ num_assoc_fn_excess_args,
+ num_trait_generics_except_self
+ )
+ },
+ _ => return,
+ }
+ }
+ }
+
+ fn suggest_moving_args_from_assoc_fn_to_trait_for_qualified_path(
+ &self,
+ err: &mut Diagnostic,
+ qpath: &'tcx hir::QPath<'tcx>,
+ msg: String,
+ num_assoc_fn_excess_args: usize,
+ num_trait_generics_except_self: usize,
+ ) {
+ if let hir::QPath::Resolved(_, path) = qpath
+ && let Some(trait_path_segment) = path.segments.get(0) {
+ let num_generic_args_supplied_to_trait = trait_path_segment.args().num_generic_params();
+
+ if num_assoc_fn_excess_args == num_trait_generics_except_self - num_generic_args_supplied_to_trait {
+ if let Some(span) = self.gen_args.span_ext()
+ && let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
+ let sugg = vec![
+ (self.path_segment.ident.span, format!("{}::{}", snippet, self.path_segment.ident)),
+ (span.with_lo(self.path_segment.ident.span.hi()), "".to_owned())
+ ];
+
+ err.multipart_suggestion(
+ msg,
+ sugg,
+ Applicability::MaybeIncorrect
+ );
+ }
+ }
+ }
+ }
+
+ fn suggest_moving_args_from_assoc_fn_to_trait_for_method_call(
+ &self,
+ err: &mut Diagnostic,
+ trait_def_id: DefId,
+ expr: &'tcx hir::Expr<'tcx>,
+ msg: String,
+ num_assoc_fn_excess_args: usize,
+ num_trait_generics_except_self: usize,
+ ) {
+ let sm = self.tcx.sess.source_map();
+ let hir::ExprKind::MethodCall(_, rcvr, args, _) = expr.kind else { return; };
+ if num_assoc_fn_excess_args != num_trait_generics_except_self {
+ return;
+ }
+ let Some(gen_args) = self.gen_args.span_ext() else { return; };
+ let Ok(generics) = sm.span_to_snippet(gen_args) else { return; };
+ let Ok(rcvr) = sm.span_to_snippet(
+ rcvr.span.find_ancestor_inside(expr.span).unwrap_or(rcvr.span)
+ ) else { return; };
+ let Ok(rest) =
+ (match args {
+ [] => Ok(String::new()),
+ [arg] => sm.span_to_snippet(
+ arg.span.find_ancestor_inside(expr.span).unwrap_or(arg.span),
+ ),
+ [first, .., last] => {
+ let first_span =
+ first.span.find_ancestor_inside(expr.span).unwrap_or(first.span);
+ let last_span =
+ last.span.find_ancestor_inside(expr.span).unwrap_or(last.span);
+ sm.span_to_snippet(first_span.to(last_span))
+ }
+ }) else { return; };
+ let comma = if args.len() > 0 { ", " } else { "" };
+ let trait_path = self.tcx.def_path_str(trait_def_id);
+ let method_name = self.tcx.item_name(self.def_id);
+ err.span_suggestion(
+ expr.span,
+ msg,
+ format!("{trait_path}::{generics}::{method_name}({rcvr}{comma}{rest})"),
+ Applicability::MaybeIncorrect,
+ );
+ }
+
/// Suggests to remove redundant argument(s):
///
/// ```text
@@ -763,16 +899,13 @@ impl<'a, 'tcx> WrongNumberOfGenericArgs<'a, 'tcx> {
// If there is a single unbound associated type and a single excess generic param
// suggest replacing the generic param with the associated type bound
if provided_args_matches_unbound_traits && !unbound_types.is_empty() {
- let mut suggestions = vec![];
let unused_generics = &self.gen_args.args[self.num_expected_type_or_const_args()..];
- for (potential, name) in iter::zip(unused_generics, &unbound_types) {
- if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(potential.span()) {
- suggestions.push((potential.span(), format!("{} = {}", name, snippet)));
- }
- }
+ let suggestions = iter::zip(unused_generics, &unbound_types)
+ .map(|(potential, name)| (potential.span().shrink_to_lo(), format!("{name} = ")))
+ .collect::<Vec<_>>();
if !suggestions.is_empty() {
- err.multipart_suggestion(
+ err.multipart_suggestion_verbose(
&format!(
"replace the generic bound{s} with the associated type{s}",
s = pluralize!(unbound_types.len())
diff --git a/compiler/rustc_typeck/src/variance/constraints.rs b/compiler/rustc_hir_analysis/src/variance/constraints.rs
index d79450e1a..eaf0310d5 100644
--- a/compiler/rustc_typeck/src/variance/constraints.rs
+++ b/compiler/rustc_hir_analysis/src/variance/constraints.rs
@@ -257,7 +257,7 @@ impl<'a, 'tcx> ConstraintContext<'a, 'tcx> {
self.add_constraints_from_invariant_substs(current, substs, variance);
}
- ty::Dynamic(data, r) => {
+ ty::Dynamic(data, r, _) => {
// The type `Foo<T+'a>` is contravariant w/r/t `'a`:
let contra = self.contravariant(variance);
self.add_constraints_from_region(current, r, contra);
@@ -271,11 +271,11 @@ impl<'a, 'tcx> ConstraintContext<'a, 'tcx> {
}
for projection in data.projection_bounds() {
- match projection.skip_binder().term {
- ty::Term::Ty(ty) => {
+ match projection.skip_binder().term.unpack() {
+ ty::TermKind::Ty(ty) => {
self.add_constraints_from_ty(current, ty, self.invariant);
}
- ty::Term::Const(c) => {
+ ty::TermKind::Const(c) => {
self.add_constraints_from_const(current, c, self.invariant)
}
}
@@ -411,11 +411,7 @@ impl<'a, 'tcx> ConstraintContext<'a, 'tcx> {
// way early-bound regions do, so we skip them here.
}
- ty::ReFree(..)
- | ty::ReVar(..)
- | ty::RePlaceholder(..)
- | ty::ReEmpty(_)
- | ty::ReErased => {
+ ty::ReFree(..) | ty::ReVar(..) | ty::RePlaceholder(..) | ty::ReErased => {
// We don't expect to see anything but 'static or bound
// regions when visiting member types or method types.
bug!(
diff --git a/compiler/rustc_typeck/src/variance/mod.rs b/compiler/rustc_hir_analysis/src/variance/mod.rs
index 82103c5a0..82103c5a0 100644
--- a/compiler/rustc_typeck/src/variance/mod.rs
+++ b/compiler/rustc_hir_analysis/src/variance/mod.rs
diff --git a/compiler/rustc_typeck/src/variance/solve.rs b/compiler/rustc_hir_analysis/src/variance/solve.rs
index 97aca621a..97aca621a 100644
--- a/compiler/rustc_typeck/src/variance/solve.rs
+++ b/compiler/rustc_hir_analysis/src/variance/solve.rs
diff --git a/compiler/rustc_typeck/src/variance/terms.rs b/compiler/rustc_hir_analysis/src/variance/terms.rs
index 1f763011e..1f763011e 100644
--- a/compiler/rustc_typeck/src/variance/terms.rs
+++ b/compiler/rustc_hir_analysis/src/variance/terms.rs
diff --git a/compiler/rustc_hir_analysis/src/variance/test.rs b/compiler/rustc_hir_analysis/src/variance/test.rs
new file mode 100644
index 000000000..83ed3e44b
--- /dev/null
+++ b/compiler/rustc_hir_analysis/src/variance/test.rs
@@ -0,0 +1,15 @@
+use rustc_errors::struct_span_err;
+use rustc_middle::ty::TyCtxt;
+use rustc_span::symbol::sym;
+
+pub fn test_variance(tcx: TyCtxt<'_>) {
+ // For unit testing: check for a special "rustc_variance"
+ // attribute and report an error with various results if found.
+ for id in tcx.hir().items() {
+ if tcx.has_attr(id.owner_id.to_def_id(), sym::rustc_variance) {
+ let variances_of = tcx.variances_of(id.owner_id);
+ struct_span_err!(tcx.sess, tcx.def_span(id.owner_id), E0208, "{:?}", variances_of)
+ .emit();
+ }
+ }
+}
diff --git a/compiler/rustc_typeck/src/variance/xform.rs b/compiler/rustc_hir_analysis/src/variance/xform.rs
index 027f0859f..027f0859f 100644
--- a/compiler/rustc_typeck/src/variance/xform.rs
+++ b/compiler/rustc_hir_analysis/src/variance/xform.rs
diff --git a/compiler/rustc_hir_pretty/Cargo.toml b/compiler/rustc_hir_pretty/Cargo.toml
index 46a8e7dee..1ea7be1ae 100644
--- a/compiler/rustc_hir_pretty/Cargo.toml
+++ b/compiler/rustc_hir_pretty/Cargo.toml
@@ -4,7 +4,6 @@ version = "0.0.0"
edition = "2021"
[lib]
-doctest = false
[dependencies]
rustc_ast_pretty = { path = "../rustc_ast_pretty" }
diff --git a/compiler/rustc_hir_pretty/src/lib.rs b/compiler/rustc_hir_pretty/src/lib.rs
index e0179bd3e..da27554a2 100644
--- a/compiler/rustc_hir_pretty/src/lib.rs
+++ b/compiler/rustc_hir_pretty/src/lib.rs
@@ -1,4 +1,6 @@
#![recursion_limit = "256"]
+#![deny(rustc::untranslatable_diagnostic)]
+#![deny(rustc::diagnostic_outside_of_impl)]
use rustc_ast as ast;
use rustc_ast::util::parser::{self, AssocOp, Fixity};
@@ -7,7 +9,9 @@ use rustc_ast_pretty::pp::{self, Breaks};
use rustc_ast_pretty::pprust::{Comments, PrintState};
use rustc_hir as hir;
use rustc_hir::LifetimeParamKind;
-use rustc_hir::{GenericArg, GenericParam, GenericParamKind, Node, Term};
+use rustc_hir::{
+ BindingAnnotation, ByRef, GenericArg, GenericParam, GenericParamKind, Mutability, Node, Term,
+};
use rustc_hir::{GenericBound, PatKind, RangeEnd, TraitBoundModifier};
use rustc_span::source_map::SourceMap;
use rustc_span::symbol::{kw, Ident, IdentPrinter, Symbol};
@@ -83,12 +87,14 @@ impl<'a> State<'a> {
Node::Variant(a) => self.print_variant(a),
Node::AnonConst(a) => self.print_anon_const(a),
Node::Expr(a) => self.print_expr(a),
+ Node::ExprField(a) => self.print_expr_field(&a),
Node::Stmt(a) => self.print_stmt(a),
Node::PathSegment(a) => self.print_path_segment(a),
Node::Ty(a) => self.print_type(a),
Node::TypeBinding(a) => self.print_type_binding(a),
Node::TraitRef(a) => self.print_trait_ref(a),
Node::Pat(a) => self.print_pat(a),
+ Node::PatField(a) => self.print_patfield(&a),
Node::Arm(a) => self.print_arm(a),
Node::Infer(_) => self.word("_"),
Node::Block(a) => {
@@ -881,7 +887,7 @@ impl<'a> State<'a> {
self.end(); // need to close a box
self.ann.nested(self, Nested::Body(body));
}
- hir::ImplItemKind::TyAlias(ty) => {
+ hir::ImplItemKind::Type(ty) => {
self.print_associated_type(ii.ident, ii.generics, None, Some(ty));
}
}
@@ -911,6 +917,10 @@ impl<'a> State<'a> {
if let Some(els) = els {
self.nbsp();
self.word_space("else");
+ // containing cbox, will be closed by print-block at `}`
+ self.cbox(0);
+ // head-box, will be closed by print-block after `{`
+ self.ibox(0);
self.print_block(els);
}
@@ -1123,20 +1133,7 @@ impl<'a> State<'a> {
) {
self.print_qpath(qpath, true);
self.word("{");
- self.commasep_cmnt(
- Consistent,
- fields,
- |s, field| {
- s.ibox(INDENT_UNIT);
- if !field.is_shorthand {
- s.print_ident(field.ident);
- s.word_space(":");
- }
- s.print_expr(field.expr);
- s.end()
- },
- |f| f.span,
- );
+ self.commasep_cmnt(Consistent, fields, |s, field| s.print_expr_field(field), |f| f.span);
if let Some(expr) = wth {
self.ibox(INDENT_UNIT);
if !fields.is_empty() {
@@ -1153,6 +1150,20 @@ impl<'a> State<'a> {
self.word("}");
}
+ fn print_expr_field(&mut self, field: &hir::ExprField<'_>) {
+ if self.attrs(field.hir_id).is_empty() {
+ self.space();
+ }
+ self.cbox(INDENT_UNIT);
+ self.print_outer_attributes(&self.attrs(field.hir_id));
+ if !field.is_shorthand {
+ self.print_ident(field.ident);
+ self.word_space(":");
+ }
+ self.print_expr(&field.expr);
+ self.end()
+ }
+
fn print_expr_tup(&mut self, exprs: &[hir::Expr<'_>]) {
self.popen();
self.commasep_exprs(Inconsistent, exprs);
@@ -1172,15 +1183,20 @@ impl<'a> State<'a> {
self.print_call_post(args)
}
- fn print_expr_method_call(&mut self, segment: &hir::PathSegment<'_>, args: &[hir::Expr<'_>]) {
- let base_args = &args[1..];
- self.print_expr_maybe_paren(&args[0], parser::PREC_POSTFIX);
+ fn print_expr_method_call(
+ &mut self,
+ segment: &hir::PathSegment<'_>,
+ receiver: &hir::Expr<'_>,
+ args: &[hir::Expr<'_>],
+ ) {
+ let base_args = args;
+ self.print_expr_maybe_paren(&receiver, parser::PREC_POSTFIX);
self.word(".");
self.print_ident(segment.ident);
let generic_args = segment.args();
if !generic_args.args.is_empty() || !generic_args.bindings.is_empty() {
- self.print_generic_args(generic_args, segment.infer_args, true);
+ self.print_generic_args(generic_args, true);
}
self.print_call_post(base_args)
@@ -1240,7 +1256,7 @@ impl<'a> State<'a> {
fn print_literal(&mut self, lit: &hir::Lit) {
self.maybe_print_comment(lit.span.lo());
- self.word(lit.node.to_lit_token().to_string())
+ self.word(lit.node.to_token_lit().to_string())
}
fn print_inline_asm(&mut self, asm: &hir::InlineAsm<'_>) {
@@ -1385,8 +1401,8 @@ impl<'a> State<'a> {
hir::ExprKind::Call(func, args) => {
self.print_expr_call(func, args);
}
- hir::ExprKind::MethodCall(segment, args, _) => {
- self.print_expr_method_call(segment, args);
+ hir::ExprKind::MethodCall(segment, receiver, args, _) => {
+ self.print_expr_method_call(segment, receiver, args);
}
hir::ExprKind::Binary(op, lhs, rhs) => {
self.print_expr_binary(op, lhs, rhs);
@@ -1583,7 +1599,7 @@ impl<'a> State<'a> {
}
if segment.ident.name != kw::PathRoot {
self.print_ident(segment.ident);
- self.print_generic_args(segment.args(), segment.infer_args, colons_before_params);
+ self.print_generic_args(segment.args(), colons_before_params);
}
}
}
@@ -1591,7 +1607,7 @@ impl<'a> State<'a> {
pub fn print_path_segment(&mut self, segment: &hir::PathSegment<'_>) {
if segment.ident.name != kw::PathRoot {
self.print_ident(segment.ident);
- self.print_generic_args(segment.args(), segment.infer_args, false);
+ self.print_generic_args(segment.args(), false);
}
}
@@ -1610,11 +1626,7 @@ impl<'a> State<'a> {
}
if segment.ident.name != kw::PathRoot {
self.print_ident(segment.ident);
- self.print_generic_args(
- segment.args(),
- segment.infer_args,
- colons_before_params,
- );
+ self.print_generic_args(segment.args(), colons_before_params);
}
}
@@ -1622,11 +1634,7 @@ impl<'a> State<'a> {
self.word("::");
let item_segment = path.segments.last().unwrap();
self.print_ident(item_segment.ident);
- self.print_generic_args(
- item_segment.args(),
- item_segment.infer_args,
- colons_before_params,
- )
+ self.print_generic_args(item_segment.args(), colons_before_params)
}
hir::QPath::TypeRelative(qself, item_segment) => {
// If we've got a compound-qualified-path, let's push an additional pair of angle
@@ -1642,11 +1650,7 @@ impl<'a> State<'a> {
self.word("::");
self.print_ident(item_segment.ident);
- self.print_generic_args(
- item_segment.args(),
- item_segment.infer_args,
- colons_before_params,
- )
+ self.print_generic_args(item_segment.args(), colons_before_params)
}
hir::QPath::LangItem(lang_item, span, _) => {
self.word("#[lang = \"");
@@ -1659,7 +1663,6 @@ impl<'a> State<'a> {
fn print_generic_args(
&mut self,
generic_args: &hir::GenericArgs<'_>,
- infer_args: bool,
colons_before_params: bool,
) {
if generic_args.parenthesized {
@@ -1684,7 +1687,11 @@ impl<'a> State<'a> {
let mut nonelided_generic_args: bool = false;
let elide_lifetimes = generic_args.args.iter().all(|arg| match arg {
- GenericArg::Lifetime(lt) => lt.is_elided(),
+ GenericArg::Lifetime(lt) if lt.is_elided() => true,
+ GenericArg::Lifetime(_) => {
+ nonelided_generic_args = true;
+ false
+ }
_ => {
nonelided_generic_args = true;
true
@@ -1706,13 +1713,6 @@ impl<'a> State<'a> {
);
}
- // FIXME(eddyb): this would leak into error messages (e.g.,
- // "non-exhaustive patterns: `Some::<..>(_)` not covered").
- if infer_args && false {
- start_or_comma(self);
- self.word("..");
- }
-
for binding in generic_args.bindings {
start_or_comma(self);
self.print_type_binding(binding);
@@ -1726,7 +1726,7 @@ impl<'a> State<'a> {
pub fn print_type_binding(&mut self, binding: &hir::TypeBinding<'_>) {
self.print_ident(binding.ident);
- self.print_generic_args(binding.gen_args, false, false);
+ self.print_generic_args(binding.gen_args, false);
self.space();
match binding.kind {
hir::TypeBindingKind::Equality { ref term } => {
@@ -1749,20 +1749,12 @@ impl<'a> State<'a> {
// is that it doesn't matter
match pat.kind {
PatKind::Wild => self.word("_"),
- PatKind::Binding(binding_mode, _, ident, sub) => {
- match binding_mode {
- hir::BindingAnnotation::Ref => {
- self.word_nbsp("ref");
- self.print_mutability(hir::Mutability::Not, false);
- }
- hir::BindingAnnotation::RefMut => {
- self.word_nbsp("ref");
- self.print_mutability(hir::Mutability::Mut, false);
- }
- hir::BindingAnnotation::Unannotated => {}
- hir::BindingAnnotation::Mutable => {
- self.word_nbsp("mut");
- }
+ PatKind::Binding(BindingAnnotation(by_ref, mutbl), _, ident, sub) => {
+ if by_ref == ByRef::Yes {
+ self.word_nbsp("ref");
+ }
+ if mutbl == Mutability::Mut {
+ self.word_nbsp("mut");
}
self.print_ident(ident);
if let Some(p) = sub {
@@ -1773,7 +1765,8 @@ impl<'a> State<'a> {
PatKind::TupleStruct(ref qpath, elts, ddpos) => {
self.print_qpath(qpath, true);
self.popen();
- if let Some(ddpos) = ddpos {
+ if let Some(ddpos) = ddpos.as_opt_usize() {
+ let ddpos = ddpos as usize;
self.commasep(Inconsistent, &elts[..ddpos], |s, p| s.print_pat(p));
if ddpos != 0 {
self.word_space(",");
@@ -1799,20 +1792,7 @@ impl<'a> State<'a> {
if !empty {
self.space();
}
- self.commasep_cmnt(
- Consistent,
- fields,
- |s, f| {
- s.cbox(INDENT_UNIT);
- if !f.is_shorthand {
- s.print_ident(f.ident);
- s.word_nbsp(":");
- }
- s.print_pat(f.pat);
- s.end()
- },
- |f| f.pat.span,
- );
+ self.commasep_cmnt(Consistent, &fields, |s, f| s.print_patfield(f), |f| f.pat.span);
if etc {
if !fields.is_empty() {
self.word_space(",");
@@ -1829,7 +1809,7 @@ impl<'a> State<'a> {
}
PatKind::Tuple(elts, ddpos) => {
self.popen();
- if let Some(ddpos) = ddpos {
+ if let Some(ddpos) = ddpos.as_opt_usize() {
self.commasep(Inconsistent, &elts[..ddpos], |s, p| s.print_pat(p));
if ddpos != 0 {
self.word_space(",");
@@ -1907,6 +1887,20 @@ impl<'a> State<'a> {
self.ann.post(self, AnnNode::Pat(pat))
}
+ pub fn print_patfield(&mut self, field: &hir::PatField<'_>) {
+ if self.attrs(field.hir_id).is_empty() {
+ self.space();
+ }
+ self.cbox(INDENT_UNIT);
+ self.print_outer_attributes(&self.attrs(field.hir_id));
+ if !field.is_shorthand {
+ self.print_ident(field.ident);
+ self.word_nbsp(":");
+ }
+ self.print_pat(field.pat);
+ self.end();
+ }
+
pub fn print_param(&mut self, arg: &hir::Param<'_>) {
self.print_outer_attributes(self.attrs(arg.hir_id));
self.print_pat(arg.pat);
@@ -2403,9 +2397,9 @@ fn contains_exterior_struct_lit(value: &hir::Expr<'_>) -> bool {
contains_exterior_struct_lit(x)
}
- hir::ExprKind::MethodCall(.., exprs, _) => {
+ hir::ExprKind::MethodCall(_, receiver, ..) => {
// `X { y: 1 }.bar(...)`
- contains_exterior_struct_lit(&exprs[0])
+ contains_exterior_struct_lit(receiver)
}
_ => false,
diff --git a/compiler/rustc_hir_typeck/Cargo.toml b/compiler/rustc_hir_typeck/Cargo.toml
new file mode 100644
index 000000000..093f9bb84
--- /dev/null
+++ b/compiler/rustc_hir_typeck/Cargo.toml
@@ -0,0 +1,28 @@
+[package]
+name = "rustc_hir_typeck"
+version = "0.1.0"
+edition = "2021"
+
+# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
+
+[dependencies]
+smallvec = { version = "1.8.1", features = ["union", "may_dangle"] }
+tracing = "0.1"
+rustc_ast = { path = "../rustc_ast" }
+rustc_data_structures = { path = "../rustc_data_structures" }
+rustc_errors = { path = "../rustc_errors" }
+rustc_graphviz = { path = "../rustc_graphviz" }
+rustc_index = { path = "../rustc_index" }
+rustc_infer = { path = "../rustc_infer" }
+rustc_hir = { path = "../rustc_hir" }
+rustc_hir_analysis = { path = "../rustc_hir_analysis" }
+rustc_hir_pretty = { path = "../rustc_hir_pretty" }
+rustc_lint = { path = "../rustc_lint" }
+rustc_middle = { path = "../rustc_middle" }
+rustc_macros = { path = "../rustc_macros" }
+rustc_serialize = { path = "../rustc_serialize" }
+rustc_session = { path = "../rustc_session" }
+rustc_span = { path = "../rustc_span" }
+rustc_target = { path = "../rustc_target" }
+rustc_trait_selection = { path = "../rustc_trait_selection" }
+rustc_type_ir = { path = "../rustc_type_ir" }
diff --git a/compiler/rustc_typeck/src/check/_match.rs b/compiler/rustc_hir_typeck/src/_match.rs
index 1b13c98e4..2b15d4dcd 100644
--- a/compiler/rustc_typeck/src/check/_match.rs
+++ b/compiler/rustc_hir_typeck/src/_match.rs
@@ -1,10 +1,10 @@
-use crate::check::coercion::{AsCoercionSite, CoerceMany};
-use crate::check::{Diverges, Expectation, FnCtxt, Needs};
+use crate::coercion::{AsCoercionSite, CoerceMany};
+use crate::{Diverges, Expectation, FnCtxt, Needs};
use rustc_errors::{Applicability, MultiSpan};
use rustc_hir::{self as hir, ExprKind};
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::traits::Obligation;
-use rustc_middle::ty::{self, ToPredicate, Ty, TypeVisitable};
+use rustc_middle::ty::{self, ToPredicate, Ty};
use rustc_span::Span;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
use rustc_trait_selection::traits::{
@@ -12,7 +12,7 @@ use rustc_trait_selection::traits::{
};
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
- #[instrument(skip(self), level = "debug")]
+ #[instrument(skip(self), level = "debug", ret)]
pub fn check_match(
&self,
expr: &'tcx hir::Expr<'tcx>,
@@ -94,7 +94,9 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let arm_ty = self.check_expr_with_expectation(&arm.body, expected);
all_arms_diverge &= self.diverges.get();
- let opt_suggest_box_span = self.opt_suggest_box_span(arm_ty, orig_expected);
+ let opt_suggest_box_span = prior_arm.and_then(|(_, prior_arm_ty, _)| {
+ self.opt_suggest_box_span(prior_arm_ty, arm_ty, orig_expected)
+ });
let (arm_block_id, arm_span) = if let hir::ExprKind::Block(blk, _) = arm.body.kind {
(Some(blk.hir_id), self.find_block_span(blk))
@@ -135,9 +137,13 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
Some(&arm.body),
arm_ty,
Some(&mut |err| {
- let Some(ret) = self.ret_type_span else {
- return;
- };
+ let Some(ret) = self
+ .tcx
+ .hir()
+ .find_by_def_id(self.body_id.owner.def_id)
+ .and_then(|owner| owner.fn_decl())
+ .map(|decl| decl.output.span())
+ else { return; };
let Expectation::IsLast(stmt) = orig_expected else {
return
};
@@ -210,9 +216,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// We won't diverge unless the scrutinee or all arms diverge.
self.diverges.set(scrut_diverges | all_arms_diverge);
- let match_ty = coercion.complete(self);
- debug!(?match_ty);
- match_ty
+ coercion.complete(self)
}
/// When the previously checked expression (the scrutinee) diverges,
@@ -255,7 +259,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
err.help("consider adding an `else` block that evaluates to the expected type");
error = true;
},
- ret_reason.is_none(),
+ false,
);
error
}
@@ -468,53 +472,80 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
}
- // When we have a `match` as a tail expression in a `fn` with a returned `impl Trait`
- // we check if the different arms would work with boxed trait objects instead and
- // provide a structured suggestion in that case.
+ /// When we have a `match` as a tail expression in a `fn` with a returned `impl Trait`
+ /// we check if the different arms would work with boxed trait objects instead and
+ /// provide a structured suggestion in that case.
pub(crate) fn opt_suggest_box_span(
&self,
- outer_ty: Ty<'tcx>,
+ first_ty: Ty<'tcx>,
+ second_ty: Ty<'tcx>,
orig_expected: Expectation<'tcx>,
) -> Option<Span> {
+ // FIXME(compiler-errors): This really shouldn't need to be done during the
+ // "good" path of typeck, but here we are.
match orig_expected {
- Expectation::ExpectHasType(expected)
- if self.in_tail_expr
- && self.ret_coercion.as_ref()?.borrow().merged_ty().has_opaque_types()
- && self.can_coerce(outer_ty, expected) =>
- {
- let obligations = self.fulfillment_cx.borrow().pending_obligations();
- let mut suggest_box = !obligations.is_empty();
- for o in obligations {
- match o.predicate.kind().skip_binder() {
- ty::PredicateKind::Trait(t) => {
- let pred =
- ty::Binder::dummy(ty::PredicateKind::Trait(ty::TraitPredicate {
- trait_ref: ty::TraitRef {
- def_id: t.def_id(),
- substs: self.tcx.mk_substs_trait(outer_ty, &[]),
- },
- constness: t.constness,
- polarity: t.polarity,
- }));
- let obl = Obligation::new(
- o.cause.clone(),
- self.param_env,
- pred.to_predicate(self.tcx),
- );
- suggest_box &= self.predicate_must_hold_modulo_regions(&obl);
- if !suggest_box {
- // We've encountered some obligation that didn't hold, so the
- // return expression can't just be boxed. We don't need to
- // evaluate the rest of the obligations.
- break;
+ Expectation::ExpectHasType(expected) => {
+ let TypeVariableOrigin {
+ span,
+ kind: TypeVariableOriginKind::OpaqueTypeInference(rpit_def_id),
+ ..
+ } = self.type_var_origin(expected)? else { return None; };
+
+ let sig = *self
+ .typeck_results
+ .borrow()
+ .liberated_fn_sigs()
+ .get(hir::HirId::make_owner(self.body_id.owner.def_id))?;
+
+ let substs = sig.output().walk().find_map(|arg| {
+ if let ty::GenericArgKind::Type(ty) = arg.unpack()
+ && let ty::Opaque(def_id, substs) = *ty.kind()
+ && def_id == rpit_def_id
+ {
+ Some(substs)
+ } else {
+ None
+ }
+ })?;
+ let opaque_ty = self.tcx.mk_opaque(rpit_def_id, substs);
+
+ if !self.can_coerce(first_ty, expected) || !self.can_coerce(second_ty, expected) {
+ return None;
+ }
+
+ for ty in [first_ty, second_ty] {
+ for (pred, _) in self
+ .tcx
+ .bound_explicit_item_bounds(rpit_def_id)
+ .subst_iter_copied(self.tcx, substs)
+ {
+ let pred = match pred.kind().skip_binder() {
+ ty::PredicateKind::Trait(mut trait_pred) => {
+ assert_eq!(trait_pred.trait_ref.self_ty(), opaque_ty);
+ trait_pred.trait_ref.substs =
+ self.tcx.mk_substs_trait(ty, &trait_pred.trait_ref.substs[1..]);
+ pred.kind().rebind(trait_pred).to_predicate(self.tcx)
}
+ ty::PredicateKind::Projection(mut proj_pred) => {
+ assert_eq!(proj_pred.projection_ty.self_ty(), opaque_ty);
+ proj_pred.projection_ty.substs = self
+ .tcx
+ .mk_substs_trait(ty, &proj_pred.projection_ty.substs[1..]);
+ pred.kind().rebind(proj_pred).to_predicate(self.tcx)
+ }
+ _ => continue,
+ };
+ if !self.predicate_must_hold_modulo_regions(&Obligation::new(
+ ObligationCause::misc(span, self.body_id),
+ self.param_env,
+ pred,
+ )) {
+ return None;
}
- _ => {}
}
}
- // If all the obligations hold (or there are no obligations) the tail expression
- // we can suggest to return a boxed trait object instead of an opaque type.
- if suggest_box { self.ret_type_span } else { None }
+
+ Some(span)
}
_ => None,
}
diff --git a/compiler/rustc_typeck/src/check/autoderef.rs b/compiler/rustc_hir_typeck/src/autoderef.rs
index 59c366ad7..59c366ad7 100644
--- a/compiler/rustc_typeck/src/check/autoderef.rs
+++ b/compiler/rustc_hir_typeck/src/autoderef.rs
diff --git a/compiler/rustc_hir_typeck/src/callee.rs b/compiler/rustc_hir_typeck/src/callee.rs
new file mode 100644
index 000000000..1b33f2f02
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/callee.rs
@@ -0,0 +1,831 @@
+use super::method::probe::{IsSuggestion, Mode, ProbeScope};
+use super::method::MethodCallee;
+use super::{Expectation, FnCtxt, TupleArgumentsFlag};
+
+use crate::type_error_struct;
+use rustc_ast::util::parser::PREC_POSTFIX;
+use rustc_errors::{struct_span_err, Applicability, Diagnostic, StashKey};
+use rustc_hir as hir;
+use rustc_hir::def::{self, Namespace, Res};
+use rustc_hir::def_id::DefId;
+use rustc_infer::{
+ infer,
+ traits::{self, Obligation},
+};
+use rustc_infer::{
+ infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind},
+ traits::ObligationCause,
+};
+use rustc_middle::ty::adjustment::{
+ Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability,
+};
+use rustc_middle::ty::SubstsRef;
+use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitable};
+use rustc_span::def_id::LocalDefId;
+use rustc_span::symbol::{sym, Ident};
+use rustc_span::Span;
+use rustc_target::spec::abi;
+use rustc_trait_selection::autoderef::Autoderef;
+use rustc_trait_selection::infer::InferCtxtExt as _;
+use rustc_trait_selection::traits::error_reporting::DefIdOrName;
+use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
+
+use std::iter;
+
+/// Checks that it is legal to call methods of the trait corresponding
+/// to `trait_id` (this only cares about the trait, not the specific
+/// method that is called).
+pub fn check_legal_trait_for_method_call(
+ tcx: TyCtxt<'_>,
+ span: Span,
+ receiver: Option<Span>,
+ expr_span: Span,
+ trait_id: DefId,
+) {
+ if tcx.lang_items().drop_trait() == Some(trait_id) {
+ let mut err = struct_span_err!(tcx.sess, span, E0040, "explicit use of destructor method");
+ err.span_label(span, "explicit destructor calls not allowed");
+
+ let (sp, suggestion) = receiver
+ .and_then(|s| tcx.sess.source_map().span_to_snippet(s).ok())
+ .filter(|snippet| !snippet.is_empty())
+ .map(|snippet| (expr_span, format!("drop({snippet})")))
+ .unwrap_or_else(|| (span, "drop".to_string()));
+
+ err.span_suggestion(
+ sp,
+ "consider using `drop` function",
+ suggestion,
+ Applicability::MaybeIncorrect,
+ );
+
+ err.emit();
+ }
+}
+
+#[derive(Debug)]
+enum CallStep<'tcx> {
+ Builtin(Ty<'tcx>),
+ DeferredClosure(LocalDefId, ty::FnSig<'tcx>),
+ /// E.g., enum variant constructors.
+ Overloaded(MethodCallee<'tcx>),
+}
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ pub fn check_call(
+ &self,
+ call_expr: &'tcx hir::Expr<'tcx>,
+ callee_expr: &'tcx hir::Expr<'tcx>,
+ arg_exprs: &'tcx [hir::Expr<'tcx>],
+ expected: Expectation<'tcx>,
+ ) -> Ty<'tcx> {
+ let original_callee_ty = match &callee_expr.kind {
+ hir::ExprKind::Path(hir::QPath::Resolved(..) | hir::QPath::TypeRelative(..)) => self
+ .check_expr_with_expectation_and_args(
+ callee_expr,
+ Expectation::NoExpectation,
+ arg_exprs,
+ ),
+ _ => self.check_expr(callee_expr),
+ };
+
+ let expr_ty = self.structurally_resolved_type(call_expr.span, original_callee_ty);
+
+ let mut autoderef = self.autoderef(callee_expr.span, expr_ty);
+ let mut result = None;
+ while result.is_none() && autoderef.next().is_some() {
+ result = self.try_overloaded_call_step(call_expr, callee_expr, arg_exprs, &autoderef);
+ }
+ self.register_predicates(autoderef.into_obligations());
+
+ let output = match result {
+ None => {
+ // this will report an error since original_callee_ty is not a fn
+ self.confirm_builtin_call(
+ call_expr,
+ callee_expr,
+ original_callee_ty,
+ arg_exprs,
+ expected,
+ )
+ }
+
+ Some(CallStep::Builtin(callee_ty)) => {
+ self.confirm_builtin_call(call_expr, callee_expr, callee_ty, arg_exprs, expected)
+ }
+
+ Some(CallStep::DeferredClosure(def_id, fn_sig)) => {
+ self.confirm_deferred_closure_call(call_expr, arg_exprs, expected, def_id, fn_sig)
+ }
+
+ Some(CallStep::Overloaded(method_callee)) => {
+ self.confirm_overloaded_call(call_expr, arg_exprs, expected, method_callee)
+ }
+ };
+
+ // we must check that return type of called functions is WF:
+ self.register_wf_obligation(output.into(), call_expr.span, traits::WellFormed(None));
+
+ output
+ }
+
+ fn try_overloaded_call_step(
+ &self,
+ call_expr: &'tcx hir::Expr<'tcx>,
+ callee_expr: &'tcx hir::Expr<'tcx>,
+ arg_exprs: &'tcx [hir::Expr<'tcx>],
+ autoderef: &Autoderef<'a, 'tcx>,
+ ) -> Option<CallStep<'tcx>> {
+ let adjusted_ty =
+ self.structurally_resolved_type(autoderef.span(), autoderef.final_ty(false));
+ debug!(
+ "try_overloaded_call_step(call_expr={:?}, adjusted_ty={:?})",
+ call_expr, adjusted_ty
+ );
+
+ // If the callee is a bare function or a closure, then we're all set.
+ match *adjusted_ty.kind() {
+ ty::FnDef(..) | ty::FnPtr(_) => {
+ let adjustments = self.adjust_steps(autoderef);
+ self.apply_adjustments(callee_expr, adjustments);
+ return Some(CallStep::Builtin(adjusted_ty));
+ }
+
+ ty::Closure(def_id, substs) => {
+ let def_id = def_id.expect_local();
+
+ // Check whether this is a call to a closure where we
+ // haven't yet decided on whether the closure is fn vs
+ // fnmut vs fnonce. If so, we have to defer further processing.
+ if self.closure_kind(substs).is_none() {
+ let closure_sig = substs.as_closure().sig();
+ let closure_sig = self.replace_bound_vars_with_fresh_vars(
+ call_expr.span,
+ infer::FnCall,
+ closure_sig,
+ );
+ let adjustments = self.adjust_steps(autoderef);
+ self.record_deferred_call_resolution(
+ def_id,
+ DeferredCallResolution {
+ call_expr,
+ callee_expr,
+ adjusted_ty,
+ adjustments,
+ fn_sig: closure_sig,
+ closure_substs: substs,
+ },
+ );
+ return Some(CallStep::DeferredClosure(def_id, closure_sig));
+ }
+ }
+
+ // Hack: we know that there are traits implementing Fn for &F
+ // where F:Fn and so forth. In the particular case of types
+ // like `x: &mut FnMut()`, if there is a call `x()`, we would
+ // normally translate to `FnMut::call_mut(&mut x, ())`, but
+ // that winds up requiring `mut x: &mut FnMut()`. A little
+ // over the top. The simplest fix by far is to just ignore
+ // this case and deref again, so we wind up with
+ // `FnMut::call_mut(&mut *x, ())`.
+ ty::Ref(..) if autoderef.step_count() == 0 => {
+ return None;
+ }
+
+ ty::Error(_) => {
+ return None;
+ }
+
+ _ => {}
+ }
+
+ // Now, we look for the implementation of a Fn trait on the object's type.
+ // We first do it with the explicit instruction to look for an impl of
+ // `Fn<Tuple>`, with the tuple `Tuple` having an arity corresponding
+ // to the number of call parameters.
+ // If that fails (or_else branch), we try again without specifying the
+ // shape of the tuple (hence the None). This allows to detect an Fn trait
+ // is implemented, and use this information for diagnostic.
+ self.try_overloaded_call_traits(call_expr, adjusted_ty, Some(arg_exprs))
+ .or_else(|| self.try_overloaded_call_traits(call_expr, adjusted_ty, None))
+ .map(|(autoref, method)| {
+ let mut adjustments = self.adjust_steps(autoderef);
+ adjustments.extend(autoref);
+ self.apply_adjustments(callee_expr, adjustments);
+ CallStep::Overloaded(method)
+ })
+ }
+
+ fn try_overloaded_call_traits(
+ &self,
+ call_expr: &hir::Expr<'_>,
+ adjusted_ty: Ty<'tcx>,
+ opt_arg_exprs: Option<&'tcx [hir::Expr<'tcx>]>,
+ ) -> Option<(Option<Adjustment<'tcx>>, MethodCallee<'tcx>)> {
+ // Try the options that are least restrictive on the caller first.
+ for (opt_trait_def_id, method_name, borrow) in [
+ (self.tcx.lang_items().fn_trait(), Ident::with_dummy_span(sym::call), true),
+ (self.tcx.lang_items().fn_mut_trait(), Ident::with_dummy_span(sym::call_mut), true),
+ (self.tcx.lang_items().fn_once_trait(), Ident::with_dummy_span(sym::call_once), false),
+ ] {
+ let Some(trait_def_id) = opt_trait_def_id else { continue };
+
+ let opt_input_types = opt_arg_exprs.map(|arg_exprs| {
+ [self.tcx.mk_tup(arg_exprs.iter().map(|e| {
+ self.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::TypeInference,
+ span: e.span,
+ })
+ }))]
+ });
+ let opt_input_types = opt_input_types.as_ref().map(AsRef::as_ref);
+
+ if let Some(ok) = self.lookup_method_in_trait(
+ call_expr.span,
+ method_name,
+ trait_def_id,
+ adjusted_ty,
+ opt_input_types,
+ ) {
+ let method = self.register_infer_ok_obligations(ok);
+ let mut autoref = None;
+ if borrow {
+ // Check for &self vs &mut self in the method signature. Since this is either
+ // the Fn or FnMut trait, it should be one of those.
+ let ty::Ref(region, _, mutbl) = method.sig.inputs()[0].kind() else {
+ // The `fn`/`fn_mut` lang item is ill-formed, which should have
+ // caused an error elsewhere.
+ self.tcx
+ .sess
+ .delay_span_bug(call_expr.span, "input to call/call_mut is not a ref?");
+ return None;
+ };
+
+ let mutbl = match mutbl {
+ hir::Mutability::Not => AutoBorrowMutability::Not,
+ hir::Mutability::Mut => AutoBorrowMutability::Mut {
+ // For initial two-phase borrow
+ // deployment, conservatively omit
+ // overloaded function call ops.
+ allow_two_phase_borrow: AllowTwoPhase::No,
+ },
+ };
+ autoref = Some(Adjustment {
+ kind: Adjust::Borrow(AutoBorrow::Ref(*region, mutbl)),
+ target: method.sig.inputs()[0],
+ });
+ }
+ return Some((autoref, method));
+ }
+ }
+
+ None
+ }
+
+ /// Give appropriate suggestion when encountering `||{/* not callable */}()`, where the
+ /// likely intention is to call the closure, suggest `(||{})()`. (#55851)
+ fn identify_bad_closure_def_and_call(
+ &self,
+ err: &mut Diagnostic,
+ hir_id: hir::HirId,
+ callee_node: &hir::ExprKind<'_>,
+ callee_span: Span,
+ ) {
+ let hir = self.tcx.hir();
+ let parent_hir_id = hir.get_parent_node(hir_id);
+ let parent_node = hir.get(parent_hir_id);
+ if let (
+ hir::Node::Expr(hir::Expr {
+ kind: hir::ExprKind::Closure(&hir::Closure { fn_decl_span, body, .. }),
+ ..
+ }),
+ hir::ExprKind::Block(..),
+ ) = (parent_node, callee_node)
+ {
+ let fn_decl_span = if hir.body(body).generator_kind
+ == Some(hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Closure))
+ {
+ // Actually need to unwrap a few more layers of HIR to get to
+ // the _real_ closure...
+ let async_closure = hir.get_parent_node(hir.get_parent_node(parent_hir_id));
+ if let hir::Node::Expr(hir::Expr {
+ kind: hir::ExprKind::Closure(&hir::Closure { fn_decl_span, .. }),
+ ..
+ }) = hir.get(async_closure)
+ {
+ fn_decl_span
+ } else {
+ return;
+ }
+ } else {
+ fn_decl_span
+ };
+
+ let start = fn_decl_span.shrink_to_lo();
+ let end = callee_span.shrink_to_hi();
+ err.multipart_suggestion(
+ "if you meant to create this closure and immediately call it, surround the \
+ closure with parentheses",
+ vec![(start, "(".to_string()), (end, ")".to_string())],
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+
+ /// Give appropriate suggestion when encountering `[("a", 0) ("b", 1)]`, where the
+ /// likely intention is to create an array containing tuples.
+ fn maybe_suggest_bad_array_definition(
+ &self,
+ err: &mut Diagnostic,
+ call_expr: &'tcx hir::Expr<'tcx>,
+ callee_expr: &'tcx hir::Expr<'tcx>,
+ ) -> bool {
+ let hir_id = self.tcx.hir().get_parent_node(call_expr.hir_id);
+ let parent_node = self.tcx.hir().get(hir_id);
+ if let (
+ hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Array(_), .. }),
+ hir::ExprKind::Tup(exp),
+ hir::ExprKind::Call(_, args),
+ ) = (parent_node, &callee_expr.kind, &call_expr.kind)
+ && args.len() == exp.len()
+ {
+ let start = callee_expr.span.shrink_to_hi();
+ err.span_suggestion(
+ start,
+ "consider separating array elements with a comma",
+ ",",
+ Applicability::MaybeIncorrect,
+ );
+ return true;
+ }
+ false
+ }
+
+ fn confirm_builtin_call(
+ &self,
+ call_expr: &'tcx hir::Expr<'tcx>,
+ callee_expr: &'tcx hir::Expr<'tcx>,
+ callee_ty: Ty<'tcx>,
+ arg_exprs: &'tcx [hir::Expr<'tcx>],
+ expected: Expectation<'tcx>,
+ ) -> Ty<'tcx> {
+ let (fn_sig, def_id) = match *callee_ty.kind() {
+ ty::FnDef(def_id, subst) => {
+ let fn_sig = self.tcx.bound_fn_sig(def_id).subst(self.tcx, subst);
+
+ // Unit testing: function items annotated with
+ // `#[rustc_evaluate_where_clauses]` trigger special output
+ // to let us test the trait evaluation system.
+ if self.tcx.has_attr(def_id, sym::rustc_evaluate_where_clauses) {
+ let predicates = self.tcx.predicates_of(def_id);
+ let predicates = predicates.instantiate(self.tcx, subst);
+ for (predicate, predicate_span) in
+ predicates.predicates.iter().zip(&predicates.spans)
+ {
+ let obligation = Obligation::new(
+ ObligationCause::dummy_with_span(callee_expr.span),
+ self.param_env,
+ *predicate,
+ );
+ let result = self.evaluate_obligation(&obligation);
+ self.tcx
+ .sess
+ .struct_span_err(
+ callee_expr.span,
+ &format!("evaluate({:?}) = {:?}", predicate, result),
+ )
+ .span_label(*predicate_span, "predicate")
+ .emit();
+ }
+ }
+ (fn_sig, Some(def_id))
+ }
+ ty::FnPtr(sig) => (sig, None),
+ _ => {
+ if let hir::ExprKind::Path(hir::QPath::Resolved(_, path)) = &callee_expr.kind
+ && let [segment] = path.segments
+ && let Some(mut diag) = self
+ .tcx
+ .sess
+ .diagnostic()
+ .steal_diagnostic(segment.ident.span, StashKey::CallIntoMethod)
+ {
+ // Try suggesting `foo(a)` -> `a.foo()` if possible.
+ if let Some(ty) =
+ self.suggest_call_as_method(
+ &mut diag,
+ segment,
+ arg_exprs,
+ call_expr,
+ expected
+ )
+ {
+ diag.emit();
+ return ty;
+ } else {
+ diag.emit();
+ }
+ }
+
+ self.report_invalid_callee(call_expr, callee_expr, callee_ty, arg_exprs);
+
+ // This is the "default" function signature, used in case of error.
+ // In that case, we check each argument against "error" in order to
+ // set up all the node type bindings.
+ (
+ ty::Binder::dummy(self.tcx.mk_fn_sig(
+ self.err_args(arg_exprs.len()).into_iter(),
+ self.tcx.ty_error(),
+ false,
+ hir::Unsafety::Normal,
+ abi::Abi::Rust,
+ )),
+ None,
+ )
+ }
+ };
+
+ // Replace any late-bound regions that appear in the function
+ // signature with region variables. We also have to
+ // renormalize the associated types at this point, since they
+ // previously appeared within a `Binder<>` and hence would not
+ // have been normalized before.
+ let fn_sig = self.replace_bound_vars_with_fresh_vars(call_expr.span, infer::FnCall, fn_sig);
+ let fn_sig = self.normalize_associated_types_in(call_expr.span, fn_sig);
+
+ // Call the generic checker.
+ let expected_arg_tys = self.expected_inputs_for_expected_output(
+ call_expr.span,
+ expected,
+ fn_sig.output(),
+ fn_sig.inputs(),
+ );
+ self.check_argument_types(
+ call_expr.span,
+ call_expr,
+ fn_sig.inputs(),
+ expected_arg_tys,
+ arg_exprs,
+ fn_sig.c_variadic,
+ TupleArgumentsFlag::DontTupleArguments,
+ def_id,
+ );
+
+ fn_sig.output()
+ }
+
+ /// Attempts to reinterpret `method(rcvr, args...)` as `rcvr.method(args...)`
+ /// and suggesting the fix if the method probe is successful.
+ fn suggest_call_as_method(
+ &self,
+ diag: &mut Diagnostic,
+ segment: &'tcx hir::PathSegment<'tcx>,
+ arg_exprs: &'tcx [hir::Expr<'tcx>],
+ call_expr: &'tcx hir::Expr<'tcx>,
+ expected: Expectation<'tcx>,
+ ) -> Option<Ty<'tcx>> {
+ if let [callee_expr, rest @ ..] = arg_exprs {
+ let callee_ty = self.check_expr(callee_expr);
+ // First, do a probe with `IsSuggestion(true)` to avoid emitting
+ // any strange errors. If it's successful, then we'll do a true
+ // method lookup.
+ let Ok(pick) = self
+ .probe_for_name(
+ call_expr.span,
+ Mode::MethodCall,
+ segment.ident,
+ IsSuggestion(true),
+ callee_ty,
+ call_expr.hir_id,
+ // We didn't record the in scope traits during late resolution
+ // so we need to probe AllTraits unfortunately
+ ProbeScope::AllTraits,
+ ) else {
+ return None;
+ };
+
+ let pick = self.confirm_method(
+ call_expr.span,
+ callee_expr,
+ call_expr,
+ callee_ty,
+ pick,
+ segment,
+ );
+ if pick.illegal_sized_bound.is_some() {
+ return None;
+ }
+
+ let up_to_rcvr_span = segment.ident.span.until(callee_expr.span);
+ let rest_span = callee_expr.span.shrink_to_hi().to(call_expr.span.shrink_to_hi());
+ let rest_snippet = if let Some(first) = rest.first() {
+ self.tcx
+ .sess
+ .source_map()
+ .span_to_snippet(first.span.to(call_expr.span.shrink_to_hi()))
+ } else {
+ Ok(")".to_string())
+ };
+
+ if let Ok(rest_snippet) = rest_snippet {
+ let sugg = if callee_expr.precedence().order() >= PREC_POSTFIX {
+ vec![
+ (up_to_rcvr_span, "".to_string()),
+ (rest_span, format!(".{}({rest_snippet}", segment.ident)),
+ ]
+ } else {
+ vec![
+ (up_to_rcvr_span, "(".to_string()),
+ (rest_span, format!(").{}({rest_snippet}", segment.ident)),
+ ]
+ };
+ let self_ty = self.resolve_vars_if_possible(pick.callee.sig.inputs()[0]);
+ diag.multipart_suggestion(
+ format!(
+ "use the `.` operator to call the method `{}{}` on `{self_ty}`",
+ self.tcx
+ .associated_item(pick.callee.def_id)
+ .trait_container(self.tcx)
+ .map_or_else(
+ || String::new(),
+ |trait_def_id| self.tcx.def_path_str(trait_def_id) + "::"
+ ),
+ segment.ident
+ ),
+ sugg,
+ Applicability::MaybeIncorrect,
+ );
+
+ // Let's check the method fully now
+ let return_ty = self.check_method_argument_types(
+ segment.ident.span,
+ call_expr,
+ Ok(pick.callee),
+ rest,
+ TupleArgumentsFlag::DontTupleArguments,
+ expected,
+ );
+
+ return Some(return_ty);
+ }
+ }
+
+ None
+ }
+
+ fn report_invalid_callee(
+ &self,
+ call_expr: &'tcx hir::Expr<'tcx>,
+ callee_expr: &'tcx hir::Expr<'tcx>,
+ callee_ty: Ty<'tcx>,
+ arg_exprs: &'tcx [hir::Expr<'tcx>],
+ ) {
+ let mut unit_variant = None;
+ if let hir::ExprKind::Path(qpath) = &callee_expr.kind
+ && let Res::Def(def::DefKind::Ctor(kind, def::CtorKind::Const), _)
+ = self.typeck_results.borrow().qpath_res(qpath, callee_expr.hir_id)
+ // Only suggest removing parens if there are no arguments
+ && arg_exprs.is_empty()
+ {
+ let descr = match kind {
+ def::CtorOf::Struct => "struct",
+ def::CtorOf::Variant => "enum variant",
+ };
+ let removal_span = callee_expr.span.shrink_to_hi().to(call_expr.span.shrink_to_hi());
+ unit_variant = Some((removal_span, descr, rustc_hir_pretty::qpath_to_string(qpath)));
+ }
+
+ let callee_ty = self.resolve_vars_if_possible(callee_ty);
+ let mut err = type_error_struct!(
+ self.tcx.sess,
+ callee_expr.span,
+ callee_ty,
+ E0618,
+ "expected function, found {}",
+ match &unit_variant {
+ Some((_, kind, path)) => format!("{kind} `{path}`"),
+ None => format!("`{callee_ty}`"),
+ }
+ );
+
+ self.identify_bad_closure_def_and_call(
+ &mut err,
+ call_expr.hir_id,
+ &callee_expr.kind,
+ callee_expr.span,
+ );
+
+ if let Some((removal_span, kind, path)) = &unit_variant {
+ err.span_suggestion_verbose(
+ *removal_span,
+ &format!(
+ "`{path}` is a unit {kind}, and does not take parentheses to be constructed",
+ ),
+ "",
+ Applicability::MachineApplicable,
+ );
+ }
+
+ let mut inner_callee_path = None;
+ let def = match callee_expr.kind {
+ hir::ExprKind::Path(ref qpath) => {
+ self.typeck_results.borrow().qpath_res(qpath, callee_expr.hir_id)
+ }
+ hir::ExprKind::Call(ref inner_callee, _) => {
+ // If the call spans more than one line and the callee kind is
+ // itself another `ExprCall`, that's a clue that we might just be
+ // missing a semicolon (Issue #51055)
+ let call_is_multiline = self.tcx.sess.source_map().is_multiline(call_expr.span);
+ if call_is_multiline {
+ err.span_suggestion(
+ callee_expr.span.shrink_to_hi(),
+ "consider using a semicolon here",
+ ";",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ if let hir::ExprKind::Path(ref inner_qpath) = inner_callee.kind {
+ inner_callee_path = Some(inner_qpath);
+ self.typeck_results.borrow().qpath_res(inner_qpath, inner_callee.hir_id)
+ } else {
+ Res::Err
+ }
+ }
+ _ => Res::Err,
+ };
+
+ if !self.maybe_suggest_bad_array_definition(&mut err, call_expr, callee_expr) {
+ if let Some((maybe_def, output_ty, _)) =
+ self.extract_callable_info(callee_expr, callee_ty)
+ && !self.type_is_sized_modulo_regions(self.param_env, output_ty, callee_expr.span)
+ {
+ let descr = match maybe_def {
+ DefIdOrName::DefId(def_id) => self.tcx.def_kind(def_id).descr(def_id),
+ DefIdOrName::Name(name) => name,
+ };
+ err.span_label(
+ callee_expr.span,
+ format!("this {descr} returns an unsized value `{output_ty}`, so it cannot be called")
+ );
+ if let DefIdOrName::DefId(def_id) = maybe_def
+ && let Some(def_span) = self.tcx.hir().span_if_local(def_id)
+ {
+ err.span_label(def_span, "the callable type is defined here");
+ }
+ } else {
+ err.span_label(call_expr.span, "call expression requires function");
+ }
+ }
+
+ if let Some(span) = self.tcx.hir().res_span(def) {
+ let callee_ty = callee_ty.to_string();
+ let label = match (unit_variant, inner_callee_path) {
+ (Some((_, kind, path)), _) => Some(format!("{kind} `{path}` defined here")),
+ (_, Some(hir::QPath::Resolved(_, path))) => self
+ .tcx
+ .sess
+ .source_map()
+ .span_to_snippet(path.span)
+ .ok()
+ .map(|p| format!("`{p}` defined here returns `{callee_ty}`")),
+ _ => {
+ match def {
+ // Emit a different diagnostic for local variables, as they are not
+ // type definitions themselves, but rather variables *of* that type.
+ Res::Local(hir_id) => Some(format!(
+ "`{}` has type `{}`",
+ self.tcx.hir().name(hir_id),
+ callee_ty
+ )),
+ Res::Def(kind, def_id) if kind.ns() == Some(Namespace::ValueNS) => {
+ Some(format!("`{}` defined here", self.tcx.def_path_str(def_id),))
+ }
+ _ => Some(format!("`{callee_ty}` defined here")),
+ }
+ }
+ };
+ if let Some(label) = label {
+ err.span_label(span, label);
+ }
+ }
+ err.emit();
+ }
+
+ fn confirm_deferred_closure_call(
+ &self,
+ call_expr: &'tcx hir::Expr<'tcx>,
+ arg_exprs: &'tcx [hir::Expr<'tcx>],
+ expected: Expectation<'tcx>,
+ closure_def_id: LocalDefId,
+ fn_sig: ty::FnSig<'tcx>,
+ ) -> Ty<'tcx> {
+ // `fn_sig` is the *signature* of the closure being called. We
+ // don't know the full details yet (`Fn` vs `FnMut` etc), but we
+ // do know the types expected for each argument and the return
+ // type.
+
+ let expected_arg_tys = self.expected_inputs_for_expected_output(
+ call_expr.span,
+ expected,
+ fn_sig.output(),
+ fn_sig.inputs(),
+ );
+
+ self.check_argument_types(
+ call_expr.span,
+ call_expr,
+ fn_sig.inputs(),
+ expected_arg_tys,
+ arg_exprs,
+ fn_sig.c_variadic,
+ TupleArgumentsFlag::TupleArguments,
+ Some(closure_def_id.to_def_id()),
+ );
+
+ fn_sig.output()
+ }
+
+ fn confirm_overloaded_call(
+ &self,
+ call_expr: &'tcx hir::Expr<'tcx>,
+ arg_exprs: &'tcx [hir::Expr<'tcx>],
+ expected: Expectation<'tcx>,
+ method_callee: MethodCallee<'tcx>,
+ ) -> Ty<'tcx> {
+ let output_type = self.check_method_argument_types(
+ call_expr.span,
+ call_expr,
+ Ok(method_callee),
+ arg_exprs,
+ TupleArgumentsFlag::TupleArguments,
+ expected,
+ );
+
+ self.write_method_call(call_expr.hir_id, method_callee);
+ output_type
+ }
+}
+
+#[derive(Debug)]
+pub struct DeferredCallResolution<'tcx> {
+ call_expr: &'tcx hir::Expr<'tcx>,
+ callee_expr: &'tcx hir::Expr<'tcx>,
+ adjusted_ty: Ty<'tcx>,
+ adjustments: Vec<Adjustment<'tcx>>,
+ fn_sig: ty::FnSig<'tcx>,
+ closure_substs: SubstsRef<'tcx>,
+}
+
+impl<'a, 'tcx> DeferredCallResolution<'tcx> {
+ pub fn resolve(self, fcx: &FnCtxt<'a, 'tcx>) {
+ debug!("DeferredCallResolution::resolve() {:?}", self);
+
+ // we should not be invoked until the closure kind has been
+ // determined by upvar inference
+ assert!(fcx.closure_kind(self.closure_substs).is_some());
+
+ // We may now know enough to figure out fn vs fnmut etc.
+ match fcx.try_overloaded_call_traits(self.call_expr, self.adjusted_ty, None) {
+ Some((autoref, method_callee)) => {
+ // One problem is that when we get here, we are going
+ // to have a newly instantiated function signature
+ // from the call trait. This has to be reconciled with
+ // the older function signature we had before. In
+ // principle we *should* be able to fn_sigs(), but we
+ // can't because of the annoying need for a TypeTrace.
+ // (This always bites me, should find a way to
+ // refactor it.)
+ let method_sig = method_callee.sig;
+
+ debug!("attempt_resolution: method_callee={:?}", method_callee);
+
+ for (method_arg_ty, self_arg_ty) in
+ iter::zip(method_sig.inputs().iter().skip(1), self.fn_sig.inputs())
+ {
+ fcx.demand_eqtype(self.call_expr.span, *self_arg_ty, *method_arg_ty);
+ }
+
+ fcx.demand_eqtype(self.call_expr.span, method_sig.output(), self.fn_sig.output());
+
+ let mut adjustments = self.adjustments;
+ adjustments.extend(autoref);
+ fcx.apply_adjustments(self.callee_expr, adjustments);
+
+ fcx.write_method_call(self.call_expr.hir_id, method_callee);
+ }
+ None => {
+ // This can happen if `#![no_core]` is used and the `fn/fn_mut/fn_once`
+ // lang items are not defined (issue #86238).
+ let mut err = fcx.inh.tcx.sess.struct_span_err(
+ self.call_expr.span,
+ "failed to find an overloaded call trait for closure call",
+ );
+ err.help(
+ "make sure the `fn`/`fn_mut`/`fn_once` lang items are defined \
+ and have associated `call`/`call_mut`/`call_once` functions",
+ );
+ err.emit();
+ }
+ }
+ }
+}
diff --git a/compiler/rustc_typeck/src/check/cast.rs b/compiler/rustc_hir_typeck/src/cast.rs
index 7aaddc2bd..d1dab0540 100644
--- a/compiler/rustc_typeck/src/check/cast.rs
+++ b/compiler/rustc_hir_typeck/src/cast.rs
@@ -30,35 +30,38 @@
use super::FnCtxt;
-use crate::hir::def_id::DefId;
use crate::type_error_struct;
-use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder, ErrorGuaranteed};
+use rustc_errors::{struct_span_err, Applicability, DelayDm, DiagnosticBuilder, ErrorGuaranteed};
use rustc_hir as hir;
-use rustc_hir::lang_items::LangItem;
use rustc_middle::mir::Mutability;
use rustc_middle::ty::adjustment::AllowTwoPhase;
use rustc_middle::ty::cast::{CastKind, CastTy};
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::subst::SubstsRef;
-use rustc_middle::ty::{self, Ty, TypeAndMut, TypeVisitable};
+use rustc_middle::ty::{self, Ty, TypeAndMut, TypeVisitable, VariantDef};
use rustc_session::lint;
use rustc_session::Session;
+use rustc_span::def_id::{DefId, LOCAL_CRATE};
use rustc_span::symbol::sym;
use rustc_span::Span;
use rustc_trait_selection::infer::InferCtxtExt;
-use rustc_trait_selection::traits;
use rustc_trait_selection::traits::error_reporting::report_object_safety_error;
/// Reifies a cast check to be checked once we have full type information for
/// a function context.
#[derive(Debug)]
pub struct CastCheck<'tcx> {
+ /// The expression whose value is being casted
expr: &'tcx hir::Expr<'tcx>,
+ /// The source type for the cast expression
expr_ty: Ty<'tcx>,
expr_span: Span,
+ /// The target type. That is, the type we are casting to.
cast_ty: Ty<'tcx>,
cast_span: Span,
span: Span,
+ /// whether the cast is made in a const context or not.
+ pub constness: hir::Constness,
}
/// The kind of pointer and associated metadata (thin, length or vtable) - we
@@ -96,13 +99,13 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
return Err(reported);
}
- if self.type_is_known_to_be_sized_modulo_regions(t, span) {
+ if self.type_is_sized_modulo_regions(self.param_env, t, span) {
return Ok(Some(PointerKind::Thin));
}
Ok(match *t.kind() {
ty::Slice(_) | ty::Str => Some(PointerKind::Length),
- ty::Dynamic(ref tty, ..) => Some(PointerKind::VTable(tty.principal_def_id())),
+ ty::Dynamic(ref tty, _, ty::Dyn) => Some(PointerKind::VTable(tty.principal_def_id())),
ty::Adt(def, substs) if def.is_struct() => match def.non_enum_variant().fields.last() {
None => Some(PointerKind::Thin),
Some(f) => {
@@ -139,6 +142,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
| ty::Generator(..)
| ty::Adt(..)
| ty::Never
+ | ty::Dynamic(_, _, ty::DynStar)
| ty::Error(_) => {
let reported = self
.tcx
@@ -173,6 +177,7 @@ pub enum CastError {
/// or "a length". If this argument is None, then the metadata is unknown, for example,
/// when we're typechecking a type parameter with a ?Sized bound.
IntToFatCast(Option<&'static str>),
+ ForeignNonExhaustiveAdt,
}
impl From<ErrorGuaranteed> for CastError {
@@ -207,15 +212,16 @@ impl<'a, 'tcx> CastCheck<'tcx> {
cast_ty: Ty<'tcx>,
cast_span: Span,
span: Span,
+ constness: hir::Constness,
) -> Result<CastCheck<'tcx>, ErrorGuaranteed> {
let expr_span = expr.span.find_ancestor_inside(span).unwrap_or(expr.span);
- let check = CastCheck { expr, expr_ty, expr_span, cast_ty, cast_span, span };
+ let check = CastCheck { expr, expr_ty, expr_span, cast_ty, cast_span, span, constness };
// For better error messages, check for some obviously unsized
// cases now. We do a more thorough check at the end, once
// inference is more completely known.
match cast_ty.kind() {
- ty::Dynamic(..) | ty::Slice(..) => {
+ ty::Dynamic(_, _, ty::Dyn) | ty::Slice(..) => {
let reported = check.report_cast_to_unsized_type(fcx);
Err(reported)
}
@@ -523,7 +529,9 @@ impl<'a, 'tcx> CastCheck<'tcx> {
err.emit();
}
CastError::SizedUnsizedCast => {
- use crate::structured_errors::{SizedUnsizedCast, StructuredDiagnostic};
+ use rustc_hir_analysis::structured_errors::{
+ SizedUnsizedCast, StructuredDiagnostic,
+ };
SizedUnsizedCast {
sess: &fcx.tcx.sess,
@@ -591,6 +599,17 @@ impl<'a, 'tcx> CastCheck<'tcx> {
}
err.emit();
}
+ CastError::ForeignNonExhaustiveAdt => {
+ make_invalid_casting_error(
+ fcx.tcx.sess,
+ self.span,
+ self.expr_ty,
+ self.cast_ty,
+ fcx,
+ )
+ .note("cannot cast an enum with a non-exhaustive variant when it's defined in another crate")
+ .emit();
+ }
}
}
@@ -670,19 +689,25 @@ impl<'a, 'tcx> CastCheck<'tcx> {
} else {
("", lint::builtin::TRIVIAL_CASTS)
};
- fcx.tcx.struct_span_lint_hir(lint, self.expr.hir_id, self.span, |err| {
- err.build(&format!(
- "trivial {}cast: `{}` as `{}`",
- adjective,
- fcx.ty_to_string(t_expr),
- fcx.ty_to_string(t_cast)
- ))
- .help(&format!(
- "cast can be replaced by coercion; this might \
- require {type_asc_or}a temporary variable"
- ))
- .emit();
- });
+ fcx.tcx.struct_span_lint_hir(
+ lint,
+ self.expr.hir_id,
+ self.span,
+ DelayDm(|| {
+ format!(
+ "trivial {}cast: `{}` as `{}`",
+ adjective,
+ fcx.ty_to_string(t_expr),
+ fcx.ty_to_string(t_cast)
+ )
+ }),
+ |lint| {
+ lint.help(format!(
+ "cast can be replaced by coercion; this might \
+ require {type_asc_or}a temporary variable"
+ ))
+ },
+ );
}
#[instrument(skip(fcx), level = "debug")]
@@ -692,7 +717,7 @@ impl<'a, 'tcx> CastCheck<'tcx> {
debug!("check_cast({}, {:?} as {:?})", self.expr.hir_id, self.expr_ty, self.cast_ty);
- if !fcx.type_is_known_to_be_sized_modulo_regions(self.cast_ty, self.span)
+ if !fcx.type_is_sized_modulo_regions(fcx.param_env, self.cast_ty, self.span)
&& !self.cast_ty.has_infer_types()
{
self.report_cast_to_unsized_type(fcx);
@@ -789,6 +814,14 @@ impl<'a, 'tcx> CastCheck<'tcx> {
_ => return Err(CastError::NonScalar),
};
+ if let ty::Adt(adt_def, _) = *self.expr_ty.kind() {
+ if adt_def.did().krate != LOCAL_CRATE {
+ if adt_def.variants().iter().any(VariantDef::is_field_list_non_exhaustive) {
+ return Err(CastError::ForeignNonExhaustiveAdt);
+ }
+ }
+ }
+
match (t_from, t_cast) {
// These types have invariants! can't cast into them.
(_, Int(CEnum) | FnPtr) => Err(CastError::NonScalar),
@@ -835,6 +868,14 @@ impl<'a, 'tcx> CastCheck<'tcx> {
(Int(Char) | Int(Bool), Int(_)) => Ok(CastKind::PrimIntCast),
(Int(_) | Float, Int(_) | Float) => Ok(CastKind::NumericCast),
+
+ (_, DynStar) | (DynStar, _) => {
+ if fcx.tcx.features().dyn_star {
+ bug!("should be handled by `try_coerce`")
+ } else {
+ Err(CastError::IllegalCast)
+ }
+ }
}
}
@@ -976,12 +1017,12 @@ impl<'a, 'tcx> CastCheck<'tcx> {
lint::builtin::CENUM_IMPL_DROP_CAST,
self.expr.hir_id,
self.span,
- |err| {
- err.build(&format!(
- "cannot cast enum `{}` into integer `{}` because it implements `Drop`",
- self.expr_ty, self.cast_ty
- ))
- .emit();
+ DelayDm(|| format!(
+ "cannot cast enum `{}` into integer `{}` because it implements `Drop`",
+ self.expr_ty, self.cast_ty
+ )),
+ |lint| {
+ lint
},
);
}
@@ -992,12 +1033,11 @@ impl<'a, 'tcx> CastCheck<'tcx> {
lint::builtin::LOSSY_PROVENANCE_CASTS,
self.expr.hir_id,
self.span,
- |err| {
- let mut err = err.build(&format!(
+ DelayDm(|| format!(
"under strict provenance it is considered bad style to cast pointer `{}` to integer `{}`",
self.expr_ty, self.cast_ty
- ));
-
+ )),
+ |lint| {
let msg = "use `.addr()` to obtain the address of a pointer";
let expr_prec = self.expr.precedence().order();
@@ -1016,9 +1056,9 @@ impl<'a, 'tcx> CastCheck<'tcx> {
(cast_span, format!(").addr(){scalar_cast}")),
];
- err.multipart_suggestion(msg, suggestions, Applicability::MaybeIncorrect);
+ lint.multipart_suggestion(msg, suggestions, Applicability::MaybeIncorrect);
} else {
- err.span_suggestion(
+ lint.span_suggestion(
cast_span,
msg,
format!(".addr(){scalar_cast}"),
@@ -1026,12 +1066,12 @@ impl<'a, 'tcx> CastCheck<'tcx> {
);
}
- err.help(
+ lint.help(
"if you can't comply with strict provenance and need to expose the pointer \
provenance you can use `.expose_addr()` instead"
);
- err.emit();
+ lint
},
);
}
@@ -1041,32 +1081,25 @@ impl<'a, 'tcx> CastCheck<'tcx> {
lint::builtin::FUZZY_PROVENANCE_CASTS,
self.expr.hir_id,
self.span,
- |err| {
- let mut err = err.build(&format!(
- "strict provenance disallows casting integer `{}` to pointer `{}`",
- self.expr_ty, self.cast_ty
- ));
+ DelayDm(|| format!(
+ "strict provenance disallows casting integer `{}` to pointer `{}`",
+ self.expr_ty, self.cast_ty
+ )),
+ |lint| {
let msg = "use `.with_addr()` to adjust a valid pointer in the same allocation, to this address";
let suggestions = vec![
(self.expr_span.shrink_to_lo(), String::from("(...).with_addr(")),
(self.expr_span.shrink_to_hi().to(self.cast_span), String::from(")")),
];
- err.multipart_suggestion(msg, suggestions, Applicability::MaybeIncorrect);
- err.help(
+ lint.multipart_suggestion(msg, suggestions, Applicability::MaybeIncorrect);
+ lint.help(
"if you can't comply with strict provenance and don't have a pointer with \
the correct provenance you can use `std::ptr::from_exposed_addr()` instead"
);
- err.emit();
+ lint
},
);
}
}
-
-impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
- fn type_is_known_to_be_sized_modulo_regions(&self, ty: Ty<'tcx>, span: Span) -> bool {
- let lang_item = self.tcx.require_lang_item(LangItem::Sized, None);
- traits::type_known_to_meet_bound_modulo_regions(self, self.param_env, ty, lang_item, span)
- }
-}
diff --git a/compiler/rustc_hir_typeck/src/check.rs b/compiler/rustc_hir_typeck/src/check.rs
new file mode 100644
index 000000000..7f76364e1
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/check.rs
@@ -0,0 +1,324 @@
+use crate::coercion::CoerceMany;
+use crate::gather_locals::GatherLocalsVisitor;
+use crate::{FnCtxt, Inherited};
+use crate::{GeneratorTypes, UnsafetyState};
+use rustc_hir as hir;
+use rustc_hir::def::DefKind;
+use rustc_hir::intravisit::Visitor;
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::{ImplicitSelfKind, ItemKind, Node};
+use rustc_hir_analysis::check::fn_maybe_err;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::infer::RegionVariableOrigin;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_span::def_id::LocalDefId;
+use rustc_target::spec::abi::Abi;
+use rustc_trait_selection::traits;
+use std::cell::RefCell;
+
+/// Helper used for fns and closures. Does the grungy work of checking a function
+/// body and returns the function context used for that purpose, since in the case of a fn item
+/// there is still a bit more to do.
+///
+/// * ...
+/// * inherited: other fields inherited from the enclosing fn (if any)
+#[instrument(skip(inherited, body), level = "debug")]
+pub(super) fn check_fn<'a, 'tcx>(
+ inherited: &'a Inherited<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ fn_sig: ty::FnSig<'tcx>,
+ decl: &'tcx hir::FnDecl<'tcx>,
+ fn_id: hir::HirId,
+ body: &'tcx hir::Body<'tcx>,
+ can_be_generator: Option<hir::Movability>,
+ return_type_pre_known: bool,
+) -> (FnCtxt<'a, 'tcx>, Option<GeneratorTypes<'tcx>>) {
+ // Create the function context. This is either derived from scratch or,
+ // in the case of closures, based on the outer context.
+ let mut fcx = FnCtxt::new(inherited, param_env, body.value.hir_id);
+ fcx.ps.set(UnsafetyState::function(fn_sig.unsafety, fn_id));
+ fcx.return_type_pre_known = return_type_pre_known;
+
+ let tcx = fcx.tcx;
+ let hir = tcx.hir();
+
+ let declared_ret_ty = fn_sig.output();
+
+ let ret_ty =
+ fcx.register_infer_ok_obligations(fcx.infcx.replace_opaque_types_with_inference_vars(
+ declared_ret_ty,
+ body.value.hir_id,
+ decl.output.span(),
+ param_env,
+ ));
+ // If we replaced declared_ret_ty with infer vars, then we must be inferring
+ // an opaque type, so set a flag so we can improve diagnostics.
+ fcx.return_type_has_opaque = ret_ty != declared_ret_ty;
+
+ fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty)));
+
+ let span = body.value.span;
+
+ fn_maybe_err(tcx, span, fn_sig.abi);
+
+ if fn_sig.abi == Abi::RustCall {
+ let expected_args = if let ImplicitSelfKind::None = decl.implicit_self { 1 } else { 2 };
+
+ let err = || {
+ let item = match tcx.hir().get(fn_id) {
+ Node::Item(hir::Item { kind: ItemKind::Fn(header, ..), .. }) => Some(header),
+ Node::ImplItem(hir::ImplItem {
+ kind: hir::ImplItemKind::Fn(header, ..), ..
+ }) => Some(header),
+ Node::TraitItem(hir::TraitItem {
+ kind: hir::TraitItemKind::Fn(header, ..),
+ ..
+ }) => Some(header),
+ // Closures are RustCall, but they tuple their arguments, so shouldn't be checked
+ Node::Expr(hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => None,
+ node => bug!("Item being checked wasn't a function/closure: {:?}", node),
+ };
+
+ if let Some(header) = item {
+ tcx.sess.span_err(header.span, "functions with the \"rust-call\" ABI must take a single non-self argument that is a tuple");
+ }
+ };
+
+ if fn_sig.inputs().len() != expected_args {
+ err()
+ } else {
+ // FIXME(CraftSpider) Add a check on parameter expansion, so we don't just make the ICE happen later on
+ // This will probably require wide-scale changes to support a TupleKind obligation
+ // We can't resolve this without knowing the type of the param
+ if !matches!(fn_sig.inputs()[expected_args - 1].kind(), ty::Tuple(_) | ty::Param(_)) {
+ err()
+ }
+ }
+ }
+
+ if body.generator_kind.is_some() && can_be_generator.is_some() {
+ let yield_ty = fcx
+ .next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::TypeInference, span });
+ fcx.require_type_is_sized(yield_ty, span, traits::SizedYieldType);
+
+ // Resume type defaults to `()` if the generator has no argument.
+ let resume_ty = fn_sig.inputs().get(0).copied().unwrap_or_else(|| tcx.mk_unit());
+
+ fcx.resume_yield_tys = Some((resume_ty, yield_ty));
+ }
+
+ GatherLocalsVisitor::new(&fcx).visit_body(body);
+
+ // C-variadic fns also have a `VaList` input that's not listed in `fn_sig`
+ // (as it's created inside the body itself, not passed in from outside).
+ let maybe_va_list = if fn_sig.c_variadic {
+ let span = body.params.last().unwrap().span;
+ let va_list_did = tcx.require_lang_item(LangItem::VaList, Some(span));
+ let region = fcx.next_region_var(RegionVariableOrigin::MiscVariable(span));
+
+ Some(tcx.bound_type_of(va_list_did).subst(tcx, &[region.into()]))
+ } else {
+ None
+ };
+
+ // Add formal parameters.
+ let inputs_hir = hir.fn_decl_by_hir_id(fn_id).map(|decl| &decl.inputs);
+ let inputs_fn = fn_sig.inputs().iter().copied();
+ for (idx, (param_ty, param)) in inputs_fn.chain(maybe_va_list).zip(body.params).enumerate() {
+ // Check the pattern.
+ let ty_span = try { inputs_hir?.get(idx)?.span };
+ fcx.check_pat_top(&param.pat, param_ty, ty_span, false);
+
+ // Check that argument is Sized.
+ // The check for a non-trivial pattern is a hack to avoid duplicate warnings
+ // for simple cases like `fn foo(x: Trait)`,
+ // where we would error once on the parameter as a whole, and once on the binding `x`.
+ if param.pat.simple_ident().is_none() && !tcx.features().unsized_fn_params {
+ fcx.require_type_is_sized(param_ty, param.pat.span, traits::SizedArgumentType(ty_span));
+ }
+
+ fcx.write_ty(param.hir_id, param_ty);
+ }
+
+ inherited.typeck_results.borrow_mut().liberated_fn_sigs_mut().insert(fn_id, fn_sig);
+
+ fcx.in_tail_expr = true;
+ if let ty::Dynamic(..) = declared_ret_ty.kind() {
+ // FIXME: We need to verify that the return type is `Sized` after the return expression has
+ // been evaluated so that we have types available for all the nodes being returned, but that
+ // requires the coerced evaluated type to be stored. Moving `check_return_expr` before this
+ // causes unsized errors caused by the `declared_ret_ty` to point at the return expression,
+ // while keeping the current ordering we will ignore the tail expression's type because we
+ // don't know it yet. We can't do `check_expr_kind` while keeping `check_return_expr`
+ // because we will trigger "unreachable expression" lints unconditionally.
+ // Because of all of this, we perform a crude check to know whether the simplest `!Sized`
+ // case that a newcomer might make, returning a bare trait, and in that case we populate
+ // the tail expression's type so that the suggestion will be correct, but ignore all other
+ // possible cases.
+ fcx.check_expr(&body.value);
+ fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
+ } else {
+ fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
+ fcx.check_return_expr(&body.value, false);
+ }
+ fcx.in_tail_expr = false;
+
+ // We insert the deferred_generator_interiors entry after visiting the body.
+ // This ensures that all nested generators appear before the entry of this generator.
+ // resolve_generator_interiors relies on this property.
+ let gen_ty = if let (Some(_), Some(gen_kind)) = (can_be_generator, body.generator_kind) {
+ let interior = fcx
+ .next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::MiscVariable, span });
+ fcx.deferred_generator_interiors.borrow_mut().push((body.id(), interior, gen_kind));
+
+ let (resume_ty, yield_ty) = fcx.resume_yield_tys.unwrap();
+ Some(GeneratorTypes {
+ resume_ty,
+ yield_ty,
+ interior,
+ movability: can_be_generator.unwrap(),
+ })
+ } else {
+ None
+ };
+
+ // Finalize the return check by taking the LUB of the return types
+ // we saw and assigning it to the expected return type. This isn't
+ // really expected to fail, since the coercions would have failed
+ // earlier when trying to find a LUB.
+ let coercion = fcx.ret_coercion.take().unwrap().into_inner();
+ let mut actual_return_ty = coercion.complete(&fcx);
+ debug!("actual_return_ty = {:?}", actual_return_ty);
+ if let ty::Dynamic(..) = declared_ret_ty.kind() {
+ // We have special-cased the case where the function is declared
+ // `-> dyn Foo` and we don't actually relate it to the
+ // `fcx.ret_coercion`, so just substitute a type variable.
+ actual_return_ty =
+ fcx.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::DynReturnFn, span });
+ debug!("actual_return_ty replaced with {:?}", actual_return_ty);
+ }
+
+ // HACK(oli-obk, compiler-errors): We should be comparing this against
+ // `declared_ret_ty`, but then anything uninferred would be inferred to
+ // the opaque type itself. That again would cause writeback to assume
+ // we have a recursive call site and do the sadly stabilized fallback to `()`.
+ fcx.demand_suptype(span, ret_ty, actual_return_ty);
+
+ // Check that a function marked as `#[panic_handler]` has signature `fn(&PanicInfo) -> !`
+ if let Some(panic_impl_did) = tcx.lang_items().panic_impl()
+ && panic_impl_did == hir.local_def_id(fn_id).to_def_id()
+ {
+ check_panic_info_fn(tcx, panic_impl_did.expect_local(), fn_sig, decl, declared_ret_ty);
+ }
+
+ // Check that a function marked as `#[alloc_error_handler]` has signature `fn(Layout) -> !`
+ if let Some(alloc_error_handler_did) = tcx.lang_items().oom()
+ && alloc_error_handler_did == hir.local_def_id(fn_id).to_def_id()
+ {
+ check_alloc_error_fn(tcx, alloc_error_handler_did.expect_local(), fn_sig, decl, declared_ret_ty);
+ }
+
+ (fcx, gen_ty)
+}
+
+fn check_panic_info_fn(
+ tcx: TyCtxt<'_>,
+ fn_id: LocalDefId,
+ fn_sig: ty::FnSig<'_>,
+ decl: &hir::FnDecl<'_>,
+ declared_ret_ty: Ty<'_>,
+) {
+ let Some(panic_info_did) = tcx.lang_items().panic_info() else {
+ tcx.sess.err("language item required, but not found: `panic_info`");
+ return;
+ };
+
+ if *declared_ret_ty.kind() != ty::Never {
+ tcx.sess.span_err(decl.output.span(), "return type should be `!`");
+ }
+
+ let inputs = fn_sig.inputs();
+ if inputs.len() != 1 {
+ tcx.sess.span_err(tcx.def_span(fn_id), "function should have one argument");
+ return;
+ }
+
+ let arg_is_panic_info = match *inputs[0].kind() {
+ ty::Ref(region, ty, mutbl) => match *ty.kind() {
+ ty::Adt(ref adt, _) => {
+ adt.did() == panic_info_did && mutbl == hir::Mutability::Not && !region.is_static()
+ }
+ _ => false,
+ },
+ _ => false,
+ };
+
+ if !arg_is_panic_info {
+ tcx.sess.span_err(decl.inputs[0].span, "argument should be `&PanicInfo`");
+ }
+
+ let DefKind::Fn = tcx.def_kind(fn_id) else {
+ let span = tcx.def_span(fn_id);
+ tcx.sess.span_err(span, "should be a function");
+ return;
+ };
+
+ let generic_counts = tcx.generics_of(fn_id).own_counts();
+ if generic_counts.types != 0 {
+ let span = tcx.def_span(fn_id);
+ tcx.sess.span_err(span, "should have no type parameters");
+ }
+ if generic_counts.consts != 0 {
+ let span = tcx.def_span(fn_id);
+ tcx.sess.span_err(span, "should have no const parameters");
+ }
+}
+
+fn check_alloc_error_fn(
+ tcx: TyCtxt<'_>,
+ fn_id: LocalDefId,
+ fn_sig: ty::FnSig<'_>,
+ decl: &hir::FnDecl<'_>,
+ declared_ret_ty: Ty<'_>,
+) {
+ let Some(alloc_layout_did) = tcx.lang_items().alloc_layout() else {
+ tcx.sess.err("language item required, but not found: `alloc_layout`");
+ return;
+ };
+
+ if *declared_ret_ty.kind() != ty::Never {
+ tcx.sess.span_err(decl.output.span(), "return type should be `!`");
+ }
+
+ let inputs = fn_sig.inputs();
+ if inputs.len() != 1 {
+ tcx.sess.span_err(tcx.def_span(fn_id), "function should have one argument");
+ return;
+ }
+
+ let arg_is_alloc_layout = match inputs[0].kind() {
+ ty::Adt(ref adt, _) => adt.did() == alloc_layout_did,
+ _ => false,
+ };
+
+ if !arg_is_alloc_layout {
+ tcx.sess.span_err(decl.inputs[0].span, "argument should be `Layout`");
+ }
+
+ let DefKind::Fn = tcx.def_kind(fn_id) else {
+ let span = tcx.def_span(fn_id);
+ tcx.sess.span_err(span, "`#[alloc_error_handler]` should be a function");
+ return;
+ };
+
+ let generic_counts = tcx.generics_of(fn_id).own_counts();
+ if generic_counts.types != 0 {
+ let span = tcx.def_span(fn_id);
+ tcx.sess.span_err(span, "`#[alloc_error_handler]` function should have no type parameters");
+ }
+ if generic_counts.consts != 0 {
+ let span = tcx.def_span(fn_id);
+ tcx.sess
+ .span_err(span, "`#[alloc_error_handler]` function should have no const parameters");
+ }
+}
diff --git a/compiler/rustc_hir_typeck/src/closure.rs b/compiler/rustc_hir_typeck/src/closure.rs
new file mode 100644
index 000000000..a5a45f75e
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/closure.rs
@@ -0,0 +1,824 @@
+//! Code for type-checking closure expressions.
+
+use super::{check_fn, Expectation, FnCtxt, GeneratorTypes};
+
+use hir::def::DefKind;
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_hir::lang_items::LangItem;
+use rustc_hir_analysis::astconv::AstConv;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::infer::LateBoundRegionConversionTime;
+use rustc_infer::infer::{InferOk, InferResult};
+use rustc_middle::ty::subst::InternalSubsts;
+use rustc_middle::ty::visit::TypeVisitable;
+use rustc_middle::ty::{self, Ty};
+use rustc_span::source_map::Span;
+use rustc_target::spec::abi::Abi;
+use rustc_trait_selection::traits::error_reporting::ArgKind;
+use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
+use std::cmp;
+use std::iter;
+
+/// What signature do we *expect* the closure to have from context?
+#[derive(Debug)]
+struct ExpectedSig<'tcx> {
+ /// Span that gave us this expectation, if we know that.
+ cause_span: Option<Span>,
+ sig: ty::PolyFnSig<'tcx>,
+}
+
+struct ClosureSignatures<'tcx> {
+ /// The signature users of the closure see.
+ bound_sig: ty::PolyFnSig<'tcx>,
+ /// The signature within the function body.
+ /// This mostly differs in the sense that lifetimes are now early bound and any
+ /// opaque types from the signature expectation are overriden in case there are
+ /// explicit hidden types written by the user in the closure signature.
+ liberated_sig: ty::FnSig<'tcx>,
+}
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ #[instrument(skip(self, expr, _capture, decl, body_id), level = "debug")]
+ pub fn check_expr_closure(
+ &self,
+ expr: &hir::Expr<'_>,
+ _capture: hir::CaptureBy,
+ decl: &'tcx hir::FnDecl<'tcx>,
+ body_id: hir::BodyId,
+ gen: Option<hir::Movability>,
+ expected: Expectation<'tcx>,
+ ) -> Ty<'tcx> {
+ trace!("decl = {:#?}", decl);
+ trace!("expr = {:#?}", expr);
+
+ // It's always helpful for inference if we know the kind of
+ // closure sooner rather than later, so first examine the expected
+ // type, and see if can glean a closure kind from there.
+ let (expected_sig, expected_kind) = match expected.to_option(self) {
+ Some(ty) => self.deduce_expectations_from_expected_type(ty),
+ None => (None, None),
+ };
+ let body = self.tcx.hir().body(body_id);
+ self.check_closure(expr, expected_kind, decl, body, gen, expected_sig)
+ }
+
+ #[instrument(skip(self, expr, body, decl), level = "debug", ret)]
+ fn check_closure(
+ &self,
+ expr: &hir::Expr<'_>,
+ opt_kind: Option<ty::ClosureKind>,
+ decl: &'tcx hir::FnDecl<'tcx>,
+ body: &'tcx hir::Body<'tcx>,
+ gen: Option<hir::Movability>,
+ expected_sig: Option<ExpectedSig<'tcx>>,
+ ) -> Ty<'tcx> {
+ trace!("decl = {:#?}", decl);
+ let expr_def_id = self.tcx.hir().local_def_id(expr.hir_id);
+ debug!(?expr_def_id);
+
+ let ClosureSignatures { bound_sig, liberated_sig } =
+ self.sig_of_closure(expr.hir_id, expr_def_id.to_def_id(), decl, body, expected_sig);
+
+ debug!(?bound_sig, ?liberated_sig);
+
+ let return_type_pre_known = !liberated_sig.output().is_ty_infer();
+
+ let generator_types = check_fn(
+ self,
+ self.param_env.without_const(),
+ liberated_sig,
+ decl,
+ expr.hir_id,
+ body,
+ gen,
+ return_type_pre_known,
+ )
+ .1;
+
+ let parent_substs = InternalSubsts::identity_for_item(
+ self.tcx,
+ self.tcx.typeck_root_def_id(expr_def_id.to_def_id()),
+ );
+
+ let tupled_upvars_ty = self.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::ClosureSynthetic,
+ span: self.tcx.hir().span(expr.hir_id),
+ });
+
+ if let Some(GeneratorTypes { resume_ty, yield_ty, interior, movability }) = generator_types
+ {
+ let generator_substs = ty::GeneratorSubsts::new(
+ self.tcx,
+ ty::GeneratorSubstsParts {
+ parent_substs,
+ resume_ty,
+ yield_ty,
+ return_ty: liberated_sig.output(),
+ witness: interior,
+ tupled_upvars_ty,
+ },
+ );
+
+ return self.tcx.mk_generator(
+ expr_def_id.to_def_id(),
+ generator_substs.substs,
+ movability,
+ );
+ }
+
+ // Tuple up the arguments and insert the resulting function type into
+ // the `closures` table.
+ let sig = bound_sig.map_bound(|sig| {
+ self.tcx.mk_fn_sig(
+ iter::once(self.tcx.intern_tup(sig.inputs())),
+ sig.output(),
+ sig.c_variadic,
+ sig.unsafety,
+ sig.abi,
+ )
+ });
+
+ debug!(?sig, ?opt_kind);
+
+ let closure_kind_ty = match opt_kind {
+ Some(kind) => kind.to_ty(self.tcx),
+
+ // Create a type variable (for now) to represent the closure kind.
+ // It will be unified during the upvar inference phase (`upvar.rs`)
+ None => self.next_ty_var(TypeVariableOrigin {
+ // FIXME(eddyb) distinguish closure kind inference variables from the rest.
+ kind: TypeVariableOriginKind::ClosureSynthetic,
+ span: expr.span,
+ }),
+ };
+
+ let closure_substs = ty::ClosureSubsts::new(
+ self.tcx,
+ ty::ClosureSubstsParts {
+ parent_substs,
+ closure_kind_ty,
+ closure_sig_as_fn_ptr_ty: self.tcx.mk_fn_ptr(sig),
+ tupled_upvars_ty,
+ },
+ );
+
+ self.tcx.mk_closure(expr_def_id.to_def_id(), closure_substs.substs)
+ }
+
+ /// Given the expected type, figures out what it can about this closure we
+ /// are about to type check:
+ #[instrument(skip(self), level = "debug")]
+ fn deduce_expectations_from_expected_type(
+ &self,
+ expected_ty: Ty<'tcx>,
+ ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
+ match *expected_ty.kind() {
+ ty::Opaque(def_id, substs) => {
+ let bounds = self.tcx.bound_explicit_item_bounds(def_id);
+ let sig =
+ bounds.subst_iter_copied(self.tcx, substs).find_map(|(pred, span)| match pred
+ .kind()
+ .skip_binder()
+ {
+ ty::PredicateKind::Projection(proj_predicate) => self
+ .deduce_sig_from_projection(
+ Some(span),
+ pred.kind().rebind(proj_predicate),
+ ),
+ _ => None,
+ });
+
+ let kind = bounds
+ .0
+ .iter()
+ .filter_map(|(pred, _)| match pred.kind().skip_binder() {
+ ty::PredicateKind::Trait(tp) => {
+ self.tcx.fn_trait_kind_from_lang_item(tp.def_id())
+ }
+ _ => None,
+ })
+ .fold(None, |best, cur| Some(best.map_or(cur, |best| cmp::min(best, cur))));
+ trace!(?sig, ?kind);
+ (sig, kind)
+ }
+ ty::Dynamic(ref object_type, ..) => {
+ let sig = object_type.projection_bounds().find_map(|pb| {
+ let pb = pb.with_self_ty(self.tcx, self.tcx.types.trait_object_dummy_self);
+ self.deduce_sig_from_projection(None, pb)
+ });
+ let kind = object_type
+ .principal_def_id()
+ .and_then(|did| self.tcx.fn_trait_kind_from_lang_item(did));
+ (sig, kind)
+ }
+ ty::Infer(ty::TyVar(vid)) => self.deduce_expectations_from_obligations(vid),
+ ty::FnPtr(sig) => {
+ let expected_sig = ExpectedSig { cause_span: None, sig };
+ (Some(expected_sig), Some(ty::ClosureKind::Fn))
+ }
+ _ => (None, None),
+ }
+ }
+
+ fn deduce_expectations_from_obligations(
+ &self,
+ expected_vid: ty::TyVid,
+ ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
+ let expected_sig =
+ self.obligations_for_self_ty(expected_vid).find_map(|(_, obligation)| {
+ debug!(?obligation.predicate);
+
+ let bound_predicate = obligation.predicate.kind();
+ if let ty::PredicateKind::Projection(proj_predicate) =
+ obligation.predicate.kind().skip_binder()
+ {
+ // Given a Projection predicate, we can potentially infer
+ // the complete signature.
+ self.deduce_sig_from_projection(
+ Some(obligation.cause.span),
+ bound_predicate.rebind(proj_predicate),
+ )
+ } else {
+ None
+ }
+ });
+
+ // Even if we can't infer the full signature, we may be able to
+ // infer the kind. This can occur when we elaborate a predicate
+ // like `F : Fn<A>`. Note that due to subtyping we could encounter
+ // many viable options, so pick the most restrictive.
+ let expected_kind = self
+ .obligations_for_self_ty(expected_vid)
+ .filter_map(|(tr, _)| self.tcx.fn_trait_kind_from_lang_item(tr.def_id()))
+ .fold(None, |best, cur| Some(best.map_or(cur, |best| cmp::min(best, cur))));
+
+ (expected_sig, expected_kind)
+ }
+
+ /// Given a projection like "<F as Fn(X)>::Result == Y", we can deduce
+ /// everything we need to know about a closure or generator.
+ ///
+ /// The `cause_span` should be the span that caused us to
+ /// have this expected signature, or `None` if we can't readily
+ /// know that.
+ #[instrument(level = "debug", skip(self, cause_span), ret)]
+ fn deduce_sig_from_projection(
+ &self,
+ cause_span: Option<Span>,
+ projection: ty::PolyProjectionPredicate<'tcx>,
+ ) -> Option<ExpectedSig<'tcx>> {
+ let tcx = self.tcx;
+
+ let trait_def_id = projection.trait_def_id(tcx);
+
+ let is_fn = tcx.fn_trait_kind_from_lang_item(trait_def_id).is_some();
+ let gen_trait = tcx.require_lang_item(LangItem::Generator, cause_span);
+ let is_gen = gen_trait == trait_def_id;
+ if !is_fn && !is_gen {
+ debug!("not fn or generator");
+ return None;
+ }
+
+ if is_gen {
+ // Check that we deduce the signature from the `<_ as std::ops::Generator>::Return`
+ // associated item and not yield.
+ let return_assoc_item = self.tcx.associated_item_def_ids(gen_trait)[1];
+ if return_assoc_item != projection.projection_def_id() {
+ debug!("not return assoc item of generator");
+ return None;
+ }
+ }
+
+ let input_tys = if is_fn {
+ let arg_param_ty = projection.skip_binder().projection_ty.substs.type_at(1);
+ let arg_param_ty = self.resolve_vars_if_possible(arg_param_ty);
+ debug!(?arg_param_ty);
+
+ match arg_param_ty.kind() {
+ &ty::Tuple(tys) => tys,
+ _ => return None,
+ }
+ } else {
+ // Generators with a `()` resume type may be defined with 0 or 1 explicit arguments,
+ // else they must have exactly 1 argument. For now though, just give up in this case.
+ return None;
+ };
+
+ // Since this is a return parameter type it is safe to unwrap.
+ let ret_param_ty = projection.skip_binder().term.ty().unwrap();
+ let ret_param_ty = self.resolve_vars_if_possible(ret_param_ty);
+ debug!(?ret_param_ty);
+
+ let sig = projection.rebind(self.tcx.mk_fn_sig(
+ input_tys.iter(),
+ ret_param_ty,
+ false,
+ hir::Unsafety::Normal,
+ Abi::Rust,
+ ));
+
+ Some(ExpectedSig { cause_span, sig })
+ }
+
+ fn sig_of_closure(
+ &self,
+ hir_id: hir::HirId,
+ expr_def_id: DefId,
+ decl: &hir::FnDecl<'_>,
+ body: &hir::Body<'_>,
+ expected_sig: Option<ExpectedSig<'tcx>>,
+ ) -> ClosureSignatures<'tcx> {
+ if let Some(e) = expected_sig {
+ self.sig_of_closure_with_expectation(hir_id, expr_def_id, decl, body, e)
+ } else {
+ self.sig_of_closure_no_expectation(hir_id, expr_def_id, decl, body)
+ }
+ }
+
+ /// If there is no expected signature, then we will convert the
+ /// types that the user gave into a signature.
+ #[instrument(skip(self, hir_id, expr_def_id, decl, body), level = "debug")]
+ fn sig_of_closure_no_expectation(
+ &self,
+ hir_id: hir::HirId,
+ expr_def_id: DefId,
+ decl: &hir::FnDecl<'_>,
+ body: &hir::Body<'_>,
+ ) -> ClosureSignatures<'tcx> {
+ let bound_sig = self.supplied_sig_of_closure(hir_id, expr_def_id, decl, body);
+
+ self.closure_sigs(expr_def_id, body, bound_sig)
+ }
+
+ /// Invoked to compute the signature of a closure expression. This
+ /// combines any user-provided type annotations (e.g., `|x: u32|
+ /// -> u32 { .. }`) with the expected signature.
+ ///
+ /// The approach is as follows:
+ ///
+ /// - Let `S` be the (higher-ranked) signature that we derive from the user's annotations.
+ /// - Let `E` be the (higher-ranked) signature that we derive from the expectations, if any.
+ /// - If we have no expectation `E`, then the signature of the closure is `S`.
+ /// - Otherwise, the signature of the closure is E. Moreover:
+ /// - Skolemize the late-bound regions in `E`, yielding `E'`.
+ /// - Instantiate all the late-bound regions bound in the closure within `S`
+ /// with fresh (existential) variables, yielding `S'`
+ /// - Require that `E' = S'`
+ /// - We could use some kind of subtyping relationship here,
+ /// I imagine, but equality is easier and works fine for
+ /// our purposes.
+ ///
+ /// The key intuition here is that the user's types must be valid
+ /// from "the inside" of the closure, but the expectation
+ /// ultimately drives the overall signature.
+ ///
+ /// # Examples
+ ///
+ /// ```ignore (illustrative)
+ /// fn with_closure<F>(_: F)
+ /// where F: Fn(&u32) -> &u32 { .. }
+ ///
+ /// with_closure(|x: &u32| { ... })
+ /// ```
+ ///
+ /// Here:
+ /// - E would be `fn(&u32) -> &u32`.
+ /// - S would be `fn(&u32) ->
+ /// - E' is `&'!0 u32 -> &'!0 u32`
+ /// - S' is `&'?0 u32 -> ?T`
+ ///
+ /// S' can be unified with E' with `['?0 = '!0, ?T = &'!10 u32]`.
+ ///
+ /// # Arguments
+ ///
+ /// - `expr_def_id`: the `DefId` of the closure expression
+ /// - `decl`: the HIR declaration of the closure
+ /// - `body`: the body of the closure
+ /// - `expected_sig`: the expected signature (if any). Note that
+ /// this is missing a binder: that is, there may be late-bound
+ /// regions with depth 1, which are bound then by the closure.
+ #[instrument(skip(self, hir_id, expr_def_id, decl, body), level = "debug")]
+ fn sig_of_closure_with_expectation(
+ &self,
+ hir_id: hir::HirId,
+ expr_def_id: DefId,
+ decl: &hir::FnDecl<'_>,
+ body: &hir::Body<'_>,
+ expected_sig: ExpectedSig<'tcx>,
+ ) -> ClosureSignatures<'tcx> {
+ // Watch out for some surprises and just ignore the
+ // expectation if things don't see to match up with what we
+ // expect.
+ if expected_sig.sig.c_variadic() != decl.c_variadic {
+ return self.sig_of_closure_no_expectation(hir_id, expr_def_id, decl, body);
+ } else if expected_sig.sig.skip_binder().inputs_and_output.len() != decl.inputs.len() + 1 {
+ return self.sig_of_closure_with_mismatched_number_of_arguments(
+ expr_def_id,
+ decl,
+ body,
+ expected_sig,
+ );
+ }
+
+ // Create a `PolyFnSig`. Note the oddity that late bound
+ // regions appearing free in `expected_sig` are now bound up
+ // in this binder we are creating.
+ assert!(!expected_sig.sig.skip_binder().has_vars_bound_above(ty::INNERMOST));
+ let bound_sig = expected_sig.sig.map_bound(|sig| {
+ self.tcx.mk_fn_sig(
+ sig.inputs().iter().cloned(),
+ sig.output(),
+ sig.c_variadic,
+ hir::Unsafety::Normal,
+ Abi::RustCall,
+ )
+ });
+
+ // `deduce_expectations_from_expected_type` introduces
+ // late-bound lifetimes defined elsewhere, which we now
+ // anonymize away, so as not to confuse the user.
+ let bound_sig = self.tcx.anonymize_late_bound_regions(bound_sig);
+
+ let closure_sigs = self.closure_sigs(expr_def_id, body, bound_sig);
+
+ // Up till this point, we have ignored the annotations that the user
+ // gave. This function will check that they unify successfully.
+ // Along the way, it also writes out entries for types that the user
+ // wrote into our typeck results, which are then later used by the privacy
+ // check.
+ match self.merge_supplied_sig_with_expectation(
+ hir_id,
+ expr_def_id,
+ decl,
+ body,
+ closure_sigs,
+ ) {
+ Ok(infer_ok) => self.register_infer_ok_obligations(infer_ok),
+ Err(_) => self.sig_of_closure_no_expectation(hir_id, expr_def_id, decl, body),
+ }
+ }
+
+ fn sig_of_closure_with_mismatched_number_of_arguments(
+ &self,
+ expr_def_id: DefId,
+ decl: &hir::FnDecl<'_>,
+ body: &hir::Body<'_>,
+ expected_sig: ExpectedSig<'tcx>,
+ ) -> ClosureSignatures<'tcx> {
+ let hir = self.tcx.hir();
+ let expr_map_node = hir.get_if_local(expr_def_id).unwrap();
+ let expected_args: Vec<_> = expected_sig
+ .sig
+ .skip_binder()
+ .inputs()
+ .iter()
+ .map(|ty| ArgKind::from_expected_ty(*ty, None))
+ .collect();
+ let (closure_span, found_args) = match self.get_fn_like_arguments(expr_map_node) {
+ Some((sp, args)) => (Some(sp), args),
+ None => (None, Vec::new()),
+ };
+ let expected_span =
+ expected_sig.cause_span.unwrap_or_else(|| hir.span_if_local(expr_def_id).unwrap());
+ self.report_arg_count_mismatch(
+ expected_span,
+ closure_span,
+ expected_args,
+ found_args,
+ true,
+ )
+ .emit();
+
+ let error_sig = self.error_sig_of_closure(decl);
+
+ self.closure_sigs(expr_def_id, body, error_sig)
+ }
+
+ /// Enforce the user's types against the expectation. See
+ /// `sig_of_closure_with_expectation` for details on the overall
+ /// strategy.
+ #[instrument(level = "debug", skip(self, hir_id, expr_def_id, decl, body, expected_sigs))]
+ fn merge_supplied_sig_with_expectation(
+ &self,
+ hir_id: hir::HirId,
+ expr_def_id: DefId,
+ decl: &hir::FnDecl<'_>,
+ body: &hir::Body<'_>,
+ mut expected_sigs: ClosureSignatures<'tcx>,
+ ) -> InferResult<'tcx, ClosureSignatures<'tcx>> {
+ // Get the signature S that the user gave.
+ //
+ // (See comment on `sig_of_closure_with_expectation` for the
+ // meaning of these letters.)
+ let supplied_sig = self.supplied_sig_of_closure(hir_id, expr_def_id, decl, body);
+
+ debug!(?supplied_sig);
+
+ // FIXME(#45727): As discussed in [this comment][c1], naively
+ // forcing equality here actually results in suboptimal error
+ // messages in some cases. For now, if there would have been
+ // an obvious error, we fallback to declaring the type of the
+ // closure to be the one the user gave, which allows other
+ // error message code to trigger.
+ //
+ // However, I think [there is potential to do even better
+ // here][c2], since in *this* code we have the precise span of
+ // the type parameter in question in hand when we report the
+ // error.
+ //
+ // [c1]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341089706
+ // [c2]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341096796
+ self.commit_if_ok(|_| {
+ let mut all_obligations = vec![];
+ let inputs: Vec<_> = iter::zip(
+ decl.inputs,
+ supplied_sig.inputs().skip_binder(), // binder moved to (*) below
+ )
+ .map(|(hir_ty, &supplied_ty)| {
+ // Instantiate (this part of..) S to S', i.e., with fresh variables.
+ self.replace_bound_vars_with_fresh_vars(
+ hir_ty.span,
+ LateBoundRegionConversionTime::FnCall,
+ // (*) binder moved to here
+ supplied_sig.inputs().rebind(supplied_ty),
+ )
+ })
+ .collect();
+
+ // The liberated version of this signature should be a subtype
+ // of the liberated form of the expectation.
+ for ((hir_ty, &supplied_ty), expected_ty) in iter::zip(
+ iter::zip(decl.inputs, &inputs),
+ expected_sigs.liberated_sig.inputs(), // `liberated_sig` is E'.
+ ) {
+ // Check that E' = S'.
+ let cause = self.misc(hir_ty.span);
+ let InferOk { value: (), obligations } =
+ self.at(&cause, self.param_env).eq(*expected_ty, supplied_ty)?;
+ all_obligations.extend(obligations);
+ }
+
+ let supplied_output_ty = self.replace_bound_vars_with_fresh_vars(
+ decl.output.span(),
+ LateBoundRegionConversionTime::FnCall,
+ supplied_sig.output(),
+ );
+ let cause = &self.misc(decl.output.span());
+ let InferOk { value: (), obligations } = self
+ .at(cause, self.param_env)
+ .eq(expected_sigs.liberated_sig.output(), supplied_output_ty)?;
+ all_obligations.extend(obligations);
+
+ let inputs = inputs.into_iter().map(|ty| self.resolve_vars_if_possible(ty));
+
+ expected_sigs.liberated_sig = self.tcx.mk_fn_sig(
+ inputs,
+ supplied_output_ty,
+ expected_sigs.liberated_sig.c_variadic,
+ hir::Unsafety::Normal,
+ Abi::RustCall,
+ );
+
+ Ok(InferOk { value: expected_sigs, obligations: all_obligations })
+ })
+ }
+
+ /// If there is no expected signature, then we will convert the
+ /// types that the user gave into a signature.
+ ///
+ /// Also, record this closure signature for later.
+ #[instrument(skip(self, decl, body), level = "debug", ret)]
+ fn supplied_sig_of_closure(
+ &self,
+ hir_id: hir::HirId,
+ expr_def_id: DefId,
+ decl: &hir::FnDecl<'_>,
+ body: &hir::Body<'_>,
+ ) -> ty::PolyFnSig<'tcx> {
+ let astconv: &dyn AstConv<'_> = self;
+
+ trace!("decl = {:#?}", decl);
+ debug!(?body.generator_kind);
+
+ let bound_vars = self.tcx.late_bound_vars(hir_id);
+
+ // First, convert the types that the user supplied (if any).
+ let supplied_arguments = decl.inputs.iter().map(|a| astconv.ast_ty_to_ty(a));
+ let supplied_return = match decl.output {
+ hir::FnRetTy::Return(ref output) => astconv.ast_ty_to_ty(&output),
+ hir::FnRetTy::DefaultReturn(_) => match body.generator_kind {
+ // In the case of the async block that we create for a function body,
+ // we expect the return type of the block to match that of the enclosing
+ // function.
+ Some(hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn)) => {
+ debug!("closure is async fn body");
+ self.deduce_future_output_from_obligations(expr_def_id, body.id().hir_id)
+ .unwrap_or_else(|| {
+ // AFAIK, deducing the future output
+ // always succeeds *except* in error cases
+ // like #65159. I'd like to return Error
+ // here, but I can't because I can't
+ // easily (and locally) prove that we
+ // *have* reported an
+ // error. --nikomatsakis
+ astconv.ty_infer(None, decl.output.span())
+ })
+ }
+
+ _ => astconv.ty_infer(None, decl.output.span()),
+ },
+ };
+
+ let result = ty::Binder::bind_with_vars(
+ self.tcx.mk_fn_sig(
+ supplied_arguments,
+ supplied_return,
+ decl.c_variadic,
+ hir::Unsafety::Normal,
+ Abi::RustCall,
+ ),
+ bound_vars,
+ );
+ // Astconv can't normalize inputs or outputs with escaping bound vars,
+ // so normalize them here, after we've wrapped them in a binder.
+ let result = self.normalize_associated_types_in(self.tcx.hir().span(hir_id), result);
+
+ let c_result = self.inh.infcx.canonicalize_response(result);
+ self.typeck_results.borrow_mut().user_provided_sigs.insert(expr_def_id, c_result);
+
+ result
+ }
+
+ /// Invoked when we are translating the generator that results
+ /// from desugaring an `async fn`. Returns the "sugared" return
+ /// type of the `async fn` -- that is, the return type that the
+ /// user specified. The "desugared" return type is an `impl
+ /// Future<Output = T>`, so we do this by searching through the
+ /// obligations to extract the `T`.
+ #[instrument(skip(self), level = "debug", ret)]
+ fn deduce_future_output_from_obligations(
+ &self,
+ expr_def_id: DefId,
+ body_id: hir::HirId,
+ ) -> Option<Ty<'tcx>> {
+ let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
+ span_bug!(self.tcx.def_span(expr_def_id), "async fn generator outside of a fn")
+ });
+
+ let ret_ty = ret_coercion.borrow().expected_ty();
+ let ret_ty = self.inh.infcx.shallow_resolve(ret_ty);
+
+ let get_future_output = |predicate: ty::Predicate<'tcx>, span| {
+ // Search for a pending obligation like
+ //
+ // `<R as Future>::Output = T`
+ //
+ // where R is the return type we are expecting. This type `T`
+ // will be our output.
+ let bound_predicate = predicate.kind();
+ if let ty::PredicateKind::Projection(proj_predicate) = bound_predicate.skip_binder() {
+ self.deduce_future_output_from_projection(
+ span,
+ bound_predicate.rebind(proj_predicate),
+ )
+ } else {
+ None
+ }
+ };
+
+ let output_ty = match *ret_ty.kind() {
+ ty::Infer(ty::TyVar(ret_vid)) => {
+ self.obligations_for_self_ty(ret_vid).find_map(|(_, obligation)| {
+ get_future_output(obligation.predicate, obligation.cause.span)
+ })?
+ }
+ ty::Opaque(def_id, substs) => self
+ .tcx
+ .bound_explicit_item_bounds(def_id)
+ .subst_iter_copied(self.tcx, substs)
+ .find_map(|(p, s)| get_future_output(p, s))?,
+ ty::Error(_) => return None,
+ ty::Projection(proj)
+ if self.tcx.def_kind(proj.item_def_id) == DefKind::ImplTraitPlaceholder =>
+ {
+ self.tcx
+ .bound_explicit_item_bounds(proj.item_def_id)
+ .subst_iter_copied(self.tcx, proj.substs)
+ .find_map(|(p, s)| get_future_output(p, s))?
+ }
+ _ => span_bug!(
+ self.tcx.def_span(expr_def_id),
+ "async fn generator return type not an inference variable: {ret_ty}"
+ ),
+ };
+
+ // async fn that have opaque types in their return type need to redo the conversion to inference variables
+ // as they fetch the still opaque version from the signature.
+ let InferOk { value: output_ty, obligations } = self
+ .replace_opaque_types_with_inference_vars(
+ output_ty,
+ body_id,
+ self.tcx.def_span(expr_def_id),
+ self.param_env,
+ );
+ self.register_predicates(obligations);
+
+ Some(output_ty)
+ }
+
+ /// Given a projection like
+ ///
+ /// `<X as Future>::Output = T`
+ ///
+ /// where `X` is some type that has no late-bound regions, returns
+ /// `Some(T)`. If the projection is for some other trait, returns
+ /// `None`.
+ fn deduce_future_output_from_projection(
+ &self,
+ cause_span: Span,
+ predicate: ty::PolyProjectionPredicate<'tcx>,
+ ) -> Option<Ty<'tcx>> {
+ debug!("deduce_future_output_from_projection(predicate={:?})", predicate);
+
+ // We do not expect any bound regions in our predicate, so
+ // skip past the bound vars.
+ let Some(predicate) = predicate.no_bound_vars() else {
+ debug!("deduce_future_output_from_projection: has late-bound regions");
+ return None;
+ };
+
+ // Check that this is a projection from the `Future` trait.
+ let trait_def_id = predicate.projection_ty.trait_def_id(self.tcx);
+ let future_trait = self.tcx.require_lang_item(LangItem::Future, Some(cause_span));
+ if trait_def_id != future_trait {
+ debug!("deduce_future_output_from_projection: not a future");
+ return None;
+ }
+
+ // The `Future` trait has only one associated item, `Output`,
+ // so check that this is what we see.
+ let output_assoc_item = self.tcx.associated_item_def_ids(future_trait)[0];
+ if output_assoc_item != predicate.projection_ty.item_def_id {
+ span_bug!(
+ cause_span,
+ "projecting associated item `{:?}` from future, which is not Output `{:?}`",
+ predicate.projection_ty.item_def_id,
+ output_assoc_item,
+ );
+ }
+
+ // Extract the type from the projection. Note that there can
+ // be no bound variables in this type because the "self type"
+ // does not have any regions in it.
+ let output_ty = self.resolve_vars_if_possible(predicate.term);
+ debug!("deduce_future_output_from_projection: output_ty={:?}", output_ty);
+ // This is a projection on a Fn trait so will always be a type.
+ Some(output_ty.ty().unwrap())
+ }
+
+ /// Converts the types that the user supplied, in case that doing
+ /// so should yield an error, but returns back a signature where
+ /// all parameters are of type `TyErr`.
+ fn error_sig_of_closure(&self, decl: &hir::FnDecl<'_>) -> ty::PolyFnSig<'tcx> {
+ let astconv: &dyn AstConv<'_> = self;
+
+ let supplied_arguments = decl.inputs.iter().map(|a| {
+ // Convert the types that the user supplied (if any), but ignore them.
+ astconv.ast_ty_to_ty(a);
+ self.tcx.ty_error()
+ });
+
+ if let hir::FnRetTy::Return(ref output) = decl.output {
+ astconv.ast_ty_to_ty(&output);
+ }
+
+ let result = ty::Binder::dummy(self.tcx.mk_fn_sig(
+ supplied_arguments,
+ self.tcx.ty_error(),
+ decl.c_variadic,
+ hir::Unsafety::Normal,
+ Abi::RustCall,
+ ));
+
+ debug!("supplied_sig_of_closure: result={:?}", result);
+
+ result
+ }
+
+ fn closure_sigs(
+ &self,
+ expr_def_id: DefId,
+ body: &hir::Body<'_>,
+ bound_sig: ty::PolyFnSig<'tcx>,
+ ) -> ClosureSignatures<'tcx> {
+ let liberated_sig = self.tcx().liberate_late_bound_regions(expr_def_id, bound_sig);
+ let liberated_sig = self.inh.normalize_associated_types_in(
+ body.value.span,
+ body.value.hir_id,
+ self.param_env,
+ liberated_sig,
+ );
+ ClosureSignatures { bound_sig, liberated_sig }
+ }
+}
diff --git a/compiler/rustc_typeck/src/check/coercion.rs b/compiler/rustc_hir_typeck/src/coercion.rs
index 2ed5f569b..86597a703 100644
--- a/compiler/rustc_typeck/src/check/coercion.rs
+++ b/compiler/rustc_hir_typeck/src/coercion.rs
@@ -35,13 +35,15 @@
//! // and are then unable to coerce `&7i32` to `&mut i32`.
//! ```
-use crate::astconv::AstConv;
-use crate::check::FnCtxt;
+use crate::FnCtxt;
use rustc_errors::{
- struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed,
+ struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, MultiSpan,
};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
+use rustc_hir::intravisit::{self, Visitor};
+use rustc_hir::Expr;
+use rustc_hir_analysis::astconv::AstConv;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::infer::{Coercion, InferOk, InferResult};
use rustc_infer::traits::{Obligation, TraitEngine, TraitEngineExt};
@@ -59,7 +61,7 @@ use rustc_span::symbol::sym;
use rustc_span::{self, BytePos, DesugaringKind, Span};
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::infer::InferCtxtExt as _;
-use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
+use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
use rustc_trait_selection::traits::{self, ObligationCause, ObligationCauseCode};
use smallvec::{smallvec, SmallVec};
@@ -87,6 +89,19 @@ impl<'a, 'tcx> Deref for Coerce<'a, 'tcx> {
type CoerceResult<'tcx> = InferResult<'tcx, (Vec<Adjustment<'tcx>>, Ty<'tcx>)>;
+struct CollectRetsVisitor<'tcx> {
+ ret_exprs: Vec<&'tcx hir::Expr<'tcx>>,
+}
+
+impl<'tcx> Visitor<'tcx> for CollectRetsVisitor<'tcx> {
+ fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) {
+ if let hir::ExprKind::Ret(_) = expr.kind {
+ self.ret_exprs.push(expr);
+ }
+ intravisit::walk_expr(self, expr);
+ }
+}
+
/// Coercing a mutable reference to an immutable works, while
/// coercing `&T` to `&mut T` should be forbidden.
fn coerce_mutbls<'tcx>(
@@ -201,6 +216,9 @@ impl<'f, 'tcx> Coerce<'f, 'tcx> {
ty::Ref(r_b, _, mutbl_b) => {
return self.coerce_borrowed_pointer(a, b, r_b, mutbl_b);
}
+ ty::Dynamic(predicates, region, ty::DynStar) if self.tcx.features().dyn_star => {
+ return self.coerce_dyn_star(a, b, predicates, region);
+ }
_ => {}
}
@@ -687,7 +705,12 @@ impl<'f, 'tcx> Coerce<'f, 'tcx> {
// Object safety violations or miscellaneous.
Err(err) => {
- self.report_selection_error(obligation.clone(), &obligation, &err, false);
+ self.err_ctxt().report_selection_error(
+ obligation.clone(),
+ &obligation,
+ &err,
+ false,
+ );
// Treat this like an obligation and follow through
// with the unsizing - the lack of a coercion should
// be silent, as it causes a type mismatch later.
@@ -725,6 +748,63 @@ impl<'f, 'tcx> Coerce<'f, 'tcx> {
Ok(coercion)
}
+ fn coerce_dyn_star(
+ &self,
+ a: Ty<'tcx>,
+ b: Ty<'tcx>,
+ predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
+ b_region: ty::Region<'tcx>,
+ ) -> CoerceResult<'tcx> {
+ if !self.tcx.features().dyn_star {
+ return Err(TypeError::Mismatch);
+ }
+
+ if let ty::Dynamic(a_data, _, _) = a.kind()
+ && let ty::Dynamic(b_data, _, _) = b.kind()
+ {
+ if a_data.principal_def_id() == b_data.principal_def_id() {
+ return self.unify_and(a, b, |_| vec![]);
+ } else if !self.tcx().features().trait_upcasting {
+ let mut err = feature_err(
+ &self.tcx.sess.parse_sess,
+ sym::trait_upcasting,
+ self.cause.span,
+ &format!(
+ "cannot cast `{a}` to `{b}`, trait upcasting coercion is experimental"
+ ),
+ );
+ err.emit();
+ }
+ }
+
+ // Check the obligations of the cast -- for example, when casting
+ // `usize` to `dyn* Clone + 'static`:
+ let obligations = predicates
+ .iter()
+ .map(|predicate| {
+ // For each existential predicate (e.g., `?Self: Clone`) substitute
+ // the type of the expression (e.g., `usize` in our example above)
+ // and then require that the resulting predicate (e.g., `usize: Clone`)
+ // holds (it does).
+ let predicate = predicate.with_self_ty(self.tcx, a);
+ Obligation::new(self.cause.clone(), self.param_env, predicate)
+ })
+ // Enforce the region bound (e.g., `usize: 'static`, in our example).
+ .chain([Obligation::new(
+ self.cause.clone(),
+ self.param_env,
+ self.tcx.mk_predicate(ty::Binder::dummy(ty::PredicateKind::TypeOutlives(
+ ty::OutlivesPredicate(a, b_region),
+ ))),
+ )])
+ .collect();
+
+ Ok(InferOk {
+ value: (vec![Adjustment { kind: Adjust::DynStar, target: b }], b),
+ obligations,
+ })
+ }
+
fn coerce_from_safe_fn<F, G>(
&self,
a: Ty<'tcx>,
@@ -1464,23 +1544,29 @@ impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
}
}
Err(coercion_error) => {
+ // Mark that we've failed to coerce the types here to suppress
+ // any superfluous errors we might encounter while trying to
+ // emit or provide suggestions on how to fix the initial error.
+ fcx.set_tainted_by_errors();
let (expected, found) = if label_expression_as_expected {
// In the case where this is a "forced unit", like
// `break`, we want to call the `()` "expected"
// since it is implied by the syntax.
// (Note: not all force-units work this way.)"
- (expression_ty, self.final_ty.unwrap_or(self.expected_ty))
+ (expression_ty, self.merged_ty())
} else {
// Otherwise, the "expected" type for error
// reporting is the current unification type,
// which is basically the LUB of the expressions
// we've seen so far (combined with the expected
// type)
- (self.final_ty.unwrap_or(self.expected_ty), expression_ty)
+ (self.merged_ty(), expression_ty)
};
+ let (expected, found) = fcx.resolve_vars_if_possible((expected, found));
let mut err;
let mut unsized_return = false;
+ let mut visitor = CollectRetsVisitor { ret_exprs: vec![] };
match *cause.code() {
ObligationCauseCode::ReturnNoExpression => {
err = struct_span_err!(
@@ -1506,6 +1592,10 @@ impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
if !fcx.tcx.features().unsized_locals {
unsized_return = self.is_return_ty_unsized(fcx, blk_id);
}
+ if let Some(expression) = expression
+ && let hir::ExprKind::Loop(loop_blk, ..) = expression.kind {
+ intravisit::walk_block(& mut visitor, loop_blk);
+ }
}
ObligationCauseCode::ReturnValue(id) => {
err = self.report_return_mismatched_types(
@@ -1524,7 +1614,7 @@ impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
}
}
_ => {
- err = fcx.report_mismatched_types(
+ err = fcx.err_ctxt().report_mismatched_types(
cause,
expected,
found,
@@ -1551,12 +1641,47 @@ impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
);
}
+ if visitor.ret_exprs.len() > 0 && let Some(expr) = expression {
+ self.note_unreachable_loop_return(&mut err, &expr, &visitor.ret_exprs);
+ }
err.emit_unless(unsized_return);
self.final_ty = Some(fcx.tcx.ty_error());
}
}
}
+ fn note_unreachable_loop_return(
+ &self,
+ err: &mut Diagnostic,
+ expr: &hir::Expr<'tcx>,
+ ret_exprs: &Vec<&'tcx hir::Expr<'tcx>>,
+ ) {
+ let hir::ExprKind::Loop(_, _, _, loop_span) = expr.kind else { return;};
+ let mut span: MultiSpan = vec![loop_span].into();
+ span.push_span_label(loop_span, "this might have zero elements to iterate on");
+ const MAXITER: usize = 3;
+ let iter = ret_exprs.iter().take(MAXITER);
+ for ret_expr in iter {
+ span.push_span_label(
+ ret_expr.span,
+ "if the loop doesn't execute, this value would never get returned",
+ );
+ }
+ err.span_note(
+ span,
+ "the function expects a value to always be returned, but loops might run zero times",
+ );
+ if MAXITER < ret_exprs.len() {
+ err.note(&format!(
+ "if the loop doesn't execute, {} other values would never get returned",
+ ret_exprs.len() - MAXITER
+ ));
+ }
+ err.help(
+ "return a value for the case when the loop has zero elements to iterate on, or \
+ consider changing the return type to account for that possibility",
+ );
+ }
fn report_return_mismatched_types<'a>(
&self,
@@ -1569,7 +1694,7 @@ impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
expression: Option<&'tcx hir::Expr<'tcx>>,
blk_id: Option<hir::HirId>,
) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
- let mut err = fcx.report_mismatched_types(cause, expected, found, ty_err);
+ let mut err = fcx.err_ctxt().report_mismatched_types(cause, expected, found, ty_err);
let mut pointing_at_return_type = false;
let mut fn_output = None;
@@ -1623,7 +1748,7 @@ impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
expected,
found,
can_suggest,
- fcx.tcx.hir().local_def_id_to_hir_id(fcx.tcx.hir().get_parent_item(id)),
+ fcx.tcx.hir().get_parent_item(id).into(),
);
}
if !pointing_at_return_type {
@@ -1632,7 +1757,7 @@ impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
}
let parent_id = fcx.tcx.hir().get_parent_item(id);
- let parent_item = fcx.tcx.hir().get_by_def_id(parent_id);
+ let parent_item = fcx.tcx.hir().get_by_def_id(parent_id.def_id);
if let (Some(expr), Some(_), Some((fn_decl, _, _))) =
(expression, blk_id, fcx.get_node_fn_decl(parent_item))
@@ -1644,13 +1769,34 @@ impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
expected,
found,
id,
- fcx.tcx.hir().local_def_id_to_hir_id(parent_id),
+ parent_id.into(),
+ );
+ }
+
+ let ret_coercion_span = fcx.ret_coercion_span.get();
+
+ if let Some(sp) = ret_coercion_span
+ // If the closure has an explicit return type annotation, or if
+ // the closure's return type has been inferred from outside
+ // requirements (such as an Fn* trait bound), then a type error
+ // may occur at the first return expression we see in the closure
+ // (if it conflicts with the declared return type). Skip adding a
+ // note in this case, since it would be incorrect.
+ && !fcx.return_type_pre_known
+ {
+ err.span_note(
+ sp,
+ &format!(
+ "return type inferred to be `{}` here",
+ expected
+ ),
);
}
- if let (Some(sp), Some(fn_output)) = (fcx.ret_coercion_span.get(), fn_output) {
+ if let (Some(sp), Some(fn_output)) = (ret_coercion_span, fn_output) {
self.add_impl_trait_explanation(&mut err, cause, fcx, expected, sp, fn_output);
}
+
err
}
diff --git a/compiler/rustc_typeck/src/check/demand.rs b/compiler/rustc_hir_typeck/src/demand.rs
index 4de48dc5b..16febfc46 100644
--- a/compiler/rustc_typeck/src/check/demand.rs
+++ b/compiler/rustc_hir_typeck/src/demand.rs
@@ -1,21 +1,20 @@
-use crate::check::FnCtxt;
-use rustc_infer::infer::InferOk;
-use rustc_middle::middle::stability::EvalResult;
-use rustc_trait_selection::infer::InferCtxtExt as _;
-use rustc_trait_selection::traits::ObligationCause;
-
+use crate::FnCtxt;
use rustc_ast::util::parser::PREC_POSTFIX;
use rustc_errors::{Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed};
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{is_range_literal, Node};
+use rustc_infer::infer::InferOk;
use rustc_middle::lint::in_external_macro;
+use rustc_middle::middle::stability::EvalResult;
use rustc_middle::ty::adjustment::AllowTwoPhase;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{self, Article, AssocItem, Ty, TypeAndMut};
use rustc_span::symbol::{sym, Symbol};
use rustc_span::{BytePos, Span};
+use rustc_trait_selection::infer::InferCtxtExt as _;
+use rustc_trait_selection::traits::ObligationCause;
use super::method::probe;
@@ -32,20 +31,22 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
error: Option<TypeError<'tcx>>,
) {
self.annotate_expected_due_to_let_ty(err, expr, error);
- self.suggest_deref_ref_or_into(err, expr, expected, expr_ty, expected_ty_expr);
- self.suggest_compatible_variants(err, expr, expected, expr_ty);
- self.suggest_non_zero_new_unwrap(err, expr, expected, expr_ty);
- if self.suggest_calling_boxed_future_when_appropriate(err, expr, expected, expr_ty) {
- return;
- }
- self.suggest_no_capture_closure(err, expected, expr_ty);
- self.suggest_boxing_when_appropriate(err, expr, expected, expr_ty);
- self.suggest_missing_parentheses(err, expr);
- self.suggest_block_to_brackets_peeling_refs(err, expr, expr_ty, expected);
+
+ // Use `||` to give these suggestions a precedence
+ let _ = self.suggest_missing_parentheses(err, expr)
+ || self.suggest_deref_ref_or_into(err, expr, expected, expr_ty, expected_ty_expr)
+ || self.suggest_compatible_variants(err, expr, expected, expr_ty)
+ || self.suggest_non_zero_new_unwrap(err, expr, expected, expr_ty)
+ || self.suggest_calling_boxed_future_when_appropriate(err, expr, expected, expr_ty)
+ || self.suggest_no_capture_closure(err, expected, expr_ty)
+ || self.suggest_boxing_when_appropriate(err, expr, expected, expr_ty)
+ || self.suggest_block_to_brackets_peeling_refs(err, expr, expr_ty, expected)
+ || self.suggest_copied_or_cloned(err, expr, expr_ty, expected)
+ || self.suggest_into(err, expr, expr_ty, expected);
+
self.note_type_is_not_clone(err, expected, expr_ty, expr);
self.note_need_for_fn_pointer(err, expected, expr_ty);
self.note_internal_mutation_in_method(err, expr, expected, expr_ty);
- self.report_closure_inferred_return_type(err, expected);
}
// Requires that the two types unify, and prints an error message if
@@ -77,7 +78,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
self.register_predicates(obligations);
None
}
- Err(e) => Some(self.report_mismatched_types(&cause, expected, actual, e)),
+ Err(e) => Some(self.err_ctxt().report_mismatched_types(&cause, expected, actual, e)),
}
}
@@ -107,7 +108,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
self.register_predicates(obligations);
None
}
- Err(e) => Some(self.report_mismatched_types(cause, expected, actual, e)),
+ Err(e) => Some(self.err_ctxt().report_mismatched_types(cause, expected, actual, e)),
}
}
@@ -131,7 +132,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
///
/// N.B., this code relies on `self.diverges` to be accurate. In particular, assignments to `!`
/// will be permitted if the diverges flag is currently "always".
- #[tracing::instrument(level = "debug", skip(self, expr, expected_ty_expr, allow_two_phase))]
+ #[instrument(level = "debug", skip(self, expr, expected_ty_expr, allow_two_phase))]
pub fn demand_coerce_diag(
&self,
expr: &hir::Expr<'tcx>,
@@ -151,7 +152,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let expr = expr.peel_drop_temps();
let cause = self.misc(expr.span);
let expr_ty = self.resolve_vars_with_obligations(checked_ty);
- let mut err = self.report_mismatched_types(&cause, expected, expr_ty, e.clone());
+ let mut err = self.err_ctxt().report_mismatched_types(&cause, expected, expr_ty, e.clone());
let is_insufficiently_polymorphic =
matches!(e, TypeError::RegionsInsufficientlyPolymorphic(..));
@@ -286,7 +287,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
expr: &hir::Expr<'_>,
expected: Ty<'tcx>,
expr_ty: Ty<'tcx>,
- ) {
+ ) -> bool {
if let ty::Adt(expected_adt, substs) = expected.kind() {
if let hir::ExprKind::Field(base, ident) = expr.kind {
let base_ty = self.typeck_results.borrow().expr_ty(base);
@@ -299,7 +300,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
"",
Applicability::MaybeIncorrect,
);
- return
+ return true;
}
}
@@ -338,7 +339,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
} else if self.tcx.is_diagnostic_item(sym::Option, expected_adt.did()) {
vec!["None", "Some(())"]
} else {
- return;
+ return false;
};
if let Some(indent) =
self.tcx.sess.source_map().indentation_before(span.shrink_to_lo())
@@ -358,7 +359,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
Applicability::MaybeIncorrect,
);
}
- return;
+ return true;
}
}
}
@@ -375,7 +376,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let field_is_local = sole_field.did.is_local();
let field_is_accessible =
- sole_field.vis.is_accessible_from(expr.hir_id.owner.to_def_id(), self.tcx)
+ sole_field.vis.is_accessible_from(expr.hir_id.owner.def_id, self.tcx)
// Skip suggestions for unstable public fields (for example `Pin::pointer`)
&& matches!(self.tcx.eval_stability(sole_field.did, None, expr.span, None), EvalResult::Allow | EvalResult::Unmarked);
@@ -417,6 +418,16 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
hir::def::CtorKind::Const => unreachable!(),
};
+ // Suggest constructor as deep into the block tree as possible.
+ // This fixes https://github.com/rust-lang/rust/issues/101065,
+ // and also just helps make the most minimal suggestions.
+ let mut expr = expr;
+ while let hir::ExprKind::Block(block, _) = &expr.kind
+ && let Some(expr_) = &block.expr
+ {
+ expr = expr_
+ }
+
vec![
(expr.span.shrink_to_lo(), format!("{prefix}{variant}{open}")),
(expr.span.shrink_to_hi(), close.to_owned()),
@@ -435,6 +446,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
suggestions_for(&**variant, *ctor_kind, *field_name),
Applicability::MaybeIncorrect,
);
+ return true;
}
_ => {
// More than one matching variant.
@@ -450,9 +462,12 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
),
Applicability::MaybeIncorrect,
);
+ return true;
}
}
}
+
+ false
}
fn suggest_non_zero_new_unwrap(
@@ -461,19 +476,19 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
expr: &hir::Expr<'_>,
expected: Ty<'tcx>,
expr_ty: Ty<'tcx>,
- ) {
+ ) -> bool {
let tcx = self.tcx;
let (adt, unwrap) = match expected.kind() {
// In case Option<NonZero*> is wanted, but * is provided, suggest calling new
ty::Adt(adt, substs) if tcx.is_diagnostic_item(sym::Option, adt.did()) => {
// Unwrap option
- let ty::Adt(adt, _) = substs.type_at(0).kind() else { return };
+ let ty::Adt(adt, _) = substs.type_at(0).kind() else { return false; };
(adt, "")
}
// In case NonZero* is wanted, but * is provided also add `.unwrap()` to satisfy types
ty::Adt(adt, _) => (adt, ".unwrap()"),
- _ => return,
+ _ => return false,
};
let map = [
@@ -492,7 +507,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let Some((s, _)) = map
.iter()
.find(|&&(s, t)| self.tcx.is_diagnostic_item(s, adt.did()) && self.can_coerce(expr_ty, t))
- else { return };
+ else { return false; };
let path = self.tcx.def_path_str(adt.non_enum_variant().def_id);
@@ -504,6 +519,8 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
],
Applicability::MaybeIncorrect,
);
+
+ true
}
pub fn get_conversion_methods(
@@ -513,24 +530,29 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
checked_ty: Ty<'tcx>,
hir_id: hir::HirId,
) -> Vec<AssocItem> {
- let mut methods =
- self.probe_for_return_type(span, probe::Mode::MethodCall, expected, checked_ty, hir_id);
- methods.retain(|m| {
- self.has_only_self_parameter(m)
- && self
- .tcx
- // This special internal attribute is used to permit
- // "identity-like" conversion methods to be suggested here.
- //
- // FIXME (#46459 and #46460): ideally
- // `std::convert::Into::into` and `std::borrow:ToOwned` would
- // also be `#[rustc_conversion_suggestion]`, if not for
- // method-probing false-positives and -negatives (respectively).
- //
- // FIXME? Other potential candidate methods: `as_ref` and
- // `as_mut`?
- .has_attr(m.def_id, sym::rustc_conversion_suggestion)
- });
+ let methods = self.probe_for_return_type(
+ span,
+ probe::Mode::MethodCall,
+ expected,
+ checked_ty,
+ hir_id,
+ |m| {
+ self.has_only_self_parameter(m)
+ && self
+ .tcx
+ // This special internal attribute is used to permit
+ // "identity-like" conversion methods to be suggested here.
+ //
+ // FIXME (#46459 and #46460): ideally
+ // `std::convert::Into::into` and `std::borrow:ToOwned` would
+ // also be `#[rustc_conversion_suggestion]`, if not for
+ // method-probing false-positives and -negatives (respectively).
+ //
+ // FIXME? Other potential candidate methods: `as_ref` and
+ // `as_mut`?
+ .has_attr(m.def_id, sym::rustc_conversion_suggestion)
+ },
+ );
methods
}
@@ -590,7 +612,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let closure_params_len = closure_fn_decl.inputs.len();
let (
Some(Node::Expr(hir::Expr {
- kind: hir::ExprKind::MethodCall(method_path, method_expr, _),
+ kind: hir::ExprKind::MethodCall(method_path, receiver, ..),
..
})),
1,
@@ -598,14 +620,16 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
return None;
};
- let self_ty = self.typeck_results.borrow().expr_ty(&method_expr[0]);
- let self_ty = format!("{:?}", self_ty);
+ let self_ty = self.typeck_results.borrow().expr_ty(receiver);
let name = method_path.ident.name;
- let is_as_ref_able = (self_ty.starts_with("&std::option::Option")
- || self_ty.starts_with("&std::result::Result")
- || self_ty.starts_with("std::option::Option")
- || self_ty.starts_with("std::result::Result"))
- && (name == sym::map || name == sym::and_then);
+ let is_as_ref_able = match self_ty.peel_refs().kind() {
+ ty::Adt(def, _) => {
+ (self.tcx.is_diagnostic_item(sym::Option, def.did())
+ || self.tcx.is_diagnostic_item(sym::Result, def.did()))
+ && (name == sym::map || name == sym::and_then)
+ }
+ _ => false,
+ };
match (is_as_ref_able, self.sess().source_map().span_to_snippet(method_path.ident.span)) {
(true, Ok(src)) => {
let suggestion = format!("as_ref().{}", src);
@@ -637,11 +661,9 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}?;
match hir.find(hir.get_parent_node(expr.hir_id))? {
- Node::Expr(hir::Expr { kind: hir::ExprKind::Struct(_, fields, ..), .. }) => {
- for field in *fields {
- if field.ident.name == local.name && field.is_shorthand {
- return Some(local.name);
- }
+ Node::ExprField(field) => {
+ if field.ident.name == local.name && field.is_shorthand {
+ return Some(local.name);
}
}
_ => {}
@@ -697,7 +719,14 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
expr: &hir::Expr<'tcx>,
checked_ty: Ty<'tcx>,
expected: Ty<'tcx>,
- ) -> Option<(Span, String, String, Applicability, bool /* verbose */)> {
+ ) -> Option<(
+ Span,
+ String,
+ String,
+ Applicability,
+ bool, /* verbose */
+ bool, /* suggest `&` or `&mut` type annotation */
+ )> {
let sess = self.sess();
let sp = expr.span;
@@ -729,6 +758,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
String::new(),
Applicability::MachineApplicable,
true,
+ false,
));
}
}
@@ -743,6 +773,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
"b".to_string(),
Applicability::MachineApplicable,
true,
+ false,
));
}
}
@@ -767,22 +798,21 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
};
if self.can_coerce(ref_ty, expected) {
let mut sugg_sp = sp;
- if let hir::ExprKind::MethodCall(ref segment, ref args, _) = expr.kind {
+ if let hir::ExprKind::MethodCall(ref segment, receiver, args, _) = expr.kind {
let clone_trait =
self.tcx.require_lang_item(LangItem::Clone, Some(segment.ident.span));
- if let ([arg], Some(true), sym::clone) = (
- &args[..],
- self.typeck_results.borrow().type_dependent_def_id(expr.hir_id).map(
+ if args.is_empty()
+ && self.typeck_results.borrow().type_dependent_def_id(expr.hir_id).map(
|did| {
let ai = self.tcx.associated_item(did);
ai.trait_container(self.tcx) == Some(clone_trait)
},
- ),
- segment.ident.name,
- ) {
+ ) == Some(true)
+ && segment.ident.name == sym::clone
+ {
// If this expression had a clone call when suggesting borrowing
// we want to suggest removing it because it'd now be unnecessary.
- sugg_sp = arg.span;
+ sugg_sp = receiver.span;
}
}
if let Ok(src) = sm.span_to_snippet(sugg_sp) {
@@ -793,7 +823,6 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
_ if is_range_literal(expr) => true,
_ => false,
};
- let sugg_expr = if needs_parens { format!("({src})") } else { src };
if let Some(sugg) = self.can_use_as_ref(expr) {
return Some((
@@ -802,6 +831,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
sugg.2,
Applicability::MachineApplicable,
false,
+ false,
));
}
@@ -821,6 +851,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
}
+ let sugg_expr = if needs_parens { format!("({src})") } else { src };
return Some(match mutability {
hir::Mutability::Mut => (
sp,
@@ -828,6 +859,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
format!("{prefix}&mut {sugg_expr}"),
Applicability::MachineApplicable,
false,
+ false,
),
hir::Mutability::Not => (
sp,
@@ -835,6 +867,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
format!("{prefix}&{sugg_expr}"),
Applicability::MachineApplicable,
false,
+ false,
),
});
}
@@ -864,6 +897,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
String::new(),
Applicability::MachineApplicable,
true,
+ true
));
}
return None;
@@ -877,6 +911,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
String::new(),
Applicability::MachineApplicable,
true,
+ true,
));
}
}
@@ -943,6 +978,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
src,
applicability,
true,
+ false,
));
}
}
@@ -983,6 +1019,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
Applicability::MachineApplicable
},
true,
+ false,
));
}
@@ -1034,6 +1071,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
suggestion,
Applicability::MachineApplicable,
true,
+ false,
));
}
}
@@ -1072,21 +1110,16 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let mut sugg = vec![];
- if let Some(hir::Node::Expr(hir::Expr {
- kind: hir::ExprKind::Struct(_, fields, _), ..
- })) = self.tcx.hir().find(self.tcx.hir().get_parent_node(expr.hir_id))
+ if let Some(hir::Node::ExprField(field)) =
+ self.tcx.hir().find(self.tcx.hir().get_parent_node(expr.hir_id))
{
// `expr` is a literal field for a struct, only suggest if appropriate
- match (*fields)
- .iter()
- .find(|field| field.expr.hir_id == expr.hir_id && field.is_shorthand)
- {
+ if field.is_shorthand {
// This is a field literal
- Some(field) => {
- sugg.push((field.ident.span.shrink_to_lo(), format!("{}: ", field.ident)));
- }
+ sugg.push((field.ident.span.shrink_to_lo(), format!("{}: ", field.ident)));
+ } else {
// Likely a field was meant, but this field wasn't found. Do not suggest anything.
- None => return false,
+ return false;
}
};
@@ -1418,25 +1451,4 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
_ => false,
}
}
-
- // Report the type inferred by the return statement.
- fn report_closure_inferred_return_type(&self, err: &mut Diagnostic, expected: Ty<'tcx>) {
- if let Some(sp) = self.ret_coercion_span.get()
- // If the closure has an explicit return type annotation, or if
- // the closure's return type has been inferred from outside
- // requirements (such as an Fn* trait bound), then a type error
- // may occur at the first return expression we see in the closure
- // (if it conflicts with the declared return type). Skip adding a
- // note in this case, since it would be incorrect.
- && !self.return_type_pre_known
- {
- err.span_note(
- sp,
- &format!(
- "return type inferred to be `{}` here",
- self.resolve_vars_if_possible(expected)
- ),
- );
- }
- }
}
diff --git a/compiler/rustc_typeck/src/check/diverges.rs b/compiler/rustc_hir_typeck/src/diverges.rs
index 963a93a95..963a93a95 100644
--- a/compiler/rustc_typeck/src/check/diverges.rs
+++ b/compiler/rustc_hir_typeck/src/diverges.rs
diff --git a/compiler/rustc_hir_typeck/src/errors.rs b/compiler/rustc_hir_typeck/src/errors.rs
new file mode 100644
index 000000000..175037f9b
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/errors.rs
@@ -0,0 +1,126 @@
+//! Errors emitted by `rustc_hir_analysis`.
+use rustc_macros::{Diagnostic, Subdiagnostic};
+use rustc_middle::ty::Ty;
+use rustc_span::{symbol::Ident, Span};
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_field_multiply_specified_in_initializer, code = "E0062")]
+pub struct FieldMultiplySpecifiedInInitializer {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+ #[label(previous_use_label)]
+ pub prev_span: Span,
+ pub ident: Ident,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_return_stmt_outside_of_fn_body, code = "E0572")]
+pub struct ReturnStmtOutsideOfFnBody {
+ #[primary_span]
+ pub span: Span,
+ #[label(encl_body_label)]
+ pub encl_body_span: Option<Span>,
+ #[label(encl_fn_label)]
+ pub encl_fn_span: Option<Span>,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_yield_expr_outside_of_generator, code = "E0627")]
+pub struct YieldExprOutsideOfGenerator {
+ #[primary_span]
+ pub span: Span,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_struct_expr_non_exhaustive, code = "E0639")]
+pub struct StructExprNonExhaustive {
+ #[primary_span]
+ pub span: Span,
+ pub what: &'static str,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_method_call_on_unknown_type, code = "E0699")]
+pub struct MethodCallOnUnknownType {
+ #[primary_span]
+ pub span: Span,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_functional_record_update_on_non_struct, code = "E0436")]
+pub struct FunctionalRecordUpdateOnNonStruct {
+ #[primary_span]
+ pub span: Span,
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_address_of_temporary_taken, code = "E0745")]
+pub struct AddressOfTemporaryTaken {
+ #[primary_span]
+ #[label]
+ pub span: Span,
+}
+
+#[derive(Subdiagnostic)]
+pub enum AddReturnTypeSuggestion {
+ #[suggestion(
+ hir_analysis_add_return_type_add,
+ code = "-> {found} ",
+ applicability = "machine-applicable"
+ )]
+ Add {
+ #[primary_span]
+ span: Span,
+ found: String,
+ },
+ #[suggestion(
+ hir_analysis_add_return_type_missing_here,
+ code = "-> _ ",
+ applicability = "has-placeholders"
+ )]
+ MissingHere {
+ #[primary_span]
+ span: Span,
+ },
+}
+
+#[derive(Subdiagnostic)]
+pub enum ExpectedReturnTypeLabel<'tcx> {
+ #[label(hir_analysis_expected_default_return_type)]
+ Unit {
+ #[primary_span]
+ span: Span,
+ },
+ #[label(hir_analysis_expected_return_type)]
+ Other {
+ #[primary_span]
+ span: Span,
+ expected: Ty<'tcx>,
+ },
+}
+
+#[derive(Diagnostic)]
+#[diag(hir_analysis_missing_parentheses_in_range, code = "E0689")]
+pub struct MissingParentheseInRange {
+ #[primary_span]
+ #[label(hir_analysis_missing_parentheses_in_range)]
+ pub span: Span,
+ pub ty_str: String,
+ pub method_name: String,
+ #[subdiagnostic]
+ pub add_missing_parentheses: Option<AddMissingParenthesesInRange>,
+}
+
+#[derive(Subdiagnostic)]
+#[multipart_suggestion_verbose(
+ hir_analysis_add_missing_parentheses_in_range,
+ applicability = "maybe-incorrect"
+)]
+pub struct AddMissingParenthesesInRange {
+ pub func_name: String,
+ #[suggestion_part(code = "(")]
+ pub left: Span,
+ #[suggestion_part(code = ")")]
+ pub right: Span,
+}
diff --git a/compiler/rustc_typeck/src/check/expectation.rs b/compiler/rustc_hir_typeck/src/expectation.rs
index e9e810344..e9e810344 100644
--- a/compiler/rustc_typeck/src/check/expectation.rs
+++ b/compiler/rustc_hir_typeck/src/expectation.rs
diff --git a/compiler/rustc_hir_typeck/src/expr.rs b/compiler/rustc_hir_typeck/src/expr.rs
new file mode 100644
index 000000000..9fde62a81
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/expr.rs
@@ -0,0 +1,2896 @@
+//! Type checking expressions.
+//!
+//! See `mod.rs` for more context on type checking in general.
+
+use crate::cast;
+use crate::coercion::CoerceMany;
+use crate::coercion::DynamicCoerceMany;
+use crate::errors::{AddressOfTemporaryTaken, ReturnStmtOutsideOfFnBody, StructExprNonExhaustive};
+use crate::errors::{
+ FieldMultiplySpecifiedInInitializer, FunctionalRecordUpdateOnNonStruct,
+ YieldExprOutsideOfGenerator,
+};
+use crate::fatally_break_rust;
+use crate::method::SelfSource;
+use crate::type_error_struct;
+use crate::Expectation::{self, ExpectCastableToType, ExpectHasType, NoExpectation};
+use crate::{
+ report_unexpected_variant_res, BreakableCtxt, Diverges, FnCtxt, Needs,
+ TupleArgumentsFlag::DontTupleArguments,
+};
+use rustc_ast as ast;
+use rustc_data_structures::fx::FxHashMap;
+use rustc_data_structures::stack::ensure_sufficient_stack;
+use rustc_errors::{
+ pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, DiagnosticId,
+ ErrorGuaranteed, StashKey,
+};
+use rustc_hir as hir;
+use rustc_hir::def::{CtorKind, DefKind, Res};
+use rustc_hir::def_id::DefId;
+use rustc_hir::intravisit::Visitor;
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::{Closure, ExprKind, HirId, QPath};
+use rustc_hir_analysis::astconv::AstConv as _;
+use rustc_hir_analysis::check::ty_kind_suggestion;
+use rustc_infer::infer;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::infer::InferOk;
+use rustc_infer::traits::ObligationCause;
+use rustc_middle::middle::stability;
+use rustc_middle::ty::adjustment::{Adjust, Adjustment, AllowTwoPhase};
+use rustc_middle::ty::error::TypeError::FieldMisMatch;
+use rustc_middle::ty::subst::SubstsRef;
+use rustc_middle::ty::{self, AdtKind, Ty, TypeVisitable};
+use rustc_session::errors::ExprParenthesesNeeded;
+use rustc_session::parse::feature_err;
+use rustc_span::hygiene::DesugaringKind;
+use rustc_span::lev_distance::find_best_match_for_name;
+use rustc_span::source_map::{Span, Spanned};
+use rustc_span::symbol::{kw, sym, Ident, Symbol};
+use rustc_target::spec::abi::Abi::RustIntrinsic;
+use rustc_trait_selection::infer::InferCtxtExt;
+use rustc_trait_selection::traits::{self, ObligationCauseCode};
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ fn check_expr_eq_type(&self, expr: &'tcx hir::Expr<'tcx>, expected: Ty<'tcx>) {
+ let ty = self.check_expr_with_hint(expr, expected);
+ self.demand_eqtype(expr.span, expected, ty);
+ }
+
+ pub fn check_expr_has_type_or_error(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ expected: Ty<'tcx>,
+ extend_err: impl FnMut(&mut Diagnostic),
+ ) -> Ty<'tcx> {
+ self.check_expr_meets_expectation_or_error(expr, ExpectHasType(expected), extend_err)
+ }
+
+ fn check_expr_meets_expectation_or_error(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ expected: Expectation<'tcx>,
+ mut extend_err: impl FnMut(&mut Diagnostic),
+ ) -> Ty<'tcx> {
+ let expected_ty = expected.to_option(&self).unwrap_or(self.tcx.types.bool);
+ let mut ty = self.check_expr_with_expectation(expr, expected);
+
+ // While we don't allow *arbitrary* coercions here, we *do* allow
+ // coercions from ! to `expected`.
+ if ty.is_never() {
+ if let Some(adjustments) = self.typeck_results.borrow().adjustments().get(expr.hir_id) {
+ self.tcx().sess.delay_span_bug(
+ expr.span,
+ "expression with never type wound up being adjusted",
+ );
+ return if let [Adjustment { kind: Adjust::NeverToAny, target }] = &adjustments[..] {
+ target.to_owned()
+ } else {
+ self.tcx().ty_error()
+ };
+ }
+
+ let adj_ty = self.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::AdjustmentType,
+ span: expr.span,
+ });
+ self.apply_adjustments(
+ expr,
+ vec![Adjustment { kind: Adjust::NeverToAny, target: adj_ty }],
+ );
+ ty = adj_ty;
+ }
+
+ if let Some(mut err) = self.demand_suptype_diag(expr.span, expected_ty, ty) {
+ let expr = expr.peel_drop_temps();
+ self.suggest_deref_ref_or_into(&mut err, expr, expected_ty, ty, None);
+ extend_err(&mut err);
+ err.emit();
+ }
+ ty
+ }
+
+ pub(super) fn check_expr_coercable_to_type(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ expected: Ty<'tcx>,
+ expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
+ ) -> Ty<'tcx> {
+ let ty = self.check_expr_with_hint(expr, expected);
+ // checks don't need two phase
+ self.demand_coerce(expr, ty, expected, expected_ty_expr, AllowTwoPhase::No)
+ }
+
+ pub(super) fn check_expr_with_hint(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ expected: Ty<'tcx>,
+ ) -> Ty<'tcx> {
+ self.check_expr_with_expectation(expr, ExpectHasType(expected))
+ }
+
+ fn check_expr_with_expectation_and_needs(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ expected: Expectation<'tcx>,
+ needs: Needs,
+ ) -> Ty<'tcx> {
+ let ty = self.check_expr_with_expectation(expr, expected);
+
+ // If the expression is used in a place whether mutable place is required
+ // e.g. LHS of assignment, perform the conversion.
+ if let Needs::MutPlace = needs {
+ self.convert_place_derefs_to_mutable(expr);
+ }
+
+ ty
+ }
+
+ pub(super) fn check_expr(&self, expr: &'tcx hir::Expr<'tcx>) -> Ty<'tcx> {
+ self.check_expr_with_expectation(expr, NoExpectation)
+ }
+
+ pub(super) fn check_expr_with_needs(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ needs: Needs,
+ ) -> Ty<'tcx> {
+ self.check_expr_with_expectation_and_needs(expr, NoExpectation, needs)
+ }
+
+ /// Invariant:
+ /// If an expression has any sub-expressions that result in a type error,
+ /// inspecting that expression's type with `ty.references_error()` will return
+ /// true. Likewise, if an expression is known to diverge, inspecting its
+ /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
+ /// strict, _|_ can appear in the type of an expression that does not,
+ /// itself, diverge: for example, fn() -> _|_.)
+ /// Note that inspecting a type's structure *directly* may expose the fact
+ /// that there are actually multiple representations for `Error`, so avoid
+ /// that when err needs to be handled differently.
+ #[instrument(skip(self, expr), level = "debug")]
+ pub(super) fn check_expr_with_expectation(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ expected: Expectation<'tcx>,
+ ) -> Ty<'tcx> {
+ self.check_expr_with_expectation_and_args(expr, expected, &[])
+ }
+
+ /// Same as `check_expr_with_expectation`, but allows us to pass in the arguments of a
+ /// `ExprKind::Call` when evaluating its callee when it is an `ExprKind::Path`.
+ pub(super) fn check_expr_with_expectation_and_args(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ expected: Expectation<'tcx>,
+ args: &'tcx [hir::Expr<'tcx>],
+ ) -> Ty<'tcx> {
+ if self.tcx().sess.verbose() {
+ // make this code only run with -Zverbose because it is probably slow
+ if let Ok(lint_str) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
+ if !lint_str.contains('\n') {
+ debug!("expr text: {lint_str}");
+ } else {
+ let mut lines = lint_str.lines();
+ if let Some(line0) = lines.next() {
+ let remaining_lines = lines.count();
+ debug!("expr text: {line0}");
+ debug!("expr text: ...(and {remaining_lines} more lines)");
+ }
+ }
+ }
+ }
+
+ // True if `expr` is a `Try::from_ok(())` that is a result of desugaring a try block
+ // without the final expr (e.g. `try { return; }`). We don't want to generate an
+ // unreachable_code lint for it since warnings for autogenerated code are confusing.
+ let is_try_block_generated_unit_expr = match expr.kind {
+ ExprKind::Call(_, args) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {
+ args.len() == 1 && args[0].span.is_desugaring(DesugaringKind::TryBlock)
+ }
+
+ _ => false,
+ };
+
+ // Warn for expressions after diverging siblings.
+ if !is_try_block_generated_unit_expr {
+ self.warn_if_unreachable(expr.hir_id, expr.span, "expression");
+ }
+
+ // Hide the outer diverging and has_errors flags.
+ let old_diverges = self.diverges.replace(Diverges::Maybe);
+ let old_has_errors = self.has_errors.replace(false);
+
+ let ty = ensure_sufficient_stack(|| match &expr.kind {
+ hir::ExprKind::Path(
+ qpath @ hir::QPath::Resolved(..) | qpath @ hir::QPath::TypeRelative(..),
+ ) => self.check_expr_path(qpath, expr, args),
+ _ => self.check_expr_kind(expr, expected),
+ });
+
+ // Warn for non-block expressions with diverging children.
+ match expr.kind {
+ ExprKind::Block(..)
+ | ExprKind::If(..)
+ | ExprKind::Let(..)
+ | ExprKind::Loop(..)
+ | ExprKind::Match(..) => {}
+ // If `expr` is a result of desugaring the try block and is an ok-wrapped
+ // diverging expression (e.g. it arose from desugaring of `try { return }`),
+ // we skip issuing a warning because it is autogenerated code.
+ ExprKind::Call(..) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {}
+ ExprKind::Call(callee, _) => self.warn_if_unreachable(expr.hir_id, callee.span, "call"),
+ ExprKind::MethodCall(segment, ..) => {
+ self.warn_if_unreachable(expr.hir_id, segment.ident.span, "call")
+ }
+ _ => self.warn_if_unreachable(expr.hir_id, expr.span, "expression"),
+ }
+
+ // Any expression that produces a value of type `!` must have diverged
+ if ty.is_never() {
+ self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
+ }
+
+ // Record the type, which applies it effects.
+ // We need to do this after the warning above, so that
+ // we don't warn for the diverging expression itself.
+ self.write_ty(expr.hir_id, ty);
+
+ // Combine the diverging and has_error flags.
+ self.diverges.set(self.diverges.get() | old_diverges);
+ self.has_errors.set(self.has_errors.get() | old_has_errors);
+
+ debug!("type of {} is...", self.tcx.hir().node_to_string(expr.hir_id));
+ debug!("... {:?}, expected is {:?}", ty, expected);
+
+ ty
+ }
+
+ #[instrument(skip(self, expr), level = "debug")]
+ fn check_expr_kind(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ expected: Expectation<'tcx>,
+ ) -> Ty<'tcx> {
+ trace!("expr={:#?}", expr);
+
+ let tcx = self.tcx;
+ match expr.kind {
+ ExprKind::Box(subexpr) => self.check_expr_box(subexpr, expected),
+ ExprKind::Lit(ref lit) => self.check_lit(&lit, expected),
+ ExprKind::Binary(op, lhs, rhs) => self.check_binop(expr, op, lhs, rhs, expected),
+ ExprKind::Assign(lhs, rhs, span) => {
+ self.check_expr_assign(expr, expected, lhs, rhs, span)
+ }
+ ExprKind::AssignOp(op, lhs, rhs) => {
+ self.check_binop_assign(expr, op, lhs, rhs, expected)
+ }
+ ExprKind::Unary(unop, oprnd) => self.check_expr_unary(unop, oprnd, expected, expr),
+ ExprKind::AddrOf(kind, mutbl, oprnd) => {
+ self.check_expr_addr_of(kind, mutbl, oprnd, expected, expr)
+ }
+ ExprKind::Path(QPath::LangItem(lang_item, _, hir_id)) => {
+ self.check_lang_item_path(lang_item, expr, hir_id)
+ }
+ ExprKind::Path(ref qpath) => self.check_expr_path(qpath, expr, &[]),
+ ExprKind::InlineAsm(asm) => {
+ // We defer some asm checks as we may not have resolved the input and output types yet (they may still be infer vars).
+ self.deferred_asm_checks.borrow_mut().push((asm, expr.hir_id));
+ self.check_expr_asm(asm)
+ }
+ ExprKind::Break(destination, ref expr_opt) => {
+ self.check_expr_break(destination, expr_opt.as_deref(), expr)
+ }
+ ExprKind::Continue(destination) => {
+ if destination.target_id.is_ok() {
+ tcx.types.never
+ } else {
+ // There was an error; make type-check fail.
+ tcx.ty_error()
+ }
+ }
+ ExprKind::Ret(ref expr_opt) => self.check_expr_return(expr_opt.as_deref(), expr),
+ ExprKind::Let(let_expr) => self.check_expr_let(let_expr),
+ ExprKind::Loop(body, _, source, _) => {
+ self.check_expr_loop(body, source, expected, expr)
+ }
+ ExprKind::Match(discrim, arms, match_src) => {
+ self.check_match(expr, &discrim, arms, expected, match_src)
+ }
+ ExprKind::Closure(&Closure { capture_clause, fn_decl, body, movability, .. }) => {
+ self.check_expr_closure(expr, capture_clause, &fn_decl, body, movability, expected)
+ }
+ ExprKind::Block(body, _) => self.check_block_with_expected(&body, expected),
+ ExprKind::Call(callee, args) => self.check_call(expr, &callee, args, expected),
+ ExprKind::MethodCall(segment, receiver, args, _) => {
+ self.check_method_call(expr, segment, receiver, args, expected)
+ }
+ ExprKind::Cast(e, t) => self.check_expr_cast(e, t, expr),
+ ExprKind::Type(e, t) => {
+ let ty = self.to_ty_saving_user_provided_ty(&t);
+ self.check_expr_eq_type(&e, ty);
+ ty
+ }
+ ExprKind::If(cond, then_expr, opt_else_expr) => {
+ self.check_then_else(cond, then_expr, opt_else_expr, expr.span, expected)
+ }
+ ExprKind::DropTemps(e) => self.check_expr_with_expectation(e, expected),
+ ExprKind::Array(args) => self.check_expr_array(args, expected, expr),
+ ExprKind::ConstBlock(ref anon_const) => {
+ self.check_expr_const_block(anon_const, expected, expr)
+ }
+ ExprKind::Repeat(element, ref count) => {
+ self.check_expr_repeat(element, count, expected, expr)
+ }
+ ExprKind::Tup(elts) => self.check_expr_tuple(elts, expected, expr),
+ ExprKind::Struct(qpath, fields, ref base_expr) => {
+ self.check_expr_struct(expr, expected, qpath, fields, base_expr)
+ }
+ ExprKind::Field(base, field) => self.check_field(expr, &base, field),
+ ExprKind::Index(base, idx) => self.check_expr_index(base, idx, expr),
+ ExprKind::Yield(value, ref src) => self.check_expr_yield(value, expr, src),
+ hir::ExprKind::Err => tcx.ty_error(),
+ }
+ }
+
+ fn check_expr_box(&self, expr: &'tcx hir::Expr<'tcx>, expected: Expectation<'tcx>) -> Ty<'tcx> {
+ let expected_inner = expected.to_option(self).map_or(NoExpectation, |ty| match ty.kind() {
+ ty::Adt(def, _) if def.is_box() => Expectation::rvalue_hint(self, ty.boxed_ty()),
+ _ => NoExpectation,
+ });
+ let referent_ty = self.check_expr_with_expectation(expr, expected_inner);
+ self.require_type_is_sized(referent_ty, expr.span, traits::SizedBoxType);
+ self.tcx.mk_box(referent_ty)
+ }
+
+ fn check_expr_unary(
+ &self,
+ unop: hir::UnOp,
+ oprnd: &'tcx hir::Expr<'tcx>,
+ expected: Expectation<'tcx>,
+ expr: &'tcx hir::Expr<'tcx>,
+ ) -> Ty<'tcx> {
+ let tcx = self.tcx;
+ let expected_inner = match unop {
+ hir::UnOp::Not | hir::UnOp::Neg => expected,
+ hir::UnOp::Deref => NoExpectation,
+ };
+ let mut oprnd_t = self.check_expr_with_expectation(&oprnd, expected_inner);
+
+ if !oprnd_t.references_error() {
+ oprnd_t = self.structurally_resolved_type(expr.span, oprnd_t);
+ match unop {
+ hir::UnOp::Deref => {
+ if let Some(ty) = self.lookup_derefing(expr, oprnd, oprnd_t) {
+ oprnd_t = ty;
+ } else {
+ let mut err = type_error_struct!(
+ tcx.sess,
+ expr.span,
+ oprnd_t,
+ E0614,
+ "type `{oprnd_t}` cannot be dereferenced",
+ );
+ let sp = tcx.sess.source_map().start_point(expr.span);
+ if let Some(sp) =
+ tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp)
+ {
+ err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
+ }
+ err.emit();
+ oprnd_t = tcx.ty_error();
+ }
+ }
+ hir::UnOp::Not => {
+ let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
+ // If it's builtin, we can reuse the type, this helps inference.
+ if !(oprnd_t.is_integral() || *oprnd_t.kind() == ty::Bool) {
+ oprnd_t = result;
+ }
+ }
+ hir::UnOp::Neg => {
+ let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
+ // If it's builtin, we can reuse the type, this helps inference.
+ if !oprnd_t.is_numeric() {
+ oprnd_t = result;
+ }
+ }
+ }
+ }
+ oprnd_t
+ }
+
+ fn check_expr_addr_of(
+ &self,
+ kind: hir::BorrowKind,
+ mutbl: hir::Mutability,
+ oprnd: &'tcx hir::Expr<'tcx>,
+ expected: Expectation<'tcx>,
+ expr: &'tcx hir::Expr<'tcx>,
+ ) -> Ty<'tcx> {
+ let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
+ match ty.kind() {
+ ty::Ref(_, ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) => {
+ if oprnd.is_syntactic_place_expr() {
+ // Places may legitimately have unsized types.
+ // For example, dereferences of a fat pointer and
+ // the last field of a struct can be unsized.
+ ExpectHasType(*ty)
+ } else {
+ Expectation::rvalue_hint(self, *ty)
+ }
+ }
+ _ => NoExpectation,
+ }
+ });
+ let ty =
+ self.check_expr_with_expectation_and_needs(&oprnd, hint, Needs::maybe_mut_place(mutbl));
+
+ let tm = ty::TypeAndMut { ty, mutbl };
+ match kind {
+ _ if tm.ty.references_error() => self.tcx.ty_error(),
+ hir::BorrowKind::Raw => {
+ self.check_named_place_expr(oprnd);
+ self.tcx.mk_ptr(tm)
+ }
+ hir::BorrowKind::Ref => {
+ // Note: at this point, we cannot say what the best lifetime
+ // is to use for resulting pointer. We want to use the
+ // shortest lifetime possible so as to avoid spurious borrowck
+ // errors. Moreover, the longest lifetime will depend on the
+ // precise details of the value whose address is being taken
+ // (and how long it is valid), which we don't know yet until
+ // type inference is complete.
+ //
+ // Therefore, here we simply generate a region variable. The
+ // region inferencer will then select a suitable value.
+ // Finally, borrowck will infer the value of the region again,
+ // this time with enough precision to check that the value
+ // whose address was taken can actually be made to live as long
+ // as it needs to live.
+ let region = self.next_region_var(infer::AddrOfRegion(expr.span));
+ self.tcx.mk_ref(region, tm)
+ }
+ }
+ }
+
+ /// Does this expression refer to a place that either:
+ /// * Is based on a local or static.
+ /// * Contains a dereference
+ /// Note that the adjustments for the children of `expr` should already
+ /// have been resolved.
+ fn check_named_place_expr(&self, oprnd: &'tcx hir::Expr<'tcx>) {
+ let is_named = oprnd.is_place_expr(|base| {
+ // Allow raw borrows if there are any deref adjustments.
+ //
+ // const VAL: (i32,) = (0,);
+ // const REF: &(i32,) = &(0,);
+ //
+ // &raw const VAL.0; // ERROR
+ // &raw const REF.0; // OK, same as &raw const (*REF).0;
+ //
+ // This is maybe too permissive, since it allows
+ // `let u = &raw const Box::new((1,)).0`, which creates an
+ // immediately dangling raw pointer.
+ self.typeck_results
+ .borrow()
+ .adjustments()
+ .get(base.hir_id)
+ .map_or(false, |x| x.iter().any(|adj| matches!(adj.kind, Adjust::Deref(_))))
+ });
+ if !is_named {
+ self.tcx.sess.emit_err(AddressOfTemporaryTaken { span: oprnd.span });
+ }
+ }
+
+ fn check_lang_item_path(
+ &self,
+ lang_item: hir::LangItem,
+ expr: &'tcx hir::Expr<'tcx>,
+ hir_id: Option<hir::HirId>,
+ ) -> Ty<'tcx> {
+ self.resolve_lang_item_path(lang_item, expr.span, expr.hir_id, hir_id).1
+ }
+
+ pub(crate) fn check_expr_path(
+ &self,
+ qpath: &'tcx hir::QPath<'tcx>,
+ expr: &'tcx hir::Expr<'tcx>,
+ args: &'tcx [hir::Expr<'tcx>],
+ ) -> Ty<'tcx> {
+ let tcx = self.tcx;
+ let (res, opt_ty, segs) =
+ self.resolve_ty_and_res_fully_qualified_call(qpath, expr.hir_id, expr.span);
+ let ty = match res {
+ Res::Err => {
+ self.set_tainted_by_errors();
+ tcx.ty_error()
+ }
+ Res::Def(DefKind::Ctor(_, CtorKind::Fictive), _) => {
+ report_unexpected_variant_res(tcx, res, qpath, expr.span);
+ tcx.ty_error()
+ }
+ _ => self.instantiate_value_path(segs, opt_ty, res, expr.span, expr.hir_id).0,
+ };
+
+ if let ty::FnDef(did, ..) = *ty.kind() {
+ let fn_sig = ty.fn_sig(tcx);
+ if tcx.fn_sig(did).abi() == RustIntrinsic && tcx.item_name(did) == sym::transmute {
+ let from = fn_sig.inputs().skip_binder()[0];
+ let to = fn_sig.output().skip_binder();
+ // We defer the transmute to the end of typeck, once all inference vars have
+ // been resolved or we errored. This is important as we can only check transmute
+ // on concrete types, but the output type may not be known yet (it would only
+ // be known if explicitly specified via turbofish).
+ self.deferred_transmute_checks.borrow_mut().push((from, to, expr.hir_id));
+ }
+ if !tcx.features().unsized_fn_params {
+ // We want to remove some Sized bounds from std functions,
+ // but don't want to expose the removal to stable Rust.
+ // i.e., we don't want to allow
+ //
+ // ```rust
+ // drop as fn(str);
+ // ```
+ //
+ // to work in stable even if the Sized bound on `drop` is relaxed.
+ for i in 0..fn_sig.inputs().skip_binder().len() {
+ // We just want to check sizedness, so instead of introducing
+ // placeholder lifetimes with probing, we just replace higher lifetimes
+ // with fresh vars.
+ let span = args.get(i).map(|a| a.span).unwrap_or(expr.span);
+ let input = self.replace_bound_vars_with_fresh_vars(
+ span,
+ infer::LateBoundRegionConversionTime::FnCall,
+ fn_sig.input(i),
+ );
+ self.require_type_is_sized_deferred(
+ input,
+ span,
+ traits::SizedArgumentType(None),
+ );
+ }
+ }
+ // Here we want to prevent struct constructors from returning unsized types.
+ // There were two cases this happened: fn pointer coercion in stable
+ // and usual function call in presence of unsized_locals.
+ // Also, as we just want to check sizedness, instead of introducing
+ // placeholder lifetimes with probing, we just replace higher lifetimes
+ // with fresh vars.
+ let output = self.replace_bound_vars_with_fresh_vars(
+ expr.span,
+ infer::LateBoundRegionConversionTime::FnCall,
+ fn_sig.output(),
+ );
+ self.require_type_is_sized_deferred(output, expr.span, traits::SizedReturnType);
+ }
+
+ // We always require that the type provided as the value for
+ // a type parameter outlives the moment of instantiation.
+ let substs = self.typeck_results.borrow().node_substs(expr.hir_id);
+ self.add_wf_bounds(substs, expr);
+
+ ty
+ }
+
+ fn check_expr_break(
+ &self,
+ destination: hir::Destination,
+ expr_opt: Option<&'tcx hir::Expr<'tcx>>,
+ expr: &'tcx hir::Expr<'tcx>,
+ ) -> Ty<'tcx> {
+ let tcx = self.tcx;
+ if let Ok(target_id) = destination.target_id {
+ let (e_ty, cause);
+ if let Some(e) = expr_opt {
+ // If this is a break with a value, we need to type-check
+ // the expression. Get an expected type from the loop context.
+ let opt_coerce_to = {
+ // We should release `enclosing_breakables` before the `check_expr_with_hint`
+ // below, so can't move this block of code to the enclosing scope and share
+ // `ctxt` with the second `enclosing_breakables` borrow below.
+ let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
+ match enclosing_breakables.opt_find_breakable(target_id) {
+ Some(ctxt) => ctxt.coerce.as_ref().map(|coerce| coerce.expected_ty()),
+ None => {
+ // Avoid ICE when `break` is inside a closure (#65383).
+ return tcx.ty_error_with_message(
+ expr.span,
+ "break was outside loop, but no error was emitted",
+ );
+ }
+ }
+ };
+
+ // If the loop context is not a `loop { }`, then break with
+ // a value is illegal, and `opt_coerce_to` will be `None`.
+ // Just set expectation to error in that case.
+ let coerce_to = opt_coerce_to.unwrap_or_else(|| tcx.ty_error());
+
+ // Recurse without `enclosing_breakables` borrowed.
+ e_ty = self.check_expr_with_hint(e, coerce_to);
+ cause = self.misc(e.span);
+ } else {
+ // Otherwise, this is a break *without* a value. That's
+ // always legal, and is equivalent to `break ()`.
+ e_ty = tcx.mk_unit();
+ cause = self.misc(expr.span);
+ }
+
+ // Now that we have type-checked `expr_opt`, borrow
+ // the `enclosing_loops` field and let's coerce the
+ // type of `expr_opt` into what is expected.
+ let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
+ let Some(ctxt) = enclosing_breakables.opt_find_breakable(target_id) else {
+ // Avoid ICE when `break` is inside a closure (#65383).
+ return tcx.ty_error_with_message(
+ expr.span,
+ "break was outside loop, but no error was emitted",
+ );
+ };
+
+ if let Some(ref mut coerce) = ctxt.coerce {
+ if let Some(ref e) = expr_opt {
+ coerce.coerce(self, &cause, e, e_ty);
+ } else {
+ assert!(e_ty.is_unit());
+ let ty = coerce.expected_ty();
+ coerce.coerce_forced_unit(
+ self,
+ &cause,
+ &mut |mut err| {
+ self.suggest_mismatched_types_on_tail(
+ &mut err, expr, ty, e_ty, target_id,
+ );
+ if let Some(val) = ty_kind_suggestion(ty) {
+ let label = destination
+ .label
+ .map(|l| format!(" {}", l.ident))
+ .unwrap_or_else(String::new);
+ err.span_suggestion(
+ expr.span,
+ "give it a value of the expected type",
+ format!("break{label} {val}"),
+ Applicability::HasPlaceholders,
+ );
+ }
+ },
+ false,
+ );
+ }
+ } else {
+ // If `ctxt.coerce` is `None`, we can just ignore
+ // the type of the expression. This is because
+ // either this was a break *without* a value, in
+ // which case it is always a legal type (`()`), or
+ // else an error would have been flagged by the
+ // `loops` pass for using break with an expression
+ // where you are not supposed to.
+ assert!(expr_opt.is_none() || self.tcx.sess.has_errors().is_some());
+ }
+
+ // If we encountered a `break`, then (no surprise) it may be possible to break from the
+ // loop... unless the value being returned from the loop diverges itself, e.g.
+ // `break return 5` or `break loop {}`.
+ ctxt.may_break |= !self.diverges.get().is_always();
+
+ // the type of a `break` is always `!`, since it diverges
+ tcx.types.never
+ } else {
+ // Otherwise, we failed to find the enclosing loop;
+ // this can only happen if the `break` was not
+ // inside a loop at all, which is caught by the
+ // loop-checking pass.
+ let err = self.tcx.ty_error_with_message(
+ expr.span,
+ "break was outside loop, but no error was emitted",
+ );
+
+ // We still need to assign a type to the inner expression to
+ // prevent the ICE in #43162.
+ if let Some(e) = expr_opt {
+ self.check_expr_with_hint(e, err);
+
+ // ... except when we try to 'break rust;'.
+ // ICE this expression in particular (see #43162).
+ if let ExprKind::Path(QPath::Resolved(_, path)) = e.kind {
+ if path.segments.len() == 1 && path.segments[0].ident.name == sym::rust {
+ fatally_break_rust(self.tcx.sess);
+ }
+ }
+ }
+
+ // There was an error; make type-check fail.
+ err
+ }
+ }
+
+ fn check_expr_return(
+ &self,
+ expr_opt: Option<&'tcx hir::Expr<'tcx>>,
+ expr: &'tcx hir::Expr<'tcx>,
+ ) -> Ty<'tcx> {
+ if self.ret_coercion.is_none() {
+ let mut err = ReturnStmtOutsideOfFnBody {
+ span: expr.span,
+ encl_body_span: None,
+ encl_fn_span: None,
+ };
+
+ let encl_item_id = self.tcx.hir().get_parent_item(expr.hir_id);
+
+ if let Some(hir::Node::Item(hir::Item {
+ kind: hir::ItemKind::Fn(..),
+ span: encl_fn_span,
+ ..
+ }))
+ | Some(hir::Node::TraitItem(hir::TraitItem {
+ kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
+ span: encl_fn_span,
+ ..
+ }))
+ | Some(hir::Node::ImplItem(hir::ImplItem {
+ kind: hir::ImplItemKind::Fn(..),
+ span: encl_fn_span,
+ ..
+ })) = self.tcx.hir().find_by_def_id(encl_item_id.def_id)
+ {
+ // We are inside a function body, so reporting "return statement
+ // outside of function body" needs an explanation.
+
+ let encl_body_owner_id = self.tcx.hir().enclosing_body_owner(expr.hir_id);
+
+ // If this didn't hold, we would not have to report an error in
+ // the first place.
+ assert_ne!(encl_item_id.def_id, encl_body_owner_id);
+
+ let encl_body_id = self.tcx.hir().body_owned_by(encl_body_owner_id);
+ let encl_body = self.tcx.hir().body(encl_body_id);
+
+ err.encl_body_span = Some(encl_body.value.span);
+ err.encl_fn_span = Some(*encl_fn_span);
+ }
+
+ self.tcx.sess.emit_err(err);
+
+ if let Some(e) = expr_opt {
+ // We still have to type-check `e` (issue #86188), but calling
+ // `check_return_expr` only works inside fn bodies.
+ self.check_expr(e);
+ }
+ } else if let Some(e) = expr_opt {
+ if self.ret_coercion_span.get().is_none() {
+ self.ret_coercion_span.set(Some(e.span));
+ }
+ self.check_return_expr(e, true);
+ } else {
+ let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
+ if self.ret_coercion_span.get().is_none() {
+ self.ret_coercion_span.set(Some(expr.span));
+ }
+ let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
+ if let Some((fn_decl, _)) = self.get_fn_decl(expr.hir_id) {
+ coercion.coerce_forced_unit(
+ self,
+ &cause,
+ &mut |db| {
+ let span = fn_decl.output.span();
+ if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
+ db.span_label(
+ span,
+ format!("expected `{snippet}` because of this return type"),
+ );
+ }
+ },
+ true,
+ );
+ } else {
+ coercion.coerce_forced_unit(self, &cause, &mut |_| (), true);
+ }
+ }
+ self.tcx.types.never
+ }
+
+ /// `explicit_return` is `true` if we're checking an explicit `return expr`,
+ /// and `false` if we're checking a trailing expression.
+ pub(super) fn check_return_expr(
+ &self,
+ return_expr: &'tcx hir::Expr<'tcx>,
+ explicit_return: bool,
+ ) {
+ let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
+ span_bug!(return_expr.span, "check_return_expr called outside fn body")
+ });
+
+ let ret_ty = ret_coercion.borrow().expected_ty();
+ let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
+ let mut span = return_expr.span;
+ // Use the span of the trailing expression for our cause,
+ // not the span of the entire function
+ if !explicit_return {
+ if let ExprKind::Block(body, _) = return_expr.kind && let Some(last_expr) = body.expr {
+ span = last_expr.span;
+ }
+ }
+ ret_coercion.borrow_mut().coerce(
+ self,
+ &self.cause(span, ObligationCauseCode::ReturnValue(return_expr.hir_id)),
+ return_expr,
+ return_expr_ty,
+ );
+
+ if self.return_type_has_opaque {
+ // Point any obligations that were registered due to opaque type
+ // inference at the return expression.
+ self.select_obligations_where_possible(false, |errors| {
+ self.point_at_return_for_opaque_ty_error(errors, span, return_expr_ty);
+ });
+ }
+ }
+
+ fn point_at_return_for_opaque_ty_error(
+ &self,
+ errors: &mut Vec<traits::FulfillmentError<'tcx>>,
+ span: Span,
+ return_expr_ty: Ty<'tcx>,
+ ) {
+ // Don't point at the whole block if it's empty
+ if span == self.tcx.hir().span(self.body_id) {
+ return;
+ }
+ for err in errors {
+ let cause = &mut err.obligation.cause;
+ if let ObligationCauseCode::OpaqueReturnType(None) = cause.code() {
+ let new_cause = ObligationCause::new(
+ cause.span,
+ cause.body_id,
+ ObligationCauseCode::OpaqueReturnType(Some((return_expr_ty, span))),
+ );
+ *cause = new_cause;
+ }
+ }
+ }
+
+ pub(crate) fn check_lhs_assignable(
+ &self,
+ lhs: &'tcx hir::Expr<'tcx>,
+ err_code: &'static str,
+ op_span: Span,
+ adjust_err: impl FnOnce(&mut Diagnostic),
+ ) {
+ if lhs.is_syntactic_place_expr() {
+ return;
+ }
+
+ // FIXME: Make this use Diagnostic once error codes can be dynamically set.
+ let mut err = self.tcx.sess.struct_span_err_with_code(
+ op_span,
+ "invalid left-hand side of assignment",
+ DiagnosticId::Error(err_code.into()),
+ );
+ err.span_label(lhs.span, "cannot assign to this expression");
+
+ self.comes_from_while_condition(lhs.hir_id, |expr| {
+ err.span_suggestion_verbose(
+ expr.span.shrink_to_lo(),
+ "you might have meant to use pattern destructuring",
+ "let ",
+ Applicability::MachineApplicable,
+ );
+ });
+
+ adjust_err(&mut err);
+
+ err.emit();
+ }
+
+ // Check if an expression `original_expr_id` comes from the condition of a while loop,
+ // as opposed from the body of a while loop, which we can naively check by iterating
+ // parents until we find a loop...
+ pub(super) fn comes_from_while_condition(
+ &self,
+ original_expr_id: HirId,
+ then: impl FnOnce(&hir::Expr<'_>),
+ ) {
+ let mut parent = self.tcx.hir().get_parent_node(original_expr_id);
+ while let Some(node) = self.tcx.hir().find(parent) {
+ match node {
+ hir::Node::Expr(hir::Expr {
+ kind:
+ hir::ExprKind::Loop(
+ hir::Block {
+ expr:
+ Some(hir::Expr {
+ kind:
+ hir::ExprKind::Match(expr, ..) | hir::ExprKind::If(expr, ..),
+ ..
+ }),
+ ..
+ },
+ _,
+ hir::LoopSource::While,
+ _,
+ ),
+ ..
+ }) => {
+ // Check if our original expression is a child of the condition of a while loop
+ let expr_is_ancestor = std::iter::successors(Some(original_expr_id), |id| {
+ self.tcx.hir().find_parent_node(*id)
+ })
+ .take_while(|id| *id != parent)
+ .any(|id| id == expr.hir_id);
+ // if it is, then we have a situation like `while Some(0) = value.get(0) {`,
+ // where `while let` was more likely intended.
+ if expr_is_ancestor {
+ then(expr);
+ }
+ break;
+ }
+ hir::Node::Item(_)
+ | hir::Node::ImplItem(_)
+ | hir::Node::TraitItem(_)
+ | hir::Node::Crate(_) => break,
+ _ => {
+ parent = self.tcx.hir().get_parent_node(parent);
+ }
+ }
+ }
+ }
+
+ // A generic function for checking the 'then' and 'else' clauses in an 'if'
+ // or 'if-else' expression.
+ fn check_then_else(
+ &self,
+ cond_expr: &'tcx hir::Expr<'tcx>,
+ then_expr: &'tcx hir::Expr<'tcx>,
+ opt_else_expr: Option<&'tcx hir::Expr<'tcx>>,
+ sp: Span,
+ orig_expected: Expectation<'tcx>,
+ ) -> Ty<'tcx> {
+ let cond_ty = self.check_expr_has_type_or_error(cond_expr, self.tcx.types.bool, |_| {});
+
+ self.warn_if_unreachable(
+ cond_expr.hir_id,
+ then_expr.span,
+ "block in `if` or `while` expression",
+ );
+
+ let cond_diverges = self.diverges.get();
+ self.diverges.set(Diverges::Maybe);
+
+ let expected = orig_expected.adjust_for_branches(self);
+ let then_ty = self.check_expr_with_expectation(then_expr, expected);
+ let then_diverges = self.diverges.get();
+ self.diverges.set(Diverges::Maybe);
+
+ // We've already taken the expected type's preferences
+ // into account when typing the `then` branch. To figure
+ // out the initial shot at a LUB, we thus only consider
+ // `expected` if it represents a *hard* constraint
+ // (`only_has_type`); otherwise, we just go with a
+ // fresh type variable.
+ let coerce_to_ty = expected.coercion_target_type(self, sp);
+ let mut coerce: DynamicCoerceMany<'_> = CoerceMany::new(coerce_to_ty);
+
+ coerce.coerce(self, &self.misc(sp), then_expr, then_ty);
+
+ if let Some(else_expr) = opt_else_expr {
+ let else_ty = self.check_expr_with_expectation(else_expr, expected);
+ let else_diverges = self.diverges.get();
+
+ let opt_suggest_box_span = self.opt_suggest_box_span(then_ty, else_ty, orig_expected);
+ let if_cause = self.if_cause(
+ sp,
+ cond_expr.span,
+ then_expr,
+ else_expr,
+ then_ty,
+ else_ty,
+ opt_suggest_box_span,
+ );
+
+ coerce.coerce(self, &if_cause, else_expr, else_ty);
+
+ // We won't diverge unless both branches do (or the condition does).
+ self.diverges.set(cond_diverges | then_diverges & else_diverges);
+ } else {
+ self.if_fallback_coercion(sp, then_expr, &mut coerce);
+
+ // If the condition is false we can't diverge.
+ self.diverges.set(cond_diverges);
+ }
+
+ let result_ty = coerce.complete(self);
+ if cond_ty.references_error() { self.tcx.ty_error() } else { result_ty }
+ }
+
+ /// Type check assignment expression `expr` of form `lhs = rhs`.
+ /// The expected type is `()` and is passed to the function for the purposes of diagnostics.
+ fn check_expr_assign(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ expected: Expectation<'tcx>,
+ lhs: &'tcx hir::Expr<'tcx>,
+ rhs: &'tcx hir::Expr<'tcx>,
+ span: Span,
+ ) -> Ty<'tcx> {
+ let expected_ty = expected.coercion_target_type(self, expr.span);
+ if expected_ty == self.tcx.types.bool {
+ // The expected type is `bool` but this will result in `()` so we can reasonably
+ // say that the user intended to write `lhs == rhs` instead of `lhs = rhs`.
+ // The likely cause of this is `if foo = bar { .. }`.
+ let actual_ty = self.tcx.mk_unit();
+ let mut err = self.demand_suptype_diag(expr.span, expected_ty, actual_ty).unwrap();
+ let lhs_ty = self.check_expr(&lhs);
+ let rhs_ty = self.check_expr(&rhs);
+ let (applicability, eq) = if self.can_coerce(rhs_ty, lhs_ty) {
+ (Applicability::MachineApplicable, true)
+ } else if let ExprKind::Binary(
+ Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
+ _,
+ rhs_expr,
+ ) = lhs.kind
+ {
+ // if x == 1 && y == 2 { .. }
+ // +
+ let actual_lhs_ty = self.check_expr(&rhs_expr);
+ (Applicability::MaybeIncorrect, self.can_coerce(rhs_ty, actual_lhs_ty))
+ } else if let ExprKind::Binary(
+ Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
+ lhs_expr,
+ _,
+ ) = rhs.kind
+ {
+ // if x == 1 && y == 2 { .. }
+ // +
+ let actual_rhs_ty = self.check_expr(&lhs_expr);
+ (Applicability::MaybeIncorrect, self.can_coerce(actual_rhs_ty, lhs_ty))
+ } else {
+ (Applicability::MaybeIncorrect, false)
+ };
+ if !lhs.is_syntactic_place_expr()
+ && lhs.is_approximately_pattern()
+ && !matches!(lhs.kind, hir::ExprKind::Lit(_))
+ {
+ // Do not suggest `if let x = y` as `==` is way more likely to be the intention.
+ let hir = self.tcx.hir();
+ if let hir::Node::Expr(hir::Expr { kind: ExprKind::If { .. }, .. }) =
+ hir.get(hir.get_parent_node(hir.get_parent_node(expr.hir_id)))
+ {
+ err.span_suggestion_verbose(
+ expr.span.shrink_to_lo(),
+ "you might have meant to use pattern matching",
+ "let ",
+ applicability,
+ );
+ };
+ }
+ if eq {
+ err.span_suggestion_verbose(
+ span.shrink_to_hi(),
+ "you might have meant to compare for equality",
+ '=',
+ applicability,
+ );
+ }
+
+ // If the assignment expression itself is ill-formed, don't
+ // bother emitting another error
+ if lhs_ty.references_error() || rhs_ty.references_error() {
+ err.delay_as_bug()
+ } else {
+ err.emit();
+ }
+ return self.tcx.ty_error();
+ }
+
+ let lhs_ty = self.check_expr_with_needs(&lhs, Needs::MutPlace);
+
+ let suggest_deref_binop = |err: &mut Diagnostic, rhs_ty: Ty<'tcx>| {
+ if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
+ // Can only assign if the type is sized, so if `DerefMut` yields a type that is
+ // unsized, do not suggest dereferencing it.
+ let lhs_deref_ty_is_sized = self
+ .infcx
+ .type_implements_trait(
+ self.tcx.lang_items().sized_trait().unwrap(),
+ lhs_deref_ty,
+ ty::List::empty(),
+ self.param_env,
+ )
+ .may_apply();
+ if lhs_deref_ty_is_sized && self.can_coerce(rhs_ty, lhs_deref_ty) {
+ err.span_suggestion_verbose(
+ lhs.span.shrink_to_lo(),
+ "consider dereferencing here to assign to the mutably borrowed value",
+ "*",
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+ };
+
+ // This is (basically) inlined `check_expr_coercable_to_type`, but we want
+ // to suggest an additional fixup here in `suggest_deref_binop`.
+ let rhs_ty = self.check_expr_with_hint(&rhs, lhs_ty);
+ if let (_, Some(mut diag)) =
+ self.demand_coerce_diag(rhs, rhs_ty, lhs_ty, Some(lhs), AllowTwoPhase::No)
+ {
+ suggest_deref_binop(&mut diag, rhs_ty);
+ diag.emit();
+ }
+
+ self.check_lhs_assignable(lhs, "E0070", span, |err| {
+ if let Some(rhs_ty) = self.typeck_results.borrow().expr_ty_opt(rhs) {
+ suggest_deref_binop(err, rhs_ty);
+ }
+ });
+
+ self.require_type_is_sized(lhs_ty, lhs.span, traits::AssignmentLhsSized);
+
+ if lhs_ty.references_error() || rhs_ty.references_error() {
+ self.tcx.ty_error()
+ } else {
+ self.tcx.mk_unit()
+ }
+ }
+
+ pub(super) fn check_expr_let(&self, let_expr: &'tcx hir::Let<'tcx>) -> Ty<'tcx> {
+ // for let statements, this is done in check_stmt
+ let init = let_expr.init;
+ self.warn_if_unreachable(init.hir_id, init.span, "block in `let` expression");
+ // otherwise check exactly as a let statement
+ self.check_decl(let_expr.into());
+ // but return a bool, for this is a boolean expression
+ self.tcx.types.bool
+ }
+
+ fn check_expr_loop(
+ &self,
+ body: &'tcx hir::Block<'tcx>,
+ source: hir::LoopSource,
+ expected: Expectation<'tcx>,
+ expr: &'tcx hir::Expr<'tcx>,
+ ) -> Ty<'tcx> {
+ let coerce = match source {
+ // you can only use break with a value from a normal `loop { }`
+ hir::LoopSource::Loop => {
+ let coerce_to = expected.coercion_target_type(self, body.span);
+ Some(CoerceMany::new(coerce_to))
+ }
+
+ hir::LoopSource::While | hir::LoopSource::ForLoop => None,
+ };
+
+ let ctxt = BreakableCtxt {
+ coerce,
+ may_break: false, // Will get updated if/when we find a `break`.
+ };
+
+ let (ctxt, ()) = self.with_breakable_ctxt(expr.hir_id, ctxt, || {
+ self.check_block_no_value(&body);
+ });
+
+ if ctxt.may_break {
+ // No way to know whether it's diverging because
+ // of a `break` or an outer `break` or `return`.
+ self.diverges.set(Diverges::Maybe);
+ }
+
+ // If we permit break with a value, then result type is
+ // the LUB of the breaks (possibly ! if none); else, it
+ // is nil. This makes sense because infinite loops
+ // (which would have type !) are only possible iff we
+ // permit break with a value [1].
+ if ctxt.coerce.is_none() && !ctxt.may_break {
+ // [1]
+ self.tcx.sess.delay_span_bug(body.span, "no coercion, but loop may not break");
+ }
+ ctxt.coerce.map(|c| c.complete(self)).unwrap_or_else(|| self.tcx.mk_unit())
+ }
+
+ /// Checks a method call.
+ fn check_method_call(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ segment: &hir::PathSegment<'_>,
+ rcvr: &'tcx hir::Expr<'tcx>,
+ args: &'tcx [hir::Expr<'tcx>],
+ expected: Expectation<'tcx>,
+ ) -> Ty<'tcx> {
+ let rcvr_t = self.check_expr(&rcvr);
+ // no need to check for bot/err -- callee does that
+ let rcvr_t = self.structurally_resolved_type(rcvr.span, rcvr_t);
+ let span = segment.ident.span;
+
+ let method = match self.lookup_method(rcvr_t, segment, span, expr, rcvr, args) {
+ Ok(method) => {
+ // We could add a "consider `foo::<params>`" suggestion here, but I wasn't able to
+ // trigger this codepath causing `structurally_resolved_type` to emit an error.
+
+ self.write_method_call(expr.hir_id, method);
+ Ok(method)
+ }
+ Err(error) => {
+ if segment.ident.name != kw::Empty {
+ if let Some(mut err) = self.report_method_error(
+ span,
+ rcvr_t,
+ segment.ident,
+ SelfSource::MethodCall(rcvr),
+ error,
+ Some((rcvr, args)),
+ ) {
+ err.emit();
+ }
+ }
+ Err(())
+ }
+ };
+
+ // Call the generic checker.
+ self.check_method_argument_types(span, expr, method, &args, DontTupleArguments, expected)
+ }
+
+ fn check_expr_cast(
+ &self,
+ e: &'tcx hir::Expr<'tcx>,
+ t: &'tcx hir::Ty<'tcx>,
+ expr: &'tcx hir::Expr<'tcx>,
+ ) -> Ty<'tcx> {
+ // Find the type of `e`. Supply hints based on the type we are casting to,
+ // if appropriate.
+ let t_cast = self.to_ty_saving_user_provided_ty(t);
+ let t_cast = self.resolve_vars_if_possible(t_cast);
+ let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
+ let t_expr = self.resolve_vars_if_possible(t_expr);
+
+ // Eagerly check for some obvious errors.
+ if t_expr.references_error() || t_cast.references_error() {
+ self.tcx.ty_error()
+ } else {
+ // Defer other checks until we're done type checking.
+ let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
+ match cast::CastCheck::new(
+ self,
+ e,
+ t_expr,
+ t_cast,
+ t.span,
+ expr.span,
+ self.param_env.constness(),
+ ) {
+ Ok(cast_check) => {
+ debug!(
+ "check_expr_cast: deferring cast from {:?} to {:?}: {:?}",
+ t_cast, t_expr, cast_check,
+ );
+ deferred_cast_checks.push(cast_check);
+ t_cast
+ }
+ Err(_) => self.tcx.ty_error(),
+ }
+ }
+ }
+
+ fn check_expr_array(
+ &self,
+ args: &'tcx [hir::Expr<'tcx>],
+ expected: Expectation<'tcx>,
+ expr: &'tcx hir::Expr<'tcx>,
+ ) -> Ty<'tcx> {
+ let element_ty = if !args.is_empty() {
+ let coerce_to = expected
+ .to_option(self)
+ .and_then(|uty| match *uty.kind() {
+ ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
+ _ => None,
+ })
+ .unwrap_or_else(|| {
+ self.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::TypeInference,
+ span: expr.span,
+ })
+ });
+ let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
+ assert_eq!(self.diverges.get(), Diverges::Maybe);
+ for e in args {
+ let e_ty = self.check_expr_with_hint(e, coerce_to);
+ let cause = self.misc(e.span);
+ coerce.coerce(self, &cause, e, e_ty);
+ }
+ coerce.complete(self)
+ } else {
+ self.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::TypeInference,
+ span: expr.span,
+ })
+ };
+ let array_len = args.len() as u64;
+ self.suggest_array_len(expr, array_len);
+ self.tcx.mk_array(element_ty, array_len)
+ }
+
+ fn suggest_array_len(&self, expr: &'tcx hir::Expr<'tcx>, array_len: u64) {
+ let parent_node = self.tcx.hir().parent_iter(expr.hir_id).find(|(_, node)| {
+ !matches!(node, hir::Node::Expr(hir::Expr { kind: hir::ExprKind::AddrOf(..), .. }))
+ });
+ let Some((_,
+ hir::Node::Local(hir::Local { ty: Some(ty), .. })
+ | hir::Node::Item(hir::Item { kind: hir::ItemKind::Const(ty, _), .. }))
+ ) = parent_node else {
+ return
+ };
+ if let hir::TyKind::Array(_, length) = ty.peel_refs().kind
+ && let hir::ArrayLen::Body(hir::AnonConst { hir_id, .. }) = length
+ && let Some(span) = self.tcx.hir().opt_span(hir_id)
+ {
+ match self.tcx.sess.diagnostic().steal_diagnostic(span, StashKey::UnderscoreForArrayLengths) {
+ Some(mut err) => {
+ err.span_suggestion(
+ span,
+ "consider specifying the array length",
+ array_len,
+ Applicability::MaybeIncorrect,
+ );
+ err.emit();
+ }
+ None => ()
+ }
+ }
+ }
+
+ fn check_expr_const_block(
+ &self,
+ anon_const: &'tcx hir::AnonConst,
+ expected: Expectation<'tcx>,
+ _expr: &'tcx hir::Expr<'tcx>,
+ ) -> Ty<'tcx> {
+ let body = self.tcx.hir().body(anon_const.body);
+
+ // Create a new function context.
+ let fcx = FnCtxt::new(self, self.param_env.with_const(), body.value.hir_id);
+ crate::GatherLocalsVisitor::new(&fcx).visit_body(body);
+
+ let ty = fcx.check_expr_with_expectation(&body.value, expected);
+ fcx.require_type_is_sized(ty, body.value.span, traits::ConstSized);
+ fcx.write_ty(anon_const.hir_id, ty);
+ ty
+ }
+
+ fn check_expr_repeat(
+ &self,
+ element: &'tcx hir::Expr<'tcx>,
+ count: &'tcx hir::ArrayLen,
+ expected: Expectation<'tcx>,
+ expr: &'tcx hir::Expr<'tcx>,
+ ) -> Ty<'tcx> {
+ let tcx = self.tcx;
+ let count = self.array_length_to_const(count);
+ if let Some(count) = count.try_eval_usize(tcx, self.param_env) {
+ self.suggest_array_len(expr, count);
+ }
+
+ let uty = match expected {
+ ExpectHasType(uty) => match *uty.kind() {
+ ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
+ _ => None,
+ },
+ _ => None,
+ };
+
+ let (element_ty, t) = match uty {
+ Some(uty) => {
+ self.check_expr_coercable_to_type(&element, uty, None);
+ (uty, uty)
+ }
+ None => {
+ let ty = self.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::MiscVariable,
+ span: element.span,
+ });
+ let element_ty = self.check_expr_has_type_or_error(&element, ty, |_| {});
+ (element_ty, ty)
+ }
+ };
+
+ if element_ty.references_error() {
+ return tcx.ty_error();
+ }
+
+ self.check_repeat_element_needs_copy_bound(element, count, element_ty);
+
+ tcx.mk_ty(ty::Array(t, count))
+ }
+
+ fn check_repeat_element_needs_copy_bound(
+ &self,
+ element: &hir::Expr<'_>,
+ count: ty::Const<'tcx>,
+ element_ty: Ty<'tcx>,
+ ) {
+ let tcx = self.tcx;
+ // Actual constants as the repeat element get inserted repeatedly instead of getting copied via Copy.
+ match &element.kind {
+ hir::ExprKind::ConstBlock(..) => return,
+ hir::ExprKind::Path(qpath) => {
+ let res = self.typeck_results.borrow().qpath_res(qpath, element.hir_id);
+ if let Res::Def(DefKind::Const | DefKind::AssocConst | DefKind::AnonConst, _) = res
+ {
+ return;
+ }
+ }
+ _ => {}
+ }
+ // If someone calls a const fn, they can extract that call out into a separate constant (or a const
+ // block in the future), so we check that to tell them that in the diagnostic. Does not affect typeck.
+ let is_const_fn = match element.kind {
+ hir::ExprKind::Call(func, _args) => match *self.node_ty(func.hir_id).kind() {
+ ty::FnDef(def_id, _) => tcx.is_const_fn(def_id),
+ _ => false,
+ },
+ _ => false,
+ };
+
+ // If the length is 0, we don't create any elements, so we don't copy any. If the length is 1, we
+ // don't copy that one element, we move it. Only check for Copy if the length is larger.
+ if count.try_eval_usize(tcx, self.param_env).map_or(true, |len| len > 1) {
+ let lang_item = self.tcx.require_lang_item(LangItem::Copy, None);
+ let code = traits::ObligationCauseCode::RepeatElementCopy { is_const_fn };
+ self.require_type_meets(element_ty, element.span, code, lang_item);
+ }
+ }
+
+ fn check_expr_tuple(
+ &self,
+ elts: &'tcx [hir::Expr<'tcx>],
+ expected: Expectation<'tcx>,
+ expr: &'tcx hir::Expr<'tcx>,
+ ) -> Ty<'tcx> {
+ let flds = expected.only_has_type(self).and_then(|ty| {
+ let ty = self.resolve_vars_with_obligations(ty);
+ match ty.kind() {
+ ty::Tuple(flds) => Some(&flds[..]),
+ _ => None,
+ }
+ });
+
+ let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| match flds {
+ Some(fs) if i < fs.len() => {
+ let ety = fs[i];
+ self.check_expr_coercable_to_type(&e, ety, None);
+ ety
+ }
+ _ => self.check_expr_with_expectation(&e, NoExpectation),
+ });
+ let tuple = self.tcx.mk_tup(elt_ts_iter);
+ if tuple.references_error() {
+ self.tcx.ty_error()
+ } else {
+ self.require_type_is_sized(tuple, expr.span, traits::TupleInitializerSized);
+ tuple
+ }
+ }
+
+ fn check_expr_struct(
+ &self,
+ expr: &hir::Expr<'_>,
+ expected: Expectation<'tcx>,
+ qpath: &QPath<'_>,
+ fields: &'tcx [hir::ExprField<'tcx>],
+ base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
+ ) -> Ty<'tcx> {
+ // Find the relevant variant
+ let Some((variant, adt_ty)) = self.check_struct_path(qpath, expr.hir_id) else {
+ self.check_struct_fields_on_error(fields, base_expr);
+ return self.tcx.ty_error();
+ };
+
+ // Prohibit struct expressions when non-exhaustive flag is set.
+ let adt = adt_ty.ty_adt_def().expect("`check_struct_path` returned non-ADT type");
+ if !adt.did().is_local() && variant.is_field_list_non_exhaustive() {
+ self.tcx
+ .sess
+ .emit_err(StructExprNonExhaustive { span: expr.span, what: adt.variant_descr() });
+ }
+
+ self.check_expr_struct_fields(
+ adt_ty,
+ expected,
+ expr.hir_id,
+ qpath.span(),
+ variant,
+ fields,
+ base_expr,
+ expr.span,
+ );
+
+ self.require_type_is_sized(adt_ty, expr.span, traits::StructInitializerSized);
+ adt_ty
+ }
+
+ fn check_expr_struct_fields(
+ &self,
+ adt_ty: Ty<'tcx>,
+ expected: Expectation<'tcx>,
+ expr_id: hir::HirId,
+ span: Span,
+ variant: &'tcx ty::VariantDef,
+ ast_fields: &'tcx [hir::ExprField<'tcx>],
+ base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
+ expr_span: Span,
+ ) {
+ let tcx = self.tcx;
+
+ let expected_inputs =
+ self.expected_inputs_for_expected_output(span, expected, adt_ty, &[adt_ty]);
+ let adt_ty_hint = if let Some(expected_inputs) = expected_inputs {
+ expected_inputs.get(0).cloned().unwrap_or(adt_ty)
+ } else {
+ adt_ty
+ };
+ // re-link the regions that EIfEO can erase.
+ self.demand_eqtype(span, adt_ty_hint, adt_ty);
+
+ let ty::Adt(adt, substs) = adt_ty.kind() else {
+ span_bug!(span, "non-ADT passed to check_expr_struct_fields");
+ };
+ let adt_kind = adt.adt_kind();
+
+ let mut remaining_fields = variant
+ .fields
+ .iter()
+ .enumerate()
+ .map(|(i, field)| (field.ident(tcx).normalize_to_macros_2_0(), (i, field)))
+ .collect::<FxHashMap<_, _>>();
+
+ let mut seen_fields = FxHashMap::default();
+
+ let mut error_happened = false;
+
+ // Type-check each field.
+ for (idx, field) in ast_fields.iter().enumerate() {
+ let ident = tcx.adjust_ident(field.ident, variant.def_id);
+ let field_type = if let Some((i, v_field)) = remaining_fields.remove(&ident) {
+ seen_fields.insert(ident, field.span);
+ self.write_field_index(field.hir_id, i);
+
+ // We don't look at stability attributes on
+ // struct-like enums (yet...), but it's definitely not
+ // a bug to have constructed one.
+ if adt_kind != AdtKind::Enum {
+ tcx.check_stability(v_field.did, Some(expr_id), field.span, None);
+ }
+
+ self.field_ty(field.span, v_field, substs)
+ } else {
+ error_happened = true;
+ if let Some(prev_span) = seen_fields.get(&ident) {
+ tcx.sess.emit_err(FieldMultiplySpecifiedInInitializer {
+ span: field.ident.span,
+ prev_span: *prev_span,
+ ident,
+ });
+ } else {
+ self.report_unknown_field(
+ adt_ty,
+ variant,
+ field,
+ ast_fields,
+ adt.variant_descr(),
+ expr_span,
+ );
+ }
+
+ tcx.ty_error()
+ };
+
+ // Make sure to give a type to the field even if there's
+ // an error, so we can continue type-checking.
+ let ty = self.check_expr_with_hint(&field.expr, field_type);
+ let (_, diag) =
+ self.demand_coerce_diag(&field.expr, ty, field_type, None, AllowTwoPhase::No);
+
+ if let Some(mut diag) = diag {
+ if idx == ast_fields.len() - 1 && remaining_fields.is_empty() {
+ self.suggest_fru_from_range(field, variant, substs, &mut diag);
+ }
+ diag.emit();
+ }
+ }
+
+ // Make sure the programmer specified correct number of fields.
+ if adt_kind == AdtKind::Union {
+ if ast_fields.len() != 1 {
+ struct_span_err!(
+ tcx.sess,
+ span,
+ E0784,
+ "union expressions should have exactly one field",
+ )
+ .emit();
+ }
+ }
+
+ // If check_expr_struct_fields hit an error, do not attempt to populate
+ // the fields with the base_expr. This could cause us to hit errors later
+ // when certain fields are assumed to exist that in fact do not.
+ if error_happened {
+ return;
+ }
+
+ if let Some(base_expr) = base_expr {
+ // FIXME: We are currently creating two branches here in order to maintain
+ // consistency. But they should be merged as much as possible.
+ let fru_tys = if self.tcx.features().type_changing_struct_update {
+ if adt.is_struct() {
+ // Make some fresh substitutions for our ADT type.
+ let fresh_substs = self.fresh_substs_for_item(base_expr.span, adt.did());
+ // We do subtyping on the FRU fields first, so we can
+ // learn exactly what types we expect the base expr
+ // needs constrained to be compatible with the struct
+ // type we expect from the expectation value.
+ let fru_tys = variant
+ .fields
+ .iter()
+ .map(|f| {
+ let fru_ty = self.normalize_associated_types_in(
+ expr_span,
+ self.field_ty(base_expr.span, f, fresh_substs),
+ );
+ let ident = self.tcx.adjust_ident(f.ident(self.tcx), variant.def_id);
+ if let Some(_) = remaining_fields.remove(&ident) {
+ let target_ty = self.field_ty(base_expr.span, f, substs);
+ let cause = self.misc(base_expr.span);
+ match self.at(&cause, self.param_env).sup(target_ty, fru_ty) {
+ Ok(InferOk { obligations, value: () }) => {
+ self.register_predicates(obligations)
+ }
+ Err(_) => {
+ // This should never happen, since we're just subtyping the
+ // remaining_fields, but it's fine to emit this, I guess.
+ self.err_ctxt()
+ .report_mismatched_types(
+ &cause,
+ target_ty,
+ fru_ty,
+ FieldMisMatch(variant.name, ident.name),
+ )
+ .emit();
+ }
+ }
+ }
+ self.resolve_vars_if_possible(fru_ty)
+ })
+ .collect();
+ // The use of fresh substs that we have subtyped against
+ // our base ADT type's fields allows us to guide inference
+ // along so that, e.g.
+ // ```
+ // MyStruct<'a, F1, F2, const C: usize> {
+ // f: F1,
+ // // Other fields that reference `'a`, `F2`, and `C`
+ // }
+ //
+ // let x = MyStruct {
+ // f: 1usize,
+ // ..other_struct
+ // };
+ // ```
+ // will have the `other_struct` expression constrained to
+ // `MyStruct<'a, _, F2, C>`, as opposed to just `_`...
+ // This is important to allow coercions to happen in
+ // `other_struct` itself. See `coerce-in-base-expr.rs`.
+ let fresh_base_ty = self.tcx.mk_adt(*adt, fresh_substs);
+ self.check_expr_has_type_or_error(
+ base_expr,
+ self.resolve_vars_if_possible(fresh_base_ty),
+ |_| {},
+ );
+ fru_tys
+ } else {
+ // Check the base_expr, regardless of a bad expected adt_ty, so we can get
+ // type errors on that expression, too.
+ self.check_expr(base_expr);
+ self.tcx
+ .sess
+ .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
+ return;
+ }
+ } else {
+ self.check_expr_has_type_or_error(base_expr, adt_ty, |_| {
+ let base_ty = self.typeck_results.borrow().expr_ty(*base_expr);
+ let same_adt = match (adt_ty.kind(), base_ty.kind()) {
+ (ty::Adt(adt, _), ty::Adt(base_adt, _)) if adt == base_adt => true,
+ _ => false,
+ };
+ if self.tcx.sess.is_nightly_build() && same_adt {
+ feature_err(
+ &self.tcx.sess.parse_sess,
+ sym::type_changing_struct_update,
+ base_expr.span,
+ "type changing struct updating is experimental",
+ )
+ .emit();
+ }
+ });
+ match adt_ty.kind() {
+ ty::Adt(adt, substs) if adt.is_struct() => variant
+ .fields
+ .iter()
+ .map(|f| {
+ self.normalize_associated_types_in(expr_span, f.ty(self.tcx, substs))
+ })
+ .collect(),
+ _ => {
+ self.tcx
+ .sess
+ .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
+ return;
+ }
+ }
+ };
+ self.typeck_results.borrow_mut().fru_field_types_mut().insert(expr_id, fru_tys);
+ } else if adt_kind != AdtKind::Union && !remaining_fields.is_empty() {
+ debug!(?remaining_fields);
+ let private_fields: Vec<&ty::FieldDef> = variant
+ .fields
+ .iter()
+ .filter(|field| !field.vis.is_accessible_from(tcx.parent_module(expr_id), tcx))
+ .collect();
+
+ if !private_fields.is_empty() {
+ self.report_private_fields(adt_ty, span, private_fields, ast_fields);
+ } else {
+ self.report_missing_fields(
+ adt_ty,
+ span,
+ remaining_fields,
+ variant,
+ ast_fields,
+ substs,
+ );
+ }
+ }
+ }
+
+ fn check_struct_fields_on_error(
+ &self,
+ fields: &'tcx [hir::ExprField<'tcx>],
+ base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
+ ) {
+ for field in fields {
+ self.check_expr(&field.expr);
+ }
+ if let Some(base) = *base_expr {
+ self.check_expr(&base);
+ }
+ }
+
+ /// Report an error for a struct field expression when there are fields which aren't provided.
+ ///
+ /// ```text
+ /// error: missing field `you_can_use_this_field` in initializer of `foo::Foo`
+ /// --> src/main.rs:8:5
+ /// |
+ /// 8 | foo::Foo {};
+ /// | ^^^^^^^^ missing `you_can_use_this_field`
+ ///
+ /// error: aborting due to previous error
+ /// ```
+ fn report_missing_fields(
+ &self,
+ adt_ty: Ty<'tcx>,
+ span: Span,
+ remaining_fields: FxHashMap<Ident, (usize, &ty::FieldDef)>,
+ variant: &'tcx ty::VariantDef,
+ ast_fields: &'tcx [hir::ExprField<'tcx>],
+ substs: SubstsRef<'tcx>,
+ ) {
+ let len = remaining_fields.len();
+
+ let mut displayable_field_names: Vec<&str> =
+ remaining_fields.keys().map(|ident| ident.as_str()).collect();
+ // sorting &str primitives here, sort_unstable is ok
+ displayable_field_names.sort_unstable();
+
+ let mut truncated_fields_error = String::new();
+ let remaining_fields_names = match &displayable_field_names[..] {
+ [field1] => format!("`{}`", field1),
+ [field1, field2] => format!("`{field1}` and `{field2}`"),
+ [field1, field2, field3] => format!("`{field1}`, `{field2}` and `{field3}`"),
+ _ => {
+ truncated_fields_error =
+ format!(" and {} other field{}", len - 3, pluralize!(len - 3));
+ displayable_field_names
+ .iter()
+ .take(3)
+ .map(|n| format!("`{n}`"))
+ .collect::<Vec<_>>()
+ .join(", ")
+ }
+ };
+
+ let mut err = struct_span_err!(
+ self.tcx.sess,
+ span,
+ E0063,
+ "missing field{} {}{} in initializer of `{}`",
+ pluralize!(len),
+ remaining_fields_names,
+ truncated_fields_error,
+ adt_ty
+ );
+ err.span_label(span, format!("missing {remaining_fields_names}{truncated_fields_error}"));
+
+ if let Some(last) = ast_fields.last() {
+ self.suggest_fru_from_range(last, variant, substs, &mut err);
+ }
+
+ err.emit();
+ }
+
+ /// If the last field is a range literal, but it isn't supposed to be, then they probably
+ /// meant to use functional update syntax.
+ fn suggest_fru_from_range(
+ &self,
+ last_expr_field: &hir::ExprField<'tcx>,
+ variant: &ty::VariantDef,
+ substs: SubstsRef<'tcx>,
+ err: &mut Diagnostic,
+ ) {
+ // I don't use 'is_range_literal' because only double-sided, half-open ranges count.
+ if let ExprKind::Struct(
+ QPath::LangItem(LangItem::Range, ..),
+ &[ref range_start, ref range_end],
+ _,
+ ) = last_expr_field.expr.kind
+ && let variant_field =
+ variant.fields.iter().find(|field| field.ident(self.tcx) == last_expr_field.ident)
+ && let range_def_id = self.tcx.lang_items().range_struct()
+ && variant_field
+ .and_then(|field| field.ty(self.tcx, substs).ty_adt_def())
+ .map(|adt| adt.did())
+ != range_def_id
+ {
+ let instead = self
+ .tcx
+ .sess
+ .source_map()
+ .span_to_snippet(range_end.expr.span)
+ .map(|s| format!(" from `{s}`"))
+ .unwrap_or_default();
+ err.span_suggestion(
+ range_start.span.shrink_to_hi(),
+ &format!("to set the remaining fields{instead}, separate the last named field with a comma"),
+ ",",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+
+ /// Report an error for a struct field expression when there are invisible fields.
+ ///
+ /// ```text
+ /// error: cannot construct `Foo` with struct literal syntax due to private fields
+ /// --> src/main.rs:8:5
+ /// |
+ /// 8 | foo::Foo {};
+ /// | ^^^^^^^^
+ ///
+ /// error: aborting due to previous error
+ /// ```
+ fn report_private_fields(
+ &self,
+ adt_ty: Ty<'tcx>,
+ span: Span,
+ private_fields: Vec<&ty::FieldDef>,
+ used_fields: &'tcx [hir::ExprField<'tcx>],
+ ) {
+ let mut err = self.tcx.sess.struct_span_err(
+ span,
+ &format!(
+ "cannot construct `{adt_ty}` with struct literal syntax due to private fields",
+ ),
+ );
+ let (used_private_fields, remaining_private_fields): (
+ Vec<(Symbol, Span, bool)>,
+ Vec<(Symbol, Span, bool)>,
+ ) = private_fields
+ .iter()
+ .map(|field| {
+ match used_fields.iter().find(|used_field| field.name == used_field.ident.name) {
+ Some(used_field) => (field.name, used_field.span, true),
+ None => (field.name, self.tcx.def_span(field.did), false),
+ }
+ })
+ .partition(|field| field.2);
+ err.span_labels(used_private_fields.iter().map(|(_, span, _)| *span), "private field");
+ if !remaining_private_fields.is_empty() {
+ let remaining_private_fields_len = remaining_private_fields.len();
+ let names = match &remaining_private_fields
+ .iter()
+ .map(|(name, _, _)| name)
+ .collect::<Vec<_>>()[..]
+ {
+ _ if remaining_private_fields_len > 6 => String::new(),
+ [name] => format!("`{name}` "),
+ [names @ .., last] => {
+ let names = names.iter().map(|name| format!("`{name}`")).collect::<Vec<_>>();
+ format!("{} and `{last}` ", names.join(", "))
+ }
+ [] => unreachable!(),
+ };
+ err.note(format!(
+ "... and other private field{s} {names}that {were} not provided",
+ s = pluralize!(remaining_private_fields_len),
+ were = pluralize!("was", remaining_private_fields_len),
+ ));
+ }
+ err.emit();
+ }
+
+ fn report_unknown_field(
+ &self,
+ ty: Ty<'tcx>,
+ variant: &'tcx ty::VariantDef,
+ field: &hir::ExprField<'_>,
+ skip_fields: &[hir::ExprField<'_>],
+ kind_name: &str,
+ expr_span: Span,
+ ) {
+ if variant.is_recovered() {
+ self.set_tainted_by_errors();
+ return;
+ }
+ let mut err = self.err_ctxt().type_error_struct_with_diag(
+ field.ident.span,
+ |actual| match ty.kind() {
+ ty::Adt(adt, ..) if adt.is_enum() => struct_span_err!(
+ self.tcx.sess,
+ field.ident.span,
+ E0559,
+ "{} `{}::{}` has no field named `{}`",
+ kind_name,
+ actual,
+ variant.name,
+ field.ident
+ ),
+ _ => struct_span_err!(
+ self.tcx.sess,
+ field.ident.span,
+ E0560,
+ "{} `{}` has no field named `{}`",
+ kind_name,
+ actual,
+ field.ident
+ ),
+ },
+ ty,
+ );
+
+ let variant_ident_span = self.tcx.def_ident_span(variant.def_id).unwrap();
+ match variant.ctor_kind {
+ CtorKind::Fn => match ty.kind() {
+ ty::Adt(adt, ..) if adt.is_enum() => {
+ err.span_label(
+ variant_ident_span,
+ format!(
+ "`{adt}::{variant}` defined here",
+ adt = ty,
+ variant = variant.name,
+ ),
+ );
+ err.span_label(field.ident.span, "field does not exist");
+ err.span_suggestion_verbose(
+ expr_span,
+ &format!(
+ "`{adt}::{variant}` is a tuple {kind_name}, use the appropriate syntax",
+ adt = ty,
+ variant = variant.name,
+ ),
+ format!(
+ "{adt}::{variant}(/* fields */)",
+ adt = ty,
+ variant = variant.name,
+ ),
+ Applicability::HasPlaceholders,
+ );
+ }
+ _ => {
+ err.span_label(variant_ident_span, format!("`{adt}` defined here", adt = ty));
+ err.span_label(field.ident.span, "field does not exist");
+ err.span_suggestion_verbose(
+ expr_span,
+ &format!(
+ "`{adt}` is a tuple {kind_name}, use the appropriate syntax",
+ adt = ty,
+ kind_name = kind_name,
+ ),
+ format!("{adt}(/* fields */)", adt = ty),
+ Applicability::HasPlaceholders,
+ );
+ }
+ },
+ _ => {
+ // prevent all specified fields from being suggested
+ let skip_fields = skip_fields.iter().map(|x| x.ident.name);
+ if let Some(field_name) = self.suggest_field_name(
+ variant,
+ field.ident.name,
+ skip_fields.collect(),
+ expr_span,
+ ) {
+ err.span_suggestion(
+ field.ident.span,
+ "a field with a similar name exists",
+ field_name,
+ Applicability::MaybeIncorrect,
+ );
+ } else {
+ match ty.kind() {
+ ty::Adt(adt, ..) => {
+ if adt.is_enum() {
+ err.span_label(
+ field.ident.span,
+ format!("`{}::{}` does not have this field", ty, variant.name),
+ );
+ } else {
+ err.span_label(
+ field.ident.span,
+ format!("`{ty}` does not have this field"),
+ );
+ }
+ let available_field_names =
+ self.available_field_names(variant, expr_span);
+ if !available_field_names.is_empty() {
+ err.note(&format!(
+ "available fields are: {}",
+ self.name_series_display(available_field_names)
+ ));
+ }
+ }
+ _ => bug!("non-ADT passed to report_unknown_field"),
+ }
+ };
+ }
+ }
+ err.emit();
+ }
+
+ // Return a hint about the closest match in field names
+ fn suggest_field_name(
+ &self,
+ variant: &'tcx ty::VariantDef,
+ field: Symbol,
+ skip: Vec<Symbol>,
+ // The span where stability will be checked
+ span: Span,
+ ) -> Option<Symbol> {
+ let names = variant
+ .fields
+ .iter()
+ .filter_map(|field| {
+ // ignore already set fields and private fields from non-local crates
+ // and unstable fields.
+ if skip.iter().any(|&x| x == field.name)
+ || (!variant.def_id.is_local() && !field.vis.is_public())
+ || matches!(
+ self.tcx.eval_stability(field.did, None, span, None),
+ stability::EvalResult::Deny { .. }
+ )
+ {
+ None
+ } else {
+ Some(field.name)
+ }
+ })
+ .collect::<Vec<Symbol>>();
+
+ find_best_match_for_name(&names, field, None)
+ }
+
+ fn available_field_names(
+ &self,
+ variant: &'tcx ty::VariantDef,
+ access_span: Span,
+ ) -> Vec<Symbol> {
+ variant
+ .fields
+ .iter()
+ .filter(|field| {
+ let def_scope = self
+ .tcx
+ .adjust_ident_and_get_scope(field.ident(self.tcx), variant.def_id, self.body_id)
+ .1;
+ field.vis.is_accessible_from(def_scope, self.tcx)
+ && !matches!(
+ self.tcx.eval_stability(field.did, None, access_span, None),
+ stability::EvalResult::Deny { .. }
+ )
+ })
+ .filter(|field| !self.tcx.is_doc_hidden(field.did))
+ .map(|field| field.name)
+ .collect()
+ }
+
+ fn name_series_display(&self, names: Vec<Symbol>) -> String {
+ // dynamic limit, to never omit just one field
+ let limit = if names.len() == 6 { 6 } else { 5 };
+ let mut display =
+ names.iter().take(limit).map(|n| format!("`{}`", n)).collect::<Vec<_>>().join(", ");
+ if names.len() > limit {
+ display = format!("{} ... and {} others", display, names.len() - limit);
+ }
+ display
+ }
+
+ // Check field access expressions
+ fn check_field(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ base: &'tcx hir::Expr<'tcx>,
+ field: Ident,
+ ) -> Ty<'tcx> {
+ debug!("check_field(expr: {:?}, base: {:?}, field: {:?})", expr, base, field);
+ let base_ty = self.check_expr(base);
+ let base_ty = self.structurally_resolved_type(base.span, base_ty);
+ let mut private_candidate = None;
+ let mut autoderef = self.autoderef(expr.span, base_ty);
+ while let Some((deref_base_ty, _)) = autoderef.next() {
+ debug!("deref_base_ty: {:?}", deref_base_ty);
+ match deref_base_ty.kind() {
+ ty::Adt(base_def, substs) if !base_def.is_enum() => {
+ debug!("struct named {:?}", deref_base_ty);
+ let (ident, def_scope) =
+ self.tcx.adjust_ident_and_get_scope(field, base_def.did(), self.body_id);
+ let fields = &base_def.non_enum_variant().fields;
+ if let Some(index) = fields
+ .iter()
+ .position(|f| f.ident(self.tcx).normalize_to_macros_2_0() == ident)
+ {
+ let field = &fields[index];
+ let field_ty = self.field_ty(expr.span, field, substs);
+ // Save the index of all fields regardless of their visibility in case
+ // of error recovery.
+ self.write_field_index(expr.hir_id, index);
+ let adjustments = self.adjust_steps(&autoderef);
+ if field.vis.is_accessible_from(def_scope, self.tcx) {
+ self.apply_adjustments(base, adjustments);
+ self.register_predicates(autoderef.into_obligations());
+
+ self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
+ return field_ty;
+ }
+ private_candidate = Some((adjustments, base_def.did(), field_ty));
+ }
+ }
+ ty::Tuple(tys) => {
+ let fstr = field.as_str();
+ if let Ok(index) = fstr.parse::<usize>() {
+ if fstr == index.to_string() {
+ if let Some(&field_ty) = tys.get(index) {
+ let adjustments = self.adjust_steps(&autoderef);
+ self.apply_adjustments(base, adjustments);
+ self.register_predicates(autoderef.into_obligations());
+
+ self.write_field_index(expr.hir_id, index);
+ return field_ty;
+ }
+ }
+ }
+ }
+ _ => {}
+ }
+ }
+ self.structurally_resolved_type(autoderef.span(), autoderef.final_ty(false));
+
+ if let Some((adjustments, did, field_ty)) = private_candidate {
+ // (#90483) apply adjustments to avoid ExprUseVisitor from
+ // creating erroneous projection.
+ self.apply_adjustments(base, adjustments);
+ self.ban_private_field_access(expr, base_ty, field, did);
+ return field_ty;
+ }
+
+ if field.name == kw::Empty {
+ } else if self.method_exists(field, base_ty, expr.hir_id, true) {
+ self.ban_take_value_of_method(expr, base_ty, field);
+ } else if !base_ty.is_primitive_ty() {
+ self.ban_nonexisting_field(field, base, expr, base_ty);
+ } else {
+ let field_name = field.to_string();
+ let mut err = type_error_struct!(
+ self.tcx().sess,
+ field.span,
+ base_ty,
+ E0610,
+ "`{base_ty}` is a primitive type and therefore doesn't have fields",
+ );
+ let is_valid_suffix = |field: &str| {
+ if field == "f32" || field == "f64" {
+ return true;
+ }
+ let mut chars = field.chars().peekable();
+ match chars.peek() {
+ Some('e') | Some('E') => {
+ chars.next();
+ if let Some(c) = chars.peek()
+ && !c.is_numeric() && *c != '-' && *c != '+'
+ {
+ return false;
+ }
+ while let Some(c) = chars.peek() {
+ if !c.is_numeric() {
+ break;
+ }
+ chars.next();
+ }
+ }
+ _ => (),
+ }
+ let suffix = chars.collect::<String>();
+ suffix.is_empty() || suffix == "f32" || suffix == "f64"
+ };
+ let maybe_partial_suffix = |field: &str| -> Option<&str> {
+ let first_chars = ['f', 'l'];
+ if field.len() >= 1
+ && field.to_lowercase().starts_with(first_chars)
+ && field[1..].chars().all(|c| c.is_ascii_digit())
+ {
+ if field.to_lowercase().starts_with(['f']) { Some("f32") } else { Some("f64") }
+ } else {
+ None
+ }
+ };
+ if let ty::Infer(ty::IntVar(_)) = base_ty.kind()
+ && let ExprKind::Lit(Spanned {
+ node: ast::LitKind::Int(_, ast::LitIntType::Unsuffixed),
+ ..
+ }) = base.kind
+ && !base.span.from_expansion()
+ {
+ if is_valid_suffix(&field_name) {
+ err.span_suggestion_verbose(
+ field.span.shrink_to_lo(),
+ "if intended to be a floating point literal, consider adding a `0` after the period",
+ '0',
+ Applicability::MaybeIncorrect,
+ );
+ } else if let Some(correct_suffix) = maybe_partial_suffix(&field_name) {
+ err.span_suggestion_verbose(
+ field.span,
+ format!("if intended to be a floating point literal, consider adding a `0` after the period and a `{correct_suffix}` suffix"),
+ format!("0{correct_suffix}"),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ err.emit();
+ }
+
+ self.tcx().ty_error()
+ }
+
+ fn suggest_await_on_field_access(
+ &self,
+ err: &mut Diagnostic,
+ field_ident: Ident,
+ base: &'tcx hir::Expr<'tcx>,
+ ty: Ty<'tcx>,
+ ) {
+ let output_ty = match self.get_impl_future_output_ty(ty) {
+ Some(output_ty) => self.resolve_vars_if_possible(output_ty),
+ _ => return,
+ };
+ let mut add_label = true;
+ if let ty::Adt(def, _) = output_ty.skip_binder().kind() {
+ // no field access on enum type
+ if !def.is_enum() {
+ if def
+ .non_enum_variant()
+ .fields
+ .iter()
+ .any(|field| field.ident(self.tcx) == field_ident)
+ {
+ add_label = false;
+ err.span_label(
+ field_ident.span,
+ "field not available in `impl Future`, but it is available in its `Output`",
+ );
+ err.span_suggestion_verbose(
+ base.span.shrink_to_hi(),
+ "consider `await`ing on the `Future` and access the field of its `Output`",
+ ".await",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ }
+ if add_label {
+ err.span_label(field_ident.span, &format!("field not found in `{ty}`"));
+ }
+ }
+
+ fn ban_nonexisting_field(
+ &self,
+ ident: Ident,
+ base: &'tcx hir::Expr<'tcx>,
+ expr: &'tcx hir::Expr<'tcx>,
+ base_ty: Ty<'tcx>,
+ ) {
+ debug!(
+ "ban_nonexisting_field: field={:?}, base={:?}, expr={:?}, base_ty={:?}",
+ ident, base, expr, base_ty
+ );
+ let mut err = self.no_such_field_err(ident, base_ty, base.hir_id);
+
+ match *base_ty.peel_refs().kind() {
+ ty::Array(_, len) => {
+ self.maybe_suggest_array_indexing(&mut err, expr, base, ident, len);
+ }
+ ty::RawPtr(..) => {
+ self.suggest_first_deref_field(&mut err, expr, base, ident);
+ }
+ ty::Adt(def, _) if !def.is_enum() => {
+ self.suggest_fields_on_recordish(&mut err, def, ident, expr.span);
+ }
+ ty::Param(param_ty) => {
+ self.point_at_param_definition(&mut err, param_ty);
+ }
+ ty::Opaque(_, _) => {
+ self.suggest_await_on_field_access(&mut err, ident, base, base_ty.peel_refs());
+ }
+ _ => {}
+ }
+
+ self.suggest_fn_call(&mut err, base, base_ty, |output_ty| {
+ if let ty::Adt(def, _) = output_ty.kind() && !def.is_enum() {
+ def.non_enum_variant().fields.iter().any(|field| {
+ field.ident(self.tcx) == ident
+ && field.vis.is_accessible_from(expr.hir_id.owner.def_id, self.tcx)
+ })
+ } else if let ty::Tuple(tys) = output_ty.kind()
+ && let Ok(idx) = ident.as_str().parse::<usize>()
+ {
+ idx < tys.len()
+ } else {
+ false
+ }
+ });
+
+ if ident.name == kw::Await {
+ // We know by construction that `<expr>.await` is either on Rust 2015
+ // or results in `ExprKind::Await`. Suggest switching the edition to 2018.
+ err.note("to `.await` a `Future`, switch to Rust 2018 or later");
+ err.help_use_latest_edition();
+ }
+
+ err.emit();
+ }
+
+ fn ban_private_field_access(
+ &self,
+ expr: &hir::Expr<'_>,
+ expr_t: Ty<'tcx>,
+ field: Ident,
+ base_did: DefId,
+ ) {
+ let struct_path = self.tcx().def_path_str(base_did);
+ let kind_name = self.tcx().def_kind(base_did).descr(base_did);
+ let mut err = struct_span_err!(
+ self.tcx().sess,
+ field.span,
+ E0616,
+ "field `{field}` of {kind_name} `{struct_path}` is private",
+ );
+ err.span_label(field.span, "private field");
+ // Also check if an accessible method exists, which is often what is meant.
+ if self.method_exists(field, expr_t, expr.hir_id, false) && !self.expr_in_place(expr.hir_id)
+ {
+ self.suggest_method_call(
+ &mut err,
+ &format!("a method `{field}` also exists, call it with parentheses"),
+ field,
+ expr_t,
+ expr,
+ None,
+ );
+ }
+ err.emit();
+ }
+
+ fn ban_take_value_of_method(&self, expr: &hir::Expr<'_>, expr_t: Ty<'tcx>, field: Ident) {
+ let mut err = type_error_struct!(
+ self.tcx().sess,
+ field.span,
+ expr_t,
+ E0615,
+ "attempted to take value of method `{field}` on type `{expr_t}`",
+ );
+ err.span_label(field.span, "method, not a field");
+ let expr_is_call =
+ if let hir::Node::Expr(hir::Expr { kind: ExprKind::Call(callee, _args), .. }) =
+ self.tcx.hir().get(self.tcx.hir().get_parent_node(expr.hir_id))
+ {
+ expr.hir_id == callee.hir_id
+ } else {
+ false
+ };
+ let expr_snippet =
+ self.tcx.sess.source_map().span_to_snippet(expr.span).unwrap_or_default();
+ let is_wrapped = expr_snippet.starts_with('(') && expr_snippet.ends_with(')');
+ let after_open = expr.span.lo() + rustc_span::BytePos(1);
+ let before_close = expr.span.hi() - rustc_span::BytePos(1);
+
+ if expr_is_call && is_wrapped {
+ err.multipart_suggestion(
+ "remove wrapping parentheses to call the method",
+ vec![
+ (expr.span.with_hi(after_open), String::new()),
+ (expr.span.with_lo(before_close), String::new()),
+ ],
+ Applicability::MachineApplicable,
+ );
+ } else if !self.expr_in_place(expr.hir_id) {
+ // Suggest call parentheses inside the wrapping parentheses
+ let span = if is_wrapped {
+ expr.span.with_lo(after_open).with_hi(before_close)
+ } else {
+ expr.span
+ };
+ self.suggest_method_call(
+ &mut err,
+ "use parentheses to call the method",
+ field,
+ expr_t,
+ expr,
+ Some(span),
+ );
+ } else if let ty::RawPtr(ty_and_mut) = expr_t.kind()
+ && let ty::Adt(adt_def, _) = ty_and_mut.ty.kind()
+ && let ExprKind::Field(base_expr, _) = expr.kind
+ && adt_def.variants().len() == 1
+ && adt_def
+ .variants()
+ .iter()
+ .next()
+ .unwrap()
+ .fields
+ .iter()
+ .any(|f| f.ident(self.tcx) == field)
+ {
+ err.multipart_suggestion(
+ "to access the field, dereference first",
+ vec![
+ (base_expr.span.shrink_to_lo(), "(*".to_string()),
+ (base_expr.span.shrink_to_hi(), ")".to_string()),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ } else {
+ err.help("methods are immutable and cannot be assigned to");
+ }
+
+ err.emit();
+ }
+
+ fn point_at_param_definition(&self, err: &mut Diagnostic, param: ty::ParamTy) {
+ let generics = self.tcx.generics_of(self.body_id.owner.to_def_id());
+ let generic_param = generics.type_param(&param, self.tcx);
+ if let ty::GenericParamDefKind::Type { synthetic: true, .. } = generic_param.kind {
+ return;
+ }
+ let param_def_id = generic_param.def_id;
+ let param_hir_id = match param_def_id.as_local() {
+ Some(x) => self.tcx.hir().local_def_id_to_hir_id(x),
+ None => return,
+ };
+ let param_span = self.tcx.hir().span(param_hir_id);
+ let param_name = self.tcx.hir().ty_param_name(param_def_id.expect_local());
+
+ err.span_label(param_span, &format!("type parameter '{param_name}' declared here"));
+ }
+
+ fn suggest_fields_on_recordish(
+ &self,
+ err: &mut Diagnostic,
+ def: ty::AdtDef<'tcx>,
+ field: Ident,
+ access_span: Span,
+ ) {
+ if let Some(suggested_field_name) =
+ self.suggest_field_name(def.non_enum_variant(), field.name, vec![], access_span)
+ {
+ err.span_suggestion(
+ field.span,
+ "a field with a similar name exists",
+ suggested_field_name,
+ Applicability::MaybeIncorrect,
+ );
+ } else {
+ err.span_label(field.span, "unknown field");
+ let struct_variant_def = def.non_enum_variant();
+ let field_names = self.available_field_names(struct_variant_def, access_span);
+ if !field_names.is_empty() {
+ err.note(&format!(
+ "available fields are: {}",
+ self.name_series_display(field_names),
+ ));
+ }
+ }
+ }
+
+ fn maybe_suggest_array_indexing(
+ &self,
+ err: &mut Diagnostic,
+ expr: &hir::Expr<'_>,
+ base: &hir::Expr<'_>,
+ field: Ident,
+ len: ty::Const<'tcx>,
+ ) {
+ if let (Some(len), Ok(user_index)) =
+ (len.try_eval_usize(self.tcx, self.param_env), field.as_str().parse::<u64>())
+ && let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span)
+ {
+ let help = "instead of using tuple indexing, use array indexing";
+ let suggestion = format!("{base}[{field}]");
+ let applicability = if len < user_index {
+ Applicability::MachineApplicable
+ } else {
+ Applicability::MaybeIncorrect
+ };
+ err.span_suggestion(expr.span, help, suggestion, applicability);
+ }
+ }
+
+ fn suggest_first_deref_field(
+ &self,
+ err: &mut Diagnostic,
+ expr: &hir::Expr<'_>,
+ base: &hir::Expr<'_>,
+ field: Ident,
+ ) {
+ if let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span) {
+ let msg = format!("`{base}` is a raw pointer; try dereferencing it");
+ let suggestion = format!("(*{base}).{field}");
+ err.span_suggestion(expr.span, &msg, suggestion, Applicability::MaybeIncorrect);
+ }
+ }
+
+ fn no_such_field_err(
+ &self,
+ field: Ident,
+ expr_t: Ty<'tcx>,
+ id: HirId,
+ ) -> DiagnosticBuilder<'_, ErrorGuaranteed> {
+ let span = field.span;
+ debug!("no_such_field_err(span: {:?}, field: {:?}, expr_t: {:?})", span, field, expr_t);
+
+ let mut err = type_error_struct!(
+ self.tcx().sess,
+ field.span,
+ expr_t,
+ E0609,
+ "no field `{field}` on type `{expr_t}`",
+ );
+
+ // try to add a suggestion in case the field is a nested field of a field of the Adt
+ let mod_id = self.tcx.parent_module(id).to_def_id();
+ if let Some((fields, substs)) =
+ self.get_field_candidates_considering_privacy(span, expr_t, mod_id)
+ {
+ let candidate_fields: Vec<_> = fields
+ .filter_map(|candidate_field| {
+ self.check_for_nested_field_satisfying(
+ span,
+ &|candidate_field, _| candidate_field.ident(self.tcx()) == field,
+ candidate_field,
+ substs,
+ vec![],
+ mod_id,
+ )
+ })
+ .map(|mut field_path| {
+ field_path.pop();
+ field_path
+ .iter()
+ .map(|id| id.name.to_ident_string())
+ .collect::<Vec<String>>()
+ .join(".")
+ })
+ .collect::<Vec<_>>();
+
+ let len = candidate_fields.len();
+ if len > 0 {
+ err.span_suggestions(
+ field.span.shrink_to_lo(),
+ format!(
+ "{} of the expressions' fields {} a field of the same name",
+ if len > 1 { "some" } else { "one" },
+ if len > 1 { "have" } else { "has" },
+ ),
+ candidate_fields.iter().map(|path| format!("{path}.")),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ err
+ }
+
+ pub(crate) fn get_field_candidates_considering_privacy(
+ &self,
+ span: Span,
+ base_ty: Ty<'tcx>,
+ mod_id: DefId,
+ ) -> Option<(impl Iterator<Item = &'tcx ty::FieldDef> + 'tcx, SubstsRef<'tcx>)> {
+ debug!("get_field_candidates(span: {:?}, base_t: {:?}", span, base_ty);
+
+ for (base_t, _) in self.autoderef(span, base_ty) {
+ match base_t.kind() {
+ ty::Adt(base_def, substs) if !base_def.is_enum() => {
+ let tcx = self.tcx;
+ let fields = &base_def.non_enum_variant().fields;
+ // Some struct, e.g. some that impl `Deref`, have all private fields
+ // because you're expected to deref them to access the _real_ fields.
+ // This, for example, will help us suggest accessing a field through a `Box<T>`.
+ if fields.iter().all(|field| !field.vis.is_accessible_from(mod_id, tcx)) {
+ continue;
+ }
+ return Some((
+ fields
+ .iter()
+ .filter(move |field| field.vis.is_accessible_from(mod_id, tcx))
+ // For compile-time reasons put a limit on number of fields we search
+ .take(100),
+ substs,
+ ));
+ }
+ _ => {}
+ }
+ }
+ None
+ }
+
+ /// This method is called after we have encountered a missing field error to recursively
+ /// search for the field
+ pub(crate) fn check_for_nested_field_satisfying(
+ &self,
+ span: Span,
+ matches: &impl Fn(&ty::FieldDef, Ty<'tcx>) -> bool,
+ candidate_field: &ty::FieldDef,
+ subst: SubstsRef<'tcx>,
+ mut field_path: Vec<Ident>,
+ mod_id: DefId,
+ ) -> Option<Vec<Ident>> {
+ debug!(
+ "check_for_nested_field_satisfying(span: {:?}, candidate_field: {:?}, field_path: {:?}",
+ span, candidate_field, field_path
+ );
+
+ if field_path.len() > 3 {
+ // For compile-time reasons and to avoid infinite recursion we only check for fields
+ // up to a depth of three
+ None
+ } else {
+ field_path.push(candidate_field.ident(self.tcx).normalize_to_macros_2_0());
+ let field_ty = candidate_field.ty(self.tcx, subst);
+ if matches(candidate_field, field_ty) {
+ return Some(field_path);
+ } else if let Some((nested_fields, subst)) =
+ self.get_field_candidates_considering_privacy(span, field_ty, mod_id)
+ {
+ // recursively search fields of `candidate_field` if it's a ty::Adt
+ for field in nested_fields {
+ if let Some(field_path) = self.check_for_nested_field_satisfying(
+ span,
+ matches,
+ field,
+ subst,
+ field_path.clone(),
+ mod_id,
+ ) {
+ return Some(field_path);
+ }
+ }
+ }
+ None
+ }
+ }
+
+ fn check_expr_index(
+ &self,
+ base: &'tcx hir::Expr<'tcx>,
+ idx: &'tcx hir::Expr<'tcx>,
+ expr: &'tcx hir::Expr<'tcx>,
+ ) -> Ty<'tcx> {
+ let base_t = self.check_expr(&base);
+ let idx_t = self.check_expr(&idx);
+
+ if base_t.references_error() {
+ base_t
+ } else if idx_t.references_error() {
+ idx_t
+ } else {
+ let base_t = self.structurally_resolved_type(base.span, base_t);
+ match self.lookup_indexing(expr, base, base_t, idx, idx_t) {
+ Some((index_ty, element_ty)) => {
+ // two-phase not needed because index_ty is never mutable
+ self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
+ self.select_obligations_where_possible(false, |errors| {
+ self.point_at_index_if_possible(errors, idx.span)
+ });
+ element_ty
+ }
+ None => {
+ let mut err = type_error_struct!(
+ self.tcx.sess,
+ expr.span,
+ base_t,
+ E0608,
+ "cannot index into a value of type `{base_t}`",
+ );
+ // Try to give some advice about indexing tuples.
+ if let ty::Tuple(..) = base_t.kind() {
+ let mut needs_note = true;
+ // If the index is an integer, we can show the actual
+ // fixed expression:
+ if let ExprKind::Lit(ref lit) = idx.kind {
+ if let ast::LitKind::Int(i, ast::LitIntType::Unsuffixed) = lit.node {
+ let snip = self.tcx.sess.source_map().span_to_snippet(base.span);
+ if let Ok(snip) = snip {
+ err.span_suggestion(
+ expr.span,
+ "to access tuple elements, use",
+ format!("{snip}.{i}"),
+ Applicability::MachineApplicable,
+ );
+ needs_note = false;
+ }
+ }
+ }
+ if needs_note {
+ err.help(
+ "to access tuple elements, use tuple indexing \
+ syntax (e.g., `tuple.0`)",
+ );
+ }
+ }
+ err.emit();
+ self.tcx.ty_error()
+ }
+ }
+ }
+ }
+
+ fn point_at_index_if_possible(
+ &self,
+ errors: &mut Vec<traits::FulfillmentError<'tcx>>,
+ span: Span,
+ ) {
+ for error in errors {
+ match error.obligation.predicate.kind().skip_binder() {
+ ty::PredicateKind::Trait(predicate)
+ if self.tcx.is_diagnostic_item(sym::SliceIndex, predicate.trait_ref.def_id) => {
+ }
+ _ => continue,
+ }
+ error.obligation.cause.span = span;
+ }
+ }
+
+ fn check_expr_yield(
+ &self,
+ value: &'tcx hir::Expr<'tcx>,
+ expr: &'tcx hir::Expr<'tcx>,
+ src: &'tcx hir::YieldSource,
+ ) -> Ty<'tcx> {
+ match self.resume_yield_tys {
+ Some((resume_ty, yield_ty)) => {
+ self.check_expr_coercable_to_type(&value, yield_ty, None);
+
+ resume_ty
+ }
+ // Given that this `yield` expression was generated as a result of lowering a `.await`,
+ // we know that the yield type must be `()`; however, the context won't contain this
+ // information. Hence, we check the source of the yield expression here and check its
+ // value's type against `()` (this check should always hold).
+ None if src.is_await() => {
+ self.check_expr_coercable_to_type(&value, self.tcx.mk_unit(), None);
+ self.tcx.mk_unit()
+ }
+ _ => {
+ self.tcx.sess.emit_err(YieldExprOutsideOfGenerator { span: expr.span });
+ // Avoid expressions without types during writeback (#78653).
+ self.check_expr(value);
+ self.tcx.mk_unit()
+ }
+ }
+ }
+
+ fn check_expr_asm_operand(&self, expr: &'tcx hir::Expr<'tcx>, is_input: bool) {
+ let needs = if is_input { Needs::None } else { Needs::MutPlace };
+ let ty = self.check_expr_with_needs(expr, needs);
+ self.require_type_is_sized(ty, expr.span, traits::InlineAsmSized);
+
+ if !is_input && !expr.is_syntactic_place_expr() {
+ let mut err = self.tcx.sess.struct_span_err(expr.span, "invalid asm output");
+ err.span_label(expr.span, "cannot assign to this expression");
+ err.emit();
+ }
+
+ // If this is an input value, we require its type to be fully resolved
+ // at this point. This allows us to provide helpful coercions which help
+ // pass the type candidate list in a later pass.
+ //
+ // We don't require output types to be resolved at this point, which
+ // allows them to be inferred based on how they are used later in the
+ // function.
+ if is_input {
+ let ty = self.structurally_resolved_type(expr.span, ty);
+ match *ty.kind() {
+ ty::FnDef(..) => {
+ let fnptr_ty = self.tcx.mk_fn_ptr(ty.fn_sig(self.tcx));
+ self.demand_coerce(expr, ty, fnptr_ty, None, AllowTwoPhase::No);
+ }
+ ty::Ref(_, base_ty, mutbl) => {
+ let ptr_ty = self.tcx.mk_ptr(ty::TypeAndMut { ty: base_ty, mutbl });
+ self.demand_coerce(expr, ty, ptr_ty, None, AllowTwoPhase::No);
+ }
+ _ => {}
+ }
+ }
+ }
+
+ fn check_expr_asm(&self, asm: &'tcx hir::InlineAsm<'tcx>) -> Ty<'tcx> {
+ for (op, _op_sp) in asm.operands {
+ match op {
+ hir::InlineAsmOperand::In { expr, .. } => {
+ self.check_expr_asm_operand(expr, true);
+ }
+ hir::InlineAsmOperand::Out { expr: Some(expr), .. }
+ | hir::InlineAsmOperand::InOut { expr, .. } => {
+ self.check_expr_asm_operand(expr, false);
+ }
+ hir::InlineAsmOperand::Out { expr: None, .. } => {}
+ hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
+ self.check_expr_asm_operand(in_expr, true);
+ if let Some(out_expr) = out_expr {
+ self.check_expr_asm_operand(out_expr, false);
+ }
+ }
+ // `AnonConst`s have their own body and is type-checked separately.
+ // As they don't flow into the type system we don't need them to
+ // be well-formed.
+ hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymFn { .. } => {}
+ hir::InlineAsmOperand::SymStatic { .. } => {}
+ }
+ }
+ if asm.options.contains(ast::InlineAsmOptions::NORETURN) {
+ self.tcx.types.never
+ } else {
+ self.tcx.mk_unit()
+ }
+ }
+}
diff --git a/compiler/rustc_typeck/src/expr_use_visitor.rs b/compiler/rustc_hir_typeck/src/expr_use_visitor.rs
index 74a5b6e42..fce2a5888 100644
--- a/compiler/rustc_typeck/src/expr_use_visitor.rs
+++ b/compiler/rustc_hir_typeck/src/expr_use_visitor.rs
@@ -89,15 +89,6 @@ enum ConsumeMode {
Move,
}
-#[derive(Copy, Clone, PartialEq, Debug)]
-pub enum MutateMode {
- Init,
- /// Example: `x = y`
- JustWrite,
- /// Example: `x += y`
- WriteAndRead,
-}
-
/// The ExprUseVisitor type
///
/// This is the code that actually walks the tree.
@@ -134,7 +125,7 @@ impl<'a, 'tcx> ExprUseVisitor<'a, 'tcx> {
/// - `typeck_results` --- typeck results for the code being analyzed
pub fn new(
delegate: &'a mut (dyn Delegate<'tcx> + 'a),
- infcx: &'a InferCtxt<'a, 'tcx>,
+ infcx: &'a InferCtxt<'tcx>,
body_owner: LocalDefId,
param_env: ty::ParamEnv<'tcx>,
typeck_results: &'a ty::TypeckResults<'tcx>,
@@ -233,8 +224,9 @@ impl<'a, 'tcx> ExprUseVisitor<'a, 'tcx> {
self.consume_exprs(args);
}
- hir::ExprKind::MethodCall(.., args, _) => {
+ hir::ExprKind::MethodCall(.., receiver, args, _) => {
// callee.m(args)
+ self.consume_expr(receiver);
self.consume_exprs(args);
}
@@ -497,7 +489,7 @@ impl<'a, 'tcx> ExprUseVisitor<'a, 'tcx> {
let expr_place = return_if_err!(self.mc.cat_expr(expr));
f(self);
if let Some(els) = els {
- // borrowing because we need to test the descriminant
+ // borrowing because we need to test the discriminant
self.maybe_read_scrutinee(expr, expr_place.clone(), from_ref(pat).iter());
self.walk_block(els)
}
@@ -582,7 +574,9 @@ impl<'a, 'tcx> ExprUseVisitor<'a, 'tcx> {
for adjustment in adjustments {
debug!("walk_adjustment expr={:?} adj={:?}", expr, adjustment);
match adjustment.kind {
- adjustment::Adjust::NeverToAny | adjustment::Adjust::Pointer(_) => {
+ adjustment::Adjust::NeverToAny
+ | adjustment::Adjust::Pointer(_)
+ | adjustment::Adjust::DynStar => {
// Creating a closure/fn-pointer or unsizing consumes
// the input and stores it into the resulting rvalue.
self.delegate_consume(&place_with_id, place_with_id.hir_id);
diff --git a/compiler/rustc_typeck/src/check/fallback.rs b/compiler/rustc_hir_typeck/src/fallback.rs
index 4059b3403..747ecb036 100644
--- a/compiler/rustc_typeck/src/check/fallback.rs
+++ b/compiler/rustc_hir_typeck/src/fallback.rs
@@ -1,4 +1,4 @@
-use crate::check::FnCtxt;
+use crate::FnCtxt;
use rustc_data_structures::{
fx::{FxHashMap, FxHashSet},
graph::WithSuccessors,
@@ -72,7 +72,7 @@ impl<'tcx> FnCtxt<'_, 'tcx> {
//
// - Unconstrained ints are replaced with `i32`.
//
- // - Unconstrained floats are replaced with with `f64`.
+ // - Unconstrained floats are replaced with `f64`.
//
// - Non-numerics may get replaced with `()` or `!`, depending on
// how they were categorized by `calculate_diverging_fallback`
diff --git a/compiler/rustc_typeck/src/check/fn_ctxt/_impl.rs b/compiler/rustc_hir_typeck/src/fn_ctxt/_impl.rs
index 3a8093345..6a1cffe3e 100644
--- a/compiler/rustc_typeck/src/check/fn_ctxt/_impl.rs
+++ b/compiler/rustc_hir_typeck/src/fn_ctxt/_impl.rs
@@ -1,12 +1,7 @@
-use crate::astconv::{
- AstConv, CreateSubstsForGenericArgsCtxt, ExplicitLateBound, GenericArgCountMismatch,
- GenericArgCountResult, IsMethodCall, PathSeg,
-};
-use crate::check::callee::{self, DeferredCallResolution};
-use crate::check::method::{self, MethodCallee, SelfSource};
-use crate::check::rvalue_scopes;
-use crate::check::{BreakableCtxt, Diverges, Expectation, FnCtxt, LocalTy};
-
+use crate::callee::{self, DeferredCallResolution};
+use crate::method::{self, MethodCallee, SelfSource};
+use crate::rvalue_scopes;
+use crate::{BreakableCtxt, Diverges, Expectation, FnCtxt, LocalTy};
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::{Applicability, Diagnostic, ErrorGuaranteed, MultiSpan};
@@ -15,26 +10,28 @@ use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{ExprKind, GenericArg, Node, QPath};
+use rustc_hir_analysis::astconv::{
+ AstConv, CreateSubstsForGenericArgsCtxt, ExplicitLateBound, GenericArgCountMismatch,
+ GenericArgCountResult, IsMethodCall, PathSeg,
+};
use rustc_infer::infer::canonical::{Canonical, OriginalQueryValues, QueryResponse};
use rustc_infer::infer::error_reporting::TypeAnnotationNeeded::E0282;
use rustc_infer::infer::{InferOk, InferResult};
use rustc_middle::ty::adjustment::{Adjust, Adjustment, AutoBorrow, AutoBorrowMutability};
use rustc_middle::ty::fold::TypeFoldable;
-use rustc_middle::ty::subst::{
- self, GenericArgKind, InternalSubsts, Subst, SubstsRef, UserSelfTy, UserSubsts,
-};
use rustc_middle::ty::visit::TypeVisitable;
use rustc_middle::ty::{
self, AdtKind, CanonicalUserType, DefIdTree, EarlyBinder, GenericParamDefKind, ToPolyTraitRef,
ToPredicate, Ty, UserType,
};
+use rustc_middle::ty::{GenericArgKind, InternalSubsts, SubstsRef, UserSelfTy, UserSubsts};
use rustc_session::lint;
use rustc_span::def_id::LocalDefId;
use rustc_span::hygiene::DesugaringKind;
use rustc_span::symbol::{kw, sym, Ident};
use rustc_span::{Span, DUMMY_SP};
use rustc_trait_selection::infer::InferCtxtExt as _;
-use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
+use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
use rustc_trait_selection::traits::{
self, ObligationCause, ObligationCauseCode, TraitEngine, TraitEngineExt,
};
@@ -60,17 +57,20 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
debug!("warn_if_unreachable: id={:?} span={:?} kind={}", id, span, kind);
- self.tcx().struct_span_lint_hir(lint::builtin::UNREACHABLE_CODE, id, span, |lint| {
- let msg = format!("unreachable {}", kind);
- lint.build(&msg)
- .span_label(span, &msg)
- .span_label(
+ let msg = format!("unreachable {}", kind);
+ self.tcx().struct_span_lint_hir(
+ lint::builtin::UNREACHABLE_CODE,
+ id,
+ span,
+ &msg,
+ |lint| {
+ lint.span_label(span, &msg).span_label(
orig_span,
custom_note
.unwrap_or("any code following this expression is unreachable"),
)
- .emit();
- })
+ },
+ )
}
}
}
@@ -83,21 +83,21 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
self.resolve_vars_with_obligations_and_mutate_fulfillment(ty, |_| {})
}
- #[instrument(skip(self, mutate_fulfillment_errors), level = "debug")]
+ #[instrument(skip(self, mutate_fulfillment_errors), level = "debug", ret)]
pub(in super::super) fn resolve_vars_with_obligations_and_mutate_fulfillment(
&self,
mut ty: Ty<'tcx>,
mutate_fulfillment_errors: impl Fn(&mut Vec<traits::FulfillmentError<'tcx>>),
) -> Ty<'tcx> {
// No Infer()? Nothing needs doing.
- if !ty.has_infer_types_or_consts() {
+ if !ty.has_non_region_infer() {
debug!("no inference var, nothing needs doing");
return ty;
}
// If `ty` is a type variable, see whether we already know what it is.
ty = self.resolve_vars_if_possible(ty);
- if !ty.has_infer_types_or_consts() {
+ if !ty.has_non_region_infer() {
debug!(?ty);
return ty;
}
@@ -107,10 +107,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// indirect dependencies that don't seem worth tracking
// precisely.
self.select_obligations_where_possible(false, mutate_fulfillment_errors);
- ty = self.resolve_vars_if_possible(ty);
-
- debug!(?ty);
- ty
+ self.resolve_vars_if_possible(ty)
}
pub(in super::super) fn record_deferred_call_resolution(
@@ -412,7 +409,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
rhs_span: opt_input_expr.map(|expr| expr.span),
is_lit: opt_input_expr
.map_or(false, |expr| matches!(expr.kind, ExprKind::Lit(_))),
- output_pred: None,
+ output_ty: None,
},
),
self.param_env,
@@ -492,21 +489,16 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub fn array_length_to_const(&self, length: &hir::ArrayLen) -> ty::Const<'tcx> {
match length {
&hir::ArrayLen::Infer(_, span) => self.ct_infer(self.tcx.types.usize, None, span),
- hir::ArrayLen::Body(anon_const) => self.to_const(anon_const),
+ hir::ArrayLen::Body(anon_const) => {
+ let const_def_id = self.tcx.hir().local_def_id(anon_const.hir_id);
+ let span = self.tcx.hir().span(anon_const.hir_id);
+ let c = ty::Const::from_anon_const(self.tcx, const_def_id);
+ self.register_wf_obligation(c.into(), span, ObligationCauseCode::WellFormed(None));
+ self.normalize_associated_types_in(span, c)
+ }
}
}
- pub fn to_const(&self, ast_c: &hir::AnonConst) -> ty::Const<'tcx> {
- let const_def_id = self.tcx.hir().local_def_id(ast_c.hir_id);
- let c = ty::Const::from_anon_const(self.tcx, const_def_id);
- self.register_wf_obligation(
- c.into(),
- self.tcx.hir().span(ast_c.hir_id),
- ObligationCauseCode::WellFormed(None),
- );
- c
- }
-
pub fn const_arg_to_const(
&self,
ast_c: &hir::AnonConst,
@@ -565,7 +557,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
/// Registers an obligation for checking later, during regionck, that `arg` is well-formed.
pub fn register_wf_obligation(
&self,
- arg: subst::GenericArg<'tcx>,
+ arg: ty::GenericArg<'tcx>,
span: Span,
code: traits::ObligationCauseCode<'tcx>,
) {
@@ -610,18 +602,17 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let mut generators = self.deferred_generator_interiors.borrow_mut();
for (body_id, interior, kind) in generators.drain(..) {
self.select_obligations_where_possible(false, |_| {});
- crate::check::generator_interior::resolve_interior(
- self, def_id, body_id, interior, kind,
- );
+ crate::generator_interior::resolve_interior(self, def_id, body_id, interior, kind);
}
}
#[instrument(skip(self), level = "debug")]
pub(in super::super) fn select_all_obligations_or_error(&self) {
- let errors = self.fulfillment_cx.borrow_mut().select_all_or_error(&self);
+ let mut errors = self.fulfillment_cx.borrow_mut().select_all_or_error(&self);
if !errors.is_empty() {
- self.report_fulfillment_errors(&errors, self.inh.body_id, false);
+ self.adjust_fulfillment_errors_for_expr_obligation(&mut errors);
+ self.err_ctxt().report_fulfillment_errors(&errors, self.inh.body_id, false);
}
}
@@ -634,7 +625,12 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let mut result = self.fulfillment_cx.borrow_mut().select_where_possible(self);
if !result.is_empty() {
mutate_fulfillment_errors(&mut result);
- self.report_fulfillment_errors(&result, self.inh.body_id, fallback_has_occurred);
+ self.adjust_fulfillment_errors_for_expr_obligation(&mut result);
+ self.err_ctxt().report_fulfillment_errors(
+ &result,
+ self.inh.body_id,
+ fallback_has_occurred,
+ );
}
}
@@ -831,23 +827,25 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let ty = item_ty.subst(self.tcx, substs);
self.write_resolution(hir_id, Ok((def_kind, def_id)));
- self.add_required_obligations_with_code(
- span,
- def_id,
- &substs,
- match lang_item {
- hir::LangItem::IntoFutureIntoFuture => {
- ObligationCauseCode::AwaitableExpr(expr_hir_id)
- }
- hir::LangItem::IteratorNext | hir::LangItem::IntoIterIntoIter => {
- ObligationCauseCode::ForLoopIterator
- }
- hir::LangItem::TryTraitFromOutput
- | hir::LangItem::TryTraitFromResidual
- | hir::LangItem::TryTraitBranch => ObligationCauseCode::QuestionMark,
- _ => traits::ItemObligation(def_id),
- },
- );
+
+ let code = match lang_item {
+ hir::LangItem::IntoFutureIntoFuture => {
+ Some(ObligationCauseCode::AwaitableExpr(expr_hir_id))
+ }
+ hir::LangItem::IteratorNext | hir::LangItem::IntoIterIntoIter => {
+ Some(ObligationCauseCode::ForLoopIterator)
+ }
+ hir::LangItem::TryTraitFromOutput
+ | hir::LangItem::TryTraitFromResidual
+ | hir::LangItem::TryTraitBranch => Some(ObligationCauseCode::QuestionMark),
+ _ => None,
+ };
+ if let Some(code) = code {
+ self.add_required_obligations_with_code(span, def_id, substs, move |_, _| code.clone());
+ } else {
+ self.add_required_obligations_for_hir(span, def_id, substs, hir_id);
+ }
+
(Res::Def(def_kind, def_id), ty)
}
@@ -986,7 +984,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
if found != self.tcx.types.unit {
return;
}
- if let ExprKind::MethodCall(path_segment, [rcvr, ..], _) = expr.kind {
+ if let ExprKind::MethodCall(path_segment, rcvr, ..) = expr.kind {
if self
.typeck_results
.borrow()
@@ -1273,7 +1271,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
&mut self,
param: &ty::GenericParamDef,
arg: &GenericArg<'_>,
- ) -> subst::GenericArg<'tcx> {
+ ) -> ty::GenericArg<'tcx> {
match (&param.kind, arg) {
(GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
<dyn AstConv<'_>>::ast_region_to_region(self.fcx, lt, Some(param)).into()
@@ -1297,10 +1295,10 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
fn inferred_kind(
&mut self,
- substs: Option<&[subst::GenericArg<'tcx>]>,
+ substs: Option<&[ty::GenericArg<'tcx>]>,
param: &ty::GenericParamDef,
infer_args: bool,
- ) -> subst::GenericArg<'tcx> {
+ ) -> ty::GenericArg<'tcx> {
let tcx = self.fcx.tcx();
match param.kind {
GenericParamDefKind::Lifetime => {
@@ -1359,7 +1357,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// First, store the "user substs" for later.
self.write_user_type_annotation_from_substs(hir_id, def_id, substs, user_self_ty);
- self.add_required_obligations(span, def_id, &substs);
+ self.add_required_obligations_for_hir(span, def_id, &substs, hir_id);
// Substitute the values for the type parameters into the type of
// the referenced item.
@@ -1396,35 +1394,66 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
/// Add all the obligations that are required, substituting and normalized appropriately.
- pub(crate) fn add_required_obligations(
+ pub(crate) fn add_required_obligations_for_hir(
&self,
span: Span,
def_id: DefId,
- substs: &SubstsRef<'tcx>,
+ substs: SubstsRef<'tcx>,
+ hir_id: hir::HirId,
) {
- self.add_required_obligations_with_code(
- span,
- def_id,
- substs,
- traits::ItemObligation(def_id),
- )
+ self.add_required_obligations_with_code(span, def_id, substs, |idx, span| {
+ if span.is_dummy() {
+ ObligationCauseCode::ExprItemObligation(def_id, hir_id, idx)
+ } else {
+ ObligationCauseCode::ExprBindingObligation(def_id, span, hir_id, idx)
+ }
+ })
}
- #[tracing::instrument(level = "debug", skip(self, span, def_id, substs))]
+ #[instrument(level = "debug", skip(self, code, span, substs))]
fn add_required_obligations_with_code(
&self,
span: Span,
def_id: DefId,
- substs: &SubstsRef<'tcx>,
- code: ObligationCauseCode<'tcx>,
+ substs: SubstsRef<'tcx>,
+ code: impl Fn(usize, Span) -> ObligationCauseCode<'tcx>,
) {
+ let param_env = self.param_env;
+
+ let remap = match self.tcx.def_kind(def_id) {
+ // Associated consts have `Self: ~const Trait` bounds that should be satisfiable when
+ // `Self: Trait` is satisfied because it does not matter whether the impl is `const`.
+ // Therefore we have to remap the param env here to be non-const.
+ hir::def::DefKind::AssocConst => true,
+ hir::def::DefKind::AssocFn
+ if self.tcx.def_kind(self.tcx.parent(def_id)) == hir::def::DefKind::Trait =>
+ {
+ // N.B.: All callsites to this function involve checking a path expression.
+ //
+ // When instantiating a trait method as a function item, it does not actually matter whether
+ // the trait is `const` or not, or whether `where T: ~const Tr` needs to be satisfied as
+ // `const`. If we were to introduce instantiating trait methods as `const fn`s, we would
+ // check that after this, either via a bound `where F: ~const FnOnce` or when coercing to a
+ // `const fn` pointer.
+ //
+ // FIXME(fee1-dead) FIXME(const_trait_impl): update this doc when trait methods can satisfy
+ // `~const FnOnce` or can be coerced to `const fn` pointer.
+ true
+ }
+ _ => false,
+ };
let (bounds, _) = self.instantiate_bounds(span, def_id, &substs);
- for obligation in traits::predicates_for_generics(
- traits::ObligationCause::new(span, self.body_id, code),
- self.param_env,
+ for mut obligation in traits::predicates_for_generics(
+ |idx, predicate_span| {
+ traits::ObligationCause::new(span, self.body_id, code(idx, predicate_span))
+ },
+ param_env,
bounds,
) {
+ if remap {
+ obligation = obligation.without_const(self.tcx);
+ }
self.register_predicate(obligation);
}
}
@@ -1438,7 +1467,8 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
ty
} else {
if !self.is_tainted_by_errors() {
- self.emit_inference_failure_err((**self).body_id, sp, ty.into(), E0282, true)
+ self.err_ctxt()
+ .emit_inference_failure_err((**self).body_id, sp, ty.into(), E0282, true)
.emit();
}
let err = self.tcx.ty_error();
diff --git a/compiler/rustc_typeck/src/check/fn_ctxt/arg_matrix.rs b/compiler/rustc_hir_typeck/src/fn_ctxt/arg_matrix.rs
index 7602f2550..fc83994ca 100644
--- a/compiler/rustc_typeck/src/check/fn_ctxt/arg_matrix.rs
+++ b/compiler/rustc_hir_typeck/src/fn_ctxt/arg_matrix.rs
@@ -130,14 +130,17 @@ impl<'tcx> ArgMatrix<'tcx> {
let ai = &self.expected_indices;
let ii = &self.provided_indices;
+ // Issue: 100478, when we end the iteration,
+ // `next_unmatched_idx` will point to the index of the first unmatched
+ let mut next_unmatched_idx = 0;
for i in 0..cmp::max(ai.len(), ii.len()) {
- // If we eliminate the last row, any left-over inputs are considered missing
+ // If we eliminate the last row, any left-over arguments are considered missing
if i >= mat.len() {
- return Some(Issue::Missing(i));
+ return Some(Issue::Missing(next_unmatched_idx));
}
- // If we eliminate the last column, any left-over arguments are extra
+ // If we eliminate the last column, any left-over inputs are extra
if mat[i].len() == 0 {
- return Some(Issue::Extra(i));
+ return Some(Issue::Extra(next_unmatched_idx));
}
// Make sure we don't pass the bounds of our matrix
@@ -145,6 +148,7 @@ impl<'tcx> ArgMatrix<'tcx> {
let is_input = i < ii.len();
if is_arg && is_input && matches!(mat[i][i], Compatibility::Compatible) {
// This is a satisfied input, so move along
+ next_unmatched_idx += 1;
continue;
}
@@ -163,7 +167,7 @@ impl<'tcx> ArgMatrix<'tcx> {
if is_input {
for j in 0..ai.len() {
// If we find at least one argument that could satisfy this input
- // this argument isn't useless
+ // this input isn't useless
if matches!(mat[i][j], Compatibility::Compatible) {
useless = false;
break;
@@ -232,8 +236,8 @@ impl<'tcx> ArgMatrix<'tcx> {
if matches!(c, Compatibility::Compatible) { Some(i) } else { None }
})
.collect();
- if compat.len() != 1 {
- // this could go into multiple slots, don't bother exploring both
+ if compat.len() < 1 {
+ // try to find a cycle even when this could go into multiple slots, see #101097
is_cycle = false;
break;
}
@@ -309,7 +313,8 @@ impl<'tcx> ArgMatrix<'tcx> {
}
while !self.provided_indices.is_empty() || !self.expected_indices.is_empty() {
- match self.find_issue() {
+ let res = self.find_issue();
+ match res {
Some(Issue::Invalid(idx)) => {
let compatibility = self.compatibility_matrix[idx][idx].clone();
let input_idx = self.provided_indices[idx];
@@ -364,7 +369,9 @@ impl<'tcx> ArgMatrix<'tcx> {
None => {
// We didn't find any issues, so we need to push the algorithm forward
// First, eliminate any arguments that currently satisfy their inputs
- for (inp, arg) in self.eliminate_satisfied() {
+ let eliminated = self.eliminate_satisfied();
+ assert!(!eliminated.is_empty(), "didn't eliminated any indice in this round");
+ for (inp, arg) in eliminated {
matched_inputs[arg] = Some(inp);
}
}
diff --git a/compiler/rustc_hir_typeck/src/fn_ctxt/checks.rs b/compiler/rustc_hir_typeck/src/fn_ctxt/checks.rs
new file mode 100644
index 000000000..8e0fcb56c
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/fn_ctxt/checks.rs
@@ -0,0 +1,2236 @@
+use crate::coercion::CoerceMany;
+use crate::fn_ctxt::arg_matrix::{ArgMatrix, Compatibility, Error, ExpectedIdx, ProvidedIdx};
+use crate::gather_locals::Declaration;
+use crate::method::MethodCallee;
+use crate::Expectation::*;
+use crate::TupleArgumentsFlag::*;
+use crate::{
+ struct_span_err, BreakableCtxt, Diverges, Expectation, FnCtxt, LocalTy, Needs,
+ TupleArgumentsFlag,
+};
+use rustc_ast as ast;
+use rustc_data_structures::fx::FxHashSet;
+use rustc_errors::{pluralize, Applicability, Diagnostic, DiagnosticId, MultiSpan};
+use rustc_hir as hir;
+use rustc_hir::def::{CtorOf, DefKind, Res};
+use rustc_hir::def_id::DefId;
+use rustc_hir::{ExprKind, Node, QPath};
+use rustc_hir_analysis::astconv::AstConv;
+use rustc_hir_analysis::check::intrinsicck::InlineAsmCtxt;
+use rustc_hir_analysis::check::potentially_plural_count;
+use rustc_hir_analysis::structured_errors::StructuredDiagnostic;
+use rustc_index::vec::IndexVec;
+use rustc_infer::infer::error_reporting::{FailureCode, ObligationCauseExt};
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::infer::InferOk;
+use rustc_infer::infer::TypeTrace;
+use rustc_middle::ty::adjustment::AllowTwoPhase;
+use rustc_middle::ty::visit::TypeVisitable;
+use rustc_middle::ty::{self, DefIdTree, IsSuggestable, Ty, TypeSuperVisitable, TypeVisitor};
+use rustc_session::Session;
+use rustc_span::symbol::Ident;
+use rustc_span::{self, sym, Span};
+use rustc_trait_selection::traits::{self, ObligationCauseCode, SelectionContext};
+
+use std::iter;
+use std::mem;
+use std::ops::ControlFlow;
+use std::slice;
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ pub(in super::super) fn check_casts(&mut self) {
+ // don't hold the borrow to deferred_cast_checks while checking to avoid borrow checker errors
+ // when writing to `self.param_env`.
+ let mut deferred_cast_checks = mem::take(&mut *self.deferred_cast_checks.borrow_mut());
+
+ debug!("FnCtxt::check_casts: {} deferred checks", deferred_cast_checks.len());
+ for cast in deferred_cast_checks.drain(..) {
+ let prev_env = self.param_env;
+ self.param_env = self.param_env.with_constness(cast.constness);
+
+ cast.check(self);
+
+ self.param_env = prev_env;
+ }
+
+ *self.deferred_cast_checks.borrow_mut() = deferred_cast_checks;
+ }
+
+ pub(in super::super) fn check_transmutes(&self) {
+ let mut deferred_transmute_checks = self.deferred_transmute_checks.borrow_mut();
+ debug!("FnCtxt::check_transmutes: {} deferred checks", deferred_transmute_checks.len());
+ for (from, to, hir_id) in deferred_transmute_checks.drain(..) {
+ self.check_transmute(from, to, hir_id);
+ }
+ }
+
+ pub(in super::super) fn check_asms(&self) {
+ let mut deferred_asm_checks = self.deferred_asm_checks.borrow_mut();
+ debug!("FnCtxt::check_asm: {} deferred checks", deferred_asm_checks.len());
+ for (asm, hir_id) in deferred_asm_checks.drain(..) {
+ let enclosing_id = self.tcx.hir().enclosing_body_owner(hir_id);
+ let get_operand_ty = |expr| {
+ let ty = self.typeck_results.borrow().expr_ty_adjusted(expr);
+ let ty = self.resolve_vars_if_possible(ty);
+ if ty.has_non_region_infer() {
+ assert!(self.is_tainted_by_errors());
+ self.tcx.ty_error()
+ } else {
+ self.tcx.erase_regions(ty)
+ }
+ };
+ InlineAsmCtxt::new_in_fn(self.tcx, self.param_env, get_operand_ty)
+ .check_asm(asm, self.tcx.hir().local_def_id_to_hir_id(enclosing_id));
+ }
+ }
+
+ pub(in super::super) fn check_method_argument_types(
+ &self,
+ sp: Span,
+ expr: &'tcx hir::Expr<'tcx>,
+ method: Result<MethodCallee<'tcx>, ()>,
+ args_no_rcvr: &'tcx [hir::Expr<'tcx>],
+ tuple_arguments: TupleArgumentsFlag,
+ expected: Expectation<'tcx>,
+ ) -> Ty<'tcx> {
+ let has_error = match method {
+ Ok(method) => method.substs.references_error() || method.sig.references_error(),
+ Err(_) => true,
+ };
+ if has_error {
+ let err_inputs = self.err_args(args_no_rcvr.len());
+
+ let err_inputs = match tuple_arguments {
+ DontTupleArguments => err_inputs,
+ TupleArguments => vec![self.tcx.intern_tup(&err_inputs)],
+ };
+
+ self.check_argument_types(
+ sp,
+ expr,
+ &err_inputs,
+ None,
+ args_no_rcvr,
+ false,
+ tuple_arguments,
+ method.ok().map(|method| method.def_id),
+ );
+ return self.tcx.ty_error();
+ }
+
+ let method = method.unwrap();
+ // HACK(eddyb) ignore self in the definition (see above).
+ let expected_input_tys = self.expected_inputs_for_expected_output(
+ sp,
+ expected,
+ method.sig.output(),
+ &method.sig.inputs()[1..],
+ );
+ self.check_argument_types(
+ sp,
+ expr,
+ &method.sig.inputs()[1..],
+ expected_input_tys,
+ args_no_rcvr,
+ method.sig.c_variadic,
+ tuple_arguments,
+ Some(method.def_id),
+ );
+ method.sig.output()
+ }
+
+ /// Generic function that factors out common logic from function calls,
+ /// method calls and overloaded operators.
+ pub(in super::super) fn check_argument_types(
+ &self,
+ // Span enclosing the call site
+ call_span: Span,
+ // Expression of the call site
+ call_expr: &'tcx hir::Expr<'tcx>,
+ // Types (as defined in the *signature* of the target function)
+ formal_input_tys: &[Ty<'tcx>],
+ // More specific expected types, after unifying with caller output types
+ expected_input_tys: Option<Vec<Ty<'tcx>>>,
+ // The expressions for each provided argument
+ provided_args: &'tcx [hir::Expr<'tcx>],
+ // Whether the function is variadic, for example when imported from C
+ c_variadic: bool,
+ // Whether the arguments have been bundled in a tuple (ex: closures)
+ tuple_arguments: TupleArgumentsFlag,
+ // The DefId for the function being called, for better error messages
+ fn_def_id: Option<DefId>,
+ ) {
+ let tcx = self.tcx;
+
+ // Conceptually, we've got some number of expected inputs, and some number of provided arguments
+ // and we can form a grid of whether each argument could satisfy a given input:
+ // in1 | in2 | in3 | ...
+ // arg1 ? | | |
+ // arg2 | ? | |
+ // arg3 | | ? |
+ // ...
+ // Initially, we just check the diagonal, because in the case of correct code
+ // these are the only checks that matter
+ // However, in the unhappy path, we'll fill in this whole grid to attempt to provide
+ // better error messages about invalid method calls.
+
+ // All the input types from the fn signature must outlive the call
+ // so as to validate implied bounds.
+ for (&fn_input_ty, arg_expr) in iter::zip(formal_input_tys, provided_args) {
+ self.register_wf_obligation(fn_input_ty.into(), arg_expr.span, traits::MiscObligation);
+ }
+
+ let mut err_code = "E0061";
+
+ // If the arguments should be wrapped in a tuple (ex: closures), unwrap them here
+ let (formal_input_tys, expected_input_tys) = if tuple_arguments == TupleArguments {
+ let tuple_type = self.structurally_resolved_type(call_span, formal_input_tys[0]);
+ match tuple_type.kind() {
+ // We expected a tuple and got a tuple
+ ty::Tuple(arg_types) => {
+ // Argument length differs
+ if arg_types.len() != provided_args.len() {
+ err_code = "E0057";
+ }
+ let expected_input_tys = match expected_input_tys {
+ Some(expected_input_tys) => match expected_input_tys.get(0) {
+ Some(ty) => match ty.kind() {
+ ty::Tuple(tys) => Some(tys.iter().collect()),
+ _ => None,
+ },
+ None => None,
+ },
+ None => None,
+ };
+ (arg_types.iter().collect(), expected_input_tys)
+ }
+ _ => {
+ // Otherwise, there's a mismatch, so clear out what we're expecting, and set
+ // our input types to err_args so we don't blow up the error messages
+ struct_span_err!(
+ tcx.sess,
+ call_span,
+ E0059,
+ "cannot use call notation; the first type parameter \
+ for the function trait is neither a tuple nor unit"
+ )
+ .emit();
+ (self.err_args(provided_args.len()), None)
+ }
+ }
+ } else {
+ (formal_input_tys.to_vec(), expected_input_tys)
+ };
+
+ // If there are no external expectations at the call site, just use the types from the function defn
+ let expected_input_tys = if let Some(expected_input_tys) = expected_input_tys {
+ assert_eq!(expected_input_tys.len(), formal_input_tys.len());
+ expected_input_tys
+ } else {
+ formal_input_tys.clone()
+ };
+
+ let minimum_input_count = expected_input_tys.len();
+ let provided_arg_count = provided_args.len();
+
+ let is_const_eval_select = matches!(fn_def_id, Some(def_id) if
+ self.tcx.def_kind(def_id) == hir::def::DefKind::Fn
+ && self.tcx.is_intrinsic(def_id)
+ && self.tcx.item_name(def_id) == sym::const_eval_select);
+
+ // We introduce a helper function to demand that a given argument satisfy a given input
+ // This is more complicated than just checking type equality, as arguments could be coerced
+ // This version writes those types back so further type checking uses the narrowed types
+ let demand_compatible = |idx| {
+ let formal_input_ty: Ty<'tcx> = formal_input_tys[idx];
+ let expected_input_ty: Ty<'tcx> = expected_input_tys[idx];
+ let provided_arg = &provided_args[idx];
+
+ debug!("checking argument {}: {:?} = {:?}", idx, provided_arg, formal_input_ty);
+
+ // We're on the happy path here, so we'll do a more involved check and write back types
+ // To check compatibility, we'll do 3 things:
+ // 1. Unify the provided argument with the expected type
+ let expectation = Expectation::rvalue_hint(self, expected_input_ty);
+
+ let checked_ty = self.check_expr_with_expectation(provided_arg, expectation);
+
+ // 2. Coerce to the most detailed type that could be coerced
+ // to, which is `expected_ty` if `rvalue_hint` returns an
+ // `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise.
+ let coerced_ty = expectation.only_has_type(self).unwrap_or(formal_input_ty);
+
+ // Cause selection errors caused by resolving a single argument to point at the
+ // argument and not the call. This lets us customize the span pointed to in the
+ // fulfillment error to be more accurate.
+ let coerced_ty = self.resolve_vars_with_obligations(coerced_ty);
+
+ let coerce_error = self
+ .try_coerce(provided_arg, checked_ty, coerced_ty, AllowTwoPhase::Yes, None)
+ .err();
+
+ if coerce_error.is_some() {
+ return Compatibility::Incompatible(coerce_error);
+ }
+
+ // Check that second and third argument of `const_eval_select` must be `FnDef`, and additionally that
+ // the second argument must be `const fn`. The first argument must be a tuple, but this is already expressed
+ // in the function signature (`F: FnOnce<ARG>`), so I did not bother to add another check here.
+ //
+ // This check is here because there is currently no way to express a trait bound for `FnDef` types only.
+ if is_const_eval_select && (1..=2).contains(&idx) {
+ if let ty::FnDef(def_id, _) = checked_ty.kind() {
+ if idx == 1 && !self.tcx.is_const_fn_raw(*def_id) {
+ self.tcx
+ .sess
+ .struct_span_err(provided_arg.span, "this argument must be a `const fn`")
+ .help("consult the documentation on `const_eval_select` for more information")
+ .emit();
+ }
+ } else {
+ self.tcx
+ .sess
+ .struct_span_err(provided_arg.span, "this argument must be a function item")
+ .note(format!("expected a function item, found {checked_ty}"))
+ .help(
+ "consult the documentation on `const_eval_select` for more information",
+ )
+ .emit();
+ }
+ }
+
+ // 3. Check if the formal type is a supertype of the checked one
+ // and register any such obligations for future type checks
+ let supertype_error = self
+ .at(&self.misc(provided_arg.span), self.param_env)
+ .sup(formal_input_ty, coerced_ty);
+ let subtyping_error = match supertype_error {
+ Ok(InferOk { obligations, value: () }) => {
+ self.register_predicates(obligations);
+ None
+ }
+ Err(err) => Some(err),
+ };
+
+ // If neither check failed, the types are compatible
+ match subtyping_error {
+ None => Compatibility::Compatible,
+ Some(_) => Compatibility::Incompatible(subtyping_error),
+ }
+ };
+
+ // To start, we only care "along the diagonal", where we expect every
+ // provided arg to be in the right spot
+ let mut compatibility_diagonal =
+ vec![Compatibility::Incompatible(None); provided_args.len()];
+
+ // Keep track of whether we *could possibly* be satisfied, i.e. whether we're on the happy path
+ // if the wrong number of arguments were supplied, we CAN'T be satisfied,
+ // and if we're c_variadic, the supplied arguments must be >= the minimum count from the function
+ // otherwise, they need to be identical, because rust doesn't currently support variadic functions
+ let mut call_appears_satisfied = if c_variadic {
+ provided_arg_count >= minimum_input_count
+ } else {
+ provided_arg_count == minimum_input_count
+ };
+
+ // Check the arguments.
+ // We do this in a pretty awful way: first we type-check any arguments
+ // that are not closures, then we type-check the closures. This is so
+ // that we have more information about the types of arguments when we
+ // type-check the functions. This isn't really the right way to do this.
+ for check_closures in [false, true] {
+ // More awful hacks: before we check argument types, try to do
+ // an "opportunistic" trait resolution of any trait bounds on
+ // the call. This helps coercions.
+ if check_closures {
+ self.select_obligations_where_possible(false, |_| {})
+ }
+
+ // Check each argument, to satisfy the input it was provided for
+ // Visually, we're traveling down the diagonal of the compatibility matrix
+ for (idx, arg) in provided_args.iter().enumerate() {
+ // Warn only for the first loop (the "no closures" one).
+ // Closure arguments themselves can't be diverging, but
+ // a previous argument can, e.g., `foo(panic!(), || {})`.
+ if !check_closures {
+ self.warn_if_unreachable(arg.hir_id, arg.span, "expression");
+ }
+
+ // For C-variadic functions, we don't have a declared type for all of
+ // the arguments hence we only do our usual type checking with
+ // the arguments who's types we do know. However, we *can* check
+ // for unreachable expressions (see above).
+ // FIXME: unreachable warning current isn't emitted
+ if idx >= minimum_input_count {
+ continue;
+ }
+
+ let is_closure = matches!(arg.kind, ExprKind::Closure { .. });
+ if is_closure != check_closures {
+ continue;
+ }
+
+ let compatible = demand_compatible(idx);
+ let is_compatible = matches!(compatible, Compatibility::Compatible);
+ compatibility_diagonal[idx] = compatible;
+
+ if !is_compatible {
+ call_appears_satisfied = false;
+ }
+ }
+ }
+
+ if c_variadic && provided_arg_count < minimum_input_count {
+ err_code = "E0060";
+ }
+
+ for arg in provided_args.iter().skip(minimum_input_count) {
+ // Make sure we've checked this expr at least once.
+ let arg_ty = self.check_expr(&arg);
+
+ // If the function is c-style variadic, we skipped a bunch of arguments
+ // so we need to check those, and write out the types
+ // Ideally this would be folded into the above, for uniform style
+ // but c-variadic is already a corner case
+ if c_variadic {
+ fn variadic_error<'tcx>(
+ sess: &'tcx Session,
+ span: Span,
+ ty: Ty<'tcx>,
+ cast_ty: &str,
+ ) {
+ use rustc_hir_analysis::structured_errors::MissingCastForVariadicArg;
+
+ MissingCastForVariadicArg { sess, span, ty, cast_ty }.diagnostic().emit();
+ }
+
+ // There are a few types which get autopromoted when passed via varargs
+ // in C but we just error out instead and require explicit casts.
+ let arg_ty = self.structurally_resolved_type(arg.span, arg_ty);
+ match arg_ty.kind() {
+ ty::Float(ty::FloatTy::F32) => {
+ variadic_error(tcx.sess, arg.span, arg_ty, "c_double");
+ }
+ ty::Int(ty::IntTy::I8 | ty::IntTy::I16) | ty::Bool => {
+ variadic_error(tcx.sess, arg.span, arg_ty, "c_int");
+ }
+ ty::Uint(ty::UintTy::U8 | ty::UintTy::U16) => {
+ variadic_error(tcx.sess, arg.span, arg_ty, "c_uint");
+ }
+ ty::FnDef(..) => {
+ let ptr_ty = self.tcx.mk_fn_ptr(arg_ty.fn_sig(self.tcx));
+ let ptr_ty = self.resolve_vars_if_possible(ptr_ty);
+ variadic_error(tcx.sess, arg.span, arg_ty, &ptr_ty.to_string());
+ }
+ _ => {}
+ }
+ }
+ }
+
+ if !call_appears_satisfied {
+ let compatibility_diagonal = IndexVec::from_raw(compatibility_diagonal);
+ let provided_args = IndexVec::from_iter(provided_args.iter().take(if c_variadic {
+ minimum_input_count
+ } else {
+ provided_arg_count
+ }));
+ debug_assert_eq!(
+ formal_input_tys.len(),
+ expected_input_tys.len(),
+ "expected formal_input_tys to be the same size as expected_input_tys"
+ );
+ let formal_and_expected_inputs = IndexVec::from_iter(
+ formal_input_tys
+ .iter()
+ .copied()
+ .zip(expected_input_tys.iter().copied())
+ .map(|vars| self.resolve_vars_if_possible(vars)),
+ );
+
+ self.report_arg_errors(
+ compatibility_diagonal,
+ formal_and_expected_inputs,
+ provided_args,
+ c_variadic,
+ err_code,
+ fn_def_id,
+ call_span,
+ call_expr,
+ );
+ }
+ }
+
+ fn report_arg_errors(
+ &self,
+ compatibility_diagonal: IndexVec<ProvidedIdx, Compatibility<'tcx>>,
+ formal_and_expected_inputs: IndexVec<ExpectedIdx, (Ty<'tcx>, Ty<'tcx>)>,
+ provided_args: IndexVec<ProvidedIdx, &'tcx hir::Expr<'tcx>>,
+ c_variadic: bool,
+ err_code: &str,
+ fn_def_id: Option<DefId>,
+ call_span: Span,
+ call_expr: &hir::Expr<'tcx>,
+ ) {
+ // Next, let's construct the error
+ let (error_span, full_call_span, ctor_of, is_method) = match &call_expr.kind {
+ hir::ExprKind::Call(
+ hir::Expr { hir_id, span, kind: hir::ExprKind::Path(qpath), .. },
+ _,
+ ) => {
+ if let Res::Def(DefKind::Ctor(of, _), _) =
+ self.typeck_results.borrow().qpath_res(qpath, *hir_id)
+ {
+ (call_span, *span, Some(of), false)
+ } else {
+ (call_span, *span, None, false)
+ }
+ }
+ hir::ExprKind::Call(hir::Expr { span, .. }, _) => (call_span, *span, None, false),
+ hir::ExprKind::MethodCall(path_segment, _, _, span) => {
+ let ident_span = path_segment.ident.span;
+ let ident_span = if let Some(args) = path_segment.args {
+ ident_span.with_hi(args.span_ext.hi())
+ } else {
+ ident_span
+ };
+ // methods are never ctors
+ (*span, ident_span, None, true)
+ }
+ k => span_bug!(call_span, "checking argument types on a non-call: `{:?}`", k),
+ };
+ let args_span = error_span.trim_start(full_call_span).unwrap_or(error_span);
+ let call_name = match ctor_of {
+ Some(CtorOf::Struct) => "struct",
+ Some(CtorOf::Variant) => "enum variant",
+ None => "function",
+ };
+
+ // Don't print if it has error types or is just plain `_`
+ fn has_error_or_infer<'tcx>(tys: impl IntoIterator<Item = Ty<'tcx>>) -> bool {
+ tys.into_iter().any(|ty| ty.references_error() || ty.is_ty_var())
+ }
+
+ self.set_tainted_by_errors();
+ let tcx = self.tcx;
+
+ // Get the argument span in the context of the call span so that
+ // suggestions and labels are (more) correct when an arg is a
+ // macro invocation.
+ let normalize_span = |span: Span| -> Span {
+ let normalized_span = span.find_ancestor_inside(error_span).unwrap_or(span);
+ // Sometimes macros mess up the spans, so do not normalize the
+ // arg span to equal the error span, because that's less useful
+ // than pointing out the arg expr in the wrong context.
+ if normalized_span.source_equal(error_span) { span } else { normalized_span }
+ };
+
+ // Precompute the provided types and spans, since that's all we typically need for below
+ let provided_arg_tys: IndexVec<ProvidedIdx, (Ty<'tcx>, Span)> = provided_args
+ .iter()
+ .map(|expr| {
+ let ty = self
+ .typeck_results
+ .borrow()
+ .expr_ty_adjusted_opt(*expr)
+ .unwrap_or_else(|| tcx.ty_error());
+ (self.resolve_vars_if_possible(ty), normalize_span(expr.span))
+ })
+ .collect();
+ let callee_expr = match &call_expr.peel_blocks().kind {
+ hir::ExprKind::Call(callee, _) => Some(*callee),
+ hir::ExprKind::MethodCall(_, receiver, ..) => {
+ if let Some((DefKind::AssocFn, def_id)) =
+ self.typeck_results.borrow().type_dependent_def(call_expr.hir_id)
+ && let Some(assoc) = tcx.opt_associated_item(def_id)
+ && assoc.fn_has_self_parameter
+ {
+ Some(*receiver)
+ } else {
+ None
+ }
+ }
+ _ => None,
+ };
+ let callee_ty = callee_expr
+ .and_then(|callee_expr| self.typeck_results.borrow().expr_ty_adjusted_opt(callee_expr));
+
+ // A "softer" version of the `demand_compatible`, which checks types without persisting them,
+ // and treats error types differently
+ // This will allow us to "probe" for other argument orders that would likely have been correct
+ let check_compatible = |provided_idx: ProvidedIdx, expected_idx: ExpectedIdx| {
+ if provided_idx.as_usize() == expected_idx.as_usize() {
+ return compatibility_diagonal[provided_idx].clone();
+ }
+
+ let (formal_input_ty, expected_input_ty) = formal_and_expected_inputs[expected_idx];
+ // If either is an error type, we defy the usual convention and consider them to *not* be
+ // coercible. This prevents our error message heuristic from trying to pass errors into
+ // every argument.
+ if (formal_input_ty, expected_input_ty).references_error() {
+ return Compatibility::Incompatible(None);
+ }
+
+ let (arg_ty, arg_span) = provided_arg_tys[provided_idx];
+
+ let expectation = Expectation::rvalue_hint(self, expected_input_ty);
+ let coerced_ty = expectation.only_has_type(self).unwrap_or(formal_input_ty);
+ let can_coerce = self.can_coerce(arg_ty, coerced_ty);
+ if !can_coerce {
+ return Compatibility::Incompatible(Some(ty::error::TypeError::Sorts(
+ ty::error::ExpectedFound::new(true, coerced_ty, arg_ty),
+ )));
+ }
+
+ // Using probe here, since we don't want this subtyping to affect inference.
+ let subtyping_error = self.probe(|_| {
+ self.at(&self.misc(arg_span), self.param_env).sup(formal_input_ty, coerced_ty).err()
+ });
+
+ // Same as above: if either the coerce type or the checked type is an error type,
+ // consider them *not* compatible.
+ let references_error = (coerced_ty, arg_ty).references_error();
+ match (references_error, subtyping_error) {
+ (false, None) => Compatibility::Compatible,
+ (_, subtyping_error) => Compatibility::Incompatible(subtyping_error),
+ }
+ };
+
+ // The algorithm here is inspired by levenshtein distance and longest common subsequence.
+ // We'll try to detect 4 different types of mistakes:
+ // - An extra parameter has been provided that doesn't satisfy *any* of the other inputs
+ // - An input is missing, which isn't satisfied by *any* of the other arguments
+ // - Some number of arguments have been provided in the wrong order
+ // - A type is straight up invalid
+
+ // First, let's find the errors
+ let (mut errors, matched_inputs) =
+ ArgMatrix::new(provided_args.len(), formal_and_expected_inputs.len(), check_compatible)
+ .find_errors();
+
+ // First, check if we just need to wrap some arguments in a tuple.
+ if let Some((mismatch_idx, terr)) =
+ compatibility_diagonal.iter().enumerate().find_map(|(i, c)| {
+ if let Compatibility::Incompatible(Some(terr)) = c {
+ Some((i, *terr))
+ } else {
+ None
+ }
+ })
+ {
+ // Is the first bad expected argument a tuple?
+ // Do we have as many extra provided arguments as the tuple's length?
+ // If so, we might have just forgotten to wrap some args in a tuple.
+ if let Some(ty::Tuple(tys)) =
+ formal_and_expected_inputs.get(mismatch_idx.into()).map(|tys| tys.1.kind())
+ // If the tuple is unit, we're not actually wrapping any arguments.
+ && !tys.is_empty()
+ && provided_arg_tys.len() == formal_and_expected_inputs.len() - 1 + tys.len()
+ {
+ // Wrap up the N provided arguments starting at this position in a tuple.
+ let provided_as_tuple = tcx.mk_tup(
+ provided_arg_tys.iter().map(|(ty, _)| *ty).skip(mismatch_idx).take(tys.len()),
+ );
+
+ let mut satisfied = true;
+ // Check if the newly wrapped tuple + rest of the arguments are compatible.
+ for ((_, expected_ty), provided_ty) in std::iter::zip(
+ formal_and_expected_inputs.iter().skip(mismatch_idx),
+ [provided_as_tuple].into_iter().chain(
+ provided_arg_tys.iter().map(|(ty, _)| *ty).skip(mismatch_idx + tys.len()),
+ ),
+ ) {
+ if !self.can_coerce(provided_ty, *expected_ty) {
+ satisfied = false;
+ break;
+ }
+ }
+
+ // If they're compatible, suggest wrapping in an arg, and we're done!
+ // Take some care with spans, so we don't suggest wrapping a macro's
+ // innards in parenthesis, for example.
+ if satisfied
+ && let Some((_, lo)) =
+ provided_arg_tys.get(ProvidedIdx::from_usize(mismatch_idx))
+ && let Some((_, hi)) =
+ provided_arg_tys.get(ProvidedIdx::from_usize(mismatch_idx + tys.len() - 1))
+ {
+ let mut err;
+ if tys.len() == 1 {
+ // A tuple wrap suggestion actually occurs within,
+ // so don't do anything special here.
+ err = self.err_ctxt().report_and_explain_type_error(
+ TypeTrace::types(
+ &self.misc(*lo),
+ true,
+ formal_and_expected_inputs[mismatch_idx.into()].1,
+ provided_arg_tys[mismatch_idx.into()].0,
+ ),
+ terr,
+ );
+ err.span_label(
+ full_call_span,
+ format!("arguments to this {} are incorrect", call_name),
+ );
+ } else {
+ err = tcx.sess.struct_span_err_with_code(
+ full_call_span,
+ &format!(
+ "this {} takes {}{} but {} {} supplied",
+ call_name,
+ if c_variadic { "at least " } else { "" },
+ potentially_plural_count(
+ formal_and_expected_inputs.len(),
+ "argument"
+ ),
+ potentially_plural_count(provided_args.len(), "argument"),
+ pluralize!("was", provided_args.len())
+ ),
+ DiagnosticId::Error(err_code.to_owned()),
+ );
+ err.multipart_suggestion_verbose(
+ "wrap these arguments in parentheses to construct a tuple",
+ vec![
+ (lo.shrink_to_lo(), "(".to_string()),
+ (hi.shrink_to_hi(), ")".to_string()),
+ ],
+ Applicability::MachineApplicable,
+ );
+ };
+ self.label_fn_like(
+ &mut err,
+ fn_def_id,
+ callee_ty,
+ Some(mismatch_idx),
+ is_method,
+ );
+ err.emit();
+ return;
+ }
+ }
+ }
+
+ // Okay, so here's where it gets complicated in regards to what errors
+ // we emit and how.
+ // There are 3 different "types" of errors we might encounter.
+ // 1) Missing/extra/swapped arguments
+ // 2) Valid but incorrect arguments
+ // 3) Invalid arguments
+ // - Currently I think this only comes up with `CyclicTy`
+ //
+ // We first need to go through, remove those from (3) and emit those
+ // as their own error, particularly since they're error code and
+ // message is special. From what I can tell, we *must* emit these
+ // here (vs somewhere prior to this function) since the arguments
+ // become invalid *because* of how they get used in the function.
+ // It is what it is.
+
+ if errors.is_empty() {
+ if cfg!(debug_assertions) {
+ span_bug!(error_span, "expected errors from argument matrix");
+ } else {
+ tcx.sess
+ .struct_span_err(
+ error_span,
+ "argument type mismatch was detected, \
+ but rustc had trouble determining where",
+ )
+ .note(
+ "we would appreciate a bug report: \
+ https://github.com/rust-lang/rust/issues/new",
+ )
+ .emit();
+ }
+ return;
+ }
+
+ errors.drain_filter(|error| {
+ let Error::Invalid(provided_idx, expected_idx, Compatibility::Incompatible(Some(e))) = error else { return false };
+ let (provided_ty, provided_span) = provided_arg_tys[*provided_idx];
+ let (expected_ty, _) = formal_and_expected_inputs[*expected_idx];
+ let cause = &self.misc(provided_span);
+ let trace = TypeTrace::types(cause, true, expected_ty, provided_ty);
+ if !matches!(trace.cause.as_failure_code(*e), FailureCode::Error0308(_)) {
+ self.err_ctxt().report_and_explain_type_error(trace, *e).emit();
+ return true;
+ }
+ false
+ });
+
+ // We're done if we found errors, but we already emitted them.
+ if errors.is_empty() {
+ return;
+ }
+
+ // Okay, now that we've emitted the special errors separately, we
+ // are only left missing/extra/swapped and mismatched arguments, both
+ // can be collated pretty easily if needed.
+
+ // Next special case: if there is only one "Incompatible" error, just emit that
+ if let [
+ Error::Invalid(provided_idx, expected_idx, Compatibility::Incompatible(Some(err))),
+ ] = &errors[..]
+ {
+ let (formal_ty, expected_ty) = formal_and_expected_inputs[*expected_idx];
+ let (provided_ty, provided_arg_span) = provided_arg_tys[*provided_idx];
+ let cause = &self.misc(provided_arg_span);
+ let trace = TypeTrace::types(cause, true, expected_ty, provided_ty);
+ let mut err = self.err_ctxt().report_and_explain_type_error(trace, *err);
+ self.emit_coerce_suggestions(
+ &mut err,
+ &provided_args[*provided_idx],
+ provided_ty,
+ Expectation::rvalue_hint(self, expected_ty)
+ .only_has_type(self)
+ .unwrap_or(formal_ty),
+ None,
+ None,
+ );
+ err.span_label(
+ full_call_span,
+ format!("arguments to this {} are incorrect", call_name),
+ );
+ // Call out where the function is defined
+ self.label_fn_like(
+ &mut err,
+ fn_def_id,
+ callee_ty,
+ Some(expected_idx.as_usize()),
+ is_method,
+ );
+ err.emit();
+ return;
+ }
+
+ let mut err = if formal_and_expected_inputs.len() == provided_args.len() {
+ struct_span_err!(
+ tcx.sess,
+ full_call_span,
+ E0308,
+ "arguments to this {} are incorrect",
+ call_name,
+ )
+ } else {
+ tcx.sess.struct_span_err_with_code(
+ full_call_span,
+ &format!(
+ "this {} takes {}{} but {} {} supplied",
+ call_name,
+ if c_variadic { "at least " } else { "" },
+ potentially_plural_count(formal_and_expected_inputs.len(), "argument"),
+ potentially_plural_count(provided_args.len(), "argument"),
+ pluralize!("was", provided_args.len())
+ ),
+ DiagnosticId::Error(err_code.to_owned()),
+ )
+ };
+
+ // As we encounter issues, keep track of what we want to provide for the suggestion
+ let mut labels = vec![];
+ // If there is a single error, we give a specific suggestion; otherwise, we change to
+ // "did you mean" with the suggested function call
+ enum SuggestionText {
+ None,
+ Provide(bool),
+ Remove(bool),
+ Swap,
+ Reorder,
+ DidYouMean,
+ }
+ let mut suggestion_text = SuggestionText::None;
+
+ let mut errors = errors.into_iter().peekable();
+ while let Some(error) = errors.next() {
+ match error {
+ Error::Invalid(provided_idx, expected_idx, compatibility) => {
+ let (formal_ty, expected_ty) = formal_and_expected_inputs[expected_idx];
+ let (provided_ty, provided_span) = provided_arg_tys[provided_idx];
+ if let Compatibility::Incompatible(error) = compatibility {
+ let cause = &self.misc(provided_span);
+ let trace = TypeTrace::types(cause, true, expected_ty, provided_ty);
+ if let Some(e) = error {
+ self.err_ctxt().note_type_err(
+ &mut err,
+ &trace.cause,
+ None,
+ Some(trace.values),
+ e,
+ false,
+ true,
+ );
+ }
+ }
+
+ self.emit_coerce_suggestions(
+ &mut err,
+ &provided_args[provided_idx],
+ provided_ty,
+ Expectation::rvalue_hint(self, expected_ty)
+ .only_has_type(self)
+ .unwrap_or(formal_ty),
+ None,
+ None,
+ );
+ }
+ Error::Extra(arg_idx) => {
+ let (provided_ty, provided_span) = provided_arg_tys[arg_idx];
+ let provided_ty_name = if !has_error_or_infer([provided_ty]) {
+ // FIXME: not suggestable, use something else
+ format!(" of type `{}`", provided_ty)
+ } else {
+ "".to_string()
+ };
+ labels
+ .push((provided_span, format!("argument{} unexpected", provided_ty_name)));
+ suggestion_text = match suggestion_text {
+ SuggestionText::None => SuggestionText::Remove(false),
+ SuggestionText::Remove(_) => SuggestionText::Remove(true),
+ _ => SuggestionText::DidYouMean,
+ };
+ }
+ Error::Missing(expected_idx) => {
+ // If there are multiple missing arguments adjacent to each other,
+ // then we can provide a single error.
+
+ let mut missing_idxs = vec![expected_idx];
+ while let Some(e) = errors.next_if(|e| {
+ matches!(e, Error::Missing(next_expected_idx)
+ if *next_expected_idx == *missing_idxs.last().unwrap() + 1)
+ }) {
+ match e {
+ Error::Missing(expected_idx) => missing_idxs.push(expected_idx),
+ _ => unreachable!(),
+ }
+ }
+
+ // NOTE: Because we might be re-arranging arguments, might have extra
+ // arguments, etc. it's hard to *really* know where we should provide
+ // this error label, so as a heuristic, we point to the provided arg, or
+ // to the call if the missing inputs pass the provided args.
+ match &missing_idxs[..] {
+ &[expected_idx] => {
+ let (_, input_ty) = formal_and_expected_inputs[expected_idx];
+ let span = if let Some((_, arg_span)) =
+ provided_arg_tys.get(expected_idx.to_provided_idx())
+ {
+ *arg_span
+ } else {
+ args_span
+ };
+ let rendered = if !has_error_or_infer([input_ty]) {
+ format!(" of type `{}`", input_ty)
+ } else {
+ "".to_string()
+ };
+ labels.push((span, format!("an argument{} is missing", rendered)));
+ suggestion_text = match suggestion_text {
+ SuggestionText::None => SuggestionText::Provide(false),
+ SuggestionText::Provide(_) => SuggestionText::Provide(true),
+ _ => SuggestionText::DidYouMean,
+ };
+ }
+ &[first_idx, second_idx] => {
+ let (_, first_expected_ty) = formal_and_expected_inputs[first_idx];
+ let (_, second_expected_ty) = formal_and_expected_inputs[second_idx];
+ let span = if let (Some((_, first_span)), Some((_, second_span))) = (
+ provided_arg_tys.get(first_idx.to_provided_idx()),
+ provided_arg_tys.get(second_idx.to_provided_idx()),
+ ) {
+ first_span.to(*second_span)
+ } else {
+ args_span
+ };
+ let rendered =
+ if !has_error_or_infer([first_expected_ty, second_expected_ty]) {
+ format!(
+ " of type `{}` and `{}`",
+ first_expected_ty, second_expected_ty
+ )
+ } else {
+ "".to_string()
+ };
+ labels.push((span, format!("two arguments{} are missing", rendered)));
+ suggestion_text = match suggestion_text {
+ SuggestionText::None | SuggestionText::Provide(_) => {
+ SuggestionText::Provide(true)
+ }
+ _ => SuggestionText::DidYouMean,
+ };
+ }
+ &[first_idx, second_idx, third_idx] => {
+ let (_, first_expected_ty) = formal_and_expected_inputs[first_idx];
+ let (_, second_expected_ty) = formal_and_expected_inputs[second_idx];
+ let (_, third_expected_ty) = formal_and_expected_inputs[third_idx];
+ let span = if let (Some((_, first_span)), Some((_, third_span))) = (
+ provided_arg_tys.get(first_idx.to_provided_idx()),
+ provided_arg_tys.get(third_idx.to_provided_idx()),
+ ) {
+ first_span.to(*third_span)
+ } else {
+ args_span
+ };
+ let rendered = if !has_error_or_infer([
+ first_expected_ty,
+ second_expected_ty,
+ third_expected_ty,
+ ]) {
+ format!(
+ " of type `{}`, `{}`, and `{}`",
+ first_expected_ty, second_expected_ty, third_expected_ty
+ )
+ } else {
+ "".to_string()
+ };
+ labels.push((span, format!("three arguments{} are missing", rendered)));
+ suggestion_text = match suggestion_text {
+ SuggestionText::None | SuggestionText::Provide(_) => {
+ SuggestionText::Provide(true)
+ }
+ _ => SuggestionText::DidYouMean,
+ };
+ }
+ missing_idxs => {
+ let first_idx = *missing_idxs.first().unwrap();
+ let last_idx = *missing_idxs.last().unwrap();
+ // NOTE: Because we might be re-arranging arguments, might have extra arguments, etc.
+ // It's hard to *really* know where we should provide this error label, so this is a
+ // decent heuristic
+ let span = if let (Some((_, first_span)), Some((_, last_span))) = (
+ provided_arg_tys.get(first_idx.to_provided_idx()),
+ provided_arg_tys.get(last_idx.to_provided_idx()),
+ ) {
+ first_span.to(*last_span)
+ } else {
+ args_span
+ };
+ labels.push((span, format!("multiple arguments are missing")));
+ suggestion_text = match suggestion_text {
+ SuggestionText::None | SuggestionText::Provide(_) => {
+ SuggestionText::Provide(true)
+ }
+ _ => SuggestionText::DidYouMean,
+ };
+ }
+ }
+ }
+ Error::Swap(
+ first_provided_idx,
+ second_provided_idx,
+ first_expected_idx,
+ second_expected_idx,
+ ) => {
+ let (first_provided_ty, first_span) = provided_arg_tys[first_provided_idx];
+ let (_, first_expected_ty) = formal_and_expected_inputs[first_expected_idx];
+ let first_provided_ty_name = if !has_error_or_infer([first_provided_ty]) {
+ format!(", found `{}`", first_provided_ty)
+ } else {
+ String::new()
+ };
+ labels.push((
+ first_span,
+ format!("expected `{}`{}", first_expected_ty, first_provided_ty_name),
+ ));
+
+ let (second_provided_ty, second_span) = provided_arg_tys[second_provided_idx];
+ let (_, second_expected_ty) = formal_and_expected_inputs[second_expected_idx];
+ let second_provided_ty_name = if !has_error_or_infer([second_provided_ty]) {
+ format!(", found `{}`", second_provided_ty)
+ } else {
+ String::new()
+ };
+ labels.push((
+ second_span,
+ format!("expected `{}`{}", second_expected_ty, second_provided_ty_name),
+ ));
+
+ suggestion_text = match suggestion_text {
+ SuggestionText::None => SuggestionText::Swap,
+ _ => SuggestionText::DidYouMean,
+ };
+ }
+ Error::Permutation(args) => {
+ for (dst_arg, dest_input) in args {
+ let (_, expected_ty) = formal_and_expected_inputs[dst_arg];
+ let (provided_ty, provided_span) = provided_arg_tys[dest_input];
+ let provided_ty_name = if !has_error_or_infer([provided_ty]) {
+ format!(", found `{}`", provided_ty)
+ } else {
+ String::new()
+ };
+ labels.push((
+ provided_span,
+ format!("expected `{}`{}", expected_ty, provided_ty_name),
+ ));
+ }
+
+ suggestion_text = match suggestion_text {
+ SuggestionText::None => SuggestionText::Reorder,
+ _ => SuggestionText::DidYouMean,
+ };
+ }
+ }
+ }
+
+ // If we have less than 5 things to say, it would be useful to call out exactly what's wrong
+ if labels.len() <= 5 {
+ for (span, label) in labels {
+ err.span_label(span, label);
+ }
+ }
+
+ // Call out where the function is defined
+ self.label_fn_like(&mut err, fn_def_id, callee_ty, None, is_method);
+
+ // And add a suggestion block for all of the parameters
+ let suggestion_text = match suggestion_text {
+ SuggestionText::None => None,
+ SuggestionText::Provide(plural) => {
+ Some(format!("provide the argument{}", if plural { "s" } else { "" }))
+ }
+ SuggestionText::Remove(plural) => {
+ Some(format!("remove the extra argument{}", if plural { "s" } else { "" }))
+ }
+ SuggestionText::Swap => Some("swap these arguments".to_string()),
+ SuggestionText::Reorder => Some("reorder these arguments".to_string()),
+ SuggestionText::DidYouMean => Some("did you mean".to_string()),
+ };
+ if let Some(suggestion_text) = suggestion_text {
+ let source_map = self.sess().source_map();
+ let (mut suggestion, suggestion_span) =
+ if let Some(call_span) = full_call_span.find_ancestor_inside(error_span) {
+ ("(".to_string(), call_span.shrink_to_hi().to(error_span.shrink_to_hi()))
+ } else {
+ (
+ format!(
+ "{}(",
+ source_map.span_to_snippet(full_call_span).unwrap_or_else(|_| {
+ fn_def_id.map_or("".to_string(), |fn_def_id| {
+ tcx.item_name(fn_def_id).to_string()
+ })
+ })
+ ),
+ error_span,
+ )
+ };
+ let mut needs_comma = false;
+ for (expected_idx, provided_idx) in matched_inputs.iter_enumerated() {
+ if needs_comma {
+ suggestion += ", ";
+ } else {
+ needs_comma = true;
+ }
+ let suggestion_text = if let Some(provided_idx) = provided_idx
+ && let (_, provided_span) = provided_arg_tys[*provided_idx]
+ && let Ok(arg_text) = source_map.span_to_snippet(provided_span)
+ {
+ arg_text
+ } else {
+ // Propose a placeholder of the correct type
+ let (_, expected_ty) = formal_and_expected_inputs[expected_idx];
+ if expected_ty.is_unit() {
+ "()".to_string()
+ } else if expected_ty.is_suggestable(tcx, false) {
+ format!("/* {} */", expected_ty)
+ } else {
+ "/* value */".to_string()
+ }
+ };
+ suggestion += &suggestion_text;
+ }
+ suggestion += ")";
+ err.span_suggestion_verbose(
+ suggestion_span,
+ &suggestion_text,
+ suggestion,
+ Applicability::HasPlaceholders,
+ );
+ }
+
+ err.emit();
+ }
+
+ // AST fragment checking
+ pub(in super::super) fn check_lit(
+ &self,
+ lit: &hir::Lit,
+ expected: Expectation<'tcx>,
+ ) -> Ty<'tcx> {
+ let tcx = self.tcx;
+
+ match lit.node {
+ ast::LitKind::Str(..) => tcx.mk_static_str(),
+ ast::LitKind::ByteStr(ref v) => {
+ tcx.mk_imm_ref(tcx.lifetimes.re_static, tcx.mk_array(tcx.types.u8, v.len() as u64))
+ }
+ ast::LitKind::Byte(_) => tcx.types.u8,
+ ast::LitKind::Char(_) => tcx.types.char,
+ ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => tcx.mk_mach_int(ty::int_ty(t)),
+ ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => tcx.mk_mach_uint(ty::uint_ty(t)),
+ ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => {
+ let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() {
+ ty::Int(_) | ty::Uint(_) => Some(ty),
+ ty::Char => Some(tcx.types.u8),
+ ty::RawPtr(..) => Some(tcx.types.usize),
+ ty::FnDef(..) | ty::FnPtr(_) => Some(tcx.types.usize),
+ _ => None,
+ });
+ opt_ty.unwrap_or_else(|| self.next_int_var())
+ }
+ ast::LitKind::Float(_, ast::LitFloatType::Suffixed(t)) => {
+ tcx.mk_mach_float(ty::float_ty(t))
+ }
+ ast::LitKind::Float(_, ast::LitFloatType::Unsuffixed) => {
+ let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() {
+ ty::Float(_) => Some(ty),
+ _ => None,
+ });
+ opt_ty.unwrap_or_else(|| self.next_float_var())
+ }
+ ast::LitKind::Bool(_) => tcx.types.bool,
+ ast::LitKind::Err => tcx.ty_error(),
+ }
+ }
+
+ pub fn check_struct_path(
+ &self,
+ qpath: &QPath<'_>,
+ hir_id: hir::HirId,
+ ) -> Option<(&'tcx ty::VariantDef, Ty<'tcx>)> {
+ let path_span = qpath.span();
+ let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, hir_id);
+ let variant = match def {
+ Res::Err => {
+ self.set_tainted_by_errors();
+ return None;
+ }
+ Res::Def(DefKind::Variant, _) => match ty.kind() {
+ ty::Adt(adt, substs) => Some((adt.variant_of_res(def), adt.did(), substs)),
+ _ => bug!("unexpected type: {:?}", ty),
+ },
+ Res::Def(DefKind::Struct | DefKind::Union | DefKind::TyAlias | DefKind::AssocTy, _)
+ | Res::SelfTyParam { .. }
+ | Res::SelfTyAlias { .. } => match ty.kind() {
+ ty::Adt(adt, substs) if !adt.is_enum() => {
+ Some((adt.non_enum_variant(), adt.did(), substs))
+ }
+ _ => None,
+ },
+ _ => bug!("unexpected definition: {:?}", def),
+ };
+
+ if let Some((variant, did, substs)) = variant {
+ debug!("check_struct_path: did={:?} substs={:?}", did, substs);
+ self.write_user_type_annotation_from_substs(hir_id, did, substs, None);
+
+ // Check bounds on type arguments used in the path.
+ self.add_required_obligations_for_hir(path_span, did, substs, hir_id);
+
+ Some((variant, ty))
+ } else {
+ match ty.kind() {
+ ty::Error(_) => {
+ // E0071 might be caused by a spelling error, which will have
+ // already caused an error message and probably a suggestion
+ // elsewhere. Refrain from emitting more unhelpful errors here
+ // (issue #88844).
+ }
+ _ => {
+ struct_span_err!(
+ self.tcx.sess,
+ path_span,
+ E0071,
+ "expected struct, variant or union type, found {}",
+ ty.sort_string(self.tcx)
+ )
+ .span_label(path_span, "not a struct")
+ .emit();
+ }
+ }
+ None
+ }
+ }
+
+ pub fn check_decl_initializer(
+ &self,
+ hir_id: hir::HirId,
+ pat: &'tcx hir::Pat<'tcx>,
+ init: &'tcx hir::Expr<'tcx>,
+ ) -> Ty<'tcx> {
+ // FIXME(tschottdorf): `contains_explicit_ref_binding()` must be removed
+ // for #42640 (default match binding modes).
+ //
+ // See #44848.
+ let ref_bindings = pat.contains_explicit_ref_binding();
+
+ let local_ty = self.local_ty(init.span, hir_id).revealed_ty;
+ if let Some(m) = ref_bindings {
+ // Somewhat subtle: if we have a `ref` binding in the pattern,
+ // we want to avoid introducing coercions for the RHS. This is
+ // both because it helps preserve sanity and, in the case of
+ // ref mut, for soundness (issue #23116). In particular, in
+ // the latter case, we need to be clear that the type of the
+ // referent for the reference that results is *equal to* the
+ // type of the place it is referencing, and not some
+ // supertype thereof.
+ let init_ty = self.check_expr_with_needs(init, Needs::maybe_mut_place(m));
+ self.demand_eqtype(init.span, local_ty, init_ty);
+ init_ty
+ } else {
+ self.check_expr_coercable_to_type(init, local_ty, None)
+ }
+ }
+
+ pub(in super::super) fn check_decl(&self, decl: Declaration<'tcx>) {
+ // Determine and write the type which we'll check the pattern against.
+ let decl_ty = self.local_ty(decl.span, decl.hir_id).decl_ty;
+ self.write_ty(decl.hir_id, decl_ty);
+
+ // Type check the initializer.
+ if let Some(ref init) = decl.init {
+ let init_ty = self.check_decl_initializer(decl.hir_id, decl.pat, &init);
+ self.overwrite_local_ty_if_err(decl.hir_id, decl.pat, decl_ty, init_ty);
+ }
+
+ // Does the expected pattern type originate from an expression and what is the span?
+ let (origin_expr, ty_span) = match (decl.ty, decl.init) {
+ (Some(ty), _) => (false, Some(ty.span)), // Bias towards the explicit user type.
+ (_, Some(init)) => {
+ (true, Some(init.span.find_ancestor_inside(decl.span).unwrap_or(init.span)))
+ } // No explicit type; so use the scrutinee.
+ _ => (false, None), // We have `let $pat;`, so the expected type is unconstrained.
+ };
+
+ // Type check the pattern. Override if necessary to avoid knock-on errors.
+ self.check_pat_top(&decl.pat, decl_ty, ty_span, origin_expr);
+ let pat_ty = self.node_ty(decl.pat.hir_id);
+ self.overwrite_local_ty_if_err(decl.hir_id, decl.pat, decl_ty, pat_ty);
+
+ if let Some(blk) = decl.els {
+ let previous_diverges = self.diverges.get();
+ let else_ty = self.check_block_with_expected(blk, NoExpectation);
+ let cause = self.cause(blk.span, ObligationCauseCode::LetElse);
+ if let Some(mut err) =
+ self.demand_eqtype_with_origin(&cause, self.tcx.types.never, else_ty)
+ {
+ err.emit();
+ }
+ self.diverges.set(previous_diverges);
+ }
+ }
+
+ /// Type check a `let` statement.
+ pub fn check_decl_local(&self, local: &'tcx hir::Local<'tcx>) {
+ self.check_decl(local.into());
+ }
+
+ pub fn check_stmt(&self, stmt: &'tcx hir::Stmt<'tcx>, is_last: bool) {
+ // Don't do all the complex logic below for `DeclItem`.
+ match stmt.kind {
+ hir::StmtKind::Item(..) => return,
+ hir::StmtKind::Local(..) | hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => {}
+ }
+
+ self.warn_if_unreachable(stmt.hir_id, stmt.span, "statement");
+
+ // Hide the outer diverging and `has_errors` flags.
+ let old_diverges = self.diverges.replace(Diverges::Maybe);
+ let old_has_errors = self.has_errors.replace(false);
+
+ match stmt.kind {
+ hir::StmtKind::Local(l) => {
+ self.check_decl_local(l);
+ }
+ // Ignore for now.
+ hir::StmtKind::Item(_) => {}
+ hir::StmtKind::Expr(ref expr) => {
+ // Check with expected type of `()`.
+ self.check_expr_has_type_or_error(&expr, self.tcx.mk_unit(), |err| {
+ if expr.can_have_side_effects() {
+ self.suggest_semicolon_at_end(expr.span, err);
+ }
+ });
+ }
+ hir::StmtKind::Semi(ref expr) => {
+ // All of this is equivalent to calling `check_expr`, but it is inlined out here
+ // in order to capture the fact that this `match` is the last statement in its
+ // function. This is done for better suggestions to remove the `;`.
+ let expectation = match expr.kind {
+ hir::ExprKind::Match(..) if is_last => IsLast(stmt.span),
+ _ => NoExpectation,
+ };
+ self.check_expr_with_expectation(expr, expectation);
+ }
+ }
+
+ // Combine the diverging and `has_error` flags.
+ self.diverges.set(self.diverges.get() | old_diverges);
+ self.has_errors.set(self.has_errors.get() | old_has_errors);
+ }
+
+ pub fn check_block_no_value(&self, blk: &'tcx hir::Block<'tcx>) {
+ let unit = self.tcx.mk_unit();
+ let ty = self.check_block_with_expected(blk, ExpectHasType(unit));
+
+ // if the block produces a `!` value, that can always be
+ // (effectively) coerced to unit.
+ if !ty.is_never() {
+ self.demand_suptype(blk.span, unit, ty);
+ }
+ }
+
+ pub(in super::super) fn check_block_with_expected(
+ &self,
+ blk: &'tcx hir::Block<'tcx>,
+ expected: Expectation<'tcx>,
+ ) -> Ty<'tcx> {
+ let prev = self.ps.replace(self.ps.get().recurse(blk));
+
+ // In some cases, blocks have just one exit, but other blocks
+ // can be targeted by multiple breaks. This can happen both
+ // with labeled blocks as well as when we desugar
+ // a `try { ... }` expression.
+ //
+ // Example 1:
+ //
+ // 'a: { if true { break 'a Err(()); } Ok(()) }
+ //
+ // Here we would wind up with two coercions, one from
+ // `Err(())` and the other from the tail expression
+ // `Ok(())`. If the tail expression is omitted, that's a
+ // "forced unit" -- unless the block diverges, in which
+ // case we can ignore the tail expression (e.g., `'a: {
+ // break 'a 22; }` would not force the type of the block
+ // to be `()`).
+ let tail_expr = blk.expr.as_ref();
+ let coerce_to_ty = expected.coercion_target_type(self, blk.span);
+ let coerce = if blk.targeted_by_break {
+ CoerceMany::new(coerce_to_ty)
+ } else {
+ let tail_expr: &[&hir::Expr<'_>] = match tail_expr {
+ Some(e) => slice::from_ref(e),
+ None => &[],
+ };
+ CoerceMany::with_coercion_sites(coerce_to_ty, tail_expr)
+ };
+
+ let prev_diverges = self.diverges.get();
+ let ctxt = BreakableCtxt { coerce: Some(coerce), may_break: false };
+
+ let (ctxt, ()) = self.with_breakable_ctxt(blk.hir_id, ctxt, || {
+ for (pos, s) in blk.stmts.iter().enumerate() {
+ self.check_stmt(s, blk.stmts.len() - 1 == pos);
+ }
+
+ // check the tail expression **without** holding the
+ // `enclosing_breakables` lock below.
+ let tail_expr_ty = tail_expr.map(|t| self.check_expr_with_expectation(t, expected));
+
+ let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
+ let ctxt = enclosing_breakables.find_breakable(blk.hir_id);
+ let coerce = ctxt.coerce.as_mut().unwrap();
+ if let Some(tail_expr_ty) = tail_expr_ty {
+ let tail_expr = tail_expr.unwrap();
+ let span = self.get_expr_coercion_span(tail_expr);
+ let cause = self.cause(span, ObligationCauseCode::BlockTailExpression(blk.hir_id));
+ let ty_for_diagnostic = coerce.merged_ty();
+ // We use coerce_inner here because we want to augment the error
+ // suggesting to wrap the block in square brackets if it might've
+ // been mistaken array syntax
+ coerce.coerce_inner(
+ self,
+ &cause,
+ Some(tail_expr),
+ tail_expr_ty,
+ Some(&mut |diag: &mut Diagnostic| {
+ self.suggest_block_to_brackets(diag, blk, tail_expr_ty, ty_for_diagnostic);
+ }),
+ false,
+ );
+ } else {
+ // Subtle: if there is no explicit tail expression,
+ // that is typically equivalent to a tail expression
+ // of `()` -- except if the block diverges. In that
+ // case, there is no value supplied from the tail
+ // expression (assuming there are no other breaks,
+ // this implies that the type of the block will be
+ // `!`).
+ //
+ // #41425 -- label the implicit `()` as being the
+ // "found type" here, rather than the "expected type".
+ if !self.diverges.get().is_always() {
+ // #50009 -- Do not point at the entire fn block span, point at the return type
+ // span, as it is the cause of the requirement, and
+ // `consider_hint_about_removing_semicolon` will point at the last expression
+ // if it were a relevant part of the error. This improves usability in editors
+ // that highlight errors inline.
+ let mut sp = blk.span;
+ let mut fn_span = None;
+ if let Some((decl, ident)) = self.get_parent_fn_decl(blk.hir_id) {
+ let ret_sp = decl.output.span();
+ if let Some(block_sp) = self.parent_item_span(blk.hir_id) {
+ // HACK: on some cases (`ui/liveness/liveness-issue-2163.rs`) the
+ // output would otherwise be incorrect and even misleading. Make sure
+ // the span we're aiming at correspond to a `fn` body.
+ if block_sp == blk.span {
+ sp = ret_sp;
+ fn_span = Some(ident.span);
+ }
+ }
+ }
+ coerce.coerce_forced_unit(
+ self,
+ &self.misc(sp),
+ &mut |err| {
+ if let Some(expected_ty) = expected.only_has_type(self) {
+ if !self.consider_removing_semicolon(blk, expected_ty, err) {
+ self.err_ctxt().consider_returning_binding(
+ blk,
+ expected_ty,
+ err,
+ );
+ }
+ if expected_ty == self.tcx.types.bool {
+ // If this is caused by a missing `let` in a `while let`,
+ // silence this redundant error, as we already emit E0070.
+
+ // Our block must be a `assign desugar local; assignment`
+ if let Some(hir::Node::Block(hir::Block {
+ stmts:
+ [
+ hir::Stmt {
+ kind:
+ hir::StmtKind::Local(hir::Local {
+ source:
+ hir::LocalSource::AssignDesugar(_),
+ ..
+ }),
+ ..
+ },
+ hir::Stmt {
+ kind:
+ hir::StmtKind::Expr(hir::Expr {
+ kind: hir::ExprKind::Assign(..),
+ ..
+ }),
+ ..
+ },
+ ],
+ ..
+ })) = self.tcx.hir().find(blk.hir_id)
+ {
+ self.comes_from_while_condition(blk.hir_id, |_| {
+ err.downgrade_to_delayed_bug();
+ })
+ }
+ }
+ }
+ if let Some(fn_span) = fn_span {
+ err.span_label(
+ fn_span,
+ "implicitly returns `()` as its body has no tail or `return` \
+ expression",
+ );
+ }
+ },
+ false,
+ );
+ }
+ }
+ });
+
+ if ctxt.may_break {
+ // If we can break from the block, then the block's exit is always reachable
+ // (... as long as the entry is reachable) - regardless of the tail of the block.
+ self.diverges.set(prev_diverges);
+ }
+
+ let mut ty = ctxt.coerce.unwrap().complete(self);
+
+ if self.has_errors.get() || ty.references_error() {
+ ty = self.tcx.ty_error()
+ }
+
+ self.write_ty(blk.hir_id, ty);
+
+ self.ps.set(prev);
+ ty
+ }
+
+ fn parent_item_span(&self, id: hir::HirId) -> Option<Span> {
+ let node = self.tcx.hir().get_by_def_id(self.tcx.hir().get_parent_item(id).def_id);
+ match node {
+ Node::Item(&hir::Item { kind: hir::ItemKind::Fn(_, _, body_id), .. })
+ | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(_, body_id), .. }) => {
+ let body = self.tcx.hir().body(body_id);
+ if let ExprKind::Block(block, _) = &body.value.kind {
+ return Some(block.span);
+ }
+ }
+ _ => {}
+ }
+ None
+ }
+
+ /// Given a function block's `HirId`, returns its `FnDecl` if it exists, or `None` otherwise.
+ fn get_parent_fn_decl(&self, blk_id: hir::HirId) -> Option<(&'tcx hir::FnDecl<'tcx>, Ident)> {
+ let parent = self.tcx.hir().get_by_def_id(self.tcx.hir().get_parent_item(blk_id).def_id);
+ self.get_node_fn_decl(parent).map(|(fn_decl, ident, _)| (fn_decl, ident))
+ }
+
+ /// If `expr` is a `match` expression that has only one non-`!` arm, use that arm's tail
+ /// expression's `Span`, otherwise return `expr.span`. This is done to give better errors
+ /// when given code like the following:
+ /// ```text
+ /// if false { return 0i32; } else { 1u32 }
+ /// // ^^^^ point at this instead of the whole `if` expression
+ /// ```
+ fn get_expr_coercion_span(&self, expr: &hir::Expr<'_>) -> rustc_span::Span {
+ let check_in_progress = |elem: &hir::Expr<'_>| {
+ self.typeck_results.borrow().node_type_opt(elem.hir_id).filter(|ty| !ty.is_never()).map(
+ |_| match elem.kind {
+ // Point at the tail expression when possible.
+ hir::ExprKind::Block(block, _) => block.expr.map_or(block.span, |e| e.span),
+ _ => elem.span,
+ },
+ )
+ };
+
+ if let hir::ExprKind::If(_, _, Some(el)) = expr.kind {
+ if let Some(rslt) = check_in_progress(el) {
+ return rslt;
+ }
+ }
+
+ if let hir::ExprKind::Match(_, arms, _) = expr.kind {
+ let mut iter = arms.iter().filter_map(|arm| check_in_progress(arm.body));
+ if let Some(span) = iter.next() {
+ if iter.next().is_none() {
+ return span;
+ }
+ }
+ }
+
+ expr.span
+ }
+
+ fn overwrite_local_ty_if_err(
+ &self,
+ hir_id: hir::HirId,
+ pat: &'tcx hir::Pat<'tcx>,
+ decl_ty: Ty<'tcx>,
+ ty: Ty<'tcx>,
+ ) {
+ if ty.references_error() {
+ // Override the types everywhere with `err()` to avoid knock on errors.
+ self.write_ty(hir_id, ty);
+ self.write_ty(pat.hir_id, ty);
+ let local_ty = LocalTy { decl_ty, revealed_ty: ty };
+ self.locals.borrow_mut().insert(hir_id, local_ty);
+ self.locals.borrow_mut().insert(pat.hir_id, local_ty);
+ }
+ }
+
+ // Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary.
+ // The newly resolved definition is written into `type_dependent_defs`.
+ fn finish_resolving_struct_path(
+ &self,
+ qpath: &QPath<'_>,
+ path_span: Span,
+ hir_id: hir::HirId,
+ ) -> (Res, Ty<'tcx>) {
+ match *qpath {
+ QPath::Resolved(ref maybe_qself, ref path) => {
+ let self_ty = maybe_qself.as_ref().map(|qself| self.to_ty(qself));
+ let ty = <dyn AstConv<'_>>::res_to_ty(self, self_ty, path, true);
+ (path.res, ty)
+ }
+ QPath::TypeRelative(ref qself, ref segment) => {
+ let ty = self.to_ty(qself);
+
+ let result = <dyn AstConv<'_>>::associated_path_to_ty(
+ self, hir_id, path_span, ty, qself, segment, true,
+ );
+ let ty = result.map(|(ty, _, _)| ty).unwrap_or_else(|_| self.tcx().ty_error());
+ let result = result.map(|(_, kind, def_id)| (kind, def_id));
+
+ // Write back the new resolution.
+ self.write_resolution(hir_id, result);
+
+ (result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id)), ty)
+ }
+ QPath::LangItem(lang_item, span, id) => {
+ self.resolve_lang_item_path(lang_item, span, hir_id, id)
+ }
+ }
+ }
+
+ /// Given a vector of fulfillment errors, try to adjust the spans of the
+ /// errors to more accurately point at the cause of the failure.
+ ///
+ /// This applies to calls, methods, and struct expressions. This will also
+ /// try to deduplicate errors that are due to the same cause but might
+ /// have been created with different [`ObligationCause`][traits::ObligationCause]s.
+ pub(super) fn adjust_fulfillment_errors_for_expr_obligation(
+ &self,
+ errors: &mut Vec<traits::FulfillmentError<'tcx>>,
+ ) {
+ // Store a mapping from `(Span, Predicate) -> ObligationCause`, so that
+ // other errors that have the same span and predicate can also get fixed,
+ // even if their `ObligationCauseCode` isn't an `Expr*Obligation` kind.
+ // This is important since if we adjust one span but not the other, then
+ // we will have "duplicated" the error on the UI side.
+ let mut remap_cause = FxHashSet::default();
+ let mut not_adjusted = vec![];
+
+ for error in errors {
+ let before_span = error.obligation.cause.span;
+ if self.adjust_fulfillment_error_for_expr_obligation(error)
+ || before_span != error.obligation.cause.span
+ {
+ // Store both the predicate and the predicate *without constness*
+ // since sometimes we instantiate and check both of these in a
+ // method call, for example.
+ remap_cause.insert((
+ before_span,
+ error.obligation.predicate,
+ error.obligation.cause.clone(),
+ ));
+ remap_cause.insert((
+ before_span,
+ error.obligation.predicate.without_const(self.tcx),
+ error.obligation.cause.clone(),
+ ));
+ } else {
+ // If it failed to be adjusted once around, it may be adjusted
+ // via the "remap cause" mapping the second time...
+ not_adjusted.push(error);
+ }
+ }
+
+ for error in not_adjusted {
+ for (span, predicate, cause) in &remap_cause {
+ if *predicate == error.obligation.predicate
+ && span.contains(error.obligation.cause.span)
+ {
+ error.obligation.cause = cause.clone();
+ continue;
+ }
+ }
+ }
+ }
+
+ fn adjust_fulfillment_error_for_expr_obligation(
+ &self,
+ error: &mut traits::FulfillmentError<'tcx>,
+ ) -> bool {
+ let (traits::ExprItemObligation(def_id, hir_id, idx) | traits::ExprBindingObligation(def_id, _, hir_id, idx))
+ = *error.obligation.cause.code().peel_derives() else { return false; };
+ let hir = self.tcx.hir();
+ let hir::Node::Expr(expr) = hir.get(hir_id) else { return false; };
+
+ // Skip over mentioning async lang item
+ if Some(def_id) == self.tcx.lang_items().from_generator_fn()
+ && error.obligation.cause.span.desugaring_kind()
+ == Some(rustc_span::DesugaringKind::Async)
+ {
+ return false;
+ }
+
+ let Some(unsubstituted_pred) =
+ self.tcx.predicates_of(def_id).instantiate_identity(self.tcx).predicates.into_iter().nth(idx)
+ else { return false; };
+
+ let generics = self.tcx.generics_of(def_id);
+ let predicate_substs = match unsubstituted_pred.kind().skip_binder() {
+ ty::PredicateKind::Trait(pred) => pred.trait_ref.substs,
+ ty::PredicateKind::Projection(pred) => pred.projection_ty.substs,
+ _ => ty::List::empty(),
+ };
+
+ let find_param_matching = |matches: &dyn Fn(&ty::ParamTy) -> bool| {
+ predicate_substs.types().find_map(|ty| {
+ ty.walk().find_map(|arg| {
+ if let ty::GenericArgKind::Type(ty) = arg.unpack()
+ && let ty::Param(param_ty) = ty.kind()
+ && matches(param_ty)
+ {
+ Some(arg)
+ } else {
+ None
+ }
+ })
+ })
+ };
+
+ // Prefer generics that are local to the fn item, since these are likely
+ // to be the cause of the unsatisfied predicate.
+ let mut param_to_point_at = find_param_matching(&|param_ty| {
+ self.tcx.parent(generics.type_param(param_ty, self.tcx).def_id) == def_id
+ });
+ // Fall back to generic that isn't local to the fn item. This will come
+ // from a trait or impl, for example.
+ let mut fallback_param_to_point_at = find_param_matching(&|param_ty| {
+ self.tcx.parent(generics.type_param(param_ty, self.tcx).def_id) != def_id
+ && param_ty.name != rustc_span::symbol::kw::SelfUpper
+ });
+ // Finally, the `Self` parameter is possibly the reason that the predicate
+ // is unsatisfied. This is less likely to be true for methods, because
+ // method probe means that we already kinda check that the predicates due
+ // to the `Self` type are true.
+ let mut self_param_to_point_at =
+ find_param_matching(&|param_ty| param_ty.name == rustc_span::symbol::kw::SelfUpper);
+
+ // Finally, for ambiguity-related errors, we actually want to look
+ // for a parameter that is the source of the inference type left
+ // over in this predicate.
+ if let traits::FulfillmentErrorCode::CodeAmbiguity = error.code {
+ fallback_param_to_point_at = None;
+ self_param_to_point_at = None;
+ param_to_point_at =
+ self.find_ambiguous_parameter_in(def_id, error.root_obligation.predicate);
+ }
+
+ if self.closure_span_overlaps_error(error, expr.span) {
+ return false;
+ }
+
+ match &expr.kind {
+ hir::ExprKind::Path(qpath) => {
+ if let hir::Node::Expr(hir::Expr {
+ kind: hir::ExprKind::Call(callee, args),
+ hir_id: call_hir_id,
+ span: call_span,
+ ..
+ }) = hir.get(hir.get_parent_node(expr.hir_id))
+ && callee.hir_id == expr.hir_id
+ {
+ if self.closure_span_overlaps_error(error, *call_span) {
+ return false;
+ }
+
+ for param in
+ [param_to_point_at, fallback_param_to_point_at, self_param_to_point_at]
+ .into_iter()
+ .flatten()
+ {
+ if self.point_at_arg_if_possible(
+ error,
+ def_id,
+ param,
+ *call_hir_id,
+ callee.span,
+ None,
+ args,
+ )
+ {
+ return true;
+ }
+ }
+ }
+ // Notably, we only point to params that are local to the
+ // item we're checking, since those are the ones we are able
+ // to look in the final `hir::PathSegment` for. Everything else
+ // would require a deeper search into the `qpath` than I think
+ // is worthwhile.
+ if let Some(param_to_point_at) = param_to_point_at
+ && self.point_at_path_if_possible(error, def_id, param_to_point_at, qpath)
+ {
+ return true;
+ }
+ }
+ hir::ExprKind::MethodCall(segment, receiver, args, ..) => {
+ for param in [param_to_point_at, fallback_param_to_point_at, self_param_to_point_at]
+ .into_iter()
+ .flatten()
+ {
+ if self.point_at_arg_if_possible(
+ error,
+ def_id,
+ param,
+ hir_id,
+ segment.ident.span,
+ Some(receiver),
+ args,
+ ) {
+ return true;
+ }
+ }
+ if let Some(param_to_point_at) = param_to_point_at
+ && self.point_at_generic_if_possible(error, def_id, param_to_point_at, segment)
+ {
+ return true;
+ }
+ }
+ hir::ExprKind::Struct(qpath, fields, ..) => {
+ if let Res::Def(DefKind::Struct | DefKind::Variant, variant_def_id) =
+ self.typeck_results.borrow().qpath_res(qpath, hir_id)
+ {
+ for param in
+ [param_to_point_at, fallback_param_to_point_at, self_param_to_point_at]
+ {
+ if let Some(param) = param
+ && self.point_at_field_if_possible(
+ error,
+ def_id,
+ param,
+ variant_def_id,
+ fields,
+ )
+ {
+ return true;
+ }
+ }
+ }
+ if let Some(param_to_point_at) = param_to_point_at
+ && self.point_at_path_if_possible(error, def_id, param_to_point_at, qpath)
+ {
+ return true;
+ }
+ }
+ _ => {}
+ }
+
+ false
+ }
+
+ fn closure_span_overlaps_error(
+ &self,
+ error: &traits::FulfillmentError<'tcx>,
+ span: Span,
+ ) -> bool {
+ if let traits::FulfillmentErrorCode::CodeSelectionError(
+ traits::SelectionError::OutputTypeParameterMismatch(_, expected, _),
+ ) = error.code
+ && let ty::Closure(def_id, _) | ty::Generator(def_id, ..) = expected.skip_binder().self_ty().kind()
+ && span.overlaps(self.tcx.def_span(*def_id))
+ {
+ true
+ } else {
+ false
+ }
+ }
+
+ fn point_at_arg_if_possible(
+ &self,
+ error: &mut traits::FulfillmentError<'tcx>,
+ def_id: DefId,
+ param_to_point_at: ty::GenericArg<'tcx>,
+ call_hir_id: hir::HirId,
+ callee_span: Span,
+ receiver: Option<&'tcx hir::Expr<'tcx>>,
+ args: &'tcx [hir::Expr<'tcx>],
+ ) -> bool {
+ let sig = self.tcx.fn_sig(def_id).skip_binder();
+ let args_referencing_param: Vec<_> = sig
+ .inputs()
+ .iter()
+ .enumerate()
+ .filter(|(_, ty)| find_param_in_ty(**ty, param_to_point_at))
+ .collect();
+ // If there's one field that references the given generic, great!
+ if let [(idx, _)] = args_referencing_param.as_slice()
+ && let Some(arg) = receiver
+ .map_or(args.get(*idx), |rcvr| if *idx == 0 { Some(rcvr) } else { args.get(*idx - 1) }) {
+ error.obligation.cause.span = arg.span.find_ancestor_in_same_ctxt(error.obligation.cause.span).unwrap_or(arg.span);
+ error.obligation.cause.map_code(|parent_code| {
+ ObligationCauseCode::FunctionArgumentObligation {
+ arg_hir_id: arg.hir_id,
+ call_hir_id,
+ parent_code,
+ }
+ });
+ return true;
+ } else if args_referencing_param.len() > 0 {
+ // If more than one argument applies, then point to the callee span at least...
+ // We have chance to fix this up further in `point_at_generics_if_possible`
+ error.obligation.cause.span = callee_span;
+ }
+
+ false
+ }
+
+ fn point_at_field_if_possible(
+ &self,
+ error: &mut traits::FulfillmentError<'tcx>,
+ def_id: DefId,
+ param_to_point_at: ty::GenericArg<'tcx>,
+ variant_def_id: DefId,
+ expr_fields: &[hir::ExprField<'tcx>],
+ ) -> bool {
+ let def = self.tcx.adt_def(def_id);
+
+ let identity_substs = ty::InternalSubsts::identity_for_item(self.tcx, def_id);
+ let fields_referencing_param: Vec<_> = def
+ .variant_with_id(variant_def_id)
+ .fields
+ .iter()
+ .filter(|field| {
+ let field_ty = field.ty(self.tcx, identity_substs);
+ find_param_in_ty(field_ty, param_to_point_at)
+ })
+ .collect();
+
+ if let [field] = fields_referencing_param.as_slice() {
+ for expr_field in expr_fields {
+ // Look for the ExprField that matches the field, using the
+ // same rules that check_expr_struct uses for macro hygiene.
+ if self.tcx.adjust_ident(expr_field.ident, variant_def_id) == field.ident(self.tcx)
+ {
+ error.obligation.cause.span = expr_field
+ .expr
+ .span
+ .find_ancestor_in_same_ctxt(error.obligation.cause.span)
+ .unwrap_or(expr_field.span);
+ return true;
+ }
+ }
+ }
+
+ false
+ }
+
+ fn point_at_path_if_possible(
+ &self,
+ error: &mut traits::FulfillmentError<'tcx>,
+ def_id: DefId,
+ param: ty::GenericArg<'tcx>,
+ qpath: &QPath<'tcx>,
+ ) -> bool {
+ match qpath {
+ hir::QPath::Resolved(_, path) => {
+ if let Some(segment) = path.segments.last()
+ && self.point_at_generic_if_possible(error, def_id, param, segment)
+ {
+ return true;
+ }
+ }
+ hir::QPath::TypeRelative(_, segment) => {
+ if self.point_at_generic_if_possible(error, def_id, param, segment) {
+ return true;
+ }
+ }
+ _ => {}
+ }
+
+ false
+ }
+
+ fn point_at_generic_if_possible(
+ &self,
+ error: &mut traits::FulfillmentError<'tcx>,
+ def_id: DefId,
+ param_to_point_at: ty::GenericArg<'tcx>,
+ segment: &hir::PathSegment<'tcx>,
+ ) -> bool {
+ let own_substs = self
+ .tcx
+ .generics_of(def_id)
+ .own_substs(ty::InternalSubsts::identity_for_item(self.tcx, def_id));
+ let Some((index, _)) = own_substs
+ .iter()
+ .filter(|arg| matches!(arg.unpack(), ty::GenericArgKind::Type(_)))
+ .enumerate()
+ .find(|(_, arg)| **arg == param_to_point_at) else { return false };
+ let Some(arg) = segment
+ .args()
+ .args
+ .iter()
+ .filter(|arg| matches!(arg, hir::GenericArg::Type(_)))
+ .nth(index) else { return false; };
+ error.obligation.cause.span = arg
+ .span()
+ .find_ancestor_in_same_ctxt(error.obligation.cause.span)
+ .unwrap_or(arg.span());
+ true
+ }
+
+ fn find_ambiguous_parameter_in<T: TypeVisitable<'tcx>>(
+ &self,
+ item_def_id: DefId,
+ t: T,
+ ) -> Option<ty::GenericArg<'tcx>> {
+ struct FindAmbiguousParameter<'a, 'tcx>(&'a FnCtxt<'a, 'tcx>, DefId);
+ impl<'tcx> TypeVisitor<'tcx> for FindAmbiguousParameter<'_, 'tcx> {
+ type BreakTy = ty::GenericArg<'tcx>;
+ fn visit_ty(&mut self, ty: Ty<'tcx>) -> std::ops::ControlFlow<Self::BreakTy> {
+ if let Some(origin) = self.0.type_var_origin(ty)
+ && let TypeVariableOriginKind::TypeParameterDefinition(_, Some(def_id)) =
+ origin.kind
+ && let generics = self.0.tcx.generics_of(self.1)
+ && let Some(index) = generics.param_def_id_to_index(self.0.tcx, def_id)
+ && let Some(subst) = ty::InternalSubsts::identity_for_item(self.0.tcx, self.1)
+ .get(index as usize)
+ {
+ ControlFlow::Break(*subst)
+ } else {
+ ty.super_visit_with(self)
+ }
+ }
+ }
+ t.visit_with(&mut FindAmbiguousParameter(self, item_def_id)).break_value()
+ }
+
+ fn label_fn_like(
+ &self,
+ err: &mut Diagnostic,
+ callable_def_id: Option<DefId>,
+ callee_ty: Option<Ty<'tcx>>,
+ // A specific argument should be labeled, instead of all of them
+ expected_idx: Option<usize>,
+ is_method: bool,
+ ) {
+ let Some(mut def_id) = callable_def_id else {
+ return;
+ };
+
+ if let Some(assoc_item) = self.tcx.opt_associated_item(def_id)
+ // Possibly points at either impl or trait item, so try to get it
+ // to point to trait item, then get the parent.
+ // This parent might be an impl in the case of an inherent function,
+ // but the next check will fail.
+ && let maybe_trait_item_def_id = assoc_item.trait_item_def_id.unwrap_or(def_id)
+ && let maybe_trait_def_id = self.tcx.parent(maybe_trait_item_def_id)
+ // Just an easy way to check "trait_def_id == Fn/FnMut/FnOnce"
+ && let Some(call_kind) = ty::ClosureKind::from_def_id(self.tcx, maybe_trait_def_id)
+ && let Some(callee_ty) = callee_ty
+ {
+ let callee_ty = callee_ty.peel_refs();
+ match *callee_ty.kind() {
+ ty::Param(param) => {
+ let param =
+ self.tcx.generics_of(self.body_id.owner).type_param(&param, self.tcx);
+ if param.kind.is_synthetic() {
+ // if it's `impl Fn() -> ..` then just fall down to the def-id based logic
+ def_id = param.def_id;
+ } else {
+ // Otherwise, find the predicate that makes this generic callable,
+ // and point at that.
+ let instantiated = self
+ .tcx
+ .explicit_predicates_of(self.body_id.owner)
+ .instantiate_identity(self.tcx);
+ // FIXME(compiler-errors): This could be problematic if something has two
+ // fn-like predicates with different args, but callable types really never
+ // do that, so it's OK.
+ for (predicate, span) in
+ std::iter::zip(instantiated.predicates, instantiated.spans)
+ {
+ if let ty::PredicateKind::Trait(pred) = predicate.kind().skip_binder()
+ && pred.self_ty().peel_refs() == callee_ty
+ && ty::ClosureKind::from_def_id(self.tcx, pred.def_id()).is_some()
+ {
+ err.span_note(span, "callable defined here");
+ return;
+ }
+ }
+ }
+ }
+ ty::Opaque(new_def_id, _)
+ | ty::Closure(new_def_id, _)
+ | ty::FnDef(new_def_id, _) => {
+ def_id = new_def_id;
+ }
+ _ => {
+ // Look for a user-provided impl of a `Fn` trait, and point to it.
+ let new_def_id = self.probe(|_| {
+ let trait_ref = ty::TraitRef::new(
+ call_kind.to_def_id(self.tcx),
+ self.tcx.mk_substs(
+ [
+ ty::GenericArg::from(callee_ty),
+ self.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::MiscVariable,
+ span: rustc_span::DUMMY_SP,
+ })
+ .into(),
+ ]
+ .into_iter(),
+ ),
+ );
+ let obligation = traits::Obligation::new(
+ traits::ObligationCause::dummy(),
+ self.param_env,
+ ty::Binder::dummy(ty::TraitPredicate {
+ trait_ref,
+ constness: ty::BoundConstness::NotConst,
+ polarity: ty::ImplPolarity::Positive,
+ }),
+ );
+ match SelectionContext::new(&self).select(&obligation) {
+ Ok(Some(traits::ImplSource::UserDefined(impl_source))) => {
+ Some(impl_source.impl_def_id)
+ }
+ _ => None,
+ }
+ });
+ if let Some(new_def_id) = new_def_id {
+ def_id = new_def_id;
+ } else {
+ return;
+ }
+ }
+ }
+ }
+
+ if let Some(def_span) = self.tcx.def_ident_span(def_id) && !def_span.is_dummy() {
+ let mut spans: MultiSpan = def_span.into();
+
+ let params = self
+ .tcx
+ .hir()
+ .get_if_local(def_id)
+ .and_then(|node| node.body_id())
+ .into_iter()
+ .flat_map(|id| self.tcx.hir().body(id).params)
+ .skip(if is_method { 1 } else { 0 });
+
+ for (_, param) in params
+ .into_iter()
+ .enumerate()
+ .filter(|(idx, _)| expected_idx.map_or(true, |expected_idx| expected_idx == *idx))
+ {
+ spans.push_span_label(param.span, "");
+ }
+
+ let def_kind = self.tcx.def_kind(def_id);
+ err.span_note(spans, &format!("{} defined here", def_kind.descr(def_id)));
+ } else if let Some(hir::Node::Expr(e)) = self.tcx.hir().get_if_local(def_id)
+ && let hir::ExprKind::Closure(hir::Closure { body, .. }) = &e.kind
+ {
+ let param = expected_idx
+ .and_then(|expected_idx| self.tcx.hir().body(*body).params.get(expected_idx));
+ let (kind, span) = if let Some(param) = param {
+ ("closure parameter", param.span)
+ } else {
+ ("closure", self.tcx.def_span(def_id))
+ };
+ err.span_note(span, &format!("{} defined here", kind));
+ } else {
+ let def_kind = self.tcx.def_kind(def_id);
+ err.span_note(
+ self.tcx.def_span(def_id),
+ &format!("{} defined here", def_kind.descr(def_id)),
+ );
+ }
+ }
+}
+
+fn find_param_in_ty<'tcx>(ty: Ty<'tcx>, param_to_point_at: ty::GenericArg<'tcx>) -> bool {
+ let mut walk = ty.walk();
+ while let Some(arg) = walk.next() {
+ if arg == param_to_point_at {
+ return true;
+ } else if let ty::GenericArgKind::Type(ty) = arg.unpack()
+ && let ty::Projection(..) = ty.kind()
+ {
+ // This logic may seem a bit strange, but typically when
+ // we have a projection type in a function signature, the
+ // argument that's being passed into that signature is
+ // not actually constraining that projection's substs in
+ // a meaningful way. So we skip it, and see improvements
+ // in some UI tests.
+ walk.skip_current_subtree();
+ }
+ }
+ false
+}
diff --git a/compiler/rustc_hir_typeck/src/fn_ctxt/mod.rs b/compiler/rustc_hir_typeck/src/fn_ctxt/mod.rs
new file mode 100644
index 000000000..0c600daf4
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/fn_ctxt/mod.rs
@@ -0,0 +1,312 @@
+mod _impl;
+mod arg_matrix;
+mod checks;
+mod suggestions;
+
+pub use _impl::*;
+pub use suggestions::*;
+
+use crate::coercion::DynamicCoerceMany;
+use crate::{Diverges, EnclosingBreakables, Inherited, UnsafetyState};
+use rustc_hir as hir;
+use rustc_hir::def_id::DefId;
+use rustc_hir_analysis::astconv::AstConv;
+use rustc_infer::infer;
+use rustc_infer::infer::error_reporting::TypeErrCtxt;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
+use rustc_middle::ty::subst::GenericArgKind;
+use rustc_middle::ty::visit::TypeVisitable;
+use rustc_middle::ty::{self, Const, Ty, TyCtxt};
+use rustc_session::Session;
+use rustc_span::symbol::Ident;
+use rustc_span::{self, Span};
+use rustc_trait_selection::traits::{ObligationCause, ObligationCauseCode};
+
+use std::cell::{Cell, RefCell};
+use std::ops::Deref;
+
+/// The `FnCtxt` stores type-checking context needed to type-check bodies of
+/// functions, closures, and `const`s, including performing type inference
+/// with [`InferCtxt`].
+///
+/// This is in contrast to [`ItemCtxt`], which is used to type-check item *signatures*
+/// and thus does not perform type inference.
+///
+/// See [`ItemCtxt`]'s docs for more.
+///
+/// [`ItemCtxt`]: rustc_hir_analysis::collect::ItemCtxt
+/// [`InferCtxt`]: infer::InferCtxt
+pub struct FnCtxt<'a, 'tcx> {
+ pub(super) body_id: hir::HirId,
+
+ /// The parameter environment used for proving trait obligations
+ /// in this function. This can change when we descend into
+ /// closures (as they bring new things into scope), hence it is
+ /// not part of `Inherited` (as of the time of this writing,
+ /// closures do not yet change the environment, but they will
+ /// eventually).
+ pub(super) param_env: ty::ParamEnv<'tcx>,
+
+ /// Number of errors that had been reported when we started
+ /// checking this function. On exit, if we find that *more* errors
+ /// have been reported, we will skip regionck and other work that
+ /// expects the types within the function to be consistent.
+ // FIXME(matthewjasper) This should not exist, and it's not correct
+ // if type checking is run in parallel.
+ err_count_on_creation: usize,
+
+ /// If `Some`, this stores coercion information for returned
+ /// expressions. If `None`, this is in a context where return is
+ /// inappropriate, such as a const expression.
+ ///
+ /// This is a `RefCell<DynamicCoerceMany>`, which means that we
+ /// can track all the return expressions and then use them to
+ /// compute a useful coercion from the set, similar to a match
+ /// expression or other branching context. You can use methods
+ /// like `expected_ty` to access the declared return type (if
+ /// any).
+ pub(super) ret_coercion: Option<RefCell<DynamicCoerceMany<'tcx>>>,
+
+ /// Used exclusively to reduce cost of advanced evaluation used for
+ /// more helpful diagnostics.
+ pub(super) in_tail_expr: bool,
+
+ /// First span of a return site that we find. Used in error messages.
+ pub(super) ret_coercion_span: Cell<Option<Span>>,
+
+ pub(super) resume_yield_tys: Option<(Ty<'tcx>, Ty<'tcx>)>,
+
+ pub(super) ps: Cell<UnsafetyState>,
+
+ /// Whether the last checked node generates a divergence (e.g.,
+ /// `return` will set this to `Always`). In general, when entering
+ /// an expression or other node in the tree, the initial value
+ /// indicates whether prior parts of the containing expression may
+ /// have diverged. It is then typically set to `Maybe` (and the
+ /// old value remembered) for processing the subparts of the
+ /// current expression. As each subpart is processed, they may set
+ /// the flag to `Always`, etc. Finally, at the end, we take the
+ /// result and "union" it with the original value, so that when we
+ /// return the flag indicates if any subpart of the parent
+ /// expression (up to and including this part) has diverged. So,
+ /// if you read it after evaluating a subexpression `X`, the value
+ /// you get indicates whether any subexpression that was
+ /// evaluating up to and including `X` diverged.
+ ///
+ /// We currently use this flag only for diagnostic purposes:
+ ///
+ /// - To warn about unreachable code: if, after processing a
+ /// sub-expression but before we have applied the effects of the
+ /// current node, we see that the flag is set to `Always`, we
+ /// can issue a warning. This corresponds to something like
+ /// `foo(return)`; we warn on the `foo()` expression. (We then
+ /// update the flag to `WarnedAlways` to suppress duplicate
+ /// reports.) Similarly, if we traverse to a fresh statement (or
+ /// tail expression) from an `Always` setting, we will issue a
+ /// warning. This corresponds to something like `{return;
+ /// foo();}` or `{return; 22}`, where we would warn on the
+ /// `foo()` or `22`.
+ ///
+ /// An expression represents dead code if, after checking it,
+ /// the diverges flag is set to something other than `Maybe`.
+ pub(super) diverges: Cell<Diverges>,
+
+ /// Whether any child nodes have any type errors.
+ pub(super) has_errors: Cell<bool>,
+
+ pub(super) enclosing_breakables: RefCell<EnclosingBreakables<'tcx>>,
+
+ pub(super) inh: &'a Inherited<'tcx>,
+
+ /// True if the function or closure's return type is known before
+ /// entering the function/closure, i.e. if the return type is
+ /// either given explicitly or inferred from, say, an `Fn*` trait
+ /// bound. Used for diagnostic purposes only.
+ pub(super) return_type_pre_known: bool,
+
+ /// True if the return type has an Opaque type
+ pub(super) return_type_has_opaque: bool,
+}
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ pub fn new(
+ inh: &'a Inherited<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ body_id: hir::HirId,
+ ) -> FnCtxt<'a, 'tcx> {
+ FnCtxt {
+ body_id,
+ param_env,
+ err_count_on_creation: inh.tcx.sess.err_count(),
+ ret_coercion: None,
+ in_tail_expr: false,
+ ret_coercion_span: Cell::new(None),
+ resume_yield_tys: None,
+ ps: Cell::new(UnsafetyState::function(hir::Unsafety::Normal, hir::CRATE_HIR_ID)),
+ diverges: Cell::new(Diverges::Maybe),
+ has_errors: Cell::new(false),
+ enclosing_breakables: RefCell::new(EnclosingBreakables {
+ stack: Vec::new(),
+ by_id: Default::default(),
+ }),
+ inh,
+ return_type_pre_known: true,
+ return_type_has_opaque: false,
+ }
+ }
+
+ pub fn cause(&self, span: Span, code: ObligationCauseCode<'tcx>) -> ObligationCause<'tcx> {
+ ObligationCause::new(span, self.body_id, code)
+ }
+
+ pub fn misc(&self, span: Span) -> ObligationCause<'tcx> {
+ self.cause(span, ObligationCauseCode::MiscObligation)
+ }
+
+ pub fn sess(&self) -> &Session {
+ &self.tcx.sess
+ }
+
+ /// Creates an `TypeErrCtxt` with a reference to the in-progress
+ /// `TypeckResults` which is used for diagnostics.
+ /// Use [`InferCtxt::err_ctxt`] to start one without a `TypeckResults`.
+ ///
+ /// [`InferCtxt::err_ctxt`]: infer::InferCtxt::err_ctxt
+ pub fn err_ctxt(&'a self) -> TypeErrCtxt<'a, 'tcx> {
+ TypeErrCtxt { infcx: &self.infcx, typeck_results: Some(self.typeck_results.borrow()) }
+ }
+
+ pub fn errors_reported_since_creation(&self) -> bool {
+ self.tcx.sess.err_count() > self.err_count_on_creation
+ }
+}
+
+impl<'a, 'tcx> Deref for FnCtxt<'a, 'tcx> {
+ type Target = Inherited<'tcx>;
+ fn deref(&self) -> &Self::Target {
+ &self.inh
+ }
+}
+
+impl<'a, 'tcx> AstConv<'tcx> for FnCtxt<'a, 'tcx> {
+ fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+
+ fn item_def_id(&self) -> Option<DefId> {
+ None
+ }
+
+ fn get_type_parameter_bounds(
+ &self,
+ _: Span,
+ def_id: DefId,
+ _: Ident,
+ ) -> ty::GenericPredicates<'tcx> {
+ let tcx = self.tcx;
+ let item_def_id = tcx.hir().ty_param_owner(def_id.expect_local());
+ let generics = tcx.generics_of(item_def_id);
+ let index = generics.param_def_id_to_index[&def_id];
+ ty::GenericPredicates {
+ parent: None,
+ predicates: tcx.arena.alloc_from_iter(
+ self.param_env.caller_bounds().iter().filter_map(|predicate| {
+ match predicate.kind().skip_binder() {
+ ty::PredicateKind::Trait(data) if data.self_ty().is_param(index) => {
+ // HACK(eddyb) should get the original `Span`.
+ let span = tcx.def_span(def_id);
+ Some((predicate, span))
+ }
+ _ => None,
+ }
+ }),
+ ),
+ }
+ }
+
+ fn re_infer(&self, def: Option<&ty::GenericParamDef>, span: Span) -> Option<ty::Region<'tcx>> {
+ let v = match def {
+ Some(def) => infer::EarlyBoundRegion(span, def.name),
+ None => infer::MiscVariable(span),
+ };
+ Some(self.next_region_var(v))
+ }
+
+ fn allow_ty_infer(&self) -> bool {
+ true
+ }
+
+ fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
+ if let Some(param) = param {
+ if let GenericArgKind::Type(ty) = self.var_for_def(span, param).unpack() {
+ return ty;
+ }
+ unreachable!()
+ } else {
+ self.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::TypeInference,
+ span,
+ })
+ }
+ }
+
+ fn ct_infer(
+ &self,
+ ty: Ty<'tcx>,
+ param: Option<&ty::GenericParamDef>,
+ span: Span,
+ ) -> Const<'tcx> {
+ if let Some(param) = param {
+ if let GenericArgKind::Const(ct) = self.var_for_def(span, param).unpack() {
+ return ct;
+ }
+ unreachable!()
+ } else {
+ self.next_const_var(
+ ty,
+ ConstVariableOrigin { kind: ConstVariableOriginKind::ConstInference, span },
+ )
+ }
+ }
+
+ fn projected_ty_from_poly_trait_ref(
+ &self,
+ span: Span,
+ item_def_id: DefId,
+ item_segment: &hir::PathSegment<'_>,
+ poly_trait_ref: ty::PolyTraitRef<'tcx>,
+ ) -> Ty<'tcx> {
+ let trait_ref = self.replace_bound_vars_with_fresh_vars(
+ span,
+ infer::LateBoundRegionConversionTime::AssocTypeProjection(item_def_id),
+ poly_trait_ref,
+ );
+
+ let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
+ self,
+ span,
+ item_def_id,
+ item_segment,
+ trait_ref.substs,
+ );
+
+ self.tcx().mk_projection(item_def_id, item_substs)
+ }
+
+ fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
+ if ty.has_escaping_bound_vars() {
+ ty // FIXME: normalization and escaping regions
+ } else {
+ self.normalize_associated_types_in(span, ty)
+ }
+ }
+
+ fn set_tainted_by_errors(&self) {
+ self.infcx.set_tainted_by_errors()
+ }
+
+ fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, _span: Span) {
+ self.write_ty(hir_id, ty)
+ }
+}
diff --git a/compiler/rustc_hir_typeck/src/fn_ctxt/suggestions.rs b/compiler/rustc_hir_typeck/src/fn_ctxt/suggestions.rs
new file mode 100644
index 000000000..4db9c56f9
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/fn_ctxt/suggestions.rs
@@ -0,0 +1,1250 @@
+use super::FnCtxt;
+
+use crate::errors::{AddReturnTypeSuggestion, ExpectedReturnTypeLabel};
+use rustc_ast::util::parser::{ExprPrecedence, PREC_POSTFIX};
+use rustc_errors::{Applicability, Diagnostic, MultiSpan};
+use rustc_hir as hir;
+use rustc_hir::def::{CtorOf, DefKind};
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::{
+ Expr, ExprKind, GenericBound, Node, Path, QPath, Stmt, StmtKind, TyKind, WherePredicate,
+};
+use rustc_hir_analysis::astconv::AstConv;
+use rustc_infer::infer::{self, TyCtxtInferExt};
+use rustc_infer::traits::{self, StatementAsExpression};
+use rustc_middle::lint::in_external_macro;
+use rustc_middle::ty::{self, Binder, IsSuggestable, ToPredicate, Ty};
+use rustc_session::errors::ExprParenthesesNeeded;
+use rustc_span::symbol::sym;
+use rustc_span::Span;
+use rustc_trait_selection::infer::InferCtxtExt;
+use rustc_trait_selection::traits::error_reporting::DefIdOrName;
+use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ pub(in super::super) fn suggest_semicolon_at_end(&self, span: Span, err: &mut Diagnostic) {
+ err.span_suggestion_short(
+ span.shrink_to_hi(),
+ "consider using a semicolon here",
+ ";",
+ Applicability::MachineApplicable,
+ );
+ }
+
+ /// On implicit return expressions with mismatched types, provides the following suggestions:
+ ///
+ /// - Points out the method's return type as the reason for the expected type.
+ /// - Possible missing semicolon.
+ /// - Possible missing return type if the return type is the default, and not `fn main()`.
+ pub fn suggest_mismatched_types_on_tail(
+ &self,
+ err: &mut Diagnostic,
+ expr: &'tcx hir::Expr<'tcx>,
+ expected: Ty<'tcx>,
+ found: Ty<'tcx>,
+ blk_id: hir::HirId,
+ ) -> bool {
+ let expr = expr.peel_drop_temps();
+ self.suggest_missing_semicolon(err, expr, expected, false);
+ let mut pointing_at_return_type = false;
+ if let Some((fn_decl, can_suggest)) = self.get_fn_decl(blk_id) {
+ let fn_id = self.tcx.hir().get_return_block(blk_id).unwrap();
+ pointing_at_return_type = self.suggest_missing_return_type(
+ err,
+ &fn_decl,
+ expected,
+ found,
+ can_suggest,
+ fn_id,
+ );
+ self.suggest_missing_break_or_return_expr(
+ err, expr, &fn_decl, expected, found, blk_id, fn_id,
+ );
+ }
+ pointing_at_return_type
+ }
+
+ /// When encountering an fn-like type, try accessing the output of the type
+ /// and suggesting calling it if it satisfies a predicate (i.e. if the
+ /// output has a method or a field):
+ /// ```compile_fail,E0308
+ /// fn foo(x: usize) -> usize { x }
+ /// let x: usize = foo; // suggest calling the `foo` function: `foo(42)`
+ /// ```
+ pub(crate) fn suggest_fn_call(
+ &self,
+ err: &mut Diagnostic,
+ expr: &hir::Expr<'_>,
+ found: Ty<'tcx>,
+ can_satisfy: impl FnOnce(Ty<'tcx>) -> bool,
+ ) -> bool {
+ let Some((def_id_or_name, output, inputs)) = self.extract_callable_info(expr, found)
+ else { return false; };
+ if can_satisfy(output) {
+ let (sugg_call, mut applicability) = match inputs.len() {
+ 0 => ("".to_string(), Applicability::MachineApplicable),
+ 1..=4 => (
+ inputs
+ .iter()
+ .map(|ty| {
+ if ty.is_suggestable(self.tcx, false) {
+ format!("/* {ty} */")
+ } else {
+ "/* value */".to_string()
+ }
+ })
+ .collect::<Vec<_>>()
+ .join(", "),
+ Applicability::HasPlaceholders,
+ ),
+ _ => ("/* ... */".to_string(), Applicability::HasPlaceholders),
+ };
+
+ let msg = match def_id_or_name {
+ DefIdOrName::DefId(def_id) => match self.tcx.def_kind(def_id) {
+ DefKind::Ctor(CtorOf::Struct, _) => "construct this tuple struct".to_string(),
+ DefKind::Ctor(CtorOf::Variant, _) => "construct this tuple variant".to_string(),
+ kind => format!("call this {}", kind.descr(def_id)),
+ },
+ DefIdOrName::Name(name) => format!("call this {name}"),
+ };
+
+ let sugg = match expr.kind {
+ hir::ExprKind::Call(..)
+ | hir::ExprKind::Path(..)
+ | hir::ExprKind::Index(..)
+ | hir::ExprKind::Lit(..) => {
+ vec![(expr.span.shrink_to_hi(), format!("({sugg_call})"))]
+ }
+ hir::ExprKind::Closure { .. } => {
+ // Might be `{ expr } || { bool }`
+ applicability = Applicability::MaybeIncorrect;
+ vec![
+ (expr.span.shrink_to_lo(), "(".to_string()),
+ (expr.span.shrink_to_hi(), format!(")({sugg_call})")),
+ ]
+ }
+ _ => {
+ vec![
+ (expr.span.shrink_to_lo(), "(".to_string()),
+ (expr.span.shrink_to_hi(), format!(")({sugg_call})")),
+ ]
+ }
+ };
+
+ err.multipart_suggestion_verbose(
+ format!("use parentheses to {msg}"),
+ sugg,
+ applicability,
+ );
+ return true;
+ }
+ false
+ }
+
+ /// Extracts information about a callable type for diagnostics. This is a
+ /// heuristic -- it doesn't necessarily mean that a type is always callable,
+ /// because the callable type must also be well-formed to be called.
+ pub(in super::super) fn extract_callable_info(
+ &self,
+ expr: &Expr<'_>,
+ found: Ty<'tcx>,
+ ) -> Option<(DefIdOrName, Ty<'tcx>, Vec<Ty<'tcx>>)> {
+ // Autoderef is useful here because sometimes we box callables, etc.
+ let Some((def_id_or_name, output, inputs)) = self.autoderef(expr.span, found).silence_errors().find_map(|(found, _)| {
+ match *found.kind() {
+ ty::FnPtr(fn_sig) =>
+ Some((DefIdOrName::Name("function pointer"), fn_sig.output(), fn_sig.inputs())),
+ ty::FnDef(def_id, _) => {
+ let fn_sig = found.fn_sig(self.tcx);
+ Some((DefIdOrName::DefId(def_id), fn_sig.output(), fn_sig.inputs()))
+ }
+ ty::Closure(def_id, substs) => {
+ let fn_sig = substs.as_closure().sig();
+ Some((DefIdOrName::DefId(def_id), fn_sig.output(), fn_sig.inputs().map_bound(|inputs| &inputs[1..])))
+ }
+ ty::Opaque(def_id, substs) => {
+ self.tcx.bound_item_bounds(def_id).subst(self.tcx, substs).iter().find_map(|pred| {
+ if let ty::PredicateKind::Projection(proj) = pred.kind().skip_binder()
+ && Some(proj.projection_ty.item_def_id) == self.tcx.lang_items().fn_once_output()
+ // args tuple will always be substs[1]
+ && let ty::Tuple(args) = proj.projection_ty.substs.type_at(1).kind()
+ {
+ Some((
+ DefIdOrName::DefId(def_id),
+ pred.kind().rebind(proj.term.ty().unwrap()),
+ pred.kind().rebind(args.as_slice()),
+ ))
+ } else {
+ None
+ }
+ })
+ }
+ ty::Dynamic(data, _, ty::Dyn) => {
+ data.iter().find_map(|pred| {
+ if let ty::ExistentialPredicate::Projection(proj) = pred.skip_binder()
+ && Some(proj.item_def_id) == self.tcx.lang_items().fn_once_output()
+ // for existential projection, substs are shifted over by 1
+ && let ty::Tuple(args) = proj.substs.type_at(0).kind()
+ {
+ Some((
+ DefIdOrName::Name("trait object"),
+ pred.rebind(proj.term.ty().unwrap()),
+ pred.rebind(args.as_slice()),
+ ))
+ } else {
+ None
+ }
+ })
+ }
+ ty::Param(param) => {
+ let def_id = self.tcx.generics_of(self.body_id.owner).type_param(&param, self.tcx).def_id;
+ self.tcx.predicates_of(self.body_id.owner).predicates.iter().find_map(|(pred, _)| {
+ if let ty::PredicateKind::Projection(proj) = pred.kind().skip_binder()
+ && Some(proj.projection_ty.item_def_id) == self.tcx.lang_items().fn_once_output()
+ && proj.projection_ty.self_ty() == found
+ // args tuple will always be substs[1]
+ && let ty::Tuple(args) = proj.projection_ty.substs.type_at(1).kind()
+ {
+ Some((
+ DefIdOrName::DefId(def_id),
+ pred.kind().rebind(proj.term.ty().unwrap()),
+ pred.kind().rebind(args.as_slice()),
+ ))
+ } else {
+ None
+ }
+ })
+ }
+ _ => None,
+ }
+ }) else { return None; };
+
+ let output = self.replace_bound_vars_with_fresh_vars(expr.span, infer::FnCall, output);
+ let inputs = inputs
+ .skip_binder()
+ .iter()
+ .map(|ty| {
+ self.replace_bound_vars_with_fresh_vars(
+ expr.span,
+ infer::FnCall,
+ inputs.rebind(*ty),
+ )
+ })
+ .collect();
+
+ // We don't want to register any extra obligations, which should be
+ // implied by wf, but also because that would possibly result in
+ // erroneous errors later on.
+ let infer::InferOk { value: output, obligations: _ } =
+ self.normalize_associated_types_in_as_infer_ok(expr.span, output);
+
+ if output.is_ty_var() { None } else { Some((def_id_or_name, output, inputs)) }
+ }
+
+ pub fn suggest_two_fn_call(
+ &self,
+ err: &mut Diagnostic,
+ lhs_expr: &'tcx hir::Expr<'tcx>,
+ lhs_ty: Ty<'tcx>,
+ rhs_expr: &'tcx hir::Expr<'tcx>,
+ rhs_ty: Ty<'tcx>,
+ can_satisfy: impl FnOnce(Ty<'tcx>, Ty<'tcx>) -> bool,
+ ) -> bool {
+ let Some((_, lhs_output_ty, lhs_inputs)) = self.extract_callable_info(lhs_expr, lhs_ty)
+ else { return false; };
+ let Some((_, rhs_output_ty, rhs_inputs)) = self.extract_callable_info(rhs_expr, rhs_ty)
+ else { return false; };
+
+ if can_satisfy(lhs_output_ty, rhs_output_ty) {
+ let mut sugg = vec![];
+ let mut applicability = Applicability::MachineApplicable;
+
+ for (expr, inputs) in [(lhs_expr, lhs_inputs), (rhs_expr, rhs_inputs)] {
+ let (sugg_call, this_applicability) = match inputs.len() {
+ 0 => ("".to_string(), Applicability::MachineApplicable),
+ 1..=4 => (
+ inputs
+ .iter()
+ .map(|ty| {
+ if ty.is_suggestable(self.tcx, false) {
+ format!("/* {ty} */")
+ } else {
+ "/* value */".to_string()
+ }
+ })
+ .collect::<Vec<_>>()
+ .join(", "),
+ Applicability::HasPlaceholders,
+ ),
+ _ => ("/* ... */".to_string(), Applicability::HasPlaceholders),
+ };
+
+ applicability = applicability.max(this_applicability);
+
+ match expr.kind {
+ hir::ExprKind::Call(..)
+ | hir::ExprKind::Path(..)
+ | hir::ExprKind::Index(..)
+ | hir::ExprKind::Lit(..) => {
+ sugg.extend([(expr.span.shrink_to_hi(), format!("({sugg_call})"))]);
+ }
+ hir::ExprKind::Closure { .. } => {
+ // Might be `{ expr } || { bool }`
+ applicability = Applicability::MaybeIncorrect;
+ sugg.extend([
+ (expr.span.shrink_to_lo(), "(".to_string()),
+ (expr.span.shrink_to_hi(), format!(")({sugg_call})")),
+ ]);
+ }
+ _ => {
+ sugg.extend([
+ (expr.span.shrink_to_lo(), "(".to_string()),
+ (expr.span.shrink_to_hi(), format!(")({sugg_call})")),
+ ]);
+ }
+ }
+ }
+
+ err.multipart_suggestion_verbose(
+ format!("use parentheses to call these"),
+ sugg,
+ applicability,
+ );
+
+ true
+ } else {
+ false
+ }
+ }
+
+ pub fn suggest_deref_ref_or_into(
+ &self,
+ err: &mut Diagnostic,
+ expr: &hir::Expr<'tcx>,
+ expected: Ty<'tcx>,
+ found: Ty<'tcx>,
+ expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
+ ) -> bool {
+ let expr = expr.peel_blocks();
+ if let Some((sp, msg, suggestion, applicability, verbose, annotation)) =
+ self.check_ref(expr, found, expected)
+ {
+ if verbose {
+ err.span_suggestion_verbose(sp, &msg, suggestion, applicability);
+ } else {
+ err.span_suggestion(sp, &msg, suggestion, applicability);
+ }
+ if annotation {
+ let suggest_annotation = match expr.peel_drop_temps().kind {
+ hir::ExprKind::AddrOf(hir::BorrowKind::Ref, hir::Mutability::Not, _) => "&",
+ hir::ExprKind::AddrOf(hir::BorrowKind::Ref, hir::Mutability::Mut, _) => "&mut ",
+ _ => return true,
+ };
+ let mut tuple_indexes = Vec::new();
+ let mut expr_id = expr.hir_id;
+ for (parent_id, node) in self.tcx.hir().parent_iter(expr.hir_id) {
+ match node {
+ Node::Expr(&Expr { kind: ExprKind::Tup(subs), .. }) => {
+ tuple_indexes.push(
+ subs.iter()
+ .enumerate()
+ .find(|(_, sub_expr)| sub_expr.hir_id == expr_id)
+ .unwrap()
+ .0,
+ );
+ expr_id = parent_id;
+ }
+ Node::Local(local) => {
+ if let Some(mut ty) = local.ty {
+ while let Some(index) = tuple_indexes.pop() {
+ match ty.kind {
+ TyKind::Tup(tys) => ty = &tys[index],
+ _ => return true,
+ }
+ }
+ let annotation_span = ty.span;
+ err.span_suggestion(
+ annotation_span.with_hi(annotation_span.lo()),
+ format!("alternatively, consider changing the type annotation"),
+ suggest_annotation,
+ Applicability::MaybeIncorrect,
+ );
+ }
+ break;
+ }
+ _ => break,
+ }
+ }
+ }
+ return true;
+ } else if self.suggest_else_fn_with_closure(err, expr, found, expected) {
+ return true;
+ } else if self.suggest_fn_call(err, expr, found, |output| self.can_coerce(output, expected))
+ && let ty::FnDef(def_id, ..) = &found.kind()
+ && let Some(sp) = self.tcx.hir().span_if_local(*def_id)
+ {
+ err.span_label(sp, format!("{found} defined here"));
+ return true;
+ } else if self.check_for_cast(err, expr, found, expected, expected_ty_expr) {
+ return true;
+ } else {
+ let methods = self.get_conversion_methods(expr.span, expected, found, expr.hir_id);
+ if !methods.is_empty() {
+ let mut suggestions = methods.iter()
+ .filter_map(|conversion_method| {
+ let receiver_method_ident = expr.method_ident();
+ if let Some(method_ident) = receiver_method_ident
+ && method_ident.name == conversion_method.name
+ {
+ return None // do not suggest code that is already there (#53348)
+ }
+
+ let method_call_list = [sym::to_vec, sym::to_string];
+ let mut sugg = if let ExprKind::MethodCall(receiver_method, ..) = expr.kind
+ && receiver_method.ident.name == sym::clone
+ && method_call_list.contains(&conversion_method.name)
+ // If receiver is `.clone()` and found type has one of those methods,
+ // we guess that the user wants to convert from a slice type (`&[]` or `&str`)
+ // to an owned type (`Vec` or `String`). These conversions clone internally,
+ // so we remove the user's `clone` call.
+ {
+ vec![(
+ receiver_method.ident.span,
+ conversion_method.name.to_string()
+ )]
+ } else if expr.precedence().order()
+ < ExprPrecedence::MethodCall.order()
+ {
+ vec![
+ (expr.span.shrink_to_lo(), "(".to_string()),
+ (expr.span.shrink_to_hi(), format!(").{}()", conversion_method.name)),
+ ]
+ } else {
+ vec![(expr.span.shrink_to_hi(), format!(".{}()", conversion_method.name))]
+ };
+ let struct_pat_shorthand_field = self.maybe_get_struct_pattern_shorthand_field(expr);
+ if let Some(name) = struct_pat_shorthand_field {
+ sugg.insert(
+ 0,
+ (expr.span.shrink_to_lo(), format!("{}: ", name)),
+ );
+ }
+ Some(sugg)
+ })
+ .peekable();
+ if suggestions.peek().is_some() {
+ err.multipart_suggestions(
+ "try using a conversion method",
+ suggestions,
+ Applicability::MaybeIncorrect,
+ );
+ return true;
+ }
+ } else if let ty::Adt(found_adt, found_substs) = found.kind()
+ && self.tcx.is_diagnostic_item(sym::Option, found_adt.did())
+ && let ty::Adt(expected_adt, expected_substs) = expected.kind()
+ && self.tcx.is_diagnostic_item(sym::Option, expected_adt.did())
+ && let ty::Ref(_, inner_ty, _) = expected_substs.type_at(0).kind()
+ && inner_ty.is_str()
+ {
+ let ty = found_substs.type_at(0);
+ let mut peeled = ty;
+ let mut ref_cnt = 0;
+ while let ty::Ref(_, inner, _) = peeled.kind() {
+ peeled = *inner;
+ ref_cnt += 1;
+ }
+ if let ty::Adt(adt, _) = peeled.kind()
+ && self.tcx.is_diagnostic_item(sym::String, adt.did())
+ {
+ err.span_suggestion_verbose(
+ expr.span.shrink_to_hi(),
+ "try converting the passed type into a `&str`",
+ format!(".map(|x| &*{}x)", "*".repeat(ref_cnt)),
+ Applicability::MaybeIncorrect,
+ );
+ return true;
+ }
+ }
+ }
+
+ false
+ }
+
+ /// When encountering the expected boxed value allocated in the stack, suggest allocating it
+ /// in the heap by calling `Box::new()`.
+ pub(in super::super) fn suggest_boxing_when_appropriate(
+ &self,
+ err: &mut Diagnostic,
+ expr: &hir::Expr<'_>,
+ expected: Ty<'tcx>,
+ found: Ty<'tcx>,
+ ) -> bool {
+ if self.tcx.hir().is_inside_const_context(expr.hir_id) {
+ // Do not suggest `Box::new` in const context.
+ return false;
+ }
+ if !expected.is_box() || found.is_box() {
+ return false;
+ }
+ let boxed_found = self.tcx.mk_box(found);
+ if self.can_coerce(boxed_found, expected) {
+ err.multipart_suggestion(
+ "store this in the heap by calling `Box::new`",
+ vec![
+ (expr.span.shrink_to_lo(), "Box::new(".to_string()),
+ (expr.span.shrink_to_hi(), ")".to_string()),
+ ],
+ Applicability::MachineApplicable,
+ );
+ err.note(
+ "for more on the distinction between the stack and the heap, read \
+ https://doc.rust-lang.org/book/ch15-01-box.html, \
+ https://doc.rust-lang.org/rust-by-example/std/box.html, and \
+ https://doc.rust-lang.org/std/boxed/index.html",
+ );
+ true
+ } else {
+ false
+ }
+ }
+
+ /// When encountering a closure that captures variables, where a FnPtr is expected,
+ /// suggest a non-capturing closure
+ pub(in super::super) fn suggest_no_capture_closure(
+ &self,
+ err: &mut Diagnostic,
+ expected: Ty<'tcx>,
+ found: Ty<'tcx>,
+ ) -> bool {
+ if let (ty::FnPtr(_), ty::Closure(def_id, _)) = (expected.kind(), found.kind()) {
+ if let Some(upvars) = self.tcx.upvars_mentioned(*def_id) {
+ // Report upto four upvars being captured to reduce the amount error messages
+ // reported back to the user.
+ let spans_and_labels = upvars
+ .iter()
+ .take(4)
+ .map(|(var_hir_id, upvar)| {
+ let var_name = self.tcx.hir().name(*var_hir_id).to_string();
+ let msg = format!("`{}` captured here", var_name);
+ (upvar.span, msg)
+ })
+ .collect::<Vec<_>>();
+
+ let mut multi_span: MultiSpan =
+ spans_and_labels.iter().map(|(sp, _)| *sp).collect::<Vec<_>>().into();
+ for (sp, label) in spans_and_labels {
+ multi_span.push_span_label(sp, label);
+ }
+ err.span_note(
+ multi_span,
+ "closures can only be coerced to `fn` types if they do not capture any variables"
+ );
+ return true;
+ }
+ }
+ false
+ }
+
+ /// When encountering an `impl Future` where `BoxFuture` is expected, suggest `Box::pin`.
+ #[instrument(skip(self, err))]
+ pub(in super::super) fn suggest_calling_boxed_future_when_appropriate(
+ &self,
+ err: &mut Diagnostic,
+ expr: &hir::Expr<'_>,
+ expected: Ty<'tcx>,
+ found: Ty<'tcx>,
+ ) -> bool {
+ // Handle #68197.
+
+ if self.tcx.hir().is_inside_const_context(expr.hir_id) {
+ // Do not suggest `Box::new` in const context.
+ return false;
+ }
+ let pin_did = self.tcx.lang_items().pin_type();
+ // This guards the `unwrap` and `mk_box` below.
+ if pin_did.is_none() || self.tcx.lang_items().owned_box().is_none() {
+ return false;
+ }
+ let box_found = self.tcx.mk_box(found);
+ let pin_box_found = self.tcx.mk_lang_item(box_found, LangItem::Pin).unwrap();
+ let pin_found = self.tcx.mk_lang_item(found, LangItem::Pin).unwrap();
+ match expected.kind() {
+ ty::Adt(def, _) if Some(def.did()) == pin_did => {
+ if self.can_coerce(pin_box_found, expected) {
+ debug!("can coerce {:?} to {:?}, suggesting Box::pin", pin_box_found, expected);
+ match found.kind() {
+ ty::Adt(def, _) if def.is_box() => {
+ err.help("use `Box::pin`");
+ }
+ _ => {
+ err.multipart_suggestion(
+ "you need to pin and box this expression",
+ vec![
+ (expr.span.shrink_to_lo(), "Box::pin(".to_string()),
+ (expr.span.shrink_to_hi(), ")".to_string()),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ true
+ } else if self.can_coerce(pin_found, expected) {
+ match found.kind() {
+ ty::Adt(def, _) if def.is_box() => {
+ err.help("use `Box::pin`");
+ true
+ }
+ _ => false,
+ }
+ } else {
+ false
+ }
+ }
+ ty::Adt(def, _) if def.is_box() && self.can_coerce(box_found, expected) => {
+ // Check if the parent expression is a call to Pin::new. If it
+ // is and we were expecting a Box, ergo Pin<Box<expected>>, we
+ // can suggest Box::pin.
+ let parent = self.tcx.hir().get_parent_node(expr.hir_id);
+ let Some(Node::Expr(Expr { kind: ExprKind::Call(fn_name, _), .. })) = self.tcx.hir().find(parent) else {
+ return false;
+ };
+ match fn_name.kind {
+ ExprKind::Path(QPath::TypeRelative(
+ hir::Ty {
+ kind: TyKind::Path(QPath::Resolved(_, Path { res: recv_ty, .. })),
+ ..
+ },
+ method,
+ )) if recv_ty.opt_def_id() == pin_did && method.ident.name == sym::new => {
+ err.span_suggestion(
+ fn_name.span,
+ "use `Box::pin` to pin and box this expression",
+ "Box::pin",
+ Applicability::MachineApplicable,
+ );
+ true
+ }
+ _ => false,
+ }
+ }
+ _ => false,
+ }
+ }
+
+ /// A common error is to forget to add a semicolon at the end of a block, e.g.,
+ ///
+ /// ```compile_fail,E0308
+ /// # fn bar_that_returns_u32() -> u32 { 4 }
+ /// fn foo() {
+ /// bar_that_returns_u32()
+ /// }
+ /// ```
+ ///
+ /// This routine checks if the return expression in a block would make sense on its own as a
+ /// statement and the return type has been left as default or has been specified as `()`. If so,
+ /// it suggests adding a semicolon.
+ ///
+ /// If the expression is the expression of a closure without block (`|| expr`), a
+ /// block is needed to be added too (`|| { expr; }`). This is denoted by `needs_block`.
+ pub fn suggest_missing_semicolon(
+ &self,
+ err: &mut Diagnostic,
+ expression: &'tcx hir::Expr<'tcx>,
+ expected: Ty<'tcx>,
+ needs_block: bool,
+ ) {
+ if expected.is_unit() {
+ // `BlockTailExpression` only relevant if the tail expr would be
+ // useful on its own.
+ match expression.kind {
+ ExprKind::Call(..)
+ | ExprKind::MethodCall(..)
+ | ExprKind::Loop(..)
+ | ExprKind::If(..)
+ | ExprKind::Match(..)
+ | ExprKind::Block(..)
+ if expression.can_have_side_effects()
+ // If the expression is from an external macro, then do not suggest
+ // adding a semicolon, because there's nowhere to put it.
+ // See issue #81943.
+ && !in_external_macro(self.tcx.sess, expression.span) =>
+ {
+ if needs_block {
+ err.multipart_suggestion(
+ "consider using a semicolon here",
+ vec![
+ (expression.span.shrink_to_lo(), "{ ".to_owned()),
+ (expression.span.shrink_to_hi(), "; }".to_owned()),
+ ],
+ Applicability::MachineApplicable,
+ );
+ } else {
+ err.span_suggestion(
+ expression.span.shrink_to_hi(),
+ "consider using a semicolon here",
+ ";",
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+ _ => (),
+ }
+ }
+ }
+
+ /// A possible error is to forget to add a return type that is needed:
+ ///
+ /// ```compile_fail,E0308
+ /// # fn bar_that_returns_u32() -> u32 { 4 }
+ /// fn foo() {
+ /// bar_that_returns_u32()
+ /// }
+ /// ```
+ ///
+ /// This routine checks if the return type is left as default, the method is not part of an
+ /// `impl` block and that it isn't the `main` method. If so, it suggests setting the return
+ /// type.
+ pub(in super::super) fn suggest_missing_return_type(
+ &self,
+ err: &mut Diagnostic,
+ fn_decl: &hir::FnDecl<'_>,
+ expected: Ty<'tcx>,
+ found: Ty<'tcx>,
+ can_suggest: bool,
+ fn_id: hir::HirId,
+ ) -> bool {
+ let found =
+ self.resolve_numeric_literals_with_default(self.resolve_vars_if_possible(found));
+ // Only suggest changing the return type for methods that
+ // haven't set a return type at all (and aren't `fn main()` or an impl).
+ match &fn_decl.output {
+ &hir::FnRetTy::DefaultReturn(span) if expected.is_unit() && !can_suggest => {
+ // `fn main()` must return `()`, do not suggest changing return type
+ err.subdiagnostic(ExpectedReturnTypeLabel::Unit { span });
+ return true;
+ }
+ &hir::FnRetTy::DefaultReturn(span) if expected.is_unit() => {
+ if found.is_suggestable(self.tcx, false) {
+ err.subdiagnostic(AddReturnTypeSuggestion::Add { span, found: found.to_string() });
+ return true;
+ } else if let ty::Closure(_, substs) = found.kind()
+ // FIXME(compiler-errors): Get better at printing binders...
+ && let closure = substs.as_closure()
+ && closure.sig().is_suggestable(self.tcx, false)
+ {
+ err.subdiagnostic(AddReturnTypeSuggestion::Add { span, found: closure.print_as_impl_trait().to_string() });
+ return true;
+ } else {
+ // FIXME: if `found` could be `impl Iterator` we should suggest that.
+ err.subdiagnostic(AddReturnTypeSuggestion::MissingHere { span });
+ return true
+ }
+ }
+ &hir::FnRetTy::Return(ref ty) => {
+ // Only point to return type if the expected type is the return type, as if they
+ // are not, the expectation must have been caused by something else.
+ debug!("suggest_missing_return_type: return type {:?} node {:?}", ty, ty.kind);
+ let span = ty.span;
+ let ty = <dyn AstConv<'_>>::ast_ty_to_ty(self, ty);
+ debug!("suggest_missing_return_type: return type {:?}", ty);
+ debug!("suggest_missing_return_type: expected type {:?}", ty);
+ let bound_vars = self.tcx.late_bound_vars(fn_id);
+ let ty = Binder::bind_with_vars(ty, bound_vars);
+ let ty = self.normalize_associated_types_in(span, ty);
+ let ty = self.tcx.erase_late_bound_regions(ty);
+ if self.can_coerce(expected, ty) {
+ err.subdiagnostic(ExpectedReturnTypeLabel::Other { span, expected });
+ self.try_suggest_return_impl_trait(err, expected, ty, fn_id);
+ return true;
+ }
+ }
+ _ => {}
+ }
+ false
+ }
+
+ /// check whether the return type is a generic type with a trait bound
+ /// only suggest this if the generic param is not present in the arguments
+ /// if this is true, hint them towards changing the return type to `impl Trait`
+ /// ```compile_fail,E0308
+ /// fn cant_name_it<T: Fn() -> u32>() -> T {
+ /// || 3
+ /// }
+ /// ```
+ fn try_suggest_return_impl_trait(
+ &self,
+ err: &mut Diagnostic,
+ expected: Ty<'tcx>,
+ found: Ty<'tcx>,
+ fn_id: hir::HirId,
+ ) {
+ // Only apply the suggestion if:
+ // - the return type is a generic parameter
+ // - the generic param is not used as a fn param
+ // - the generic param has at least one bound
+ // - the generic param doesn't appear in any other bounds where it's not the Self type
+ // Suggest:
+ // - Changing the return type to be `impl <all bounds>`
+
+ debug!("try_suggest_return_impl_trait, expected = {:?}, found = {:?}", expected, found);
+
+ let ty::Param(expected_ty_as_param) = expected.kind() else { return };
+
+ let fn_node = self.tcx.hir().find(fn_id);
+
+ let Some(hir::Node::Item(hir::Item {
+ kind:
+ hir::ItemKind::Fn(
+ hir::FnSig { decl: hir::FnDecl { inputs: fn_parameters, output: fn_return, .. }, .. },
+ hir::Generics { params, predicates, .. },
+ _body_id,
+ ),
+ ..
+ })) = fn_node else { return };
+
+ if params.get(expected_ty_as_param.index as usize).is_none() {
+ return;
+ };
+
+ // get all where BoundPredicates here, because they are used in to cases below
+ let where_predicates = predicates
+ .iter()
+ .filter_map(|p| match p {
+ WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
+ bounds,
+ bounded_ty,
+ ..
+ }) => {
+ // FIXME: Maybe these calls to `ast_ty_to_ty` can be removed (and the ones below)
+ let ty = <dyn AstConv<'_>>::ast_ty_to_ty(self, bounded_ty);
+ Some((ty, bounds))
+ }
+ _ => None,
+ })
+ .map(|(ty, bounds)| match ty.kind() {
+ ty::Param(param_ty) if param_ty == expected_ty_as_param => Ok(Some(bounds)),
+ // check whether there is any predicate that contains our `T`, like `Option<T>: Send`
+ _ => match ty.contains(expected) {
+ true => Err(()),
+ false => Ok(None),
+ },
+ })
+ .collect::<Result<Vec<_>, _>>();
+
+ let Ok(where_predicates) = where_predicates else { return };
+
+ // now get all predicates in the same types as the where bounds, so we can chain them
+ let predicates_from_where =
+ where_predicates.iter().flatten().flat_map(|bounds| bounds.iter());
+
+ // extract all bounds from the source code using their spans
+ let all_matching_bounds_strs = predicates_from_where
+ .filter_map(|bound| match bound {
+ GenericBound::Trait(_, _) => {
+ self.tcx.sess.source_map().span_to_snippet(bound.span()).ok()
+ }
+ _ => None,
+ })
+ .collect::<Vec<String>>();
+
+ if all_matching_bounds_strs.len() == 0 {
+ return;
+ }
+
+ let all_bounds_str = all_matching_bounds_strs.join(" + ");
+
+ let ty_param_used_in_fn_params = fn_parameters.iter().any(|param| {
+ let ty = <dyn AstConv<'_>>::ast_ty_to_ty(self, param);
+ matches!(ty.kind(), ty::Param(fn_param_ty_param) if expected_ty_as_param == fn_param_ty_param)
+ });
+
+ if ty_param_used_in_fn_params {
+ return;
+ }
+
+ err.span_suggestion(
+ fn_return.span(),
+ "consider using an impl return type",
+ format!("impl {}", all_bounds_str),
+ Applicability::MaybeIncorrect,
+ );
+ }
+
+ pub(in super::super) fn suggest_missing_break_or_return_expr(
+ &self,
+ err: &mut Diagnostic,
+ expr: &'tcx hir::Expr<'tcx>,
+ fn_decl: &hir::FnDecl<'_>,
+ expected: Ty<'tcx>,
+ found: Ty<'tcx>,
+ id: hir::HirId,
+ fn_id: hir::HirId,
+ ) {
+ if !expected.is_unit() {
+ return;
+ }
+ let found = self.resolve_vars_with_obligations(found);
+
+ let in_loop = self.is_loop(id)
+ || self.tcx.hir().parent_iter(id).any(|(parent_id, _)| self.is_loop(parent_id));
+
+ let in_local_statement = self.is_local_statement(id)
+ || self
+ .tcx
+ .hir()
+ .parent_iter(id)
+ .any(|(parent_id, _)| self.is_local_statement(parent_id));
+
+ if in_loop && in_local_statement {
+ err.multipart_suggestion(
+ "you might have meant to break the loop with this value",
+ vec![
+ (expr.span.shrink_to_lo(), "break ".to_string()),
+ (expr.span.shrink_to_hi(), ";".to_string()),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ return;
+ }
+
+ if let hir::FnRetTy::Return(ty) = fn_decl.output {
+ let ty = <dyn AstConv<'_>>::ast_ty_to_ty(self, ty);
+ let bound_vars = self.tcx.late_bound_vars(fn_id);
+ let ty = self.tcx.erase_late_bound_regions(Binder::bind_with_vars(ty, bound_vars));
+ let ty = self.normalize_associated_types_in(expr.span, ty);
+ let ty = match self.tcx.asyncness(fn_id.owner) {
+ hir::IsAsync::Async => {
+ let infcx = self.tcx.infer_ctxt().build();
+ infcx
+ .get_impl_future_output_ty(ty)
+ .unwrap_or_else(|| {
+ span_bug!(
+ fn_decl.output.span(),
+ "failed to get output type of async function"
+ )
+ })
+ .skip_binder()
+ }
+ hir::IsAsync::NotAsync => ty,
+ };
+ if self.can_coerce(found, ty) {
+ err.multipart_suggestion(
+ "you might have meant to return this value",
+ vec![
+ (expr.span.shrink_to_lo(), "return ".to_string()),
+ (expr.span.shrink_to_hi(), ";".to_string()),
+ ],
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ }
+
+ pub(in super::super) fn suggest_missing_parentheses(
+ &self,
+ err: &mut Diagnostic,
+ expr: &hir::Expr<'_>,
+ ) -> bool {
+ let sp = self.tcx.sess.source_map().start_point(expr.span);
+ if let Some(sp) = self.tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp) {
+ // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`
+ err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
+ true
+ } else {
+ false
+ }
+ }
+
+ /// Given an expression type mismatch, peel any `&` expressions until we get to
+ /// a block expression, and then suggest replacing the braces with square braces
+ /// if it was possibly mistaken array syntax.
+ pub(crate) fn suggest_block_to_brackets_peeling_refs(
+ &self,
+ diag: &mut Diagnostic,
+ mut expr: &hir::Expr<'_>,
+ mut expr_ty: Ty<'tcx>,
+ mut expected_ty: Ty<'tcx>,
+ ) -> bool {
+ loop {
+ match (&expr.kind, expr_ty.kind(), expected_ty.kind()) {
+ (
+ hir::ExprKind::AddrOf(_, _, inner_expr),
+ ty::Ref(_, inner_expr_ty, _),
+ ty::Ref(_, inner_expected_ty, _),
+ ) => {
+ expr = *inner_expr;
+ expr_ty = *inner_expr_ty;
+ expected_ty = *inner_expected_ty;
+ }
+ (hir::ExprKind::Block(blk, _), _, _) => {
+ self.suggest_block_to_brackets(diag, *blk, expr_ty, expected_ty);
+ break true;
+ }
+ _ => break false,
+ }
+ }
+ }
+
+ pub(crate) fn suggest_copied_or_cloned(
+ &self,
+ diag: &mut Diagnostic,
+ expr: &hir::Expr<'_>,
+ expr_ty: Ty<'tcx>,
+ expected_ty: Ty<'tcx>,
+ ) -> bool {
+ let ty::Adt(adt_def, substs) = expr_ty.kind() else { return false; };
+ let ty::Adt(expected_adt_def, expected_substs) = expected_ty.kind() else { return false; };
+ if adt_def != expected_adt_def {
+ return false;
+ }
+
+ let mut suggest_copied_or_cloned = || {
+ let expr_inner_ty = substs.type_at(0);
+ let expected_inner_ty = expected_substs.type_at(0);
+ if let ty::Ref(_, ty, hir::Mutability::Not) = expr_inner_ty.kind()
+ && self.can_eq(self.param_env, *ty, expected_inner_ty).is_ok()
+ {
+ let def_path = self.tcx.def_path_str(adt_def.did());
+ if self.type_is_copy_modulo_regions(self.param_env, *ty, expr.span) {
+ diag.span_suggestion_verbose(
+ expr.span.shrink_to_hi(),
+ format!(
+ "use `{def_path}::copied` to copy the value inside the `{def_path}`"
+ ),
+ ".copied()",
+ Applicability::MachineApplicable,
+ );
+ return true;
+ } else if let Some(clone_did) = self.tcx.lang_items().clone_trait()
+ && rustc_trait_selection::traits::type_known_to_meet_bound_modulo_regions(
+ self,
+ self.param_env,
+ *ty,
+ clone_did,
+ expr.span
+ )
+ {
+ diag.span_suggestion_verbose(
+ expr.span.shrink_to_hi(),
+ format!(
+ "use `{def_path}::cloned` to clone the value inside the `{def_path}`"
+ ),
+ ".cloned()",
+ Applicability::MachineApplicable,
+ );
+ return true;
+ }
+ }
+ false
+ };
+
+ if let Some(result_did) = self.tcx.get_diagnostic_item(sym::Result)
+ && adt_def.did() == result_did
+ // Check that the error types are equal
+ && self.can_eq(self.param_env, substs.type_at(1), expected_substs.type_at(1)).is_ok()
+ {
+ return suggest_copied_or_cloned();
+ } else if let Some(option_did) = self.tcx.get_diagnostic_item(sym::Option)
+ && adt_def.did() == option_did
+ {
+ return suggest_copied_or_cloned();
+ }
+
+ false
+ }
+
+ pub(crate) fn suggest_into(
+ &self,
+ diag: &mut Diagnostic,
+ expr: &hir::Expr<'_>,
+ expr_ty: Ty<'tcx>,
+ expected_ty: Ty<'tcx>,
+ ) -> bool {
+ let expr = expr.peel_blocks();
+
+ // We have better suggestions for scalar interconversions...
+ if expr_ty.is_scalar() && expected_ty.is_scalar() {
+ return false;
+ }
+
+ // Don't suggest turning a block into another type (e.g. `{}.into()`)
+ if matches!(expr.kind, hir::ExprKind::Block(..)) {
+ return false;
+ }
+
+ // We'll later suggest `.as_ref` when noting the type error,
+ // so skip if we will suggest that instead.
+ if self.err_ctxt().should_suggest_as_ref(expected_ty, expr_ty).is_some() {
+ return false;
+ }
+
+ if let Some(into_def_id) = self.tcx.get_diagnostic_item(sym::Into)
+ && self.predicate_must_hold_modulo_regions(&traits::Obligation::new(
+ self.misc(expr.span),
+ self.param_env,
+ ty::Binder::dummy(ty::TraitRef {
+ def_id: into_def_id,
+ substs: self.tcx.mk_substs_trait(expr_ty, &[expected_ty.into()]),
+ })
+ .to_poly_trait_predicate()
+ .to_predicate(self.tcx),
+ ))
+ {
+ let sugg = if expr.precedence().order() >= PREC_POSTFIX {
+ vec![(expr.span.shrink_to_hi(), ".into()".to_owned())]
+ } else {
+ vec![(expr.span.shrink_to_lo(), "(".to_owned()), (expr.span.shrink_to_hi(), ").into()".to_owned())]
+ };
+ diag.multipart_suggestion(
+ format!("call `Into::into` on this expression to convert `{expr_ty}` into `{expected_ty}`"),
+ sugg,
+ Applicability::MaybeIncorrect
+ );
+ return true;
+ }
+
+ false
+ }
+
+ /// Suggest wrapping the block in square brackets instead of curly braces
+ /// in case the block was mistaken array syntax, e.g. `{ 1 }` -> `[ 1 ]`.
+ pub(crate) fn suggest_block_to_brackets(
+ &self,
+ diag: &mut Diagnostic,
+ blk: &hir::Block<'_>,
+ blk_ty: Ty<'tcx>,
+ expected_ty: Ty<'tcx>,
+ ) {
+ if let ty::Slice(elem_ty) | ty::Array(elem_ty, _) = expected_ty.kind() {
+ if self.can_coerce(blk_ty, *elem_ty)
+ && blk.stmts.is_empty()
+ && blk.rules == hir::BlockCheckMode::DefaultBlock
+ {
+ let source_map = self.tcx.sess.source_map();
+ if let Ok(snippet) = source_map.span_to_snippet(blk.span) {
+ if snippet.starts_with('{') && snippet.ends_with('}') {
+ diag.multipart_suggestion_verbose(
+ "to create an array, use square brackets instead of curly braces",
+ vec![
+ (
+ blk.span
+ .shrink_to_lo()
+ .with_hi(rustc_span::BytePos(blk.span.lo().0 + 1)),
+ "[".to_string(),
+ ),
+ (
+ blk.span
+ .shrink_to_hi()
+ .with_lo(rustc_span::BytePos(blk.span.hi().0 - 1)),
+ "]".to_string(),
+ ),
+ ],
+ Applicability::MachineApplicable,
+ );
+ }
+ }
+ }
+ }
+ }
+
+ fn is_loop(&self, id: hir::HirId) -> bool {
+ let node = self.tcx.hir().get(id);
+ matches!(node, Node::Expr(Expr { kind: ExprKind::Loop(..), .. }))
+ }
+
+ fn is_local_statement(&self, id: hir::HirId) -> bool {
+ let node = self.tcx.hir().get(id);
+ matches!(node, Node::Stmt(Stmt { kind: StmtKind::Local(..), .. }))
+ }
+
+ /// Suggest that `&T` was cloned instead of `T` because `T` does not implement `Clone`,
+ /// which is a side-effect of autoref.
+ pub(crate) fn note_type_is_not_clone(
+ &self,
+ diag: &mut Diagnostic,
+ expected_ty: Ty<'tcx>,
+ found_ty: Ty<'tcx>,
+ expr: &hir::Expr<'_>,
+ ) {
+ let hir::ExprKind::MethodCall(segment, callee_expr, &[], _) = expr.kind else { return; };
+ let Some(clone_trait_did) = self.tcx.lang_items().clone_trait() else { return; };
+ let ty::Ref(_, pointee_ty, _) = found_ty.kind() else { return };
+ let results = self.typeck_results.borrow();
+ // First, look for a `Clone::clone` call
+ if segment.ident.name == sym::clone
+ && results.type_dependent_def_id(expr.hir_id).map_or(
+ false,
+ |did| {
+ let assoc_item = self.tcx.associated_item(did);
+ assoc_item.container == ty::AssocItemContainer::TraitContainer
+ && assoc_item.container_id(self.tcx) == clone_trait_did
+ },
+ )
+ // If that clone call hasn't already dereferenced the self type (i.e. don't give this
+ // diagnostic in cases where we have `(&&T).clone()` and we expect `T`).
+ && !results.expr_adjustments(callee_expr).iter().any(|adj| matches!(adj.kind, ty::adjustment::Adjust::Deref(..)))
+ // Check that we're in fact trying to clone into the expected type
+ && self.can_coerce(*pointee_ty, expected_ty)
+ // And the expected type doesn't implement `Clone`
+ && !self.predicate_must_hold_considering_regions(&traits::Obligation {
+ cause: traits::ObligationCause::dummy(),
+ param_env: self.param_env,
+ recursion_depth: 0,
+ predicate: ty::Binder::dummy(ty::TraitRef {
+ def_id: clone_trait_did,
+ substs: self.tcx.mk_substs([expected_ty.into()].iter()),
+ })
+ .without_const()
+ .to_predicate(self.tcx),
+ })
+ {
+ diag.span_note(
+ callee_expr.span,
+ &format!(
+ "`{expected_ty}` does not implement `Clone`, so `{found_ty}` was cloned instead"
+ ),
+ );
+ }
+ }
+
+ /// A common error is to add an extra semicolon:
+ ///
+ /// ```compile_fail,E0308
+ /// fn foo() -> usize {
+ /// 22;
+ /// }
+ /// ```
+ ///
+ /// This routine checks if the final statement in a block is an
+ /// expression with an explicit semicolon whose type is compatible
+ /// with `expected_ty`. If so, it suggests removing the semicolon.
+ pub(crate) fn consider_removing_semicolon(
+ &self,
+ blk: &'tcx hir::Block<'tcx>,
+ expected_ty: Ty<'tcx>,
+ err: &mut Diagnostic,
+ ) -> bool {
+ if let Some((span_semi, boxed)) = self.err_ctxt().could_remove_semicolon(blk, expected_ty) {
+ if let StatementAsExpression::NeedsBoxing = boxed {
+ err.span_suggestion_verbose(
+ span_semi,
+ "consider removing this semicolon and boxing the expression",
+ "",
+ Applicability::HasPlaceholders,
+ );
+ } else {
+ err.span_suggestion_short(
+ span_semi,
+ "remove this semicolon to return this value",
+ "",
+ Applicability::MachineApplicable,
+ );
+ }
+ true
+ } else {
+ false
+ }
+ }
+}
diff --git a/compiler/rustc_typeck/src/check/gather_locals.rs b/compiler/rustc_hir_typeck/src/gather_locals.rs
index 8f34a970f..9a096f24f 100644
--- a/compiler/rustc_typeck/src/check/gather_locals.rs
+++ b/compiler/rustc_hir_typeck/src/gather_locals.rs
@@ -1,9 +1,10 @@
-use crate::check::{FnCtxt, LocalTy, UserType};
+use crate::{FnCtxt, LocalTy};
use rustc_hir as hir;
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::PatKind;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_middle::ty::Ty;
+use rustc_middle::ty::UserType;
use rustc_span::Span;
use rustc_trait_selection::traits;
diff --git a/compiler/rustc_typeck/src/check/generator_interior/drop_ranges/cfg_build.rs b/compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/cfg_build.rs
index a2c23db16..122ad7009 100644
--- a/compiler/rustc_typeck/src/check/generator_interior/drop_ranges/cfg_build.rs
+++ b/compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/cfg_build.rs
@@ -210,7 +210,7 @@ impl<'a, 'tcx> DropRangeVisitor<'a, 'tcx> {
}
/// For an expression with an uninhabited return type (e.g. a function that returns !),
- /// this adds a self edge to to the CFG to model the fact that the function does not
+ /// this adds a self edge to the CFG to model the fact that the function does not
/// return.
fn handle_uninhabited_return(&mut self, expr: &Expr<'tcx>) {
let ty = self.typeck_results.expr_ty(expr);
@@ -256,6 +256,8 @@ impl<'a, 'tcx> DropRangeVisitor<'a, 'tcx> {
| hir::Node::TypeBinding(..)
| hir::Node::TraitRef(..)
| hir::Node::Pat(..)
+ | hir::Node::PatField(..)
+ | hir::Node::ExprField(..)
| hir::Node::Arm(..)
| hir::Node::Local(..)
| hir::Node::Ctor(..)
@@ -432,7 +434,8 @@ impl<'a, 'tcx> Visitor<'tcx> for DropRangeVisitor<'a, 'tcx> {
self.handle_uninhabited_return(expr);
}
- ExprKind::MethodCall(_, exprs, _) => {
+ ExprKind::MethodCall(_, receiver, exprs, _) => {
+ self.visit_expr(receiver);
for expr in exprs {
self.visit_expr(expr);
}
diff --git a/compiler/rustc_typeck/src/check/generator_interior/drop_ranges/cfg_propagate.rs b/compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/cfg_propagate.rs
index 139d17d2e..139d17d2e 100644
--- a/compiler/rustc_typeck/src/check/generator_interior/drop_ranges/cfg_propagate.rs
+++ b/compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/cfg_propagate.rs
diff --git a/compiler/rustc_typeck/src/check/generator_interior/drop_ranges/cfg_visualize.rs b/compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/cfg_visualize.rs
index c0a0bfe8e..c0a0bfe8e 100644
--- a/compiler/rustc_typeck/src/check/generator_interior/drop_ranges/cfg_visualize.rs
+++ b/compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/cfg_visualize.rs
diff --git a/compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/mod.rs b/compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/mod.rs
new file mode 100644
index 000000000..4f3bdfbe7
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/mod.rs
@@ -0,0 +1,309 @@
+//! Drop range analysis finds the portions of the tree where a value is guaranteed to be dropped
+//! (i.e. moved, uninitialized, etc.). This is used to exclude the types of those values from the
+//! generator type. See `InteriorVisitor::record` for where the results of this analysis are used.
+//!
+//! There are three phases to this analysis:
+//! 1. Use `ExprUseVisitor` to identify the interesting values that are consumed and borrowed.
+//! 2. Use `DropRangeVisitor` to find where the interesting values are dropped or reinitialized,
+//! and also build a control flow graph.
+//! 3. Use `DropRanges::propagate_to_fixpoint` to flow the dropped/reinitialized information through
+//! the CFG and find the exact points where we know a value is definitely dropped.
+//!
+//! The end result is a data structure that maps the post-order index of each node in the HIR tree
+//! to a set of values that are known to be dropped at that location.
+
+use self::cfg_build::build_control_flow_graph;
+use self::record_consumed_borrow::find_consumed_and_borrowed;
+use crate::FnCtxt;
+use hir::def_id::DefId;
+use hir::{Body, HirId, HirIdMap, Node};
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_hir as hir;
+use rustc_index::bit_set::BitSet;
+use rustc_index::vec::IndexVec;
+use rustc_middle::hir::map::Map;
+use rustc_middle::hir::place::{PlaceBase, PlaceWithHirId};
+use rustc_middle::ty;
+use std::collections::BTreeMap;
+use std::fmt::Debug;
+
+mod cfg_build;
+mod cfg_propagate;
+mod cfg_visualize;
+mod record_consumed_borrow;
+
+pub fn compute_drop_ranges<'a, 'tcx>(
+ fcx: &'a FnCtxt<'a, 'tcx>,
+ def_id: DefId,
+ body: &'tcx Body<'tcx>,
+) -> DropRanges {
+ if fcx.sess().opts.unstable_opts.drop_tracking {
+ let consumed_borrowed_places = find_consumed_and_borrowed(fcx, def_id, body);
+
+ let typeck_results = &fcx.typeck_results.borrow();
+ let num_exprs = fcx.tcx.region_scope_tree(def_id).body_expr_count(body.id()).unwrap_or(0);
+ let (mut drop_ranges, borrowed_temporaries) = build_control_flow_graph(
+ fcx.tcx.hir(),
+ fcx.tcx,
+ typeck_results,
+ consumed_borrowed_places,
+ body,
+ num_exprs,
+ );
+
+ drop_ranges.propagate_to_fixpoint();
+
+ debug!("borrowed_temporaries = {borrowed_temporaries:?}");
+ DropRanges {
+ tracked_value_map: drop_ranges.tracked_value_map,
+ nodes: drop_ranges.nodes,
+ borrowed_temporaries: Some(borrowed_temporaries),
+ }
+ } else {
+ // If drop range tracking is not enabled, skip all the analysis and produce an
+ // empty set of DropRanges.
+ DropRanges {
+ tracked_value_map: FxHashMap::default(),
+ nodes: IndexVec::new(),
+ borrowed_temporaries: None,
+ }
+ }
+}
+
+/// Applies `f` to consumable node in the HIR subtree pointed to by `place`.
+///
+/// This includes the place itself, and if the place is a reference to a local
+/// variable then `f` is also called on the HIR node for that variable as well.
+///
+/// For example, if `place` points to `foo()`, then `f` is called once for the
+/// result of `foo`. On the other hand, if `place` points to `x` then `f` will
+/// be called both on the `ExprKind::Path` node that represents the expression
+/// as well as the HirId of the local `x` itself.
+fn for_each_consumable<'tcx>(hir: Map<'tcx>, place: TrackedValue, mut f: impl FnMut(TrackedValue)) {
+ f(place);
+ let node = hir.find(place.hir_id());
+ if let Some(Node::Expr(expr)) = node {
+ match expr.kind {
+ hir::ExprKind::Path(hir::QPath::Resolved(
+ _,
+ hir::Path { res: hir::def::Res::Local(hir_id), .. },
+ )) => {
+ f(TrackedValue::Variable(*hir_id));
+ }
+ _ => (),
+ }
+ }
+}
+
+rustc_index::newtype_index! {
+ pub struct PostOrderId {
+ DEBUG_FORMAT = "id({})",
+ }
+}
+
+rustc_index::newtype_index! {
+ pub struct TrackedValueIndex {
+ DEBUG_FORMAT = "hidx({})",
+ }
+}
+
+/// Identifies a value whose drop state we need to track.
+#[derive(PartialEq, Eq, Hash, Clone, Copy)]
+enum TrackedValue {
+ /// Represents a named variable, such as a let binding, parameter, or upvar.
+ ///
+ /// The HirId points to the variable's definition site.
+ Variable(HirId),
+ /// A value produced as a result of an expression.
+ ///
+ /// The HirId points to the expression that returns this value.
+ Temporary(HirId),
+}
+
+impl Debug for TrackedValue {
+ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
+ ty::tls::with_opt(|opt_tcx| {
+ if let Some(tcx) = opt_tcx {
+ write!(f, "{}", tcx.hir().node_to_string(self.hir_id()))
+ } else {
+ match self {
+ Self::Variable(hir_id) => write!(f, "Variable({:?})", hir_id),
+ Self::Temporary(hir_id) => write!(f, "Temporary({:?})", hir_id),
+ }
+ }
+ })
+ }
+}
+
+impl TrackedValue {
+ fn hir_id(&self) -> HirId {
+ match self {
+ TrackedValue::Variable(hir_id) | TrackedValue::Temporary(hir_id) => *hir_id,
+ }
+ }
+
+ fn from_place_with_projections_allowed(place_with_id: &PlaceWithHirId<'_>) -> Self {
+ match place_with_id.place.base {
+ PlaceBase::Rvalue | PlaceBase::StaticItem => {
+ TrackedValue::Temporary(place_with_id.hir_id)
+ }
+ PlaceBase::Local(hir_id)
+ | PlaceBase::Upvar(ty::UpvarId { var_path: ty::UpvarPath { hir_id }, .. }) => {
+ TrackedValue::Variable(hir_id)
+ }
+ }
+ }
+}
+
+/// Represents a reason why we might not be able to convert a HirId or Place
+/// into a tracked value.
+#[derive(Debug)]
+enum TrackedValueConversionError {
+ /// Place projects are not currently supported.
+ ///
+ /// The reasoning around these is kind of subtle, so we choose to be more
+ /// conservative around these for now. There is no reason in theory we
+ /// cannot support these, we just have not implemented it yet.
+ PlaceProjectionsNotSupported,
+}
+
+impl TryFrom<&PlaceWithHirId<'_>> for TrackedValue {
+ type Error = TrackedValueConversionError;
+
+ fn try_from(place_with_id: &PlaceWithHirId<'_>) -> Result<Self, Self::Error> {
+ if !place_with_id.place.projections.is_empty() {
+ debug!(
+ "TrackedValue from PlaceWithHirId: {:?} has projections, which are not supported.",
+ place_with_id
+ );
+ return Err(TrackedValueConversionError::PlaceProjectionsNotSupported);
+ }
+
+ Ok(TrackedValue::from_place_with_projections_allowed(place_with_id))
+ }
+}
+
+pub struct DropRanges {
+ tracked_value_map: FxHashMap<TrackedValue, TrackedValueIndex>,
+ nodes: IndexVec<PostOrderId, NodeInfo>,
+ borrowed_temporaries: Option<FxHashSet<HirId>>,
+}
+
+impl DropRanges {
+ pub fn is_dropped_at(&self, hir_id: HirId, location: usize) -> bool {
+ self.tracked_value_map
+ .get(&TrackedValue::Temporary(hir_id))
+ .or(self.tracked_value_map.get(&TrackedValue::Variable(hir_id)))
+ .cloned()
+ .map_or(false, |tracked_value_id| {
+ self.expect_node(location.into()).drop_state.contains(tracked_value_id)
+ })
+ }
+
+ pub fn is_borrowed_temporary(&self, expr: &hir::Expr<'_>) -> bool {
+ if let Some(b) = &self.borrowed_temporaries { b.contains(&expr.hir_id) } else { true }
+ }
+
+ /// Returns a reference to the NodeInfo for a node, panicking if it does not exist
+ fn expect_node(&self, id: PostOrderId) -> &NodeInfo {
+ &self.nodes[id]
+ }
+}
+
+/// Tracks information needed to compute drop ranges.
+struct DropRangesBuilder {
+ /// The core of DropRangesBuilder is a set of nodes, which each represent
+ /// one expression. We primarily refer to them by their index in a
+ /// post-order traversal of the HIR tree, since this is what
+ /// generator_interior uses to talk about yield positions.
+ ///
+ /// This IndexVec keeps the relevant details for each node. See the
+ /// NodeInfo struct for more details, but this information includes things
+ /// such as the set of control-flow successors, which variables are dropped
+ /// or reinitialized, and whether each variable has been inferred to be
+ /// known-dropped or potentially reinitialized at each point.
+ nodes: IndexVec<PostOrderId, NodeInfo>,
+ /// We refer to values whose drop state we are tracking by the HirId of
+ /// where they are defined. Within a NodeInfo, however, we store the
+ /// drop-state in a bit vector indexed by a HirIdIndex
+ /// (see NodeInfo::drop_state). The hir_id_map field stores the mapping
+ /// from HirIds to the HirIdIndex that is used to represent that value in
+ /// bitvector.
+ tracked_value_map: FxHashMap<TrackedValue, TrackedValueIndex>,
+
+ /// When building the control flow graph, we don't always know the
+ /// post-order index of the target node at the point we encounter it.
+ /// For example, this happens with break and continue. In those cases,
+ /// we store a pair of the PostOrderId of the source and the HirId
+ /// of the target. Once we have gathered all of these edges, we make a
+ /// pass over the set of deferred edges (see process_deferred_edges in
+ /// cfg_build.rs), look up the PostOrderId for the target (since now the
+ /// post-order index for all nodes is known), and add missing control flow
+ /// edges.
+ deferred_edges: Vec<(PostOrderId, HirId)>,
+ /// This maps HirIds of expressions to their post-order index. It is
+ /// used in process_deferred_edges to correctly add back-edges.
+ post_order_map: HirIdMap<PostOrderId>,
+}
+
+impl Debug for DropRangesBuilder {
+ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
+ f.debug_struct("DropRanges")
+ .field("hir_id_map", &self.tracked_value_map)
+ .field("post_order_maps", &self.post_order_map)
+ .field("nodes", &self.nodes.iter_enumerated().collect::<BTreeMap<_, _>>())
+ .finish()
+ }
+}
+
+/// DropRanges keeps track of what values are definitely dropped at each point in the code.
+///
+/// Values of interest are defined by the hir_id of their place. Locations in code are identified
+/// by their index in the post-order traversal. At its core, DropRanges maps
+/// (hir_id, post_order_id) -> bool, where a true value indicates that the value is definitely
+/// dropped at the point of the node identified by post_order_id.
+impl DropRangesBuilder {
+ /// Returns the number of values (hir_ids) that are tracked
+ fn num_values(&self) -> usize {
+ self.tracked_value_map.len()
+ }
+
+ fn node_mut(&mut self, id: PostOrderId) -> &mut NodeInfo {
+ let size = self.num_values();
+ self.nodes.ensure_contains_elem(id, || NodeInfo::new(size));
+ &mut self.nodes[id]
+ }
+
+ fn add_control_edge(&mut self, from: PostOrderId, to: PostOrderId) {
+ trace!("adding control edge from {:?} to {:?}", from, to);
+ self.node_mut(from).successors.push(to);
+ }
+}
+
+#[derive(Debug)]
+struct NodeInfo {
+ /// IDs of nodes that can follow this one in the control flow
+ ///
+ /// If the vec is empty, then control proceeds to the next node.
+ successors: Vec<PostOrderId>,
+
+ /// List of hir_ids that are dropped by this node.
+ drops: Vec<TrackedValueIndex>,
+
+ /// List of hir_ids that are reinitialized by this node.
+ reinits: Vec<TrackedValueIndex>,
+
+ /// Set of values that are definitely dropped at this point.
+ drop_state: BitSet<TrackedValueIndex>,
+}
+
+impl NodeInfo {
+ fn new(num_values: usize) -> Self {
+ Self {
+ successors: vec![],
+ drops: vec![],
+ reinits: vec![],
+ drop_state: BitSet::new_filled(num_values),
+ }
+ }
+}
diff --git a/compiler/rustc_typeck/src/check/generator_interior/drop_ranges/record_consumed_borrow.rs b/compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/record_consumed_borrow.rs
index ded0888c3..bfe95852a 100644
--- a/compiler/rustc_typeck/src/check/generator_interior/drop_ranges/record_consumed_borrow.rs
+++ b/compiler/rustc_hir_typeck/src/generator_interior/drop_ranges/record_consumed_borrow.rs
@@ -1,13 +1,16 @@
use super::TrackedValue;
use crate::{
- check::FnCtxt,
expr_use_visitor::{self, ExprUseVisitor},
+ FnCtxt,
};
use hir::{def_id::DefId, Body, HirId, HirIdMap};
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
-use rustc_middle::hir::place::{PlaceBase, Projection, ProjectionKind};
use rustc_middle::ty::{ParamEnv, TyCtxt};
+use rustc_middle::{
+ hir::place::{PlaceBase, Projection, ProjectionKind},
+ ty::TypeVisitable,
+};
pub(super) fn find_consumed_and_borrowed<'a, 'tcx>(
fcx: &'a FnCtxt<'a, 'tcx>,
@@ -159,8 +162,8 @@ impl<'tcx> expr_use_visitor::Delegate<'tcx> for ExprUseDelegate<'tcx> {
bk: rustc_middle::ty::BorrowKind,
) {
debug!(
- "borrow: place_with_id = {place_with_id:?}, diag_expr_id={diag_expr_id:?}, \
- borrow_kind={bk:?}"
+ "borrow: place_with_id = {place_with_id:#?}, diag_expr_id={diag_expr_id:#?}, \
+ borrow_kind={bk:#?}"
);
self.borrow_place(place_with_id);
@@ -198,7 +201,13 @@ impl<'tcx> expr_use_visitor::Delegate<'tcx> for ExprUseDelegate<'tcx> {
// If the type being assigned needs dropped, then the mutation counts as a borrow
// since it is essentially doing `Drop::drop(&mut x); x = new_value;`.
- if assignee_place.place.base_ty.needs_drop(self.tcx, self.param_env) {
+ let ty = self.tcx.erase_regions(assignee_place.place.base_ty);
+ if ty.needs_infer() {
+ self.tcx.sess.delay_span_bug(
+ self.tcx.hir().span(assignee_place.hir_id),
+ &format!("inference variables in {ty}"),
+ );
+ } else if ty.needs_drop(self.tcx, self.param_env) {
self.places
.borrowed
.insert(TrackedValue::from_place_with_projections_allowed(assignee_place));
diff --git a/compiler/rustc_hir_typeck/src/generator_interior/mod.rs b/compiler/rustc_hir_typeck/src/generator_interior/mod.rs
new file mode 100644
index 000000000..b7dd599cd
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/generator_interior/mod.rs
@@ -0,0 +1,647 @@
+//! This calculates the types which has storage which lives across a suspension point in a
+//! generator from the perspective of typeck. The actual types used at runtime
+//! is calculated in `rustc_mir_transform::generator` and may be a subset of the
+//! types computed here.
+
+use self::drop_ranges::DropRanges;
+use super::FnCtxt;
+use rustc_data_structures::fx::{FxHashSet, FxIndexSet};
+use rustc_errors::{pluralize, DelayDm};
+use rustc_hir as hir;
+use rustc_hir::def::{CtorKind, DefKind, Res};
+use rustc_hir::def_id::DefId;
+use rustc_hir::hir_id::HirIdSet;
+use rustc_hir::intravisit::{self, Visitor};
+use rustc_hir::{Arm, Expr, ExprKind, Guard, HirId, Pat, PatKind};
+use rustc_middle::middle::region::{self, Scope, ScopeData, YieldData};
+use rustc_middle::ty::{self, RvalueScopes, Ty, TyCtxt, TypeVisitable};
+use rustc_span::symbol::sym;
+use rustc_span::Span;
+
+mod drop_ranges;
+
+struct InteriorVisitor<'a, 'tcx> {
+ fcx: &'a FnCtxt<'a, 'tcx>,
+ region_scope_tree: &'a region::ScopeTree,
+ types: FxIndexSet<ty::GeneratorInteriorTypeCause<'tcx>>,
+ rvalue_scopes: &'a RvalueScopes,
+ expr_count: usize,
+ kind: hir::GeneratorKind,
+ prev_unresolved_span: Option<Span>,
+ linted_values: HirIdSet,
+ drop_ranges: DropRanges,
+}
+
+impl<'a, 'tcx> InteriorVisitor<'a, 'tcx> {
+ fn record(
+ &mut self,
+ ty: Ty<'tcx>,
+ hir_id: HirId,
+ scope: Option<region::Scope>,
+ expr: Option<&'tcx Expr<'tcx>>,
+ source_span: Span,
+ ) {
+ use rustc_span::DUMMY_SP;
+
+ let ty = self.fcx.resolve_vars_if_possible(ty);
+
+ debug!(
+ "attempting to record type ty={:?}; hir_id={:?}; scope={:?}; expr={:?}; source_span={:?}; expr_count={:?}",
+ ty, hir_id, scope, expr, source_span, self.expr_count,
+ );
+
+ let live_across_yield = scope
+ .map(|s| {
+ self.region_scope_tree.yield_in_scope(s).and_then(|yield_data| {
+ // If we are recording an expression that is the last yield
+ // in the scope, or that has a postorder CFG index larger
+ // than the one of all of the yields, then its value can't
+ // be storage-live (and therefore live) at any of the yields.
+ //
+ // See the mega-comment at `yield_in_scope` for a proof.
+
+ yield_data
+ .iter()
+ .find(|yield_data| {
+ debug!(
+ "comparing counts yield: {} self: {}, source_span = {:?}",
+ yield_data.expr_and_pat_count, self.expr_count, source_span
+ );
+
+ if self.fcx.sess().opts.unstable_opts.drop_tracking
+ && self
+ .drop_ranges
+ .is_dropped_at(hir_id, yield_data.expr_and_pat_count)
+ {
+ debug!("value is dropped at yield point; not recording");
+ return false;
+ }
+
+ // If it is a borrowing happening in the guard,
+ // it needs to be recorded regardless because they
+ // do live across this yield point.
+ yield_data.expr_and_pat_count >= self.expr_count
+ })
+ .cloned()
+ })
+ })
+ .unwrap_or_else(|| {
+ Some(YieldData { span: DUMMY_SP, expr_and_pat_count: 0, source: self.kind.into() })
+ });
+
+ if let Some(yield_data) = live_across_yield {
+ debug!(
+ "type in expr = {:?}, scope = {:?}, type = {:?}, count = {}, yield_span = {:?}",
+ expr, scope, ty, self.expr_count, yield_data.span
+ );
+
+ if let Some((unresolved_type, unresolved_type_span)) =
+ self.fcx.unresolved_type_vars(&ty)
+ {
+ // If unresolved type isn't a ty_var then unresolved_type_span is None
+ let span = self
+ .prev_unresolved_span
+ .unwrap_or_else(|| unresolved_type_span.unwrap_or(source_span));
+
+ // If we encounter an int/float variable, then inference fallback didn't
+ // finish due to some other error. Don't emit spurious additional errors.
+ if let ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(_)) =
+ unresolved_type.kind()
+ {
+ self.fcx
+ .tcx
+ .sess
+ .delay_span_bug(span, &format!("Encountered var {:?}", unresolved_type));
+ } else {
+ let note = format!(
+ "the type is part of the {} because of this {}",
+ self.kind, yield_data.source
+ );
+
+ self.fcx
+ .need_type_info_err_in_generator(self.kind, span, unresolved_type)
+ .span_note(yield_data.span, &*note)
+ .emit();
+ }
+ } else {
+ // Insert the type into the ordered set.
+ let scope_span = scope.map(|s| s.span(self.fcx.tcx, self.region_scope_tree));
+
+ if !self.linted_values.contains(&hir_id) {
+ check_must_not_suspend_ty(
+ self.fcx,
+ ty,
+ hir_id,
+ SuspendCheckData {
+ expr,
+ source_span,
+ yield_span: yield_data.span,
+ plural_len: 1,
+ ..Default::default()
+ },
+ );
+ self.linted_values.insert(hir_id);
+ }
+
+ self.types.insert(ty::GeneratorInteriorTypeCause {
+ span: source_span,
+ ty,
+ scope_span,
+ yield_span: yield_data.span,
+ expr: expr.map(|e| e.hir_id),
+ });
+ }
+ } else {
+ debug!(
+ "no type in expr = {:?}, count = {:?}, span = {:?}",
+ expr,
+ self.expr_count,
+ expr.map(|e| e.span)
+ );
+ if let Some((unresolved_type, unresolved_type_span)) =
+ self.fcx.unresolved_type_vars(&ty)
+ {
+ debug!(
+ "remained unresolved_type = {:?}, unresolved_type_span: {:?}",
+ unresolved_type, unresolved_type_span
+ );
+ self.prev_unresolved_span = unresolved_type_span;
+ }
+ }
+ }
+}
+
+pub fn resolve_interior<'a, 'tcx>(
+ fcx: &'a FnCtxt<'a, 'tcx>,
+ def_id: DefId,
+ body_id: hir::BodyId,
+ interior: Ty<'tcx>,
+ kind: hir::GeneratorKind,
+) {
+ let body = fcx.tcx.hir().body(body_id);
+ let typeck_results = fcx.inh.typeck_results.borrow();
+ let mut visitor = InteriorVisitor {
+ fcx,
+ types: FxIndexSet::default(),
+ region_scope_tree: fcx.tcx.region_scope_tree(def_id),
+ rvalue_scopes: &typeck_results.rvalue_scopes,
+ expr_count: 0,
+ kind,
+ prev_unresolved_span: None,
+ linted_values: <_>::default(),
+ drop_ranges: drop_ranges::compute_drop_ranges(fcx, def_id, body),
+ };
+ intravisit::walk_body(&mut visitor, body);
+
+ // Check that we visited the same amount of expressions as the RegionResolutionVisitor
+ let region_expr_count = fcx.tcx.region_scope_tree(def_id).body_expr_count(body_id).unwrap();
+ assert_eq!(region_expr_count, visitor.expr_count);
+
+ // The types are already kept in insertion order.
+ let types = visitor.types;
+
+ // The types in the generator interior contain lifetimes local to the generator itself,
+ // which should not be exposed outside of the generator. Therefore, we replace these
+ // lifetimes with existentially-bound lifetimes, which reflect the exact value of the
+ // lifetimes not being known by users.
+ //
+ // These lifetimes are used in auto trait impl checking (for example,
+ // if a Sync generator contains an &'α T, we need to check whether &'α T: Sync),
+ // so knowledge of the exact relationships between them isn't particularly important.
+
+ debug!("types in generator {:?}, span = {:?}", types, body.value.span);
+
+ let mut counter = 0;
+ let mut captured_tys = FxHashSet::default();
+ let type_causes: Vec<_> = types
+ .into_iter()
+ .filter_map(|mut cause| {
+ // Erase regions and canonicalize late-bound regions to deduplicate as many types as we
+ // can.
+ let ty = fcx.normalize_associated_types_in(cause.span, cause.ty);
+ let erased = fcx.tcx.erase_regions(ty);
+ if captured_tys.insert(erased) {
+ // Replace all regions inside the generator interior with late bound regions.
+ // Note that each region slot in the types gets a new fresh late bound region,
+ // which means that none of the regions inside relate to any other, even if
+ // typeck had previously found constraints that would cause them to be related.
+ let folded = fcx.tcx.fold_regions(erased, |_, current_depth| {
+ let br = ty::BoundRegion {
+ var: ty::BoundVar::from_u32(counter),
+ kind: ty::BrAnon(counter),
+ };
+ let r = fcx.tcx.mk_region(ty::ReLateBound(current_depth, br));
+ counter += 1;
+ r
+ });
+
+ cause.ty = folded;
+ Some(cause)
+ } else {
+ None
+ }
+ })
+ .collect();
+
+ // Extract type components to build the witness type.
+ let type_list = fcx.tcx.mk_type_list(type_causes.iter().map(|cause| cause.ty));
+ let bound_vars = fcx.tcx.mk_bound_variable_kinds(
+ (0..counter).map(|i| ty::BoundVariableKind::Region(ty::BrAnon(i))),
+ );
+ let witness =
+ fcx.tcx.mk_generator_witness(ty::Binder::bind_with_vars(type_list, bound_vars.clone()));
+
+ drop(typeck_results);
+ // Store the generator types and spans into the typeck results for this generator.
+ fcx.inh.typeck_results.borrow_mut().generator_interior_types =
+ ty::Binder::bind_with_vars(type_causes, bound_vars);
+
+ debug!(
+ "types in generator after region replacement {:?}, span = {:?}",
+ witness, body.value.span
+ );
+
+ // Unify the type variable inside the generator with the new witness
+ match fcx.at(&fcx.misc(body.value.span), fcx.param_env).eq(interior, witness) {
+ Ok(ok) => fcx.register_infer_ok_obligations(ok),
+ _ => bug!("failed to relate {interior} and {witness}"),
+ }
+}
+
+// This visitor has to have the same visit_expr calls as RegionResolutionVisitor in
+// librustc_middle/middle/region.rs since `expr_count` is compared against the results
+// there.
+impl<'a, 'tcx> Visitor<'tcx> for InteriorVisitor<'a, 'tcx> {
+ fn visit_arm(&mut self, arm: &'tcx Arm<'tcx>) {
+ let Arm { guard, pat, body, .. } = arm;
+ self.visit_pat(pat);
+ if let Some(ref g) = guard {
+ {
+ // If there is a guard, we need to count all variables bound in the pattern as
+ // borrowed for the entire guard body, regardless of whether they are accessed.
+ // We do this by walking the pattern bindings and recording `&T` for any `x: T`
+ // that is bound.
+
+ struct ArmPatCollector<'a, 'b, 'tcx> {
+ interior_visitor: &'a mut InteriorVisitor<'b, 'tcx>,
+ scope: Scope,
+ }
+
+ impl<'a, 'b, 'tcx> Visitor<'tcx> for ArmPatCollector<'a, 'b, 'tcx> {
+ fn visit_pat(&mut self, pat: &'tcx Pat<'tcx>) {
+ intravisit::walk_pat(self, pat);
+ if let PatKind::Binding(_, id, ident, ..) = pat.kind {
+ let ty =
+ self.interior_visitor.fcx.typeck_results.borrow().node_type(id);
+ let tcx = self.interior_visitor.fcx.tcx;
+ let ty = tcx.mk_ref(
+ // Use `ReErased` as `resolve_interior` is going to replace all the
+ // regions anyway.
+ tcx.mk_region(ty::ReErased),
+ ty::TypeAndMut { ty, mutbl: hir::Mutability::Not },
+ );
+ self.interior_visitor.record(
+ ty,
+ id,
+ Some(self.scope),
+ None,
+ ident.span,
+ );
+ }
+ }
+ }
+
+ ArmPatCollector {
+ interior_visitor: self,
+ scope: Scope { id: g.body().hir_id.local_id, data: ScopeData::Node },
+ }
+ .visit_pat(pat);
+ }
+
+ match g {
+ Guard::If(ref e) => {
+ self.visit_expr(e);
+ }
+ Guard::IfLet(ref l) => {
+ self.visit_let_expr(l);
+ }
+ }
+ }
+ self.visit_expr(body);
+ }
+
+ fn visit_pat(&mut self, pat: &'tcx Pat<'tcx>) {
+ intravisit::walk_pat(self, pat);
+
+ self.expr_count += 1;
+
+ if let PatKind::Binding(..) = pat.kind {
+ let scope = self.region_scope_tree.var_scope(pat.hir_id.local_id).unwrap();
+ let ty = self.fcx.typeck_results.borrow().pat_ty(pat);
+ self.record(ty, pat.hir_id, Some(scope), None, pat.span);
+ }
+ }
+
+ fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) {
+ match &expr.kind {
+ ExprKind::Call(callee, args) => match &callee.kind {
+ ExprKind::Path(qpath) => {
+ let res = self.fcx.typeck_results.borrow().qpath_res(qpath, callee.hir_id);
+ match res {
+ // Direct calls never need to keep the callee `ty::FnDef`
+ // ZST in a temporary, so skip its type, just in case it
+ // can significantly complicate the generator type.
+ Res::Def(
+ DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn),
+ _,
+ ) => {
+ // NOTE(eddyb) this assumes a path expression has
+ // no nested expressions to keep track of.
+ self.expr_count += 1;
+
+ // Record the rest of the call expression normally.
+ for arg in *args {
+ self.visit_expr(arg);
+ }
+ }
+ _ => intravisit::walk_expr(self, expr),
+ }
+ }
+ _ => intravisit::walk_expr(self, expr),
+ },
+ _ => intravisit::walk_expr(self, expr),
+ }
+
+ self.expr_count += 1;
+
+ debug!("is_borrowed_temporary: {:?}", self.drop_ranges.is_borrowed_temporary(expr));
+
+ let ty = self.fcx.typeck_results.borrow().expr_ty_adjusted_opt(expr);
+
+ // Typically, the value produced by an expression is consumed by its parent in some way,
+ // so we only have to check if the parent contains a yield (note that the parent may, for
+ // example, store the value into a local variable, but then we already consider local
+ // variables to be live across their scope).
+ //
+ // However, in the case of temporary values, we are going to store the value into a
+ // temporary on the stack that is live for the current temporary scope and then return a
+ // reference to it. That value may be live across the entire temporary scope.
+ //
+ // There's another subtlety: if the type has an observable drop, it must be dropped after
+ // the yield, even if it's not borrowed or referenced after the yield. Ideally this would
+ // *only* happen for types with observable drop, not all types which wrap them, but that
+ // doesn't match the behavior of MIR borrowck and causes ICEs. See the FIXME comment in
+ // src/test/ui/generator/drop-tracking-parent-expression.rs.
+ let scope = if self.drop_ranges.is_borrowed_temporary(expr)
+ || ty.map_or(true, |ty| {
+ // Avoid ICEs in needs_drop.
+ let ty = self.fcx.resolve_vars_if_possible(ty);
+ let ty = self.fcx.tcx.erase_regions(ty);
+ if ty.needs_infer() {
+ self.fcx
+ .tcx
+ .sess
+ .delay_span_bug(expr.span, &format!("inference variables in {ty}"));
+ true
+ } else {
+ ty.needs_drop(self.fcx.tcx, self.fcx.param_env)
+ }
+ }) {
+ self.rvalue_scopes.temporary_scope(self.region_scope_tree, expr.hir_id.local_id)
+ } else {
+ let parent_expr = self
+ .fcx
+ .tcx
+ .hir()
+ .parent_iter(expr.hir_id)
+ .find(|(_, node)| matches!(node, hir::Node::Expr(_)))
+ .map(|(id, _)| id);
+ debug!("parent_expr: {:?}", parent_expr);
+ match parent_expr {
+ Some(parent) => Some(Scope { id: parent.local_id, data: ScopeData::Node }),
+ None => {
+ self.rvalue_scopes.temporary_scope(self.region_scope_tree, expr.hir_id.local_id)
+ }
+ }
+ };
+
+ // If there are adjustments, then record the final type --
+ // this is the actual value that is being produced.
+ if let Some(adjusted_ty) = ty {
+ self.record(adjusted_ty, expr.hir_id, scope, Some(expr), expr.span);
+ }
+
+ // Also record the unadjusted type (which is the only type if
+ // there are no adjustments). The reason for this is that the
+ // unadjusted value is sometimes a "temporary" that would wind
+ // up in a MIR temporary.
+ //
+ // As an example, consider an expression like `vec![].push(x)`.
+ // Here, the `vec![]` would wind up MIR stored into a
+ // temporary variable `t` which we can borrow to invoke
+ // `<Vec<_>>::push(&mut t, x)`.
+ //
+ // Note that an expression can have many adjustments, and we
+ // are just ignoring those intermediate types. This is because
+ // those intermediate values are always linearly "consumed" by
+ // the other adjustments, and hence would never be directly
+ // captured in the MIR.
+ //
+ // (Note that this partly relies on the fact that the `Deref`
+ // traits always return references, which means their content
+ // can be reborrowed without needing to spill to a temporary.
+ // If this were not the case, then we could conceivably have
+ // to create intermediate temporaries.)
+ //
+ // The type table might not have information for this expression
+ // if it is in a malformed scope. (#66387)
+ if let Some(ty) = self.fcx.typeck_results.borrow().expr_ty_opt(expr) {
+ self.record(ty, expr.hir_id, scope, Some(expr), expr.span);
+ } else {
+ self.fcx.tcx.sess.delay_span_bug(expr.span, "no type for node");
+ }
+ }
+}
+
+#[derive(Default)]
+struct SuspendCheckData<'a, 'tcx> {
+ expr: Option<&'tcx Expr<'tcx>>,
+ source_span: Span,
+ yield_span: Span,
+ descr_pre: &'a str,
+ descr_post: &'a str,
+ plural_len: usize,
+}
+
+// Returns whether it emitted a diagnostic or not
+// Note that this fn and the proceeding one are based on the code
+// for creating must_use diagnostics
+//
+// Note that this technique was chosen over things like a `Suspend` marker trait
+// as it is simpler and has precedent in the compiler
+fn check_must_not_suspend_ty<'tcx>(
+ fcx: &FnCtxt<'_, 'tcx>,
+ ty: Ty<'tcx>,
+ hir_id: HirId,
+ data: SuspendCheckData<'_, 'tcx>,
+) -> bool {
+ if ty.is_unit()
+ // FIXME: should this check `is_ty_uninhabited_from`. This query is not available in this stage
+ // of typeck (before ReVar and RePlaceholder are removed), but may remove noise, like in
+ // `must_use`
+ // || fcx.tcx.is_ty_uninhabited_from(fcx.tcx.parent_module(hir_id).to_def_id(), ty, fcx.param_env)
+ {
+ return false;
+ }
+
+ let plural_suffix = pluralize!(data.plural_len);
+
+ debug!("Checking must_not_suspend for {}", ty);
+
+ match *ty.kind() {
+ ty::Adt(..) if ty.is_box() => {
+ let boxed_ty = ty.boxed_ty();
+ let descr_pre = &format!("{}boxed ", data.descr_pre);
+ check_must_not_suspend_ty(fcx, boxed_ty, hir_id, SuspendCheckData { descr_pre, ..data })
+ }
+ ty::Adt(def, _) => check_must_not_suspend_def(fcx.tcx, def.did(), hir_id, data),
+ // FIXME: support adding the attribute to TAITs
+ ty::Opaque(def, _) => {
+ let mut has_emitted = false;
+ for &(predicate, _) in fcx.tcx.explicit_item_bounds(def) {
+ // We only look at the `DefId`, so it is safe to skip the binder here.
+ if let ty::PredicateKind::Trait(ref poly_trait_predicate) =
+ predicate.kind().skip_binder()
+ {
+ let def_id = poly_trait_predicate.trait_ref.def_id;
+ let descr_pre = &format!("{}implementer{} of ", data.descr_pre, plural_suffix);
+ if check_must_not_suspend_def(
+ fcx.tcx,
+ def_id,
+ hir_id,
+ SuspendCheckData { descr_pre, ..data },
+ ) {
+ has_emitted = true;
+ break;
+ }
+ }
+ }
+ has_emitted
+ }
+ ty::Dynamic(binder, _, _) => {
+ let mut has_emitted = false;
+ for predicate in binder.iter() {
+ if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate.skip_binder() {
+ let def_id = trait_ref.def_id;
+ let descr_post = &format!(" trait object{}{}", plural_suffix, data.descr_post);
+ if check_must_not_suspend_def(
+ fcx.tcx,
+ def_id,
+ hir_id,
+ SuspendCheckData { descr_post, ..data },
+ ) {
+ has_emitted = true;
+ break;
+ }
+ }
+ }
+ has_emitted
+ }
+ ty::Tuple(fields) => {
+ let mut has_emitted = false;
+ let comps = match data.expr.map(|e| &e.kind) {
+ Some(hir::ExprKind::Tup(comps)) => {
+ debug_assert_eq!(comps.len(), fields.len());
+ Some(comps)
+ }
+ _ => None,
+ };
+ for (i, ty) in fields.iter().enumerate() {
+ let descr_post = &format!(" in tuple element {i}");
+ let span = comps.and_then(|c| c.get(i)).map(|e| e.span).unwrap_or(data.source_span);
+ if check_must_not_suspend_ty(
+ fcx,
+ ty,
+ hir_id,
+ SuspendCheckData {
+ descr_post,
+ expr: comps.and_then(|comps| comps.get(i)),
+ source_span: span,
+ ..data
+ },
+ ) {
+ has_emitted = true;
+ }
+ }
+ has_emitted
+ }
+ ty::Array(ty, len) => {
+ let descr_pre = &format!("{}array{} of ", data.descr_pre, plural_suffix);
+ check_must_not_suspend_ty(
+ fcx,
+ ty,
+ hir_id,
+ SuspendCheckData {
+ descr_pre,
+ plural_len: len.try_eval_usize(fcx.tcx, fcx.param_env).unwrap_or(0) as usize
+ + 1,
+ ..data
+ },
+ )
+ }
+ // If drop tracking is enabled, we want to look through references, since the referrent
+ // may not be considered live across the await point.
+ ty::Ref(_region, ty, _mutability) if fcx.sess().opts.unstable_opts.drop_tracking => {
+ let descr_pre = &format!("{}reference{} to ", data.descr_pre, plural_suffix);
+ check_must_not_suspend_ty(fcx, ty, hir_id, SuspendCheckData { descr_pre, ..data })
+ }
+ _ => false,
+ }
+}
+
+fn check_must_not_suspend_def(
+ tcx: TyCtxt<'_>,
+ def_id: DefId,
+ hir_id: HirId,
+ data: SuspendCheckData<'_, '_>,
+) -> bool {
+ if let Some(attr) = tcx.get_attr(def_id, sym::must_not_suspend) {
+ tcx.struct_span_lint_hir(
+ rustc_session::lint::builtin::MUST_NOT_SUSPEND,
+ hir_id,
+ data.source_span,
+ DelayDm(|| {
+ format!(
+ "{}`{}`{} held across a suspend point, but should not be",
+ data.descr_pre,
+ tcx.def_path_str(def_id),
+ data.descr_post,
+ )
+ }),
+ |lint| {
+ // add span pointing to the offending yield/await
+ lint.span_label(data.yield_span, "the value is held across this suspend point");
+
+ // Add optional reason note
+ if let Some(note) = attr.value_str() {
+ // FIXME(guswynn): consider formatting this better
+ lint.span_note(data.source_span, note.as_str());
+ }
+
+ // Add some quick suggestions on what to do
+ // FIXME: can `drop` work as a suggestion here as well?
+ lint.span_help(
+ data.source_span,
+ "consider using a block (`{ ... }`) \
+ to shrink the value's scope, ending before the suspend point",
+ );
+
+ lint
+ },
+ );
+
+ true
+ } else {
+ false
+ }
+}
diff --git a/compiler/rustc_hir_typeck/src/inherited.rs b/compiler/rustc_hir_typeck/src/inherited.rs
new file mode 100644
index 000000000..0fb7651b3
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/inherited.rs
@@ -0,0 +1,213 @@
+use super::callee::DeferredCallResolution;
+
+use rustc_data_structures::fx::FxHashSet;
+use rustc_data_structures::sync::Lrc;
+use rustc_hir as hir;
+use rustc_hir::def_id::LocalDefId;
+use rustc_hir::HirIdMap;
+use rustc_infer::infer;
+use rustc_infer::infer::{DefiningAnchor, InferCtxt, InferOk, TyCtxtInferExt};
+use rustc_middle::ty::fold::TypeFoldable;
+use rustc_middle::ty::visit::TypeVisitable;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_span::def_id::LocalDefIdMap;
+use rustc_span::{self, Span};
+use rustc_trait_selection::infer::InferCtxtExt as _;
+use rustc_trait_selection::traits::{
+ self, ObligationCause, ObligationCtxt, TraitEngine, TraitEngineExt as _,
+};
+
+use std::cell::RefCell;
+use std::ops::Deref;
+
+/// Closures defined within the function. For example:
+/// ```ignore (illustrative)
+/// fn foo() {
+/// bar(move|| { ... })
+/// }
+/// ```
+/// Here, the function `foo()` and the closure passed to
+/// `bar()` will each have their own `FnCtxt`, but they will
+/// share the inherited fields.
+pub struct Inherited<'tcx> {
+ pub(super) infcx: InferCtxt<'tcx>,
+
+ pub(super) typeck_results: RefCell<ty::TypeckResults<'tcx>>,
+
+ pub(super) locals: RefCell<HirIdMap<super::LocalTy<'tcx>>>,
+
+ pub(super) fulfillment_cx: RefCell<Box<dyn TraitEngine<'tcx>>>,
+
+ // Some additional `Sized` obligations badly affect type inference.
+ // These obligations are added in a later stage of typeck.
+ // Removing these may also cause additional complications, see #101066.
+ pub(super) deferred_sized_obligations:
+ RefCell<Vec<(Ty<'tcx>, Span, traits::ObligationCauseCode<'tcx>)>>,
+
+ // When we process a call like `c()` where `c` is a closure type,
+ // we may not have decided yet whether `c` is a `Fn`, `FnMut`, or
+ // `FnOnce` closure. In that case, we defer full resolution of the
+ // call until upvar inference can kick in and make the
+ // decision. We keep these deferred resolutions grouped by the
+ // def-id of the closure, so that once we decide, we can easily go
+ // back and process them.
+ pub(super) deferred_call_resolutions: RefCell<LocalDefIdMap<Vec<DeferredCallResolution<'tcx>>>>,
+
+ pub(super) deferred_cast_checks: RefCell<Vec<super::cast::CastCheck<'tcx>>>,
+
+ pub(super) deferred_transmute_checks: RefCell<Vec<(Ty<'tcx>, Ty<'tcx>, hir::HirId)>>,
+
+ pub(super) deferred_asm_checks: RefCell<Vec<(&'tcx hir::InlineAsm<'tcx>, hir::HirId)>>,
+
+ pub(super) deferred_generator_interiors:
+ RefCell<Vec<(hir::BodyId, Ty<'tcx>, hir::GeneratorKind)>>,
+
+ pub(super) body_id: Option<hir::BodyId>,
+
+ /// Whenever we introduce an adjustment from `!` into a type variable,
+ /// we record that type variable here. This is later used to inform
+ /// fallback. See the `fallback` module for details.
+ pub(super) diverging_type_vars: RefCell<FxHashSet<Ty<'tcx>>>,
+}
+
+impl<'tcx> Deref for Inherited<'tcx> {
+ type Target = InferCtxt<'tcx>;
+ fn deref(&self) -> &Self::Target {
+ &self.infcx
+ }
+}
+
+/// A temporary returned by `Inherited::build(...)`. This is necessary
+/// for multiple `InferCtxt` to share the same `typeck_results`
+/// without using `Rc` or something similar.
+pub struct InheritedBuilder<'tcx> {
+ infcx: infer::InferCtxtBuilder<'tcx>,
+ def_id: LocalDefId,
+ typeck_results: RefCell<ty::TypeckResults<'tcx>>,
+}
+
+impl<'tcx> Inherited<'tcx> {
+ pub fn build(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> InheritedBuilder<'tcx> {
+ let hir_owner = tcx.hir().local_def_id_to_hir_id(def_id).owner;
+
+ InheritedBuilder {
+ infcx: tcx
+ .infer_ctxt()
+ .ignoring_regions()
+ .with_opaque_type_inference(DefiningAnchor::Bind(hir_owner.def_id))
+ .with_normalize_fn_sig_for_diagnostic(Lrc::new(move |infcx, fn_sig| {
+ if fn_sig.has_escaping_bound_vars() {
+ return fn_sig;
+ }
+ infcx.probe(|_| {
+ let ocx = ObligationCtxt::new_in_snapshot(infcx);
+ let normalized_fn_sig = ocx.normalize(
+ ObligationCause::dummy(),
+ // FIXME(compiler-errors): This is probably not the right param-env...
+ infcx.tcx.param_env(def_id),
+ fn_sig,
+ );
+ if ocx.select_all_or_error().is_empty() {
+ let normalized_fn_sig =
+ infcx.resolve_vars_if_possible(normalized_fn_sig);
+ if !normalized_fn_sig.needs_infer() {
+ return normalized_fn_sig;
+ }
+ }
+ fn_sig
+ })
+ })),
+ def_id,
+ typeck_results: RefCell::new(ty::TypeckResults::new(hir_owner)),
+ }
+ }
+}
+
+impl<'tcx> InheritedBuilder<'tcx> {
+ pub fn enter<F, R>(mut self, f: F) -> R
+ where
+ F: FnOnce(&Inherited<'tcx>) -> R,
+ {
+ let def_id = self.def_id;
+ f(&Inherited::new(self.infcx.build(), def_id, self.typeck_results))
+ }
+}
+
+impl<'tcx> Inherited<'tcx> {
+ fn new(
+ infcx: InferCtxt<'tcx>,
+ def_id: LocalDefId,
+ typeck_results: RefCell<ty::TypeckResults<'tcx>>,
+ ) -> Self {
+ let tcx = infcx.tcx;
+ let body_id = tcx.hir().maybe_body_owned_by(def_id);
+
+ Inherited {
+ typeck_results,
+ infcx,
+ fulfillment_cx: RefCell::new(<dyn TraitEngine<'_>>::new(tcx)),
+ locals: RefCell::new(Default::default()),
+ deferred_sized_obligations: RefCell::new(Vec::new()),
+ deferred_call_resolutions: RefCell::new(Default::default()),
+ deferred_cast_checks: RefCell::new(Vec::new()),
+ deferred_transmute_checks: RefCell::new(Vec::new()),
+ deferred_asm_checks: RefCell::new(Vec::new()),
+ deferred_generator_interiors: RefCell::new(Vec::new()),
+ diverging_type_vars: RefCell::new(Default::default()),
+ body_id,
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ pub(super) fn register_predicate(&self, obligation: traits::PredicateObligation<'tcx>) {
+ if obligation.has_escaping_bound_vars() {
+ span_bug!(obligation.cause.span, "escaping bound vars in predicate {:?}", obligation);
+ }
+ self.fulfillment_cx.borrow_mut().register_predicate_obligation(self, obligation);
+ }
+
+ pub(super) fn register_predicates<I>(&self, obligations: I)
+ where
+ I: IntoIterator<Item = traits::PredicateObligation<'tcx>>,
+ {
+ for obligation in obligations {
+ self.register_predicate(obligation);
+ }
+ }
+
+ pub(super) fn register_infer_ok_obligations<T>(&self, infer_ok: InferOk<'tcx, T>) -> T {
+ self.register_predicates(infer_ok.obligations);
+ infer_ok.value
+ }
+
+ pub(super) fn normalize_associated_types_in<T>(
+ &self,
+ span: Span,
+ body_id: hir::HirId,
+ param_env: ty::ParamEnv<'tcx>,
+ value: T,
+ ) -> T
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ self.normalize_associated_types_in_with_cause(
+ ObligationCause::misc(span, body_id),
+ param_env,
+ value,
+ )
+ }
+
+ pub(super) fn normalize_associated_types_in_with_cause<T>(
+ &self,
+ cause: ObligationCause<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ value: T,
+ ) -> T
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ let ok = self.partially_normalize_associated_types_in(cause, param_env, value);
+ debug!(?ok);
+ self.register_infer_ok_obligations(ok)
+ }
+}
diff --git a/compiler/rustc_hir_typeck/src/intrinsicck.rs b/compiler/rustc_hir_typeck/src/intrinsicck.rs
new file mode 100644
index 000000000..9812d96fc
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/intrinsicck.rs
@@ -0,0 +1,108 @@
+use hir::HirId;
+use rustc_errors::struct_span_err;
+use rustc_hir as hir;
+use rustc_index::vec::Idx;
+use rustc_middle::ty::layout::{LayoutError, SizeSkeleton};
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_target::abi::{Pointer, VariantIdx};
+
+use super::FnCtxt;
+
+/// If the type is `Option<T>`, it will return `T`, otherwise
+/// the type itself. Works on most `Option`-like types.
+fn unpack_option_like<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
+ let ty::Adt(def, substs) = *ty.kind() else { return ty };
+
+ if def.variants().len() == 2 && !def.repr().c() && def.repr().int.is_none() {
+ let data_idx;
+
+ let one = VariantIdx::new(1);
+ let zero = VariantIdx::new(0);
+
+ if def.variant(zero).fields.is_empty() {
+ data_idx = one;
+ } else if def.variant(one).fields.is_empty() {
+ data_idx = zero;
+ } else {
+ return ty;
+ }
+
+ if def.variant(data_idx).fields.len() == 1 {
+ return def.variant(data_idx).fields[0].ty(tcx, substs);
+ }
+ }
+
+ ty
+}
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ pub fn check_transmute(&self, from: Ty<'tcx>, to: Ty<'tcx>, hir_id: HirId) {
+ let tcx = self.tcx;
+ let span = tcx.hir().span(hir_id);
+ let normalize = |ty| {
+ let ty = self.resolve_vars_if_possible(ty);
+ self.tcx.normalize_erasing_regions(self.param_env, ty)
+ };
+ let from = normalize(from);
+ let to = normalize(to);
+ trace!(?from, ?to);
+
+ // Transmutes that are only changing lifetimes are always ok.
+ if from == to {
+ return;
+ }
+
+ let skel = |ty| SizeSkeleton::compute(ty, tcx, self.param_env);
+ let sk_from = skel(from);
+ let sk_to = skel(to);
+ trace!(?sk_from, ?sk_to);
+
+ // Check for same size using the skeletons.
+ if let (Ok(sk_from), Ok(sk_to)) = (sk_from, sk_to) {
+ if sk_from.same_size(sk_to) {
+ return;
+ }
+
+ // Special-case transmuting from `typeof(function)` and
+ // `Option<typeof(function)>` to present a clearer error.
+ let from = unpack_option_like(tcx, from);
+ if let (&ty::FnDef(..), SizeSkeleton::Known(size_to)) = (from.kind(), sk_to) && size_to == Pointer.size(&tcx) {
+ struct_span_err!(tcx.sess, span, E0591, "can't transmute zero-sized type")
+ .note(&format!("source type: {from}"))
+ .note(&format!("target type: {to}"))
+ .help("cast with `as` to a pointer instead")
+ .emit();
+ return;
+ }
+ }
+
+ // Try to display a sensible error with as much information as possible.
+ let skeleton_string = |ty: Ty<'tcx>, sk| match sk {
+ Ok(SizeSkeleton::Known(size)) => format!("{} bits", size.bits()),
+ Ok(SizeSkeleton::Pointer { tail, .. }) => format!("pointer to `{tail}`"),
+ Err(LayoutError::Unknown(bad)) => {
+ if bad == ty {
+ "this type does not have a fixed size".to_owned()
+ } else {
+ format!("size can vary because of {bad}")
+ }
+ }
+ Err(err) => err.to_string(),
+ };
+
+ let mut err = struct_span_err!(
+ tcx.sess,
+ span,
+ E0512,
+ "cannot transmute between types of different sizes, \
+ or dependently-sized types"
+ );
+ if from == to {
+ err.note(&format!("`{from}` does not have a fixed size"));
+ } else {
+ err.note(&format!("source type: `{}` ({})", from, skeleton_string(from, sk_from)))
+ .note(&format!("target type: `{}` ({})", to, skeleton_string(to, sk_to)));
+ }
+ err.emit();
+ }
+}
diff --git a/compiler/rustc_hir_typeck/src/lib.rs b/compiler/rustc_hir_typeck/src/lib.rs
new file mode 100644
index 000000000..959c54866
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/lib.rs
@@ -0,0 +1,507 @@
+#![feature(if_let_guard)]
+#![feature(let_chains)]
+#![feature(try_blocks)]
+#![feature(never_type)]
+#![feature(min_specialization)]
+#![feature(control_flow_enum)]
+#![feature(drain_filter)]
+#![allow(rustc::potential_query_instability)]
+#![recursion_limit = "256"]
+
+#[macro_use]
+extern crate tracing;
+
+#[macro_use]
+extern crate rustc_middle;
+
+mod _match;
+mod autoderef;
+mod callee;
+// Used by clippy;
+pub mod cast;
+mod check;
+mod closure;
+mod coercion;
+mod demand;
+mod diverges;
+mod errors;
+mod expectation;
+mod expr;
+// Used by clippy;
+pub mod expr_use_visitor;
+mod fallback;
+mod fn_ctxt;
+mod gather_locals;
+mod generator_interior;
+mod inherited;
+mod intrinsicck;
+mod mem_categorization;
+mod method;
+mod op;
+mod pat;
+mod place_op;
+mod rvalue_scopes;
+mod upvar;
+mod writeback;
+
+pub use diverges::Diverges;
+pub use expectation::Expectation;
+pub use fn_ctxt::*;
+pub use inherited::{Inherited, InheritedBuilder};
+
+use crate::check::check_fn;
+use crate::coercion::DynamicCoerceMany;
+use crate::gather_locals::GatherLocalsVisitor;
+use rustc_data_structures::unord::UnordSet;
+use rustc_errors::{struct_span_err, MultiSpan};
+use rustc_hir as hir;
+use rustc_hir::def::Res;
+use rustc_hir::intravisit::Visitor;
+use rustc_hir::{HirIdMap, Node};
+use rustc_hir_analysis::astconv::AstConv;
+use rustc_hir_analysis::check::check_abi;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_middle::traits;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_session::config;
+use rustc_session::Session;
+use rustc_span::def_id::{DefId, LocalDefId};
+use rustc_span::Span;
+
+#[macro_export]
+macro_rules! type_error_struct {
+ ($session:expr, $span:expr, $typ:expr, $code:ident, $($message:tt)*) => ({
+ let mut err = rustc_errors::struct_span_err!($session, $span, $code, $($message)*);
+
+ if $typ.references_error() {
+ err.downgrade_to_delayed_bug();
+ }
+
+ err
+ })
+}
+
+/// The type of a local binding, including the revealed type for anon types.
+#[derive(Copy, Clone, Debug)]
+pub struct LocalTy<'tcx> {
+ decl_ty: Ty<'tcx>,
+ revealed_ty: Ty<'tcx>,
+}
+
+#[derive(Copy, Clone)]
+pub struct UnsafetyState {
+ pub def: hir::HirId,
+ pub unsafety: hir::Unsafety,
+ from_fn: bool,
+}
+
+impl UnsafetyState {
+ pub fn function(unsafety: hir::Unsafety, def: hir::HirId) -> UnsafetyState {
+ UnsafetyState { def, unsafety, from_fn: true }
+ }
+
+ pub fn recurse(self, blk: &hir::Block<'_>) -> UnsafetyState {
+ use hir::BlockCheckMode;
+ match self.unsafety {
+ // If this unsafe, then if the outer function was already marked as
+ // unsafe we shouldn't attribute the unsafe'ness to the block. This
+ // way the block can be warned about instead of ignoring this
+ // extraneous block (functions are never warned about).
+ hir::Unsafety::Unsafe if self.from_fn => self,
+
+ unsafety => {
+ let (unsafety, def) = match blk.rules {
+ BlockCheckMode::UnsafeBlock(..) => (hir::Unsafety::Unsafe, blk.hir_id),
+ BlockCheckMode::DefaultBlock => (unsafety, self.def),
+ };
+ UnsafetyState { def, unsafety, from_fn: false }
+ }
+ }
+ }
+}
+
+/// If this `DefId` is a "primary tables entry", returns
+/// `Some((body_id, body_ty, fn_sig))`. Otherwise, returns `None`.
+///
+/// If this function returns `Some`, then `typeck_results(def_id)` will
+/// succeed; if it returns `None`, then `typeck_results(def_id)` may or
+/// may not succeed. In some cases where this function returns `None`
+/// (notably closures), `typeck_results(def_id)` would wind up
+/// redirecting to the owning function.
+fn primary_body_of(
+ tcx: TyCtxt<'_>,
+ id: hir::HirId,
+) -> Option<(hir::BodyId, Option<&hir::Ty<'_>>, Option<&hir::FnSig<'_>>)> {
+ match tcx.hir().get(id) {
+ Node::Item(item) => match item.kind {
+ hir::ItemKind::Const(ty, body) | hir::ItemKind::Static(ty, _, body) => {
+ Some((body, Some(ty), None))
+ }
+ hir::ItemKind::Fn(ref sig, .., body) => Some((body, None, Some(sig))),
+ _ => None,
+ },
+ Node::TraitItem(item) => match item.kind {
+ hir::TraitItemKind::Const(ty, Some(body)) => Some((body, Some(ty), None)),
+ hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
+ Some((body, None, Some(sig)))
+ }
+ _ => None,
+ },
+ Node::ImplItem(item) => match item.kind {
+ hir::ImplItemKind::Const(ty, body) => Some((body, Some(ty), None)),
+ hir::ImplItemKind::Fn(ref sig, body) => Some((body, None, Some(sig))),
+ _ => None,
+ },
+ Node::AnonConst(constant) => Some((constant.body, None, None)),
+ _ => None,
+ }
+}
+
+fn has_typeck_results(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
+ // Closures' typeck results come from their outermost function,
+ // as they are part of the same "inference environment".
+ let typeck_root_def_id = tcx.typeck_root_def_id(def_id);
+ if typeck_root_def_id != def_id {
+ return tcx.has_typeck_results(typeck_root_def_id);
+ }
+
+ if let Some(def_id) = def_id.as_local() {
+ let id = tcx.hir().local_def_id_to_hir_id(def_id);
+ primary_body_of(tcx, id).is_some()
+ } else {
+ false
+ }
+}
+
+fn used_trait_imports(tcx: TyCtxt<'_>, def_id: LocalDefId) -> &UnordSet<LocalDefId> {
+ &*tcx.typeck(def_id).used_trait_imports
+}
+
+fn typeck_item_bodies(tcx: TyCtxt<'_>, (): ()) {
+ tcx.hir().par_body_owners(|body_owner_def_id| tcx.ensure().typeck(body_owner_def_id));
+}
+
+fn typeck_const_arg<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ (did, param_did): (LocalDefId, DefId),
+) -> &ty::TypeckResults<'tcx> {
+ let fallback = move || tcx.type_of(param_did);
+ typeck_with_fallback(tcx, did, fallback)
+}
+
+fn typeck<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &ty::TypeckResults<'tcx> {
+ if let Some(param_did) = tcx.opt_const_param_of(def_id) {
+ tcx.typeck_const_arg((def_id, param_did))
+ } else {
+ let fallback = move || tcx.type_of(def_id.to_def_id());
+ typeck_with_fallback(tcx, def_id, fallback)
+ }
+}
+
+/// Used only to get `TypeckResults` for type inference during error recovery.
+/// Currently only used for type inference of `static`s and `const`s to avoid type cycle errors.
+fn diagnostic_only_typeck<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &ty::TypeckResults<'tcx> {
+ let fallback = move || {
+ let span = tcx.hir().span(tcx.hir().local_def_id_to_hir_id(def_id));
+ tcx.ty_error_with_message(span, "diagnostic only typeck table used")
+ };
+ typeck_with_fallback(tcx, def_id, fallback)
+}
+
+fn typeck_with_fallback<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: LocalDefId,
+ fallback: impl Fn() -> Ty<'tcx> + 'tcx,
+) -> &'tcx ty::TypeckResults<'tcx> {
+ // Closures' typeck results come from their outermost function,
+ // as they are part of the same "inference environment".
+ let typeck_root_def_id = tcx.typeck_root_def_id(def_id.to_def_id()).expect_local();
+ if typeck_root_def_id != def_id {
+ return tcx.typeck(typeck_root_def_id);
+ }
+
+ let id = tcx.hir().local_def_id_to_hir_id(def_id);
+ let span = tcx.hir().span(id);
+
+ // Figure out what primary body this item has.
+ let (body_id, body_ty, fn_sig) = primary_body_of(tcx, id).unwrap_or_else(|| {
+ span_bug!(span, "can't type-check body of {:?}", def_id);
+ });
+ let body = tcx.hir().body(body_id);
+
+ let typeck_results = Inherited::build(tcx, def_id).enter(|inh| {
+ let param_env = tcx.param_env(def_id);
+ let mut fcx = if let Some(hir::FnSig { header, decl, .. }) = fn_sig {
+ let fn_sig = if rustc_hir_analysis::collect::get_infer_ret_ty(&decl.output).is_some() {
+ let fcx = FnCtxt::new(&inh, param_env, body.value.hir_id);
+ <dyn AstConv<'_>>::ty_of_fn(&fcx, id, header.unsafety, header.abi, decl, None, None)
+ } else {
+ tcx.fn_sig(def_id)
+ };
+
+ check_abi(tcx, id, span, fn_sig.abi());
+
+ // Compute the function signature from point of view of inside the fn.
+ let fn_sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), fn_sig);
+ let fn_sig = inh.normalize_associated_types_in(
+ body.value.span,
+ body_id.hir_id,
+ param_env,
+ fn_sig,
+ );
+ check_fn(&inh, param_env, fn_sig, decl, id, body, None, true).0
+ } else {
+ let fcx = FnCtxt::new(&inh, param_env, body.value.hir_id);
+ let expected_type = body_ty
+ .and_then(|ty| match ty.kind {
+ hir::TyKind::Infer => Some(<dyn AstConv<'_>>::ast_ty_to_ty(&fcx, ty)),
+ _ => None,
+ })
+ .unwrap_or_else(|| match tcx.hir().get(id) {
+ Node::AnonConst(_) => match tcx.hir().get(tcx.hir().get_parent_node(id)) {
+ Node::Expr(&hir::Expr {
+ kind: hir::ExprKind::ConstBlock(ref anon_const),
+ ..
+ }) if anon_const.hir_id == id => fcx.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::TypeInference,
+ span,
+ }),
+ Node::Ty(&hir::Ty {
+ kind: hir::TyKind::Typeof(ref anon_const), ..
+ }) if anon_const.hir_id == id => fcx.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::TypeInference,
+ span,
+ }),
+ Node::Expr(&hir::Expr { kind: hir::ExprKind::InlineAsm(asm), .. })
+ | Node::Item(&hir::Item { kind: hir::ItemKind::GlobalAsm(asm), .. }) => {
+ let operand_ty = asm
+ .operands
+ .iter()
+ .filter_map(|(op, _op_sp)| match op {
+ hir::InlineAsmOperand::Const { anon_const }
+ if anon_const.hir_id == id =>
+ {
+ // Inline assembly constants must be integers.
+ Some(fcx.next_int_var())
+ }
+ hir::InlineAsmOperand::SymFn { anon_const }
+ if anon_const.hir_id == id =>
+ {
+ Some(fcx.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::MiscVariable,
+ span,
+ }))
+ }
+ _ => None,
+ })
+ .next();
+ operand_ty.unwrap_or_else(fallback)
+ }
+ _ => fallback(),
+ },
+ _ => fallback(),
+ });
+
+ let expected_type = fcx.normalize_associated_types_in(body.value.span, expected_type);
+ fcx.require_type_is_sized(expected_type, body.value.span, traits::ConstSized);
+
+ // Gather locals in statics (because of block expressions).
+ GatherLocalsVisitor::new(&fcx).visit_body(body);
+
+ fcx.check_expr_coercable_to_type(&body.value, expected_type, None);
+
+ fcx.write_ty(id, expected_type);
+
+ fcx
+ };
+
+ let fallback_has_occurred = fcx.type_inference_fallback();
+
+ // Even though coercion casts provide type hints, we check casts after fallback for
+ // backwards compatibility. This makes fallback a stronger type hint than a cast coercion.
+ fcx.check_casts();
+ fcx.select_obligations_where_possible(fallback_has_occurred, |_| {});
+
+ // Closure and generator analysis may run after fallback
+ // because they don't constrain other type variables.
+ // Closure analysis only runs on closures. Therefore they only need to fulfill non-const predicates (as of now)
+ let prev_constness = fcx.param_env.constness();
+ fcx.param_env = fcx.param_env.without_const();
+ fcx.closure_analyze(body);
+ fcx.param_env = fcx.param_env.with_constness(prev_constness);
+ assert!(fcx.deferred_call_resolutions.borrow().is_empty());
+ // Before the generator analysis, temporary scopes shall be marked to provide more
+ // precise information on types to be captured.
+ fcx.resolve_rvalue_scopes(def_id.to_def_id());
+ fcx.resolve_generator_interiors(def_id.to_def_id());
+
+ for (ty, span, code) in fcx.deferred_sized_obligations.borrow_mut().drain(..) {
+ let ty = fcx.normalize_ty(span, ty);
+ fcx.require_type_is_sized(ty, span, code);
+ }
+
+ fcx.select_all_obligations_or_error();
+
+ if !fcx.infcx.is_tainted_by_errors() {
+ fcx.check_transmutes();
+ }
+
+ fcx.check_asms();
+
+ fcx.infcx.skip_region_resolution();
+
+ fcx.resolve_type_vars_in_body(body)
+ });
+
+ // Consistency check our TypeckResults instance can hold all ItemLocalIds
+ // it will need to hold.
+ assert_eq!(typeck_results.hir_owner, id.owner);
+
+ typeck_results
+}
+
+/// When `check_fn` is invoked on a generator (i.e., a body that
+/// includes yield), it returns back some information about the yield
+/// points.
+struct GeneratorTypes<'tcx> {
+ /// Type of generator argument / values returned by `yield`.
+ resume_ty: Ty<'tcx>,
+
+ /// Type of value that is yielded.
+ yield_ty: Ty<'tcx>,
+
+ /// Types that are captured (see `GeneratorInterior` for more).
+ interior: Ty<'tcx>,
+
+ /// Indicates if the generator is movable or static (immovable).
+ movability: hir::Movability,
+}
+
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+pub enum Needs {
+ MutPlace,
+ None,
+}
+
+impl Needs {
+ fn maybe_mut_place(m: hir::Mutability) -> Self {
+ match m {
+ hir::Mutability::Mut => Needs::MutPlace,
+ hir::Mutability::Not => Needs::None,
+ }
+ }
+}
+
+#[derive(Debug, Copy, Clone)]
+pub enum PlaceOp {
+ Deref,
+ Index,
+}
+
+pub struct BreakableCtxt<'tcx> {
+ may_break: bool,
+
+ // this is `null` for loops where break with a value is illegal,
+ // such as `while`, `for`, and `while let`
+ coerce: Option<DynamicCoerceMany<'tcx>>,
+}
+
+pub struct EnclosingBreakables<'tcx> {
+ stack: Vec<BreakableCtxt<'tcx>>,
+ by_id: HirIdMap<usize>,
+}
+
+impl<'tcx> EnclosingBreakables<'tcx> {
+ fn find_breakable(&mut self, target_id: hir::HirId) -> &mut BreakableCtxt<'tcx> {
+ self.opt_find_breakable(target_id).unwrap_or_else(|| {
+ bug!("could not find enclosing breakable with id {}", target_id);
+ })
+ }
+
+ fn opt_find_breakable(&mut self, target_id: hir::HirId) -> Option<&mut BreakableCtxt<'tcx>> {
+ match self.by_id.get(&target_id) {
+ Some(ix) => Some(&mut self.stack[*ix]),
+ None => None,
+ }
+ }
+}
+
+fn report_unexpected_variant_res(tcx: TyCtxt<'_>, res: Res, qpath: &hir::QPath<'_>, span: Span) {
+ struct_span_err!(
+ tcx.sess,
+ span,
+ E0533,
+ "expected unit struct, unit variant or constant, found {} `{}`",
+ res.descr(),
+ rustc_hir_pretty::qpath_to_string(qpath),
+ )
+ .emit();
+}
+
+/// Controls whether the arguments are tupled. This is used for the call
+/// operator.
+///
+/// Tupling means that all call-side arguments are packed into a tuple and
+/// passed as a single parameter. For example, if tupling is enabled, this
+/// function:
+/// ```
+/// fn f(x: (isize, isize)) {}
+/// ```
+/// Can be called as:
+/// ```ignore UNSOLVED (can this be done in user code?)
+/// # fn f(x: (isize, isize)) {}
+/// f(1, 2);
+/// ```
+/// Instead of:
+/// ```
+/// # fn f(x: (isize, isize)) {}
+/// f((1, 2));
+/// ```
+#[derive(Clone, Eq, PartialEq)]
+enum TupleArgumentsFlag {
+ DontTupleArguments,
+ TupleArguments,
+}
+
+fn fatally_break_rust(sess: &Session) {
+ let handler = sess.diagnostic();
+ handler.span_bug_no_panic(
+ MultiSpan::new(),
+ "It looks like you're trying to break rust; would you like some ICE?",
+ );
+ handler.note_without_error("the compiler expectedly panicked. this is a feature.");
+ handler.note_without_error(
+ "we would appreciate a joke overview: \
+ https://github.com/rust-lang/rust/issues/43162#issuecomment-320764675",
+ );
+ handler.note_without_error(&format!(
+ "rustc {} running on {}",
+ option_env!("CFG_VERSION").unwrap_or("unknown_version"),
+ config::host_triple(),
+ ));
+}
+
+fn has_expected_num_generic_args<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_did: Option<DefId>,
+ expected: usize,
+) -> bool {
+ trait_did.map_or(true, |trait_did| {
+ let generics = tcx.generics_of(trait_did);
+ generics.count() == expected + if generics.has_self { 1 } else { 0 }
+ })
+}
+
+pub fn provide(providers: &mut Providers) {
+ method::provide(providers);
+ *providers = Providers {
+ typeck_item_bodies,
+ typeck_const_arg,
+ typeck,
+ diagnostic_only_typeck,
+ has_typeck_results,
+ used_trait_imports,
+ ..*providers
+ };
+}
diff --git a/compiler/rustc_typeck/src/mem_categorization.rs b/compiler/rustc_hir_typeck/src/mem_categorization.rs
index ced919f66..362f1c343 100644
--- a/compiler/rustc_typeck/src/mem_categorization.rs
+++ b/compiler/rustc_hir_typeck/src/mem_categorization.rs
@@ -92,7 +92,7 @@ impl HirNode for hir::Pat<'_> {
#[derive(Clone)]
pub(crate) struct MemCategorizationContext<'a, 'tcx> {
pub(crate) typeck_results: &'a ty::TypeckResults<'tcx>,
- infcx: &'a InferCtxt<'a, 'tcx>,
+ infcx: &'a InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_owner: LocalDefId,
upvars: Option<&'tcx FxIndexMap<hir::HirId, hir::Upvar>>,
@@ -103,7 +103,7 @@ pub(crate) type McResult<T> = Result<T, ()>;
impl<'a, 'tcx> MemCategorizationContext<'a, 'tcx> {
/// Creates a `MemCategorizationContext`.
pub(crate) fn new(
- infcx: &'a InferCtxt<'a, 'tcx>,
+ infcx: &'a InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_owner: LocalDefId,
typeck_results: &'a ty::TypeckResults<'tcx>,
@@ -184,7 +184,7 @@ impl<'a, 'tcx> MemCategorizationContext<'a, 'tcx> {
/// modes #42640) may look like `Some(x)` but in fact have
/// implicit deref patterns attached (e.g., it is really
/// `&Some(x)`). In that case, we return the "outermost" type
- /// (e.g., `&Option<T>).
+ /// (e.g., `&Option<T>`).
pub(crate) fn pat_ty_adjusted(&self, pat: &hir::Pat<'_>) -> McResult<Ty<'tcx>> {
// Check for implicit `&` types wrapping the pattern; note
// that these are never attached to binding patterns, so
@@ -265,6 +265,7 @@ impl<'a, 'tcx> MemCategorizationContext<'a, 'tcx> {
self.cat_expr_adjusted_with(expr, || Ok(previous), adjustment)
}
+ #[instrument(level = "debug", skip(self, previous))]
fn cat_expr_adjusted_with<F>(
&self,
expr: &hir::Expr<'_>,
@@ -274,7 +275,6 @@ impl<'a, 'tcx> MemCategorizationContext<'a, 'tcx> {
where
F: FnOnce() -> McResult<PlaceWithHirId<'tcx>>,
{
- debug!("cat_expr_adjusted_with({:?}): {:?}", adjustment, expr);
let target = self.resolve_vars_if_possible(adjustment.target);
match adjustment.kind {
adjustment::Adjust::Deref(overloaded) => {
@@ -292,13 +292,15 @@ impl<'a, 'tcx> MemCategorizationContext<'a, 'tcx> {
adjustment::Adjust::NeverToAny
| adjustment::Adjust::Pointer(_)
- | adjustment::Adjust::Borrow(_) => {
+ | adjustment::Adjust::Borrow(_)
+ | adjustment::Adjust::DynStar => {
// Result is an rvalue.
Ok(self.cat_rvalue(expr.hir_id, expr.span, target))
}
}
}
+ #[instrument(level = "debug", skip(self))]
pub(crate) fn cat_expr_unadjusted(
&self,
expr: &hir::Expr<'_>,
@@ -387,6 +389,7 @@ impl<'a, 'tcx> MemCategorizationContext<'a, 'tcx> {
}
}
+ #[instrument(level = "debug", skip(self, span))]
pub(crate) fn cat_res(
&self,
hir_id: hir::HirId,
@@ -394,8 +397,6 @@ impl<'a, 'tcx> MemCategorizationContext<'a, 'tcx> {
expr_ty: Ty<'tcx>,
res: Res,
) -> McResult<PlaceWithHirId<'tcx>> {
- debug!("cat_res: id={:?} expr={:?} def={:?}", hir_id, expr_ty, res);
-
match res {
Res::Def(
DefKind::Ctor(..)
@@ -475,13 +476,12 @@ impl<'a, 'tcx> MemCategorizationContext<'a, 'tcx> {
ret
}
+ #[instrument(level = "debug", skip(self))]
fn cat_overloaded_place(
&self,
expr: &hir::Expr<'_>,
base: &hir::Expr<'_>,
) -> McResult<PlaceWithHirId<'tcx>> {
- debug!("cat_overloaded_place(expr={:?}, base={:?})", expr, base);
-
// Reconstruct the output assuming it's a reference with the
// same region and mutability as the receiver. This holds for
// `Deref(Mut)::Deref(_mut)` and `Index(Mut)::index(_mut)`.
@@ -497,13 +497,12 @@ impl<'a, 'tcx> MemCategorizationContext<'a, 'tcx> {
self.cat_deref(expr, base)
}
+ #[instrument(level = "debug", skip(self, node))]
fn cat_deref(
&self,
node: &impl HirNode,
base_place: PlaceWithHirId<'tcx>,
) -> McResult<PlaceWithHirId<'tcx>> {
- debug!("cat_deref: base_place={:?}", base_place);
-
let base_curr_ty = base_place.place.ty();
let deref_ty = match base_curr_ty.builtin_deref(true) {
Some(mt) => mt.ty,
@@ -562,7 +561,8 @@ impl<'a, 'tcx> MemCategorizationContext<'a, 'tcx> {
Res::Def(DefKind::Ctor(CtorOf::Struct, ..), _)
| Res::Def(DefKind::Struct | DefKind::Union | DefKind::TyAlias | DefKind::AssocTy, _)
| Res::SelfCtor(..)
- | Res::SelfTy { .. } => {
+ | Res::SelfTyParam { .. }
+ | Res::SelfTyAlias { .. } => {
// Structs and Unions have only have one variant.
Ok(VariantIdx::new(0))
}
diff --git a/compiler/rustc_typeck/src/check/method/confirm.rs b/compiler/rustc_hir_typeck/src/method/confirm.rs
index 2c89b63ae..be4ea9986 100644
--- a/compiler/rustc_typeck/src/check/method/confirm.rs
+++ b/compiler/rustc_hir_typeck/src/method/confirm.rs
@@ -1,16 +1,16 @@
use super::{probe, MethodCallee};
-use crate::astconv::{AstConv, CreateSubstsForGenericArgsCtxt, IsMethodCall};
-use crate::check::{callee, FnCtxt};
+use crate::{callee, FnCtxt};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::GenericArg;
+use rustc_hir_analysis::astconv::{AstConv, CreateSubstsForGenericArgsCtxt, IsMethodCall};
use rustc_infer::infer::{self, InferOk};
use rustc_middle::traits::{ObligationCauseCode, UnifyReceiverContext};
use rustc_middle::ty::adjustment::{Adjust, Adjustment, PointerCast};
use rustc_middle::ty::adjustment::{AllowTwoPhase, AutoBorrow, AutoBorrowMutability};
use rustc_middle::ty::fold::TypeFoldable;
-use rustc_middle::ty::subst::{self, Subst, SubstsRef};
+use rustc_middle::ty::subst::{self, SubstsRef};
use rustc_middle::ty::{self, GenericParamDefKind, Ty};
use rustc_span::Span;
use rustc_trait_selection::traits;
@@ -491,7 +491,19 @@ impl<'a, 'tcx> ConfirmContext<'a, 'tcx> {
// so we just call `predicates_for_generics` directly to avoid redoing work.
// `self.add_required_obligations(self.span, def_id, &all_substs);`
for obligation in traits::predicates_for_generics(
- traits::ObligationCause::new(self.span, self.body_id, traits::ItemObligation(def_id)),
+ |idx, span| {
+ let code = if span.is_dummy() {
+ ObligationCauseCode::ExprItemObligation(def_id, self.call_expr.hir_id, idx)
+ } else {
+ ObligationCauseCode::ExprBindingObligation(
+ def_id,
+ span,
+ self.call_expr.hir_id,
+ idx,
+ )
+ };
+ traits::ObligationCause::new(self.span, self.body_id, code)
+ },
self.param_env,
method_predicates,
) {
diff --git a/compiler/rustc_hir_typeck/src/method/mod.rs b/compiler/rustc_hir_typeck/src/method/mod.rs
new file mode 100644
index 000000000..a1278edef
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/method/mod.rs
@@ -0,0 +1,625 @@
+//! Method lookup: the secret sauce of Rust. See the [rustc dev guide] for more information.
+//!
+//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/method-lookup.html
+
+mod confirm;
+mod prelude2021;
+pub mod probe;
+mod suggest;
+
+pub use self::suggest::SelfSource;
+pub use self::MethodError::*;
+
+use crate::{Expectation, FnCtxt};
+use rustc_data_structures::sync::Lrc;
+use rustc_errors::{Applicability, Diagnostic};
+use rustc_hir as hir;
+use rustc_hir::def::{CtorOf, DefKind, Namespace};
+use rustc_hir::def_id::DefId;
+use rustc_infer::infer::{self, InferOk};
+use rustc_middle::traits::ObligationCause;
+use rustc_middle::ty::subst::{InternalSubsts, SubstsRef};
+use rustc_middle::ty::{self, DefIdTree, GenericParamDefKind, ToPredicate, Ty, TypeVisitable};
+use rustc_span::symbol::Ident;
+use rustc_span::Span;
+use rustc_trait_selection::traits;
+use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
+
+use self::probe::{IsSuggestion, ProbeScope};
+
+pub fn provide(providers: &mut ty::query::Providers) {
+ probe::provide(providers);
+}
+
+#[derive(Clone, Copy, Debug)]
+pub struct MethodCallee<'tcx> {
+ /// Impl method ID, for inherent methods, or trait method ID, otherwise.
+ pub def_id: DefId,
+ pub substs: SubstsRef<'tcx>,
+
+ /// Instantiated method signature, i.e., it has been
+ /// substituted, normalized, and has had late-bound
+ /// lifetimes replaced with inference variables.
+ pub sig: ty::FnSig<'tcx>,
+}
+
+#[derive(Debug)]
+pub enum MethodError<'tcx> {
+ // Did not find an applicable method, but we did find various near-misses that may work.
+ NoMatch(NoMatchData<'tcx>),
+
+ // Multiple methods might apply.
+ Ambiguity(Vec<CandidateSource>),
+
+ // Found an applicable method, but it is not visible. The third argument contains a list of
+ // not-in-scope traits which may work.
+ PrivateMatch(DefKind, DefId, Vec<DefId>),
+
+ // Found a `Self: Sized` bound where `Self` is a trait object, also the caller may have
+ // forgotten to import a trait.
+ IllegalSizedBound(Vec<DefId>, bool, Span),
+
+ // Found a match, but the return type is wrong
+ BadReturnType,
+}
+
+// Contains a list of static methods that may apply, a list of unsatisfied trait predicates which
+// could lead to matches if satisfied, and a list of not-in-scope traits which may work.
+#[derive(Debug)]
+pub struct NoMatchData<'tcx> {
+ pub static_candidates: Vec<CandidateSource>,
+ pub unsatisfied_predicates:
+ Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
+ pub out_of_scope_traits: Vec<DefId>,
+ pub lev_candidate: Option<ty::AssocItem>,
+ pub mode: probe::Mode,
+}
+
+// A pared down enum describing just the places from which a method
+// candidate can arise. Used for error reporting only.
+#[derive(Copy, Clone, Debug, Eq, Ord, PartialEq, PartialOrd)]
+pub enum CandidateSource {
+ Impl(DefId),
+ Trait(DefId /* trait id */),
+}
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ /// Determines whether the type `self_ty` supports a method name `method_name` or not.
+ #[instrument(level = "debug", skip(self))]
+ pub fn method_exists(
+ &self,
+ method_name: Ident,
+ self_ty: Ty<'tcx>,
+ call_expr_id: hir::HirId,
+ allow_private: bool,
+ ) -> bool {
+ let mode = probe::Mode::MethodCall;
+ match self.probe_for_name(
+ method_name.span,
+ mode,
+ method_name,
+ IsSuggestion(false),
+ self_ty,
+ call_expr_id,
+ ProbeScope::TraitsInScope,
+ ) {
+ Ok(..) => true,
+ Err(NoMatch(..)) => false,
+ Err(Ambiguity(..)) => true,
+ Err(PrivateMatch(..)) => allow_private,
+ Err(IllegalSizedBound(..)) => true,
+ Err(BadReturnType) => bug!("no return type expectations but got BadReturnType"),
+ }
+ }
+
+ /// Adds a suggestion to call the given method to the provided diagnostic.
+ #[instrument(level = "debug", skip(self, err, call_expr))]
+ pub(crate) fn suggest_method_call(
+ &self,
+ err: &mut Diagnostic,
+ msg: &str,
+ method_name: Ident,
+ self_ty: Ty<'tcx>,
+ call_expr: &hir::Expr<'_>,
+ span: Option<Span>,
+ ) {
+ let params = self
+ .probe_for_name(
+ method_name.span,
+ probe::Mode::MethodCall,
+ method_name,
+ IsSuggestion(false),
+ self_ty,
+ call_expr.hir_id,
+ ProbeScope::TraitsInScope,
+ )
+ .map(|pick| {
+ let sig = self.tcx.fn_sig(pick.item.def_id);
+ sig.inputs().skip_binder().len().saturating_sub(1)
+ })
+ .unwrap_or(0);
+
+ // Account for `foo.bar<T>`;
+ let sugg_span = span.unwrap_or(call_expr.span).shrink_to_hi();
+ let (suggestion, applicability) = (
+ format!("({})", (0..params).map(|_| "_").collect::<Vec<_>>().join(", ")),
+ if params > 0 { Applicability::HasPlaceholders } else { Applicability::MaybeIncorrect },
+ );
+
+ err.span_suggestion_verbose(sugg_span, msg, suggestion, applicability);
+ }
+
+ /// Performs method lookup. If lookup is successful, it will return the callee
+ /// and store an appropriate adjustment for the self-expr. In some cases it may
+ /// report an error (e.g., invoking the `drop` method).
+ ///
+ /// # Arguments
+ ///
+ /// Given a method call like `foo.bar::<T1,...Tn>(a, b + 1, ...)`:
+ ///
+ /// * `self`: the surrounding `FnCtxt` (!)
+ /// * `self_ty`: the (unadjusted) type of the self expression (`foo`)
+ /// * `segment`: the name and generic arguments of the method (`bar::<T1, ...Tn>`)
+ /// * `span`: the span for the method call
+ /// * `call_expr`: the complete method call: (`foo.bar::<T1,...Tn>(...)`)
+ /// * `self_expr`: the self expression (`foo`)
+ /// * `args`: the expressions of the arguments (`a, b + 1, ...`)
+ #[instrument(level = "debug", skip(self))]
+ pub fn lookup_method(
+ &self,
+ self_ty: Ty<'tcx>,
+ segment: &hir::PathSegment<'_>,
+ span: Span,
+ call_expr: &'tcx hir::Expr<'tcx>,
+ self_expr: &'tcx hir::Expr<'tcx>,
+ args: &'tcx [hir::Expr<'tcx>],
+ ) -> Result<MethodCallee<'tcx>, MethodError<'tcx>> {
+ let pick =
+ self.lookup_probe(span, segment.ident, self_ty, call_expr, ProbeScope::TraitsInScope)?;
+
+ self.lint_dot_call_from_2018(self_ty, segment, span, call_expr, self_expr, &pick, args);
+
+ for import_id in &pick.import_ids {
+ debug!("used_trait_import: {:?}", import_id);
+ Lrc::get_mut(&mut self.typeck_results.borrow_mut().used_trait_imports)
+ .unwrap()
+ .insert(*import_id);
+ }
+
+ self.tcx.check_stability(pick.item.def_id, Some(call_expr.hir_id), span, None);
+
+ let result =
+ self.confirm_method(span, self_expr, call_expr, self_ty, pick.clone(), segment);
+ debug!("result = {:?}", result);
+
+ if let Some(span) = result.illegal_sized_bound {
+ let mut needs_mut = false;
+ if let ty::Ref(region, t_type, mutability) = self_ty.kind() {
+ let trait_type = self
+ .tcx
+ .mk_ref(*region, ty::TypeAndMut { ty: *t_type, mutbl: mutability.invert() });
+ // We probe again to see if there might be a borrow mutability discrepancy.
+ match self.lookup_probe(
+ span,
+ segment.ident,
+ trait_type,
+ call_expr,
+ ProbeScope::TraitsInScope,
+ ) {
+ Ok(ref new_pick) if *new_pick != pick => {
+ needs_mut = true;
+ }
+ _ => {}
+ }
+ }
+
+ // We probe again, taking all traits into account (not only those in scope).
+ let mut candidates = match self.lookup_probe(
+ span,
+ segment.ident,
+ self_ty,
+ call_expr,
+ ProbeScope::AllTraits,
+ ) {
+ // If we find a different result the caller probably forgot to import a trait.
+ Ok(ref new_pick) if *new_pick != pick => vec![new_pick.item.container_id(self.tcx)],
+ Err(Ambiguity(ref sources)) => sources
+ .iter()
+ .filter_map(|source| {
+ match *source {
+ // Note: this cannot come from an inherent impl,
+ // because the first probing succeeded.
+ CandidateSource::Impl(def) => self.tcx.trait_id_of_impl(def),
+ CandidateSource::Trait(_) => None,
+ }
+ })
+ .collect(),
+ _ => Vec::new(),
+ };
+ candidates.retain(|candidate| *candidate != self.tcx.parent(result.callee.def_id));
+
+ return Err(IllegalSizedBound(candidates, needs_mut, span));
+ }
+
+ Ok(result.callee)
+ }
+
+ #[instrument(level = "debug", skip(self, call_expr))]
+ pub fn lookup_probe(
+ &self,
+ span: Span,
+ method_name: Ident,
+ self_ty: Ty<'tcx>,
+ call_expr: &'tcx hir::Expr<'tcx>,
+ scope: ProbeScope,
+ ) -> probe::PickResult<'tcx> {
+ let mode = probe::Mode::MethodCall;
+ let self_ty = self.resolve_vars_if_possible(self_ty);
+ self.probe_for_name(
+ span,
+ mode,
+ method_name,
+ IsSuggestion(false),
+ self_ty,
+ call_expr.hir_id,
+ scope,
+ )
+ }
+
+ pub(super) fn obligation_for_method(
+ &self,
+ span: Span,
+ trait_def_id: DefId,
+ self_ty: Ty<'tcx>,
+ opt_input_types: Option<&[Ty<'tcx>]>,
+ ) -> (traits::Obligation<'tcx, ty::Predicate<'tcx>>, &'tcx ty::List<ty::subst::GenericArg<'tcx>>)
+ {
+ // Construct a trait-reference `self_ty : Trait<input_tys>`
+ let substs = InternalSubsts::for_item(self.tcx, trait_def_id, |param, _| {
+ match param.kind {
+ GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => {}
+ GenericParamDefKind::Type { .. } => {
+ if param.index == 0 {
+ return self_ty.into();
+ } else if let Some(input_types) = opt_input_types {
+ return input_types[param.index as usize - 1].into();
+ }
+ }
+ }
+ self.var_for_def(span, param)
+ });
+
+ let trait_ref = ty::TraitRef::new(trait_def_id, substs);
+
+ // Construct an obligation
+ let poly_trait_ref = ty::Binder::dummy(trait_ref);
+ (
+ traits::Obligation::misc(
+ span,
+ self.body_id,
+ self.param_env,
+ poly_trait_ref.without_const().to_predicate(self.tcx),
+ ),
+ substs,
+ )
+ }
+
+ pub(super) fn obligation_for_op_method(
+ &self,
+ span: Span,
+ trait_def_id: DefId,
+ self_ty: Ty<'tcx>,
+ opt_input_type: Option<Ty<'tcx>>,
+ opt_input_expr: Option<&'tcx hir::Expr<'tcx>>,
+ expected: Expectation<'tcx>,
+ ) -> (traits::Obligation<'tcx, ty::Predicate<'tcx>>, &'tcx ty::List<ty::subst::GenericArg<'tcx>>)
+ {
+ // Construct a trait-reference `self_ty : Trait<input_tys>`
+ let substs = InternalSubsts::for_item(self.tcx, trait_def_id, |param, _| {
+ match param.kind {
+ GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => {}
+ GenericParamDefKind::Type { .. } => {
+ if param.index == 0 {
+ return self_ty.into();
+ } else if let Some(input_type) = opt_input_type {
+ return input_type.into();
+ }
+ }
+ }
+ self.var_for_def(span, param)
+ });
+
+ let trait_ref = ty::TraitRef::new(trait_def_id, substs);
+
+ // Construct an obligation
+ let poly_trait_ref = ty::Binder::dummy(trait_ref);
+ let output_ty = expected.only_has_type(self).and_then(|ty| (!ty.needs_infer()).then(|| ty));
+
+ (
+ traits::Obligation::new(
+ traits::ObligationCause::new(
+ span,
+ self.body_id,
+ traits::BinOp {
+ rhs_span: opt_input_expr.map(|expr| expr.span),
+ is_lit: opt_input_expr
+ .map_or(false, |expr| matches!(expr.kind, hir::ExprKind::Lit(_))),
+ output_ty,
+ },
+ ),
+ self.param_env,
+ poly_trait_ref.without_const().to_predicate(self.tcx),
+ ),
+ substs,
+ )
+ }
+
+ /// `lookup_method_in_trait` is used for overloaded operators.
+ /// It does a very narrow slice of what the normal probe/confirm path does.
+ /// In particular, it doesn't really do any probing: it simply constructs
+ /// an obligation for a particular trait with the given self type and checks
+ /// whether that trait is implemented.
+ #[instrument(level = "debug", skip(self, span))]
+ pub(super) fn lookup_method_in_trait(
+ &self,
+ span: Span,
+ m_name: Ident,
+ trait_def_id: DefId,
+ self_ty: Ty<'tcx>,
+ opt_input_types: Option<&[Ty<'tcx>]>,
+ ) -> Option<InferOk<'tcx, MethodCallee<'tcx>>> {
+ let (obligation, substs) =
+ self.obligation_for_method(span, trait_def_id, self_ty, opt_input_types);
+ self.construct_obligation_for_trait(
+ span,
+ m_name,
+ trait_def_id,
+ obligation,
+ substs,
+ None,
+ false,
+ )
+ }
+
+ pub(super) fn lookup_op_method_in_trait(
+ &self,
+ span: Span,
+ m_name: Ident,
+ trait_def_id: DefId,
+ self_ty: Ty<'tcx>,
+ opt_input_type: Option<Ty<'tcx>>,
+ opt_input_expr: Option<&'tcx hir::Expr<'tcx>>,
+ expected: Expectation<'tcx>,
+ ) -> Option<InferOk<'tcx, MethodCallee<'tcx>>> {
+ let (obligation, substs) = self.obligation_for_op_method(
+ span,
+ trait_def_id,
+ self_ty,
+ opt_input_type,
+ opt_input_expr,
+ expected,
+ );
+ self.construct_obligation_for_trait(
+ span,
+ m_name,
+ trait_def_id,
+ obligation,
+ substs,
+ opt_input_expr,
+ true,
+ )
+ }
+
+ // FIXME(#18741): it seems likely that we can consolidate some of this
+ // code with the other method-lookup code. In particular, the second half
+ // of this method is basically the same as confirmation.
+ fn construct_obligation_for_trait(
+ &self,
+ span: Span,
+ m_name: Ident,
+ trait_def_id: DefId,
+ obligation: traits::PredicateObligation<'tcx>,
+ substs: &'tcx ty::List<ty::subst::GenericArg<'tcx>>,
+ opt_input_expr: Option<&'tcx hir::Expr<'tcx>>,
+ is_op: bool,
+ ) -> Option<InferOk<'tcx, MethodCallee<'tcx>>> {
+ debug!(?obligation);
+
+ // Now we want to know if this can be matched
+ if !self.predicate_may_hold(&obligation) {
+ debug!("--> Cannot match obligation");
+ // Cannot be matched, no such method resolution is possible.
+ return None;
+ }
+
+ // Trait must have a method named `m_name` and it should not have
+ // type parameters or early-bound regions.
+ let tcx = self.tcx;
+ let Some(method_item) = self.associated_value(trait_def_id, m_name) else {
+ tcx.sess.delay_span_bug(
+ span,
+ "operator trait does not have corresponding operator method",
+ );
+ return None;
+ };
+ let def_id = method_item.def_id;
+ let generics = tcx.generics_of(def_id);
+ assert_eq!(generics.params.len(), 0);
+
+ debug!("lookup_in_trait_adjusted: method_item={:?}", method_item);
+ let mut obligations = vec![];
+
+ // Instantiate late-bound regions and substitute the trait
+ // parameters into the method type to get the actual method type.
+ //
+ // N.B., instantiate late-bound regions first so that
+ // `instantiate_type_scheme` can normalize associated types that
+ // may reference those regions.
+ let fn_sig = tcx.bound_fn_sig(def_id);
+ let fn_sig = fn_sig.subst(self.tcx, substs);
+ let fn_sig = self.replace_bound_vars_with_fresh_vars(span, infer::FnCall, fn_sig);
+
+ let InferOk { value, obligations: o } = if is_op {
+ self.normalize_op_associated_types_in_as_infer_ok(span, fn_sig, opt_input_expr)
+ } else {
+ self.normalize_associated_types_in_as_infer_ok(span, fn_sig)
+ };
+ let fn_sig = {
+ obligations.extend(o);
+ value
+ };
+
+ // Register obligations for the parameters. This will include the
+ // `Self` parameter, which in turn has a bound of the main trait,
+ // so this also effectively registers `obligation` as well. (We
+ // used to register `obligation` explicitly, but that resulted in
+ // double error messages being reported.)
+ //
+ // Note that as the method comes from a trait, it should not have
+ // any late-bound regions appearing in its bounds.
+ let bounds = self.tcx.predicates_of(def_id).instantiate(self.tcx, substs);
+
+ let InferOk { value, obligations: o } = if is_op {
+ self.normalize_op_associated_types_in_as_infer_ok(span, bounds, opt_input_expr)
+ } else {
+ self.normalize_associated_types_in_as_infer_ok(span, bounds)
+ };
+ let bounds = {
+ obligations.extend(o);
+ value
+ };
+
+ assert!(!bounds.has_escaping_bound_vars());
+
+ let cause = if is_op {
+ ObligationCause::new(
+ span,
+ self.body_id,
+ traits::BinOp {
+ rhs_span: opt_input_expr.map(|expr| expr.span),
+ is_lit: opt_input_expr
+ .map_or(false, |expr| matches!(expr.kind, hir::ExprKind::Lit(_))),
+ output_ty: None,
+ },
+ )
+ } else {
+ traits::ObligationCause::misc(span, self.body_id)
+ };
+ let predicates_cause = cause.clone();
+ obligations.extend(traits::predicates_for_generics(
+ move |_, _| predicates_cause.clone(),
+ self.param_env,
+ bounds,
+ ));
+
+ // Also add an obligation for the method type being well-formed.
+ let method_ty = tcx.mk_fn_ptr(ty::Binder::dummy(fn_sig));
+ debug!(
+ "lookup_in_trait_adjusted: matched method method_ty={:?} obligation={:?}",
+ method_ty, obligation
+ );
+ obligations.push(traits::Obligation::new(
+ cause,
+ self.param_env,
+ ty::Binder::dummy(ty::PredicateKind::WellFormed(method_ty.into())).to_predicate(tcx),
+ ));
+
+ let callee = MethodCallee { def_id, substs, sig: fn_sig };
+
+ debug!("callee = {:?}", callee);
+
+ Some(InferOk { obligations, value: callee })
+ }
+
+ /// Performs a [full-qualified function call] (formerly "universal function call") lookup. If
+ /// lookup is successful, it will return the type of definition and the [`DefId`] of the found
+ /// function definition.
+ ///
+ /// [full-qualified function call]: https://doc.rust-lang.org/reference/expressions/call-expr.html#disambiguating-function-calls
+ ///
+ /// # Arguments
+ ///
+ /// Given a function call like `Foo::bar::<T1,...Tn>(...)`:
+ ///
+ /// * `self`: the surrounding `FnCtxt` (!)
+ /// * `span`: the span of the call, excluding arguments (`Foo::bar::<T1, ...Tn>`)
+ /// * `method_name`: the identifier of the function within the container type (`bar`)
+ /// * `self_ty`: the type to search within (`Foo`)
+ /// * `self_ty_span` the span for the type being searched within (span of `Foo`)
+ /// * `expr_id`: the [`hir::HirId`] of the expression composing the entire call
+ #[instrument(level = "debug", skip(self), ret)]
+ pub fn resolve_fully_qualified_call(
+ &self,
+ span: Span,
+ method_name: Ident,
+ self_ty: Ty<'tcx>,
+ self_ty_span: Span,
+ expr_id: hir::HirId,
+ ) -> Result<(DefKind, DefId), MethodError<'tcx>> {
+ let tcx = self.tcx;
+
+ // Check if we have an enum variant.
+ if let ty::Adt(adt_def, _) = self_ty.kind() {
+ if adt_def.is_enum() {
+ let variant_def = adt_def
+ .variants()
+ .iter()
+ .find(|vd| tcx.hygienic_eq(method_name, vd.ident(tcx), adt_def.did()));
+ if let Some(variant_def) = variant_def {
+ // Braced variants generate unusable names in value namespace (reserved for
+ // possible future use), so variants resolved as associated items may refer to
+ // them as well. It's ok to use the variant's id as a ctor id since an
+ // error will be reported on any use of such resolution anyway.
+ let ctor_def_id = variant_def.ctor_def_id.unwrap_or(variant_def.def_id);
+ tcx.check_stability(ctor_def_id, Some(expr_id), span, Some(method_name.span));
+ return Ok((
+ DefKind::Ctor(CtorOf::Variant, variant_def.ctor_kind),
+ ctor_def_id,
+ ));
+ }
+ }
+ }
+
+ let pick = self.probe_for_name(
+ span,
+ probe::Mode::Path,
+ method_name,
+ IsSuggestion(false),
+ self_ty,
+ expr_id,
+ ProbeScope::TraitsInScope,
+ )?;
+
+ self.lint_fully_qualified_call_from_2018(
+ span,
+ method_name,
+ self_ty,
+ self_ty_span,
+ expr_id,
+ &pick,
+ );
+
+ debug!(?pick);
+ {
+ let mut typeck_results = self.typeck_results.borrow_mut();
+ let used_trait_imports = Lrc::get_mut(&mut typeck_results.used_trait_imports).unwrap();
+ for import_id in pick.import_ids {
+ debug!(used_trait_import=?import_id);
+ used_trait_imports.insert(import_id);
+ }
+ }
+
+ let def_kind = pick.item.kind.as_def_kind();
+ tcx.check_stability(pick.item.def_id, Some(expr_id), span, Some(method_name.span));
+ Ok((def_kind, pick.item.def_id))
+ }
+
+ /// Finds item with name `item_name` defined in impl/trait `def_id`
+ /// and return it, or `None`, if no such item was defined there.
+ pub fn associated_value(&self, def_id: DefId, item_name: Ident) -> Option<ty::AssocItem> {
+ self.tcx
+ .associated_items(def_id)
+ .find_by_name_and_namespace(self.tcx, item_name, Namespace::ValueNS, def_id)
+ .copied()
+ }
+}
diff --git a/compiler/rustc_typeck/src/check/method/prelude2021.rs b/compiler/rustc_hir_typeck/src/method/prelude2021.rs
index 7c68d9304..3c98a2aa3 100644
--- a/compiler/rustc_typeck/src/check/method/prelude2021.rs
+++ b/compiler/rustc_hir_typeck/src/method/prelude2021.rs
@@ -1,3 +1,7 @@
+use crate::{
+ method::probe::{self, Pick},
+ FnCtxt,
+};
use hir::def_id::DefId;
use hir::HirId;
use hir::ItemKind;
@@ -12,11 +16,6 @@ use rustc_span::symbol::{sym, Ident};
use rustc_span::Span;
use rustc_trait_selection::infer::InferCtxtExt;
-use crate::check::{
- method::probe::{self, Pick},
- FnCtxt,
-};
-
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub(super) fn lint_dot_call_from_2018(
&self,
@@ -82,14 +81,10 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
prelude_or_array_lint,
self_expr.hir_id,
self_expr.span,
+ format!("trait method `{}` will become ambiguous in Rust 2021", segment.ident.name),
|lint| {
let sp = self_expr.span;
- let mut lint = lint.build(&format!(
- "trait method `{}` will become ambiguous in Rust 2021",
- segment.ident.name
- ));
-
let derefs = "*".repeat(pick.autoderefs);
let autoref = match pick.autoref_or_ptr_adjustment {
@@ -133,7 +128,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
);
}
- lint.emit();
+ lint
},
);
} else {
@@ -143,6 +138,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
prelude_or_array_lint,
call_expr.hir_id,
call_expr.span,
+ format!("trait method `{}` will become ambiguous in Rust 2021", segment.ident.name),
|lint| {
let sp = call_expr.span;
let trait_name = self.trait_path_or_bare_name(
@@ -151,16 +147,10 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pick.item.container_id(self.tcx),
);
- let mut lint = lint.build(&format!(
- "trait method `{}` will become ambiguous in Rust 2021",
- segment.ident.name
- ));
-
let (self_adjusted, precise) = self.adjust_expr(pick, self_expr, sp);
if precise {
let args = args
.iter()
- .skip(1)
.map(|arg| {
let span = arg.span.find_ancestor_inside(sp).unwrap_or_default();
format!(
@@ -203,7 +193,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
);
}
- lint.emit();
+ lint
},
);
}
@@ -258,15 +248,23 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
return;
}
- self.tcx.struct_span_lint_hir(RUST_2021_PRELUDE_COLLISIONS, expr_id, span, |lint| {
- // "type" refers to either a type or, more likely, a trait from which
- // the associated function or method is from.
- let container_id = pick.item.container_id(self.tcx);
- let trait_path = self.trait_path_or_bare_name(span, expr_id, container_id);
- let trait_generics = self.tcx.generics_of(container_id);
-
- let trait_name =
- if trait_generics.params.len() <= trait_generics.has_self as usize {
+ self.tcx.struct_span_lint_hir(
+ RUST_2021_PRELUDE_COLLISIONS,
+ expr_id,
+ span,
+ format!(
+ "trait-associated function `{}` will become ambiguous in Rust 2021",
+ method_name.name
+ ),
+ |lint| {
+ // "type" refers to either a type or, more likely, a trait from which
+ // the associated function or method is from.
+ let container_id = pick.item.container_id(self.tcx);
+ let trait_path = self.trait_path_or_bare_name(span, expr_id, container_id);
+ let trait_generics = self.tcx.generics_of(container_id);
+
+ let trait_name = if trait_generics.params.len() <= trait_generics.has_self as usize
+ {
trait_path
} else {
let counts = trait_generics.own_counts();
@@ -283,44 +281,42 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
)
};
- let mut lint = lint.build(&format!(
- "trait-associated function `{}` will become ambiguous in Rust 2021",
- method_name.name
- ));
-
- let mut self_ty_name = self_ty_span
- .find_ancestor_inside(span)
- .and_then(|span| self.sess().source_map().span_to_snippet(span).ok())
- .unwrap_or_else(|| self_ty.to_string());
-
- // Get the number of generics the self type has (if an Adt) unless we can determine that
- // the user has written the self type with generics already which we (naively) do by looking
- // for a "<" in `self_ty_name`.
- if !self_ty_name.contains('<') {
- if let Adt(def, _) = self_ty.kind() {
- let generics = self.tcx.generics_of(def.did());
- if !generics.params.is_empty() {
- let counts = generics.own_counts();
- self_ty_name += &format!(
- "<{}>",
- std::iter::repeat("'_")
- .take(counts.lifetimes)
- .chain(std::iter::repeat("_").take(counts.types + counts.consts))
- .collect::<Vec<_>>()
- .join(", ")
- );
+ let mut self_ty_name = self_ty_span
+ .find_ancestor_inside(span)
+ .and_then(|span| self.sess().source_map().span_to_snippet(span).ok())
+ .unwrap_or_else(|| self_ty.to_string());
+
+ // Get the number of generics the self type has (if an Adt) unless we can determine that
+ // the user has written the self type with generics already which we (naively) do by looking
+ // for a "<" in `self_ty_name`.
+ if !self_ty_name.contains('<') {
+ if let Adt(def, _) = self_ty.kind() {
+ let generics = self.tcx.generics_of(def.did());
+ if !generics.params.is_empty() {
+ let counts = generics.own_counts();
+ self_ty_name += &format!(
+ "<{}>",
+ std::iter::repeat("'_")
+ .take(counts.lifetimes)
+ .chain(
+ std::iter::repeat("_").take(counts.types + counts.consts)
+ )
+ .collect::<Vec<_>>()
+ .join(", ")
+ );
+ }
}
}
- }
- lint.span_suggestion(
- span,
- "disambiguate the associated function",
- format!("<{} as {}>::{}", self_ty_name, trait_name, method_name.name,),
- Applicability::MachineApplicable,
- );
-
- lint.emit();
- });
+ lint.span_suggestion(
+ span,
+ "disambiguate the associated function",
+ format!("<{} as {}>::{}", self_ty_name, trait_name, method_name.name,),
+ Applicability::MachineApplicable,
+ );
+
+ lint
+ },
+ );
}
fn trait_path_or_bare_name(
diff --git a/compiler/rustc_typeck/src/check/method/probe.rs b/compiler/rustc_hir_typeck/src/method/probe.rs
index efe15fec7..28aa2302f 100644
--- a/compiler/rustc_typeck/src/check/method/probe.rs
+++ b/compiler/rustc_hir_typeck/src/method/probe.rs
@@ -3,14 +3,12 @@ use super::CandidateSource;
use super::MethodError;
use super::NoMatchData;
-use crate::check::FnCtxt;
use crate::errors::MethodCallOnUnknownType;
-use crate::hir::def::DefKind;
-use crate::hir::def_id::DefId;
-
+use crate::FnCtxt;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::Applicability;
use rustc_hir as hir;
+use rustc_hir::def::DefKind;
use rustc_hir::def::Namespace;
use rustc_infer::infer::canonical::OriginalQueryValues;
use rustc_infer::infer::canonical::{Canonical, QueryResponse};
@@ -19,10 +17,11 @@ use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
use rustc_middle::middle::stability;
use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
-use rustc_middle::ty::subst::{InternalSubsts, Subst, SubstsRef};
use rustc_middle::ty::GenericParamDefKind;
use rustc_middle::ty::{self, ParamEnvAnd, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitable};
+use rustc_middle::ty::{InternalSubsts, SubstsRef};
use rustc_session::lint;
+use rustc_span::def_id::DefId;
use rustc_span::def_id::LocalDefId;
use rustc_span::lev_distance::{
find_best_match_for_name_with_substrings, lev_distance_with_substrings,
@@ -253,7 +252,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
/// would result in an error (basically, the same criteria we
/// would use to decide if a method is a plausible fit for
/// ambiguity purposes).
- #[instrument(level = "debug", skip(self, scope_expr_id))]
+ #[instrument(level = "debug", skip(self, candidate_filter))]
pub fn probe_for_return_type(
&self,
span: Span,
@@ -261,11 +260,8 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
return_type: Ty<'tcx>,
self_ty: Ty<'tcx>,
scope_expr_id: hir::HirId,
+ candidate_filter: impl Fn(&ty::AssocItem) -> bool,
) -> Vec<ty::AssocItem> {
- debug!(
- "probe(self_ty={:?}, return_type={}, scope_expr_id={})",
- self_ty, return_type, scope_expr_id
- );
let method_names = self
.probe_op(
span,
@@ -276,7 +272,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
self_ty,
scope_expr_id,
ProbeScope::AllTraits,
- |probe_cx| Ok(probe_cx.candidate_method_names()),
+ |probe_cx| Ok(probe_cx.candidate_method_names(candidate_filter)),
)
.unwrap_or_default();
method_names
@@ -299,7 +295,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
.collect()
}
- #[instrument(level = "debug", skip(self, scope_expr_id))]
+ #[instrument(level = "debug", skip(self))]
pub fn probe_for_name(
&self,
span: Span,
@@ -310,10 +306,6 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
scope_expr_id: hir::HirId,
scope: ProbeScope,
) -> PickResult<'tcx> {
- debug!(
- "probe(self_ty={:?}, item_name={}, scope_expr_id={})",
- self_ty, item_name, scope_expr_id
- );
self.probe_op(
span,
mode,
@@ -417,9 +409,8 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
lint::builtin::TYVAR_BEHIND_RAW_POINTER,
scope_expr_id,
span,
- |lint| {
- lint.build("type annotations needed").emit();
- },
+ "type annotations needed",
+ |lint| lint,
);
}
} else {
@@ -481,69 +472,65 @@ fn method_autoderef_steps<'tcx>(
) -> MethodAutoderefStepsResult<'tcx> {
debug!("method_autoderef_steps({:?})", goal);
- tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
- let ParamEnvAnd { param_env, value: self_ty } = goal;
-
- let mut autoderef =
- Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty, DUMMY_SP)
- .include_raw_pointers()
- .silence_errors();
- let mut reached_raw_pointer = false;
- let mut steps: Vec<_> = autoderef
- .by_ref()
- .map(|(ty, d)| {
- let step = CandidateStep {
- self_ty: infcx.make_query_response_ignoring_pending_obligations(
- inference_vars.clone(),
- ty,
- ),
- autoderefs: d,
- from_unsafe_deref: reached_raw_pointer,
- unsize: false,
- };
- if let ty::RawPtr(_) = ty.kind() {
- // all the subsequent steps will be from_unsafe_deref
- reached_raw_pointer = true;
- }
- step
- })
- .collect();
-
- let final_ty = autoderef.final_ty(true);
- let opt_bad_ty = match final_ty.kind() {
- ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
- reached_raw_pointer,
- ty: infcx
- .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
- }),
- ty::Array(elem_ty, _) => {
- let dereferences = steps.len() - 1;
-
- steps.push(CandidateStep {
- self_ty: infcx.make_query_response_ignoring_pending_obligations(
- inference_vars,
- infcx.tcx.mk_slice(*elem_ty),
- ),
- autoderefs: dereferences,
- // this could be from an unsafe deref if we had
- // a *mut/const [T; N]
- from_unsafe_deref: reached_raw_pointer,
- unsize: true,
- });
-
- None
+ let (ref infcx, goal, inference_vars) = tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &goal);
+ let ParamEnvAnd { param_env, value: self_ty } = goal;
+
+ let mut autoderef =
+ Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty, DUMMY_SP)
+ .include_raw_pointers()
+ .silence_errors();
+ let mut reached_raw_pointer = false;
+ let mut steps: Vec<_> = autoderef
+ .by_ref()
+ .map(|(ty, d)| {
+ let step = CandidateStep {
+ self_ty: infcx
+ .make_query_response_ignoring_pending_obligations(inference_vars.clone(), ty),
+ autoderefs: d,
+ from_unsafe_deref: reached_raw_pointer,
+ unsize: false,
+ };
+ if let ty::RawPtr(_) = ty.kind() {
+ // all the subsequent steps will be from_unsafe_deref
+ reached_raw_pointer = true;
}
- _ => None,
- };
-
- debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
+ step
+ })
+ .collect();
+
+ let final_ty = autoderef.final_ty(true);
+ let opt_bad_ty = match final_ty.kind() {
+ ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
+ reached_raw_pointer,
+ ty: infcx.make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
+ }),
+ ty::Array(elem_ty, _) => {
+ let dereferences = steps.len() - 1;
+
+ steps.push(CandidateStep {
+ self_ty: infcx.make_query_response_ignoring_pending_obligations(
+ inference_vars,
+ infcx.tcx.mk_slice(*elem_ty),
+ ),
+ autoderefs: dereferences,
+ // this could be from an unsafe deref if we had
+ // a *mut/const [T; N]
+ from_unsafe_deref: reached_raw_pointer,
+ unsize: true,
+ });
- MethodAutoderefStepsResult {
- steps: tcx.arena.alloc_from_iter(steps),
- opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
- reached_recursion_limit: autoderef.reached_recursion_limit(),
+ None
}
- })
+ _ => None,
+ };
+
+ debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
+
+ MethodAutoderefStepsResult {
+ steps: tcx.arena.alloc_from_iter(steps),
+ opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
+ reached_recursion_limit: autoderef.reached_recursion_limit(),
+ }
}
impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
@@ -980,12 +967,16 @@ impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
}
}
- fn candidate_method_names(&self) -> Vec<Ident> {
+ fn candidate_method_names(
+ &self,
+ candidate_filter: impl Fn(&ty::AssocItem) -> bool,
+ ) -> Vec<Ident> {
let mut set = FxHashSet::default();
let mut names: Vec<_> = self
.inherent_candidates
.iter()
.chain(&self.extension_candidates)
+ .filter(|candidate| candidate_filter(&candidate.item))
.filter(|candidate| {
if let Some(return_ty) = self.return_type {
self.matches_return_type(&candidate.item, None, return_ty)
@@ -1366,24 +1357,24 @@ impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
stable_pick: &Pick<'_>,
unstable_candidates: &[(Candidate<'tcx>, Symbol)],
) {
+ let def_kind = stable_pick.item.kind.as_def_kind();
self.tcx.struct_span_lint_hir(
lint::builtin::UNSTABLE_NAME_COLLISIONS,
self.scope_expr_id,
self.span,
+ format!(
+ "{} {} with this name may be added to the standard library in the future",
+ def_kind.article(),
+ def_kind.descr(stable_pick.item.def_id),
+ ),
|lint| {
- let def_kind = stable_pick.item.kind.as_def_kind();
- let mut diag = lint.build(&format!(
- "{} {} with this name may be added to the standard library in the future",
- def_kind.article(),
- def_kind.descr(stable_pick.item.def_id),
- ));
match (stable_pick.item.kind, stable_pick.item.container) {
(ty::AssocKind::Fn, _) => {
// FIXME: This should be a `span_suggestion` instead of `help`
// However `self.span` only
// highlights the method name, so we can't use it. Also consider reusing
// the code from `report_method_error()`.
- diag.help(&format!(
+ lint.help(&format!(
"call with fully qualified syntax `{}(...)` to keep using the current \
method",
self.tcx.def_path_str(stable_pick.item.def_id),
@@ -1391,7 +1382,7 @@ impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
}
(ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer) => {
let def_id = stable_pick.item.container_id(self.tcx);
- diag.span_suggestion(
+ lint.span_suggestion(
self.span,
"use the fully qualified path to the associated const",
format!(
@@ -1407,7 +1398,7 @@ impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
}
if self.tcx.sess.is_nightly_build() {
for (candidate, feature) in unstable_candidates {
- diag.help(&format!(
+ lint.help(&format!(
"add `#![feature({})]` to the crate attributes to enable `{}`",
feature,
self.tcx.def_path_str(candidate.item.def_id),
@@ -1415,7 +1406,7 @@ impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
}
}
- diag.emit();
+ lint
},
);
}
@@ -1514,8 +1505,11 @@ impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
// Convert the bounds into obligations.
- let impl_obligations =
- traits::predicates_for_generics(cause, self.param_env, impl_bounds);
+ let impl_obligations = traits::predicates_for_generics(
+ move |_, _| cause.clone(),
+ self.param_env,
+ impl_bounds,
+ );
let candidate_obligations = impl_obligations
.chain(norm_obligations.into_iter())
@@ -1700,7 +1694,7 @@ impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
pcx.allow_similar_names = true;
pcx.assemble_inherent_candidates();
- let method_names = pcx.candidate_method_names();
+ let method_names = pcx.candidate_method_names(|_| true);
pcx.allow_similar_names = false;
let applicable_close_candidates: Vec<ty::AssocItem> = method_names
.iter()
diff --git a/compiler/rustc_typeck/src/check/method/suggest.rs b/compiler/rustc_hir_typeck/src/method/suggest.rs
index c92b93cbc..6c21ed902 100644
--- a/compiler/rustc_typeck/src/check/method/suggest.rs
+++ b/compiler/rustc_hir_typeck/src/method/suggest.rs
@@ -1,7 +1,9 @@
//! Give useful errors and suggestions to users when an item can't be
//! found or is otherwise invalid.
-use crate::check::FnCtxt;
+use crate::errors;
+use crate::FnCtxt;
+use rustc_ast::ast::Mutability;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::{
pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed,
@@ -16,12 +18,12 @@ use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKi
use rustc_middle::traits::util::supertraits;
use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
use rustc_middle::ty::print::with_crate_prefix;
-use rustc_middle::ty::ToPolyTraitRef;
use rustc_middle::ty::{self, DefIdTree, ToPredicate, Ty, TyCtxt, TypeVisitable};
+use rustc_middle::ty::{IsSuggestable, ToPolyTraitRef};
use rustc_span::symbol::{kw, sym, Ident};
use rustc_span::Symbol;
use rustc_span::{lev_distance, source_map, ExpnKind, FileName, MacroKind, Span};
-use rustc_trait_selection::traits::error_reporting::on_unimplemented::InferCtxtExt as _;
+use rustc_trait_selection::traits::error_reporting::on_unimplemented::TypeErrCtxtExt as _;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
use rustc_trait_selection::traits::{
FulfillmentError, Obligation, ObligationCause, ObligationCauseCode, OnUnimplementedNote,
@@ -30,8 +32,8 @@ use rustc_trait_selection::traits::{
use std::cmp::Ordering;
use std::iter;
-use super::probe::{Mode, ProbeScope};
-use super::{super::suggest_call_constructor, CandidateSource, MethodError, NoMatchData};
+use super::probe::{AutorefOrPtrAdjustment, IsSuggestion, Mode, ProbeScope};
+use super::{CandidateSource, MethodError, NoMatchData};
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
fn is_fn_ty(&self, ty: Ty<'tcx>, span: Span) -> bool {
@@ -95,7 +97,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
item_name: Ident,
source: SelfSource<'tcx>,
error: MethodError<'tcx>,
- args: Option<&'tcx [hir::Expr<'tcx>]>,
+ args: Option<(&'tcx hir::Expr<'tcx>, &'tcx [hir::Expr<'tcx>])>,
) -> Option<DiagnosticBuilder<'_, ErrorGuaranteed>> {
// Avoid suggestions when we don't know what's going on.
if rcvr_ty.references_error() {
@@ -104,7 +106,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let report_candidates = |span: Span,
err: &mut Diagnostic,
- mut sources: Vec<CandidateSource>,
+ sources: &mut Vec<CandidateSource>,
sugg_span: Span| {
sources.sort();
sources.dedup();
@@ -246,7 +248,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
match error {
MethodError::NoMatch(NoMatchData {
- static_candidates: static_sources,
+ static_candidates: mut static_sources,
unsatisfied_predicates,
out_of_scope_traits,
lev_candidate,
@@ -270,7 +272,9 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
};
- if self.suggest_constraining_numerical_ty(
+ if self.suggest_wrapping_range_with_parens(
+ tcx, actual, source, span, item_name, &ty_str,
+ ) || self.suggest_constraining_numerical_ty(
tcx, actual, source, span, item_kind, item_name, &ty_str,
) {
return None;
@@ -363,44 +367,21 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
);
}
- if self.is_fn_ty(rcvr_ty, span) {
- if let SelfSource::MethodCall(expr) = source {
- let suggest = if let ty::FnDef(def_id, _) = rcvr_ty.kind() {
- if let Some(local_id) = def_id.as_local() {
- let hir_id = tcx.hir().local_def_id_to_hir_id(local_id);
- let node = tcx.hir().get(hir_id);
- let fields = node.tuple_fields();
- if let Some(fields) = fields
- && let Some(DefKind::Ctor(of, _)) = self.tcx.opt_def_kind(local_id) {
- Some((fields.len(), of))
- } else {
- None
- }
- } else {
- // The logic here isn't smart but `associated_item_def_ids`
- // doesn't work nicely on local.
- if let DefKind::Ctor(of, _) = tcx.def_kind(def_id) {
- let parent_def_id = tcx.parent(*def_id);
- Some((tcx.associated_item_def_ids(parent_def_id).len(), of))
- } else {
- None
- }
- }
- } else {
- None
- };
-
- // If the function is a tuple constructor, we recommend that they call it
- if let Some((fields, kind)) = suggest {
- suggest_call_constructor(expr.span, kind, fields, &mut err);
- } else {
- // General case
- err.span_label(
- expr.span,
- "this is a function, perhaps you wish to call it",
- );
- }
- }
+ if let SelfSource::MethodCall(rcvr_expr) = source {
+ self.suggest_fn_call(&mut err, rcvr_expr, rcvr_ty, |output_ty| {
+ let call_expr = self
+ .tcx
+ .hir()
+ .expect_expr(self.tcx.hir().get_parent_node(rcvr_expr.hir_id));
+ let probe = self.lookup_probe(
+ span,
+ item_name,
+ output_ty,
+ call_expr,
+ ProbeScope::AllTraits,
+ );
+ probe.is_ok()
+ });
}
let mut custom_span_label = false;
@@ -441,9 +422,9 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
err.help(&format!("try with `{}::{}`", ty_str, item_name,));
}
- report_candidates(span, &mut err, static_sources, sugg_span);
+ report_candidates(span, &mut err, &mut static_sources, sugg_span);
} else if static_sources.len() > 1 {
- report_candidates(span, &mut err, static_sources, sugg_span);
+ report_candidates(span, &mut err, &mut static_sources, sugg_span);
}
let mut bound_spans = vec![];
@@ -560,7 +541,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
bound_spans.push((self.tcx.def_span(def.did()), msg))
}
// Point at the trait object that couldn't satisfy the bound.
- ty::Dynamic(preds, _) => {
+ ty::Dynamic(preds, _, _) => {
for pred in preds.iter() {
match pred.skip_binder() {
ty::ExistentialPredicate::Trait(tr) => bound_spans
@@ -877,8 +858,9 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// Avoid crashing.
return (None, None);
}
- let OnUnimplementedNote { message, label, .. } =
- self.on_unimplemented_note(trait_ref, &obligation);
+ let OnUnimplementedNote { message, label, .. } = self
+ .err_ctxt()
+ .on_unimplemented_note(trait_ref, &obligation);
(message, label)
})
.unwrap_or((None, None))
@@ -904,7 +886,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
}
- let label_span_not_found = |err: &mut DiagnosticBuilder<'_, _>| {
+ let label_span_not_found = |err: &mut Diagnostic| {
if unsatisfied_predicates.is_empty() {
err.span_label(span, format!("{item_kind} not found in `{ty_str}`"));
let is_string_or_ref_str = match actual.kind() {
@@ -1000,9 +982,13 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
label_span_not_found(&mut err);
}
- self.check_for_field_method(&mut err, source, span, actual, item_name);
+ // Don't suggest (for example) `expr.field.method()` if `expr.method()`
+ // doesn't exist due to unsatisfied predicates.
+ if unsatisfied_predicates.is_empty() {
+ self.check_for_field_method(&mut err, source, span, actual, item_name);
+ }
- self.check_for_unwrap_self(&mut err, source, span, actual, item_name);
+ self.check_for_inner_self(&mut err, source, span, actual, item_name);
bound_spans.sort();
bound_spans.dedup();
@@ -1017,10 +1003,11 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
span,
rcvr_ty,
item_name,
- args.map(|args| args.len()),
+ args.map(|(_, args)| args.len() + 1),
source,
out_of_scope_traits,
&unsatisfied_predicates,
+ &static_sources,
unsatisfied_bounds,
);
}
@@ -1062,23 +1049,38 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// that had unsatisfied trait bounds
if unsatisfied_predicates.is_empty() {
let def_kind = lev_candidate.kind.as_def_kind();
- err.span_suggestion(
- span,
- &format!(
- "there is {} {} with a similar name",
- def_kind.article(),
- def_kind.descr(lev_candidate.def_id),
- ),
- lev_candidate.name,
- Applicability::MaybeIncorrect,
- );
+ // Methods are defined within the context of a struct and their first parameter is always self,
+ // which represents the instance of the struct the method is being called on
+ // Associated functions don’t take self as a parameter and
+ // they are not methods because they don’t have an instance of the struct to work with.
+ if def_kind == DefKind::AssocFn && lev_candidate.fn_has_self_parameter {
+ err.span_suggestion(
+ span,
+ &format!("there is a method with a similar name",),
+ lev_candidate.name,
+ Applicability::MaybeIncorrect,
+ );
+ } else {
+ err.span_suggestion(
+ span,
+ &format!(
+ "there is {} {} with a similar name",
+ def_kind.article(),
+ def_kind.descr(lev_candidate.def_id),
+ ),
+ lev_candidate.name,
+ Applicability::MaybeIncorrect,
+ );
+ }
}
}
+ self.check_for_deref_method(&mut err, source, rcvr_ty, item_name);
+
return Some(err);
}
- MethodError::Ambiguity(sources) => {
+ MethodError::Ambiguity(mut sources) => {
let mut err = struct_span_err!(
self.sess(),
item_name.span,
@@ -1087,7 +1089,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
);
err.span_label(item_name.span, format!("multiple `{}` found", item_name));
- report_candidates(span, &mut err, sources, sugg_span);
+ report_candidates(span, &mut err, &mut sources, sugg_span);
err.emit();
}
@@ -1150,7 +1152,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
rcvr_ty: Ty<'tcx>,
expr: &hir::Expr<'_>,
item_name: Ident,
- err: &mut DiagnosticBuilder<'tcx, ErrorGuaranteed>,
+ err: &mut Diagnostic,
) -> bool {
let tcx = self.tcx;
let field_receiver = self.autoderef(span, rcvr_ty).find_map(|(ty, _)| match ty.kind() {
@@ -1165,7 +1167,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
_ => None,
});
if let Some((field, field_ty)) = field_receiver {
- let scope = tcx.parent_module(self.body_id).to_def_id();
+ let scope = tcx.parent_module(self.body_id);
let is_accessible = field.vis.is_accessible_from(scope, tcx);
if is_accessible {
@@ -1204,6 +1206,89 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
false
}
+ /// Suggest possible range with adding parentheses, for example:
+ /// when encountering `0..1.map(|i| i + 1)` suggest `(0..1).map(|i| i + 1)`.
+ fn suggest_wrapping_range_with_parens(
+ &self,
+ tcx: TyCtxt<'tcx>,
+ actual: Ty<'tcx>,
+ source: SelfSource<'tcx>,
+ span: Span,
+ item_name: Ident,
+ ty_str: &str,
+ ) -> bool {
+ if let SelfSource::MethodCall(expr) = source {
+ for (_, parent) in tcx.hir().parent_iter(expr.hir_id).take(5) {
+ if let Node::Expr(parent_expr) = parent {
+ let lang_item = match parent_expr.kind {
+ ExprKind::Struct(ref qpath, _, _) => match **qpath {
+ QPath::LangItem(LangItem::Range, ..) => Some(LangItem::Range),
+ QPath::LangItem(LangItem::RangeTo, ..) => Some(LangItem::RangeTo),
+ QPath::LangItem(LangItem::RangeToInclusive, ..) => {
+ Some(LangItem::RangeToInclusive)
+ }
+ _ => None,
+ },
+ ExprKind::Call(ref func, _) => match func.kind {
+ // `..=` desugars into `::std::ops::RangeInclusive::new(...)`.
+ ExprKind::Path(QPath::LangItem(LangItem::RangeInclusiveNew, ..)) => {
+ Some(LangItem::RangeInclusiveStruct)
+ }
+ _ => None,
+ },
+ _ => None,
+ };
+
+ if lang_item.is_none() {
+ continue;
+ }
+
+ let span_included = match parent_expr.kind {
+ hir::ExprKind::Struct(_, eps, _) => {
+ eps.len() > 0 && eps.last().map_or(false, |ep| ep.span.contains(span))
+ }
+ // `..=` desugars into `::std::ops::RangeInclusive::new(...)`.
+ hir::ExprKind::Call(ref func, ..) => func.span.contains(span),
+ _ => false,
+ };
+
+ if !span_included {
+ continue;
+ }
+
+ let range_def_id = self.tcx.require_lang_item(lang_item.unwrap(), None);
+ let range_ty =
+ self.tcx.bound_type_of(range_def_id).subst(self.tcx, &[actual.into()]);
+
+ let pick = self.probe_for_name(
+ span,
+ Mode::MethodCall,
+ item_name,
+ IsSuggestion(true),
+ range_ty,
+ expr.hir_id,
+ ProbeScope::AllTraits,
+ );
+ if pick.is_ok() {
+ let range_span = parent_expr.span.with_hi(expr.span.hi());
+ tcx.sess.emit_err(errors::MissingParentheseInRange {
+ span,
+ ty_str: ty_str.to_string(),
+ method_name: item_name.as_str().to_string(),
+ add_missing_parentheses: Some(errors::AddMissingParenthesesInRange {
+ func_name: item_name.name.as_str().to_string(),
+ left: range_span.shrink_to_lo(),
+ right: range_span.shrink_to_hi(),
+ }),
+ });
+ return true;
+ }
+ }
+ }
+ }
+ false
+ }
+
fn suggest_constraining_numerical_ty(
&self,
tcx: TyCtxt<'tcx>,
@@ -1266,7 +1351,6 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// If this is a floating point literal that ends with '.',
// get rid of it to stop this from becoming a member access.
let snippet = snippet.strip_suffix('.').unwrap_or(&snippet);
-
err.span_suggestion(
lit.span,
&format!(
@@ -1282,7 +1366,6 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// local binding
if let hir::def::Res::Local(hir_id) = path.res {
let span = tcx.hir().span(hir_id);
- let snippet = tcx.sess.source_map().span_to_snippet(span);
let filename = tcx.sess.source_map().span_to_filename(span);
let parent_node =
@@ -1292,7 +1375,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
concrete_type,
);
- match (filename, parent_node, snippet) {
+ match (filename, parent_node) {
(
FileName::Real(_),
Node::Local(hir::Local {
@@ -1300,14 +1383,14 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
ty,
..
}),
- Ok(ref snippet),
) => {
+ let type_span = ty.map(|ty| ty.span.with_lo(span.hi())).unwrap_or(span.shrink_to_hi());
err.span_suggestion(
// account for `let x: _ = 42;`
- // ^^^^
- span.to(ty.as_ref().map(|ty| ty.span).unwrap_or(span)),
+ // ^^^
+ type_span,
&msg,
- format!("{}: {}", snippet, concrete_type),
+ format!(": {concrete_type}"),
Applicability::MaybeIncorrect,
);
}
@@ -1327,55 +1410,82 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
fn check_for_field_method(
&self,
- err: &mut DiagnosticBuilder<'tcx, ErrorGuaranteed>,
+ err: &mut Diagnostic,
source: SelfSource<'tcx>,
span: Span,
actual: Ty<'tcx>,
item_name: Ident,
) {
if let SelfSource::MethodCall(expr) = source
- && let Some((fields, substs)) = self.get_field_candidates(span, actual)
+ && let mod_id = self.tcx.parent_module(expr.hir_id).to_def_id()
+ && let Some((fields, substs)) =
+ self.get_field_candidates_considering_privacy(span, actual, mod_id)
{
let call_expr = self.tcx.hir().expect_expr(self.tcx.hir().get_parent_node(expr.hir_id));
- for candidate_field in fields.iter() {
- if let Some(field_path) = self.check_for_nested_field_satisfying(
- span,
- &|_, field_ty| {
- self.lookup_probe(
- span,
- item_name,
- field_ty,
- call_expr,
- ProbeScope::AllTraits,
- )
- .is_ok()
- },
- candidate_field,
- substs,
- vec![],
- self.tcx.parent_module(expr.hir_id).to_def_id(),
- ) {
- let field_path_str = field_path
+
+ let lang_items = self.tcx.lang_items();
+ let never_mention_traits = [
+ lang_items.clone_trait(),
+ lang_items.deref_trait(),
+ lang_items.deref_mut_trait(),
+ self.tcx.get_diagnostic_item(sym::AsRef),
+ self.tcx.get_diagnostic_item(sym::AsMut),
+ self.tcx.get_diagnostic_item(sym::Borrow),
+ self.tcx.get_diagnostic_item(sym::BorrowMut),
+ ];
+ let candidate_fields: Vec<_> = fields
+ .filter_map(|candidate_field| {
+ self.check_for_nested_field_satisfying(
+ span,
+ &|_, field_ty| {
+ self.lookup_probe(
+ span,
+ item_name,
+ field_ty,
+ call_expr,
+ ProbeScope::TraitsInScope,
+ )
+ .map_or(false, |pick| {
+ !never_mention_traits
+ .iter()
+ .flatten()
+ .any(|def_id| self.tcx.parent(pick.item.def_id) == *def_id)
+ })
+ },
+ candidate_field,
+ substs,
+ vec![],
+ mod_id,
+ )
+ })
+ .map(|field_path| {
+ field_path
.iter()
.map(|id| id.name.to_ident_string())
.collect::<Vec<String>>()
- .join(".");
- debug!("field_path_str: {:?}", field_path_str);
-
- err.span_suggestion_verbose(
- item_name.span.shrink_to_lo(),
- "one of the expressions' fields has a method of the same name",
- format!("{field_path_str}."),
- Applicability::MaybeIncorrect,
- );
- }
+ .join(".")
+ })
+ .collect();
+
+ let len = candidate_fields.len();
+ if len > 0 {
+ err.span_suggestions(
+ item_name.span.shrink_to_lo(),
+ format!(
+ "{} of the expressions' fields {} a method of the same name",
+ if len > 1 { "some" } else { "one" },
+ if len > 1 { "have" } else { "has" },
+ ),
+ candidate_fields.iter().map(|path| format!("{path}.")),
+ Applicability::MaybeIncorrect,
+ );
}
}
}
- fn check_for_unwrap_self(
+ fn check_for_inner_self(
&self,
- err: &mut DiagnosticBuilder<'tcx, ErrorGuaranteed>,
+ err: &mut Diagnostic,
source: SelfSource<'tcx>,
span: Span,
actual: Ty<'tcx>,
@@ -1386,81 +1496,168 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let call_expr = tcx.hir().expect_expr(tcx.hir().get_parent_node(expr.hir_id));
let ty::Adt(kind, substs) = actual.kind() else { return; };
- if !kind.is_enum() {
- return;
- }
+ match kind.adt_kind() {
+ ty::AdtKind::Enum => {
+ let matching_variants: Vec<_> = kind
+ .variants()
+ .iter()
+ .flat_map(|variant| {
+ let [field] = &variant.fields[..] else { return None; };
+ let field_ty = field.ty(tcx, substs);
+
+ // Skip `_`, since that'll just lead to ambiguity.
+ if self.resolve_vars_if_possible(field_ty).is_ty_var() {
+ return None;
+ }
- let matching_variants: Vec<_> = kind
- .variants()
- .iter()
- .flat_map(|variant| {
- let [field] = &variant.fields[..] else { return None; };
- let field_ty = field.ty(tcx, substs);
+ self.lookup_probe(
+ span,
+ item_name,
+ field_ty,
+ call_expr,
+ ProbeScope::TraitsInScope,
+ )
+ .ok()
+ .map(|pick| (variant, field, pick))
+ })
+ .collect();
+
+ let ret_ty_matches = |diagnostic_item| {
+ if let Some(ret_ty) = self
+ .ret_coercion
+ .as_ref()
+ .map(|c| self.resolve_vars_if_possible(c.borrow().expected_ty()))
+ && let ty::Adt(kind, _) = ret_ty.kind()
+ && tcx.get_diagnostic_item(diagnostic_item) == Some(kind.did())
+ {
+ true
+ } else {
+ false
+ }
+ };
- // Skip `_`, since that'll just lead to ambiguity.
- if self.resolve_vars_if_possible(field_ty).is_ty_var() {
- return None;
+ match &matching_variants[..] {
+ [(_, field, pick)] => {
+ let self_ty = field.ty(tcx, substs);
+ err.span_note(
+ tcx.def_span(pick.item.def_id),
+ &format!("the method `{item_name}` exists on the type `{self_ty}`"),
+ );
+ let (article, kind, variant, question) =
+ if tcx.is_diagnostic_item(sym::Result, kind.did()) {
+ ("a", "Result", "Err", ret_ty_matches(sym::Result))
+ } else if tcx.is_diagnostic_item(sym::Option, kind.did()) {
+ ("an", "Option", "None", ret_ty_matches(sym::Option))
+ } else {
+ return;
+ };
+ if question {
+ err.span_suggestion_verbose(
+ expr.span.shrink_to_hi(),
+ format!(
+ "use the `?` operator to extract the `{self_ty}` value, propagating \
+ {article} `{kind}::{variant}` value to the caller"
+ ),
+ "?",
+ Applicability::MachineApplicable,
+ );
+ } else {
+ err.span_suggestion_verbose(
+ expr.span.shrink_to_hi(),
+ format!(
+ "consider using `{kind}::expect` to unwrap the `{self_ty}` value, \
+ panicking if the value is {article} `{kind}::{variant}`"
+ ),
+ ".expect(\"REASON\")",
+ Applicability::HasPlaceholders,
+ );
+ }
+ }
+ // FIXME(compiler-errors): Support suggestions for other matching enum variants
+ _ => {}
}
-
- self.lookup_probe(span, item_name, field_ty, call_expr, ProbeScope::AllTraits)
- .ok()
- .map(|pick| (variant, field, pick))
- })
- .collect();
-
- let ret_ty_matches = |diagnostic_item| {
- if let Some(ret_ty) = self
- .ret_coercion
- .as_ref()
- .map(|c| self.resolve_vars_if_possible(c.borrow().expected_ty()))
- && let ty::Adt(kind, _) = ret_ty.kind()
- && tcx.get_diagnostic_item(diagnostic_item) == Some(kind.did())
- {
- true
- } else {
- false
}
- };
+ // Target wrapper types - types that wrap or pretend to wrap another type,
+ // perhaps this inner type is meant to be called?
+ ty::AdtKind::Struct | ty::AdtKind::Union => {
+ let [first] = ***substs else { return; };
+ let ty::GenericArgKind::Type(ty) = first.unpack() else { return; };
+ let Ok(pick) = self.lookup_probe(
+ span,
+ item_name,
+ ty,
+ call_expr,
+ ProbeScope::TraitsInScope,
+ ) else { return; };
- match &matching_variants[..] {
- [(_, field, pick)] => {
- let self_ty = field.ty(tcx, substs);
- err.span_note(
- tcx.def_span(pick.item.def_id),
- &format!("the method `{item_name}` exists on the type `{self_ty}`"),
- );
- let (article, kind, variant, question) =
- if Some(kind.did()) == tcx.get_diagnostic_item(sym::Result) {
- ("a", "Result", "Err", ret_ty_matches(sym::Result))
- } else if Some(kind.did()) == tcx.get_diagnostic_item(sym::Option) {
- ("an", "Option", "None", ret_ty_matches(sym::Option))
- } else {
- return;
+ let name = self.ty_to_value_string(actual);
+ let inner_id = kind.did();
+ let mutable = if let Some(AutorefOrPtrAdjustment::Autoref { mutbl, .. }) =
+ pick.autoref_or_ptr_adjustment
+ {
+ Some(mutbl)
+ } else {
+ None
+ };
+
+ if tcx.is_diagnostic_item(sym::LocalKey, inner_id) {
+ err.help("use `with` or `try_with` to access thread local storage");
+ } else if Some(kind.did()) == tcx.lang_items().maybe_uninit() {
+ err.help(format!(
+ "if this `{name}` has been initialized, \
+ use one of the `assume_init` methods to access the inner value"
+ ));
+ } else if tcx.is_diagnostic_item(sym::RefCell, inner_id) {
+ let (suggestion, borrow_kind, panic_if) = match mutable {
+ Some(Mutability::Not) => (".borrow()", "borrow", "a mutable borrow exists"),
+ Some(Mutability::Mut) => {
+ (".borrow_mut()", "mutably borrow", "any borrows exist")
+ }
+ None => return,
};
- if question {
err.span_suggestion_verbose(
expr.span.shrink_to_hi(),
format!(
- "use the `?` operator to extract the `{self_ty}` value, propagating \
- {article} `{kind}::{variant}` value to the caller"
+ "use `{suggestion}` to {borrow_kind} the `{ty}`, \
+ panicking if {panic_if}"
),
- "?",
- Applicability::MachineApplicable,
+ suggestion,
+ Applicability::MaybeIncorrect,
);
- } else {
+ } else if tcx.is_diagnostic_item(sym::Mutex, inner_id) {
err.span_suggestion_verbose(
expr.span.shrink_to_hi(),
format!(
- "consider using `{kind}::expect` to unwrap the `{self_ty}` value, \
- panicking if the value is {article} `{kind}::{variant}`"
+ "use `.lock().unwrap()` to borrow the `{ty}`, \
+ blocking the current thread until it can be acquired"
),
- ".expect(\"REASON\")",
- Applicability::HasPlaceholders,
+ ".lock().unwrap()",
+ Applicability::MaybeIncorrect,
);
- }
+ } else if tcx.is_diagnostic_item(sym::RwLock, inner_id) {
+ let (suggestion, borrow_kind) = match mutable {
+ Some(Mutability::Not) => (".read().unwrap()", "borrow"),
+ Some(Mutability::Mut) => (".write().unwrap()", "mutably borrow"),
+ None => return,
+ };
+ err.span_suggestion_verbose(
+ expr.span.shrink_to_hi(),
+ format!(
+ "use `{suggestion}` to {borrow_kind} the `{ty}`, \
+ blocking the current thread until it can be acquired"
+ ),
+ suggestion,
+ Applicability::MaybeIncorrect,
+ );
+ } else {
+ return;
+ };
+
+ err.span_note(
+ tcx.def_span(pick.item.def_id),
+ &format!("the method `{item_name}` exists on the type `{ty}`"),
+ );
}
- // FIXME(compiler-errors): Support suggestions for other matching enum variants
- _ => {}
}
}
@@ -1631,6 +1828,62 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
}
+ fn check_for_deref_method(
+ &self,
+ err: &mut Diagnostic,
+ self_source: SelfSource<'tcx>,
+ rcvr_ty: Ty<'tcx>,
+ item_name: Ident,
+ ) {
+ let SelfSource::QPath(ty) = self_source else { return; };
+ for (deref_ty, _) in self.autoderef(rustc_span::DUMMY_SP, rcvr_ty).skip(1) {
+ if let Ok(pick) = self.probe_for_name(
+ ty.span,
+ Mode::Path,
+ item_name,
+ IsSuggestion(true),
+ deref_ty,
+ ty.hir_id,
+ ProbeScope::TraitsInScope,
+ ) {
+ if deref_ty.is_suggestable(self.tcx, true)
+ // If this method receives `&self`, then the provided
+ // argument _should_ coerce, so it's valid to suggest
+ // just changing the path.
+ && pick.item.fn_has_self_parameter
+ && let Some(self_ty) =
+ self.tcx.fn_sig(pick.item.def_id).inputs().skip_binder().get(0)
+ && self_ty.is_ref()
+ {
+ let suggested_path = match deref_ty.kind() {
+ ty::Bool
+ | ty::Char
+ | ty::Int(_)
+ | ty::Uint(_)
+ | ty::Float(_)
+ | ty::Adt(_, _)
+ | ty::Str
+ | ty::Projection(_)
+ | ty::Param(_) => format!("{deref_ty}"),
+ _ => format!("<{deref_ty}>"),
+ };
+ err.span_suggestion_verbose(
+ ty.span,
+ format!("the function `{item_name}` is implemented on `{deref_ty}`"),
+ suggested_path,
+ Applicability::MaybeIncorrect,
+ );
+ } else {
+ err.span_note(
+ ty.span,
+ format!("the function `{item_name}` is implemented on `{deref_ty}`"),
+ );
+ }
+ return;
+ }
+ }
+ }
+
/// Print out the type for use in value namespace.
fn ty_to_value_string(&self, ty: Ty<'tcx>) -> String {
match ty.kind() {
@@ -1763,6 +2016,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
Option<ty::Predicate<'tcx>>,
Option<ObligationCause<'tcx>>,
)],
+ static_candidates: &[CandidateSource],
unsatisfied_bounds: bool,
) {
let mut alt_rcvr_sugg = false;
@@ -1877,6 +2131,16 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
None => true,
})
.filter(|info| {
+ // Static candidates are already implemented, and known not to work
+ // Do not suggest them again
+ static_candidates.iter().all(|sc| match *sc {
+ CandidateSource::Trait(def_id) => def_id != info.def_id,
+ CandidateSource::Impl(def_id) => {
+ self.tcx.trait_id_of_impl(def_id) != Some(info.def_id)
+ }
+ })
+ })
+ .filter(|info| {
// We approximate the coherence rules to only suggest
// traits that are legal to implement by requiring that
// either the type or trait is local. Multi-dispatch means
@@ -1999,7 +2263,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
Colon,
Nothing,
}
- let ast_generics = hir.get_generics(id.owner).unwrap();
+ let ast_generics = hir.get_generics(id.owner.def_id).unwrap();
let (sp, mut introducer) = if let Some(span) =
ast_generics.bounds_span_for_suggestions(def_id)
{
@@ -2158,6 +2422,60 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
}
+ /// issue #102320, for `unwrap_or` with closure as argument, suggest `unwrap_or_else`
+ /// FIXME: currently not working for suggesting `map_or_else`, see #102408
+ pub(crate) fn suggest_else_fn_with_closure(
+ &self,
+ err: &mut Diagnostic,
+ expr: &hir::Expr<'_>,
+ found: Ty<'tcx>,
+ expected: Ty<'tcx>,
+ ) -> bool {
+ let Some((_def_id_or_name, output, _inputs)) = self.extract_callable_info(expr, found)
+ else { return false; };
+
+ if !self.can_coerce(output, expected) {
+ return false;
+ }
+
+ let parent = self.tcx.hir().get_parent_node(expr.hir_id);
+ if let Some(Node::Expr(call_expr)) = self.tcx.hir().find(parent) &&
+ let hir::ExprKind::MethodCall(
+ hir::PathSegment { ident: method_name, .. },
+ self_expr,
+ args,
+ ..,
+ ) = call_expr.kind &&
+ let Some(self_ty) = self.typeck_results.borrow().expr_ty_opt(self_expr) {
+ let new_name = Ident {
+ name: Symbol::intern(&format!("{}_else", method_name.as_str())),
+ span: method_name.span,
+ };
+ let probe = self.lookup_probe(
+ expr.span,
+ new_name,
+ self_ty,
+ self_expr,
+ ProbeScope::TraitsInScope,
+ );
+
+ // check the method arguments number
+ if let Ok(pick) = probe &&
+ let fn_sig = self.tcx.fn_sig(pick.item.def_id) &&
+ let fn_args = fn_sig.skip_binder().inputs() &&
+ fn_args.len() == args.len() + 1 {
+ err.span_suggestion_verbose(
+ method_name.span.shrink_to_hi(),
+ &format!("try calling `{}` instead", new_name.name.as_str()),
+ "_else",
+ Applicability::MaybeIncorrect,
+ );
+ return true;
+ }
+ }
+ false
+ }
+
/// Checks whether there is a local type somewhere in the chain of
/// autoderefs of `rcvr_ty`.
fn type_derefs_to_local(
@@ -2232,7 +2550,7 @@ pub fn all_traits(tcx: TyCtxt<'_>) -> Vec<TraitInfo> {
fn print_disambiguation_help<'tcx>(
item_name: Ident,
- args: Option<&'tcx [hir::Expr<'tcx>]>,
+ args: Option<(&'tcx hir::Expr<'tcx>, &'tcx [hir::Expr<'tcx>])>,
err: &mut Diagnostic,
trait_name: String,
rcvr_ty: Ty<'_>,
@@ -2244,7 +2562,7 @@ fn print_disambiguation_help<'tcx>(
fn_has_self_parameter: bool,
) {
let mut applicability = Applicability::MachineApplicable;
- let (span, sugg) = if let (ty::AssocKind::Fn, Some(args)) = (kind, args) {
+ let (span, sugg) = if let (ty::AssocKind::Fn, Some((receiver, args))) = (kind, args) {
let args = format!(
"({}{})",
if rcvr_ty.is_region_ptr() {
@@ -2252,7 +2570,8 @@ fn print_disambiguation_help<'tcx>(
} else {
""
},
- args.iter()
+ std::iter::once(receiver)
+ .chain(args.iter())
.map(|arg| source_map.span_to_snippet(arg.span).unwrap_or_else(|_| {
applicability = Applicability::HasPlaceholders;
"_".to_owned()
diff --git a/compiler/rustc_hir_typeck/src/op.rs b/compiler/rustc_hir_typeck/src/op.rs
new file mode 100644
index 000000000..895739976
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/op.rs
@@ -0,0 +1,994 @@
+//! Code related to processing overloaded binary and unary operators.
+
+use super::method::MethodCallee;
+use super::{has_expected_num_generic_args, FnCtxt};
+use crate::Expectation;
+use rustc_ast as ast;
+use rustc_errors::{self, struct_span_err, Applicability, Diagnostic};
+use rustc_hir as hir;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::traits::ObligationCauseCode;
+use rustc_middle::ty::adjustment::{
+ Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability,
+};
+use rustc_middle::ty::print::with_no_trimmed_paths;
+use rustc_middle::ty::{self, DefIdTree, Ty, TyCtxt, TypeFolder, TypeSuperFoldable, TypeVisitable};
+use rustc_session::errors::ExprParenthesesNeeded;
+use rustc_span::source_map::Spanned;
+use rustc_span::symbol::{sym, Ident};
+use rustc_span::Span;
+use rustc_trait_selection::infer::InferCtxtExt;
+use rustc_trait_selection::traits::error_reporting::suggestions::TypeErrCtxtExt as _;
+use rustc_trait_selection::traits::{FulfillmentError, TraitEngine, TraitEngineExt};
+use rustc_type_ir::sty::TyKind::*;
+
+impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
+ /// Checks a `a <op>= b`
+ pub fn check_binop_assign(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ op: hir::BinOp,
+ lhs: &'tcx hir::Expr<'tcx>,
+ rhs: &'tcx hir::Expr<'tcx>,
+ expected: Expectation<'tcx>,
+ ) -> Ty<'tcx> {
+ let (lhs_ty, rhs_ty, return_ty) =
+ self.check_overloaded_binop(expr, lhs, rhs, op, IsAssign::Yes, expected);
+
+ let ty =
+ if !lhs_ty.is_ty_var() && !rhs_ty.is_ty_var() && is_builtin_binop(lhs_ty, rhs_ty, op) {
+ self.enforce_builtin_binop_types(lhs.span, lhs_ty, rhs.span, rhs_ty, op);
+ self.tcx.mk_unit()
+ } else {
+ return_ty
+ };
+
+ self.check_lhs_assignable(lhs, "E0067", op.span, |err| {
+ if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
+ if self
+ .lookup_op_method(
+ lhs_deref_ty,
+ Some(rhs_ty),
+ Some(rhs),
+ Op::Binary(op, IsAssign::Yes),
+ expected,
+ )
+ .is_ok()
+ {
+ // If LHS += RHS is an error, but *LHS += RHS is successful, then we will have
+ // emitted a better suggestion during error handling in check_overloaded_binop.
+ if self
+ .lookup_op_method(
+ lhs_ty,
+ Some(rhs_ty),
+ Some(rhs),
+ Op::Binary(op, IsAssign::Yes),
+ expected,
+ )
+ .is_err()
+ {
+ err.downgrade_to_delayed_bug();
+ } else {
+ // Otherwise, it's valid to suggest dereferencing the LHS here.
+ err.span_suggestion_verbose(
+ lhs.span.shrink_to_lo(),
+ "consider dereferencing the left-hand side of this operation",
+ "*",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ }
+ });
+
+ ty
+ }
+
+ /// Checks a potentially overloaded binary operator.
+ pub fn check_binop(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ op: hir::BinOp,
+ lhs_expr: &'tcx hir::Expr<'tcx>,
+ rhs_expr: &'tcx hir::Expr<'tcx>,
+ expected: Expectation<'tcx>,
+ ) -> Ty<'tcx> {
+ let tcx = self.tcx;
+
+ debug!(
+ "check_binop(expr.hir_id={}, expr={:?}, op={:?}, lhs_expr={:?}, rhs_expr={:?})",
+ expr.hir_id, expr, op, lhs_expr, rhs_expr
+ );
+
+ match BinOpCategory::from(op) {
+ BinOpCategory::Shortcircuit => {
+ // && and || are a simple case.
+ self.check_expr_coercable_to_type(lhs_expr, tcx.types.bool, None);
+ let lhs_diverges = self.diverges.get();
+ self.check_expr_coercable_to_type(rhs_expr, tcx.types.bool, None);
+
+ // Depending on the LHS' value, the RHS can never execute.
+ self.diverges.set(lhs_diverges);
+
+ tcx.types.bool
+ }
+ _ => {
+ // Otherwise, we always treat operators as if they are
+ // overloaded. This is the way to be most flexible w/r/t
+ // types that get inferred.
+ let (lhs_ty, rhs_ty, return_ty) = self.check_overloaded_binop(
+ expr,
+ lhs_expr,
+ rhs_expr,
+ op,
+ IsAssign::No,
+ expected,
+ );
+
+ // Supply type inference hints if relevant. Probably these
+ // hints should be enforced during select as part of the
+ // `consider_unification_despite_ambiguity` routine, but this
+ // more convenient for now.
+ //
+ // The basic idea is to help type inference by taking
+ // advantage of things we know about how the impls for
+ // scalar types are arranged. This is important in a
+ // scenario like `1_u32 << 2`, because it lets us quickly
+ // deduce that the result type should be `u32`, even
+ // though we don't know yet what type 2 has and hence
+ // can't pin this down to a specific impl.
+ if !lhs_ty.is_ty_var()
+ && !rhs_ty.is_ty_var()
+ && is_builtin_binop(lhs_ty, rhs_ty, op)
+ {
+ let builtin_return_ty = self.enforce_builtin_binop_types(
+ lhs_expr.span,
+ lhs_ty,
+ rhs_expr.span,
+ rhs_ty,
+ op,
+ );
+ self.demand_suptype(expr.span, builtin_return_ty, return_ty);
+ }
+
+ return_ty
+ }
+ }
+ }
+
+ fn enforce_builtin_binop_types(
+ &self,
+ lhs_span: Span,
+ lhs_ty: Ty<'tcx>,
+ rhs_span: Span,
+ rhs_ty: Ty<'tcx>,
+ op: hir::BinOp,
+ ) -> Ty<'tcx> {
+ debug_assert!(is_builtin_binop(lhs_ty, rhs_ty, op));
+
+ // Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work.
+ // (See https://github.com/rust-lang/rust/issues/57447.)
+ let (lhs_ty, rhs_ty) = (deref_ty_if_possible(lhs_ty), deref_ty_if_possible(rhs_ty));
+
+ let tcx = self.tcx;
+ match BinOpCategory::from(op) {
+ BinOpCategory::Shortcircuit => {
+ self.demand_suptype(lhs_span, tcx.types.bool, lhs_ty);
+ self.demand_suptype(rhs_span, tcx.types.bool, rhs_ty);
+ tcx.types.bool
+ }
+
+ BinOpCategory::Shift => {
+ // result type is same as LHS always
+ lhs_ty
+ }
+
+ BinOpCategory::Math | BinOpCategory::Bitwise => {
+ // both LHS and RHS and result will have the same type
+ self.demand_suptype(rhs_span, lhs_ty, rhs_ty);
+ lhs_ty
+ }
+
+ BinOpCategory::Comparison => {
+ // both LHS and RHS and result will have the same type
+ self.demand_suptype(rhs_span, lhs_ty, rhs_ty);
+ tcx.types.bool
+ }
+ }
+ }
+
+ fn check_overloaded_binop(
+ &self,
+ expr: &'tcx hir::Expr<'tcx>,
+ lhs_expr: &'tcx hir::Expr<'tcx>,
+ rhs_expr: &'tcx hir::Expr<'tcx>,
+ op: hir::BinOp,
+ is_assign: IsAssign,
+ expected: Expectation<'tcx>,
+ ) -> (Ty<'tcx>, Ty<'tcx>, Ty<'tcx>) {
+ debug!(
+ "check_overloaded_binop(expr.hir_id={}, op={:?}, is_assign={:?})",
+ expr.hir_id, op, is_assign
+ );
+
+ let lhs_ty = match is_assign {
+ IsAssign::No => {
+ // Find a suitable supertype of the LHS expression's type, by coercing to
+ // a type variable, to pass as the `Self` to the trait, avoiding invariant
+ // trait matching creating lifetime constraints that are too strict.
+ // e.g., adding `&'a T` and `&'b T`, given `&'x T: Add<&'x T>`, will result
+ // in `&'a T <: &'x T` and `&'b T <: &'x T`, instead of `'a = 'b = 'x`.
+ let lhs_ty = self.check_expr(lhs_expr);
+ let fresh_var = self.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::MiscVariable,
+ span: lhs_expr.span,
+ });
+ self.demand_coerce(lhs_expr, lhs_ty, fresh_var, Some(rhs_expr), AllowTwoPhase::No)
+ }
+ IsAssign::Yes => {
+ // rust-lang/rust#52126: We have to use strict
+ // equivalence on the LHS of an assign-op like `+=`;
+ // overwritten or mutably-borrowed places cannot be
+ // coerced to a supertype.
+ self.check_expr(lhs_expr)
+ }
+ };
+ let lhs_ty = self.resolve_vars_with_obligations(lhs_ty);
+
+ // N.B., as we have not yet type-checked the RHS, we don't have the
+ // type at hand. Make a variable to represent it. The whole reason
+ // for this indirection is so that, below, we can check the expr
+ // using this variable as the expected type, which sometimes lets
+ // us do better coercions than we would be able to do otherwise,
+ // particularly for things like `String + &String`.
+ let rhs_ty_var = self.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::MiscVariable,
+ span: rhs_expr.span,
+ });
+
+ let result = self.lookup_op_method(
+ lhs_ty,
+ Some(rhs_ty_var),
+ Some(rhs_expr),
+ Op::Binary(op, is_assign),
+ expected,
+ );
+
+ // see `NB` above
+ let rhs_ty = self.check_expr_coercable_to_type(rhs_expr, rhs_ty_var, Some(lhs_expr));
+ let rhs_ty = self.resolve_vars_with_obligations(rhs_ty);
+
+ let return_ty = match result {
+ Ok(method) => {
+ let by_ref_binop = !op.node.is_by_value();
+ if is_assign == IsAssign::Yes || by_ref_binop {
+ if let ty::Ref(region, _, mutbl) = method.sig.inputs()[0].kind() {
+ let mutbl = match mutbl {
+ hir::Mutability::Not => AutoBorrowMutability::Not,
+ hir::Mutability::Mut => AutoBorrowMutability::Mut {
+ // Allow two-phase borrows for binops in initial deployment
+ // since they desugar to methods
+ allow_two_phase_borrow: AllowTwoPhase::Yes,
+ },
+ };
+ let autoref = Adjustment {
+ kind: Adjust::Borrow(AutoBorrow::Ref(*region, mutbl)),
+ target: method.sig.inputs()[0],
+ };
+ self.apply_adjustments(lhs_expr, vec![autoref]);
+ }
+ }
+ if by_ref_binop {
+ if let ty::Ref(region, _, mutbl) = method.sig.inputs()[1].kind() {
+ let mutbl = match mutbl {
+ hir::Mutability::Not => AutoBorrowMutability::Not,
+ hir::Mutability::Mut => AutoBorrowMutability::Mut {
+ // Allow two-phase borrows for binops in initial deployment
+ // since they desugar to methods
+ allow_two_phase_borrow: AllowTwoPhase::Yes,
+ },
+ };
+ let autoref = Adjustment {
+ kind: Adjust::Borrow(AutoBorrow::Ref(*region, mutbl)),
+ target: method.sig.inputs()[1],
+ };
+ // HACK(eddyb) Bypass checks due to reborrows being in
+ // some cases applied on the RHS, on top of which we need
+ // to autoref, which is not allowed by apply_adjustments.
+ // self.apply_adjustments(rhs_expr, vec![autoref]);
+ self.typeck_results
+ .borrow_mut()
+ .adjustments_mut()
+ .entry(rhs_expr.hir_id)
+ .or_default()
+ .push(autoref);
+ }
+ }
+ self.write_method_call(expr.hir_id, method);
+
+ method.sig.output()
+ }
+ // error types are considered "builtin"
+ Err(_) if lhs_ty.references_error() || rhs_ty.references_error() => self.tcx.ty_error(),
+ Err(errors) => {
+ let (_, trait_def_id) =
+ lang_item_for_op(self.tcx, Op::Binary(op, is_assign), op.span);
+ let missing_trait = trait_def_id
+ .map(|def_id| with_no_trimmed_paths!(self.tcx.def_path_str(def_id)));
+ let (mut err, output_def_id) = match is_assign {
+ IsAssign::Yes => {
+ let mut err = struct_span_err!(
+ self.tcx.sess,
+ expr.span,
+ E0368,
+ "binary assignment operation `{}=` cannot be applied to type `{}`",
+ op.node.as_str(),
+ lhs_ty,
+ );
+ err.span_label(
+ lhs_expr.span,
+ format!("cannot use `{}=` on type `{}`", op.node.as_str(), lhs_ty),
+ );
+ self.note_unmet_impls_on_type(&mut err, errors);
+ (err, None)
+ }
+ IsAssign::No => {
+ let message = match op.node {
+ hir::BinOpKind::Add => {
+ format!("cannot add `{rhs_ty}` to `{lhs_ty}`")
+ }
+ hir::BinOpKind::Sub => {
+ format!("cannot subtract `{rhs_ty}` from `{lhs_ty}`")
+ }
+ hir::BinOpKind::Mul => {
+ format!("cannot multiply `{lhs_ty}` by `{rhs_ty}`")
+ }
+ hir::BinOpKind::Div => {
+ format!("cannot divide `{lhs_ty}` by `{rhs_ty}`")
+ }
+ hir::BinOpKind::Rem => {
+ format!("cannot mod `{lhs_ty}` by `{rhs_ty}`")
+ }
+ hir::BinOpKind::BitAnd => {
+ format!("no implementation for `{lhs_ty} & {rhs_ty}`")
+ }
+ hir::BinOpKind::BitXor => {
+ format!("no implementation for `{lhs_ty} ^ {rhs_ty}`")
+ }
+ hir::BinOpKind::BitOr => {
+ format!("no implementation for `{lhs_ty} | {rhs_ty}`")
+ }
+ hir::BinOpKind::Shl => {
+ format!("no implementation for `{lhs_ty} << {rhs_ty}`")
+ }
+ hir::BinOpKind::Shr => {
+ format!("no implementation for `{lhs_ty} >> {rhs_ty}`")
+ }
+ _ => format!(
+ "binary operation `{}` cannot be applied to type `{}`",
+ op.node.as_str(),
+ lhs_ty
+ ),
+ };
+ let output_def_id = trait_def_id.and_then(|def_id| {
+ self.tcx
+ .associated_item_def_ids(def_id)
+ .iter()
+ .find(|item_def_id| {
+ self.tcx.associated_item(*item_def_id).name == sym::Output
+ })
+ .cloned()
+ });
+ let mut err = struct_span_err!(self.tcx.sess, op.span, E0369, "{message}");
+ if !lhs_expr.span.eq(&rhs_expr.span) {
+ err.span_label(lhs_expr.span, lhs_ty.to_string());
+ err.span_label(rhs_expr.span, rhs_ty.to_string());
+ }
+ self.note_unmet_impls_on_type(&mut err, errors);
+ (err, output_def_id)
+ }
+ };
+
+ let mut suggest_deref_binop = |lhs_deref_ty: Ty<'tcx>| {
+ if self
+ .lookup_op_method(
+ lhs_deref_ty,
+ Some(rhs_ty),
+ Some(rhs_expr),
+ Op::Binary(op, is_assign),
+ expected,
+ )
+ .is_ok()
+ {
+ let msg = &format!(
+ "`{}{}` can be used on `{}` if you dereference the left-hand side",
+ op.node.as_str(),
+ match is_assign {
+ IsAssign::Yes => "=",
+ IsAssign::No => "",
+ },
+ lhs_deref_ty,
+ );
+ err.span_suggestion_verbose(
+ lhs_expr.span.shrink_to_lo(),
+ msg,
+ "*",
+ rustc_errors::Applicability::MachineApplicable,
+ );
+ }
+ };
+
+ let is_compatible = |lhs_ty, rhs_ty| {
+ self.lookup_op_method(
+ lhs_ty,
+ Some(rhs_ty),
+ Some(rhs_expr),
+ Op::Binary(op, is_assign),
+ expected,
+ )
+ .is_ok()
+ };
+
+ // We should suggest `a + b` => `*a + b` if `a` is copy, and suggest
+ // `a += b` => `*a += b` if a is a mut ref.
+ if !op.span.can_be_used_for_suggestions() {
+ // Suppress suggestions when lhs and rhs are not in the same span as the error
+ } else if is_assign == IsAssign::Yes
+ && let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty)
+ {
+ suggest_deref_binop(lhs_deref_ty);
+ } else if is_assign == IsAssign::No
+ && let Ref(_, lhs_deref_ty, _) = lhs_ty.kind()
+ {
+ if self.type_is_copy_modulo_regions(
+ self.param_env,
+ *lhs_deref_ty,
+ lhs_expr.span,
+ ) {
+ suggest_deref_binop(*lhs_deref_ty);
+ }
+ } else if self.suggest_fn_call(&mut err, lhs_expr, lhs_ty, |lhs_ty| {
+ is_compatible(lhs_ty, rhs_ty)
+ }) || self.suggest_fn_call(&mut err, rhs_expr, rhs_ty, |rhs_ty| {
+ is_compatible(lhs_ty, rhs_ty)
+ }) || self.suggest_two_fn_call(
+ &mut err,
+ rhs_expr,
+ rhs_ty,
+ lhs_expr,
+ lhs_ty,
+ |lhs_ty, rhs_ty| is_compatible(lhs_ty, rhs_ty),
+ ) {
+ // Cool
+ }
+
+ if let Some(missing_trait) = missing_trait {
+ if op.node == hir::BinOpKind::Add
+ && self.check_str_addition(
+ lhs_expr, rhs_expr, lhs_ty, rhs_ty, &mut err, is_assign, op,
+ )
+ {
+ // This has nothing here because it means we did string
+ // concatenation (e.g., "Hello " + "World!"). This means
+ // we don't want the note in the else clause to be emitted
+ } else if lhs_ty.has_non_region_param() {
+ // Look for a TraitPredicate in the Fulfillment errors,
+ // and use it to generate a suggestion.
+ //
+ // Note that lookup_op_method must be called again but
+ // with a specific rhs_ty instead of a placeholder so
+ // the resulting predicate generates a more specific
+ // suggestion for the user.
+ let errors = self
+ .lookup_op_method(
+ lhs_ty,
+ Some(rhs_ty),
+ Some(rhs_expr),
+ Op::Binary(op, is_assign),
+ expected,
+ )
+ .unwrap_err();
+ if !errors.is_empty() {
+ for error in errors {
+ if let Some(trait_pred) =
+ error.obligation.predicate.to_opt_poly_trait_pred()
+ {
+ let output_associated_item = match error.obligation.cause.code()
+ {
+ ObligationCauseCode::BinOp {
+ output_ty: Some(output_ty),
+ ..
+ } => {
+ // Make sure that we're attaching `Output = ..` to the right trait predicate
+ if let Some(output_def_id) = output_def_id
+ && let Some(trait_def_id) = trait_def_id
+ && self.tcx.parent(output_def_id) == trait_def_id
+ {
+ Some(("Output", *output_ty))
+ } else {
+ None
+ }
+ }
+ _ => None,
+ };
+
+ self.err_ctxt().suggest_restricting_param_bound(
+ &mut err,
+ trait_pred,
+ output_associated_item,
+ self.body_id,
+ );
+ }
+ }
+ } else {
+ // When we know that a missing bound is responsible, we don't show
+ // this note as it is redundant.
+ err.note(&format!(
+ "the trait `{missing_trait}` is not implemented for `{lhs_ty}`"
+ ));
+ }
+ }
+ }
+ err.emit();
+ self.tcx.ty_error()
+ }
+ };
+
+ (lhs_ty, rhs_ty, return_ty)
+ }
+
+ /// Provide actionable suggestions when trying to add two strings with incorrect types,
+ /// like `&str + &str`, `String + String` and `&str + &String`.
+ ///
+ /// If this function returns `true` it means a note was printed, so we don't need
+ /// to print the normal "implementation of `std::ops::Add` might be missing" note
+ fn check_str_addition(
+ &self,
+ lhs_expr: &'tcx hir::Expr<'tcx>,
+ rhs_expr: &'tcx hir::Expr<'tcx>,
+ lhs_ty: Ty<'tcx>,
+ rhs_ty: Ty<'tcx>,
+ err: &mut Diagnostic,
+ is_assign: IsAssign,
+ op: hir::BinOp,
+ ) -> bool {
+ let str_concat_note = "string concatenation requires an owned `String` on the left";
+ let rm_borrow_msg = "remove the borrow to obtain an owned `String`";
+ let to_owned_msg = "create an owned `String` from a string reference";
+
+ let is_std_string = |ty: Ty<'tcx>| {
+ ty.ty_adt_def()
+ .map_or(false, |ty_def| self.tcx.is_diagnostic_item(sym::String, ty_def.did()))
+ };
+
+ match (lhs_ty.kind(), rhs_ty.kind()) {
+ (&Ref(_, l_ty, _), &Ref(_, r_ty, _)) // &str or &String + &str, &String or &&str
+ if (*l_ty.kind() == Str || is_std_string(l_ty))
+ && (*r_ty.kind() == Str
+ || is_std_string(r_ty)
+ || matches!(
+ r_ty.kind(), Ref(_, inner_ty, _) if *inner_ty.kind() == Str
+ )) =>
+ {
+ if let IsAssign::No = is_assign { // Do not supply this message if `&str += &str`
+ err.span_label(op.span, "`+` cannot be used to concatenate two `&str` strings");
+ err.note(str_concat_note);
+ if let hir::ExprKind::AddrOf(_, _, lhs_inner_expr) = lhs_expr.kind {
+ err.span_suggestion_verbose(
+ lhs_expr.span.until(lhs_inner_expr.span),
+ rm_borrow_msg,
+ "",
+ Applicability::MachineApplicable
+ );
+ } else {
+ err.span_suggestion_verbose(
+ lhs_expr.span.shrink_to_hi(),
+ to_owned_msg,
+ ".to_owned()",
+ Applicability::MachineApplicable
+ );
+ }
+ }
+ true
+ }
+ (&Ref(_, l_ty, _), &Adt(..)) // Handle `&str` & `&String` + `String`
+ if (*l_ty.kind() == Str || is_std_string(l_ty)) && is_std_string(rhs_ty) =>
+ {
+ err.span_label(
+ op.span,
+ "`+` cannot be used to concatenate a `&str` with a `String`",
+ );
+ match is_assign {
+ IsAssign::No => {
+ let sugg_msg;
+ let lhs_sugg = if let hir::ExprKind::AddrOf(_, _, lhs_inner_expr) = lhs_expr.kind {
+ sugg_msg = "remove the borrow on the left and add one on the right";
+ (lhs_expr.span.until(lhs_inner_expr.span), "".to_owned())
+ } else {
+ sugg_msg = "create an owned `String` on the left and add a borrow on the right";
+ (lhs_expr.span.shrink_to_hi(), ".to_owned()".to_owned())
+ };
+ let suggestions = vec![
+ lhs_sugg,
+ (rhs_expr.span.shrink_to_lo(), "&".to_owned()),
+ ];
+ err.multipart_suggestion_verbose(
+ sugg_msg,
+ suggestions,
+ Applicability::MachineApplicable,
+ );
+ }
+ IsAssign::Yes => {
+ err.note(str_concat_note);
+ }
+ }
+ true
+ }
+ _ => false,
+ }
+ }
+
+ pub fn check_user_unop(
+ &self,
+ ex: &'tcx hir::Expr<'tcx>,
+ operand_ty: Ty<'tcx>,
+ op: hir::UnOp,
+ expected: Expectation<'tcx>,
+ ) -> Ty<'tcx> {
+ assert!(op.is_by_value());
+ match self.lookup_op_method(operand_ty, None, None, Op::Unary(op, ex.span), expected) {
+ Ok(method) => {
+ self.write_method_call(ex.hir_id, method);
+ method.sig.output()
+ }
+ Err(errors) => {
+ let actual = self.resolve_vars_if_possible(operand_ty);
+ if !actual.references_error() {
+ let mut err = struct_span_err!(
+ self.tcx.sess,
+ ex.span,
+ E0600,
+ "cannot apply unary operator `{}` to type `{}`",
+ op.as_str(),
+ actual
+ );
+ err.span_label(
+ ex.span,
+ format!("cannot apply unary operator `{}`", op.as_str()),
+ );
+
+ if operand_ty.has_non_region_param() {
+ let predicates = errors.iter().filter_map(|error| {
+ error.obligation.predicate.to_opt_poly_trait_pred()
+ });
+ for pred in predicates {
+ self.err_ctxt().suggest_restricting_param_bound(
+ &mut err,
+ pred,
+ None,
+ self.body_id,
+ );
+ }
+ }
+
+ let sp = self.tcx.sess.source_map().start_point(ex.span);
+ if let Some(sp) =
+ self.tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp)
+ {
+ // If the previous expression was a block expression, suggest parentheses
+ // (turning this into a binary subtraction operation instead.)
+ // for example, `{2} - 2` -> `({2}) - 2` (see src\test\ui\parser\expr-as-stmt.rs)
+ err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
+ } else {
+ match actual.kind() {
+ Uint(_) if op == hir::UnOp::Neg => {
+ err.note("unsigned values cannot be negated");
+
+ if let hir::ExprKind::Unary(
+ _,
+ hir::Expr {
+ kind:
+ hir::ExprKind::Lit(Spanned {
+ node: ast::LitKind::Int(1, _),
+ ..
+ }),
+ ..
+ },
+ ) = ex.kind
+ {
+ err.span_suggestion(
+ ex.span,
+ &format!(
+ "you may have meant the maximum value of `{actual}`",
+ ),
+ format!("{actual}::MAX"),
+ Applicability::MaybeIncorrect,
+ );
+ }
+ }
+ Str | Never | Char | Tuple(_) | Array(_, _) => {}
+ Ref(_, lty, _) if *lty.kind() == Str => {}
+ _ => {
+ self.note_unmet_impls_on_type(&mut err, errors);
+ }
+ }
+ }
+ err.emit();
+ }
+ self.tcx.ty_error()
+ }
+ }
+ }
+
+ fn lookup_op_method(
+ &self,
+ lhs_ty: Ty<'tcx>,
+ other_ty: Option<Ty<'tcx>>,
+ other_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
+ op: Op,
+ expected: Expectation<'tcx>,
+ ) -> Result<MethodCallee<'tcx>, Vec<FulfillmentError<'tcx>>> {
+ let span = match op {
+ Op::Binary(op, _) => op.span,
+ Op::Unary(_, span) => span,
+ };
+ let (opname, trait_did) = lang_item_for_op(self.tcx, op, span);
+
+ debug!(
+ "lookup_op_method(lhs_ty={:?}, op={:?}, opname={:?}, trait_did={:?})",
+ lhs_ty, op, opname, trait_did
+ );
+
+ // Catches cases like #83893, where a lang item is declared with the
+ // wrong number of generic arguments. Should have yielded an error
+ // elsewhere by now, but we have to catch it here so that we do not
+ // index `other_tys` out of bounds (if the lang item has too many
+ // generic arguments, `other_tys` is too short).
+ if !has_expected_num_generic_args(
+ self.tcx,
+ trait_did,
+ match op {
+ // Binary ops have a generic right-hand side, unary ops don't
+ Op::Binary(..) => 1,
+ Op::Unary(..) => 0,
+ },
+ ) {
+ return Err(vec![]);
+ }
+
+ let opname = Ident::with_dummy_span(opname);
+ let method = trait_did.and_then(|trait_did| {
+ self.lookup_op_method_in_trait(
+ span,
+ opname,
+ trait_did,
+ lhs_ty,
+ other_ty,
+ other_ty_expr,
+ expected,
+ )
+ });
+
+ match (method, trait_did) {
+ (Some(ok), _) => {
+ let method = self.register_infer_ok_obligations(ok);
+ self.select_obligations_where_possible(false, |_| {});
+ Ok(method)
+ }
+ (None, None) => Err(vec![]),
+ (None, Some(trait_did)) => {
+ let (obligation, _) = self.obligation_for_op_method(
+ span,
+ trait_did,
+ lhs_ty,
+ other_ty,
+ other_ty_expr,
+ expected,
+ );
+ let mut fulfill = <dyn TraitEngine<'_>>::new(self.tcx);
+ fulfill.register_predicate_obligation(self, obligation);
+ Err(fulfill.select_where_possible(&self.infcx))
+ }
+ }
+ }
+}
+
+fn lang_item_for_op(
+ tcx: TyCtxt<'_>,
+ op: Op,
+ span: Span,
+) -> (rustc_span::Symbol, Option<hir::def_id::DefId>) {
+ let lang = tcx.lang_items();
+ if let Op::Binary(op, IsAssign::Yes) = op {
+ match op.node {
+ hir::BinOpKind::Add => (sym::add_assign, lang.add_assign_trait()),
+ hir::BinOpKind::Sub => (sym::sub_assign, lang.sub_assign_trait()),
+ hir::BinOpKind::Mul => (sym::mul_assign, lang.mul_assign_trait()),
+ hir::BinOpKind::Div => (sym::div_assign, lang.div_assign_trait()),
+ hir::BinOpKind::Rem => (sym::rem_assign, lang.rem_assign_trait()),
+ hir::BinOpKind::BitXor => (sym::bitxor_assign, lang.bitxor_assign_trait()),
+ hir::BinOpKind::BitAnd => (sym::bitand_assign, lang.bitand_assign_trait()),
+ hir::BinOpKind::BitOr => (sym::bitor_assign, lang.bitor_assign_trait()),
+ hir::BinOpKind::Shl => (sym::shl_assign, lang.shl_assign_trait()),
+ hir::BinOpKind::Shr => (sym::shr_assign, lang.shr_assign_trait()),
+ hir::BinOpKind::Lt
+ | hir::BinOpKind::Le
+ | hir::BinOpKind::Ge
+ | hir::BinOpKind::Gt
+ | hir::BinOpKind::Eq
+ | hir::BinOpKind::Ne
+ | hir::BinOpKind::And
+ | hir::BinOpKind::Or => {
+ span_bug!(span, "impossible assignment operation: {}=", op.node.as_str())
+ }
+ }
+ } else if let Op::Binary(op, IsAssign::No) = op {
+ match op.node {
+ hir::BinOpKind::Add => (sym::add, lang.add_trait()),
+ hir::BinOpKind::Sub => (sym::sub, lang.sub_trait()),
+ hir::BinOpKind::Mul => (sym::mul, lang.mul_trait()),
+ hir::BinOpKind::Div => (sym::div, lang.div_trait()),
+ hir::BinOpKind::Rem => (sym::rem, lang.rem_trait()),
+ hir::BinOpKind::BitXor => (sym::bitxor, lang.bitxor_trait()),
+ hir::BinOpKind::BitAnd => (sym::bitand, lang.bitand_trait()),
+ hir::BinOpKind::BitOr => (sym::bitor, lang.bitor_trait()),
+ hir::BinOpKind::Shl => (sym::shl, lang.shl_trait()),
+ hir::BinOpKind::Shr => (sym::shr, lang.shr_trait()),
+ hir::BinOpKind::Lt => (sym::lt, lang.partial_ord_trait()),
+ hir::BinOpKind::Le => (sym::le, lang.partial_ord_trait()),
+ hir::BinOpKind::Ge => (sym::ge, lang.partial_ord_trait()),
+ hir::BinOpKind::Gt => (sym::gt, lang.partial_ord_trait()),
+ hir::BinOpKind::Eq => (sym::eq, lang.eq_trait()),
+ hir::BinOpKind::Ne => (sym::ne, lang.eq_trait()),
+ hir::BinOpKind::And | hir::BinOpKind::Or => {
+ span_bug!(span, "&& and || are not overloadable")
+ }
+ }
+ } else if let Op::Unary(hir::UnOp::Not, _) = op {
+ (sym::not, lang.not_trait())
+ } else if let Op::Unary(hir::UnOp::Neg, _) = op {
+ (sym::neg, lang.neg_trait())
+ } else {
+ bug!("lookup_op_method: op not supported: {:?}", op)
+ }
+}
+
+// Binary operator categories. These categories summarize the behavior
+// with respect to the builtin operations supported.
+enum BinOpCategory {
+ /// &&, || -- cannot be overridden
+ Shortcircuit,
+
+ /// <<, >> -- when shifting a single integer, rhs can be any
+ /// integer type. For simd, types must match.
+ Shift,
+
+ /// +, -, etc -- takes equal types, produces same type as input,
+ /// applicable to ints/floats/simd
+ Math,
+
+ /// &, |, ^ -- takes equal types, produces same type as input,
+ /// applicable to ints/floats/simd/bool
+ Bitwise,
+
+ /// ==, !=, etc -- takes equal types, produces bools, except for simd,
+ /// which produce the input type
+ Comparison,
+}
+
+impl BinOpCategory {
+ fn from(op: hir::BinOp) -> BinOpCategory {
+ match op.node {
+ hir::BinOpKind::Shl | hir::BinOpKind::Shr => BinOpCategory::Shift,
+
+ hir::BinOpKind::Add
+ | hir::BinOpKind::Sub
+ | hir::BinOpKind::Mul
+ | hir::BinOpKind::Div
+ | hir::BinOpKind::Rem => BinOpCategory::Math,
+
+ hir::BinOpKind::BitXor | hir::BinOpKind::BitAnd | hir::BinOpKind::BitOr => {
+ BinOpCategory::Bitwise
+ }
+
+ hir::BinOpKind::Eq
+ | hir::BinOpKind::Ne
+ | hir::BinOpKind::Lt
+ | hir::BinOpKind::Le
+ | hir::BinOpKind::Ge
+ | hir::BinOpKind::Gt => BinOpCategory::Comparison,
+
+ hir::BinOpKind::And | hir::BinOpKind::Or => BinOpCategory::Shortcircuit,
+ }
+ }
+}
+
+/// Whether the binary operation is an assignment (`a += b`), or not (`a + b`)
+#[derive(Clone, Copy, Debug, PartialEq)]
+enum IsAssign {
+ No,
+ Yes,
+}
+
+#[derive(Clone, Copy, Debug)]
+enum Op {
+ Binary(hir::BinOp, IsAssign),
+ Unary(hir::UnOp, Span),
+}
+
+/// Dereferences a single level of immutable referencing.
+fn deref_ty_if_possible<'tcx>(ty: Ty<'tcx>) -> Ty<'tcx> {
+ match ty.kind() {
+ ty::Ref(_, ty, hir::Mutability::Not) => *ty,
+ _ => ty,
+ }
+}
+
+/// Returns `true` if this is a built-in arithmetic operation (e.g., u32
+/// + u32, i16x4 == i16x4) and false if these types would have to be
+/// overloaded to be legal. There are two reasons that we distinguish
+/// builtin operations from overloaded ones (vs trying to drive
+/// everything uniformly through the trait system and intrinsics or
+/// something like that):
+///
+/// 1. Builtin operations can trivially be evaluated in constants.
+/// 2. For comparison operators applied to SIMD types the result is
+/// not of type `bool`. For example, `i16x4 == i16x4` yields a
+/// type like `i16x4`. This means that the overloaded trait
+/// `PartialEq` is not applicable.
+///
+/// Reason #2 is the killer. I tried for a while to always use
+/// overloaded logic and just check the types in constants/codegen after
+/// the fact, and it worked fine, except for SIMD types. -nmatsakis
+fn is_builtin_binop<'tcx>(lhs: Ty<'tcx>, rhs: Ty<'tcx>, op: hir::BinOp) -> bool {
+ // Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work.
+ // (See https://github.com/rust-lang/rust/issues/57447.)
+ let (lhs, rhs) = (deref_ty_if_possible(lhs), deref_ty_if_possible(rhs));
+
+ match BinOpCategory::from(op) {
+ BinOpCategory::Shortcircuit => true,
+
+ BinOpCategory::Shift => {
+ lhs.references_error()
+ || rhs.references_error()
+ || lhs.is_integral() && rhs.is_integral()
+ }
+
+ BinOpCategory::Math => {
+ lhs.references_error()
+ || rhs.references_error()
+ || lhs.is_integral() && rhs.is_integral()
+ || lhs.is_floating_point() && rhs.is_floating_point()
+ }
+
+ BinOpCategory::Bitwise => {
+ lhs.references_error()
+ || rhs.references_error()
+ || lhs.is_integral() && rhs.is_integral()
+ || lhs.is_floating_point() && rhs.is_floating_point()
+ || lhs.is_bool() && rhs.is_bool()
+ }
+
+ BinOpCategory::Comparison => {
+ lhs.references_error() || rhs.references_error() || lhs.is_scalar() && rhs.is_scalar()
+ }
+ }
+}
+
+struct TypeParamEraser<'a, 'tcx>(&'a FnCtxt<'a, 'tcx>, Span);
+
+impl<'tcx> TypeFolder<'tcx> for TypeParamEraser<'_, 'tcx> {
+ fn tcx(&self) -> TyCtxt<'tcx> {
+ self.0.tcx
+ }
+
+ fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
+ match ty.kind() {
+ ty::Param(_) => self.0.next_ty_var(TypeVariableOrigin {
+ kind: TypeVariableOriginKind::MiscVariable,
+ span: self.1,
+ }),
+ _ => ty.super_fold_with(self),
+ }
+ }
+}
diff --git a/compiler/rustc_typeck/src/check/pat.rs b/compiler/rustc_hir_typeck/src/pat.rs
index 837c32355..ea90da4a6 100644
--- a/compiler/rustc_typeck/src/check/pat.rs
+++ b/compiler/rustc_hir_typeck/src/pat.rs
@@ -1,6 +1,5 @@
-use crate::check::FnCtxt;
+use crate::FnCtxt;
use rustc_ast as ast;
-
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{
pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed,
@@ -569,7 +568,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
) -> Ty<'tcx> {
// Determine the binding mode...
let bm = match ba {
- hir::BindingAnnotation::Unannotated => def_bm,
+ hir::BindingAnnotation::NONE => def_bm,
_ => BindingMode::convert(ba),
};
// ...and store it in a side table:
@@ -600,7 +599,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// If there are multiple arms, make sure they all agree on
// what the type of the binding `x` ought to be.
if var_id != pat.hir_id {
- self.check_binding_alt_eq_ty(pat.span, var_id, local_ty, ti);
+ self.check_binding_alt_eq_ty(ba, pat.span, var_id, local_ty, ti);
}
if let Some(p) = sub {
@@ -610,7 +609,14 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
local_ty
}
- fn check_binding_alt_eq_ty(&self, span: Span, var_id: HirId, ty: Ty<'tcx>, ti: TopInfo<'tcx>) {
+ fn check_binding_alt_eq_ty(
+ &self,
+ ba: hir::BindingAnnotation,
+ span: Span,
+ var_id: HirId,
+ ty: Ty<'tcx>,
+ ti: TopInfo<'tcx>,
+ ) {
let var_ty = self.local_ty(span, var_id).decl_ty;
if let Some(mut err) = self.demand_eqtype_pat_diag(span, var_ty, ty, ti) {
let hir = self.tcx.hir();
@@ -628,12 +634,50 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
});
let pre = if in_match { "in the same arm, " } else { "" };
err.note(&format!("{}a binding must have the same type in all alternatives", pre));
- // FIXME: check if `var_ty` and `ty` can be made the same type by adding or removing
- // `ref` or `&` to the pattern.
+ self.suggest_adding_missing_ref_or_removing_ref(
+ &mut err,
+ span,
+ var_ty,
+ self.resolve_vars_with_obligations(ty),
+ ba,
+ );
err.emit();
}
}
+ fn suggest_adding_missing_ref_or_removing_ref(
+ &self,
+ err: &mut Diagnostic,
+ span: Span,
+ expected: Ty<'tcx>,
+ actual: Ty<'tcx>,
+ ba: hir::BindingAnnotation,
+ ) {
+ match (expected.kind(), actual.kind(), ba) {
+ (ty::Ref(_, inner_ty, _), _, hir::BindingAnnotation::NONE)
+ if self.can_eq(self.param_env, *inner_ty, actual).is_ok() =>
+ {
+ err.span_suggestion_verbose(
+ span.shrink_to_lo(),
+ "consider adding `ref`",
+ "ref ",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ (_, ty::Ref(_, inner_ty, _), hir::BindingAnnotation::REF)
+ if self.can_eq(self.param_env, expected, *inner_ty).is_ok() =>
+ {
+ err.span_suggestion_verbose(
+ span.with_hi(span.lo() + BytePos(4)),
+ "consider removing `ref`",
+ "",
+ Applicability::MaybeIncorrect,
+ );
+ }
+ _ => (),
+ }
+ }
+
// Precondition: pat is a Ref(_) pattern
fn borrow_pat_suggestion(&self, err: &mut Diagnostic, pat: &Pat<'_>) {
let tcx = self.tcx;
@@ -882,7 +926,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
),
);
match self.tcx.hir().get(self.tcx.hir().get_parent_node(pat.hir_id)) {
- hir::Node::Pat(Pat { kind: hir::PatKind::Struct(..), .. }) => {
+ hir::Node::PatField(..) => {
e.span_suggestion_verbose(
ident.span.shrink_to_hi(),
"bind the struct field to a different name instead",
@@ -936,7 +980,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pat: &'tcx Pat<'tcx>,
qpath: &'tcx hir::QPath<'tcx>,
subpats: &'tcx [Pat<'tcx>],
- ddpos: Option<usize>,
+ ddpos: hir::DotDotPos,
expected: Ty<'tcx>,
def_bm: BindingMode,
ti: TopInfo<'tcx>,
@@ -1021,7 +1065,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// Type-check subpatterns.
if subpats.len() == variant.fields.len()
- || subpats.len() < variant.fields.len() && ddpos.is_some()
+ || subpats.len() < variant.fields.len() && ddpos.as_opt_usize().is_some()
{
let ty::Adt(_, substs) = pat_ty.kind() else {
bug!("unexpected pattern type {:?}", pat_ty);
@@ -1209,14 +1253,14 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
&self,
span: Span,
elements: &'tcx [Pat<'tcx>],
- ddpos: Option<usize>,
+ ddpos: hir::DotDotPos,
expected: Ty<'tcx>,
def_bm: BindingMode,
ti: TopInfo<'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
let mut expected_len = elements.len();
- if ddpos.is_some() {
+ if ddpos.as_opt_usize().is_some() {
// Require known type only when `..` is present.
if let ty::Tuple(tys) = self.structurally_resolved_type(span, expected).kind() {
expected_len = tys.len();
@@ -1352,7 +1396,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
.iter()
.copied()
.filter(|(field, _)| {
- field.vis.is_accessible_from(tcx.parent_module(pat.hir_id).to_def_id(), tcx)
+ field.vis.is_accessible_from(tcx.parent_module(pat.hir_id), tcx)
&& !matches!(
tcx.eval_stability(field.did, None, DUMMY_SP, None),
EvalResult::Deny { .. }
@@ -1745,10 +1789,8 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
&unmentioned_fields.iter().map(|(_, i)| i).collect::<Vec<_>>(),
);
- self.tcx.struct_span_lint_hir(NON_EXHAUSTIVE_OMITTED_PATTERNS, pat.hir_id, pat.span, |build| {
- let mut lint = build.build("some fields are not explicitly listed");
+ self.tcx.struct_span_lint_hir(NON_EXHAUSTIVE_OMITTED_PATTERNS, pat.hir_id, pat.span, "some fields are not explicitly listed", |lint| {
lint.span_label(pat.span, format!("field{} {} not listed", rustc_errors::pluralize!(unmentioned_fields.len()), joined_patterns));
-
lint.help(
"ensure that all fields are mentioned explicitly by adding the suggested fields",
);
@@ -1756,7 +1798,8 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
"the pattern is of type `{}` and the `non_exhaustive_omitted_patterns` attribute was found",
ty,
));
- lint.emit();
+
+ lint
});
}
diff --git a/compiler/rustc_typeck/src/check/place_op.rs b/compiler/rustc_hir_typeck/src/place_op.rs
index 2e0f37eba..ba8cf6926 100644
--- a/compiler/rustc_typeck/src/check/place_op.rs
+++ b/compiler/rustc_hir_typeck/src/place_op.rs
@@ -1,5 +1,5 @@
-use crate::check::method::MethodCallee;
-use crate::check::{has_expected_num_generic_args, FnCtxt, PlaceOp};
+use crate::method::MethodCallee;
+use crate::{has_expected_num_generic_args, FnCtxt, PlaceOp};
use rustc_ast as ast;
use rustc_errors::Applicability;
use rustc_hir as hir;
diff --git a/compiler/rustc_typeck/src/check/rvalue_scopes.rs b/compiler/rustc_hir_typeck/src/rvalue_scopes.rs
index 22c9e7961..22c9e7961 100644
--- a/compiler/rustc_typeck/src/check/rvalue_scopes.rs
+++ b/compiler/rustc_hir_typeck/src/rvalue_scopes.rs
diff --git a/compiler/rustc_typeck/src/check/upvar.rs b/compiler/rustc_hir_typeck/src/upvar.rs
index dd8f943b9..4dea40829 100644
--- a/compiler/rustc_typeck/src/check/upvar.rs
+++ b/compiler/rustc_hir_typeck/src/upvar.rs
@@ -352,7 +352,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
/// and that the path can be captured with required capture kind (depending on use in closure,
/// move closure etc.)
///
- /// Returns the set of of adjusted information along with the inferred closure kind and span
+ /// Returns the set of adjusted information along with the inferred closure kind and span
/// associated with the closure kind inference.
///
/// Note that we *always* infer a minimal kind, even if
@@ -749,10 +749,8 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES,
closure_hir_id,
closure_head_span,
+ reasons.migration_message(),
|lint| {
- let mut diagnostics_builder = lint.build(
- &reasons.migration_message(),
- );
for NeededMigration { var_hir_id, diagnostics_info } in &need_migrations {
// Labels all the usage of the captured variable and why they are responsible
// for migration being needed
@@ -760,13 +758,13 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
match &lint_note.captures_info {
UpvarMigrationInfo::CapturingPrecise { source_expr: Some(capture_expr_id), var_name: captured_name } => {
let cause_span = self.tcx.hir().span(*capture_expr_id);
- diagnostics_builder.span_label(cause_span, format!("in Rust 2018, this closure captures all of `{}`, but in Rust 2021, it will only capture `{}`",
+ lint.span_label(cause_span, format!("in Rust 2018, this closure captures all of `{}`, but in Rust 2021, it will only capture `{}`",
self.tcx.hir().name(*var_hir_id),
captured_name,
));
}
UpvarMigrationInfo::CapturingNothing { use_span } => {
- diagnostics_builder.span_label(*use_span, format!("in Rust 2018, this causes the closure to capture `{}`, but in Rust 2021, it has no effect",
+ lint.span_label(*use_span, format!("in Rust 2018, this causes the closure to capture `{}`, but in Rust 2021, it has no effect",
self.tcx.hir().name(*var_hir_id),
));
}
@@ -781,13 +779,13 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
match &lint_note.captures_info {
UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
- diagnostics_builder.span_label(drop_location_span, format!("in Rust 2018, `{}` is dropped here, but in Rust 2021, only `{}` will be dropped here as part of the closure",
+ lint.span_label(drop_location_span, format!("in Rust 2018, `{}` is dropped here, but in Rust 2021, only `{}` will be dropped here as part of the closure",
self.tcx.hir().name(*var_hir_id),
captured_name,
));
}
UpvarMigrationInfo::CapturingNothing { use_span: _ } => {
- diagnostics_builder.span_label(drop_location_span, format!("in Rust 2018, `{v}` is dropped here along with the closure, but in Rust 2021 `{v}` is not part of the closure",
+ lint.span_label(drop_location_span, format!("in Rust 2018, `{v}` is dropped here along with the closure, but in Rust 2021 `{v}` is not part of the closure",
v = self.tcx.hir().name(*var_hir_id),
));
}
@@ -800,7 +798,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
match &lint_note.captures_info {
UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
let var_name = self.tcx.hir().name(*var_hir_id);
- diagnostics_builder.span_label(closure_head_span, format!("\
+ lint.span_label(closure_head_span, format!("\
in Rust 2018, this closure implements {missing_trait} \
as `{var_name}` implements {missing_trait}, but in Rust 2021, \
this closure will no longer implement {missing_trait} \
@@ -814,7 +812,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
}
}
- diagnostics_builder.note("for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2021/disjoint-capture-in-closures.html>");
+ lint.note("for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2021/disjoint-capture-in-closures.html>");
let diagnostic_msg = format!(
"add a dummy let to cause {} to be fully captured",
@@ -857,7 +855,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// We take the indentation from the next non-empty line.
let line2 = lines.find(|line| !line.is_empty()).unwrap_or_default();
let indent = line2.split_once(|c: char| !c.is_whitespace()).unwrap_or_default().0;
- diagnostics_builder.span_suggestion(
+ lint.span_suggestion(
closure_body_span.with_lo(closure_body_span.lo() + BytePos::from_usize(line1.len())).shrink_to_lo(),
&diagnostic_msg,
format!("\n{indent}{migration_string};"),
@@ -868,7 +866,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// braces, but with more than just the opening
// brace on the first line. We put the `let`
// directly after the `{`.
- diagnostics_builder.span_suggestion(
+ lint.span_suggestion(
closure_body_span.with_lo(closure_body_span.lo() + BytePos(1)).shrink_to_lo(),
&diagnostic_msg,
format!(" {migration_string};"),
@@ -877,7 +875,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
} else {
// This is a closure without braces around the body.
// We add braces to add the `let` before the body.
- diagnostics_builder.multipart_suggestion(
+ lint.multipart_suggestion(
&diagnostic_msg,
vec![
(closure_body_span.shrink_to_lo(), format!("{{ {migration_string}; ")),
@@ -887,7 +885,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
);
}
} else {
- diagnostics_builder.span_suggestion(
+ lint.span_suggestion(
closure_span,
&diagnostic_msg,
migration_string,
@@ -895,7 +893,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
);
}
- diagnostics_builder.emit();
+ lint
},
);
}
@@ -1217,7 +1215,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// Combine all the reasons of why the root variable should be captured as a result of
// auto trait implementation issues
- auto_trait_migration_reasons.extend(capture_trait_reasons.clone());
+ auto_trait_migration_reasons.extend(capture_trait_reasons.iter().copied());
diagnostics_info.push(MigrationLintNote {
captures_info,
@@ -2024,6 +2022,10 @@ fn should_do_rust_2021_incompatible_closure_captures_analysis(
tcx: TyCtxt<'_>,
closure_id: hir::HirId,
) -> bool {
+ if tcx.sess.rust_2021() {
+ return false;
+ }
+
let (level, _) =
tcx.lint_level_at_node(lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES, closure_id);
diff --git a/compiler/rustc_typeck/src/check/writeback.rs b/compiler/rustc_hir_typeck/src/writeback.rs
index f549807c3..1e26daa9c 100644
--- a/compiler/rustc_typeck/src/check/writeback.rs
+++ b/compiler/rustc_hir_typeck/src/writeback.rs
@@ -2,8 +2,7 @@
// unresolved type variables and replaces "ty_var" types with their
// substitutions.
-use crate::check::FnCtxt;
-
+use crate::FnCtxt;
use hir::def_id::LocalDefId;
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::ErrorGuaranteed;
@@ -16,6 +15,7 @@ use rustc_middle::mir::FakeReadCause;
use rustc_middle::ty::adjustment::{Adjust, Adjustment, PointerCast};
use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitable};
+use rustc_middle::ty::TypeckResults;
use rustc_middle::ty::{self, ClosureSizeProfileData, Ty, TyCtxt};
use rustc_span::symbol::sym;
use rustc_span::Span;
@@ -192,6 +192,27 @@ impl<'cx, 'tcx> WritebackCx<'cx, 'tcx> {
}
}
+ // (ouz-a 1005988): Normally `[T] : std::ops::Index<usize>` should be normalized
+ // into [T] but currently `Where` clause stops the normalization process for it,
+ // here we compare types of expr and base in a code without `Where` clause they would be equal
+ // if they are not we don't modify the expr, hence we bypass the ICE
+ fn is_builtin_index(
+ &mut self,
+ typeck_results: &TypeckResults<'tcx>,
+ e: &hir::Expr<'_>,
+ base_ty: Ty<'tcx>,
+ index_ty: Ty<'tcx>,
+ ) -> bool {
+ if let Some(elem_ty) = base_ty.builtin_index() {
+ let Some(exp_ty) = typeck_results.expr_ty_opt(e) else {return false;};
+ let resolved_exp_ty = self.resolve(exp_ty, &e.span);
+
+ elem_ty == resolved_exp_ty && index_ty == self.fcx.tcx.types.usize
+ } else {
+ false
+ }
+ }
+
// Similar to operators, indexing is always assumed to be overloaded
// Here, correct cases where an indexing expression can be simplified
// to use builtin indexing because the index type is known to be
@@ -222,8 +243,9 @@ impl<'cx, 'tcx> WritebackCx<'cx, 'tcx> {
)
});
let index_ty = self.fcx.resolve_vars_if_possible(index_ty);
+ let resolved_base_ty = self.resolve(*base_ty, &base.span);
- if base_ty.builtin_index().is_some() && index_ty == self.fcx.tcx.types.usize {
+ if self.is_builtin_index(&typeck_results, e, resolved_base_ty, index_ty) {
// Remove the method call record
typeck_results.type_dependent_defs_mut().remove(e.hir_id);
typeck_results.node_substs_mut().remove(e.hir_id);
@@ -292,6 +314,17 @@ impl<'cx, 'tcx> Visitor<'tcx> for WritebackCx<'cx, 'tcx> {
intravisit::walk_expr(self, e);
}
+ fn visit_generic_param(&mut self, p: &'tcx hir::GenericParam<'tcx>) {
+ match &p.kind {
+ hir::GenericParamKind::Lifetime { .. } => {
+ // Nothing to write back here
+ }
+ hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => {
+ self.tcx().sess.delay_span_bug(p.span, format!("unexpected generic param: {p:?}"));
+ }
+ }
+ }
+
fn visit_block(&mut self, b: &'tcx hir::Block<'tcx>) {
self.visit_node_id(b.span, b.hir_id);
intravisit::walk_block(self, b);
@@ -468,7 +501,7 @@ impl<'cx, 'tcx> WritebackCx<'cx, 'tcx> {
if !errors_buffer.is_empty() {
errors_buffer.sort_by_key(|diag| diag.span.primary_span());
- for mut diag in errors_buffer.drain(..) {
+ for mut diag in errors_buffer {
self.tcx().sess.diagnostic().emit_diagnostic(&mut diag);
}
}
@@ -503,33 +536,37 @@ impl<'cx, 'tcx> WritebackCx<'cx, 'tcx> {
let opaque_types =
self.fcx.infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
for (opaque_type_key, decl) in opaque_types {
- let hidden_type = match decl.origin {
- hir::OpaqueTyOrigin::FnReturn(_) | hir::OpaqueTyOrigin::AsyncFn(_) => {
- let ty = self.resolve(decl.hidden_type.ty, &decl.hidden_type.span);
- struct RecursionChecker {
- def_id: LocalDefId,
- }
- impl<'tcx> ty::TypeVisitor<'tcx> for RecursionChecker {
- type BreakTy = ();
- fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
- if let ty::Opaque(def_id, _) = *t.kind() {
- if def_id == self.def_id.to_def_id() {
- return ControlFlow::Break(());
- }
- }
- t.super_visit_with(self)
+ let hidden_type = self.resolve(decl.hidden_type, &decl.hidden_type.span);
+ let opaque_type_key = self.resolve(opaque_type_key, &decl.hidden_type.span);
+
+ struct RecursionChecker {
+ def_id: LocalDefId,
+ }
+ impl<'tcx> ty::TypeVisitor<'tcx> for RecursionChecker {
+ type BreakTy = ();
+ fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+ if let ty::Opaque(def_id, _) = *t.kind() {
+ if def_id == self.def_id.to_def_id() {
+ return ControlFlow::Break(());
}
}
- if ty
- .visit_with(&mut RecursionChecker { def_id: opaque_type_key.def_id })
- .is_break()
- {
- return;
- }
- Some(ty)
+ t.super_visit_with(self)
}
- hir::OpaqueTyOrigin::TyAlias => None,
- };
+ }
+ if hidden_type
+ .visit_with(&mut RecursionChecker { def_id: opaque_type_key.def_id })
+ .is_break()
+ {
+ continue;
+ }
+
+ let hidden_type = hidden_type.remap_generic_params_to_declaration_params(
+ opaque_type_key,
+ self.fcx.infcx.tcx,
+ true,
+ decl.origin,
+ );
+
self.typeck_results.concrete_opaque_types.insert(opaque_type_key.def_id, hidden_type);
}
}
@@ -667,7 +704,7 @@ impl Locatable for hir::HirId {
/// unresolved types and so forth.
struct Resolver<'cx, 'tcx> {
tcx: TyCtxt<'tcx>,
- infcx: &'cx InferCtxt<'cx, 'tcx>,
+ infcx: &'cx InferCtxt<'tcx>,
span: &'cx dyn Locatable,
body: &'tcx hir::Body<'tcx>,
@@ -684,27 +721,14 @@ impl<'cx, 'tcx> Resolver<'cx, 'tcx> {
Resolver { tcx: fcx.tcx, infcx: fcx, span, body, replaced_with_error: false }
}
- fn report_type_error(&self, t: Ty<'tcx>) {
+ fn report_error(&self, p: impl Into<ty::GenericArg<'tcx>>) {
if !self.tcx.sess.has_errors().is_some() {
self.infcx
+ .err_ctxt()
.emit_inference_failure_err(
Some(self.body.id()),
self.span.to_span(self.tcx),
- t.into(),
- E0282,
- false,
- )
- .emit();
- }
- }
-
- fn report_const_error(&self, c: ty::Const<'tcx>) {
- if self.tcx.sess.has_errors().is_none() {
- self.infcx
- .emit_inference_failure_err(
- Some(self.body.id()),
- self.span.to_span(self.tcx),
- c.into(),
+ p.into(),
E0282,
false,
)
@@ -749,7 +773,7 @@ impl<'cx, 'tcx> TypeFolder<'tcx> for Resolver<'cx, 'tcx> {
}
Err(_) => {
debug!("Resolver::fold_ty: input type `{:?}` not fully resolvable", t);
- self.report_type_error(t);
+ self.report_error(t);
self.replaced_with_error = true;
self.tcx().ty_error()
}
@@ -766,7 +790,7 @@ impl<'cx, 'tcx> TypeFolder<'tcx> for Resolver<'cx, 'tcx> {
Ok(ct) => self.tcx.erase_regions(ct),
Err(_) => {
debug!("Resolver::fold_const: input const `{:?}` not fully resolvable", ct);
- self.report_const_error(ct);
+ self.report_error(ct);
self.replaced_with_error = true;
self.tcx().const_error(ct.ty())
}