summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_hir_typeck/src/check.rs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--compiler/rustc_hir_typeck/src/check.rs324
1 files changed, 324 insertions, 0 deletions
diff --git a/compiler/rustc_hir_typeck/src/check.rs b/compiler/rustc_hir_typeck/src/check.rs
new file mode 100644
index 000000000..7f76364e1
--- /dev/null
+++ b/compiler/rustc_hir_typeck/src/check.rs
@@ -0,0 +1,324 @@
+use crate::coercion::CoerceMany;
+use crate::gather_locals::GatherLocalsVisitor;
+use crate::{FnCtxt, Inherited};
+use crate::{GeneratorTypes, UnsafetyState};
+use rustc_hir as hir;
+use rustc_hir::def::DefKind;
+use rustc_hir::intravisit::Visitor;
+use rustc_hir::lang_items::LangItem;
+use rustc_hir::{ImplicitSelfKind, ItemKind, Node};
+use rustc_hir_analysis::check::fn_maybe_err;
+use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
+use rustc_infer::infer::RegionVariableOrigin;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_span::def_id::LocalDefId;
+use rustc_target::spec::abi::Abi;
+use rustc_trait_selection::traits;
+use std::cell::RefCell;
+
+/// Helper used for fns and closures. Does the grungy work of checking a function
+/// body and returns the function context used for that purpose, since in the case of a fn item
+/// there is still a bit more to do.
+///
+/// * ...
+/// * inherited: other fields inherited from the enclosing fn (if any)
+#[instrument(skip(inherited, body), level = "debug")]
+pub(super) fn check_fn<'a, 'tcx>(
+ inherited: &'a Inherited<'tcx>,
+ param_env: ty::ParamEnv<'tcx>,
+ fn_sig: ty::FnSig<'tcx>,
+ decl: &'tcx hir::FnDecl<'tcx>,
+ fn_id: hir::HirId,
+ body: &'tcx hir::Body<'tcx>,
+ can_be_generator: Option<hir::Movability>,
+ return_type_pre_known: bool,
+) -> (FnCtxt<'a, 'tcx>, Option<GeneratorTypes<'tcx>>) {
+ // Create the function context. This is either derived from scratch or,
+ // in the case of closures, based on the outer context.
+ let mut fcx = FnCtxt::new(inherited, param_env, body.value.hir_id);
+ fcx.ps.set(UnsafetyState::function(fn_sig.unsafety, fn_id));
+ fcx.return_type_pre_known = return_type_pre_known;
+
+ let tcx = fcx.tcx;
+ let hir = tcx.hir();
+
+ let declared_ret_ty = fn_sig.output();
+
+ let ret_ty =
+ fcx.register_infer_ok_obligations(fcx.infcx.replace_opaque_types_with_inference_vars(
+ declared_ret_ty,
+ body.value.hir_id,
+ decl.output.span(),
+ param_env,
+ ));
+ // If we replaced declared_ret_ty with infer vars, then we must be inferring
+ // an opaque type, so set a flag so we can improve diagnostics.
+ fcx.return_type_has_opaque = ret_ty != declared_ret_ty;
+
+ fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(ret_ty)));
+
+ let span = body.value.span;
+
+ fn_maybe_err(tcx, span, fn_sig.abi);
+
+ if fn_sig.abi == Abi::RustCall {
+ let expected_args = if let ImplicitSelfKind::None = decl.implicit_self { 1 } else { 2 };
+
+ let err = || {
+ let item = match tcx.hir().get(fn_id) {
+ Node::Item(hir::Item { kind: ItemKind::Fn(header, ..), .. }) => Some(header),
+ Node::ImplItem(hir::ImplItem {
+ kind: hir::ImplItemKind::Fn(header, ..), ..
+ }) => Some(header),
+ Node::TraitItem(hir::TraitItem {
+ kind: hir::TraitItemKind::Fn(header, ..),
+ ..
+ }) => Some(header),
+ // Closures are RustCall, but they tuple their arguments, so shouldn't be checked
+ Node::Expr(hir::Expr { kind: hir::ExprKind::Closure { .. }, .. }) => None,
+ node => bug!("Item being checked wasn't a function/closure: {:?}", node),
+ };
+
+ if let Some(header) = item {
+ tcx.sess.span_err(header.span, "functions with the \"rust-call\" ABI must take a single non-self argument that is a tuple");
+ }
+ };
+
+ if fn_sig.inputs().len() != expected_args {
+ err()
+ } else {
+ // FIXME(CraftSpider) Add a check on parameter expansion, so we don't just make the ICE happen later on
+ // This will probably require wide-scale changes to support a TupleKind obligation
+ // We can't resolve this without knowing the type of the param
+ if !matches!(fn_sig.inputs()[expected_args - 1].kind(), ty::Tuple(_) | ty::Param(_)) {
+ err()
+ }
+ }
+ }
+
+ if body.generator_kind.is_some() && can_be_generator.is_some() {
+ let yield_ty = fcx
+ .next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::TypeInference, span });
+ fcx.require_type_is_sized(yield_ty, span, traits::SizedYieldType);
+
+ // Resume type defaults to `()` if the generator has no argument.
+ let resume_ty = fn_sig.inputs().get(0).copied().unwrap_or_else(|| tcx.mk_unit());
+
+ fcx.resume_yield_tys = Some((resume_ty, yield_ty));
+ }
+
+ GatherLocalsVisitor::new(&fcx).visit_body(body);
+
+ // C-variadic fns also have a `VaList` input that's not listed in `fn_sig`
+ // (as it's created inside the body itself, not passed in from outside).
+ let maybe_va_list = if fn_sig.c_variadic {
+ let span = body.params.last().unwrap().span;
+ let va_list_did = tcx.require_lang_item(LangItem::VaList, Some(span));
+ let region = fcx.next_region_var(RegionVariableOrigin::MiscVariable(span));
+
+ Some(tcx.bound_type_of(va_list_did).subst(tcx, &[region.into()]))
+ } else {
+ None
+ };
+
+ // Add formal parameters.
+ let inputs_hir = hir.fn_decl_by_hir_id(fn_id).map(|decl| &decl.inputs);
+ let inputs_fn = fn_sig.inputs().iter().copied();
+ for (idx, (param_ty, param)) in inputs_fn.chain(maybe_va_list).zip(body.params).enumerate() {
+ // Check the pattern.
+ let ty_span = try { inputs_hir?.get(idx)?.span };
+ fcx.check_pat_top(&param.pat, param_ty, ty_span, false);
+
+ // Check that argument is Sized.
+ // The check for a non-trivial pattern is a hack to avoid duplicate warnings
+ // for simple cases like `fn foo(x: Trait)`,
+ // where we would error once on the parameter as a whole, and once on the binding `x`.
+ if param.pat.simple_ident().is_none() && !tcx.features().unsized_fn_params {
+ fcx.require_type_is_sized(param_ty, param.pat.span, traits::SizedArgumentType(ty_span));
+ }
+
+ fcx.write_ty(param.hir_id, param_ty);
+ }
+
+ inherited.typeck_results.borrow_mut().liberated_fn_sigs_mut().insert(fn_id, fn_sig);
+
+ fcx.in_tail_expr = true;
+ if let ty::Dynamic(..) = declared_ret_ty.kind() {
+ // FIXME: We need to verify that the return type is `Sized` after the return expression has
+ // been evaluated so that we have types available for all the nodes being returned, but that
+ // requires the coerced evaluated type to be stored. Moving `check_return_expr` before this
+ // causes unsized errors caused by the `declared_ret_ty` to point at the return expression,
+ // while keeping the current ordering we will ignore the tail expression's type because we
+ // don't know it yet. We can't do `check_expr_kind` while keeping `check_return_expr`
+ // because we will trigger "unreachable expression" lints unconditionally.
+ // Because of all of this, we perform a crude check to know whether the simplest `!Sized`
+ // case that a newcomer might make, returning a bare trait, and in that case we populate
+ // the tail expression's type so that the suggestion will be correct, but ignore all other
+ // possible cases.
+ fcx.check_expr(&body.value);
+ fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
+ } else {
+ fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
+ fcx.check_return_expr(&body.value, false);
+ }
+ fcx.in_tail_expr = false;
+
+ // We insert the deferred_generator_interiors entry after visiting the body.
+ // This ensures that all nested generators appear before the entry of this generator.
+ // resolve_generator_interiors relies on this property.
+ let gen_ty = if let (Some(_), Some(gen_kind)) = (can_be_generator, body.generator_kind) {
+ let interior = fcx
+ .next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::MiscVariable, span });
+ fcx.deferred_generator_interiors.borrow_mut().push((body.id(), interior, gen_kind));
+
+ let (resume_ty, yield_ty) = fcx.resume_yield_tys.unwrap();
+ Some(GeneratorTypes {
+ resume_ty,
+ yield_ty,
+ interior,
+ movability: can_be_generator.unwrap(),
+ })
+ } else {
+ None
+ };
+
+ // Finalize the return check by taking the LUB of the return types
+ // we saw and assigning it to the expected return type. This isn't
+ // really expected to fail, since the coercions would have failed
+ // earlier when trying to find a LUB.
+ let coercion = fcx.ret_coercion.take().unwrap().into_inner();
+ let mut actual_return_ty = coercion.complete(&fcx);
+ debug!("actual_return_ty = {:?}", actual_return_ty);
+ if let ty::Dynamic(..) = declared_ret_ty.kind() {
+ // We have special-cased the case where the function is declared
+ // `-> dyn Foo` and we don't actually relate it to the
+ // `fcx.ret_coercion`, so just substitute a type variable.
+ actual_return_ty =
+ fcx.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::DynReturnFn, span });
+ debug!("actual_return_ty replaced with {:?}", actual_return_ty);
+ }
+
+ // HACK(oli-obk, compiler-errors): We should be comparing this against
+ // `declared_ret_ty`, but then anything uninferred would be inferred to
+ // the opaque type itself. That again would cause writeback to assume
+ // we have a recursive call site and do the sadly stabilized fallback to `()`.
+ fcx.demand_suptype(span, ret_ty, actual_return_ty);
+
+ // Check that a function marked as `#[panic_handler]` has signature `fn(&PanicInfo) -> !`
+ if let Some(panic_impl_did) = tcx.lang_items().panic_impl()
+ && panic_impl_did == hir.local_def_id(fn_id).to_def_id()
+ {
+ check_panic_info_fn(tcx, panic_impl_did.expect_local(), fn_sig, decl, declared_ret_ty);
+ }
+
+ // Check that a function marked as `#[alloc_error_handler]` has signature `fn(Layout) -> !`
+ if let Some(alloc_error_handler_did) = tcx.lang_items().oom()
+ && alloc_error_handler_did == hir.local_def_id(fn_id).to_def_id()
+ {
+ check_alloc_error_fn(tcx, alloc_error_handler_did.expect_local(), fn_sig, decl, declared_ret_ty);
+ }
+
+ (fcx, gen_ty)
+}
+
+fn check_panic_info_fn(
+ tcx: TyCtxt<'_>,
+ fn_id: LocalDefId,
+ fn_sig: ty::FnSig<'_>,
+ decl: &hir::FnDecl<'_>,
+ declared_ret_ty: Ty<'_>,
+) {
+ let Some(panic_info_did) = tcx.lang_items().panic_info() else {
+ tcx.sess.err("language item required, but not found: `panic_info`");
+ return;
+ };
+
+ if *declared_ret_ty.kind() != ty::Never {
+ tcx.sess.span_err(decl.output.span(), "return type should be `!`");
+ }
+
+ let inputs = fn_sig.inputs();
+ if inputs.len() != 1 {
+ tcx.sess.span_err(tcx.def_span(fn_id), "function should have one argument");
+ return;
+ }
+
+ let arg_is_panic_info = match *inputs[0].kind() {
+ ty::Ref(region, ty, mutbl) => match *ty.kind() {
+ ty::Adt(ref adt, _) => {
+ adt.did() == panic_info_did && mutbl == hir::Mutability::Not && !region.is_static()
+ }
+ _ => false,
+ },
+ _ => false,
+ };
+
+ if !arg_is_panic_info {
+ tcx.sess.span_err(decl.inputs[0].span, "argument should be `&PanicInfo`");
+ }
+
+ let DefKind::Fn = tcx.def_kind(fn_id) else {
+ let span = tcx.def_span(fn_id);
+ tcx.sess.span_err(span, "should be a function");
+ return;
+ };
+
+ let generic_counts = tcx.generics_of(fn_id).own_counts();
+ if generic_counts.types != 0 {
+ let span = tcx.def_span(fn_id);
+ tcx.sess.span_err(span, "should have no type parameters");
+ }
+ if generic_counts.consts != 0 {
+ let span = tcx.def_span(fn_id);
+ tcx.sess.span_err(span, "should have no const parameters");
+ }
+}
+
+fn check_alloc_error_fn(
+ tcx: TyCtxt<'_>,
+ fn_id: LocalDefId,
+ fn_sig: ty::FnSig<'_>,
+ decl: &hir::FnDecl<'_>,
+ declared_ret_ty: Ty<'_>,
+) {
+ let Some(alloc_layout_did) = tcx.lang_items().alloc_layout() else {
+ tcx.sess.err("language item required, but not found: `alloc_layout`");
+ return;
+ };
+
+ if *declared_ret_ty.kind() != ty::Never {
+ tcx.sess.span_err(decl.output.span(), "return type should be `!`");
+ }
+
+ let inputs = fn_sig.inputs();
+ if inputs.len() != 1 {
+ tcx.sess.span_err(tcx.def_span(fn_id), "function should have one argument");
+ return;
+ }
+
+ let arg_is_alloc_layout = match inputs[0].kind() {
+ ty::Adt(ref adt, _) => adt.did() == alloc_layout_did,
+ _ => false,
+ };
+
+ if !arg_is_alloc_layout {
+ tcx.sess.span_err(decl.inputs[0].span, "argument should be `Layout`");
+ }
+
+ let DefKind::Fn = tcx.def_kind(fn_id) else {
+ let span = tcx.def_span(fn_id);
+ tcx.sess.span_err(span, "`#[alloc_error_handler]` should be a function");
+ return;
+ };
+
+ let generic_counts = tcx.generics_of(fn_id).own_counts();
+ if generic_counts.types != 0 {
+ let span = tcx.def_span(fn_id);
+ tcx.sess.span_err(span, "`#[alloc_error_handler]` function should have no type parameters");
+ }
+ if generic_counts.consts != 0 {
+ let span = tcx.def_span(fn_id);
+ tcx.sess
+ .span_err(span, "`#[alloc_error_handler]` function should have no const parameters");
+ }
+}