summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_middle/src/query/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_middle/src/query/mod.rs')
-rw-r--r--compiler/rustc_middle/src/query/mod.rs2060
1 files changed, 2060 insertions, 0 deletions
diff --git a/compiler/rustc_middle/src/query/mod.rs b/compiler/rustc_middle/src/query/mod.rs
new file mode 100644
index 000000000..d8483e7e4
--- /dev/null
+++ b/compiler/rustc_middle/src/query/mod.rs
@@ -0,0 +1,2060 @@
+//! Defines the various compiler queries.
+//!
+//! For more information on the query system, see
+//! ["Queries: demand-driven compilation"](https://rustc-dev-guide.rust-lang.org/query.html).
+//! This chapter includes instructions for adding new queries.
+
+// Each of these queries corresponds to a function pointer field in the
+// `Providers` struct for requesting a value of that type, and a method
+// on `tcx: TyCtxt` (and `tcx.at(span)`) for doing that request in a way
+// which memoizes and does dep-graph tracking, wrapping around the actual
+// `Providers` that the driver creates (using several `rustc_*` crates).
+//
+// The result type of each query must implement `Clone`, and additionally
+// `ty::query::values::Value`, which produces an appropriate placeholder
+// (error) value if the query resulted in a query cycle.
+// Queries marked with `fatal_cycle` do not need the latter implementation,
+// as they will raise an fatal error on query cycles instead.
+rustc_queries! {
+ query trigger_delay_span_bug(key: DefId) -> () {
+ desc { "trigger a delay span bug" }
+ }
+
+ query resolutions(_: ()) -> &'tcx ty::ResolverOutputs {
+ eval_always
+ no_hash
+ desc { "get the resolver outputs" }
+ }
+
+ query resolver_for_lowering(_: ()) -> &'tcx Steal<ty::ResolverAstLowering> {
+ eval_always
+ no_hash
+ desc { "get the resolver for lowering" }
+ }
+
+ /// Return the span for a definition.
+ /// Contrary to `def_span` below, this query returns the full absolute span of the definition.
+ /// This span is meant for dep-tracking rather than diagnostics. It should not be used outside
+ /// of rustc_middle::hir::source_map.
+ query source_span(key: LocalDefId) -> Span {
+ desc { "get the source span" }
+ }
+
+ /// Represents crate as a whole (as distinct from the top-level crate module).
+ /// If you call `hir_crate` (e.g., indirectly by calling `tcx.hir().krate()`),
+ /// we will have to assume that any change means that you need to be recompiled.
+ /// This is because the `hir_crate` query gives you access to all other items.
+ /// To avoid this fate, do not call `tcx.hir().krate()`; instead,
+ /// prefer wrappers like `tcx.visit_all_items_in_krate()`.
+ query hir_crate(key: ()) -> Crate<'tcx> {
+ storage(ArenaCacheSelector<'tcx>)
+ eval_always
+ desc { "get the crate HIR" }
+ }
+
+ /// All items in the crate.
+ query hir_crate_items(_: ()) -> rustc_middle::hir::ModuleItems {
+ storage(ArenaCacheSelector<'tcx>)
+ eval_always
+ desc { "get HIR crate items" }
+ }
+
+ /// The items in a module.
+ ///
+ /// This can be conveniently accessed by `tcx.hir().visit_item_likes_in_module`.
+ /// Avoid calling this query directly.
+ query hir_module_items(key: LocalDefId) -> rustc_middle::hir::ModuleItems {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { |tcx| "HIR module items in `{}`", tcx.def_path_str(key.to_def_id()) }
+ cache_on_disk_if { true }
+ }
+
+ /// Gives access to the HIR node for the HIR owner `key`.
+ ///
+ /// This can be conveniently accessed by methods on `tcx.hir()`.
+ /// Avoid calling this query directly.
+ query hir_owner(key: LocalDefId) -> Option<crate::hir::Owner<'tcx>> {
+ desc { |tcx| "HIR owner of `{}`", tcx.def_path_str(key.to_def_id()) }
+ }
+
+ /// Gives access to the HIR ID for the given `LocalDefId` owner `key`.
+ ///
+ /// This can be conveniently accessed by methods on `tcx.hir()`.
+ /// Avoid calling this query directly.
+ query local_def_id_to_hir_id(key: LocalDefId) -> hir::HirId {
+ desc { |tcx| "HIR ID of `{}`", tcx.def_path_str(key.to_def_id()) }
+ }
+
+ /// Gives access to the HIR node's parent for the HIR owner `key`.
+ ///
+ /// This can be conveniently accessed by methods on `tcx.hir()`.
+ /// Avoid calling this query directly.
+ query hir_owner_parent(key: LocalDefId) -> hir::HirId {
+ desc { |tcx| "HIR parent of `{}`", tcx.def_path_str(key.to_def_id()) }
+ }
+
+ /// Gives access to the HIR nodes and bodies inside the HIR owner `key`.
+ ///
+ /// This can be conveniently accessed by methods on `tcx.hir()`.
+ /// Avoid calling this query directly.
+ query hir_owner_nodes(key: LocalDefId) -> hir::MaybeOwner<&'tcx hir::OwnerNodes<'tcx>> {
+ desc { |tcx| "HIR owner items in `{}`", tcx.def_path_str(key.to_def_id()) }
+ }
+
+ /// Gives access to the HIR attributes inside the HIR owner `key`.
+ ///
+ /// This can be conveniently accessed by methods on `tcx.hir()`.
+ /// Avoid calling this query directly.
+ query hir_attrs(key: LocalDefId) -> &'tcx hir::AttributeMap<'tcx> {
+ desc { |tcx| "HIR owner attributes in `{}`", tcx.def_path_str(key.to_def_id()) }
+ }
+
+ /// Computes the `DefId` of the corresponding const parameter in case the `key` is a
+ /// const argument and returns `None` otherwise.
+ ///
+ /// ```ignore (incomplete)
+ /// let a = foo::<7>();
+ /// // ^ Calling `opt_const_param_of` for this argument,
+ ///
+ /// fn foo<const N: usize>()
+ /// // ^ returns this `DefId`.
+ ///
+ /// fn bar() {
+ /// // ^ While calling `opt_const_param_of` for other bodies returns `None`.
+ /// }
+ /// ```
+ // It looks like caching this query on disk actually slightly
+ // worsened performance in #74376.
+ //
+ // Once const generics are more prevalently used, we might want to
+ // consider only caching calls returning `Some`.
+ query opt_const_param_of(key: LocalDefId) -> Option<DefId> {
+ desc { |tcx| "computing the optional const parameter of `{}`", tcx.def_path_str(key.to_def_id()) }
+ }
+
+ /// Given the def_id of a const-generic parameter, computes the associated default const
+ /// parameter. e.g. `fn example<const N: usize=3>` called on `N` would return `3`.
+ query const_param_default(param: DefId) -> ty::Const<'tcx> {
+ desc { |tcx| "compute const default for a given parameter `{}`", tcx.def_path_str(param) }
+ cache_on_disk_if { param.is_local() }
+ separate_provide_extern
+ }
+
+ /// Returns the [`Ty`][rustc_middle::ty::Ty] of the given [`DefId`]. If the [`DefId`] points
+ /// to an alias, it will "skip" this alias to return the aliased type.
+ ///
+ /// [`DefId`]: rustc_hir::def_id::DefId
+ query type_of(key: DefId) -> Ty<'tcx> {
+ desc { |tcx|
+ "{action} `{path}`",
+ action = {
+ use rustc_hir::def::DefKind;
+ match tcx.def_kind(key) {
+ DefKind::TyAlias => "expanding type alias",
+ DefKind::TraitAlias => "expanding trait alias",
+ _ => "computing type of",
+ }
+ },
+ path = tcx.def_path_str(key),
+ }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ query analysis(key: ()) -> Result<(), ErrorGuaranteed> {
+ eval_always
+ desc { "running analysis passes on this crate" }
+ }
+
+ /// This query checks the fulfillment of collected lint expectations.
+ /// All lint emitting queries have to be done before this is executed
+ /// to ensure that all expectations can be fulfilled.
+ ///
+ /// This is an extra query to enable other drivers (like rustdoc) to
+ /// only execute a small subset of the `analysis` query, while allowing
+ /// lints to be expected. In rustc, this query will be executed as part of
+ /// the `analysis` query and doesn't have to be called a second time.
+ ///
+ /// Tools can additionally pass in a tool filter. That will restrict the
+ /// expectations to only trigger for lints starting with the listed tool
+ /// name. This is useful for cases were not all linting code from rustc
+ /// was called. With the default `None` all registered lints will also
+ /// be checked for expectation fulfillment.
+ query check_expectations(key: Option<Symbol>) -> () {
+ eval_always
+ desc { "checking lint expectations (RFC 2383)" }
+ }
+
+ /// Maps from the `DefId` of an item (trait/struct/enum/fn) to its
+ /// associated generics.
+ query generics_of(key: DefId) -> ty::Generics {
+ desc { |tcx| "computing generics of `{}`", tcx.def_path_str(key) }
+ storage(ArenaCacheSelector<'tcx>)
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the
+ /// predicates (where-clauses) that must be proven true in order
+ /// to reference it. This is almost always the "predicates query"
+ /// that you want.
+ ///
+ /// `predicates_of` builds on `predicates_defined_on` -- in fact,
+ /// it is almost always the same as that query, except for the
+ /// case of traits. For traits, `predicates_of` contains
+ /// an additional `Self: Trait<...>` predicate that users don't
+ /// actually write. This reflects the fact that to invoke the
+ /// trait (e.g., via `Default::default`) you must supply types
+ /// that actually implement the trait. (However, this extra
+ /// predicate gets in the way of some checks, which are intended
+ /// to operate over only the actual where-clauses written by the
+ /// user.)
+ query predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> {
+ desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ }
+
+ /// Returns the list of bounds that can be used for
+ /// `SelectionCandidate::ProjectionCandidate(_)` and
+ /// `ProjectionTyCandidate::TraitDef`.
+ /// Specifically this is the bounds written on the trait's type
+ /// definition, or those after the `impl` keyword
+ ///
+ /// ```ignore (incomplete)
+ /// type X: Bound + 'lt
+ /// // ^^^^^^^^^^^
+ /// impl Debug + Display
+ /// // ^^^^^^^^^^^^^^^
+ /// ```
+ ///
+ /// `key` is the `DefId` of the associated type or opaque type.
+ ///
+ /// Bounds from the parent (e.g. with nested impl trait) are not included.
+ query explicit_item_bounds(key: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] {
+ desc { |tcx| "finding item bounds for `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ /// Elaborated version of the predicates from `explicit_item_bounds`.
+ ///
+ /// For example:
+ ///
+ /// ```
+ /// trait MyTrait {
+ /// type MyAType: Eq + ?Sized;
+ /// }
+ /// ```
+ ///
+ /// `explicit_item_bounds` returns `[<Self as MyTrait>::MyAType: Eq]`,
+ /// and `item_bounds` returns
+ /// ```text
+ /// [
+ /// <Self as Trait>::MyAType: Eq,
+ /// <Self as Trait>::MyAType: PartialEq<<Self as Trait>::MyAType>
+ /// ]
+ /// ```
+ ///
+ /// Bounds from the parent (e.g. with nested impl trait) are not included.
+ query item_bounds(key: DefId) -> &'tcx ty::List<ty::Predicate<'tcx>> {
+ desc { |tcx| "elaborating item bounds for `{}`", tcx.def_path_str(key) }
+ }
+
+ query native_libraries(_: CrateNum) -> Vec<NativeLib> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "looking up the native libraries of a linked crate" }
+ separate_provide_extern
+ }
+
+ query lint_levels(_: ()) -> LintLevelMap {
+ storage(ArenaCacheSelector<'tcx>)
+ eval_always
+ desc { "computing the lint levels for items in this crate" }
+ }
+
+ query parent_module_from_def_id(key: LocalDefId) -> LocalDefId {
+ eval_always
+ desc { |tcx| "parent module of `{}`", tcx.def_path_str(key.to_def_id()) }
+ }
+
+ query expn_that_defined(key: DefId) -> rustc_span::ExpnId {
+ desc { |tcx| "expansion that defined `{}`", tcx.def_path_str(key) }
+ separate_provide_extern
+ }
+
+ query is_panic_runtime(_: CrateNum) -> bool {
+ fatal_cycle
+ desc { "checking if the crate is_panic_runtime" }
+ separate_provide_extern
+ }
+
+ /// Fetch the THIR for a given body. If typeck for that body failed, returns an empty `Thir`.
+ query thir_body(key: ty::WithOptConstParam<LocalDefId>)
+ -> Result<(&'tcx Steal<thir::Thir<'tcx>>, thir::ExprId), ErrorGuaranteed>
+ {
+ // Perf tests revealed that hashing THIR is inefficient (see #85729).
+ no_hash
+ desc { |tcx| "building THIR for `{}`", tcx.def_path_str(key.did.to_def_id()) }
+ }
+
+ /// Create a THIR tree for debugging.
+ query thir_tree(key: ty::WithOptConstParam<LocalDefId>) -> String {
+ no_hash
+ storage(ArenaCacheSelector<'tcx>)
+ desc { |tcx| "constructing THIR tree for `{}`", tcx.def_path_str(key.did.to_def_id()) }
+ }
+
+ /// Set of all the `DefId`s in this crate that have MIR associated with
+ /// them. This includes all the body owners, but also things like struct
+ /// constructors.
+ query mir_keys(_: ()) -> rustc_data_structures::fx::FxIndexSet<LocalDefId> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "getting a list of all mir_keys" }
+ }
+
+ /// Maps DefId's that have an associated `mir::Body` to the result
+ /// of the MIR const-checking pass. This is the set of qualifs in
+ /// the final value of a `const`.
+ query mir_const_qualif(key: DefId) -> mir::ConstQualifs {
+ desc { |tcx| "const checking `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+ query mir_const_qualif_const_arg(
+ key: (LocalDefId, DefId)
+ ) -> mir::ConstQualifs {
+ desc {
+ |tcx| "const checking the const argument `{}`",
+ tcx.def_path_str(key.0.to_def_id())
+ }
+ }
+
+ /// Fetch the MIR for a given `DefId` right after it's built - this includes
+ /// unreachable code.
+ query mir_built(key: ty::WithOptConstParam<LocalDefId>) -> &'tcx Steal<mir::Body<'tcx>> {
+ desc { |tcx| "building MIR for `{}`", tcx.def_path_str(key.did.to_def_id()) }
+ }
+
+ /// Fetch the MIR for a given `DefId` up till the point where it is
+ /// ready for const qualification.
+ ///
+ /// See the README for the `mir` module for details.
+ query mir_const(key: ty::WithOptConstParam<LocalDefId>) -> &'tcx Steal<mir::Body<'tcx>> {
+ desc {
+ |tcx| "processing MIR for {}`{}`",
+ if key.const_param_did.is_some() { "the const argument " } else { "" },
+ tcx.def_path_str(key.did.to_def_id()),
+ }
+ no_hash
+ }
+
+ /// Try to build an abstract representation of the given constant.
+ query thir_abstract_const(
+ key: DefId
+ ) -> Result<Option<&'tcx [ty::abstract_const::Node<'tcx>]>, ErrorGuaranteed> {
+ desc {
+ |tcx| "building an abstract representation for {}", tcx.def_path_str(key),
+ }
+ separate_provide_extern
+ }
+ /// Try to build an abstract representation of the given constant.
+ query thir_abstract_const_of_const_arg(
+ key: (LocalDefId, DefId)
+ ) -> Result<Option<&'tcx [ty::abstract_const::Node<'tcx>]>, ErrorGuaranteed> {
+ desc {
+ |tcx|
+ "building an abstract representation for the const argument {}",
+ tcx.def_path_str(key.0.to_def_id()),
+ }
+ }
+
+ query try_unify_abstract_consts(key:
+ ty::ParamEnvAnd<'tcx, (ty::Unevaluated<'tcx, ()>, ty::Unevaluated<'tcx, ()>
+ )>) -> bool {
+ desc {
+ |tcx| "trying to unify the generic constants {} and {}",
+ tcx.def_path_str(key.value.0.def.did), tcx.def_path_str(key.value.1.def.did)
+ }
+ }
+
+ query mir_drops_elaborated_and_const_checked(
+ key: ty::WithOptConstParam<LocalDefId>
+ ) -> &'tcx Steal<mir::Body<'tcx>> {
+ no_hash
+ desc { |tcx| "elaborating drops for `{}`", tcx.def_path_str(key.did.to_def_id()) }
+ }
+
+ query mir_for_ctfe(
+ key: DefId
+ ) -> &'tcx mir::Body<'tcx> {
+ desc { |tcx| "caching mir of `{}` for CTFE", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ query mir_for_ctfe_of_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::Body<'tcx> {
+ desc {
+ |tcx| "MIR for CTFE of the const argument `{}`",
+ tcx.def_path_str(key.0.to_def_id())
+ }
+ }
+
+ query mir_promoted(key: ty::WithOptConstParam<LocalDefId>) ->
+ (
+ &'tcx Steal<mir::Body<'tcx>>,
+ &'tcx Steal<IndexVec<mir::Promoted, mir::Body<'tcx>>>
+ ) {
+ no_hash
+ desc {
+ |tcx| "processing {}`{}`",
+ if key.const_param_did.is_some() { "the const argument " } else { "" },
+ tcx.def_path_str(key.did.to_def_id()),
+ }
+ }
+
+ query symbols_for_closure_captures(
+ key: (LocalDefId, LocalDefId)
+ ) -> Vec<rustc_span::Symbol> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc {
+ |tcx| "symbols for captures of closure `{}` in `{}`",
+ tcx.def_path_str(key.1.to_def_id()),
+ tcx.def_path_str(key.0.to_def_id())
+ }
+ }
+
+ /// MIR after our optimization passes have run. This is MIR that is ready
+ /// for codegen. This is also the only query that can fetch non-local MIR, at present.
+ query optimized_mir(key: DefId) -> &'tcx mir::Body<'tcx> {
+ desc { |tcx| "optimizing MIR for `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ /// Returns coverage summary info for a function, after executing the `InstrumentCoverage`
+ /// MIR pass (assuming the -Cinstrument-coverage option is enabled).
+ query coverageinfo(key: ty::InstanceDef<'tcx>) -> mir::CoverageInfo {
+ desc { |tcx| "retrieving coverage info from MIR for `{}`", tcx.def_path_str(key.def_id()) }
+ storage(ArenaCacheSelector<'tcx>)
+ }
+
+ /// Returns the `CodeRegions` for a function that has instrumented coverage, in case the
+ /// function was optimized out before codegen, and before being added to the Coverage Map.
+ query covered_code_regions(key: DefId) -> Vec<&'tcx mir::coverage::CodeRegion> {
+ desc {
+ |tcx| "retrieving the covered `CodeRegion`s, if instrumented, for `{}`",
+ tcx.def_path_str(key)
+ }
+ storage(ArenaCacheSelector<'tcx>)
+ cache_on_disk_if { key.is_local() }
+ }
+
+ /// The `DefId` is the `DefId` of the containing MIR body. Promoteds do not have their own
+ /// `DefId`. This function returns all promoteds in the specified body. The body references
+ /// promoteds by the `DefId` and the `mir::Promoted` index. This is necessary, because
+ /// after inlining a body may refer to promoteds from other bodies. In that case you still
+ /// need to use the `DefId` of the original body.
+ query promoted_mir(key: DefId) -> &'tcx IndexVec<mir::Promoted, mir::Body<'tcx>> {
+ desc { |tcx| "optimizing promoted MIR for `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+ query promoted_mir_of_const_arg(
+ key: (LocalDefId, DefId)
+ ) -> &'tcx IndexVec<mir::Promoted, mir::Body<'tcx>> {
+ desc {
+ |tcx| "optimizing promoted MIR for the const argument `{}`",
+ tcx.def_path_str(key.0.to_def_id()),
+ }
+ }
+
+ /// Erases regions from `ty` to yield a new type.
+ /// Normally you would just use `tcx.erase_regions(value)`,
+ /// however, which uses this query as a kind of cache.
+ query erase_regions_ty(ty: Ty<'tcx>) -> Ty<'tcx> {
+ // This query is not expected to have input -- as a result, it
+ // is not a good candidates for "replay" because it is essentially a
+ // pure function of its input (and hence the expectation is that
+ // no caller would be green **apart** from just these
+ // queries). Making it anonymous avoids hashing the result, which
+ // may save a bit of time.
+ anon
+ desc { "erasing regions from `{:?}`", ty }
+ }
+
+ query wasm_import_module_map(_: CrateNum) -> FxHashMap<DefId, String> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "wasm import module map" }
+ }
+
+ /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the
+ /// predicates (where-clauses) directly defined on it. This is
+ /// equal to the `explicit_predicates_of` predicates plus the
+ /// `inferred_outlives_of` predicates.
+ query predicates_defined_on(key: DefId) -> ty::GenericPredicates<'tcx> {
+ desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) }
+ }
+
+ /// Returns everything that looks like a predicate written explicitly
+ /// by the user on a trait item.
+ ///
+ /// Traits are unusual, because predicates on associated types are
+ /// converted into bounds on that type for backwards compatibility:
+ ///
+ /// trait X where Self::U: Copy { type U; }
+ ///
+ /// becomes
+ ///
+ /// trait X { type U: Copy; }
+ ///
+ /// `explicit_predicates_of` and `explicit_item_bounds` will then take
+ /// the appropriate subsets of the predicates here.
+ query trait_explicit_predicates_and_bounds(key: LocalDefId) -> ty::GenericPredicates<'tcx> {
+ desc { |tcx| "computing explicit predicates of trait `{}`", tcx.def_path_str(key.to_def_id()) }
+ }
+
+ /// Returns the predicates written explicitly by the user.
+ query explicit_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> {
+ desc { |tcx| "computing explicit predicates of `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ /// Returns the inferred outlives predicates (e.g., for `struct
+ /// Foo<'a, T> { x: &'a T }`, this would return `T: 'a`).
+ query inferred_outlives_of(key: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] {
+ desc { |tcx| "computing inferred outlives predicates of `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ /// Maps from the `DefId` of a trait to the list of
+ /// super-predicates. This is a subset of the full list of
+ /// predicates. We store these in a separate map because we must
+ /// evaluate them even during type conversion, often before the
+ /// full predicates are available (note that supertraits have
+ /// additional acyclicity requirements).
+ query super_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> {
+ desc { |tcx| "computing the super predicates of `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ /// The `Option<Ident>` is the name of an associated type. If it is `None`, then this query
+ /// returns the full set of predicates. If `Some<Ident>`, then the query returns only the
+ /// subset of super-predicates that reference traits that define the given associated type.
+ /// This is used to avoid cycles in resolving types like `T::Item`.
+ query super_predicates_that_define_assoc_type(key: (DefId, Option<rustc_span::symbol::Ident>)) -> ty::GenericPredicates<'tcx> {
+ desc { |tcx| "computing the super traits of `{}`{}",
+ tcx.def_path_str(key.0),
+ if let Some(assoc_name) = key.1 { format!(" with associated type name `{}`", assoc_name) } else { "".to_string() },
+ }
+ }
+
+ /// To avoid cycles within the predicates of a single item we compute
+ /// per-type-parameter predicates for resolving `T::AssocTy`.
+ query type_param_predicates(key: (DefId, LocalDefId, rustc_span::symbol::Ident)) -> ty::GenericPredicates<'tcx> {
+ desc { |tcx| "computing the bounds for type parameter `{}`", tcx.hir().ty_param_name(key.1) }
+ }
+
+ query trait_def(key: DefId) -> ty::TraitDef {
+ desc { |tcx| "computing trait definition for `{}`", tcx.def_path_str(key) }
+ storage(ArenaCacheSelector<'tcx>)
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+ query adt_def(key: DefId) -> ty::AdtDef<'tcx> {
+ desc { |tcx| "computing ADT definition for `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+ query adt_destructor(key: DefId) -> Option<ty::Destructor> {
+ desc { |tcx| "computing `Drop` impl for `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ // The cycle error here should be reported as an error by `check_representable`.
+ // We consider the type as Sized in the meanwhile to avoid
+ // further errors (done in impl Value for AdtSizedConstraint).
+ // Use `cycle_delay_bug` to delay the cycle error here to be emitted later
+ // in case we accidentally otherwise don't emit an error.
+ query adt_sized_constraint(
+ key: DefId
+ ) -> AdtSizedConstraint<'tcx> {
+ desc { |tcx| "computing `Sized` constraints for `{}`", tcx.def_path_str(key) }
+ cycle_delay_bug
+ }
+
+ query adt_dtorck_constraint(
+ key: DefId
+ ) -> Result<&'tcx DropckConstraint<'tcx>, NoSolution> {
+ desc { |tcx| "computing drop-check constraints for `{}`", tcx.def_path_str(key) }
+ }
+
+ /// Returns `true` if this is a const fn, use the `is_const_fn` to know whether your crate
+ /// actually sees it as const fn (e.g., the const-fn-ness might be unstable and you might
+ /// not have the feature gate active).
+ ///
+ /// **Do not call this function manually.** It is only meant to cache the base data for the
+ /// `is_const_fn` function. Consider using `is_const_fn` or `is_const_fn_raw` instead.
+ query constness(key: DefId) -> hir::Constness {
+ desc { |tcx| "checking if item is const: `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ query asyncness(key: DefId) -> hir::IsAsync {
+ desc { |tcx| "checking if the function is async: `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ /// Returns `true` if calls to the function may be promoted.
+ ///
+ /// This is either because the function is e.g., a tuple-struct or tuple-variant
+ /// constructor, or because it has the `#[rustc_promotable]` attribute. The attribute should
+ /// be removed in the future in favour of some form of check which figures out whether the
+ /// function does not inspect the bits of any of its arguments (so is essentially just a
+ /// constructor function).
+ query is_promotable_const_fn(key: DefId) -> bool {
+ desc { |tcx| "checking if item is promotable: `{}`", tcx.def_path_str(key) }
+ }
+
+ /// Returns `true` if this is a foreign item (i.e., linked via `extern { ... }`).
+ query is_foreign_item(key: DefId) -> bool {
+ desc { |tcx| "checking if `{}` is a foreign item", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ /// Returns `Some(generator_kind)` if the node pointed to by `def_id` is a generator.
+ query generator_kind(def_id: DefId) -> Option<hir::GeneratorKind> {
+ desc { |tcx| "looking up generator kind of `{}`", tcx.def_path_str(def_id) }
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+
+ /// Gets a map with the variance of every item; use `item_variance` instead.
+ query crate_variances(_: ()) -> ty::CrateVariancesMap<'tcx> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "computing the variances for items in this crate" }
+ }
+
+ /// Maps from the `DefId` of a type or region parameter to its (inferred) variance.
+ query variances_of(def_id: DefId) -> &'tcx [ty::Variance] {
+ desc { |tcx| "computing the variances of `{}`", tcx.def_path_str(def_id) }
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+
+ /// Maps from thee `DefId` of a type to its (inferred) outlives.
+ query inferred_outlives_crate(_: ()) -> ty::CratePredicatesMap<'tcx> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "computing the inferred outlives predicates for items in this crate" }
+ }
+
+ /// Maps from an impl/trait `DefId` to a list of the `DefId`s of its items.
+ query associated_item_def_ids(key: DefId) -> &'tcx [DefId] {
+ desc { |tcx| "collecting associated items of `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ /// Maps from a trait item to the trait item "descriptor".
+ query associated_item(key: DefId) -> ty::AssocItem {
+ desc { |tcx| "computing associated item data for `{}`", tcx.def_path_str(key) }
+ storage(ArenaCacheSelector<'tcx>)
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ /// Collects the associated items defined on a trait or impl.
+ query associated_items(key: DefId) -> ty::AssocItems<'tcx> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { |tcx| "collecting associated items of {}", tcx.def_path_str(key) }
+ }
+
+ /// Maps from associated items on a trait to the corresponding associated
+ /// item on the impl specified by `impl_id`.
+ ///
+ /// For example, with the following code
+ ///
+ /// ```
+ /// struct Type {}
+ /// // DefId
+ /// trait Trait { // trait_id
+ /// fn f(); // trait_f
+ /// fn g() {} // trait_g
+ /// }
+ ///
+ /// impl Trait for Type { // impl_id
+ /// fn f() {} // impl_f
+ /// fn g() {} // impl_g
+ /// }
+ /// ```
+ ///
+ /// The map returned for `tcx.impl_item_implementor_ids(impl_id)` would be
+ ///`{ trait_f: impl_f, trait_g: impl_g }`
+ query impl_item_implementor_ids(impl_id: DefId) -> FxHashMap<DefId, DefId> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { |tcx| "comparing impl items against trait for {}", tcx.def_path_str(impl_id) }
+ }
+
+ /// Given an `impl_id`, return the trait it implements.
+ /// Return `None` if this is an inherent impl.
+ query impl_trait_ref(impl_id: DefId) -> Option<ty::TraitRef<'tcx>> {
+ desc { |tcx| "computing trait implemented by `{}`", tcx.def_path_str(impl_id) }
+ cache_on_disk_if { impl_id.is_local() }
+ separate_provide_extern
+ }
+ query impl_polarity(impl_id: DefId) -> ty::ImplPolarity {
+ desc { |tcx| "computing implementation polarity of `{}`", tcx.def_path_str(impl_id) }
+ cache_on_disk_if { impl_id.is_local() }
+ separate_provide_extern
+ }
+
+ query issue33140_self_ty(key: DefId) -> Option<ty::Ty<'tcx>> {
+ desc { |tcx| "computing Self type wrt issue #33140 `{}`", tcx.def_path_str(key) }
+ }
+
+ /// Maps a `DefId` of a type to a list of its inherent impls.
+ /// Contains implementations of methods that are inherent to a type.
+ /// Methods in these implementations don't need to be exported.
+ query inherent_impls(key: DefId) -> &'tcx [DefId] {
+ desc { |tcx| "collecting inherent impls for `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ query incoherent_impls(key: SimplifiedType) -> &'tcx [DefId] {
+ desc { |tcx| "collecting all inherent impls for `{:?}`", key }
+ }
+
+ /// The result of unsafety-checking this `LocalDefId`.
+ query unsafety_check_result(key: LocalDefId) -> &'tcx mir::UnsafetyCheckResult {
+ desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key.to_def_id()) }
+ cache_on_disk_if { true }
+ }
+ query unsafety_check_result_for_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::UnsafetyCheckResult {
+ desc {
+ |tcx| "unsafety-checking the const argument `{}`",
+ tcx.def_path_str(key.0.to_def_id())
+ }
+ }
+
+ /// Unsafety-check this `LocalDefId` with THIR unsafeck. This should be
+ /// used with `-Zthir-unsafeck`.
+ query thir_check_unsafety(key: LocalDefId) {
+ desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key.to_def_id()) }
+ cache_on_disk_if { true }
+ }
+ query thir_check_unsafety_for_const_arg(key: (LocalDefId, DefId)) {
+ desc {
+ |tcx| "unsafety-checking the const argument `{}`",
+ tcx.def_path_str(key.0.to_def_id())
+ }
+ }
+
+ /// HACK: when evaluated, this reports an "unsafe derive on repr(packed)" error.
+ ///
+ /// Unsafety checking is executed for each method separately, but we only want
+ /// to emit this error once per derive. As there are some impls with multiple
+ /// methods, we use a query for deduplication.
+ query unsafe_derive_on_repr_packed(key: LocalDefId) -> () {
+ desc { |tcx| "processing `{}`", tcx.def_path_str(key.to_def_id()) }
+ }
+
+ /// Computes the signature of the function.
+ query fn_sig(key: DefId) -> ty::PolyFnSig<'tcx> {
+ desc { |tcx| "computing function signature of `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ /// Performs lint checking for the module.
+ query lint_mod(key: LocalDefId) -> () {
+ desc { |tcx| "linting {}", describe_as_module(key, tcx) }
+ }
+
+ /// Checks the attributes in the module.
+ query check_mod_attrs(key: LocalDefId) -> () {
+ desc { |tcx| "checking attributes in {}", describe_as_module(key, tcx) }
+ }
+
+ /// Checks for uses of unstable APIs in the module.
+ query check_mod_unstable_api_usage(key: LocalDefId) -> () {
+ desc { |tcx| "checking for unstable API usage in {}", describe_as_module(key, tcx) }
+ }
+
+ /// Checks the const bodies in the module for illegal operations (e.g. `if` or `loop`).
+ query check_mod_const_bodies(key: LocalDefId) -> () {
+ desc { |tcx| "checking consts in {}", describe_as_module(key, tcx) }
+ }
+
+ /// Checks the loops in the module.
+ query check_mod_loops(key: LocalDefId) -> () {
+ desc { |tcx| "checking loops in {}", describe_as_module(key, tcx) }
+ }
+
+ query check_mod_naked_functions(key: LocalDefId) -> () {
+ desc { |tcx| "checking naked functions in {}", describe_as_module(key, tcx) }
+ }
+
+ query check_mod_item_types(key: LocalDefId) -> () {
+ desc { |tcx| "checking item types in {}", describe_as_module(key, tcx) }
+ }
+
+ query check_mod_privacy(key: LocalDefId) -> () {
+ desc { |tcx| "checking privacy in {}", describe_as_module(key, tcx) }
+ }
+
+ query check_mod_liveness(key: LocalDefId) -> () {
+ desc { |tcx| "checking liveness of variables in {}", describe_as_module(key, tcx) }
+ }
+
+ /// Return the live symbols in the crate for dead code check.
+ ///
+ /// The second return value maps from ADTs to ignored derived traits (e.g. Debug and Clone) and
+ /// their respective impl (i.e., part of the derive macro)
+ query live_symbols_and_ignored_derived_traits(_: ()) -> (
+ FxHashSet<LocalDefId>,
+ FxHashMap<LocalDefId, Vec<(DefId, DefId)>>
+ ) {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "find live symbols in crate" }
+ }
+
+ query check_mod_deathness(key: LocalDefId) -> () {
+ desc { |tcx| "checking deathness of variables in {}", describe_as_module(key, tcx) }
+ }
+
+ query check_mod_impl_wf(key: LocalDefId) -> () {
+ desc { |tcx| "checking that impls are well-formed in {}", describe_as_module(key, tcx) }
+ }
+
+ query check_mod_type_wf(key: LocalDefId) -> () {
+ desc { |tcx| "checking that types are well-formed in {}", describe_as_module(key, tcx) }
+ }
+
+ query collect_mod_item_types(key: LocalDefId) -> () {
+ desc { |tcx| "collecting item types in {}", describe_as_module(key, tcx) }
+ }
+
+ /// Caches `CoerceUnsized` kinds for impls on custom types.
+ query coerce_unsized_info(key: DefId) -> ty::adjustment::CoerceUnsizedInfo {
+ desc { |tcx| "computing CoerceUnsized info for `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ query typeck_item_bodies(_: ()) -> () {
+ desc { "type-checking all item bodies" }
+ }
+
+ query typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> {
+ desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) }
+ cache_on_disk_if { true }
+ }
+ query typeck_const_arg(
+ key: (LocalDefId, DefId)
+ ) -> &'tcx ty::TypeckResults<'tcx> {
+ desc {
+ |tcx| "type-checking the const argument `{}`",
+ tcx.def_path_str(key.0.to_def_id()),
+ }
+ }
+ query diagnostic_only_typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> {
+ desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) }
+ cache_on_disk_if { true }
+ load_cached(tcx, id) {
+ let typeck_results: Option<ty::TypeckResults<'tcx>> = tcx
+ .on_disk_cache().as_ref()
+ .and_then(|c| c.try_load_query_result(*tcx, id));
+
+ typeck_results.map(|x| &*tcx.arena.alloc(x))
+ }
+ }
+
+ query used_trait_imports(key: LocalDefId) -> &'tcx FxHashSet<LocalDefId> {
+ desc { |tcx| "used_trait_imports `{}`", tcx.def_path_str(key.to_def_id()) }
+ cache_on_disk_if { true }
+ }
+
+ query has_typeck_results(def_id: DefId) -> bool {
+ desc { |tcx| "checking whether `{}` has a body", tcx.def_path_str(def_id) }
+ }
+
+ query coherent_trait(def_id: DefId) -> () {
+ desc { |tcx| "coherence checking all impls of trait `{}`", tcx.def_path_str(def_id) }
+ }
+
+ /// Borrow-checks the function body. If this is a closure, returns
+ /// additional requirements that the closure's creator must verify.
+ query mir_borrowck(key: LocalDefId) -> &'tcx mir::BorrowCheckResult<'tcx> {
+ desc { |tcx| "borrow-checking `{}`", tcx.def_path_str(key.to_def_id()) }
+ cache_on_disk_if(tcx) { tcx.is_typeck_child(key.to_def_id()) }
+ }
+ query mir_borrowck_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::BorrowCheckResult<'tcx> {
+ desc {
+ |tcx| "borrow-checking the const argument`{}`",
+ tcx.def_path_str(key.0.to_def_id())
+ }
+ }
+
+ /// Gets a complete map from all types to their inherent impls.
+ /// Not meant to be used directly outside of coherence.
+ query crate_inherent_impls(k: ()) -> CrateInherentImpls {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "all inherent impls defined in crate" }
+ }
+
+ /// Checks all types in the crate for overlap in their inherent impls. Reports errors.
+ /// Not meant to be used directly outside of coherence.
+ query crate_inherent_impls_overlap_check(_: ()) -> () {
+ desc { "check for overlap between inherent impls defined in this crate" }
+ }
+
+ /// Checks whether all impls in the crate pass the overlap check, returning
+ /// which impls fail it. If all impls are correct, the returned slice is empty.
+ query orphan_check_impl(key: LocalDefId) -> Result<(), ErrorGuaranteed> {
+ desc { |tcx|
+ "checking whether impl `{}` follows the orphan rules",
+ tcx.def_path_str(key.to_def_id()),
+ }
+ }
+
+ /// Check whether the function has any recursion that could cause the inliner to trigger
+ /// a cycle. Returns the call stack causing the cycle. The call stack does not contain the
+ /// current function, just all intermediate functions.
+ query mir_callgraph_reachable(key: (ty::Instance<'tcx>, LocalDefId)) -> bool {
+ fatal_cycle
+ desc { |tcx|
+ "computing if `{}` (transitively) calls `{}`",
+ key.0,
+ tcx.def_path_str(key.1.to_def_id()),
+ }
+ }
+
+ /// Obtain all the calls into other local functions
+ query mir_inliner_callees(key: ty::InstanceDef<'tcx>) -> &'tcx [(DefId, SubstsRef<'tcx>)] {
+ fatal_cycle
+ desc { |tcx|
+ "computing all local function calls in `{}`",
+ tcx.def_path_str(key.def_id()),
+ }
+ }
+
+ /// Evaluates a constant and returns the computed allocation.
+ ///
+ /// **Do not use this** directly, use the `tcx.eval_static_initializer` wrapper.
+ query eval_to_allocation_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>)
+ -> EvalToAllocationRawResult<'tcx> {
+ desc { |tcx|
+ "const-evaluating + checking `{}`",
+ key.value.display(tcx)
+ }
+ cache_on_disk_if { true }
+ }
+
+ /// Evaluates const items or anonymous constants
+ /// (such as enum variant explicit discriminants or array lengths)
+ /// into a representation suitable for the type system and const generics.
+ ///
+ /// **Do not use this** directly, use one of the following wrappers: `tcx.const_eval_poly`,
+ /// `tcx.const_eval_resolve`, `tcx.const_eval_instance`, or `tcx.const_eval_global_id`.
+ query eval_to_const_value_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>)
+ -> EvalToConstValueResult<'tcx> {
+ desc { |tcx|
+ "simplifying constant for the type system `{}`",
+ key.value.display(tcx)
+ }
+ cache_on_disk_if { true }
+ }
+
+ /// Evaluate a constant and convert it to a type level constant or
+ /// return `None` if that is not possible.
+ query eval_to_valtree(
+ key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>
+ ) -> EvalToValTreeResult<'tcx> {
+ desc { "evaluating type-level constant" }
+ }
+
+ /// Converts a type level constant value into `ConstValue`
+ query valtree_to_const_val(key: (Ty<'tcx>, ty::ValTree<'tcx>)) -> ConstValue<'tcx> {
+ desc { "converting type-level constant value to mir constant value"}
+ }
+
+ /// Destructures array, ADT or tuple constants into the constants
+ /// of their fields.
+ query destructure_const(key: ty::Const<'tcx>) -> ty::DestructuredConst<'tcx> {
+ desc { "destructuring type level constant"}
+ }
+
+ /// Tries to destructure an `mir::ConstantKind` ADT or array into its variant index
+ /// and its field values.
+ query try_destructure_mir_constant(key: ty::ParamEnvAnd<'tcx, mir::ConstantKind<'tcx>>) -> Option<mir::DestructuredMirConstant<'tcx>> {
+ desc { "destructuring mir constant"}
+ remap_env_constness
+ }
+
+ /// Dereference a constant reference or raw pointer and turn the result into a constant
+ /// again.
+ query deref_mir_constant(
+ key: ty::ParamEnvAnd<'tcx, mir::ConstantKind<'tcx>>
+ ) -> mir::ConstantKind<'tcx> {
+ desc { "dereferencing mir constant" }
+ remap_env_constness
+ }
+
+ query const_caller_location(key: (rustc_span::Symbol, u32, u32)) -> ConstValue<'tcx> {
+ desc { "get a &core::panic::Location referring to a span" }
+ }
+
+ // FIXME get rid of this with valtrees
+ query lit_to_const(
+ key: LitToConstInput<'tcx>
+ ) -> Result<ty::Const<'tcx>, LitToConstError> {
+ desc { "converting literal to const" }
+ }
+
+ query lit_to_mir_constant(key: LitToConstInput<'tcx>) -> Result<mir::ConstantKind<'tcx>, LitToConstError> {
+ desc { "converting literal to mir constant" }
+ }
+
+ query check_match(key: DefId) {
+ desc { |tcx| "match-checking `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ }
+
+ /// Performs part of the privacy check and computes "access levels".
+ query privacy_access_levels(_: ()) -> &'tcx AccessLevels {
+ eval_always
+ desc { "privacy access levels" }
+ }
+ query check_private_in_public(_: ()) -> () {
+ eval_always
+ desc { "checking for private elements in public interfaces" }
+ }
+
+ query reachable_set(_: ()) -> FxHashSet<LocalDefId> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "reachability" }
+ }
+
+ /// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body;
+ /// in the case of closures, this will be redirected to the enclosing function.
+ query region_scope_tree(def_id: DefId) -> &'tcx crate::middle::region::ScopeTree {
+ desc { |tcx| "computing drop scopes for `{}`", tcx.def_path_str(def_id) }
+ }
+
+ /// Generates a MIR body for the shim.
+ query mir_shims(key: ty::InstanceDef<'tcx>) -> mir::Body<'tcx> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { |tcx| "generating MIR shim for `{}`", tcx.def_path_str(key.def_id()) }
+ }
+
+ /// The `symbol_name` query provides the symbol name for calling a
+ /// given instance from the local crate. In particular, it will also
+ /// look up the correct symbol name of instances from upstream crates.
+ query symbol_name(key: ty::Instance<'tcx>) -> ty::SymbolName<'tcx> {
+ desc { "computing the symbol for `{}`", key }
+ cache_on_disk_if { true }
+ }
+
+ query opt_def_kind(def_id: DefId) -> Option<DefKind> {
+ desc { |tcx| "looking up definition kind of `{}`", tcx.def_path_str(def_id) }
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+
+ /// Gets the span for the definition.
+ query def_span(def_id: DefId) -> Span {
+ desc { |tcx| "looking up span for `{}`", tcx.def_path_str(def_id) }
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+
+ /// Gets the span for the identifier of the definition.
+ query def_ident_span(def_id: DefId) -> Option<Span> {
+ desc { |tcx| "looking up span for `{}`'s identifier", tcx.def_path_str(def_id) }
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+
+ query lookup_stability(def_id: DefId) -> Option<attr::Stability> {
+ desc { |tcx| "looking up stability of `{}`", tcx.def_path_str(def_id) }
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+
+ query lookup_const_stability(def_id: DefId) -> Option<attr::ConstStability> {
+ desc { |tcx| "looking up const stability of `{}`", tcx.def_path_str(def_id) }
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+
+ query should_inherit_track_caller(def_id: DefId) -> bool {
+ desc { |tcx| "computing should_inherit_track_caller of `{}`", tcx.def_path_str(def_id) }
+ }
+
+ query lookup_deprecation_entry(def_id: DefId) -> Option<DeprecationEntry> {
+ desc { |tcx| "checking whether `{}` is deprecated", tcx.def_path_str(def_id) }
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+
+ /// Determines whether an item is annotated with `doc(hidden)`.
+ query is_doc_hidden(def_id: DefId) -> bool {
+ desc { |tcx| "checking whether `{}` is `doc(hidden)`", tcx.def_path_str(def_id) }
+ }
+
+ /// Returns the attributes on the item at `def_id`.
+ ///
+ /// Do not use this directly, use `tcx.get_attrs` instead.
+ query item_attrs(def_id: DefId) -> &'tcx [ast::Attribute] {
+ desc { |tcx| "collecting attributes of `{}`", tcx.def_path_str(def_id) }
+ separate_provide_extern
+ }
+
+ query codegen_fn_attrs(def_id: DefId) -> CodegenFnAttrs {
+ desc { |tcx| "computing codegen attributes of `{}`", tcx.def_path_str(def_id) }
+ storage(ArenaCacheSelector<'tcx>)
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+
+ query asm_target_features(def_id: DefId) -> &'tcx FxHashSet<Symbol> {
+ desc { |tcx| "computing target features for inline asm of `{}`", tcx.def_path_str(def_id) }
+ }
+
+ query fn_arg_names(def_id: DefId) -> &'tcx [rustc_span::symbol::Ident] {
+ desc { |tcx| "looking up function parameter names for `{}`", tcx.def_path_str(def_id) }
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+ /// Gets the rendered value of the specified constant or associated constant.
+ /// Used by rustdoc.
+ query rendered_const(def_id: DefId) -> String {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { |tcx| "rendering constant intializer of `{}`", tcx.def_path_str(def_id) }
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+ query impl_parent(def_id: DefId) -> Option<DefId> {
+ desc { |tcx| "computing specialization parent impl of `{}`", tcx.def_path_str(def_id) }
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+
+ query is_ctfe_mir_available(key: DefId) -> bool {
+ desc { |tcx| "checking if item has ctfe mir available: `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+ query is_mir_available(key: DefId) -> bool {
+ desc { |tcx| "checking if item has mir available: `{}`", tcx.def_path_str(key) }
+ cache_on_disk_if { key.is_local() }
+ separate_provide_extern
+ }
+
+ query own_existential_vtable_entries(
+ key: ty::PolyExistentialTraitRef<'tcx>
+ ) -> &'tcx [DefId] {
+ desc { |tcx| "finding all existential vtable entries for trait {}", tcx.def_path_str(key.def_id()) }
+ }
+
+ query vtable_entries(key: ty::PolyTraitRef<'tcx>)
+ -> &'tcx [ty::VtblEntry<'tcx>] {
+ desc { |tcx| "finding all vtable entries for trait {}", tcx.def_path_str(key.def_id()) }
+ }
+
+ query vtable_trait_upcasting_coercion_new_vptr_slot(key: (ty::Ty<'tcx>, ty::Ty<'tcx>)) -> Option<usize> {
+ desc { |tcx| "finding the slot within vtable for trait object {} vtable ptr during trait upcasting coercion from {} vtable",
+ key.1, key.0 }
+ }
+
+ query vtable_allocation(key: (Ty<'tcx>, Option<ty::PolyExistentialTraitRef<'tcx>>)) -> mir::interpret::AllocId {
+ desc { |tcx| "vtable const allocation for <{} as {}>",
+ key.0,
+ key.1.map(|trait_ref| format!("{}", trait_ref)).unwrap_or("_".to_owned())
+ }
+ }
+
+ query codegen_fulfill_obligation(
+ key: (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>)
+ ) -> Result<&'tcx ImplSource<'tcx, ()>, traits::CodegenObligationError> {
+ cache_on_disk_if { true }
+ desc { |tcx|
+ "checking if `{}` fulfills its obligations",
+ tcx.def_path_str(key.1.def_id())
+ }
+ }
+
+ /// Return all `impl` blocks in the current crate.
+ query all_local_trait_impls(_: ()) -> &'tcx rustc_data_structures::fx::FxIndexMap<DefId, Vec<LocalDefId>> {
+ desc { "local trait impls" }
+ }
+
+ /// Given a trait `trait_id`, return all known `impl` blocks.
+ query trait_impls_of(trait_id: DefId) -> ty::trait_def::TraitImpls {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { |tcx| "trait impls of `{}`", tcx.def_path_str(trait_id) }
+ }
+
+ query specialization_graph_of(trait_id: DefId) -> specialization_graph::Graph {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { |tcx| "building specialization graph of trait `{}`", tcx.def_path_str(trait_id) }
+ cache_on_disk_if { true }
+ }
+ query object_safety_violations(trait_id: DefId) -> &'tcx [traits::ObjectSafetyViolation] {
+ desc { |tcx| "determine object safety of trait `{}`", tcx.def_path_str(trait_id) }
+ }
+
+ /// Gets the ParameterEnvironment for a given item; this environment
+ /// will be in "user-facing" mode, meaning that it is suitable for
+ /// type-checking etc, and it does not normalize specializable
+ /// associated types. This is almost always what you want,
+ /// unless you are doing MIR optimizations, in which case you
+ /// might want to use `reveal_all()` method to change modes.
+ query param_env(def_id: DefId) -> ty::ParamEnv<'tcx> {
+ desc { |tcx| "computing normalized predicates of `{}`", tcx.def_path_str(def_id) }
+ }
+
+ /// Like `param_env`, but returns the `ParamEnv` in `Reveal::All` mode.
+ /// Prefer this over `tcx.param_env(def_id).with_reveal_all_normalized(tcx)`,
+ /// as this method is more efficient.
+ query param_env_reveal_all_normalized(def_id: DefId) -> ty::ParamEnv<'tcx> {
+ desc { |tcx| "computing revealed normalized predicates of `{}`", tcx.def_path_str(def_id) }
+ }
+
+ /// Trait selection queries. These are best used by invoking `ty.is_copy_modulo_regions()`,
+ /// `ty.is_copy()`, etc, since that will prune the environment where possible.
+ query is_copy_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
+ desc { "computing whether `{}` is `Copy`", env.value }
+ remap_env_constness
+ }
+ /// Query backing `Ty::is_sized`.
+ query is_sized_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
+ desc { "computing whether `{}` is `Sized`", env.value }
+ remap_env_constness
+ }
+ /// Query backing `Ty::is_freeze`.
+ query is_freeze_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
+ desc { "computing whether `{}` is freeze", env.value }
+ remap_env_constness
+ }
+ /// Query backing `Ty::is_unpin`.
+ query is_unpin_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
+ desc { "computing whether `{}` is `Unpin`", env.value }
+ remap_env_constness
+ }
+ /// Query backing `Ty::needs_drop`.
+ query needs_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
+ desc { "computing whether `{}` needs drop", env.value }
+ remap_env_constness
+ }
+ /// Query backing `Ty::has_significant_drop_raw`.
+ query has_significant_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
+ desc { "computing whether `{}` has a significant drop", env.value }
+ remap_env_constness
+ }
+
+ /// Query backing `Ty::is_structural_eq_shallow`.
+ ///
+ /// This is only correct for ADTs. Call `is_structural_eq_shallow` to handle all types
+ /// correctly.
+ query has_structural_eq_impls(ty: Ty<'tcx>) -> bool {
+ desc {
+ "computing whether `{:?}` implements `PartialStructuralEq` and `StructuralEq`",
+ ty
+ }
+ }
+
+ /// A list of types where the ADT requires drop if and only if any of
+ /// those types require drop. If the ADT is known to always need drop
+ /// then `Err(AlwaysRequiresDrop)` is returned.
+ query adt_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> {
+ desc { |tcx| "computing when `{}` needs drop", tcx.def_path_str(def_id) }
+ cache_on_disk_if { true }
+ }
+
+ /// A list of types where the ADT requires drop if and only if any of those types
+ /// has significant drop. A type marked with the attribute `rustc_insignificant_dtor`
+ /// is considered to not be significant. A drop is significant if it is implemented
+ /// by the user or does anything that will have any observable behavior (other than
+ /// freeing up memory). If the ADT is known to have a significant destructor then
+ /// `Err(AlwaysRequiresDrop)` is returned.
+ query adt_significant_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> {
+ desc { |tcx| "computing when `{}` has a significant destructor", tcx.def_path_str(def_id) }
+ cache_on_disk_if { false }
+ }
+
+ /// Computes the layout of a type. Note that this implicitly
+ /// executes in "reveal all" mode, and will normalize the input type.
+ query layout_of(
+ key: ty::ParamEnvAnd<'tcx, Ty<'tcx>>
+ ) -> Result<ty::layout::TyAndLayout<'tcx>, ty::layout::LayoutError<'tcx>> {
+ desc { "computing layout of `{}`", key.value }
+ remap_env_constness
+ }
+
+ /// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers.
+ ///
+ /// NB: this doesn't handle virtual calls - those should use `fn_abi_of_instance`
+ /// instead, where the instance is an `InstanceDef::Virtual`.
+ query fn_abi_of_fn_ptr(
+ key: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List<Ty<'tcx>>)>
+ ) -> Result<&'tcx abi::call::FnAbi<'tcx, Ty<'tcx>>, ty::layout::FnAbiError<'tcx>> {
+ desc { "computing call ABI of `{}` function pointers", key.value.0 }
+ remap_env_constness
+ }
+
+ /// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for
+ /// direct calls to an `fn`.
+ ///
+ /// NB: that includes virtual calls, which are represented by "direct calls"
+ /// to an `InstanceDef::Virtual` instance (of `<dyn Trait as Trait>::fn`).
+ query fn_abi_of_instance(
+ key: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List<Ty<'tcx>>)>
+ ) -> Result<&'tcx abi::call::FnAbi<'tcx, Ty<'tcx>>, ty::layout::FnAbiError<'tcx>> {
+ desc { "computing call ABI of `{}`", key.value.0 }
+ remap_env_constness
+ }
+
+ query dylib_dependency_formats(_: CrateNum)
+ -> &'tcx [(CrateNum, LinkagePreference)] {
+ desc { "dylib dependency formats of crate" }
+ separate_provide_extern
+ }
+
+ query dependency_formats(_: ()) -> Lrc<crate::middle::dependency_format::Dependencies> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "get the linkage format of all dependencies" }
+ }
+
+ query is_compiler_builtins(_: CrateNum) -> bool {
+ fatal_cycle
+ desc { "checking if the crate is_compiler_builtins" }
+ separate_provide_extern
+ }
+ query has_global_allocator(_: CrateNum) -> bool {
+ // This query depends on untracked global state in CStore
+ eval_always
+ fatal_cycle
+ desc { "checking if the crate has_global_allocator" }
+ separate_provide_extern
+ }
+ query has_panic_handler(_: CrateNum) -> bool {
+ fatal_cycle
+ desc { "checking if the crate has_panic_handler" }
+ separate_provide_extern
+ }
+ query is_profiler_runtime(_: CrateNum) -> bool {
+ fatal_cycle
+ desc { "query a crate is `#![profiler_runtime]`" }
+ separate_provide_extern
+ }
+ query has_ffi_unwind_calls(key: LocalDefId) -> bool {
+ desc { |tcx| "check if `{}` contains FFI-unwind calls", tcx.def_path_str(key.to_def_id()) }
+ cache_on_disk_if { true }
+ }
+ query required_panic_strategy(_: CrateNum) -> Option<PanicStrategy> {
+ fatal_cycle
+ desc { "query a crate's required panic strategy" }
+ separate_provide_extern
+ }
+ query panic_in_drop_strategy(_: CrateNum) -> PanicStrategy {
+ fatal_cycle
+ desc { "query a crate's configured panic-in-drop strategy" }
+ separate_provide_extern
+ }
+ query is_no_builtins(_: CrateNum) -> bool {
+ fatal_cycle
+ desc { "test whether a crate has `#![no_builtins]`" }
+ separate_provide_extern
+ }
+ query symbol_mangling_version(_: CrateNum) -> SymbolManglingVersion {
+ fatal_cycle
+ desc { "query a crate's symbol mangling version" }
+ separate_provide_extern
+ }
+
+ query extern_crate(def_id: DefId) -> Option<&'tcx ExternCrate> {
+ eval_always
+ desc { "getting crate's ExternCrateData" }
+ separate_provide_extern
+ }
+
+ query specializes(_: (DefId, DefId)) -> bool {
+ desc { "computing whether impls specialize one another" }
+ }
+ query in_scope_traits_map(_: LocalDefId)
+ -> Option<&'tcx FxHashMap<ItemLocalId, Box<[TraitCandidate]>>> {
+ desc { "traits in scope at a block" }
+ }
+
+ query module_reexports(def_id: LocalDefId) -> Option<&'tcx [ModChild]> {
+ desc { |tcx| "looking up reexports of module `{}`", tcx.def_path_str(def_id.to_def_id()) }
+ }
+
+ query impl_defaultness(def_id: DefId) -> hir::Defaultness {
+ desc { |tcx| "looking up whether `{}` is a default impl", tcx.def_path_str(def_id) }
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+
+ query check_well_formed(key: LocalDefId) -> () {
+ desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key.to_def_id()) }
+ }
+
+ // The `DefId`s of all non-generic functions and statics in the given crate
+ // that can be reached from outside the crate.
+ //
+ // We expect this items to be available for being linked to.
+ //
+ // This query can also be called for `LOCAL_CRATE`. In this case it will
+ // compute which items will be reachable to other crates, taking into account
+ // the kind of crate that is currently compiled. Crates with only a
+ // C interface have fewer reachable things.
+ //
+ // Does not include external symbols that don't have a corresponding DefId,
+ // like the compiler-generated `main` function and so on.
+ query reachable_non_generics(_: CrateNum)
+ -> DefIdMap<SymbolExportInfo> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "looking up the exported symbols of a crate" }
+ separate_provide_extern
+ }
+ query is_reachable_non_generic(def_id: DefId) -> bool {
+ desc { |tcx| "checking whether `{}` is an exported symbol", tcx.def_path_str(def_id) }
+ cache_on_disk_if { def_id.is_local() }
+ separate_provide_extern
+ }
+ query is_unreachable_local_definition(def_id: LocalDefId) -> bool {
+ desc { |tcx|
+ "checking whether `{}` is reachable from outside the crate",
+ tcx.def_path_str(def_id.to_def_id()),
+ }
+ }
+
+ /// The entire set of monomorphizations the local crate can safely link
+ /// to because they are exported from upstream crates. Do not depend on
+ /// this directly, as its value changes anytime a monomorphization gets
+ /// added or removed in any upstream crate. Instead use the narrower
+ /// `upstream_monomorphizations_for`, `upstream_drop_glue_for`, or, even
+ /// better, `Instance::upstream_monomorphization()`.
+ query upstream_monomorphizations(_: ()) -> DefIdMap<FxHashMap<SubstsRef<'tcx>, CrateNum>> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "collecting available upstream monomorphizations" }
+ }
+
+ /// Returns the set of upstream monomorphizations available for the
+ /// generic function identified by the given `def_id`. The query makes
+ /// sure to make a stable selection if the same monomorphization is
+ /// available in multiple upstream crates.
+ ///
+ /// You likely want to call `Instance::upstream_monomorphization()`
+ /// instead of invoking this query directly.
+ query upstream_monomorphizations_for(def_id: DefId)
+ -> Option<&'tcx FxHashMap<SubstsRef<'tcx>, CrateNum>>
+ {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { |tcx|
+ "collecting available upstream monomorphizations for `{}`",
+ tcx.def_path_str(def_id),
+ }
+ separate_provide_extern
+ }
+
+ /// Returns the upstream crate that exports drop-glue for the given
+ /// type (`substs` is expected to be a single-item list containing the
+ /// type one wants drop-glue for).
+ ///
+ /// This is a subset of `upstream_monomorphizations_for` in order to
+ /// increase dep-tracking granularity. Otherwise adding or removing any
+ /// type with drop-glue in any upstream crate would invalidate all
+ /// functions calling drop-glue of an upstream type.
+ ///
+ /// You likely want to call `Instance::upstream_monomorphization()`
+ /// instead of invoking this query directly.
+ ///
+ /// NOTE: This query could easily be extended to also support other
+ /// common functions that have are large set of monomorphizations
+ /// (like `Clone::clone` for example).
+ query upstream_drop_glue_for(substs: SubstsRef<'tcx>) -> Option<CrateNum> {
+ desc { "available upstream drop-glue for `{:?}`", substs }
+ }
+
+ query foreign_modules(_: CrateNum) -> FxHashMap<DefId, ForeignModule> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "looking up the foreign modules of a linked crate" }
+ separate_provide_extern
+ }
+
+ /// Identifies the entry-point (e.g., the `main` function) for a given
+ /// crate, returning `None` if there is no entry point (such as for library crates).
+ query entry_fn(_: ()) -> Option<(DefId, EntryFnType)> {
+ desc { "looking up the entry function of a crate" }
+ }
+ query proc_macro_decls_static(_: ()) -> Option<LocalDefId> {
+ desc { "looking up the derive registrar for a crate" }
+ }
+ // The macro which defines `rustc_metadata::provide_extern` depends on this query's name.
+ // Changing the name should cause a compiler error, but in case that changes, be aware.
+ query crate_hash(_: CrateNum) -> Svh {
+ eval_always
+ desc { "looking up the hash a crate" }
+ separate_provide_extern
+ }
+ query crate_host_hash(_: CrateNum) -> Option<Svh> {
+ eval_always
+ desc { "looking up the hash of a host version of a crate" }
+ separate_provide_extern
+ }
+ query extra_filename(_: CrateNum) -> String {
+ storage(ArenaCacheSelector<'tcx>)
+ eval_always
+ desc { "looking up the extra filename for a crate" }
+ separate_provide_extern
+ }
+ query crate_extern_paths(_: CrateNum) -> Vec<PathBuf> {
+ storage(ArenaCacheSelector<'tcx>)
+ eval_always
+ desc { "looking up the paths for extern crates" }
+ separate_provide_extern
+ }
+
+ /// Given a crate and a trait, look up all impls of that trait in the crate.
+ /// Return `(impl_id, self_ty)`.
+ query implementations_of_trait(_: (CrateNum, DefId)) -> &'tcx [(DefId, Option<SimplifiedType>)] {
+ desc { "looking up implementations of a trait in a crate" }
+ separate_provide_extern
+ }
+
+ /// Collects all incoherent impls for the given crate and type.
+ ///
+ /// Do not call this directly, but instead use the `incoherent_impls` query.
+ /// This query is only used to get the data necessary for that query.
+ query crate_incoherent_impls(key: (CrateNum, SimplifiedType)) -> &'tcx [DefId] {
+ desc { |tcx| "collecting all impls for a type in a crate" }
+ separate_provide_extern
+ }
+
+ query is_dllimport_foreign_item(def_id: DefId) -> bool {
+ desc { |tcx| "is_dllimport_foreign_item({})", tcx.def_path_str(def_id) }
+ }
+ query is_statically_included_foreign_item(def_id: DefId) -> bool {
+ desc { |tcx| "is_statically_included_foreign_item({})", tcx.def_path_str(def_id) }
+ }
+ query native_library_kind(def_id: DefId)
+ -> Option<NativeLibKind> {
+ desc { |tcx| "native_library_kind({})", tcx.def_path_str(def_id) }
+ }
+
+ /// Does lifetime resolution, but does not descend into trait items. This
+ /// should only be used for resolving lifetimes of on trait definitions,
+ /// and is used to avoid cycles. Importantly, `resolve_lifetimes` still visits
+ /// the same lifetimes and is responsible for diagnostics.
+ /// See `rustc_resolve::late::lifetimes for details.
+ query resolve_lifetimes_trait_definition(_: LocalDefId) -> ResolveLifetimes {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "resolving lifetimes for a trait definition" }
+ }
+ /// Does lifetime resolution on items. Importantly, we can't resolve
+ /// lifetimes directly on things like trait methods, because of trait params.
+ /// See `rustc_resolve::late::lifetimes for details.
+ query resolve_lifetimes(_: LocalDefId) -> ResolveLifetimes {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "resolving lifetimes" }
+ }
+ query named_region_map(_: LocalDefId) ->
+ Option<&'tcx FxHashMap<ItemLocalId, Region>> {
+ desc { "looking up a named region" }
+ }
+ query is_late_bound_map(_: LocalDefId) -> Option<&'tcx FxIndexSet<LocalDefId>> {
+ desc { "testing if a region is late bound" }
+ }
+ /// For a given item (like a struct), gets the default lifetimes to be used
+ /// for each parameter if a trait object were to be passed for that parameter.
+ /// For example, for `struct Foo<'a, T, U>`, this would be `['static, 'static]`.
+ /// For `struct Foo<'a, T: 'a, U>`, this would instead be `['a, 'static]`.
+ query object_lifetime_defaults(_: LocalDefId) -> Option<&'tcx [ObjectLifetimeDefault]> {
+ desc { "looking up lifetime defaults for a region on an item" }
+ }
+ query late_bound_vars_map(_: LocalDefId)
+ -> Option<&'tcx FxHashMap<ItemLocalId, Vec<ty::BoundVariableKind>>> {
+ desc { "looking up late bound vars" }
+ }
+
+ query visibility(def_id: DefId) -> ty::Visibility {
+ desc { |tcx| "computing visibility of `{}`", tcx.def_path_str(def_id) }
+ separate_provide_extern
+ }
+
+ /// Computes the set of modules from which this type is visibly uninhabited.
+ /// To check whether a type is uninhabited at all (not just from a given module), you could
+ /// check whether the forest is empty.
+ query type_uninhabited_from(
+ key: ty::ParamEnvAnd<'tcx, Ty<'tcx>>
+ ) -> ty::inhabitedness::DefIdForest<'tcx> {
+ desc { "computing the inhabitedness of `{:?}`", key }
+ remap_env_constness
+ }
+
+ query dep_kind(_: CrateNum) -> CrateDepKind {
+ eval_always
+ desc { "fetching what a dependency looks like" }
+ separate_provide_extern
+ }
+
+ /// Gets the name of the crate.
+ query crate_name(_: CrateNum) -> Symbol {
+ eval_always
+ desc { "fetching what a crate is named" }
+ separate_provide_extern
+ }
+ query module_children(def_id: DefId) -> &'tcx [ModChild] {
+ desc { |tcx| "collecting child items of module `{}`", tcx.def_path_str(def_id) }
+ separate_provide_extern
+ }
+ query extern_mod_stmt_cnum(def_id: LocalDefId) -> Option<CrateNum> {
+ desc { |tcx| "computing crate imported by `{}`", tcx.def_path_str(def_id.to_def_id()) }
+ }
+
+ query lib_features(_: ()) -> LibFeatures {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "calculating the lib features map" }
+ }
+ query defined_lib_features(_: CrateNum) -> &'tcx [(Symbol, Option<Symbol>)] {
+ desc { "calculating the lib features defined in a crate" }
+ separate_provide_extern
+ }
+ query stability_implications(_: CrateNum) -> FxHashMap<Symbol, Symbol> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "calculating the implications between `#[unstable]` features defined in a crate" }
+ separate_provide_extern
+ }
+ /// Whether the function is an intrinsic
+ query is_intrinsic(def_id: DefId) -> bool {
+ desc { |tcx| "is_intrinsic({})", tcx.def_path_str(def_id) }
+ separate_provide_extern
+ }
+ /// Returns the lang items defined in another crate by loading it from metadata.
+ query get_lang_items(_: ()) -> LanguageItems {
+ storage(ArenaCacheSelector<'tcx>)
+ eval_always
+ desc { "calculating the lang items map" }
+ }
+
+ /// Returns all diagnostic items defined in all crates.
+ query all_diagnostic_items(_: ()) -> rustc_hir::diagnostic_items::DiagnosticItems {
+ storage(ArenaCacheSelector<'tcx>)
+ eval_always
+ desc { "calculating the diagnostic items map" }
+ }
+
+ /// Returns the lang items defined in another crate by loading it from metadata.
+ query defined_lang_items(_: CrateNum) -> &'tcx [(DefId, usize)] {
+ desc { "calculating the lang items defined in a crate" }
+ separate_provide_extern
+ }
+
+ /// Returns the diagnostic items defined in a crate.
+ query diagnostic_items(_: CrateNum) -> rustc_hir::diagnostic_items::DiagnosticItems {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "calculating the diagnostic items map in a crate" }
+ separate_provide_extern
+ }
+
+ query missing_lang_items(_: CrateNum) -> &'tcx [LangItem] {
+ desc { "calculating the missing lang items in a crate" }
+ separate_provide_extern
+ }
+ query visible_parent_map(_: ()) -> DefIdMap<DefId> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "calculating the visible parent map" }
+ }
+ query trimmed_def_paths(_: ()) -> FxHashMap<DefId, Symbol> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "calculating trimmed def paths" }
+ }
+ query missing_extern_crate_item(_: CrateNum) -> bool {
+ eval_always
+ desc { "seeing if we're missing an `extern crate` item for this crate" }
+ separate_provide_extern
+ }
+ query used_crate_source(_: CrateNum) -> Lrc<CrateSource> {
+ storage(ArenaCacheSelector<'tcx>)
+ eval_always
+ desc { "looking at the source for a crate" }
+ separate_provide_extern
+ }
+ /// Returns the debugger visualizers defined for this crate.
+ query debugger_visualizers(_: CrateNum) -> Vec<rustc_span::DebuggerVisualizerFile> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { "looking up the debugger visualizers for this crate" }
+ separate_provide_extern
+ }
+ query postorder_cnums(_: ()) -> &'tcx [CrateNum] {
+ eval_always
+ desc { "generating a postorder list of CrateNums" }
+ }
+ /// Returns whether or not the crate with CrateNum 'cnum'
+ /// is marked as a private dependency
+ query is_private_dep(c: CrateNum) -> bool {
+ eval_always
+ desc { "check whether crate {} is a private dependency", c }
+ separate_provide_extern
+ }
+ query allocator_kind(_: ()) -> Option<AllocatorKind> {
+ eval_always
+ desc { "allocator kind for the current crate" }
+ }
+
+ query upvars_mentioned(def_id: DefId) -> Option<&'tcx FxIndexMap<hir::HirId, hir::Upvar>> {
+ desc { |tcx| "collecting upvars mentioned in `{}`", tcx.def_path_str(def_id) }
+ }
+ query maybe_unused_trait_imports(_: ()) -> &'tcx FxIndexSet<LocalDefId> {
+ desc { "fetching potentially unused trait imports" }
+ }
+ query maybe_unused_extern_crates(_: ()) -> &'tcx [(LocalDefId, Span)] {
+ desc { "looking up all possibly unused extern crates" }
+ }
+ query names_imported_by_glob_use(def_id: LocalDefId) -> &'tcx FxHashSet<Symbol> {
+ desc { |tcx| "names_imported_by_glob_use for `{}`", tcx.def_path_str(def_id.to_def_id()) }
+ }
+
+ query stability_index(_: ()) -> stability::Index {
+ storage(ArenaCacheSelector<'tcx>)
+ eval_always
+ desc { "calculating the stability index for the local crate" }
+ }
+ query crates(_: ()) -> &'tcx [CrateNum] {
+ eval_always
+ desc { "fetching all foreign CrateNum instances" }
+ }
+
+ /// A list of all traits in a crate, used by rustdoc and error reporting.
+ /// NOTE: Not named just `traits` due to a naming conflict.
+ query traits_in_crate(_: CrateNum) -> &'tcx [DefId] {
+ desc { "fetching all traits in a crate" }
+ separate_provide_extern
+ }
+
+ /// The list of symbols exported from the given crate.
+ ///
+ /// - All names contained in `exported_symbols(cnum)` are guaranteed to
+ /// correspond to a publicly visible symbol in `cnum` machine code.
+ /// - The `exported_symbols` sets of different crates do not intersect.
+ query exported_symbols(cnum: CrateNum) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportInfo)] {
+ desc { "exported_symbols" }
+ cache_on_disk_if { *cnum == LOCAL_CRATE }
+ separate_provide_extern
+ }
+
+ query collect_and_partition_mono_items(_: ()) -> (&'tcx DefIdSet, &'tcx [CodegenUnit<'tcx>]) {
+ eval_always
+ desc { "collect_and_partition_mono_items" }
+ }
+ query is_codegened_item(def_id: DefId) -> bool {
+ desc { |tcx| "determining whether `{}` needs codegen", tcx.def_path_str(def_id) }
+ }
+
+ /// All items participating in code generation together with items inlined into them.
+ query codegened_and_inlined_items(_: ()) -> &'tcx DefIdSet {
+ eval_always
+ desc { "codegened_and_inlined_items" }
+ }
+
+ query codegen_unit(_: Symbol) -> &'tcx CodegenUnit<'tcx> {
+ desc { "codegen_unit" }
+ }
+ query unused_generic_params(key: ty::InstanceDef<'tcx>) -> FiniteBitSet<u32> {
+ cache_on_disk_if { key.def_id().is_local() }
+ desc {
+ |tcx| "determining which generic parameters are unused by `{}`",
+ tcx.def_path_str(key.def_id())
+ }
+ separate_provide_extern
+ }
+ query backend_optimization_level(_: ()) -> OptLevel {
+ desc { "optimization level used by backend" }
+ }
+
+ /// Return the filenames where output artefacts shall be stored.
+ ///
+ /// This query returns an `&Arc` because codegen backends need the value even after the `TyCtxt`
+ /// has been destroyed.
+ query output_filenames(_: ()) -> &'tcx Arc<OutputFilenames> {
+ eval_always
+ desc { "output_filenames" }
+ }
+
+ /// Do not call this query directly: invoke `normalize` instead.
+ query normalize_projection_ty(
+ goal: CanonicalProjectionGoal<'tcx>
+ ) -> Result<
+ &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>,
+ NoSolution,
+ > {
+ desc { "normalizing `{:?}`", goal }
+ remap_env_constness
+ }
+
+ /// Do not call this query directly: invoke `try_normalize_erasing_regions` instead.
+ query try_normalize_generic_arg_after_erasing_regions(
+ goal: ParamEnvAnd<'tcx, GenericArg<'tcx>>
+ ) -> Result<GenericArg<'tcx>, NoSolution> {
+ desc { "normalizing `{}`", goal.value }
+ remap_env_constness
+ }
+
+ /// Do not call this query directly: invoke `try_normalize_erasing_regions` instead.
+ query try_normalize_mir_const_after_erasing_regions(
+ goal: ParamEnvAnd<'tcx, mir::ConstantKind<'tcx>>
+ ) -> Result<mir::ConstantKind<'tcx>, NoSolution> {
+ desc { "normalizing `{}`", goal.value }
+ remap_env_constness
+ }
+
+ query implied_outlives_bounds(
+ goal: CanonicalTyGoal<'tcx>
+ ) -> Result<
+ &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec<OutlivesBound<'tcx>>>>,
+ NoSolution,
+ > {
+ desc { "computing implied outlives bounds for `{:?}`", goal }
+ remap_env_constness
+ }
+
+ /// Do not call this query directly:
+ /// invoke `DropckOutlives::new(dropped_ty)).fully_perform(typeck.infcx)` instead.
+ query dropck_outlives(
+ goal: CanonicalTyGoal<'tcx>
+ ) -> Result<
+ &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>,
+ NoSolution,
+ > {
+ desc { "computing dropck types for `{:?}`", goal }
+ remap_env_constness
+ }
+
+ /// Do not call this query directly: invoke `infcx.predicate_may_hold()` or
+ /// `infcx.predicate_must_hold()` instead.
+ query evaluate_obligation(
+ goal: CanonicalPredicateGoal<'tcx>
+ ) -> Result<traits::EvaluationResult, traits::OverflowError> {
+ desc { "evaluating trait selection obligation `{}`", goal.value.value }
+ }
+
+ query evaluate_goal(
+ goal: traits::CanonicalChalkEnvironmentAndGoal<'tcx>
+ ) -> Result<
+ &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
+ NoSolution
+ > {
+ desc { "evaluating trait selection obligation `{}`", goal.value }
+ }
+
+ /// Do not call this query directly: part of the `Eq` type-op
+ query type_op_ascribe_user_type(
+ goal: CanonicalTypeOpAscribeUserTypeGoal<'tcx>
+ ) -> Result<
+ &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
+ NoSolution,
+ > {
+ desc { "evaluating `type_op_ascribe_user_type` `{:?}`", goal }
+ remap_env_constness
+ }
+
+ /// Do not call this query directly: part of the `Eq` type-op
+ query type_op_eq(
+ goal: CanonicalTypeOpEqGoal<'tcx>
+ ) -> Result<
+ &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
+ NoSolution,
+ > {
+ desc { "evaluating `type_op_eq` `{:?}`", goal }
+ remap_env_constness
+ }
+
+ /// Do not call this query directly: part of the `Subtype` type-op
+ query type_op_subtype(
+ goal: CanonicalTypeOpSubtypeGoal<'tcx>
+ ) -> Result<
+ &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
+ NoSolution,
+ > {
+ desc { "evaluating `type_op_subtype` `{:?}`", goal }
+ remap_env_constness
+ }
+
+ /// Do not call this query directly: part of the `ProvePredicate` type-op
+ query type_op_prove_predicate(
+ goal: CanonicalTypeOpProvePredicateGoal<'tcx>
+ ) -> Result<
+ &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
+ NoSolution,
+ > {
+ desc { "evaluating `type_op_prove_predicate` `{:?}`", goal }
+ }
+
+ /// Do not call this query directly: part of the `Normalize` type-op
+ query type_op_normalize_ty(
+ goal: CanonicalTypeOpNormalizeGoal<'tcx, Ty<'tcx>>
+ ) -> Result<
+ &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Ty<'tcx>>>,
+ NoSolution,
+ > {
+ desc { "normalizing `{:?}`", goal }
+ remap_env_constness
+ }
+
+ /// Do not call this query directly: part of the `Normalize` type-op
+ query type_op_normalize_predicate(
+ goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::Predicate<'tcx>>
+ ) -> Result<
+ &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::Predicate<'tcx>>>,
+ NoSolution,
+ > {
+ desc { "normalizing `{:?}`", goal }
+ remap_env_constness
+ }
+
+ /// Do not call this query directly: part of the `Normalize` type-op
+ query type_op_normalize_poly_fn_sig(
+ goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::PolyFnSig<'tcx>>
+ ) -> Result<
+ &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::PolyFnSig<'tcx>>>,
+ NoSolution,
+ > {
+ desc { "normalizing `{:?}`", goal }
+ remap_env_constness
+ }
+
+ /// Do not call this query directly: part of the `Normalize` type-op
+ query type_op_normalize_fn_sig(
+ goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::FnSig<'tcx>>
+ ) -> Result<
+ &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::FnSig<'tcx>>>,
+ NoSolution,
+ > {
+ desc { "normalizing `{:?}`", goal }
+ remap_env_constness
+ }
+
+ query subst_and_check_impossible_predicates(key: (DefId, SubstsRef<'tcx>)) -> bool {
+ desc { |tcx|
+ "impossible substituted predicates:`{}`",
+ tcx.def_path_str(key.0)
+ }
+ }
+
+ query method_autoderef_steps(
+ goal: CanonicalTyGoal<'tcx>
+ ) -> MethodAutoderefStepsResult<'tcx> {
+ desc { "computing autoderef types for `{:?}`", goal }
+ remap_env_constness
+ }
+
+ query supported_target_features(_: CrateNum) -> FxHashMap<String, Option<Symbol>> {
+ storage(ArenaCacheSelector<'tcx>)
+ eval_always
+ desc { "looking up supported target features" }
+ }
+
+ /// Get an estimate of the size of an InstanceDef based on its MIR for CGU partitioning.
+ query instance_def_size_estimate(def: ty::InstanceDef<'tcx>)
+ -> usize {
+ desc { |tcx| "estimating size for `{}`", tcx.def_path_str(def.def_id()) }
+ }
+
+ query features_query(_: ()) -> &'tcx rustc_feature::Features {
+ eval_always
+ desc { "looking up enabled feature gates" }
+ }
+
+ /// Attempt to resolve the given `DefId` to an `Instance`, for the
+ /// given generics args (`SubstsRef`), returning one of:
+ /// * `Ok(Some(instance))` on success
+ /// * `Ok(None)` when the `SubstsRef` are still too generic,
+ /// and therefore don't allow finding the final `Instance`
+ /// * `Err(ErrorGuaranteed)` when the `Instance` resolution process
+ /// couldn't complete due to errors elsewhere - this is distinct
+ /// from `Ok(None)` to avoid misleading diagnostics when an error
+ /// has already been/will be emitted, for the original cause
+ query resolve_instance(
+ key: ty::ParamEnvAnd<'tcx, (DefId, SubstsRef<'tcx>)>
+ ) -> Result<Option<ty::Instance<'tcx>>, ErrorGuaranteed> {
+ desc { "resolving instance `{}`", ty::Instance::new(key.value.0, key.value.1) }
+ remap_env_constness
+ }
+
+ query resolve_instance_of_const_arg(
+ key: ty::ParamEnvAnd<'tcx, (LocalDefId, DefId, SubstsRef<'tcx>)>
+ ) -> Result<Option<ty::Instance<'tcx>>, ErrorGuaranteed> {
+ desc {
+ "resolving instance of the const argument `{}`",
+ ty::Instance::new(key.value.0.to_def_id(), key.value.2),
+ }
+ remap_env_constness
+ }
+
+ query normalize_opaque_types(key: &'tcx ty::List<ty::Predicate<'tcx>>) -> &'tcx ty::List<ty::Predicate<'tcx>> {
+ desc { "normalizing opaque types in {:?}", key }
+ }
+
+ /// Checks whether a type is definitely uninhabited. This is
+ /// conservative: for some types that are uninhabited we return `false`,
+ /// but we only return `true` for types that are definitely uninhabited.
+ /// `ty.conservative_is_privately_uninhabited` implies that any value of type `ty`
+ /// will be `Abi::Uninhabited`. (Note that uninhabited types may have nonzero
+ /// size, to account for partial initialisation. See #49298 for details.)
+ query conservative_is_privately_uninhabited(key: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
+ desc { "conservatively checking if {:?} is privately uninhabited", key }
+ remap_env_constness
+ }
+
+ query limits(key: ()) -> Limits {
+ desc { "looking up limits" }
+ }
+
+ /// Performs an HIR-based well-formed check on the item with the given `HirId`. If
+ /// we get an `Unimplemented` error that matches the provided `Predicate`, return
+ /// the cause of the newly created obligation.
+ ///
+ /// This is only used by error-reporting code to get a better cause (in particular, a better
+ /// span) for an *existing* error. Therefore, it is best-effort, and may never handle
+ /// all of the cases that the normal `ty::Ty`-based wfcheck does. This is fine,
+ /// because the `ty::Ty`-based wfcheck is always run.
+ query diagnostic_hir_wf_check(key: (ty::Predicate<'tcx>, traits::WellFormedLoc)) -> Option<traits::ObligationCause<'tcx>> {
+ storage(ArenaCacheSelector<'tcx>)
+ eval_always
+ no_hash
+ desc { "performing HIR wf-checking for predicate {:?} at item {:?}", key.0, key.1 }
+ }
+
+
+ /// The list of backend features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`,
+ /// `--target` and similar).
+ query global_backend_features(_: ()) -> Vec<String> {
+ storage(ArenaCacheSelector<'tcx>)
+ eval_always
+ desc { "computing the backend features for CLI flags" }
+ }
+
+ query generator_diagnostic_data(key: DefId) -> Option<GeneratorDiagnosticData<'tcx>> {
+ storage(ArenaCacheSelector<'tcx>)
+ desc { |tcx| "looking up generator diagnostic data of `{}`", tcx.def_path_str(key) }
+ separate_provide_extern
+ }
+
+ query permits_uninit_init(key: TyAndLayout<'tcx>) -> bool {
+ desc { "checking to see if {:?} permits being left uninit", key.ty }
+ }
+
+ query permits_zero_init(key: TyAndLayout<'tcx>) -> bool {
+ desc { "checking to see if {:?} permits being left zeroed", key.ty }
+ }
+}