summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_middle/src/ty/layout_sanity_check.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_middle/src/ty/layout_sanity_check.rs')
-rw-r--r--compiler/rustc_middle/src/ty/layout_sanity_check.rs303
1 files changed, 303 insertions, 0 deletions
diff --git a/compiler/rustc_middle/src/ty/layout_sanity_check.rs b/compiler/rustc_middle/src/ty/layout_sanity_check.rs
new file mode 100644
index 000000000..87c85dcff
--- /dev/null
+++ b/compiler/rustc_middle/src/ty/layout_sanity_check.rs
@@ -0,0 +1,303 @@
+use crate::ty::{
+ layout::{LayoutCx, TyAndLayout},
+ TyCtxt,
+};
+use rustc_target::abi::*;
+
+use std::cmp;
+
+/// Enforce some basic invariants on layouts.
+pub(super) fn sanity_check_layout<'tcx>(
+ cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
+ layout: &TyAndLayout<'tcx>,
+) {
+ // Type-level uninhabitedness should always imply ABI uninhabitedness.
+ if cx.tcx.conservative_is_privately_uninhabited(cx.param_env.and(layout.ty)) {
+ assert!(layout.abi.is_uninhabited());
+ }
+
+ if layout.size.bytes() % layout.align.abi.bytes() != 0 {
+ bug!("size is not a multiple of align, in the following layout:\n{layout:#?}");
+ }
+
+ if cfg!(debug_assertions) {
+ /// Yields non-ZST fields of the type
+ fn non_zst_fields<'tcx, 'a>(
+ cx: &'a LayoutCx<'tcx, TyCtxt<'tcx>>,
+ layout: &'a TyAndLayout<'tcx>,
+ ) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> + 'a {
+ (0..layout.layout.fields().count()).filter_map(|i| {
+ let field = layout.field(cx, i);
+ // Also checking `align == 1` here leads to test failures in
+ // `layout/zero-sized-array-union.rs`, where a type has a zero-size field with
+ // alignment 4 that still gets ignored during layout computation (which is okay
+ // since other fields already force alignment 4).
+ let zst = field.is_zst();
+ (!zst).then(|| (layout.fields.offset(i), field))
+ })
+ }
+
+ fn skip_newtypes<'tcx>(
+ cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
+ layout: &TyAndLayout<'tcx>,
+ ) -> TyAndLayout<'tcx> {
+ if matches!(layout.layout.variants(), Variants::Multiple { .. }) {
+ // Definitely not a newtype of anything.
+ return *layout;
+ }
+ let mut fields = non_zst_fields(cx, layout);
+ let Some(first) = fields.next() else {
+ // No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing
+ return *layout
+ };
+ if fields.next().is_none() {
+ let (offset, first) = first;
+ if offset == Size::ZERO && first.layout.size() == layout.size {
+ // This is a newtype, so keep recursing.
+ // FIXME(RalfJung): I don't think it would be correct to do any checks for
+ // alignment here, so we don't. Is that correct?
+ return skip_newtypes(cx, &first);
+ }
+ }
+ // No more newtypes here.
+ *layout
+ }
+
+ fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: &TyAndLayout<'tcx>) {
+ match layout.layout.abi() {
+ Abi::Scalar(scalar) => {
+ // No padding in scalars.
+ let size = scalar.size(cx);
+ let align = scalar.align(cx).abi;
+ assert_eq!(
+ layout.layout.size(),
+ size,
+ "size mismatch between ABI and layout in {layout:#?}"
+ );
+ assert_eq!(
+ layout.layout.align().abi,
+ align,
+ "alignment mismatch between ABI and layout in {layout:#?}"
+ );
+ // Check that this matches the underlying field.
+ let inner = skip_newtypes(cx, layout);
+ assert!(
+ matches!(inner.layout.abi(), Abi::Scalar(_)),
+ "`Scalar` type {} is newtype around non-`Scalar` type {}",
+ layout.ty,
+ inner.ty
+ );
+ match inner.layout.fields() {
+ FieldsShape::Primitive => {
+ // Fine.
+ }
+ FieldsShape::Union(..) => {
+ // FIXME: I guess we could also check something here? Like, look at all fields?
+ return;
+ }
+ FieldsShape::Arbitrary { .. } => {
+ // Should be an enum, the only field is the discriminant.
+ assert!(
+ inner.ty.is_enum(),
+ "`Scalar` layout for non-primitive non-enum type {}",
+ inner.ty
+ );
+ assert_eq!(
+ inner.layout.fields().count(),
+ 1,
+ "`Scalar` layout for multiple-field type in {inner:#?}",
+ );
+ let offset = inner.layout.fields().offset(0);
+ let field = inner.field(cx, 0);
+ // The field should be at the right offset, and match the `scalar` layout.
+ assert_eq!(
+ offset,
+ Size::ZERO,
+ "`Scalar` field at non-0 offset in {inner:#?}",
+ );
+ assert_eq!(
+ field.size, size,
+ "`Scalar` field with bad size in {inner:#?}",
+ );
+ assert_eq!(
+ field.align.abi, align,
+ "`Scalar` field with bad align in {inner:#?}",
+ );
+ assert!(
+ matches!(field.abi, Abi::Scalar(_)),
+ "`Scalar` field with bad ABI in {inner:#?}",
+ );
+ }
+ _ => {
+ panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty);
+ }
+ }
+ }
+ Abi::ScalarPair(scalar1, scalar2) => {
+ // Sanity-check scalar pairs. These are a bit more flexible and support
+ // padding, but we can at least ensure both fields actually fit into the layout
+ // and the alignment requirement has not been weakened.
+ let size1 = scalar1.size(cx);
+ let align1 = scalar1.align(cx).abi;
+ let size2 = scalar2.size(cx);
+ let align2 = scalar2.align(cx).abi;
+ assert!(
+ layout.layout.align().abi >= cmp::max(align1, align2),
+ "alignment mismatch between ABI and layout in {layout:#?}",
+ );
+ let field2_offset = size1.align_to(align2);
+ assert!(
+ layout.layout.size() >= field2_offset + size2,
+ "size mismatch between ABI and layout in {layout:#?}"
+ );
+ // Check that the underlying pair of fields matches.
+ let inner = skip_newtypes(cx, layout);
+ assert!(
+ matches!(inner.layout.abi(), Abi::ScalarPair(..)),
+ "`ScalarPair` type {} is newtype around non-`ScalarPair` type {}",
+ layout.ty,
+ inner.ty
+ );
+ if matches!(inner.layout.variants(), Variants::Multiple { .. }) {
+ // FIXME: ScalarPair for enums is enormously complicated and it is very hard
+ // to check anything about them.
+ return;
+ }
+ match inner.layout.fields() {
+ FieldsShape::Arbitrary { .. } => {
+ // Checked below.
+ }
+ FieldsShape::Union(..) => {
+ // FIXME: I guess we could also check something here? Like, look at all fields?
+ return;
+ }
+ _ => {
+ panic!("`ScalarPair` layout with unexpected field shape in {inner:#?}");
+ }
+ }
+ let mut fields = non_zst_fields(cx, &inner);
+ let (offset1, field1) = fields.next().unwrap_or_else(|| {
+ panic!("`ScalarPair` layout for type with not even one non-ZST field: {inner:#?}")
+ });
+ let (offset2, field2) = fields.next().unwrap_or_else(|| {
+ panic!("`ScalarPair` layout for type with less than two non-ZST fields: {inner:#?}")
+ });
+ assert!(
+ fields.next().is_none(),
+ "`ScalarPair` layout for type with at least three non-ZST fields: {inner:#?}"
+ );
+ // The fields might be in opposite order.
+ let (offset1, field1, offset2, field2) = if offset1 <= offset2 {
+ (offset1, field1, offset2, field2)
+ } else {
+ (offset2, field2, offset1, field1)
+ };
+ // The fields should be at the right offset, and match the `scalar` layout.
+ assert_eq!(
+ offset1,
+ Size::ZERO,
+ "`ScalarPair` first field at non-0 offset in {inner:#?}",
+ );
+ assert_eq!(
+ field1.size, size1,
+ "`ScalarPair` first field with bad size in {inner:#?}",
+ );
+ assert_eq!(
+ field1.align.abi, align1,
+ "`ScalarPair` first field with bad align in {inner:#?}",
+ );
+ assert!(
+ matches!(field1.abi, Abi::Scalar(_)),
+ "`ScalarPair` first field with bad ABI in {inner:#?}",
+ );
+ assert_eq!(
+ offset2, field2_offset,
+ "`ScalarPair` second field at bad offset in {inner:#?}",
+ );
+ assert_eq!(
+ field2.size, size2,
+ "`ScalarPair` second field with bad size in {inner:#?}",
+ );
+ assert_eq!(
+ field2.align.abi, align2,
+ "`ScalarPair` second field with bad align in {inner:#?}",
+ );
+ assert!(
+ matches!(field2.abi, Abi::Scalar(_)),
+ "`ScalarPair` second field with bad ABI in {inner:#?}",
+ );
+ }
+ Abi::Vector { count, element } => {
+ // No padding in vectors. Alignment can be strengthened, though.
+ assert!(
+ layout.layout.align().abi >= element.align(cx).abi,
+ "alignment mismatch between ABI and layout in {layout:#?}"
+ );
+ let size = element.size(cx) * count;
+ assert_eq!(
+ layout.layout.size(),
+ size.align_to(cx.data_layout().vector_align(size).abi),
+ "size mismatch between ABI and layout in {layout:#?}"
+ );
+ }
+ Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
+ }
+ }
+
+ check_layout_abi(cx, layout);
+
+ if let Variants::Multiple { variants, .. } = &layout.variants {
+ for variant in variants.iter() {
+ // No nested "multiple".
+ assert!(matches!(variant.variants(), Variants::Single { .. }));
+ // Variants should have the same or a smaller size as the full thing,
+ // and same for alignment.
+ if variant.size() > layout.size {
+ bug!(
+ "Type with size {} bytes has variant with size {} bytes: {layout:#?}",
+ layout.size.bytes(),
+ variant.size().bytes(),
+ )
+ }
+ if variant.align().abi > layout.align.abi {
+ bug!(
+ "Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}",
+ layout.align.abi.bytes(),
+ variant.align().abi.bytes(),
+ )
+ }
+ // Skip empty variants.
+ if variant.size() == Size::ZERO
+ || variant.fields().count() == 0
+ || variant.abi().is_uninhabited()
+ {
+ // These are never actually accessed anyway, so we can skip the coherence check
+ // for them. They also fail that check, since they have
+ // `Aggregate`/`Uninhbaited` ABI even when the main type is
+ // `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size
+ // 0, and sometimes, variants without fields have non-0 size.)
+ continue;
+ }
+ // The top-level ABI and the ABI of the variants should be coherent.
+ let scalar_coherent = |s1: Scalar, s2: Scalar| {
+ s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx)
+ };
+ let abi_coherent = match (layout.abi, variant.abi()) {
+ (Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2),
+ (Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => {
+ scalar_coherent(a1, a2) && scalar_coherent(b1, b2)
+ }
+ (Abi::Uninhabited, _) => true,
+ (Abi::Aggregate { .. }, _) => true,
+ _ => false,
+ };
+ if !abi_coherent {
+ bug!(
+ "Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}",
+ variant
+ );
+ }
+ }
+ }
+ }
+}