summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_mir_build/src/build/matches/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_mir_build/src/build/matches/mod.rs')
-rw-r--r--compiler/rustc_mir_build/src/build/matches/mod.rs2354
1 files changed, 2354 insertions, 0 deletions
diff --git a/compiler/rustc_mir_build/src/build/matches/mod.rs b/compiler/rustc_mir_build/src/build/matches/mod.rs
new file mode 100644
index 000000000..58b1564cc
--- /dev/null
+++ b/compiler/rustc_mir_build/src/build/matches/mod.rs
@@ -0,0 +1,2354 @@
+//! Code related to match expressions. These are sufficiently complex to
+//! warrant their own module and submodules. :) This main module includes the
+//! high-level algorithm, the submodules contain the details.
+//!
+//! This also includes code for pattern bindings in `let` statements and
+//! function parameters.
+
+use crate::build::expr::as_place::PlaceBuilder;
+use crate::build::scope::DropKind;
+use crate::build::ForGuard::{self, OutsideGuard, RefWithinGuard};
+use crate::build::{BlockAnd, BlockAndExtension, Builder};
+use crate::build::{GuardFrame, GuardFrameLocal, LocalsForNode};
+use rustc_data_structures::{
+ fx::{FxHashSet, FxIndexMap, FxIndexSet},
+ stack::ensure_sufficient_stack,
+};
+use rustc_index::bit_set::BitSet;
+use rustc_middle::middle::region;
+use rustc_middle::mir::*;
+use rustc_middle::thir::{self, *};
+use rustc_middle::ty::{self, CanonicalUserTypeAnnotation, Ty};
+use rustc_span::symbol::Symbol;
+use rustc_span::{BytePos, Pos, Span};
+use rustc_target::abi::VariantIdx;
+use smallvec::{smallvec, SmallVec};
+
+// helper functions, broken out by category:
+mod simplify;
+mod test;
+mod util;
+
+use std::borrow::Borrow;
+use std::convert::TryFrom;
+use std::mem;
+
+impl<'a, 'tcx> Builder<'a, 'tcx> {
+ pub(crate) fn then_else_break(
+ &mut self,
+ mut block: BasicBlock,
+ expr: &Expr<'tcx>,
+ temp_scope_override: Option<region::Scope>,
+ break_scope: region::Scope,
+ variable_source_info: SourceInfo,
+ ) -> BlockAnd<()> {
+ let this = self;
+ let expr_span = expr.span;
+
+ match expr.kind {
+ ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => {
+ let lhs_then_block = unpack!(this.then_else_break(
+ block,
+ &this.thir[lhs],
+ temp_scope_override,
+ break_scope,
+ variable_source_info,
+ ));
+
+ let rhs_then_block = unpack!(this.then_else_break(
+ lhs_then_block,
+ &this.thir[rhs],
+ temp_scope_override,
+ break_scope,
+ variable_source_info,
+ ));
+
+ rhs_then_block.unit()
+ }
+ ExprKind::Scope { region_scope, lint_level, value } => {
+ let region_scope = (region_scope, this.source_info(expr_span));
+ this.in_scope(region_scope, lint_level, |this| {
+ this.then_else_break(
+ block,
+ &this.thir[value],
+ temp_scope_override,
+ break_scope,
+ variable_source_info,
+ )
+ })
+ }
+ ExprKind::Let { expr, ref pat } => this.lower_let_expr(
+ block,
+ &this.thir[expr],
+ pat,
+ break_scope,
+ Some(variable_source_info.scope),
+ variable_source_info.span,
+ ),
+ _ => {
+ let temp_scope = temp_scope_override.unwrap_or_else(|| this.local_scope());
+ let mutability = Mutability::Mut;
+ let place =
+ unpack!(block = this.as_temp(block, Some(temp_scope), expr, mutability));
+ let operand = Operand::Move(Place::from(place));
+
+ let then_block = this.cfg.start_new_block();
+ let else_block = this.cfg.start_new_block();
+ let term = TerminatorKind::if_(this.tcx, operand, then_block, else_block);
+
+ let source_info = this.source_info(expr_span);
+ this.cfg.terminate(block, source_info, term);
+ this.break_for_else(else_block, break_scope, source_info);
+
+ then_block.unit()
+ }
+ }
+ }
+
+ /// Generates MIR for a `match` expression.
+ ///
+ /// The MIR that we generate for a match looks like this.
+ ///
+ /// ```text
+ /// [ 0. Pre-match ]
+ /// |
+ /// [ 1. Evaluate Scrutinee (expression being matched on) ]
+ /// [ (fake read of scrutinee) ]
+ /// |
+ /// [ 2. Decision tree -- check discriminants ] <--------+
+ /// | |
+ /// | (once a specific arm is chosen) |
+ /// | |
+ /// [pre_binding_block] [otherwise_block]
+ /// | |
+ /// [ 3. Create "guard bindings" for arm ] |
+ /// [ (create fake borrows) ] |
+ /// | |
+ /// [ 4. Execute guard code ] |
+ /// [ (read fake borrows) ] --(guard is false)-----------+
+ /// |
+ /// | (guard results in true)
+ /// |
+ /// [ 5. Create real bindings and execute arm ]
+ /// |
+ /// [ Exit match ]
+ /// ```
+ ///
+ /// All of the different arms have been stacked on top of each other to
+ /// simplify the diagram. For an arm with no guard the blocks marked 3 and
+ /// 4 and the fake borrows are omitted.
+ ///
+ /// We generate MIR in the following steps:
+ ///
+ /// 1. Evaluate the scrutinee and add the fake read of it ([Builder::lower_scrutinee]).
+ /// 2. Create the decision tree ([Builder::lower_match_tree]).
+ /// 3. Determine the fake borrows that are needed from the places that were
+ /// matched against and create the required temporaries for them
+ /// ([Builder::calculate_fake_borrows]).
+ /// 4. Create everything else: the guards and the arms ([Builder::lower_match_arms]).
+ ///
+ /// ## False edges
+ ///
+ /// We don't want to have the exact structure of the decision tree be
+ /// visible through borrow checking. False edges ensure that the CFG as
+ /// seen by borrow checking doesn't encode this. False edges are added:
+ ///
+ /// * From each pre-binding block to the next pre-binding block.
+ /// * From each otherwise block to the next pre-binding block.
+ #[tracing::instrument(level = "debug", skip(self, arms))]
+ pub(crate) fn match_expr(
+ &mut self,
+ destination: Place<'tcx>,
+ span: Span,
+ mut block: BasicBlock,
+ scrutinee: &Expr<'tcx>,
+ arms: &[ArmId],
+ ) -> BlockAnd<()> {
+ let scrutinee_span = scrutinee.span;
+ let scrutinee_place =
+ unpack!(block = self.lower_scrutinee(block, scrutinee, scrutinee_span,));
+
+ let mut arm_candidates = self.create_match_candidates(scrutinee_place.clone(), &arms);
+
+ let match_has_guard = arms.iter().copied().any(|arm| self.thir[arm].guard.is_some());
+ let mut candidates =
+ arm_candidates.iter_mut().map(|(_, candidate)| candidate).collect::<Vec<_>>();
+
+ let match_start_span = span.shrink_to_lo().to(scrutinee.span);
+
+ let fake_borrow_temps = self.lower_match_tree(
+ block,
+ scrutinee_span,
+ match_start_span,
+ match_has_guard,
+ &mut candidates,
+ );
+
+ self.lower_match_arms(
+ destination,
+ scrutinee_place,
+ scrutinee_span,
+ arm_candidates,
+ self.source_info(span),
+ fake_borrow_temps,
+ )
+ }
+
+ /// Evaluate the scrutinee and add the fake read of it.
+ fn lower_scrutinee(
+ &mut self,
+ mut block: BasicBlock,
+ scrutinee: &Expr<'tcx>,
+ scrutinee_span: Span,
+ ) -> BlockAnd<PlaceBuilder<'tcx>> {
+ let scrutinee_place_builder = unpack!(block = self.as_place_builder(block, scrutinee));
+ // Matching on a `scrutinee_place` with an uninhabited type doesn't
+ // generate any memory reads by itself, and so if the place "expression"
+ // contains unsafe operations like raw pointer dereferences or union
+ // field projections, we wouldn't know to require an `unsafe` block
+ // around a `match` equivalent to `std::intrinsics::unreachable()`.
+ // See issue #47412 for this hole being discovered in the wild.
+ //
+ // HACK(eddyb) Work around the above issue by adding a dummy inspection
+ // of `scrutinee_place`, specifically by applying `ReadForMatch`.
+ //
+ // NOTE: ReadForMatch also checks that the scrutinee is initialized.
+ // This is currently needed to not allow matching on an uninitialized,
+ // uninhabited value. If we get never patterns, those will check that
+ // the place is initialized, and so this read would only be used to
+ // check safety.
+ let cause_matched_place = FakeReadCause::ForMatchedPlace(None);
+ let source_info = self.source_info(scrutinee_span);
+
+ if let Ok(scrutinee_builder) =
+ scrutinee_place_builder.clone().try_upvars_resolved(self.tcx, self.typeck_results)
+ {
+ let scrutinee_place = scrutinee_builder.into_place(self.tcx, self.typeck_results);
+ self.cfg.push_fake_read(block, source_info, cause_matched_place, scrutinee_place);
+ }
+
+ block.and(scrutinee_place_builder)
+ }
+
+ /// Create the initial `Candidate`s for a `match` expression.
+ fn create_match_candidates<'pat>(
+ &mut self,
+ scrutinee: PlaceBuilder<'tcx>,
+ arms: &'pat [ArmId],
+ ) -> Vec<(&'pat Arm<'tcx>, Candidate<'pat, 'tcx>)>
+ where
+ 'a: 'pat,
+ {
+ // Assemble a list of candidates: there is one candidate per pattern,
+ // which means there may be more than one candidate *per arm*.
+ arms.iter()
+ .copied()
+ .map(|arm| {
+ let arm = &self.thir[arm];
+ let arm_has_guard = arm.guard.is_some();
+ let arm_candidate = Candidate::new(scrutinee.clone(), &arm.pattern, arm_has_guard);
+ (arm, arm_candidate)
+ })
+ .collect()
+ }
+
+ /// Create the decision tree for the match expression, starting from `block`.
+ ///
+ /// Modifies `candidates` to store the bindings and type ascriptions for
+ /// that candidate.
+ ///
+ /// Returns the places that need fake borrows because we bind or test them.
+ fn lower_match_tree<'pat>(
+ &mut self,
+ block: BasicBlock,
+ scrutinee_span: Span,
+ match_start_span: Span,
+ match_has_guard: bool,
+ candidates: &mut [&mut Candidate<'pat, 'tcx>],
+ ) -> Vec<(Place<'tcx>, Local)> {
+ // The set of places that we are creating fake borrows of. If there are
+ // no match guards then we don't need any fake borrows, so don't track
+ // them.
+ let mut fake_borrows = match_has_guard.then(FxIndexSet::default);
+
+ let mut otherwise = None;
+
+ // This will generate code to test scrutinee_place and
+ // branch to the appropriate arm block
+ self.match_candidates(
+ match_start_span,
+ scrutinee_span,
+ block,
+ &mut otherwise,
+ candidates,
+ &mut fake_borrows,
+ );
+
+ if let Some(otherwise_block) = otherwise {
+ // See the doc comment on `match_candidates` for why we may have an
+ // otherwise block. Match checking will ensure this is actually
+ // unreachable.
+ let source_info = self.source_info(scrutinee_span);
+ self.cfg.terminate(otherwise_block, source_info, TerminatorKind::Unreachable);
+ }
+
+ // Link each leaf candidate to the `pre_binding_block` of the next one.
+ let mut previous_candidate: Option<&mut Candidate<'_, '_>> = None;
+
+ for candidate in candidates {
+ candidate.visit_leaves(|leaf_candidate| {
+ if let Some(ref mut prev) = previous_candidate {
+ prev.next_candidate_pre_binding_block = leaf_candidate.pre_binding_block;
+ }
+ previous_candidate = Some(leaf_candidate);
+ });
+ }
+
+ if let Some(ref borrows) = fake_borrows {
+ self.calculate_fake_borrows(borrows, scrutinee_span)
+ } else {
+ Vec::new()
+ }
+ }
+
+ /// Lower the bindings, guards and arm bodies of a `match` expression.
+ ///
+ /// The decision tree should have already been created
+ /// (by [Builder::lower_match_tree]).
+ ///
+ /// `outer_source_info` is the SourceInfo for the whole match.
+ fn lower_match_arms(
+ &mut self,
+ destination: Place<'tcx>,
+ scrutinee_place_builder: PlaceBuilder<'tcx>,
+ scrutinee_span: Span,
+ arm_candidates: Vec<(&'_ Arm<'tcx>, Candidate<'_, 'tcx>)>,
+ outer_source_info: SourceInfo,
+ fake_borrow_temps: Vec<(Place<'tcx>, Local)>,
+ ) -> BlockAnd<()> {
+ let arm_end_blocks: Vec<_> = arm_candidates
+ .into_iter()
+ .map(|(arm, candidate)| {
+ debug!("lowering arm {:?}\ncandidate = {:?}", arm, candidate);
+
+ let arm_source_info = self.source_info(arm.span);
+ let arm_scope = (arm.scope, arm_source_info);
+ let match_scope = self.local_scope();
+ self.in_scope(arm_scope, arm.lint_level, |this| {
+ // `try_upvars_resolved` may fail if it is unable to resolve the given
+ // `PlaceBuilder` inside a closure. In this case, we don't want to include
+ // a scrutinee place. `scrutinee_place_builder` will fail to be resolved
+ // if the only match arm is a wildcard (`_`).
+ // Example:
+ // ```
+ // let foo = (0, 1);
+ // let c = || {
+ // match foo { _ => () };
+ // };
+ // ```
+ let mut opt_scrutinee_place: Option<(Option<&Place<'tcx>>, Span)> = None;
+ let scrutinee_place: Place<'tcx>;
+ if let Ok(scrutinee_builder) = scrutinee_place_builder
+ .clone()
+ .try_upvars_resolved(this.tcx, this.typeck_results)
+ {
+ scrutinee_place =
+ scrutinee_builder.into_place(this.tcx, this.typeck_results);
+ opt_scrutinee_place = Some((Some(&scrutinee_place), scrutinee_span));
+ }
+ let scope = this.declare_bindings(
+ None,
+ arm.span,
+ &arm.pattern,
+ ArmHasGuard(arm.guard.is_some()),
+ opt_scrutinee_place,
+ );
+
+ let arm_block = this.bind_pattern(
+ outer_source_info,
+ candidate,
+ arm.guard.as_ref(),
+ &fake_borrow_temps,
+ scrutinee_span,
+ Some(arm.span),
+ Some(arm.scope),
+ Some(match_scope),
+ );
+
+ if let Some(source_scope) = scope {
+ this.source_scope = source_scope;
+ }
+
+ this.expr_into_dest(destination, arm_block, &&this.thir[arm.body])
+ })
+ })
+ .collect();
+
+ // all the arm blocks will rejoin here
+ let end_block = self.cfg.start_new_block();
+
+ let end_brace = self.source_info(
+ outer_source_info.span.with_lo(outer_source_info.span.hi() - BytePos::from_usize(1)),
+ );
+ for arm_block in arm_end_blocks {
+ let block = &self.cfg.basic_blocks[arm_block.0];
+ let last_location = block.statements.last().map(|s| s.source_info);
+
+ self.cfg.goto(unpack!(arm_block), last_location.unwrap_or(end_brace), end_block);
+ }
+
+ self.source_scope = outer_source_info.scope;
+
+ end_block.unit()
+ }
+
+ /// Binds the variables and ascribes types for a given `match` arm or
+ /// `let` binding.
+ ///
+ /// Also check if the guard matches, if it's provided.
+ /// `arm_scope` should be `Some` if and only if this is called for a
+ /// `match` arm.
+ fn bind_pattern(
+ &mut self,
+ outer_source_info: SourceInfo,
+ candidate: Candidate<'_, 'tcx>,
+ guard: Option<&Guard<'tcx>>,
+ fake_borrow_temps: &[(Place<'tcx>, Local)],
+ scrutinee_span: Span,
+ arm_span: Option<Span>,
+ arm_scope: Option<region::Scope>,
+ match_scope: Option<region::Scope>,
+ ) -> BasicBlock {
+ if candidate.subcandidates.is_empty() {
+ // Avoid generating another `BasicBlock` when we only have one
+ // candidate.
+ self.bind_and_guard_matched_candidate(
+ candidate,
+ &[],
+ guard,
+ fake_borrow_temps,
+ scrutinee_span,
+ arm_span,
+ match_scope,
+ true,
+ )
+ } else {
+ // It's helpful to avoid scheduling drops multiple times to save
+ // drop elaboration from having to clean up the extra drops.
+ //
+ // If we are in a `let` then we only schedule drops for the first
+ // candidate.
+ //
+ // If we're in a `match` arm then we could have a case like so:
+ //
+ // Ok(x) | Err(x) if return => { /* ... */ }
+ //
+ // In this case we don't want a drop of `x` scheduled when we
+ // return: it isn't bound by move until right before enter the arm.
+ // To handle this we instead unschedule it's drop after each time
+ // we lower the guard.
+ let target_block = self.cfg.start_new_block();
+ let mut schedule_drops = true;
+ // We keep a stack of all of the bindings and type ascriptions
+ // from the parent candidates that we visit, that also need to
+ // be bound for each candidate.
+ traverse_candidate(
+ candidate,
+ &mut Vec::new(),
+ &mut |leaf_candidate, parent_bindings| {
+ if let Some(arm_scope) = arm_scope {
+ self.clear_top_scope(arm_scope);
+ }
+ let binding_end = self.bind_and_guard_matched_candidate(
+ leaf_candidate,
+ parent_bindings,
+ guard,
+ &fake_borrow_temps,
+ scrutinee_span,
+ arm_span,
+ match_scope,
+ schedule_drops,
+ );
+ if arm_scope.is_none() {
+ schedule_drops = false;
+ }
+ self.cfg.goto(binding_end, outer_source_info, target_block);
+ },
+ |inner_candidate, parent_bindings| {
+ parent_bindings.push((inner_candidate.bindings, inner_candidate.ascriptions));
+ inner_candidate.subcandidates.into_iter()
+ },
+ |parent_bindings| {
+ parent_bindings.pop();
+ },
+ );
+
+ target_block
+ }
+ }
+
+ pub(super) fn expr_into_pattern(
+ &mut self,
+ mut block: BasicBlock,
+ irrefutable_pat: Pat<'tcx>,
+ initializer: &Expr<'tcx>,
+ ) -> BlockAnd<()> {
+ match *irrefutable_pat.kind {
+ // Optimize the case of `let x = ...` to write directly into `x`
+ PatKind::Binding { mode: BindingMode::ByValue, var, subpattern: None, .. } => {
+ let place =
+ self.storage_live_binding(block, var, irrefutable_pat.span, OutsideGuard, true);
+ unpack!(block = self.expr_into_dest(place, block, initializer));
+
+ // Inject a fake read, see comments on `FakeReadCause::ForLet`.
+ let source_info = self.source_info(irrefutable_pat.span);
+ self.cfg.push_fake_read(block, source_info, FakeReadCause::ForLet(None), place);
+
+ self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
+ block.unit()
+ }
+
+ // Optimize the case of `let x: T = ...` to write directly
+ // into `x` and then require that `T == typeof(x)`.
+ //
+ // Weirdly, this is needed to prevent the
+ // `intrinsic-move-val.rs` test case from crashing. That
+ // test works with uninitialized values in a rather
+ // dubious way, so it may be that the test is kind of
+ // broken.
+ PatKind::AscribeUserType {
+ subpattern:
+ Pat {
+ kind:
+ box PatKind::Binding {
+ mode: BindingMode::ByValue,
+ var,
+ subpattern: None,
+ ..
+ },
+ ..
+ },
+ ascription: thir::Ascription { annotation, variance: _ },
+ } => {
+ let place =
+ self.storage_live_binding(block, var, irrefutable_pat.span, OutsideGuard, true);
+ unpack!(block = self.expr_into_dest(place, block, initializer));
+
+ // Inject a fake read, see comments on `FakeReadCause::ForLet`.
+ let pattern_source_info = self.source_info(irrefutable_pat.span);
+ let cause_let = FakeReadCause::ForLet(None);
+ self.cfg.push_fake_read(block, pattern_source_info, cause_let, place);
+
+ let ty_source_info = self.source_info(annotation.span);
+
+ let base = self.canonical_user_type_annotations.push(annotation);
+ self.cfg.push(
+ block,
+ Statement {
+ source_info: ty_source_info,
+ kind: StatementKind::AscribeUserType(
+ Box::new((place, UserTypeProjection { base, projs: Vec::new() })),
+ // We always use invariant as the variance here. This is because the
+ // variance field from the ascription refers to the variance to use
+ // when applying the type to the value being matched, but this
+ // ascription applies rather to the type of the binding. e.g., in this
+ // example:
+ //
+ // ```
+ // let x: T = <expr>
+ // ```
+ //
+ // We are creating an ascription that defines the type of `x` to be
+ // exactly `T` (i.e., with invariance). The variance field, in
+ // contrast, is intended to be used to relate `T` to the type of
+ // `<expr>`.
+ ty::Variance::Invariant,
+ ),
+ },
+ );
+
+ self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
+ block.unit()
+ }
+
+ _ => {
+ let place_builder = unpack!(block = self.as_place_builder(block, initializer));
+ self.place_into_pattern(block, irrefutable_pat, place_builder, true)
+ }
+ }
+ }
+
+ pub(crate) fn place_into_pattern(
+ &mut self,
+ block: BasicBlock,
+ irrefutable_pat: Pat<'tcx>,
+ initializer: PlaceBuilder<'tcx>,
+ set_match_place: bool,
+ ) -> BlockAnd<()> {
+ let mut candidate = Candidate::new(initializer.clone(), &irrefutable_pat, false);
+ let fake_borrow_temps = self.lower_match_tree(
+ block,
+ irrefutable_pat.span,
+ irrefutable_pat.span,
+ false,
+ &mut [&mut candidate],
+ );
+ // For matches and function arguments, the place that is being matched
+ // can be set when creating the variables. But the place for
+ // let PATTERN = ... might not even exist until we do the assignment.
+ // so we set it here instead.
+ if set_match_place {
+ let mut candidate_ref = &candidate;
+ while let Some(next) = {
+ for binding in &candidate_ref.bindings {
+ let local = self.var_local_id(binding.var_id, OutsideGuard);
+
+ let Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(
+ VarBindingForm { opt_match_place: Some((ref mut match_place, _)), .. },
+ )))) = self.local_decls[local].local_info else {
+ bug!("Let binding to non-user variable.")
+ };
+ // `try_upvars_resolved` may fail if it is unable to resolve the given
+ // `PlaceBuilder` inside a closure. In this case, we don't want to include
+ // a scrutinee place. `scrutinee_place_builder` will fail for destructured
+ // assignments. This is because a closure only captures the precise places
+ // that it will read and as a result a closure may not capture the entire
+ // tuple/struct and rather have individual places that will be read in the
+ // final MIR.
+ // Example:
+ // ```
+ // let foo = (0, 1);
+ // let c = || {
+ // let (v1, v2) = foo;
+ // };
+ // ```
+ if let Ok(match_pair_resolved) =
+ initializer.clone().try_upvars_resolved(self.tcx, self.typeck_results)
+ {
+ let place = match_pair_resolved.into_place(self.tcx, self.typeck_results);
+ *match_place = Some(place);
+ }
+ }
+ // All of the subcandidates should bind the same locals, so we
+ // only visit the first one.
+ candidate_ref.subcandidates.get(0)
+ } {
+ candidate_ref = next;
+ }
+ }
+
+ self.bind_pattern(
+ self.source_info(irrefutable_pat.span),
+ candidate,
+ None,
+ &fake_borrow_temps,
+ irrefutable_pat.span,
+ None,
+ None,
+ None,
+ )
+ .unit()
+ }
+
+ /// Declares the bindings of the given patterns and returns the visibility
+ /// scope for the bindings in these patterns, if such a scope had to be
+ /// created. NOTE: Declaring the bindings should always be done in their
+ /// drop scope.
+ pub(crate) fn declare_bindings(
+ &mut self,
+ mut visibility_scope: Option<SourceScope>,
+ scope_span: Span,
+ pattern: &Pat<'tcx>,
+ has_guard: ArmHasGuard,
+ opt_match_place: Option<(Option<&Place<'tcx>>, Span)>,
+ ) -> Option<SourceScope> {
+ debug!("declare_bindings: pattern={:?}", pattern);
+ self.visit_primary_bindings(
+ &pattern,
+ UserTypeProjections::none(),
+ &mut |this, mutability, name, mode, var, span, ty, user_ty| {
+ if visibility_scope.is_none() {
+ visibility_scope =
+ Some(this.new_source_scope(scope_span, LintLevel::Inherited, None));
+ }
+ let source_info = SourceInfo { span, scope: this.source_scope };
+ let visibility_scope = visibility_scope.unwrap();
+ this.declare_binding(
+ source_info,
+ visibility_scope,
+ mutability,
+ name,
+ mode,
+ var,
+ ty,
+ user_ty,
+ has_guard,
+ opt_match_place.map(|(x, y)| (x.cloned(), y)),
+ pattern.span,
+ );
+ },
+ );
+ visibility_scope
+ }
+
+ pub(crate) fn storage_live_binding(
+ &mut self,
+ block: BasicBlock,
+ var: LocalVarId,
+ span: Span,
+ for_guard: ForGuard,
+ schedule_drop: bool,
+ ) -> Place<'tcx> {
+ let local_id = self.var_local_id(var, for_guard);
+ let source_info = self.source_info(span);
+ self.cfg.push(block, Statement { source_info, kind: StatementKind::StorageLive(local_id) });
+ // Altough there is almost always scope for given variable in corner cases
+ // like #92893 we might get variable with no scope.
+ if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id) && schedule_drop{
+ self.schedule_drop(span, region_scope, local_id, DropKind::Storage);
+ }
+ Place::from(local_id)
+ }
+
+ pub(crate) fn schedule_drop_for_binding(
+ &mut self,
+ var: LocalVarId,
+ span: Span,
+ for_guard: ForGuard,
+ ) {
+ let local_id = self.var_local_id(var, for_guard);
+ if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id) {
+ self.schedule_drop(span, region_scope, local_id, DropKind::Value);
+ }
+ }
+
+ /// Visit all of the primary bindings in a patterns, that is, visit the
+ /// leftmost occurrence of each variable bound in a pattern. A variable
+ /// will occur more than once in an or-pattern.
+ pub(super) fn visit_primary_bindings(
+ &mut self,
+ pattern: &Pat<'tcx>,
+ pattern_user_ty: UserTypeProjections,
+ f: &mut impl FnMut(
+ &mut Self,
+ Mutability,
+ Symbol,
+ BindingMode,
+ LocalVarId,
+ Span,
+ Ty<'tcx>,
+ UserTypeProjections,
+ ),
+ ) {
+ debug!(
+ "visit_primary_bindings: pattern={:?} pattern_user_ty={:?}",
+ pattern, pattern_user_ty
+ );
+ match *pattern.kind {
+ PatKind::Binding {
+ mutability,
+ name,
+ mode,
+ var,
+ ty,
+ ref subpattern,
+ is_primary,
+ ..
+ } => {
+ if is_primary {
+ f(self, mutability, name, mode, var, pattern.span, ty, pattern_user_ty.clone());
+ }
+ if let Some(subpattern) = subpattern.as_ref() {
+ self.visit_primary_bindings(subpattern, pattern_user_ty, f);
+ }
+ }
+
+ PatKind::Array { ref prefix, ref slice, ref suffix }
+ | PatKind::Slice { ref prefix, ref slice, ref suffix } => {
+ let from = u64::try_from(prefix.len()).unwrap();
+ let to = u64::try_from(suffix.len()).unwrap();
+ for subpattern in prefix {
+ self.visit_primary_bindings(subpattern, pattern_user_ty.clone().index(), f);
+ }
+ for subpattern in slice {
+ self.visit_primary_bindings(
+ subpattern,
+ pattern_user_ty.clone().subslice(from, to),
+ f,
+ );
+ }
+ for subpattern in suffix {
+ self.visit_primary_bindings(subpattern, pattern_user_ty.clone().index(), f);
+ }
+ }
+
+ PatKind::Constant { .. } | PatKind::Range { .. } | PatKind::Wild => {}
+
+ PatKind::Deref { ref subpattern } => {
+ self.visit_primary_bindings(subpattern, pattern_user_ty.deref(), f);
+ }
+
+ PatKind::AscribeUserType {
+ ref subpattern,
+ ascription: thir::Ascription { ref annotation, variance: _ },
+ } => {
+ // This corresponds to something like
+ //
+ // ```
+ // let A::<'a>(_): A<'static> = ...;
+ // ```
+ //
+ // Note that the variance doesn't apply here, as we are tracking the effect
+ // of `user_ty` on any bindings contained with subpattern.
+
+ let projection = UserTypeProjection {
+ base: self.canonical_user_type_annotations.push(annotation.clone()),
+ projs: Vec::new(),
+ };
+ let subpattern_user_ty =
+ pattern_user_ty.push_projection(&projection, annotation.span);
+ self.visit_primary_bindings(subpattern, subpattern_user_ty, f)
+ }
+
+ PatKind::Leaf { ref subpatterns } => {
+ for subpattern in subpatterns {
+ let subpattern_user_ty = pattern_user_ty.clone().leaf(subpattern.field);
+ debug!("visit_primary_bindings: subpattern_user_ty={:?}", subpattern_user_ty);
+ self.visit_primary_bindings(&subpattern.pattern, subpattern_user_ty, f);
+ }
+ }
+
+ PatKind::Variant { adt_def, substs: _, variant_index, ref subpatterns } => {
+ for subpattern in subpatterns {
+ let subpattern_user_ty =
+ pattern_user_ty.clone().variant(adt_def, variant_index, subpattern.field);
+ self.visit_primary_bindings(&subpattern.pattern, subpattern_user_ty, f);
+ }
+ }
+ PatKind::Or { ref pats } => {
+ // In cases where we recover from errors the primary bindings
+ // may not all be in the leftmost subpattern. For example in
+ // `let (x | y) = ...`, the primary binding of `y` occurs in
+ // the right subpattern
+ for subpattern in pats {
+ self.visit_primary_bindings(subpattern, pattern_user_ty.clone(), f);
+ }
+ }
+ }
+ }
+}
+
+#[derive(Debug)]
+struct Candidate<'pat, 'tcx> {
+ /// [`Span`] of the original pattern that gave rise to this candidate.
+ span: Span,
+
+ /// Whether this `Candidate` has a guard.
+ has_guard: bool,
+
+ /// All of these must be satisfied...
+ match_pairs: SmallVec<[MatchPair<'pat, 'tcx>; 1]>,
+
+ /// ...these bindings established...
+ bindings: Vec<Binding<'tcx>>,
+
+ /// ...and these types asserted...
+ ascriptions: Vec<Ascription<'tcx>>,
+
+ /// ...and if this is non-empty, one of these subcandidates also has to match...
+ subcandidates: Vec<Candidate<'pat, 'tcx>>,
+
+ /// ...and the guard must be evaluated; if it's `false` then branch to `otherwise_block`.
+ otherwise_block: Option<BasicBlock>,
+
+ /// The block before the `bindings` have been established.
+ pre_binding_block: Option<BasicBlock>,
+ /// The pre-binding block of the next candidate.
+ next_candidate_pre_binding_block: Option<BasicBlock>,
+}
+
+impl<'tcx, 'pat> Candidate<'pat, 'tcx> {
+ fn new(place: PlaceBuilder<'tcx>, pattern: &'pat Pat<'tcx>, has_guard: bool) -> Self {
+ Candidate {
+ span: pattern.span,
+ has_guard,
+ match_pairs: smallvec![MatchPair { place, pattern }],
+ bindings: Vec::new(),
+ ascriptions: Vec::new(),
+ subcandidates: Vec::new(),
+ otherwise_block: None,
+ pre_binding_block: None,
+ next_candidate_pre_binding_block: None,
+ }
+ }
+
+ /// Visit the leaf candidates (those with no subcandidates) contained in
+ /// this candidate.
+ fn visit_leaves<'a>(&'a mut self, mut visit_leaf: impl FnMut(&'a mut Self)) {
+ traverse_candidate(
+ self,
+ &mut (),
+ &mut move |c, _| visit_leaf(c),
+ move |c, _| c.subcandidates.iter_mut(),
+ |_| {},
+ );
+ }
+}
+
+/// A depth-first traversal of the `Candidate` and all of its recursive
+/// subcandidates.
+fn traverse_candidate<'pat, 'tcx: 'pat, C, T, I>(
+ candidate: C,
+ context: &mut T,
+ visit_leaf: &mut impl FnMut(C, &mut T),
+ get_children: impl Copy + Fn(C, &mut T) -> I,
+ complete_children: impl Copy + Fn(&mut T),
+) where
+ C: Borrow<Candidate<'pat, 'tcx>>,
+ I: Iterator<Item = C>,
+{
+ if candidate.borrow().subcandidates.is_empty() {
+ visit_leaf(candidate, context)
+ } else {
+ for child in get_children(candidate, context) {
+ traverse_candidate(child, context, visit_leaf, get_children, complete_children);
+ }
+ complete_children(context)
+ }
+}
+
+#[derive(Clone, Debug)]
+struct Binding<'tcx> {
+ span: Span,
+ source: Place<'tcx>,
+ var_id: LocalVarId,
+ binding_mode: BindingMode,
+}
+
+/// Indicates that the type of `source` must be a subtype of the
+/// user-given type `user_ty`; this is basically a no-op but can
+/// influence region inference.
+#[derive(Clone, Debug)]
+struct Ascription<'tcx> {
+ source: Place<'tcx>,
+ annotation: CanonicalUserTypeAnnotation<'tcx>,
+ variance: ty::Variance,
+}
+
+#[derive(Clone, Debug)]
+pub(crate) struct MatchPair<'pat, 'tcx> {
+ // this place...
+ place: PlaceBuilder<'tcx>,
+
+ // ... must match this pattern.
+ pattern: &'pat Pat<'tcx>,
+}
+
+/// See [`Test`] for more.
+#[derive(Clone, Debug, PartialEq)]
+enum TestKind<'tcx> {
+ /// Test what enum variant a value is.
+ Switch {
+ /// The enum type being tested.
+ adt_def: ty::AdtDef<'tcx>,
+ /// The set of variants that we should create a branch for. We also
+ /// create an additional "otherwise" case.
+ variants: BitSet<VariantIdx>,
+ },
+
+ /// Test what value an integer, `bool`, or `char` has.
+ SwitchInt {
+ /// The type of the value that we're testing.
+ switch_ty: Ty<'tcx>,
+ /// The (ordered) set of values that we test for.
+ ///
+ /// For integers and `char`s we create a branch to each of the values in
+ /// `options`, as well as an "otherwise" branch for all other values, even
+ /// in the (rare) case that `options` is exhaustive.
+ ///
+ /// For `bool` we always generate two edges, one for `true` and one for
+ /// `false`.
+ options: FxIndexMap<ConstantKind<'tcx>, u128>,
+ },
+
+ /// Test for equality with value, possibly after an unsizing coercion to
+ /// `ty`,
+ Eq {
+ value: ConstantKind<'tcx>,
+ // Integer types are handled by `SwitchInt`, and constants with ADT
+ // types are converted back into patterns, so this can only be `&str`,
+ // `&[T]`, `f32` or `f64`.
+ ty: Ty<'tcx>,
+ },
+
+ /// Test whether the value falls within an inclusive or exclusive range
+ Range(PatRange<'tcx>),
+
+ /// Test that the length of the slice is equal to `len`.
+ Len { len: u64, op: BinOp },
+}
+
+/// A test to perform to determine which [`Candidate`] matches a value.
+///
+/// [`Test`] is just the test to perform; it does not include the value
+/// to be tested.
+#[derive(Debug)]
+pub(crate) struct Test<'tcx> {
+ span: Span,
+ kind: TestKind<'tcx>,
+}
+
+/// `ArmHasGuard` is a wrapper around a boolean flag. It indicates whether
+/// a match arm has a guard expression attached to it.
+#[derive(Copy, Clone, Debug)]
+pub(crate) struct ArmHasGuard(pub(crate) bool);
+
+///////////////////////////////////////////////////////////////////////////
+// Main matching algorithm
+
+impl<'a, 'tcx> Builder<'a, 'tcx> {
+ /// The main match algorithm. It begins with a set of candidates
+ /// `candidates` and has the job of generating code to determine
+ /// which of these candidates, if any, is the correct one. The
+ /// candidates are sorted such that the first item in the list
+ /// has the highest priority. When a candidate is found to match
+ /// the value, we will set and generate a branch to the appropriate
+ /// pre-binding block.
+ ///
+ /// If we find that *NONE* of the candidates apply, we branch to the
+ /// `otherwise_block`, setting it to `Some` if required. In principle, this
+ /// means that the input list was not exhaustive, though at present we
+ /// sometimes are not smart enough to recognize all exhaustive inputs.
+ ///
+ /// It might be surprising that the input can be non-exhaustive.
+ /// Indeed, initially, it is not, because all matches are
+ /// exhaustive in Rust. But during processing we sometimes divide
+ /// up the list of candidates and recurse with a non-exhaustive
+ /// list. This is important to keep the size of the generated code
+ /// under control. See [`Builder::test_candidates`] for more details.
+ ///
+ /// If `fake_borrows` is `Some`, then places which need fake borrows
+ /// will be added to it.
+ ///
+ /// For an example of a case where we set `otherwise_block`, even for an
+ /// exhaustive match, consider:
+ ///
+ /// ```
+ /// # fn foo(x: (bool, bool)) {
+ /// match x {
+ /// (true, true) => (),
+ /// (_, false) => (),
+ /// (false, true) => (),
+ /// }
+ /// # }
+ /// ```
+ ///
+ /// For this match, we check if `x.0` matches `true` (for the first
+ /// arm). If it doesn't match, we check `x.1`. If `x.1` is `true` we check
+ /// if `x.0` matches `false` (for the third arm). In the (impossible at
+ /// runtime) case when `x.0` is now `true`, we branch to
+ /// `otherwise_block`.
+ fn match_candidates<'pat>(
+ &mut self,
+ span: Span,
+ scrutinee_span: Span,
+ start_block: BasicBlock,
+ otherwise_block: &mut Option<BasicBlock>,
+ candidates: &mut [&mut Candidate<'pat, 'tcx>],
+ fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
+ ) {
+ debug!(
+ "matched_candidate(span={:?}, candidates={:?}, start_block={:?}, otherwise_block={:?})",
+ span, candidates, start_block, otherwise_block,
+ );
+
+ // Start by simplifying candidates. Once this process is complete, all
+ // the match pairs which remain require some form of test, whether it
+ // be a switch or pattern comparison.
+ let mut split_or_candidate = false;
+ for candidate in &mut *candidates {
+ split_or_candidate |= self.simplify_candidate(candidate);
+ }
+
+ ensure_sufficient_stack(|| {
+ if split_or_candidate {
+ // At least one of the candidates has been split into subcandidates.
+ // We need to change the candidate list to include those.
+ let mut new_candidates = Vec::new();
+
+ for candidate in candidates {
+ candidate.visit_leaves(|leaf_candidate| new_candidates.push(leaf_candidate));
+ }
+ self.match_simplified_candidates(
+ span,
+ scrutinee_span,
+ start_block,
+ otherwise_block,
+ &mut *new_candidates,
+ fake_borrows,
+ );
+ } else {
+ self.match_simplified_candidates(
+ span,
+ scrutinee_span,
+ start_block,
+ otherwise_block,
+ candidates,
+ fake_borrows,
+ );
+ }
+ });
+ }
+
+ fn match_simplified_candidates(
+ &mut self,
+ span: Span,
+ scrutinee_span: Span,
+ start_block: BasicBlock,
+ otherwise_block: &mut Option<BasicBlock>,
+ candidates: &mut [&mut Candidate<'_, 'tcx>],
+ fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
+ ) {
+ // The candidates are sorted by priority. Check to see whether the
+ // higher priority candidates (and hence at the front of the slice)
+ // have satisfied all their match pairs.
+ let fully_matched = candidates.iter().take_while(|c| c.match_pairs.is_empty()).count();
+ debug!("match_candidates: {:?} candidates fully matched", fully_matched);
+ let (matched_candidates, unmatched_candidates) = candidates.split_at_mut(fully_matched);
+
+ let block = if !matched_candidates.is_empty() {
+ let otherwise_block =
+ self.select_matched_candidates(matched_candidates, start_block, fake_borrows);
+
+ if let Some(last_otherwise_block) = otherwise_block {
+ last_otherwise_block
+ } else {
+ // Any remaining candidates are unreachable.
+ if unmatched_candidates.is_empty() {
+ return;
+ }
+ self.cfg.start_new_block()
+ }
+ } else {
+ start_block
+ };
+
+ // If there are no candidates that still need testing, we're
+ // done. Since all matches are exhaustive, execution should
+ // never reach this point.
+ if unmatched_candidates.is_empty() {
+ let source_info = self.source_info(span);
+ if let Some(otherwise) = *otherwise_block {
+ self.cfg.goto(block, source_info, otherwise);
+ } else {
+ *otherwise_block = Some(block);
+ }
+ return;
+ }
+
+ // Test for the remaining candidates.
+ self.test_candidates_with_or(
+ span,
+ scrutinee_span,
+ unmatched_candidates,
+ block,
+ otherwise_block,
+ fake_borrows,
+ );
+ }
+
+ /// Link up matched candidates.
+ ///
+ /// For example, if we have something like this:
+ ///
+ /// ```ignore (illustrative)
+ /// ...
+ /// Some(x) if cond1 => ...
+ /// Some(x) => ...
+ /// Some(x) if cond2 => ...
+ /// ...
+ /// ```
+ ///
+ /// We generate real edges from:
+ ///
+ /// * `start_block` to the [pre-binding block] of the first pattern,
+ /// * the [otherwise block] of the first pattern to the second pattern,
+ /// * the [otherwise block] of the third pattern to a block with an
+ /// [`Unreachable` terminator](TerminatorKind::Unreachable).
+ ///
+ /// In addition, we add fake edges from the otherwise blocks to the
+ /// pre-binding block of the next candidate in the original set of
+ /// candidates.
+ ///
+ /// [pre-binding block]: Candidate::pre_binding_block
+ /// [otherwise block]: Candidate::otherwise_block
+ fn select_matched_candidates(
+ &mut self,
+ matched_candidates: &mut [&mut Candidate<'_, 'tcx>],
+ start_block: BasicBlock,
+ fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
+ ) -> Option<BasicBlock> {
+ debug_assert!(
+ !matched_candidates.is_empty(),
+ "select_matched_candidates called with no candidates",
+ );
+ debug_assert!(
+ matched_candidates.iter().all(|c| c.subcandidates.is_empty()),
+ "subcandidates should be empty in select_matched_candidates",
+ );
+
+ // Insert a borrows of prefixes of places that are bound and are
+ // behind a dereference projection.
+ //
+ // These borrows are taken to avoid situations like the following:
+ //
+ // match x[10] {
+ // _ if { x = &[0]; false } => (),
+ // y => (), // Out of bounds array access!
+ // }
+ //
+ // match *x {
+ // // y is bound by reference in the guard and then by copy in the
+ // // arm, so y is 2 in the arm!
+ // y if { y == 1 && (x = &2) == () } => y,
+ // _ => 3,
+ // }
+ if let Some(fake_borrows) = fake_borrows {
+ for Binding { source, .. } in
+ matched_candidates.iter().flat_map(|candidate| &candidate.bindings)
+ {
+ if let Some(i) =
+ source.projection.iter().rposition(|elem| elem == ProjectionElem::Deref)
+ {
+ let proj_base = &source.projection[..i];
+
+ fake_borrows.insert(Place {
+ local: source.local,
+ projection: self.tcx.intern_place_elems(proj_base),
+ });
+ }
+ }
+ }
+
+ let fully_matched_with_guard = matched_candidates
+ .iter()
+ .position(|c| !c.has_guard)
+ .unwrap_or(matched_candidates.len() - 1);
+
+ let (reachable_candidates, unreachable_candidates) =
+ matched_candidates.split_at_mut(fully_matched_with_guard + 1);
+
+ let mut next_prebinding = start_block;
+
+ for candidate in reachable_candidates.iter_mut() {
+ assert!(candidate.otherwise_block.is_none());
+ assert!(candidate.pre_binding_block.is_none());
+ candidate.pre_binding_block = Some(next_prebinding);
+ if candidate.has_guard {
+ // Create the otherwise block for this candidate, which is the
+ // pre-binding block for the next candidate.
+ next_prebinding = self.cfg.start_new_block();
+ candidate.otherwise_block = Some(next_prebinding);
+ }
+ }
+
+ debug!(
+ "match_candidates: add pre_binding_blocks for unreachable {:?}",
+ unreachable_candidates,
+ );
+ for candidate in unreachable_candidates {
+ assert!(candidate.pre_binding_block.is_none());
+ candidate.pre_binding_block = Some(self.cfg.start_new_block());
+ }
+
+ reachable_candidates.last_mut().unwrap().otherwise_block
+ }
+
+ /// Tests a candidate where there are only or-patterns left to test, or
+ /// forwards to [Builder::test_candidates].
+ ///
+ /// Given a pattern `(P | Q, R | S)` we (in principle) generate a CFG like
+ /// so:
+ ///
+ /// ```text
+ /// [ start ]
+ /// |
+ /// [ match P, Q ]
+ /// |
+ /// +----------------------------------------+------------------------------------+
+ /// | | |
+ /// V V V
+ /// [ P matches ] [ Q matches ] [ otherwise ]
+ /// | | |
+ /// V V |
+ /// [ match R, S ] [ match R, S ] |
+ /// | | |
+ /// +--------------+------------+ +--------------+------------+ |
+ /// | | | | | | |
+ /// V V V V V V |
+ /// [ R matches ] [ S matches ] [otherwise ] [ R matches ] [ S matches ] [otherwise ] |
+ /// | | | | | | |
+ /// +--------------+------------|------------+--------------+ | |
+ /// | | | |
+ /// | +----------------------------------------+--------+
+ /// | |
+ /// V V
+ /// [ Success ] [ Failure ]
+ /// ```
+ ///
+ /// In practice there are some complications:
+ ///
+ /// * If there's a guard, then the otherwise branch of the first match on
+ /// `R | S` goes to a test for whether `Q` matches, and the control flow
+ /// doesn't merge into a single success block until after the guard is
+ /// tested.
+ /// * If neither `P` or `Q` has any bindings or type ascriptions and there
+ /// isn't a match guard, then we create a smaller CFG like:
+ ///
+ /// ```text
+ /// ...
+ /// +---------------+------------+
+ /// | | |
+ /// [ P matches ] [ Q matches ] [ otherwise ]
+ /// | | |
+ /// +---------------+ |
+ /// | ...
+ /// [ match R, S ]
+ /// |
+ /// ...
+ /// ```
+ fn test_candidates_with_or(
+ &mut self,
+ span: Span,
+ scrutinee_span: Span,
+ candidates: &mut [&mut Candidate<'_, 'tcx>],
+ block: BasicBlock,
+ otherwise_block: &mut Option<BasicBlock>,
+ fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
+ ) {
+ let (first_candidate, remaining_candidates) = candidates.split_first_mut().unwrap();
+
+ // All of the or-patterns have been sorted to the end, so if the first
+ // pattern is an or-pattern we only have or-patterns.
+ match *first_candidate.match_pairs[0].pattern.kind {
+ PatKind::Or { .. } => (),
+ _ => {
+ self.test_candidates(
+ span,
+ scrutinee_span,
+ candidates,
+ block,
+ otherwise_block,
+ fake_borrows,
+ );
+ return;
+ }
+ }
+
+ let match_pairs = mem::take(&mut first_candidate.match_pairs);
+ first_candidate.pre_binding_block = Some(block);
+
+ let mut otherwise = None;
+ for match_pair in match_pairs {
+ let PatKind::Or { ref pats } = &*match_pair.pattern.kind else {
+ bug!("Or-patterns should have been sorted to the end");
+ };
+ let or_span = match_pair.pattern.span;
+ let place = match_pair.place;
+
+ first_candidate.visit_leaves(|leaf_candidate| {
+ self.test_or_pattern(
+ leaf_candidate,
+ &mut otherwise,
+ pats,
+ or_span,
+ place.clone(),
+ fake_borrows,
+ );
+ });
+ }
+
+ let remainder_start = otherwise.unwrap_or_else(|| self.cfg.start_new_block());
+
+ self.match_candidates(
+ span,
+ scrutinee_span,
+ remainder_start,
+ otherwise_block,
+ remaining_candidates,
+ fake_borrows,
+ )
+ }
+
+ fn test_or_pattern<'pat>(
+ &mut self,
+ candidate: &mut Candidate<'pat, 'tcx>,
+ otherwise: &mut Option<BasicBlock>,
+ pats: &'pat [Pat<'tcx>],
+ or_span: Span,
+ place: PlaceBuilder<'tcx>,
+ fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
+ ) {
+ debug!("test_or_pattern:\ncandidate={:#?}\npats={:#?}", candidate, pats);
+ let mut or_candidates: Vec<_> = pats
+ .iter()
+ .map(|pat| Candidate::new(place.clone(), pat, candidate.has_guard))
+ .collect();
+ let mut or_candidate_refs: Vec<_> = or_candidates.iter_mut().collect();
+ let otherwise = if candidate.otherwise_block.is_some() {
+ &mut candidate.otherwise_block
+ } else {
+ otherwise
+ };
+ self.match_candidates(
+ or_span,
+ or_span,
+ candidate.pre_binding_block.unwrap(),
+ otherwise,
+ &mut or_candidate_refs,
+ fake_borrows,
+ );
+ candidate.subcandidates = or_candidates;
+ self.merge_trivial_subcandidates(candidate, self.source_info(or_span));
+ }
+
+ /// Try to merge all of the subcandidates of the given candidate into one.
+ /// This avoids exponentially large CFGs in cases like `(1 | 2, 3 | 4, ...)`.
+ fn merge_trivial_subcandidates(
+ &mut self,
+ candidate: &mut Candidate<'_, 'tcx>,
+ source_info: SourceInfo,
+ ) {
+ if candidate.subcandidates.is_empty() || candidate.has_guard {
+ // FIXME(or_patterns; matthewjasper) Don't give up if we have a guard.
+ return;
+ }
+
+ let mut can_merge = true;
+
+ // Not `Iterator::all` because we don't want to short-circuit.
+ for subcandidate in &mut candidate.subcandidates {
+ self.merge_trivial_subcandidates(subcandidate, source_info);
+
+ // FIXME(or_patterns; matthewjasper) Try to be more aggressive here.
+ can_merge &= subcandidate.subcandidates.is_empty()
+ && subcandidate.bindings.is_empty()
+ && subcandidate.ascriptions.is_empty();
+ }
+
+ if can_merge {
+ let any_matches = self.cfg.start_new_block();
+ for subcandidate in mem::take(&mut candidate.subcandidates) {
+ let or_block = subcandidate.pre_binding_block.unwrap();
+ self.cfg.goto(or_block, source_info, any_matches);
+ }
+ candidate.pre_binding_block = Some(any_matches);
+ }
+ }
+
+ /// This is the most subtle part of the matching algorithm. At
+ /// this point, the input candidates have been fully simplified,
+ /// and so we know that all remaining match-pairs require some
+ /// sort of test. To decide what test to perform, we take the highest
+ /// priority candidate (the first one in the list, as of January 2021)
+ /// and extract the first match-pair from the list. From this we decide
+ /// what kind of test is needed using [`Builder::test`], defined in the
+ /// [`test` module](mod@test).
+ ///
+ /// *Note:* taking the first match pair is somewhat arbitrary, and
+ /// we might do better here by choosing more carefully what to
+ /// test.
+ ///
+ /// For example, consider the following possible match-pairs:
+ ///
+ /// 1. `x @ Some(P)` -- we will do a [`Switch`] to decide what variant `x` has
+ /// 2. `x @ 22` -- we will do a [`SwitchInt`] to decide what value `x` has
+ /// 3. `x @ 3..5` -- we will do a [`Range`] test to decide what range `x` falls in
+ /// 4. etc.
+ ///
+ /// [`Switch`]: TestKind::Switch
+ /// [`SwitchInt`]: TestKind::SwitchInt
+ /// [`Range`]: TestKind::Range
+ ///
+ /// Once we know what sort of test we are going to perform, this
+ /// test may also help us winnow down our candidates. So we walk over
+ /// the candidates (from high to low priority) and check. This
+ /// gives us, for each outcome of the test, a transformed list of
+ /// candidates. For example, if we are testing `x.0`'s variant,
+ /// and we have a candidate `(x.0 @ Some(v), x.1 @ 22)`,
+ /// then we would have a resulting candidate of `((x.0 as Some).0 @ v, x.1 @ 22)`.
+ /// Note that the first match-pair is now simpler (and, in fact, irrefutable).
+ ///
+ /// But there may also be candidates that the test just doesn't
+ /// apply to. The classical example involves wildcards:
+ ///
+ /// ```
+ /// # let (x, y, z) = (true, true, true);
+ /// match (x, y, z) {
+ /// (true , _ , true ) => true, // (0)
+ /// (_ , true , _ ) => true, // (1)
+ /// (false, false, _ ) => false, // (2)
+ /// (true , _ , false) => false, // (3)
+ /// }
+ /// # ;
+ /// ```
+ ///
+ /// In that case, after we test on `x`, there are 2 overlapping candidate
+ /// sets:
+ ///
+ /// - If the outcome is that `x` is true, candidates 0, 1, and 3
+ /// - If the outcome is that `x` is false, candidates 1 and 2
+ ///
+ /// Here, the traditional "decision tree" method would generate 2
+ /// separate code-paths for the 2 separate cases.
+ ///
+ /// In some cases, this duplication can create an exponential amount of
+ /// code. This is most easily seen by noticing that this method terminates
+ /// with precisely the reachable arms being reachable - but that problem
+ /// is trivially NP-complete:
+ ///
+ /// ```ignore (illustrative)
+ /// match (var0, var1, var2, var3, ...) {
+ /// (true , _ , _ , false, true, ...) => false,
+ /// (_ , true, true , false, _ , ...) => false,
+ /// (false, _ , false, false, _ , ...) => false,
+ /// ...
+ /// _ => true
+ /// }
+ /// ```
+ ///
+ /// Here the last arm is reachable only if there is an assignment to
+ /// the variables that does not match any of the literals. Therefore,
+ /// compilation would take an exponential amount of time in some cases.
+ ///
+ /// That kind of exponential worst-case might not occur in practice, but
+ /// our simplistic treatment of constants and guards would make it occur
+ /// in very common situations - for example [#29740]:
+ ///
+ /// ```ignore (illustrative)
+ /// match x {
+ /// "foo" if foo_guard => ...,
+ /// "bar" if bar_guard => ...,
+ /// "baz" if baz_guard => ...,
+ /// ...
+ /// }
+ /// ```
+ ///
+ /// [#29740]: https://github.com/rust-lang/rust/issues/29740
+ ///
+ /// Here we first test the match-pair `x @ "foo"`, which is an [`Eq` test].
+ ///
+ /// [`Eq` test]: TestKind::Eq
+ ///
+ /// It might seem that we would end up with 2 disjoint candidate
+ /// sets, consisting of the first candidate or the other two, but our
+ /// algorithm doesn't reason about `"foo"` being distinct from the other
+ /// constants; it considers the latter arms to potentially match after
+ /// both outcomes, which obviously leads to an exponential number
+ /// of tests.
+ ///
+ /// To avoid these kinds of problems, our algorithm tries to ensure
+ /// the amount of generated tests is linear. When we do a k-way test,
+ /// we return an additional "unmatched" set alongside the obvious `k`
+ /// sets. When we encounter a candidate that would be present in more
+ /// than one of the sets, we put it and all candidates below it into the
+ /// "unmatched" set. This ensures these `k+1` sets are disjoint.
+ ///
+ /// After we perform our test, we branch into the appropriate candidate
+ /// set and recurse with `match_candidates`. These sub-matches are
+ /// obviously non-exhaustive - as we discarded our otherwise set - so
+ /// we set their continuation to do `match_candidates` on the
+ /// "unmatched" set (which is again non-exhaustive).
+ ///
+ /// If you apply this to the above test, you basically wind up
+ /// with an if-else-if chain, testing each candidate in turn,
+ /// which is precisely what we want.
+ ///
+ /// In addition to avoiding exponential-time blowups, this algorithm
+ /// also has the nice property that each guard and arm is only generated
+ /// once.
+ fn test_candidates<'pat, 'b, 'c>(
+ &mut self,
+ span: Span,
+ scrutinee_span: Span,
+ mut candidates: &'b mut [&'c mut Candidate<'pat, 'tcx>],
+ block: BasicBlock,
+ otherwise_block: &mut Option<BasicBlock>,
+ fake_borrows: &mut Option<FxIndexSet<Place<'tcx>>>,
+ ) {
+ // extract the match-pair from the highest priority candidate
+ let match_pair = &candidates.first().unwrap().match_pairs[0];
+ let mut test = self.test(match_pair);
+ let match_place = match_pair.place.clone();
+
+ // most of the time, the test to perform is simply a function
+ // of the main candidate; but for a test like SwitchInt, we
+ // may want to add cases based on the candidates that are
+ // available
+ match test.kind {
+ TestKind::SwitchInt { switch_ty, ref mut options } => {
+ for candidate in candidates.iter() {
+ if !self.add_cases_to_switch(&match_place, candidate, switch_ty, options) {
+ break;
+ }
+ }
+ }
+ TestKind::Switch { adt_def: _, ref mut variants } => {
+ for candidate in candidates.iter() {
+ if !self.add_variants_to_switch(&match_place, candidate, variants) {
+ break;
+ }
+ }
+ }
+ _ => {}
+ }
+
+ // Insert a Shallow borrow of any places that is switched on.
+ if let Some(fb) = fake_borrows && let Ok(match_place_resolved) =
+ match_place.clone().try_upvars_resolved(self.tcx, self.typeck_results)
+ {
+ let resolved_place = match_place_resolved.into_place(self.tcx, self.typeck_results);
+ fb.insert(resolved_place);
+ }
+
+ // perform the test, branching to one of N blocks. For each of
+ // those N possible outcomes, create a (initially empty)
+ // vector of candidates. Those are the candidates that still
+ // apply if the test has that particular outcome.
+ debug!("test_candidates: test={:?} match_pair={:?}", test, match_pair);
+ let mut target_candidates: Vec<Vec<&mut Candidate<'pat, 'tcx>>> = vec![];
+ target_candidates.resize_with(test.targets(), Default::default);
+
+ let total_candidate_count = candidates.len();
+
+ // Sort the candidates into the appropriate vector in
+ // `target_candidates`. Note that at some point we may
+ // encounter a candidate where the test is not relevant; at
+ // that point, we stop sorting.
+ while let Some(candidate) = candidates.first_mut() {
+ let Some(idx) = self.sort_candidate(&match_place.clone(), &test, candidate) else {
+ break;
+ };
+ let (candidate, rest) = candidates.split_first_mut().unwrap();
+ target_candidates[idx].push(candidate);
+ candidates = rest;
+ }
+ // at least the first candidate ought to be tested
+ assert!(total_candidate_count > candidates.len());
+ debug!("test_candidates: tested_candidates: {}", total_candidate_count - candidates.len());
+ debug!("test_candidates: untested_candidates: {}", candidates.len());
+
+ // HACK(matthewjasper) This is a closure so that we can let the test
+ // create its blocks before the rest of the match. This currently
+ // improves the speed of llvm when optimizing long string literal
+ // matches
+ let make_target_blocks = move |this: &mut Self| -> Vec<BasicBlock> {
+ // The block that we should branch to if none of the
+ // `target_candidates` match. This is either the block where we
+ // start matching the untested candidates if there are any,
+ // otherwise it's the `otherwise_block`.
+ let remainder_start = &mut None;
+ let remainder_start =
+ if candidates.is_empty() { &mut *otherwise_block } else { remainder_start };
+
+ // For each outcome of test, process the candidates that still
+ // apply. Collect a list of blocks where control flow will
+ // branch if one of the `target_candidate` sets is not
+ // exhaustive.
+ let target_blocks: Vec<_> = target_candidates
+ .into_iter()
+ .map(|mut candidates| {
+ if !candidates.is_empty() {
+ let candidate_start = this.cfg.start_new_block();
+ this.match_candidates(
+ span,
+ scrutinee_span,
+ candidate_start,
+ remainder_start,
+ &mut *candidates,
+ fake_borrows,
+ );
+ candidate_start
+ } else {
+ *remainder_start.get_or_insert_with(|| this.cfg.start_new_block())
+ }
+ })
+ .collect();
+
+ if !candidates.is_empty() {
+ let remainder_start = remainder_start.unwrap_or_else(|| this.cfg.start_new_block());
+ this.match_candidates(
+ span,
+ scrutinee_span,
+ remainder_start,
+ otherwise_block,
+ candidates,
+ fake_borrows,
+ );
+ };
+
+ target_blocks
+ };
+
+ self.perform_test(span, scrutinee_span, block, match_place, &test, make_target_blocks);
+ }
+
+ /// Determine the fake borrows that are needed from a set of places that
+ /// have to be stable across match guards.
+ ///
+ /// Returns a list of places that need a fake borrow and the temporary
+ /// that's used to store the fake borrow.
+ ///
+ /// Match exhaustiveness checking is not able to handle the case where the
+ /// place being matched on is mutated in the guards. We add "fake borrows"
+ /// to the guards that prevent any mutation of the place being matched.
+ /// There are a some subtleties:
+ ///
+ /// 1. Borrowing `*x` doesn't prevent assigning to `x`. If `x` is a shared
+ /// reference, the borrow isn't even tracked. As such we have to add fake
+ /// borrows of any prefixes of a place
+ /// 2. We don't want `match x { _ => (), }` to conflict with mutable
+ /// borrows of `x`, so we only add fake borrows for places which are
+ /// bound or tested by the match.
+ /// 3. We don't want the fake borrows to conflict with `ref mut` bindings,
+ /// so we use a special BorrowKind for them.
+ /// 4. The fake borrows may be of places in inactive variants, so it would
+ /// be UB to generate code for them. They therefore have to be removed
+ /// by a MIR pass run after borrow checking.
+ fn calculate_fake_borrows<'b>(
+ &mut self,
+ fake_borrows: &'b FxIndexSet<Place<'tcx>>,
+ temp_span: Span,
+ ) -> Vec<(Place<'tcx>, Local)> {
+ let tcx = self.tcx;
+
+ debug!("add_fake_borrows fake_borrows = {:?}", fake_borrows);
+
+ let mut all_fake_borrows = Vec::with_capacity(fake_borrows.len());
+
+ // Insert a Shallow borrow of the prefixes of any fake borrows.
+ for place in fake_borrows {
+ let mut cursor = place.projection.as_ref();
+ while let [proj_base @ .., elem] = cursor {
+ cursor = proj_base;
+
+ if let ProjectionElem::Deref = elem {
+ // Insert a shallow borrow after a deref. For other
+ // projections the borrow of prefix_cursor will
+ // conflict with any mutation of base.
+ all_fake_borrows.push(PlaceRef { local: place.local, projection: proj_base });
+ }
+ }
+
+ all_fake_borrows.push(place.as_ref());
+ }
+
+ // Deduplicate
+ let mut dedup = FxHashSet::default();
+ all_fake_borrows.retain(|b| dedup.insert(*b));
+
+ debug!("add_fake_borrows all_fake_borrows = {:?}", all_fake_borrows);
+
+ all_fake_borrows
+ .into_iter()
+ .map(|matched_place_ref| {
+ let matched_place = Place {
+ local: matched_place_ref.local,
+ projection: tcx.intern_place_elems(matched_place_ref.projection),
+ };
+ let fake_borrow_deref_ty = matched_place.ty(&self.local_decls, tcx).ty;
+ let fake_borrow_ty = tcx.mk_imm_ref(tcx.lifetimes.re_erased, fake_borrow_deref_ty);
+ let fake_borrow_temp =
+ self.local_decls.push(LocalDecl::new(fake_borrow_ty, temp_span));
+
+ (matched_place, fake_borrow_temp)
+ })
+ .collect()
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////
+// Pat binding - used for `let` and function parameters as well.
+
+impl<'a, 'tcx> Builder<'a, 'tcx> {
+ pub(crate) fn lower_let_expr(
+ &mut self,
+ mut block: BasicBlock,
+ expr: &Expr<'tcx>,
+ pat: &Pat<'tcx>,
+ else_target: region::Scope,
+ source_scope: Option<SourceScope>,
+ span: Span,
+ ) -> BlockAnd<()> {
+ let expr_span = expr.span;
+ let expr_place_builder = unpack!(block = self.lower_scrutinee(block, expr, expr_span));
+ let wildcard = Pat::wildcard_from_ty(pat.ty);
+ let mut guard_candidate = Candidate::new(expr_place_builder.clone(), &pat, false);
+ let mut otherwise_candidate = Candidate::new(expr_place_builder.clone(), &wildcard, false);
+ let fake_borrow_temps = self.lower_match_tree(
+ block,
+ pat.span,
+ pat.span,
+ false,
+ &mut [&mut guard_candidate, &mut otherwise_candidate],
+ );
+ let mut opt_expr_place: Option<(Option<&Place<'tcx>>, Span)> = None;
+ let expr_place: Place<'tcx>;
+ if let Ok(expr_builder) =
+ expr_place_builder.try_upvars_resolved(self.tcx, self.typeck_results)
+ {
+ expr_place = expr_builder.into_place(self.tcx, self.typeck_results);
+ opt_expr_place = Some((Some(&expr_place), expr_span));
+ }
+ let otherwise_post_guard_block = otherwise_candidate.pre_binding_block.unwrap();
+ self.break_for_else(otherwise_post_guard_block, else_target, self.source_info(expr_span));
+
+ self.declare_bindings(
+ source_scope,
+ pat.span.to(span),
+ pat,
+ ArmHasGuard(false),
+ opt_expr_place,
+ );
+
+ let post_guard_block = self.bind_pattern(
+ self.source_info(pat.span),
+ guard_candidate,
+ None,
+ &fake_borrow_temps,
+ expr.span,
+ None,
+ None,
+ None,
+ );
+
+ post_guard_block.unit()
+ }
+
+ /// Initializes each of the bindings from the candidate by
+ /// moving/copying/ref'ing the source as appropriate. Tests the guard, if
+ /// any, and then branches to the arm. Returns the block for the case where
+ /// the guard succeeds.
+ ///
+ /// Note: we do not check earlier that if there is a guard,
+ /// there cannot be move bindings. We avoid a use-after-move by only
+ /// moving the binding once the guard has evaluated to true (see below).
+ fn bind_and_guard_matched_candidate<'pat>(
+ &mut self,
+ candidate: Candidate<'pat, 'tcx>,
+ parent_bindings: &[(Vec<Binding<'tcx>>, Vec<Ascription<'tcx>>)],
+ guard: Option<&Guard<'tcx>>,
+ fake_borrows: &[(Place<'tcx>, Local)],
+ scrutinee_span: Span,
+ arm_span: Option<Span>,
+ match_scope: Option<region::Scope>,
+ schedule_drops: bool,
+ ) -> BasicBlock {
+ debug!("bind_and_guard_matched_candidate(candidate={:?})", candidate);
+
+ debug_assert!(candidate.match_pairs.is_empty());
+
+ let candidate_source_info = self.source_info(candidate.span);
+
+ let mut block = candidate.pre_binding_block.unwrap();
+
+ if candidate.next_candidate_pre_binding_block.is_some() {
+ let fresh_block = self.cfg.start_new_block();
+ self.false_edges(
+ block,
+ fresh_block,
+ candidate.next_candidate_pre_binding_block,
+ candidate_source_info,
+ );
+ block = fresh_block;
+ }
+
+ self.ascribe_types(
+ block,
+ parent_bindings
+ .iter()
+ .flat_map(|(_, ascriptions)| ascriptions)
+ .cloned()
+ .chain(candidate.ascriptions),
+ );
+
+ // rust-lang/rust#27282: The `autoref` business deserves some
+ // explanation here.
+ //
+ // The intent of the `autoref` flag is that when it is true,
+ // then any pattern bindings of type T will map to a `&T`
+ // within the context of the guard expression, but will
+ // continue to map to a `T` in the context of the arm body. To
+ // avoid surfacing this distinction in the user source code
+ // (which would be a severe change to the language and require
+ // far more revision to the compiler), when `autoref` is true,
+ // then any occurrence of the identifier in the guard
+ // expression will automatically get a deref op applied to it.
+ //
+ // So an input like:
+ //
+ // ```
+ // let place = Foo::new();
+ // match place { foo if inspect(foo)
+ // => feed(foo), ... }
+ // ```
+ //
+ // will be treated as if it were really something like:
+ //
+ // ```
+ // let place = Foo::new();
+ // match place { Foo { .. } if { let tmp1 = &place; inspect(*tmp1) }
+ // => { let tmp2 = place; feed(tmp2) }, ... }
+ //
+ // And an input like:
+ //
+ // ```
+ // let place = Foo::new();
+ // match place { ref mut foo if inspect(foo)
+ // => feed(foo), ... }
+ // ```
+ //
+ // will be treated as if it were really something like:
+ //
+ // ```
+ // let place = Foo::new();
+ // match place { Foo { .. } if { let tmp1 = & &mut place; inspect(*tmp1) }
+ // => { let tmp2 = &mut place; feed(tmp2) }, ... }
+ // ```
+ //
+ // In short, any pattern binding will always look like *some*
+ // kind of `&T` within the guard at least in terms of how the
+ // MIR-borrowck views it, and this will ensure that guard
+ // expressions cannot mutate their the match inputs via such
+ // bindings. (It also ensures that guard expressions can at
+ // most *copy* values from such bindings; non-Copy things
+ // cannot be moved via pattern bindings in guard expressions.)
+ //
+ // ----
+ //
+ // Implementation notes (under assumption `autoref` is true).
+ //
+ // To encode the distinction above, we must inject the
+ // temporaries `tmp1` and `tmp2`.
+ //
+ // There are two cases of interest: binding by-value, and binding by-ref.
+ //
+ // 1. Binding by-value: Things are simple.
+ //
+ // * Establishing `tmp1` creates a reference into the
+ // matched place. This code is emitted by
+ // bind_matched_candidate_for_guard.
+ //
+ // * `tmp2` is only initialized "lazily", after we have
+ // checked the guard. Thus, the code that can trigger
+ // moves out of the candidate can only fire after the
+ // guard evaluated to true. This initialization code is
+ // emitted by bind_matched_candidate_for_arm.
+ //
+ // 2. Binding by-reference: Things are tricky.
+ //
+ // * Here, the guard expression wants a `&&` or `&&mut`
+ // into the original input. This means we need to borrow
+ // the reference that we create for the arm.
+ // * So we eagerly create the reference for the arm and then take a
+ // reference to that.
+ if let Some(guard) = guard {
+ let tcx = self.tcx;
+ let bindings = parent_bindings
+ .iter()
+ .flat_map(|(bindings, _)| bindings)
+ .chain(&candidate.bindings);
+
+ self.bind_matched_candidate_for_guard(block, schedule_drops, bindings.clone());
+ let guard_frame = GuardFrame {
+ locals: bindings.map(|b| GuardFrameLocal::new(b.var_id, b.binding_mode)).collect(),
+ };
+ debug!("entering guard building context: {:?}", guard_frame);
+ self.guard_context.push(guard_frame);
+
+ let re_erased = tcx.lifetimes.re_erased;
+ let scrutinee_source_info = self.source_info(scrutinee_span);
+ for &(place, temp) in fake_borrows {
+ let borrow = Rvalue::Ref(re_erased, BorrowKind::Shallow, place);
+ self.cfg.push_assign(block, scrutinee_source_info, Place::from(temp), borrow);
+ }
+
+ let arm_span = arm_span.unwrap();
+ let match_scope = match_scope.unwrap();
+ let mut guard_span = rustc_span::DUMMY_SP;
+
+ let (post_guard_block, otherwise_post_guard_block) =
+ self.in_if_then_scope(match_scope, |this| match *guard {
+ Guard::If(e) => {
+ let e = &this.thir[e];
+ guard_span = e.span;
+ this.then_else_break(
+ block,
+ e,
+ None,
+ match_scope,
+ this.source_info(arm_span),
+ )
+ }
+ Guard::IfLet(ref pat, scrutinee) => {
+ let s = &this.thir[scrutinee];
+ guard_span = s.span;
+ this.lower_let_expr(block, s, pat, match_scope, None, arm_span)
+ }
+ });
+
+ let source_info = self.source_info(guard_span);
+ let guard_end = self.source_info(tcx.sess.source_map().end_point(guard_span));
+ let guard_frame = self.guard_context.pop().unwrap();
+ debug!("Exiting guard building context with locals: {:?}", guard_frame);
+
+ for &(_, temp) in fake_borrows {
+ let cause = FakeReadCause::ForMatchGuard;
+ self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(temp));
+ }
+
+ let otherwise_block = candidate.otherwise_block.unwrap_or_else(|| {
+ let unreachable = self.cfg.start_new_block();
+ self.cfg.terminate(unreachable, source_info, TerminatorKind::Unreachable);
+ unreachable
+ });
+ self.false_edges(
+ otherwise_post_guard_block,
+ otherwise_block,
+ candidate.next_candidate_pre_binding_block,
+ source_info,
+ );
+
+ // We want to ensure that the matched candidates are bound
+ // after we have confirmed this candidate *and* any
+ // associated guard; Binding them on `block` is too soon,
+ // because that would be before we've checked the result
+ // from the guard.
+ //
+ // But binding them on the arm is *too late*, because
+ // then all of the candidates for a single arm would be
+ // bound in the same place, that would cause a case like:
+ //
+ // ```rust
+ // match (30, 2) {
+ // (mut x, 1) | (2, mut x) if { true } => { ... }
+ // ... // ^^^^^^^ (this is `arm_block`)
+ // }
+ // ```
+ //
+ // would yield an `arm_block` something like:
+ //
+ // ```
+ // StorageLive(_4); // _4 is `x`
+ // _4 = &mut (_1.0: i32); // this is handling `(mut x, 1)` case
+ // _4 = &mut (_1.1: i32); // this is handling `(2, mut x)` case
+ // ```
+ //
+ // and that is clearly not correct.
+ let by_value_bindings = parent_bindings
+ .iter()
+ .flat_map(|(bindings, _)| bindings)
+ .chain(&candidate.bindings)
+ .filter(|binding| matches!(binding.binding_mode, BindingMode::ByValue));
+ // Read all of the by reference bindings to ensure that the
+ // place they refer to can't be modified by the guard.
+ for binding in by_value_bindings.clone() {
+ let local_id = self.var_local_id(binding.var_id, RefWithinGuard);
+ let cause = FakeReadCause::ForGuardBinding;
+ self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(local_id));
+ }
+ assert!(schedule_drops, "patterns with guards must schedule drops");
+ self.bind_matched_candidate_for_arm_body(post_guard_block, true, by_value_bindings);
+
+ post_guard_block
+ } else {
+ // (Here, it is not too early to bind the matched
+ // candidate on `block`, because there is no guard result
+ // that we have to inspect before we bind them.)
+ self.bind_matched_candidate_for_arm_body(
+ block,
+ schedule_drops,
+ parent_bindings
+ .iter()
+ .flat_map(|(bindings, _)| bindings)
+ .chain(&candidate.bindings),
+ );
+ block
+ }
+ }
+
+ /// Append `AscribeUserType` statements onto the end of `block`
+ /// for each ascription
+ fn ascribe_types(
+ &mut self,
+ block: BasicBlock,
+ ascriptions: impl IntoIterator<Item = Ascription<'tcx>>,
+ ) {
+ for ascription in ascriptions {
+ let source_info = self.source_info(ascription.annotation.span);
+
+ let base = self.canonical_user_type_annotations.push(ascription.annotation);
+ self.cfg.push(
+ block,
+ Statement {
+ source_info,
+ kind: StatementKind::AscribeUserType(
+ Box::new((
+ ascription.source,
+ UserTypeProjection { base, projs: Vec::new() },
+ )),
+ ascription.variance,
+ ),
+ },
+ );
+ }
+ }
+
+ fn bind_matched_candidate_for_guard<'b>(
+ &mut self,
+ block: BasicBlock,
+ schedule_drops: bool,
+ bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
+ ) where
+ 'tcx: 'b,
+ {
+ debug!("bind_matched_candidate_for_guard(block={:?})", block);
+
+ // Assign each of the bindings. Since we are binding for a
+ // guard expression, this will never trigger moves out of the
+ // candidate.
+ let re_erased = self.tcx.lifetimes.re_erased;
+ for binding in bindings {
+ debug!("bind_matched_candidate_for_guard(binding={:?})", binding);
+ let source_info = self.source_info(binding.span);
+
+ // For each pattern ident P of type T, `ref_for_guard` is
+ // a reference R: &T pointing to the location matched by
+ // the pattern, and every occurrence of P within a guard
+ // denotes *R.
+ let ref_for_guard = self.storage_live_binding(
+ block,
+ binding.var_id,
+ binding.span,
+ RefWithinGuard,
+ schedule_drops,
+ );
+ match binding.binding_mode {
+ BindingMode::ByValue => {
+ let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, binding.source);
+ self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
+ }
+ BindingMode::ByRef(borrow_kind) => {
+ let value_for_arm = self.storage_live_binding(
+ block,
+ binding.var_id,
+ binding.span,
+ OutsideGuard,
+ schedule_drops,
+ );
+
+ let rvalue = Rvalue::Ref(re_erased, borrow_kind, binding.source);
+ self.cfg.push_assign(block, source_info, value_for_arm, rvalue);
+ let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, value_for_arm);
+ self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
+ }
+ }
+ }
+ }
+
+ fn bind_matched_candidate_for_arm_body<'b>(
+ &mut self,
+ block: BasicBlock,
+ schedule_drops: bool,
+ bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
+ ) where
+ 'tcx: 'b,
+ {
+ debug!("bind_matched_candidate_for_arm_body(block={:?})", block);
+
+ let re_erased = self.tcx.lifetimes.re_erased;
+ // Assign each of the bindings. This may trigger moves out of the candidate.
+ for binding in bindings {
+ let source_info = self.source_info(binding.span);
+ let local = self.storage_live_binding(
+ block,
+ binding.var_id,
+ binding.span,
+ OutsideGuard,
+ schedule_drops,
+ );
+ if schedule_drops {
+ self.schedule_drop_for_binding(binding.var_id, binding.span, OutsideGuard);
+ }
+ let rvalue = match binding.binding_mode {
+ BindingMode::ByValue => Rvalue::Use(self.consume_by_copy_or_move(binding.source)),
+ BindingMode::ByRef(borrow_kind) => {
+ Rvalue::Ref(re_erased, borrow_kind, binding.source)
+ }
+ };
+ self.cfg.push_assign(block, source_info, local, rvalue);
+ }
+ }
+
+ /// Each binding (`ref mut var`/`ref var`/`mut var`/`var`, where the bound
+ /// `var` has type `T` in the arm body) in a pattern maps to 2 locals. The
+ /// first local is a binding for occurrences of `var` in the guard, which
+ /// will have type `&T`. The second local is a binding for occurrences of
+ /// `var` in the arm body, which will have type `T`.
+ fn declare_binding(
+ &mut self,
+ source_info: SourceInfo,
+ visibility_scope: SourceScope,
+ mutability: Mutability,
+ name: Symbol,
+ mode: BindingMode,
+ var_id: LocalVarId,
+ var_ty: Ty<'tcx>,
+ user_ty: UserTypeProjections,
+ has_guard: ArmHasGuard,
+ opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
+ pat_span: Span,
+ ) {
+ debug!(
+ "declare_binding(var_id={:?}, name={:?}, mode={:?}, var_ty={:?}, \
+ visibility_scope={:?}, source_info={:?})",
+ var_id, name, mode, var_ty, visibility_scope, source_info
+ );
+
+ let tcx = self.tcx;
+ let debug_source_info = SourceInfo { span: source_info.span, scope: visibility_scope };
+ let binding_mode = match mode {
+ BindingMode::ByValue => ty::BindingMode::BindByValue(mutability),
+ BindingMode::ByRef(_) => ty::BindingMode::BindByReference(mutability),
+ };
+ debug!("declare_binding: user_ty={:?}", user_ty);
+ let local = LocalDecl::<'tcx> {
+ mutability,
+ ty: var_ty,
+ user_ty: if user_ty.is_empty() { None } else { Some(Box::new(user_ty)) },
+ source_info,
+ internal: false,
+ is_block_tail: None,
+ local_info: Some(Box::new(LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(
+ VarBindingForm {
+ binding_mode,
+ // hypothetically, `visit_primary_bindings` could try to unzip
+ // an outermost hir::Ty as we descend, matching up
+ // idents in pat; but complex w/ unclear UI payoff.
+ // Instead, just abandon providing diagnostic info.
+ opt_ty_info: None,
+ opt_match_place,
+ pat_span,
+ },
+ ))))),
+ };
+ let for_arm_body = self.local_decls.push(local);
+ self.var_debug_info.push(VarDebugInfo {
+ name,
+ source_info: debug_source_info,
+ value: VarDebugInfoContents::Place(for_arm_body.into()),
+ });
+ let locals = if has_guard.0 {
+ let ref_for_guard = self.local_decls.push(LocalDecl::<'tcx> {
+ // This variable isn't mutated but has a name, so has to be
+ // immutable to avoid the unused mut lint.
+ mutability: Mutability::Not,
+ ty: tcx.mk_imm_ref(tcx.lifetimes.re_erased, var_ty),
+ user_ty: None,
+ source_info,
+ internal: false,
+ is_block_tail: None,
+ local_info: Some(Box::new(LocalInfo::User(ClearCrossCrate::Set(
+ BindingForm::RefForGuard,
+ )))),
+ });
+ self.var_debug_info.push(VarDebugInfo {
+ name,
+ source_info: debug_source_info,
+ value: VarDebugInfoContents::Place(ref_for_guard.into()),
+ });
+ LocalsForNode::ForGuard { ref_for_guard, for_arm_body }
+ } else {
+ LocalsForNode::One(for_arm_body)
+ };
+ debug!("declare_binding: vars={:?}", locals);
+ self.var_indices.insert(var_id, locals);
+ }
+
+ pub(crate) fn ast_let_else(
+ &mut self,
+ mut block: BasicBlock,
+ init: &Expr<'tcx>,
+ initializer_span: Span,
+ else_block: &Block,
+ visibility_scope: Option<SourceScope>,
+ remainder_scope: region::Scope,
+ remainder_span: Span,
+ pattern: &Pat<'tcx>,
+ ) -> BlockAnd<()> {
+ let (matching, failure) = self.in_if_then_scope(remainder_scope, |this| {
+ let scrutinee = unpack!(block = this.lower_scrutinee(block, init, initializer_span));
+ let pat = Pat { ty: init.ty, span: else_block.span, kind: Box::new(PatKind::Wild) };
+ let mut wildcard = Candidate::new(scrutinee.clone(), &pat, false);
+ this.declare_bindings(
+ visibility_scope,
+ remainder_span,
+ pattern,
+ ArmHasGuard(false),
+ Some((None, initializer_span)),
+ );
+ let mut candidate = Candidate::new(scrutinee.clone(), pattern, false);
+ let fake_borrow_temps = this.lower_match_tree(
+ block,
+ initializer_span,
+ pattern.span,
+ false,
+ &mut [&mut candidate, &mut wildcard],
+ );
+ // This block is for the matching case
+ let matching = this.bind_pattern(
+ this.source_info(pattern.span),
+ candidate,
+ None,
+ &fake_borrow_temps,
+ initializer_span,
+ None,
+ None,
+ None,
+ );
+ // This block is for the failure case
+ let failure = this.bind_pattern(
+ this.source_info(else_block.span),
+ wildcard,
+ None,
+ &fake_borrow_temps,
+ initializer_span,
+ None,
+ None,
+ None,
+ );
+ this.break_for_else(failure, remainder_scope, this.source_info(initializer_span));
+ matching.unit()
+ });
+
+ // This place is not really used because this destination place
+ // should never be used to take values at the end of the failure
+ // block.
+ let dummy_place = Place { local: RETURN_PLACE, projection: ty::List::empty() };
+ let failure_block;
+ unpack!(
+ failure_block = self.ast_block(
+ dummy_place,
+ failure,
+ else_block,
+ self.source_info(else_block.span),
+ )
+ );
+ self.cfg.terminate(
+ failure_block,
+ self.source_info(else_block.span),
+ TerminatorKind::Unreachable,
+ );
+ matching.unit()
+ }
+}