summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_mir_transform/src/coverage
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_mir_transform/src/coverage')
-rw-r--r--compiler/rustc_mir_transform/src/coverage/counters.rs614
-rw-r--r--compiler/rustc_mir_transform/src/coverage/debug.rs831
-rw-r--r--compiler/rustc_mir_transform/src/coverage/graph.rs753
-rw-r--r--compiler/rustc_mir_transform/src/coverage/mod.rs580
-rw-r--r--compiler/rustc_mir_transform/src/coverage/query.rs170
-rw-r--r--compiler/rustc_mir_transform/src/coverage/spans.rs892
-rw-r--r--compiler/rustc_mir_transform/src/coverage/test_macros/Cargo.toml8
-rw-r--r--compiler/rustc_mir_transform/src/coverage/test_macros/src/lib.rs6
-rw-r--r--compiler/rustc_mir_transform/src/coverage/tests.rs710
9 files changed, 4564 insertions, 0 deletions
diff --git a/compiler/rustc_mir_transform/src/coverage/counters.rs b/compiler/rustc_mir_transform/src/coverage/counters.rs
new file mode 100644
index 000000000..45de0c280
--- /dev/null
+++ b/compiler/rustc_mir_transform/src/coverage/counters.rs
@@ -0,0 +1,614 @@
+use super::Error;
+
+use super::debug;
+use super::graph;
+use super::spans;
+
+use debug::{DebugCounters, NESTED_INDENT};
+use graph::{BasicCoverageBlock, BcbBranch, CoverageGraph, TraverseCoverageGraphWithLoops};
+use spans::CoverageSpan;
+
+use rustc_data_structures::graph::WithNumNodes;
+use rustc_index::bit_set::BitSet;
+use rustc_middle::mir::coverage::*;
+
+/// Manages the counter and expression indexes/IDs to generate `CoverageKind` components for MIR
+/// `Coverage` statements.
+pub(super) struct CoverageCounters {
+ function_source_hash: u64,
+ next_counter_id: u32,
+ num_expressions: u32,
+ pub debug_counters: DebugCounters,
+}
+
+impl CoverageCounters {
+ pub fn new(function_source_hash: u64) -> Self {
+ Self {
+ function_source_hash,
+ next_counter_id: CounterValueReference::START.as_u32(),
+ num_expressions: 0,
+ debug_counters: DebugCounters::new(),
+ }
+ }
+
+ /// Activate the `DebugCounters` data structures, to provide additional debug formatting
+ /// features when formatting `CoverageKind` (counter) values.
+ pub fn enable_debug(&mut self) {
+ self.debug_counters.enable();
+ }
+
+ /// Makes `CoverageKind` `Counter`s and `Expressions` for the `BasicCoverageBlock`s directly or
+ /// indirectly associated with `CoverageSpans`, and returns additional `Expression`s
+ /// representing intermediate values.
+ pub fn make_bcb_counters(
+ &mut self,
+ basic_coverage_blocks: &mut CoverageGraph,
+ coverage_spans: &[CoverageSpan],
+ ) -> Result<Vec<CoverageKind>, Error> {
+ let mut bcb_counters = BcbCounters::new(self, basic_coverage_blocks);
+ bcb_counters.make_bcb_counters(coverage_spans)
+ }
+
+ fn make_counter<F>(&mut self, debug_block_label_fn: F) -> CoverageKind
+ where
+ F: Fn() -> Option<String>,
+ {
+ let counter = CoverageKind::Counter {
+ function_source_hash: self.function_source_hash,
+ id: self.next_counter(),
+ };
+ if self.debug_counters.is_enabled() {
+ self.debug_counters.add_counter(&counter, (debug_block_label_fn)());
+ }
+ counter
+ }
+
+ fn make_expression<F>(
+ &mut self,
+ lhs: ExpressionOperandId,
+ op: Op,
+ rhs: ExpressionOperandId,
+ debug_block_label_fn: F,
+ ) -> CoverageKind
+ where
+ F: Fn() -> Option<String>,
+ {
+ let id = self.next_expression();
+ let expression = CoverageKind::Expression { id, lhs, op, rhs };
+ if self.debug_counters.is_enabled() {
+ self.debug_counters.add_counter(&expression, (debug_block_label_fn)());
+ }
+ expression
+ }
+
+ pub fn make_identity_counter(&mut self, counter_operand: ExpressionOperandId) -> CoverageKind {
+ let some_debug_block_label = if self.debug_counters.is_enabled() {
+ self.debug_counters.some_block_label(counter_operand).cloned()
+ } else {
+ None
+ };
+ self.make_expression(counter_operand, Op::Add, ExpressionOperandId::ZERO, || {
+ some_debug_block_label.clone()
+ })
+ }
+
+ /// Counter IDs start from one and go up.
+ fn next_counter(&mut self) -> CounterValueReference {
+ assert!(self.next_counter_id < u32::MAX - self.num_expressions);
+ let next = self.next_counter_id;
+ self.next_counter_id += 1;
+ CounterValueReference::from(next)
+ }
+
+ /// Expression IDs start from u32::MAX and go down because an Expression can reference
+ /// (add or subtract counts) of both Counter regions and Expression regions. The counter
+ /// expression operand IDs must be unique across both types.
+ fn next_expression(&mut self) -> InjectedExpressionId {
+ assert!(self.next_counter_id < u32::MAX - self.num_expressions);
+ let next = u32::MAX - self.num_expressions;
+ self.num_expressions += 1;
+ InjectedExpressionId::from(next)
+ }
+}
+
+/// Traverse the `CoverageGraph` and add either a `Counter` or `Expression` to every BCB, to be
+/// injected with `CoverageSpan`s. `Expressions` have no runtime overhead, so if a viable expression
+/// (adding or subtracting two other counters or expressions) can compute the same result as an
+/// embedded counter, an `Expression` should be used.
+struct BcbCounters<'a> {
+ coverage_counters: &'a mut CoverageCounters,
+ basic_coverage_blocks: &'a mut CoverageGraph,
+}
+
+impl<'a> BcbCounters<'a> {
+ fn new(
+ coverage_counters: &'a mut CoverageCounters,
+ basic_coverage_blocks: &'a mut CoverageGraph,
+ ) -> Self {
+ Self { coverage_counters, basic_coverage_blocks }
+ }
+
+ /// If two `BasicCoverageBlock`s branch from another `BasicCoverageBlock`, one of the branches
+ /// can be counted by `Expression` by subtracting the other branch from the branching
+ /// block. Otherwise, the `BasicCoverageBlock` executed the least should have the `Counter`.
+ /// One way to predict which branch executes the least is by considering loops. A loop is exited
+ /// at a branch, so the branch that jumps to a `BasicCoverageBlock` outside the loop is almost
+ /// always executed less than the branch that does not exit the loop.
+ ///
+ /// Returns any non-code-span expressions created to represent intermediate values (such as to
+ /// add two counters so the result can be subtracted from another counter), or an Error with
+ /// message for subsequent debugging.
+ fn make_bcb_counters(
+ &mut self,
+ coverage_spans: &[CoverageSpan],
+ ) -> Result<Vec<CoverageKind>, Error> {
+ debug!("make_bcb_counters(): adding a counter or expression to each BasicCoverageBlock");
+ let num_bcbs = self.basic_coverage_blocks.num_nodes();
+ let mut collect_intermediate_expressions = Vec::with_capacity(num_bcbs);
+
+ let mut bcbs_with_coverage = BitSet::new_empty(num_bcbs);
+ for covspan in coverage_spans {
+ bcbs_with_coverage.insert(covspan.bcb);
+ }
+
+ // Walk the `CoverageGraph`. For each `BasicCoverageBlock` node with an associated
+ // `CoverageSpan`, add a counter. If the `BasicCoverageBlock` branches, add a counter or
+ // expression to each branch `BasicCoverageBlock` (if the branch BCB has only one incoming
+ // edge) or edge from the branching BCB to the branch BCB (if the branch BCB has multiple
+ // incoming edges).
+ //
+ // The `TraverseCoverageGraphWithLoops` traversal ensures that, when a loop is encountered,
+ // all `BasicCoverageBlock` nodes in the loop are visited before visiting any node outside
+ // the loop. The `traversal` state includes a `context_stack`, providing a way to know if
+ // the current BCB is in one or more nested loops or not.
+ let mut traversal = TraverseCoverageGraphWithLoops::new(&self.basic_coverage_blocks);
+ while let Some(bcb) = traversal.next(self.basic_coverage_blocks) {
+ if bcbs_with_coverage.contains(bcb) {
+ debug!("{:?} has at least one `CoverageSpan`. Get or make its counter", bcb);
+ let branching_counter_operand =
+ self.get_or_make_counter_operand(bcb, &mut collect_intermediate_expressions)?;
+
+ if self.bcb_needs_branch_counters(bcb) {
+ self.make_branch_counters(
+ &mut traversal,
+ bcb,
+ branching_counter_operand,
+ &mut collect_intermediate_expressions,
+ )?;
+ }
+ } else {
+ debug!(
+ "{:?} does not have any `CoverageSpan`s. A counter will only be added if \
+ and when a covered BCB has an expression dependency.",
+ bcb,
+ );
+ }
+ }
+
+ if traversal.is_complete() {
+ Ok(collect_intermediate_expressions)
+ } else {
+ Error::from_string(format!(
+ "`TraverseCoverageGraphWithLoops` missed some `BasicCoverageBlock`s: {:?}",
+ traversal.unvisited(),
+ ))
+ }
+ }
+
+ fn make_branch_counters(
+ &mut self,
+ traversal: &mut TraverseCoverageGraphWithLoops,
+ branching_bcb: BasicCoverageBlock,
+ branching_counter_operand: ExpressionOperandId,
+ collect_intermediate_expressions: &mut Vec<CoverageKind>,
+ ) -> Result<(), Error> {
+ let branches = self.bcb_branches(branching_bcb);
+ debug!(
+ "{:?} has some branch(es) without counters:\n {}",
+ branching_bcb,
+ branches
+ .iter()
+ .map(|branch| {
+ format!("{:?}: {:?}", branch, branch.counter(&self.basic_coverage_blocks))
+ })
+ .collect::<Vec<_>>()
+ .join("\n "),
+ );
+
+ // Use the `traversal` state to decide if a subset of the branches exit a loop, making it
+ // likely that branch is executed less than branches that do not exit the same loop. In this
+ // case, any branch that does not exit the loop (and has not already been assigned a
+ // counter) should be counted by expression, if possible. (If a preferred expression branch
+ // is not selected based on the loop context, select any branch without an existing
+ // counter.)
+ let expression_branch = self.choose_preferred_expression_branch(traversal, &branches);
+
+ // Assign a Counter or Expression to each branch, plus additional `Expression`s, as needed,
+ // to sum up intermediate results.
+ let mut some_sumup_counter_operand = None;
+ for branch in branches {
+ // Skip the selected `expression_branch`, if any. It's expression will be assigned after
+ // all others.
+ if branch != expression_branch {
+ let branch_counter_operand = if branch.is_only_path_to_target() {
+ debug!(
+ " {:?} has only one incoming edge (from {:?}), so adding a \
+ counter",
+ branch, branching_bcb
+ );
+ self.get_or_make_counter_operand(
+ branch.target_bcb,
+ collect_intermediate_expressions,
+ )?
+ } else {
+ debug!(" {:?} has multiple incoming edges, so adding an edge counter", branch);
+ self.get_or_make_edge_counter_operand(
+ branching_bcb,
+ branch.target_bcb,
+ collect_intermediate_expressions,
+ )?
+ };
+ if let Some(sumup_counter_operand) =
+ some_sumup_counter_operand.replace(branch_counter_operand)
+ {
+ let intermediate_expression = self.coverage_counters.make_expression(
+ branch_counter_operand,
+ Op::Add,
+ sumup_counter_operand,
+ || None,
+ );
+ debug!(
+ " [new intermediate expression: {}]",
+ self.format_counter(&intermediate_expression)
+ );
+ let intermediate_expression_operand = intermediate_expression.as_operand_id();
+ collect_intermediate_expressions.push(intermediate_expression);
+ some_sumup_counter_operand.replace(intermediate_expression_operand);
+ }
+ }
+ }
+
+ // Assign the final expression to the `expression_branch` by subtracting the total of all
+ // other branches from the counter of the branching BCB.
+ let sumup_counter_operand =
+ some_sumup_counter_operand.expect("sumup_counter_operand should have a value");
+ debug!(
+ "Making an expression for the selected expression_branch: {:?} \
+ (expression_branch predecessors: {:?})",
+ expression_branch,
+ self.bcb_predecessors(expression_branch.target_bcb),
+ );
+ let expression = self.coverage_counters.make_expression(
+ branching_counter_operand,
+ Op::Subtract,
+ sumup_counter_operand,
+ || Some(format!("{:?}", expression_branch)),
+ );
+ debug!("{:?} gets an expression: {}", expression_branch, self.format_counter(&expression));
+ let bcb = expression_branch.target_bcb;
+ if expression_branch.is_only_path_to_target() {
+ self.basic_coverage_blocks[bcb].set_counter(expression)?;
+ } else {
+ self.basic_coverage_blocks[bcb].set_edge_counter_from(branching_bcb, expression)?;
+ }
+ Ok(())
+ }
+
+ fn get_or_make_counter_operand(
+ &mut self,
+ bcb: BasicCoverageBlock,
+ collect_intermediate_expressions: &mut Vec<CoverageKind>,
+ ) -> Result<ExpressionOperandId, Error> {
+ self.recursive_get_or_make_counter_operand(bcb, collect_intermediate_expressions, 1)
+ }
+
+ fn recursive_get_or_make_counter_operand(
+ &mut self,
+ bcb: BasicCoverageBlock,
+ collect_intermediate_expressions: &mut Vec<CoverageKind>,
+ debug_indent_level: usize,
+ ) -> Result<ExpressionOperandId, Error> {
+ // If the BCB already has a counter, return it.
+ if let Some(counter_kind) = self.basic_coverage_blocks[bcb].counter() {
+ debug!(
+ "{}{:?} already has a counter: {}",
+ NESTED_INDENT.repeat(debug_indent_level),
+ bcb,
+ self.format_counter(counter_kind),
+ );
+ return Ok(counter_kind.as_operand_id());
+ }
+
+ // A BCB with only one incoming edge gets a simple `Counter` (via `make_counter()`).
+ // Also, a BCB that loops back to itself gets a simple `Counter`. This may indicate the
+ // program results in a tight infinite loop, but it should still compile.
+ let one_path_to_target = self.bcb_has_one_path_to_target(bcb);
+ if one_path_to_target || self.bcb_predecessors(bcb).contains(&bcb) {
+ let counter_kind = self.coverage_counters.make_counter(|| Some(format!("{:?}", bcb)));
+ if one_path_to_target {
+ debug!(
+ "{}{:?} gets a new counter: {}",
+ NESTED_INDENT.repeat(debug_indent_level),
+ bcb,
+ self.format_counter(&counter_kind),
+ );
+ } else {
+ debug!(
+ "{}{:?} has itself as its own predecessor. It can't be part of its own \
+ Expression sum, so it will get its own new counter: {}. (Note, the compiled \
+ code will generate an infinite loop.)",
+ NESTED_INDENT.repeat(debug_indent_level),
+ bcb,
+ self.format_counter(&counter_kind),
+ );
+ }
+ return self.basic_coverage_blocks[bcb].set_counter(counter_kind);
+ }
+
+ // A BCB with multiple incoming edges can compute its count by `Expression`, summing up the
+ // counters and/or expressions of its incoming edges. This will recursively get or create
+ // counters for those incoming edges first, then call `make_expression()` to sum them up,
+ // with additional intermediate expressions as needed.
+ let mut predecessors = self.bcb_predecessors(bcb).to_owned().into_iter();
+ debug!(
+ "{}{:?} has multiple incoming edges and will get an expression that sums them up...",
+ NESTED_INDENT.repeat(debug_indent_level),
+ bcb,
+ );
+ let first_edge_counter_operand = self.recursive_get_or_make_edge_counter_operand(
+ predecessors.next().unwrap(),
+ bcb,
+ collect_intermediate_expressions,
+ debug_indent_level + 1,
+ )?;
+ let mut some_sumup_edge_counter_operand = None;
+ for predecessor in predecessors {
+ let edge_counter_operand = self.recursive_get_or_make_edge_counter_operand(
+ predecessor,
+ bcb,
+ collect_intermediate_expressions,
+ debug_indent_level + 1,
+ )?;
+ if let Some(sumup_edge_counter_operand) =
+ some_sumup_edge_counter_operand.replace(edge_counter_operand)
+ {
+ let intermediate_expression = self.coverage_counters.make_expression(
+ sumup_edge_counter_operand,
+ Op::Add,
+ edge_counter_operand,
+ || None,
+ );
+ debug!(
+ "{}new intermediate expression: {}",
+ NESTED_INDENT.repeat(debug_indent_level),
+ self.format_counter(&intermediate_expression)
+ );
+ let intermediate_expression_operand = intermediate_expression.as_operand_id();
+ collect_intermediate_expressions.push(intermediate_expression);
+ some_sumup_edge_counter_operand.replace(intermediate_expression_operand);
+ }
+ }
+ let counter_kind = self.coverage_counters.make_expression(
+ first_edge_counter_operand,
+ Op::Add,
+ some_sumup_edge_counter_operand.unwrap(),
+ || Some(format!("{:?}", bcb)),
+ );
+ debug!(
+ "{}{:?} gets a new counter (sum of predecessor counters): {}",
+ NESTED_INDENT.repeat(debug_indent_level),
+ bcb,
+ self.format_counter(&counter_kind)
+ );
+ self.basic_coverage_blocks[bcb].set_counter(counter_kind)
+ }
+
+ fn get_or_make_edge_counter_operand(
+ &mut self,
+ from_bcb: BasicCoverageBlock,
+ to_bcb: BasicCoverageBlock,
+ collect_intermediate_expressions: &mut Vec<CoverageKind>,
+ ) -> Result<ExpressionOperandId, Error> {
+ self.recursive_get_or_make_edge_counter_operand(
+ from_bcb,
+ to_bcb,
+ collect_intermediate_expressions,
+ 1,
+ )
+ }
+
+ fn recursive_get_or_make_edge_counter_operand(
+ &mut self,
+ from_bcb: BasicCoverageBlock,
+ to_bcb: BasicCoverageBlock,
+ collect_intermediate_expressions: &mut Vec<CoverageKind>,
+ debug_indent_level: usize,
+ ) -> Result<ExpressionOperandId, Error> {
+ // If the source BCB has only one successor (assumed to be the given target), an edge
+ // counter is unnecessary. Just get or make a counter for the source BCB.
+ let successors = self.bcb_successors(from_bcb).iter();
+ if successors.len() == 1 {
+ return self.recursive_get_or_make_counter_operand(
+ from_bcb,
+ collect_intermediate_expressions,
+ debug_indent_level + 1,
+ );
+ }
+
+ // If the edge already has a counter, return it.
+ if let Some(counter_kind) = self.basic_coverage_blocks[to_bcb].edge_counter_from(from_bcb) {
+ debug!(
+ "{}Edge {:?}->{:?} already has a counter: {}",
+ NESTED_INDENT.repeat(debug_indent_level),
+ from_bcb,
+ to_bcb,
+ self.format_counter(counter_kind)
+ );
+ return Ok(counter_kind.as_operand_id());
+ }
+
+ // Make a new counter to count this edge.
+ let counter_kind =
+ self.coverage_counters.make_counter(|| Some(format!("{:?}->{:?}", from_bcb, to_bcb)));
+ debug!(
+ "{}Edge {:?}->{:?} gets a new counter: {}",
+ NESTED_INDENT.repeat(debug_indent_level),
+ from_bcb,
+ to_bcb,
+ self.format_counter(&counter_kind)
+ );
+ self.basic_coverage_blocks[to_bcb].set_edge_counter_from(from_bcb, counter_kind)
+ }
+
+ /// Select a branch for the expression, either the recommended `reloop_branch`, or if none was
+ /// found, select any branch.
+ fn choose_preferred_expression_branch(
+ &self,
+ traversal: &TraverseCoverageGraphWithLoops,
+ branches: &[BcbBranch],
+ ) -> BcbBranch {
+ let branch_needs_a_counter =
+ |branch: &BcbBranch| branch.counter(&self.basic_coverage_blocks).is_none();
+
+ let some_reloop_branch = self.find_some_reloop_branch(traversal, &branches);
+ if let Some(reloop_branch_without_counter) =
+ some_reloop_branch.filter(branch_needs_a_counter)
+ {
+ debug!(
+ "Selecting reloop_branch={:?} that still needs a counter, to get the \
+ `Expression`",
+ reloop_branch_without_counter
+ );
+ reloop_branch_without_counter
+ } else {
+ let &branch_without_counter = branches
+ .iter()
+ .find(|&&branch| branch.counter(&self.basic_coverage_blocks).is_none())
+ .expect(
+ "needs_branch_counters was `true` so there should be at least one \
+ branch",
+ );
+ debug!(
+ "Selecting any branch={:?} that still needs a counter, to get the \
+ `Expression` because there was no `reloop_branch`, or it already had a \
+ counter",
+ branch_without_counter
+ );
+ branch_without_counter
+ }
+ }
+
+ /// At most, one of the branches (or its edge, from the branching_bcb, if the branch has
+ /// multiple incoming edges) can have a counter computed by expression.
+ ///
+ /// If at least one of the branches leads outside of a loop (`found_loop_exit` is
+ /// true), and at least one other branch does not exit the loop (the first of which
+ /// is captured in `some_reloop_branch`), it's likely any reloop branch will be
+ /// executed far more often than loop exit branch, making the reloop branch a better
+ /// candidate for an expression.
+ fn find_some_reloop_branch(
+ &self,
+ traversal: &TraverseCoverageGraphWithLoops,
+ branches: &[BcbBranch],
+ ) -> Option<BcbBranch> {
+ let branch_needs_a_counter =
+ |branch: &BcbBranch| branch.counter(&self.basic_coverage_blocks).is_none();
+
+ let mut some_reloop_branch: Option<BcbBranch> = None;
+ for context in traversal.context_stack.iter().rev() {
+ if let Some((backedge_from_bcbs, _)) = &context.loop_backedges {
+ let mut found_loop_exit = false;
+ for &branch in branches.iter() {
+ if backedge_from_bcbs.iter().any(|&backedge_from_bcb| {
+ self.bcb_is_dominated_by(backedge_from_bcb, branch.target_bcb)
+ }) {
+ if let Some(reloop_branch) = some_reloop_branch {
+ if reloop_branch.counter(&self.basic_coverage_blocks).is_none() {
+ // we already found a candidate reloop_branch that still
+ // needs a counter
+ continue;
+ }
+ }
+ // The path from branch leads back to the top of the loop. Set this
+ // branch as the `reloop_branch`. If this branch already has a
+ // counter, and we find another reloop branch that doesn't have a
+ // counter yet, that branch will be selected as the `reloop_branch`
+ // instead.
+ some_reloop_branch = Some(branch);
+ } else {
+ // The path from branch leads outside this loop
+ found_loop_exit = true;
+ }
+ if found_loop_exit
+ && some_reloop_branch.filter(branch_needs_a_counter).is_some()
+ {
+ // Found both a branch that exits the loop and a branch that returns
+ // to the top of the loop (`reloop_branch`), and the `reloop_branch`
+ // doesn't already have a counter.
+ break;
+ }
+ }
+ if !found_loop_exit {
+ debug!(
+ "No branches exit the loop, so any branch without an existing \
+ counter can have the `Expression`."
+ );
+ break;
+ }
+ if some_reloop_branch.is_some() {
+ debug!(
+ "Found a branch that exits the loop and a branch the loops back to \
+ the top of the loop (`reloop_branch`). The `reloop_branch` will \
+ get the `Expression`, as long as it still needs a counter."
+ );
+ break;
+ }
+ // else all branches exited this loop context, so run the same checks with
+ // the outer loop(s)
+ }
+ }
+ some_reloop_branch
+ }
+
+ #[inline]
+ fn bcb_predecessors(&self, bcb: BasicCoverageBlock) -> &[BasicCoverageBlock] {
+ &self.basic_coverage_blocks.predecessors[bcb]
+ }
+
+ #[inline]
+ fn bcb_successors(&self, bcb: BasicCoverageBlock) -> &[BasicCoverageBlock] {
+ &self.basic_coverage_blocks.successors[bcb]
+ }
+
+ #[inline]
+ fn bcb_branches(&self, from_bcb: BasicCoverageBlock) -> Vec<BcbBranch> {
+ self.bcb_successors(from_bcb)
+ .iter()
+ .map(|&to_bcb| BcbBranch::from_to(from_bcb, to_bcb, &self.basic_coverage_blocks))
+ .collect::<Vec<_>>()
+ }
+
+ fn bcb_needs_branch_counters(&self, bcb: BasicCoverageBlock) -> bool {
+ let branch_needs_a_counter =
+ |branch: &BcbBranch| branch.counter(&self.basic_coverage_blocks).is_none();
+ let branches = self.bcb_branches(bcb);
+ branches.len() > 1 && branches.iter().any(branch_needs_a_counter)
+ }
+
+ /// Returns true if the BasicCoverageBlock has zero or one incoming edge. (If zero, it should be
+ /// the entry point for the function.)
+ #[inline]
+ fn bcb_has_one_path_to_target(&self, bcb: BasicCoverageBlock) -> bool {
+ self.bcb_predecessors(bcb).len() <= 1
+ }
+
+ #[inline]
+ fn bcb_is_dominated_by(&self, node: BasicCoverageBlock, dom: BasicCoverageBlock) -> bool {
+ self.basic_coverage_blocks.is_dominated_by(node, dom)
+ }
+
+ #[inline]
+ fn format_counter(&self, counter_kind: &CoverageKind) -> String {
+ self.coverage_counters.debug_counters.format_counter(counter_kind)
+ }
+}
diff --git a/compiler/rustc_mir_transform/src/coverage/debug.rs b/compiler/rustc_mir_transform/src/coverage/debug.rs
new file mode 100644
index 000000000..0f8679b0b
--- /dev/null
+++ b/compiler/rustc_mir_transform/src/coverage/debug.rs
@@ -0,0 +1,831 @@
+//! The `InstrumentCoverage` MIR pass implementation includes debugging tools and options
+//! to help developers understand and/or improve the analysis and instrumentation of a MIR.
+//!
+//! To enable coverage, include the rustc command line option:
+//!
+//! * `-C instrument-coverage`
+//!
+//! MIR Dump Files, with additional `CoverageGraph` graphviz and `CoverageSpan` spanview
+//! ------------------------------------------------------------------------------------
+//!
+//! Additional debugging options include:
+//!
+//! * `-Z dump-mir=InstrumentCoverage` - Generate `.mir` files showing the state of the MIR,
+//! before and after the `InstrumentCoverage` pass, for each compiled function.
+//!
+//! * `-Z dump-mir-graphviz` - If `-Z dump-mir` is also enabled for the current MIR node path,
+//! each MIR dump is accompanied by a before-and-after graphical view of the MIR, in Graphviz
+//! `.dot` file format (which can be visually rendered as a graph using any of a number of free
+//! Graphviz viewers and IDE extensions).
+//!
+//! For the `InstrumentCoverage` pass, this option also enables generation of an additional
+//! Graphviz `.dot` file for each function, rendering the `CoverageGraph`: the control flow
+//! graph (CFG) of `BasicCoverageBlocks` (BCBs), as nodes, internally labeled to show the
+//! `CoverageSpan`-based MIR elements each BCB represents (`BasicBlock`s, `Statement`s and
+//! `Terminator`s), assigned coverage counters and/or expressions, and edge counters, as needed.
+//!
+//! (Note the additional option, `-Z graphviz-dark-mode`, can be added, to change the rendered
+//! output from its default black-on-white background to a dark color theme, if desired.)
+//!
+//! * `-Z dump-mir-spanview` - If `-Z dump-mir` is also enabled for the current MIR node path,
+//! each MIR dump is accompanied by a before-and-after `.html` document showing the function's
+//! original source code, highlighted by it's MIR spans, at the `statement`-level (by default),
+//! `terminator` only, or encompassing span for the `Terminator` plus all `Statement`s, in each
+//! `block` (`BasicBlock`).
+//!
+//! For the `InstrumentCoverage` pass, this option also enables generation of an additional
+//! spanview `.html` file for each function, showing the aggregated `CoverageSpan`s that will
+//! require counters (or counter expressions) for accurate coverage analysis.
+//!
+//! Debug Logging
+//! -------------
+//!
+//! The `InstrumentCoverage` pass includes debug logging messages at various phases and decision
+//! points, which can be enabled via environment variable:
+//!
+//! ```shell
+//! RUSTC_LOG=rustc_mir_transform::transform::coverage=debug
+//! ```
+//!
+//! Other module paths with coverage-related debug logs may also be of interest, particularly for
+//! debugging the coverage map data, injected as global variables in the LLVM IR (during rustc's
+//! code generation pass). For example:
+//!
+//! ```shell
+//! RUSTC_LOG=rustc_mir_transform::transform::coverage,rustc_codegen_ssa::coverageinfo,rustc_codegen_llvm::coverageinfo=debug
+//! ```
+//!
+//! Coverage Debug Options
+//! ---------------------------------
+//!
+//! Additional debugging options can be enabled using the environment variable:
+//!
+//! ```shell
+//! RUSTC_COVERAGE_DEBUG_OPTIONS=<options>
+//! ```
+//!
+//! These options are comma-separated, and specified in the format `option-name=value`. For example:
+//!
+//! ```shell
+//! $ RUSTC_COVERAGE_DEBUG_OPTIONS=counter-format=id+operation,allow-unused-expressions=yes cargo build
+//! ```
+//!
+//! Coverage debug options include:
+//!
+//! * `allow-unused-expressions=yes` or `no` (default: `no`)
+//!
+//! The `InstrumentCoverage` algorithms _should_ only create and assign expressions to a
+//! `BasicCoverageBlock`, or an incoming edge, if that expression is either (a) required to
+//! count a `CoverageSpan`, or (b) a dependency of some other required counter expression.
+//!
+//! If an expression is generated that does not map to a `CoverageSpan` or dependency, this
+//! probably indicates there was a bug in the algorithm that creates and assigns counters
+//! and expressions.
+//!
+//! When this kind of bug is encountered, the rustc compiler will panic by default. Setting:
+//! `allow-unused-expressions=yes` will log a warning message instead of panicking (effectively
+//! ignoring the unused expressions), which may be helpful when debugging the root cause of
+//! the problem.
+//!
+//! * `counter-format=<choices>`, where `<choices>` can be any plus-separated combination of `id`,
+//! `block`, and/or `operation` (default: `block+operation`)
+//!
+//! This option effects both the `CoverageGraph` (graphviz `.dot` files) and debug logging, when
+//! generating labels for counters and expressions.
+//!
+//! Depending on the values and combinations, counters can be labeled by:
+//!
+//! * `id` - counter or expression ID (ascending counter IDs, starting at 1, or descending
+//! expression IDs, starting at `u32:MAX`)
+//! * `block` - the `BasicCoverageBlock` label (for example, `bcb0`) or edge label (for
+//! example `bcb0->bcb1`), for counters or expressions assigned to count a
+//! `BasicCoverageBlock` or edge. Intermediate expressions (not directly associated with
+//! a BCB or edge) will be labeled by their expression ID, unless `operation` is also
+//! specified.
+//! * `operation` - applied to expressions only, labels include the left-hand-side counter
+//! or expression label (lhs operand), the operator (`+` or `-`), and the right-hand-side
+//! counter or expression (rhs operand). Expression operand labels are generated
+//! recursively, generating labels with nested operations, enclosed in parentheses
+//! (for example: `bcb2 + (bcb0 - bcb1)`).
+
+use super::graph::{BasicCoverageBlock, BasicCoverageBlockData, CoverageGraph};
+use super::spans::CoverageSpan;
+
+use itertools::Itertools;
+use rustc_middle::mir::create_dump_file;
+use rustc_middle::mir::generic_graphviz::GraphvizWriter;
+use rustc_middle::mir::spanview::{self, SpanViewable};
+
+use rustc_data_structures::fx::FxHashMap;
+use rustc_middle::mir::coverage::*;
+use rustc_middle::mir::{self, BasicBlock, TerminatorKind};
+use rustc_middle::ty::TyCtxt;
+use rustc_span::Span;
+
+use std::iter;
+use std::ops::Deref;
+use std::sync::OnceLock;
+
+pub const NESTED_INDENT: &str = " ";
+
+const RUSTC_COVERAGE_DEBUG_OPTIONS: &str = "RUSTC_COVERAGE_DEBUG_OPTIONS";
+
+pub(super) fn debug_options<'a>() -> &'a DebugOptions {
+ static DEBUG_OPTIONS: OnceLock<DebugOptions> = OnceLock::new();
+
+ &DEBUG_OPTIONS.get_or_init(DebugOptions::from_env)
+}
+
+/// Parses and maintains coverage-specific debug options captured from the environment variable
+/// "RUSTC_COVERAGE_DEBUG_OPTIONS", if set.
+#[derive(Debug, Clone)]
+pub(super) struct DebugOptions {
+ pub allow_unused_expressions: bool,
+ counter_format: ExpressionFormat,
+}
+
+impl DebugOptions {
+ fn from_env() -> Self {
+ let mut allow_unused_expressions = true;
+ let mut counter_format = ExpressionFormat::default();
+
+ if let Ok(env_debug_options) = std::env::var(RUSTC_COVERAGE_DEBUG_OPTIONS) {
+ for setting_str in env_debug_options.replace(' ', "").replace('-', "_").split(',') {
+ let (option, value) = match setting_str.split_once('=') {
+ None => (setting_str, None),
+ Some((k, v)) => (k, Some(v)),
+ };
+ match option {
+ "allow_unused_expressions" => {
+ allow_unused_expressions = bool_option_val(option, value);
+ debug!(
+ "{} env option `allow_unused_expressions` is set to {}",
+ RUSTC_COVERAGE_DEBUG_OPTIONS, allow_unused_expressions
+ );
+ }
+ "counter_format" => {
+ match value {
+ None => {
+ bug!(
+ "`{}` option in environment variable {} requires one or more \
+ plus-separated choices (a non-empty subset of \
+ `id+block+operation`)",
+ option,
+ RUSTC_COVERAGE_DEBUG_OPTIONS
+ );
+ }
+ Some(val) => {
+ counter_format = counter_format_option_val(val);
+ debug!(
+ "{} env option `counter_format` is set to {:?}",
+ RUSTC_COVERAGE_DEBUG_OPTIONS, counter_format
+ );
+ }
+ };
+ }
+ _ => bug!(
+ "Unsupported setting `{}` in environment variable {}",
+ option,
+ RUSTC_COVERAGE_DEBUG_OPTIONS
+ ),
+ };
+ }
+ }
+
+ Self { allow_unused_expressions, counter_format }
+ }
+}
+
+fn bool_option_val(option: &str, some_strval: Option<&str>) -> bool {
+ if let Some(val) = some_strval {
+ if vec!["yes", "y", "on", "true"].contains(&val) {
+ true
+ } else if vec!["no", "n", "off", "false"].contains(&val) {
+ false
+ } else {
+ bug!(
+ "Unsupported value `{}` for option `{}` in environment variable {}",
+ option,
+ val,
+ RUSTC_COVERAGE_DEBUG_OPTIONS
+ )
+ }
+ } else {
+ true
+ }
+}
+
+fn counter_format_option_val(strval: &str) -> ExpressionFormat {
+ let mut counter_format = ExpressionFormat { id: false, block: false, operation: false };
+ let components = strval.splitn(3, '+');
+ for component in components {
+ match component {
+ "id" => counter_format.id = true,
+ "block" => counter_format.block = true,
+ "operation" => counter_format.operation = true,
+ _ => bug!(
+ "Unsupported counter_format choice `{}` in environment variable {}",
+ component,
+ RUSTC_COVERAGE_DEBUG_OPTIONS
+ ),
+ }
+ }
+ counter_format
+}
+
+#[derive(Debug, Clone)]
+struct ExpressionFormat {
+ id: bool,
+ block: bool,
+ operation: bool,
+}
+
+impl Default for ExpressionFormat {
+ fn default() -> Self {
+ Self { id: false, block: true, operation: true }
+ }
+}
+
+/// If enabled, this struct maintains a map from `CoverageKind` IDs (as `ExpressionOperandId`) to
+/// the `CoverageKind` data and optional label (normally, the counter's associated
+/// `BasicCoverageBlock` format string, if any).
+///
+/// Use `format_counter` to convert one of these `CoverageKind` counters to a debug output string,
+/// as directed by the `DebugOptions`. This allows the format of counter labels in logs and dump
+/// files (including the `CoverageGraph` graphviz file) to be changed at runtime, via environment
+/// variable.
+///
+/// `DebugCounters` supports a recursive rendering of `Expression` counters, so they can be
+/// presented as nested expressions such as `(bcb3 - (bcb0 + bcb1))`.
+pub(super) struct DebugCounters {
+ some_counters: Option<FxHashMap<ExpressionOperandId, DebugCounter>>,
+}
+
+impl DebugCounters {
+ pub fn new() -> Self {
+ Self { some_counters: None }
+ }
+
+ pub fn enable(&mut self) {
+ debug_assert!(!self.is_enabled());
+ self.some_counters.replace(FxHashMap::default());
+ }
+
+ pub fn is_enabled(&self) -> bool {
+ self.some_counters.is_some()
+ }
+
+ pub fn add_counter(&mut self, counter_kind: &CoverageKind, some_block_label: Option<String>) {
+ if let Some(counters) = &mut self.some_counters {
+ let id: ExpressionOperandId = match *counter_kind {
+ CoverageKind::Counter { id, .. } => id.into(),
+ CoverageKind::Expression { id, .. } => id.into(),
+ _ => bug!(
+ "the given `CoverageKind` is not an counter or expression: {:?}",
+ counter_kind
+ ),
+ };
+ counters
+ .try_insert(id, DebugCounter::new(counter_kind.clone(), some_block_label))
+ .expect("attempt to add the same counter_kind to DebugCounters more than once");
+ }
+ }
+
+ pub fn some_block_label(&self, operand: ExpressionOperandId) -> Option<&String> {
+ self.some_counters.as_ref().map_or(None, |counters| {
+ counters
+ .get(&operand)
+ .map_or(None, |debug_counter| debug_counter.some_block_label.as_ref())
+ })
+ }
+
+ pub fn format_counter(&self, counter_kind: &CoverageKind) -> String {
+ match *counter_kind {
+ CoverageKind::Counter { .. } => {
+ format!("Counter({})", self.format_counter_kind(counter_kind))
+ }
+ CoverageKind::Expression { .. } => {
+ format!("Expression({})", self.format_counter_kind(counter_kind))
+ }
+ CoverageKind::Unreachable { .. } => "Unreachable".to_owned(),
+ }
+ }
+
+ fn format_counter_kind(&self, counter_kind: &CoverageKind) -> String {
+ let counter_format = &debug_options().counter_format;
+ if let CoverageKind::Expression { id, lhs, op, rhs } = *counter_kind {
+ if counter_format.operation {
+ return format!(
+ "{}{} {} {}",
+ if counter_format.id || self.some_counters.is_none() {
+ format!("#{} = ", id.index())
+ } else {
+ String::new()
+ },
+ self.format_operand(lhs),
+ if op == Op::Add { "+" } else { "-" },
+ self.format_operand(rhs),
+ );
+ }
+ }
+
+ let id: ExpressionOperandId = match *counter_kind {
+ CoverageKind::Counter { id, .. } => id.into(),
+ CoverageKind::Expression { id, .. } => id.into(),
+ _ => {
+ bug!("the given `CoverageKind` is not an counter or expression: {:?}", counter_kind)
+ }
+ };
+ if self.some_counters.is_some() && (counter_format.block || !counter_format.id) {
+ let counters = self.some_counters.as_ref().unwrap();
+ if let Some(DebugCounter { some_block_label: Some(block_label), .. }) =
+ counters.get(&id)
+ {
+ return if counter_format.id {
+ format!("{}#{}", block_label, id.index())
+ } else {
+ block_label.to_string()
+ };
+ }
+ }
+ format!("#{}", id.index())
+ }
+
+ fn format_operand(&self, operand: ExpressionOperandId) -> String {
+ if operand.index() == 0 {
+ return String::from("0");
+ }
+ if let Some(counters) = &self.some_counters {
+ if let Some(DebugCounter { counter_kind, some_block_label }) = counters.get(&operand) {
+ if let CoverageKind::Expression { .. } = counter_kind {
+ if let Some(label) = some_block_label && debug_options().counter_format.block {
+ return format!(
+ "{}:({})",
+ label,
+ self.format_counter_kind(counter_kind)
+ );
+ }
+ return format!("({})", self.format_counter_kind(counter_kind));
+ }
+ return self.format_counter_kind(counter_kind);
+ }
+ }
+ format!("#{}", operand.index())
+ }
+}
+
+/// A non-public support class to `DebugCounters`.
+#[derive(Debug)]
+struct DebugCounter {
+ counter_kind: CoverageKind,
+ some_block_label: Option<String>,
+}
+
+impl DebugCounter {
+ fn new(counter_kind: CoverageKind, some_block_label: Option<String>) -> Self {
+ Self { counter_kind, some_block_label }
+ }
+}
+
+/// If enabled, this data structure captures additional debugging information used when generating
+/// a Graphviz (.dot file) representation of the `CoverageGraph`, for debugging purposes.
+pub(super) struct GraphvizData {
+ some_bcb_to_coverage_spans_with_counters:
+ Option<FxHashMap<BasicCoverageBlock, Vec<(CoverageSpan, CoverageKind)>>>,
+ some_bcb_to_dependency_counters: Option<FxHashMap<BasicCoverageBlock, Vec<CoverageKind>>>,
+ some_edge_to_counter: Option<FxHashMap<(BasicCoverageBlock, BasicBlock), CoverageKind>>,
+}
+
+impl GraphvizData {
+ pub fn new() -> Self {
+ Self {
+ some_bcb_to_coverage_spans_with_counters: None,
+ some_bcb_to_dependency_counters: None,
+ some_edge_to_counter: None,
+ }
+ }
+
+ pub fn enable(&mut self) {
+ debug_assert!(!self.is_enabled());
+ self.some_bcb_to_coverage_spans_with_counters = Some(FxHashMap::default());
+ self.some_bcb_to_dependency_counters = Some(FxHashMap::default());
+ self.some_edge_to_counter = Some(FxHashMap::default());
+ }
+
+ pub fn is_enabled(&self) -> bool {
+ self.some_bcb_to_coverage_spans_with_counters.is_some()
+ }
+
+ pub fn add_bcb_coverage_span_with_counter(
+ &mut self,
+ bcb: BasicCoverageBlock,
+ coverage_span: &CoverageSpan,
+ counter_kind: &CoverageKind,
+ ) {
+ if let Some(bcb_to_coverage_spans_with_counters) =
+ self.some_bcb_to_coverage_spans_with_counters.as_mut()
+ {
+ bcb_to_coverage_spans_with_counters
+ .entry(bcb)
+ .or_insert_with(Vec::new)
+ .push((coverage_span.clone(), counter_kind.clone()));
+ }
+ }
+
+ pub fn get_bcb_coverage_spans_with_counters(
+ &self,
+ bcb: BasicCoverageBlock,
+ ) -> Option<&[(CoverageSpan, CoverageKind)]> {
+ if let Some(bcb_to_coverage_spans_with_counters) =
+ self.some_bcb_to_coverage_spans_with_counters.as_ref()
+ {
+ bcb_to_coverage_spans_with_counters.get(&bcb).map(Deref::deref)
+ } else {
+ None
+ }
+ }
+
+ pub fn add_bcb_dependency_counter(
+ &mut self,
+ bcb: BasicCoverageBlock,
+ counter_kind: &CoverageKind,
+ ) {
+ if let Some(bcb_to_dependency_counters) = self.some_bcb_to_dependency_counters.as_mut() {
+ bcb_to_dependency_counters
+ .entry(bcb)
+ .or_insert_with(Vec::new)
+ .push(counter_kind.clone());
+ }
+ }
+
+ pub fn get_bcb_dependency_counters(&self, bcb: BasicCoverageBlock) -> Option<&[CoverageKind]> {
+ if let Some(bcb_to_dependency_counters) = self.some_bcb_to_dependency_counters.as_ref() {
+ bcb_to_dependency_counters.get(&bcb).map(Deref::deref)
+ } else {
+ None
+ }
+ }
+
+ pub fn set_edge_counter(
+ &mut self,
+ from_bcb: BasicCoverageBlock,
+ to_bb: BasicBlock,
+ counter_kind: &CoverageKind,
+ ) {
+ if let Some(edge_to_counter) = self.some_edge_to_counter.as_mut() {
+ edge_to_counter
+ .try_insert((from_bcb, to_bb), counter_kind.clone())
+ .expect("invalid attempt to insert more than one edge counter for the same edge");
+ }
+ }
+
+ pub fn get_edge_counter(
+ &self,
+ from_bcb: BasicCoverageBlock,
+ to_bb: BasicBlock,
+ ) -> Option<&CoverageKind> {
+ if let Some(edge_to_counter) = self.some_edge_to_counter.as_ref() {
+ edge_to_counter.get(&(from_bcb, to_bb))
+ } else {
+ None
+ }
+ }
+}
+
+/// If enabled, this struct captures additional data used to track whether expressions were used,
+/// directly or indirectly, to compute the coverage counts for all `CoverageSpan`s, and any that are
+/// _not_ used are retained in the `unused_expressions` Vec, to be included in debug output (logs
+/// and/or a `CoverageGraph` graphviz output).
+pub(super) struct UsedExpressions {
+ some_used_expression_operands:
+ Option<FxHashMap<ExpressionOperandId, Vec<InjectedExpressionId>>>,
+ some_unused_expressions:
+ Option<Vec<(CoverageKind, Option<BasicCoverageBlock>, BasicCoverageBlock)>>,
+}
+
+impl UsedExpressions {
+ pub fn new() -> Self {
+ Self { some_used_expression_operands: None, some_unused_expressions: None }
+ }
+
+ pub fn enable(&mut self) {
+ debug_assert!(!self.is_enabled());
+ self.some_used_expression_operands = Some(FxHashMap::default());
+ self.some_unused_expressions = Some(Vec::new());
+ }
+
+ pub fn is_enabled(&self) -> bool {
+ self.some_used_expression_operands.is_some()
+ }
+
+ pub fn add_expression_operands(&mut self, expression: &CoverageKind) {
+ if let Some(used_expression_operands) = self.some_used_expression_operands.as_mut() {
+ if let CoverageKind::Expression { id, lhs, rhs, .. } = *expression {
+ used_expression_operands.entry(lhs).or_insert_with(Vec::new).push(id);
+ used_expression_operands.entry(rhs).or_insert_with(Vec::new).push(id);
+ }
+ }
+ }
+
+ pub fn expression_is_used(&self, expression: &CoverageKind) -> bool {
+ if let Some(used_expression_operands) = self.some_used_expression_operands.as_ref() {
+ used_expression_operands.contains_key(&expression.as_operand_id())
+ } else {
+ false
+ }
+ }
+
+ pub fn add_unused_expression_if_not_found(
+ &mut self,
+ expression: &CoverageKind,
+ edge_from_bcb: Option<BasicCoverageBlock>,
+ target_bcb: BasicCoverageBlock,
+ ) {
+ if let Some(used_expression_operands) = self.some_used_expression_operands.as_ref() {
+ if !used_expression_operands.contains_key(&expression.as_operand_id()) {
+ self.some_unused_expressions.as_mut().unwrap().push((
+ expression.clone(),
+ edge_from_bcb,
+ target_bcb,
+ ));
+ }
+ }
+ }
+
+ /// Return the list of unused counters (if any) as a tuple with the counter (`CoverageKind`),
+ /// optional `from_bcb` (if it was an edge counter), and `target_bcb`.
+ pub fn get_unused_expressions(
+ &self,
+ ) -> Vec<(CoverageKind, Option<BasicCoverageBlock>, BasicCoverageBlock)> {
+ if let Some(unused_expressions) = self.some_unused_expressions.as_ref() {
+ unused_expressions.clone()
+ } else {
+ Vec::new()
+ }
+ }
+
+ /// If enabled, validate that every BCB or edge counter not directly associated with a coverage
+ /// span is at least indirectly associated (it is a dependency of a BCB counter that _is_
+ /// associated with a coverage span).
+ pub fn validate(
+ &mut self,
+ bcb_counters_without_direct_coverage_spans: &[(
+ Option<BasicCoverageBlock>,
+ BasicCoverageBlock,
+ CoverageKind,
+ )],
+ ) {
+ if self.is_enabled() {
+ let mut not_validated = bcb_counters_without_direct_coverage_spans
+ .iter()
+ .map(|(_, _, counter_kind)| counter_kind)
+ .collect::<Vec<_>>();
+ let mut validating_count = 0;
+ while not_validated.len() != validating_count {
+ let to_validate = not_validated.split_off(0);
+ validating_count = to_validate.len();
+ for counter_kind in to_validate {
+ if self.expression_is_used(counter_kind) {
+ self.add_expression_operands(counter_kind);
+ } else {
+ not_validated.push(counter_kind);
+ }
+ }
+ }
+ }
+ }
+
+ pub fn alert_on_unused_expressions(&self, debug_counters: &DebugCounters) {
+ if let Some(unused_expressions) = self.some_unused_expressions.as_ref() {
+ for (counter_kind, edge_from_bcb, target_bcb) in unused_expressions {
+ let unused_counter_message = if let Some(from_bcb) = edge_from_bcb.as_ref() {
+ format!(
+ "non-coverage edge counter found without a dependent expression, in \
+ {:?}->{:?}; counter={}",
+ from_bcb,
+ target_bcb,
+ debug_counters.format_counter(&counter_kind),
+ )
+ } else {
+ format!(
+ "non-coverage counter found without a dependent expression, in {:?}; \
+ counter={}",
+ target_bcb,
+ debug_counters.format_counter(&counter_kind),
+ )
+ };
+
+ if debug_options().allow_unused_expressions {
+ debug!("WARNING: {}", unused_counter_message);
+ } else {
+ bug!("{}", unused_counter_message);
+ }
+ }
+ }
+ }
+}
+
+/// Generates the MIR pass `CoverageSpan`-specific spanview dump file.
+pub(super) fn dump_coverage_spanview<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ mir_body: &mir::Body<'tcx>,
+ basic_coverage_blocks: &CoverageGraph,
+ pass_name: &str,
+ body_span: Span,
+ coverage_spans: &[CoverageSpan],
+) {
+ let mir_source = mir_body.source;
+ let def_id = mir_source.def_id();
+
+ let span_viewables = span_viewables(tcx, mir_body, basic_coverage_blocks, &coverage_spans);
+ let mut file = create_dump_file(tcx, "html", None, pass_name, &0, mir_source)
+ .expect("Unexpected error creating MIR spanview HTML file");
+ let crate_name = tcx.crate_name(def_id.krate);
+ let item_name = tcx.def_path(def_id).to_filename_friendly_no_crate();
+ let title = format!("{}.{} - Coverage Spans", crate_name, item_name);
+ spanview::write_document(tcx, body_span, span_viewables, &title, &mut file)
+ .expect("Unexpected IO error dumping coverage spans as HTML");
+}
+
+/// Converts the computed `BasicCoverageBlockData`s into `SpanViewable`s.
+fn span_viewables<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ mir_body: &mir::Body<'tcx>,
+ basic_coverage_blocks: &CoverageGraph,
+ coverage_spans: &[CoverageSpan],
+) -> Vec<SpanViewable> {
+ let mut span_viewables = Vec::new();
+ for coverage_span in coverage_spans {
+ let tooltip = coverage_span.format_coverage_statements(tcx, mir_body);
+ let CoverageSpan { span, bcb, .. } = coverage_span;
+ let bcb_data = &basic_coverage_blocks[*bcb];
+ let id = bcb_data.id();
+ let leader_bb = bcb_data.leader_bb();
+ span_viewables.push(SpanViewable { bb: leader_bb, span: *span, id, tooltip });
+ }
+ span_viewables
+}
+
+/// Generates the MIR pass coverage-specific graphviz dump file.
+pub(super) fn dump_coverage_graphviz<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ mir_body: &mir::Body<'tcx>,
+ pass_name: &str,
+ basic_coverage_blocks: &CoverageGraph,
+ debug_counters: &DebugCounters,
+ graphviz_data: &GraphvizData,
+ intermediate_expressions: &[CoverageKind],
+ debug_used_expressions: &UsedExpressions,
+) {
+ let mir_source = mir_body.source;
+ let def_id = mir_source.def_id();
+ let node_content = |bcb| {
+ bcb_to_string_sections(
+ tcx,
+ mir_body,
+ debug_counters,
+ &basic_coverage_blocks[bcb],
+ graphviz_data.get_bcb_coverage_spans_with_counters(bcb),
+ graphviz_data.get_bcb_dependency_counters(bcb),
+ // intermediate_expressions are injected into the mir::START_BLOCK, so
+ // include them in the first BCB.
+ if bcb.index() == 0 { Some(&intermediate_expressions) } else { None },
+ )
+ };
+ let edge_labels = |from_bcb| {
+ let from_bcb_data = &basic_coverage_blocks[from_bcb];
+ let from_terminator = from_bcb_data.terminator(mir_body);
+ let mut edge_labels = from_terminator.kind.fmt_successor_labels();
+ edge_labels.retain(|label| label != "unreachable");
+ let edge_counters = from_terminator
+ .successors()
+ .map(|successor_bb| graphviz_data.get_edge_counter(from_bcb, successor_bb));
+ iter::zip(&edge_labels, edge_counters)
+ .map(|(label, some_counter)| {
+ if let Some(counter) = some_counter {
+ format!("{}\n{}", label, debug_counters.format_counter(counter))
+ } else {
+ label.to_string()
+ }
+ })
+ .collect::<Vec<_>>()
+ };
+ let graphviz_name = format!("Cov_{}_{}", def_id.krate.index(), def_id.index.index());
+ let mut graphviz_writer =
+ GraphvizWriter::new(basic_coverage_blocks, &graphviz_name, node_content, edge_labels);
+ let unused_expressions = debug_used_expressions.get_unused_expressions();
+ if unused_expressions.len() > 0 {
+ graphviz_writer.set_graph_label(&format!(
+ "Unused expressions:\n {}",
+ unused_expressions
+ .as_slice()
+ .iter()
+ .map(|(counter_kind, edge_from_bcb, target_bcb)| {
+ if let Some(from_bcb) = edge_from_bcb.as_ref() {
+ format!(
+ "{:?}->{:?}: {}",
+ from_bcb,
+ target_bcb,
+ debug_counters.format_counter(&counter_kind),
+ )
+ } else {
+ format!(
+ "{:?}: {}",
+ target_bcb,
+ debug_counters.format_counter(&counter_kind),
+ )
+ }
+ })
+ .join("\n ")
+ ));
+ }
+ let mut file = create_dump_file(tcx, "dot", None, pass_name, &0, mir_source)
+ .expect("Unexpected error creating BasicCoverageBlock graphviz DOT file");
+ graphviz_writer
+ .write_graphviz(tcx, &mut file)
+ .expect("Unexpected error writing BasicCoverageBlock graphviz DOT file");
+}
+
+fn bcb_to_string_sections<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ mir_body: &mir::Body<'tcx>,
+ debug_counters: &DebugCounters,
+ bcb_data: &BasicCoverageBlockData,
+ some_coverage_spans_with_counters: Option<&[(CoverageSpan, CoverageKind)]>,
+ some_dependency_counters: Option<&[CoverageKind]>,
+ some_intermediate_expressions: Option<&[CoverageKind]>,
+) -> Vec<String> {
+ let len = bcb_data.basic_blocks.len();
+ let mut sections = Vec::new();
+ if let Some(collect_intermediate_expressions) = some_intermediate_expressions {
+ sections.push(
+ collect_intermediate_expressions
+ .iter()
+ .map(|expression| {
+ format!("Intermediate {}", debug_counters.format_counter(expression))
+ })
+ .join("\n"),
+ );
+ }
+ if let Some(coverage_spans_with_counters) = some_coverage_spans_with_counters {
+ sections.push(
+ coverage_spans_with_counters
+ .iter()
+ .map(|(covspan, counter)| {
+ format!(
+ "{} at {}",
+ debug_counters.format_counter(counter),
+ covspan.format(tcx, mir_body)
+ )
+ })
+ .join("\n"),
+ );
+ }
+ if let Some(dependency_counters) = some_dependency_counters {
+ sections.push(format!(
+ "Non-coverage counters:\n {}",
+ dependency_counters
+ .iter()
+ .map(|counter| debug_counters.format_counter(counter))
+ .join(" \n"),
+ ));
+ }
+ if let Some(counter_kind) = &bcb_data.counter_kind {
+ sections.push(format!("{:?}", counter_kind));
+ }
+ let non_term_blocks = bcb_data.basic_blocks[0..len - 1]
+ .iter()
+ .map(|&bb| format!("{:?}: {}", bb, term_type(&mir_body[bb].terminator().kind)))
+ .collect::<Vec<_>>();
+ if non_term_blocks.len() > 0 {
+ sections.push(non_term_blocks.join("\n"));
+ }
+ sections.push(format!(
+ "{:?}: {}",
+ bcb_data.basic_blocks.last().unwrap(),
+ term_type(&bcb_data.terminator(mir_body).kind)
+ ));
+ sections
+}
+
+/// Returns a simple string representation of a `TerminatorKind` variant, independent of any
+/// values it might hold.
+pub(super) fn term_type(kind: &TerminatorKind<'_>) -> &'static str {
+ match kind {
+ TerminatorKind::Goto { .. } => "Goto",
+ TerminatorKind::SwitchInt { .. } => "SwitchInt",
+ TerminatorKind::Resume => "Resume",
+ TerminatorKind::Abort => "Abort",
+ TerminatorKind::Return => "Return",
+ TerminatorKind::Unreachable => "Unreachable",
+ TerminatorKind::Drop { .. } => "Drop",
+ TerminatorKind::DropAndReplace { .. } => "DropAndReplace",
+ TerminatorKind::Call { .. } => "Call",
+ TerminatorKind::Assert { .. } => "Assert",
+ TerminatorKind::Yield { .. } => "Yield",
+ TerminatorKind::GeneratorDrop => "GeneratorDrop",
+ TerminatorKind::FalseEdge { .. } => "FalseEdge",
+ TerminatorKind::FalseUnwind { .. } => "FalseUnwind",
+ TerminatorKind::InlineAsm { .. } => "InlineAsm",
+ }
+}
diff --git a/compiler/rustc_mir_transform/src/coverage/graph.rs b/compiler/rustc_mir_transform/src/coverage/graph.rs
new file mode 100644
index 000000000..759ea7cd3
--- /dev/null
+++ b/compiler/rustc_mir_transform/src/coverage/graph.rs
@@ -0,0 +1,753 @@
+use super::Error;
+
+use itertools::Itertools;
+use rustc_data_structures::fx::FxHashMap;
+use rustc_data_structures::graph::dominators::{self, Dominators};
+use rustc_data_structures::graph::{self, GraphSuccessors, WithNumNodes, WithStartNode};
+use rustc_index::bit_set::BitSet;
+use rustc_index::vec::IndexVec;
+use rustc_middle::mir::coverage::*;
+use rustc_middle::mir::{self, BasicBlock, BasicBlockData, Terminator, TerminatorKind};
+
+use std::ops::{Index, IndexMut};
+
+const ID_SEPARATOR: &str = ",";
+
+/// A coverage-specific simplification of the MIR control flow graph (CFG). The `CoverageGraph`s
+/// nodes are `BasicCoverageBlock`s, which encompass one or more MIR `BasicBlock`s, plus a
+/// `CoverageKind` counter (to be added by `CoverageCounters::make_bcb_counters`), and an optional
+/// set of additional counters--if needed--to count incoming edges, if there are more than one.
+/// (These "edge counters" are eventually converted into new MIR `BasicBlock`s.)
+#[derive(Debug)]
+pub(super) struct CoverageGraph {
+ bcbs: IndexVec<BasicCoverageBlock, BasicCoverageBlockData>,
+ bb_to_bcb: IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
+ pub successors: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>,
+ pub predecessors: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>,
+ dominators: Option<Dominators<BasicCoverageBlock>>,
+}
+
+impl CoverageGraph {
+ pub fn from_mir(mir_body: &mir::Body<'_>) -> Self {
+ let (bcbs, bb_to_bcb) = Self::compute_basic_coverage_blocks(mir_body);
+
+ // Pre-transform MIR `BasicBlock` successors and predecessors into the BasicCoverageBlock
+ // equivalents. Note that since the BasicCoverageBlock graph has been fully simplified, the
+ // each predecessor of a BCB leader_bb should be in a unique BCB. It is possible for a
+ // `SwitchInt` to have multiple targets to the same destination `BasicBlock`, so
+ // de-duplication is required. This is done without reordering the successors.
+
+ let bcbs_len = bcbs.len();
+ let mut seen = IndexVec::from_elem_n(false, bcbs_len);
+ let successors = IndexVec::from_fn_n(
+ |bcb| {
+ for b in seen.iter_mut() {
+ *b = false;
+ }
+ let bcb_data = &bcbs[bcb];
+ let mut bcb_successors = Vec::new();
+ for successor in
+ bcb_filtered_successors(&mir_body, &bcb_data.terminator(mir_body).kind)
+ .filter_map(|successor_bb| bb_to_bcb[successor_bb])
+ {
+ if !seen[successor] {
+ seen[successor] = true;
+ bcb_successors.push(successor);
+ }
+ }
+ bcb_successors
+ },
+ bcbs.len(),
+ );
+
+ let mut predecessors = IndexVec::from_elem_n(Vec::new(), bcbs.len());
+ for (bcb, bcb_successors) in successors.iter_enumerated() {
+ for &successor in bcb_successors {
+ predecessors[successor].push(bcb);
+ }
+ }
+
+ let mut basic_coverage_blocks =
+ Self { bcbs, bb_to_bcb, successors, predecessors, dominators: None };
+ let dominators = dominators::dominators(&basic_coverage_blocks);
+ basic_coverage_blocks.dominators = Some(dominators);
+ basic_coverage_blocks
+ }
+
+ fn compute_basic_coverage_blocks(
+ mir_body: &mir::Body<'_>,
+ ) -> (
+ IndexVec<BasicCoverageBlock, BasicCoverageBlockData>,
+ IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
+ ) {
+ let num_basic_blocks = mir_body.basic_blocks.len();
+ let mut bcbs = IndexVec::with_capacity(num_basic_blocks);
+ let mut bb_to_bcb = IndexVec::from_elem_n(None, num_basic_blocks);
+
+ // Walk the MIR CFG using a Preorder traversal, which starts from `START_BLOCK` and follows
+ // each block terminator's `successors()`. Coverage spans must map to actual source code,
+ // so compiler generated blocks and paths can be ignored. To that end, the CFG traversal
+ // intentionally omits unwind paths.
+ // FIXME(#78544): MIR InstrumentCoverage: Improve coverage of `#[should_panic]` tests and
+ // `catch_unwind()` handlers.
+ let mir_cfg_without_unwind = ShortCircuitPreorder::new(&mir_body, bcb_filtered_successors);
+
+ let mut basic_blocks = Vec::new();
+ for (bb, data) in mir_cfg_without_unwind {
+ if let Some(last) = basic_blocks.last() {
+ let predecessors = &mir_body.basic_blocks.predecessors()[bb];
+ if predecessors.len() > 1 || !predecessors.contains(last) {
+ // The `bb` has more than one _incoming_ edge, and should start its own
+ // `BasicCoverageBlockData`. (Note, the `basic_blocks` vector does not yet
+ // include `bb`; it contains a sequence of one or more sequential basic_blocks
+ // with no intermediate branches in or out. Save these as a new
+ // `BasicCoverageBlockData` before starting the new one.)
+ Self::add_basic_coverage_block(
+ &mut bcbs,
+ &mut bb_to_bcb,
+ basic_blocks.split_off(0),
+ );
+ debug!(
+ " because {}",
+ if predecessors.len() > 1 {
+ "predecessors.len() > 1".to_owned()
+ } else {
+ format!("bb {} is not in precessors: {:?}", bb.index(), predecessors)
+ }
+ );
+ }
+ }
+ basic_blocks.push(bb);
+
+ let term = data.terminator();
+
+ match term.kind {
+ TerminatorKind::Return { .. }
+ | TerminatorKind::Abort
+ | TerminatorKind::Yield { .. }
+ | TerminatorKind::SwitchInt { .. } => {
+ // The `bb` has more than one _outgoing_ edge, or exits the function. Save the
+ // current sequence of `basic_blocks` gathered to this point, as a new
+ // `BasicCoverageBlockData`.
+ Self::add_basic_coverage_block(
+ &mut bcbs,
+ &mut bb_to_bcb,
+ basic_blocks.split_off(0),
+ );
+ debug!(" because term.kind = {:?}", term.kind);
+ // Note that this condition is based on `TerminatorKind`, even though it
+ // theoretically boils down to `successors().len() != 1`; that is, either zero
+ // (e.g., `Return`, `Abort`) or multiple successors (e.g., `SwitchInt`), but
+ // since the BCB CFG ignores things like unwind branches (which exist in the
+ // `Terminator`s `successors()` list) checking the number of successors won't
+ // work.
+ }
+
+ // The following `TerminatorKind`s are either not expected outside an unwind branch,
+ // or they should not (under normal circumstances) branch. Coverage graphs are
+ // simplified by assuring coverage results are accurate for program executions that
+ // don't panic.
+ //
+ // Programs that panic and unwind may record slightly inaccurate coverage results
+ // for a coverage region containing the `Terminator` that began the panic. This
+ // is as intended. (See Issue #78544 for a possible future option to support
+ // coverage in test programs that panic.)
+ TerminatorKind::Goto { .. }
+ | TerminatorKind::Resume
+ | TerminatorKind::Unreachable
+ | TerminatorKind::Drop { .. }
+ | TerminatorKind::DropAndReplace { .. }
+ | TerminatorKind::Call { .. }
+ | TerminatorKind::GeneratorDrop
+ | TerminatorKind::Assert { .. }
+ | TerminatorKind::FalseEdge { .. }
+ | TerminatorKind::FalseUnwind { .. }
+ | TerminatorKind::InlineAsm { .. } => {}
+ }
+ }
+
+ if !basic_blocks.is_empty() {
+ // process any remaining basic_blocks into a final `BasicCoverageBlockData`
+ Self::add_basic_coverage_block(&mut bcbs, &mut bb_to_bcb, basic_blocks.split_off(0));
+ debug!(" because the end of the MIR CFG was reached while traversing");
+ }
+
+ (bcbs, bb_to_bcb)
+ }
+
+ fn add_basic_coverage_block(
+ bcbs: &mut IndexVec<BasicCoverageBlock, BasicCoverageBlockData>,
+ bb_to_bcb: &mut IndexVec<BasicBlock, Option<BasicCoverageBlock>>,
+ basic_blocks: Vec<BasicBlock>,
+ ) {
+ let bcb = BasicCoverageBlock::from_usize(bcbs.len());
+ for &bb in basic_blocks.iter() {
+ bb_to_bcb[bb] = Some(bcb);
+ }
+ let bcb_data = BasicCoverageBlockData::from(basic_blocks);
+ debug!("adding bcb{}: {:?}", bcb.index(), bcb_data);
+ bcbs.push(bcb_data);
+ }
+
+ #[inline(always)]
+ pub fn iter_enumerated(
+ &self,
+ ) -> impl Iterator<Item = (BasicCoverageBlock, &BasicCoverageBlockData)> {
+ self.bcbs.iter_enumerated()
+ }
+
+ #[inline(always)]
+ pub fn iter_enumerated_mut(
+ &mut self,
+ ) -> impl Iterator<Item = (BasicCoverageBlock, &mut BasicCoverageBlockData)> {
+ self.bcbs.iter_enumerated_mut()
+ }
+
+ #[inline(always)]
+ pub fn bcb_from_bb(&self, bb: BasicBlock) -> Option<BasicCoverageBlock> {
+ if bb.index() < self.bb_to_bcb.len() { self.bb_to_bcb[bb] } else { None }
+ }
+
+ #[inline(always)]
+ pub fn is_dominated_by(&self, node: BasicCoverageBlock, dom: BasicCoverageBlock) -> bool {
+ self.dominators.as_ref().unwrap().is_dominated_by(node, dom)
+ }
+
+ #[inline(always)]
+ pub fn dominators(&self) -> &Dominators<BasicCoverageBlock> {
+ self.dominators.as_ref().unwrap()
+ }
+}
+
+impl Index<BasicCoverageBlock> for CoverageGraph {
+ type Output = BasicCoverageBlockData;
+
+ #[inline]
+ fn index(&self, index: BasicCoverageBlock) -> &BasicCoverageBlockData {
+ &self.bcbs[index]
+ }
+}
+
+impl IndexMut<BasicCoverageBlock> for CoverageGraph {
+ #[inline]
+ fn index_mut(&mut self, index: BasicCoverageBlock) -> &mut BasicCoverageBlockData {
+ &mut self.bcbs[index]
+ }
+}
+
+impl graph::DirectedGraph for CoverageGraph {
+ type Node = BasicCoverageBlock;
+}
+
+impl graph::WithNumNodes for CoverageGraph {
+ #[inline]
+ fn num_nodes(&self) -> usize {
+ self.bcbs.len()
+ }
+}
+
+impl graph::WithStartNode for CoverageGraph {
+ #[inline]
+ fn start_node(&self) -> Self::Node {
+ self.bcb_from_bb(mir::START_BLOCK)
+ .expect("mir::START_BLOCK should be in a BasicCoverageBlock")
+ }
+}
+
+type BcbSuccessors<'graph> = std::slice::Iter<'graph, BasicCoverageBlock>;
+
+impl<'graph> graph::GraphSuccessors<'graph> for CoverageGraph {
+ type Item = BasicCoverageBlock;
+ type Iter = std::iter::Cloned<BcbSuccessors<'graph>>;
+}
+
+impl graph::WithSuccessors for CoverageGraph {
+ #[inline]
+ fn successors(&self, node: Self::Node) -> <Self as GraphSuccessors<'_>>::Iter {
+ self.successors[node].iter().cloned()
+ }
+}
+
+impl<'graph> graph::GraphPredecessors<'graph> for CoverageGraph {
+ type Item = BasicCoverageBlock;
+ type Iter = std::iter::Copied<std::slice::Iter<'graph, BasicCoverageBlock>>;
+}
+
+impl graph::WithPredecessors for CoverageGraph {
+ #[inline]
+ fn predecessors(&self, node: Self::Node) -> <Self as graph::GraphPredecessors<'_>>::Iter {
+ self.predecessors[node].iter().copied()
+ }
+}
+
+rustc_index::newtype_index! {
+ /// A node in the control-flow graph of CoverageGraph.
+ pub(super) struct BasicCoverageBlock {
+ DEBUG_FORMAT = "bcb{}",
+ const START_BCB = 0,
+ }
+}
+
+/// `BasicCoverageBlockData` holds the data indexed by a `BasicCoverageBlock`.
+///
+/// A `BasicCoverageBlock` (BCB) represents the maximal-length sequence of MIR `BasicBlock`s without
+/// conditional branches, and form a new, simplified, coverage-specific Control Flow Graph, without
+/// altering the original MIR CFG.
+///
+/// Note that running the MIR `SimplifyCfg` transform is not sufficient (and therefore not
+/// necessary). The BCB-based CFG is a more aggressive simplification. For example:
+///
+/// * The BCB CFG ignores (trims) branches not relevant to coverage, such as unwind-related code,
+/// that is injected by the Rust compiler but has no physical source code to count. This also
+/// means a BasicBlock with a `Call` terminator can be merged into its primary successor target
+/// block, in the same BCB. (But, note: Issue #78544: "MIR InstrumentCoverage: Improve coverage
+/// of `#[should_panic]` tests and `catch_unwind()` handlers")
+/// * Some BasicBlock terminators support Rust-specific concerns--like borrow-checking--that are
+/// not relevant to coverage analysis. `FalseUnwind`, for example, can be treated the same as
+/// a `Goto`, and merged with its successor into the same BCB.
+///
+/// Each BCB with at least one computed `CoverageSpan` will have no more than one `Counter`.
+/// In some cases, a BCB's execution count can be computed by `Expression`. Additional
+/// disjoint `CoverageSpan`s in a BCB can also be counted by `Expression` (by adding `ZERO`
+/// to the BCB's primary counter or expression).
+///
+/// The BCB CFG is critical to simplifying the coverage analysis by ensuring graph path-based
+/// queries (`is_dominated_by()`, `predecessors`, `successors`, etc.) have branch (control flow)
+/// significance.
+#[derive(Debug, Clone)]
+pub(super) struct BasicCoverageBlockData {
+ pub basic_blocks: Vec<BasicBlock>,
+ pub counter_kind: Option<CoverageKind>,
+ edge_from_bcbs: Option<FxHashMap<BasicCoverageBlock, CoverageKind>>,
+}
+
+impl BasicCoverageBlockData {
+ pub fn from(basic_blocks: Vec<BasicBlock>) -> Self {
+ assert!(basic_blocks.len() > 0);
+ Self { basic_blocks, counter_kind: None, edge_from_bcbs: None }
+ }
+
+ #[inline(always)]
+ pub fn leader_bb(&self) -> BasicBlock {
+ self.basic_blocks[0]
+ }
+
+ #[inline(always)]
+ pub fn last_bb(&self) -> BasicBlock {
+ *self.basic_blocks.last().unwrap()
+ }
+
+ #[inline(always)]
+ pub fn terminator<'a, 'tcx>(&self, mir_body: &'a mir::Body<'tcx>) -> &'a Terminator<'tcx> {
+ &mir_body[self.last_bb()].terminator()
+ }
+
+ pub fn set_counter(
+ &mut self,
+ counter_kind: CoverageKind,
+ ) -> Result<ExpressionOperandId, Error> {
+ debug_assert!(
+ // If the BCB has an edge counter (to be injected into a new `BasicBlock`), it can also
+ // have an expression (to be injected into an existing `BasicBlock` represented by this
+ // `BasicCoverageBlock`).
+ self.edge_from_bcbs.is_none() || counter_kind.is_expression(),
+ "attempt to add a `Counter` to a BCB target with existing incoming edge counters"
+ );
+ let operand = counter_kind.as_operand_id();
+ if let Some(replaced) = self.counter_kind.replace(counter_kind) {
+ Error::from_string(format!(
+ "attempt to set a BasicCoverageBlock coverage counter more than once; \
+ {:?} already had counter {:?}",
+ self, replaced,
+ ))
+ } else {
+ Ok(operand)
+ }
+ }
+
+ #[inline(always)]
+ pub fn counter(&self) -> Option<&CoverageKind> {
+ self.counter_kind.as_ref()
+ }
+
+ #[inline(always)]
+ pub fn take_counter(&mut self) -> Option<CoverageKind> {
+ self.counter_kind.take()
+ }
+
+ pub fn set_edge_counter_from(
+ &mut self,
+ from_bcb: BasicCoverageBlock,
+ counter_kind: CoverageKind,
+ ) -> Result<ExpressionOperandId, Error> {
+ if level_enabled!(tracing::Level::DEBUG) {
+ // If the BCB has an edge counter (to be injected into a new `BasicBlock`), it can also
+ // have an expression (to be injected into an existing `BasicBlock` represented by this
+ // `BasicCoverageBlock`).
+ if !self.counter_kind.as_ref().map_or(true, |c| c.is_expression()) {
+ return Error::from_string(format!(
+ "attempt to add an incoming edge counter from {:?} when the target BCB already \
+ has a `Counter`",
+ from_bcb
+ ));
+ }
+ }
+ let operand = counter_kind.as_operand_id();
+ if let Some(replaced) =
+ self.edge_from_bcbs.get_or_insert_default().insert(from_bcb, counter_kind)
+ {
+ Error::from_string(format!(
+ "attempt to set an edge counter more than once; from_bcb: \
+ {:?} already had counter {:?}",
+ from_bcb, replaced,
+ ))
+ } else {
+ Ok(operand)
+ }
+ }
+
+ #[inline]
+ pub fn edge_counter_from(&self, from_bcb: BasicCoverageBlock) -> Option<&CoverageKind> {
+ if let Some(edge_from_bcbs) = &self.edge_from_bcbs {
+ edge_from_bcbs.get(&from_bcb)
+ } else {
+ None
+ }
+ }
+
+ #[inline]
+ pub fn take_edge_counters(
+ &mut self,
+ ) -> Option<impl Iterator<Item = (BasicCoverageBlock, CoverageKind)>> {
+ self.edge_from_bcbs.take().map(|m| m.into_iter())
+ }
+
+ pub fn id(&self) -> String {
+ format!("@{}", self.basic_blocks.iter().map(|bb| bb.index().to_string()).join(ID_SEPARATOR))
+ }
+}
+
+/// Represents a successor from a branching BasicCoverageBlock (such as the arms of a `SwitchInt`)
+/// as either the successor BCB itself, if it has only one incoming edge, or the successor _plus_
+/// the specific branching BCB, representing the edge between the two. The latter case
+/// distinguishes this incoming edge from other incoming edges to the same `target_bcb`.
+#[derive(Clone, Copy, PartialEq, Eq)]
+pub(super) struct BcbBranch {
+ pub edge_from_bcb: Option<BasicCoverageBlock>,
+ pub target_bcb: BasicCoverageBlock,
+}
+
+impl BcbBranch {
+ pub fn from_to(
+ from_bcb: BasicCoverageBlock,
+ to_bcb: BasicCoverageBlock,
+ basic_coverage_blocks: &CoverageGraph,
+ ) -> Self {
+ let edge_from_bcb = if basic_coverage_blocks.predecessors[to_bcb].len() > 1 {
+ Some(from_bcb)
+ } else {
+ None
+ };
+ Self { edge_from_bcb, target_bcb: to_bcb }
+ }
+
+ pub fn counter<'a>(
+ &self,
+ basic_coverage_blocks: &'a CoverageGraph,
+ ) -> Option<&'a CoverageKind> {
+ if let Some(from_bcb) = self.edge_from_bcb {
+ basic_coverage_blocks[self.target_bcb].edge_counter_from(from_bcb)
+ } else {
+ basic_coverage_blocks[self.target_bcb].counter()
+ }
+ }
+
+ pub fn is_only_path_to_target(&self) -> bool {
+ self.edge_from_bcb.is_none()
+ }
+}
+
+impl std::fmt::Debug for BcbBranch {
+ fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
+ if let Some(from_bcb) = self.edge_from_bcb {
+ write!(fmt, "{:?}->{:?}", from_bcb, self.target_bcb)
+ } else {
+ write!(fmt, "{:?}", self.target_bcb)
+ }
+ }
+}
+
+// Returns the `Terminator`s non-unwind successors.
+// FIXME(#78544): MIR InstrumentCoverage: Improve coverage of `#[should_panic]` tests and
+// `catch_unwind()` handlers.
+fn bcb_filtered_successors<'a, 'tcx>(
+ body: &'a mir::Body<'tcx>,
+ term_kind: &'a TerminatorKind<'tcx>,
+) -> Box<dyn Iterator<Item = BasicBlock> + 'a> {
+ Box::new(
+ match &term_kind {
+ // SwitchInt successors are never unwind, and all of them should be traversed.
+ TerminatorKind::SwitchInt { ref targets, .. } => {
+ None.into_iter().chain(targets.all_targets().into_iter().copied())
+ }
+ // For all other kinds, return only the first successor, if any, and ignore unwinds.
+ // NOTE: `chain(&[])` is required to coerce the `option::iter` (from
+ // `next().into_iter()`) into the `mir::Successors` aliased type.
+ _ => term_kind.successors().next().into_iter().chain((&[]).into_iter().copied()),
+ }
+ .filter(move |&successor| body[successor].terminator().kind != TerminatorKind::Unreachable),
+ )
+}
+
+/// Maintains separate worklists for each loop in the BasicCoverageBlock CFG, plus one for the
+/// CoverageGraph outside all loops. This supports traversing the BCB CFG in a way that
+/// ensures a loop is completely traversed before processing Blocks after the end of the loop.
+#[derive(Debug)]
+pub(super) struct TraversalContext {
+ /// From one or more backedges returning to a loop header.
+ pub loop_backedges: Option<(Vec<BasicCoverageBlock>, BasicCoverageBlock)>,
+
+ /// worklist, to be traversed, of CoverageGraph in the loop with the given loop
+ /// backedges, such that the loop is the inner inner-most loop containing these
+ /// CoverageGraph
+ pub worklist: Vec<BasicCoverageBlock>,
+}
+
+pub(super) struct TraverseCoverageGraphWithLoops {
+ pub backedges: IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>>,
+ pub context_stack: Vec<TraversalContext>,
+ visited: BitSet<BasicCoverageBlock>,
+}
+
+impl TraverseCoverageGraphWithLoops {
+ pub fn new(basic_coverage_blocks: &CoverageGraph) -> Self {
+ let start_bcb = basic_coverage_blocks.start_node();
+ let backedges = find_loop_backedges(basic_coverage_blocks);
+ let context_stack =
+ vec![TraversalContext { loop_backedges: None, worklist: vec![start_bcb] }];
+ // `context_stack` starts with a `TraversalContext` for the main function context (beginning
+ // with the `start` BasicCoverageBlock of the function). New worklists are pushed to the top
+ // of the stack as loops are entered, and popped off of the stack when a loop's worklist is
+ // exhausted.
+ let visited = BitSet::new_empty(basic_coverage_blocks.num_nodes());
+ Self { backedges, context_stack, visited }
+ }
+
+ pub fn next(&mut self, basic_coverage_blocks: &CoverageGraph) -> Option<BasicCoverageBlock> {
+ debug!(
+ "TraverseCoverageGraphWithLoops::next - context_stack: {:?}",
+ self.context_stack.iter().rev().collect::<Vec<_>>()
+ );
+ while let Some(next_bcb) = {
+ // Strip contexts with empty worklists from the top of the stack
+ while self.context_stack.last().map_or(false, |context| context.worklist.is_empty()) {
+ self.context_stack.pop();
+ }
+ // Pop the next bcb off of the current context_stack. If none, all BCBs were visited.
+ self.context_stack.last_mut().map_or(None, |context| context.worklist.pop())
+ } {
+ if !self.visited.insert(next_bcb) {
+ debug!("Already visited: {:?}", next_bcb);
+ continue;
+ }
+ debug!("Visiting {:?}", next_bcb);
+ if self.backedges[next_bcb].len() > 0 {
+ debug!("{:?} is a loop header! Start a new TraversalContext...", next_bcb);
+ self.context_stack.push(TraversalContext {
+ loop_backedges: Some((self.backedges[next_bcb].clone(), next_bcb)),
+ worklist: Vec::new(),
+ });
+ }
+ self.extend_worklist(basic_coverage_blocks, next_bcb);
+ return Some(next_bcb);
+ }
+ None
+ }
+
+ pub fn extend_worklist(
+ &mut self,
+ basic_coverage_blocks: &CoverageGraph,
+ bcb: BasicCoverageBlock,
+ ) {
+ let successors = &basic_coverage_blocks.successors[bcb];
+ debug!("{:?} has {} successors:", bcb, successors.len());
+ for &successor in successors {
+ if successor == bcb {
+ debug!(
+ "{:?} has itself as its own successor. (Note, the compiled code will \
+ generate an infinite loop.)",
+ bcb
+ );
+ // Don't re-add this successor to the worklist. We are already processing it.
+ break;
+ }
+ for context in self.context_stack.iter_mut().rev() {
+ // Add successors of the current BCB to the appropriate context. Successors that
+ // stay within a loop are added to the BCBs context worklist. Successors that
+ // exit the loop (they are not dominated by the loop header) must be reachable
+ // from other BCBs outside the loop, and they will be added to a different
+ // worklist.
+ //
+ // Branching blocks (with more than one successor) must be processed before
+ // blocks with only one successor, to prevent unnecessarily complicating
+ // `Expression`s by creating a Counter in a `BasicCoverageBlock` that the
+ // branching block would have given an `Expression` (or vice versa).
+ let (some_successor_to_add, some_loop_header) =
+ if let Some((_, loop_header)) = context.loop_backedges {
+ if basic_coverage_blocks.is_dominated_by(successor, loop_header) {
+ (Some(successor), Some(loop_header))
+ } else {
+ (None, None)
+ }
+ } else {
+ (Some(successor), None)
+ };
+ if let Some(successor_to_add) = some_successor_to_add {
+ if basic_coverage_blocks.successors[successor_to_add].len() > 1 {
+ debug!(
+ "{:?} successor is branching. Prioritize it at the beginning of \
+ the {}",
+ successor_to_add,
+ if let Some(loop_header) = some_loop_header {
+ format!("worklist for the loop headed by {:?}", loop_header)
+ } else {
+ String::from("non-loop worklist")
+ },
+ );
+ context.worklist.insert(0, successor_to_add);
+ } else {
+ debug!(
+ "{:?} successor is non-branching. Defer it to the end of the {}",
+ successor_to_add,
+ if let Some(loop_header) = some_loop_header {
+ format!("worklist for the loop headed by {:?}", loop_header)
+ } else {
+ String::from("non-loop worklist")
+ },
+ );
+ context.worklist.push(successor_to_add);
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ pub fn is_complete(&self) -> bool {
+ self.visited.count() == self.visited.domain_size()
+ }
+
+ pub fn unvisited(&self) -> Vec<BasicCoverageBlock> {
+ let mut unvisited_set: BitSet<BasicCoverageBlock> =
+ BitSet::new_filled(self.visited.domain_size());
+ unvisited_set.subtract(&self.visited);
+ unvisited_set.iter().collect::<Vec<_>>()
+ }
+}
+
+pub(super) fn find_loop_backedges(
+ basic_coverage_blocks: &CoverageGraph,
+) -> IndexVec<BasicCoverageBlock, Vec<BasicCoverageBlock>> {
+ let num_bcbs = basic_coverage_blocks.num_nodes();
+ let mut backedges = IndexVec::from_elem_n(Vec::<BasicCoverageBlock>::new(), num_bcbs);
+
+ // Identify loops by their backedges.
+ //
+ // The computational complexity is bounded by: n(s) x d where `n` is the number of
+ // `BasicCoverageBlock` nodes (the simplified/reduced representation of the CFG derived from the
+ // MIR); `s` is the average number of successors per node (which is most likely less than 2, and
+ // independent of the size of the function, so it can be treated as a constant);
+ // and `d` is the average number of dominators per node.
+ //
+ // The average number of dominators depends on the size and complexity of the function, and
+ // nodes near the start of the function's control flow graph typically have less dominators
+ // than nodes near the end of the CFG. Without doing a detailed mathematical analysis, I
+ // think the resulting complexity has the characteristics of O(n log n).
+ //
+ // The overall complexity appears to be comparable to many other MIR transform algorithms, and I
+ // don't expect that this function is creating a performance hot spot, but if this becomes an
+ // issue, there may be ways to optimize the `is_dominated_by` algorithm (as indicated by an
+ // existing `FIXME` comment in that code), or possibly ways to optimize it's usage here, perhaps
+ // by keeping track of results for visited `BasicCoverageBlock`s if they can be used to short
+ // circuit downstream `is_dominated_by` checks.
+ //
+ // For now, that kind of optimization seems unnecessarily complicated.
+ for (bcb, _) in basic_coverage_blocks.iter_enumerated() {
+ for &successor in &basic_coverage_blocks.successors[bcb] {
+ if basic_coverage_blocks.is_dominated_by(bcb, successor) {
+ let loop_header = successor;
+ let backedge_from_bcb = bcb;
+ debug!(
+ "Found BCB backedge: {:?} -> loop_header: {:?}",
+ backedge_from_bcb, loop_header
+ );
+ backedges[loop_header].push(backedge_from_bcb);
+ }
+ }
+ }
+ backedges
+}
+
+pub struct ShortCircuitPreorder<
+ 'a,
+ 'tcx,
+ F: Fn(&'a mir::Body<'tcx>, &'a TerminatorKind<'tcx>) -> Box<dyn Iterator<Item = BasicBlock> + 'a>,
+> {
+ body: &'a mir::Body<'tcx>,
+ visited: BitSet<BasicBlock>,
+ worklist: Vec<BasicBlock>,
+ filtered_successors: F,
+}
+
+impl<
+ 'a,
+ 'tcx,
+ F: Fn(&'a mir::Body<'tcx>, &'a TerminatorKind<'tcx>) -> Box<dyn Iterator<Item = BasicBlock> + 'a>,
+> ShortCircuitPreorder<'a, 'tcx, F>
+{
+ pub fn new(
+ body: &'a mir::Body<'tcx>,
+ filtered_successors: F,
+ ) -> ShortCircuitPreorder<'a, 'tcx, F> {
+ let worklist = vec![mir::START_BLOCK];
+
+ ShortCircuitPreorder {
+ body,
+ visited: BitSet::new_empty(body.basic_blocks().len()),
+ worklist,
+ filtered_successors,
+ }
+ }
+}
+
+impl<
+ 'a,
+ 'tcx,
+ F: Fn(&'a mir::Body<'tcx>, &'a TerminatorKind<'tcx>) -> Box<dyn Iterator<Item = BasicBlock> + 'a>,
+> Iterator for ShortCircuitPreorder<'a, 'tcx, F>
+{
+ type Item = (BasicBlock, &'a BasicBlockData<'tcx>);
+
+ fn next(&mut self) -> Option<(BasicBlock, &'a BasicBlockData<'tcx>)> {
+ while let Some(idx) = self.worklist.pop() {
+ if !self.visited.insert(idx) {
+ continue;
+ }
+
+ let data = &self.body[idx];
+
+ if let Some(ref term) = data.terminator {
+ self.worklist.extend((self.filtered_successors)(&self.body, &term.kind));
+ }
+
+ return Some((idx, data));
+ }
+
+ None
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let size = self.body.basic_blocks().len() - self.visited.count();
+ (size, Some(size))
+ }
+}
diff --git a/compiler/rustc_mir_transform/src/coverage/mod.rs b/compiler/rustc_mir_transform/src/coverage/mod.rs
new file mode 100644
index 000000000..2619626a5
--- /dev/null
+++ b/compiler/rustc_mir_transform/src/coverage/mod.rs
@@ -0,0 +1,580 @@
+pub mod query;
+
+mod counters;
+mod debug;
+mod graph;
+mod spans;
+
+#[cfg(test)]
+mod tests;
+
+use counters::CoverageCounters;
+use graph::{BasicCoverageBlock, BasicCoverageBlockData, CoverageGraph};
+use spans::{CoverageSpan, CoverageSpans};
+
+use crate::MirPass;
+
+use rustc_data_structures::graph::WithNumNodes;
+use rustc_data_structures::sync::Lrc;
+use rustc_index::vec::IndexVec;
+use rustc_middle::hir;
+use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
+use rustc_middle::mir::coverage::*;
+use rustc_middle::mir::dump_enabled;
+use rustc_middle::mir::{
+ self, BasicBlock, BasicBlockData, Coverage, SourceInfo, Statement, StatementKind, Terminator,
+ TerminatorKind,
+};
+use rustc_middle::ty::TyCtxt;
+use rustc_span::def_id::DefId;
+use rustc_span::source_map::SourceMap;
+use rustc_span::{CharPos, ExpnKind, Pos, SourceFile, Span, Symbol};
+
+/// A simple error message wrapper for `coverage::Error`s.
+#[derive(Debug)]
+struct Error {
+ message: String,
+}
+
+impl Error {
+ pub fn from_string<T>(message: String) -> Result<T, Error> {
+ Err(Self { message })
+ }
+}
+
+/// Inserts `StatementKind::Coverage` statements that either instrument the binary with injected
+/// counters, via intrinsic `llvm.instrprof.increment`, and/or inject metadata used during codegen
+/// to construct the coverage map.
+pub struct InstrumentCoverage;
+
+impl<'tcx> MirPass<'tcx> for InstrumentCoverage {
+ fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
+ sess.instrument_coverage()
+ }
+
+ fn run_pass(&self, tcx: TyCtxt<'tcx>, mir_body: &mut mir::Body<'tcx>) {
+ let mir_source = mir_body.source;
+
+ // If the InstrumentCoverage pass is called on promoted MIRs, skip them.
+ // See: https://github.com/rust-lang/rust/pull/73011#discussion_r438317601
+ if mir_source.promoted.is_some() {
+ trace!(
+ "InstrumentCoverage skipped for {:?} (already promoted for Miri evaluation)",
+ mir_source.def_id()
+ );
+ return;
+ }
+
+ let is_fn_like =
+ tcx.hir().get_by_def_id(mir_source.def_id().expect_local()).fn_kind().is_some();
+
+ // Only instrument functions, methods, and closures (not constants since they are evaluated
+ // at compile time by Miri).
+ // FIXME(#73156): Handle source code coverage in const eval, but note, if and when const
+ // expressions get coverage spans, we will probably have to "carve out" space for const
+ // expressions from coverage spans in enclosing MIR's, like we do for closures. (That might
+ // be tricky if const expressions have no corresponding statements in the enclosing MIR.
+ // Closures are carved out by their initial `Assign` statement.)
+ if !is_fn_like {
+ trace!("InstrumentCoverage skipped for {:?} (not an fn-like)", mir_source.def_id());
+ return;
+ }
+
+ match mir_body.basic_blocks()[mir::START_BLOCK].terminator().kind {
+ TerminatorKind::Unreachable => {
+ trace!("InstrumentCoverage skipped for unreachable `START_BLOCK`");
+ return;
+ }
+ _ => {}
+ }
+
+ let codegen_fn_attrs = tcx.codegen_fn_attrs(mir_source.def_id());
+ if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NO_COVERAGE) {
+ return;
+ }
+
+ trace!("InstrumentCoverage starting for {:?}", mir_source.def_id());
+ Instrumentor::new(&self.name(), tcx, mir_body).inject_counters();
+ trace!("InstrumentCoverage done for {:?}", mir_source.def_id());
+ }
+}
+
+struct Instrumentor<'a, 'tcx> {
+ pass_name: &'a str,
+ tcx: TyCtxt<'tcx>,
+ mir_body: &'a mut mir::Body<'tcx>,
+ source_file: Lrc<SourceFile>,
+ fn_sig_span: Span,
+ body_span: Span,
+ basic_coverage_blocks: CoverageGraph,
+ coverage_counters: CoverageCounters,
+}
+
+impl<'a, 'tcx> Instrumentor<'a, 'tcx> {
+ fn new(pass_name: &'a str, tcx: TyCtxt<'tcx>, mir_body: &'a mut mir::Body<'tcx>) -> Self {
+ let source_map = tcx.sess.source_map();
+ let def_id = mir_body.source.def_id();
+ let (some_fn_sig, hir_body) = fn_sig_and_body(tcx, def_id);
+
+ let body_span = get_body_span(tcx, hir_body, mir_body);
+
+ let source_file = source_map.lookup_source_file(body_span.lo());
+ let fn_sig_span = match some_fn_sig.filter(|fn_sig| {
+ fn_sig.span.eq_ctxt(body_span)
+ && Lrc::ptr_eq(&source_file, &source_map.lookup_source_file(fn_sig.span.lo()))
+ }) {
+ Some(fn_sig) => fn_sig.span.with_hi(body_span.lo()),
+ None => body_span.shrink_to_lo(),
+ };
+
+ debug!(
+ "instrumenting {}: {:?}, fn sig span: {:?}, body span: {:?}",
+ if tcx.is_closure(def_id) { "closure" } else { "function" },
+ def_id,
+ fn_sig_span,
+ body_span
+ );
+
+ let function_source_hash = hash_mir_source(tcx, hir_body);
+ let basic_coverage_blocks = CoverageGraph::from_mir(mir_body);
+ Self {
+ pass_name,
+ tcx,
+ mir_body,
+ source_file,
+ fn_sig_span,
+ body_span,
+ basic_coverage_blocks,
+ coverage_counters: CoverageCounters::new(function_source_hash),
+ }
+ }
+
+ fn inject_counters(&'a mut self) {
+ let tcx = self.tcx;
+ let mir_source = self.mir_body.source;
+ let def_id = mir_source.def_id();
+ let fn_sig_span = self.fn_sig_span;
+ let body_span = self.body_span;
+
+ let mut graphviz_data = debug::GraphvizData::new();
+ let mut debug_used_expressions = debug::UsedExpressions::new();
+
+ let dump_mir = dump_enabled(tcx, self.pass_name, def_id);
+ let dump_graphviz = dump_mir && tcx.sess.opts.unstable_opts.dump_mir_graphviz;
+ let dump_spanview = dump_mir && tcx.sess.opts.unstable_opts.dump_mir_spanview.is_some();
+
+ if dump_graphviz {
+ graphviz_data.enable();
+ self.coverage_counters.enable_debug();
+ }
+
+ if dump_graphviz || level_enabled!(tracing::Level::DEBUG) {
+ debug_used_expressions.enable();
+ }
+
+ ////////////////////////////////////////////////////
+ // Compute `CoverageSpan`s from the `CoverageGraph`.
+ let coverage_spans = CoverageSpans::generate_coverage_spans(
+ &self.mir_body,
+ fn_sig_span,
+ body_span,
+ &self.basic_coverage_blocks,
+ );
+
+ if dump_spanview {
+ debug::dump_coverage_spanview(
+ tcx,
+ self.mir_body,
+ &self.basic_coverage_blocks,
+ self.pass_name,
+ body_span,
+ &coverage_spans,
+ );
+ }
+
+ ////////////////////////////////////////////////////
+ // Create an optimized mix of `Counter`s and `Expression`s for the `CoverageGraph`. Ensure
+ // every `CoverageSpan` has a `Counter` or `Expression` assigned to its `BasicCoverageBlock`
+ // and all `Expression` dependencies (operands) are also generated, for any other
+ // `BasicCoverageBlock`s not already associated with a `CoverageSpan`.
+ //
+ // Intermediate expressions (used to compute other `Expression` values), which have no
+ // direct associate to any `BasicCoverageBlock`, are returned in the method `Result`.
+ let intermediate_expressions_or_error = self
+ .coverage_counters
+ .make_bcb_counters(&mut self.basic_coverage_blocks, &coverage_spans);
+
+ let (result, intermediate_expressions) = match intermediate_expressions_or_error {
+ Ok(intermediate_expressions) => {
+ // If debugging, add any intermediate expressions (which are not associated with any
+ // BCB) to the `debug_used_expressions` map.
+ if debug_used_expressions.is_enabled() {
+ for intermediate_expression in &intermediate_expressions {
+ debug_used_expressions.add_expression_operands(intermediate_expression);
+ }
+ }
+
+ ////////////////////////////////////////////////////
+ // Remove the counter or edge counter from of each `CoverageSpan`s associated
+ // `BasicCoverageBlock`, and inject a `Coverage` statement into the MIR.
+ //
+ // `Coverage` statements injected from `CoverageSpan`s will include the code regions
+ // (source code start and end positions) to be counted by the associated counter.
+ //
+ // These `CoverageSpan`-associated counters are removed from their associated
+ // `BasicCoverageBlock`s so that the only remaining counters in the `CoverageGraph`
+ // are indirect counters (to be injected next, without associated code regions).
+ self.inject_coverage_span_counters(
+ coverage_spans,
+ &mut graphviz_data,
+ &mut debug_used_expressions,
+ );
+
+ ////////////////////////////////////////////////////
+ // For any remaining `BasicCoverageBlock` counters (that were not associated with
+ // any `CoverageSpan`), inject `Coverage` statements (_without_ code region `Span`s)
+ // to ensure `BasicCoverageBlock` counters that other `Expression`s may depend on
+ // are in fact counted, even though they don't directly contribute to counting
+ // their own independent code region's coverage.
+ self.inject_indirect_counters(&mut graphviz_data, &mut debug_used_expressions);
+
+ // Intermediate expressions will be injected as the final step, after generating
+ // debug output, if any.
+ ////////////////////////////////////////////////////
+
+ (Ok(()), intermediate_expressions)
+ }
+ Err(e) => (Err(e), Vec::new()),
+ };
+
+ if graphviz_data.is_enabled() {
+ // Even if there was an error, a partial CoverageGraph can still generate a useful
+ // graphviz output.
+ debug::dump_coverage_graphviz(
+ tcx,
+ self.mir_body,
+ self.pass_name,
+ &self.basic_coverage_blocks,
+ &self.coverage_counters.debug_counters,
+ &graphviz_data,
+ &intermediate_expressions,
+ &debug_used_expressions,
+ );
+ }
+
+ if let Err(e) = result {
+ bug!("Error processing: {:?}: {:?}", self.mir_body.source.def_id(), e.message)
+ };
+
+ // Depending on current `debug_options()`, `alert_on_unused_expressions()` could panic, so
+ // this check is performed as late as possible, to allow other debug output (logs and dump
+ // files), which might be helpful in analyzing unused expressions, to still be generated.
+ debug_used_expressions.alert_on_unused_expressions(&self.coverage_counters.debug_counters);
+
+ ////////////////////////////////////////////////////
+ // Finally, inject the intermediate expressions collected along the way.
+ for intermediate_expression in intermediate_expressions {
+ inject_intermediate_expression(self.mir_body, intermediate_expression);
+ }
+ }
+
+ /// Inject a counter for each `CoverageSpan`. There can be multiple `CoverageSpan`s for a given
+ /// BCB, but only one actual counter needs to be incremented per BCB. `bb_counters` maps each
+ /// `bcb` to its `Counter`, when injected. Subsequent `CoverageSpan`s for a BCB that already has
+ /// a `Counter` will inject an `Expression` instead, and compute its value by adding `ZERO` to
+ /// the BCB `Counter` value.
+ ///
+ /// If debugging, add every BCB `Expression` associated with a `CoverageSpan`s to the
+ /// `used_expression_operands` map.
+ fn inject_coverage_span_counters(
+ &mut self,
+ coverage_spans: Vec<CoverageSpan>,
+ graphviz_data: &mut debug::GraphvizData,
+ debug_used_expressions: &mut debug::UsedExpressions,
+ ) {
+ let tcx = self.tcx;
+ let source_map = tcx.sess.source_map();
+ let body_span = self.body_span;
+ let file_name = Symbol::intern(&self.source_file.name.prefer_remapped().to_string_lossy());
+
+ let mut bcb_counters = IndexVec::from_elem_n(None, self.basic_coverage_blocks.num_nodes());
+ for covspan in coverage_spans {
+ let bcb = covspan.bcb;
+ let span = covspan.span;
+ let counter_kind = if let Some(&counter_operand) = bcb_counters[bcb].as_ref() {
+ self.coverage_counters.make_identity_counter(counter_operand)
+ } else if let Some(counter_kind) = self.bcb_data_mut(bcb).take_counter() {
+ bcb_counters[bcb] = Some(counter_kind.as_operand_id());
+ debug_used_expressions.add_expression_operands(&counter_kind);
+ counter_kind
+ } else {
+ bug!("Every BasicCoverageBlock should have a Counter or Expression");
+ };
+ graphviz_data.add_bcb_coverage_span_with_counter(bcb, &covspan, &counter_kind);
+
+ debug!(
+ "Calling make_code_region(file_name={}, source_file={:?}, span={}, body_span={})",
+ file_name,
+ self.source_file,
+ source_map.span_to_diagnostic_string(span),
+ source_map.span_to_diagnostic_string(body_span)
+ );
+
+ inject_statement(
+ self.mir_body,
+ counter_kind,
+ self.bcb_leader_bb(bcb),
+ Some(make_code_region(source_map, file_name, &self.source_file, span, body_span)),
+ );
+ }
+ }
+
+ /// `inject_coverage_span_counters()` looped through the `CoverageSpan`s and injected the
+ /// counter from the `CoverageSpan`s `BasicCoverageBlock`, removing it from the BCB in the
+ /// process (via `take_counter()`).
+ ///
+ /// Any other counter associated with a `BasicCoverageBlock`, or its incoming edge, but not
+ /// associated with a `CoverageSpan`, should only exist if the counter is an `Expression`
+ /// dependency (one of the expression operands). Collect them, and inject the additional
+ /// counters into the MIR, without a reportable coverage span.
+ fn inject_indirect_counters(
+ &mut self,
+ graphviz_data: &mut debug::GraphvizData,
+ debug_used_expressions: &mut debug::UsedExpressions,
+ ) {
+ let mut bcb_counters_without_direct_coverage_spans = Vec::new();
+ for (target_bcb, target_bcb_data) in self.basic_coverage_blocks.iter_enumerated_mut() {
+ if let Some(counter_kind) = target_bcb_data.take_counter() {
+ bcb_counters_without_direct_coverage_spans.push((None, target_bcb, counter_kind));
+ }
+ if let Some(edge_counters) = target_bcb_data.take_edge_counters() {
+ for (from_bcb, counter_kind) in edge_counters {
+ bcb_counters_without_direct_coverage_spans.push((
+ Some(from_bcb),
+ target_bcb,
+ counter_kind,
+ ));
+ }
+ }
+ }
+
+ // If debug is enabled, validate that every BCB or edge counter not directly associated
+ // with a coverage span is at least indirectly associated (it is a dependency of a BCB
+ // counter that _is_ associated with a coverage span).
+ debug_used_expressions.validate(&bcb_counters_without_direct_coverage_spans);
+
+ for (edge_from_bcb, target_bcb, counter_kind) in bcb_counters_without_direct_coverage_spans
+ {
+ debug_used_expressions.add_unused_expression_if_not_found(
+ &counter_kind,
+ edge_from_bcb,
+ target_bcb,
+ );
+
+ match counter_kind {
+ CoverageKind::Counter { .. } => {
+ let inject_to_bb = if let Some(from_bcb) = edge_from_bcb {
+ // The MIR edge starts `from_bb` (the outgoing / last BasicBlock in
+ // `from_bcb`) and ends at `to_bb` (the incoming / first BasicBlock in the
+ // `target_bcb`; also called the `leader_bb`).
+ let from_bb = self.bcb_last_bb(from_bcb);
+ let to_bb = self.bcb_leader_bb(target_bcb);
+
+ let new_bb = inject_edge_counter_basic_block(self.mir_body, from_bb, to_bb);
+ graphviz_data.set_edge_counter(from_bcb, new_bb, &counter_kind);
+ debug!(
+ "Edge {:?} (last {:?}) -> {:?} (leader {:?}) requires a new MIR \
+ BasicBlock {:?}, for unclaimed edge counter {}",
+ edge_from_bcb,
+ from_bb,
+ target_bcb,
+ to_bb,
+ new_bb,
+ self.format_counter(&counter_kind),
+ );
+ new_bb
+ } else {
+ let target_bb = self.bcb_last_bb(target_bcb);
+ graphviz_data.add_bcb_dependency_counter(target_bcb, &counter_kind);
+ debug!(
+ "{:?} ({:?}) gets a new Coverage statement for unclaimed counter {}",
+ target_bcb,
+ target_bb,
+ self.format_counter(&counter_kind),
+ );
+ target_bb
+ };
+
+ inject_statement(self.mir_body, counter_kind, inject_to_bb, None);
+ }
+ CoverageKind::Expression { .. } => {
+ inject_intermediate_expression(self.mir_body, counter_kind)
+ }
+ _ => bug!("CoverageKind should be a counter"),
+ }
+ }
+ }
+
+ #[inline]
+ fn bcb_leader_bb(&self, bcb: BasicCoverageBlock) -> BasicBlock {
+ self.bcb_data(bcb).leader_bb()
+ }
+
+ #[inline]
+ fn bcb_last_bb(&self, bcb: BasicCoverageBlock) -> BasicBlock {
+ self.bcb_data(bcb).last_bb()
+ }
+
+ #[inline]
+ fn bcb_data(&self, bcb: BasicCoverageBlock) -> &BasicCoverageBlockData {
+ &self.basic_coverage_blocks[bcb]
+ }
+
+ #[inline]
+ fn bcb_data_mut(&mut self, bcb: BasicCoverageBlock) -> &mut BasicCoverageBlockData {
+ &mut self.basic_coverage_blocks[bcb]
+ }
+
+ #[inline]
+ fn format_counter(&self, counter_kind: &CoverageKind) -> String {
+ self.coverage_counters.debug_counters.format_counter(counter_kind)
+ }
+}
+
+fn inject_edge_counter_basic_block(
+ mir_body: &mut mir::Body<'_>,
+ from_bb: BasicBlock,
+ to_bb: BasicBlock,
+) -> BasicBlock {
+ let span = mir_body[from_bb].terminator().source_info.span.shrink_to_hi();
+ let new_bb = mir_body.basic_blocks_mut().push(BasicBlockData {
+ statements: vec![], // counter will be injected here
+ terminator: Some(Terminator {
+ source_info: SourceInfo::outermost(span),
+ kind: TerminatorKind::Goto { target: to_bb },
+ }),
+ is_cleanup: false,
+ });
+ let edge_ref = mir_body[from_bb]
+ .terminator_mut()
+ .successors_mut()
+ .find(|successor| **successor == to_bb)
+ .expect("from_bb should have a successor for to_bb");
+ *edge_ref = new_bb;
+ new_bb
+}
+
+fn inject_statement(
+ mir_body: &mut mir::Body<'_>,
+ counter_kind: CoverageKind,
+ bb: BasicBlock,
+ some_code_region: Option<CodeRegion>,
+) {
+ debug!(
+ " injecting statement {:?} for {:?} at code region: {:?}",
+ counter_kind, bb, some_code_region
+ );
+ let data = &mut mir_body[bb];
+ let source_info = data.terminator().source_info;
+ let statement = Statement {
+ source_info,
+ kind: StatementKind::Coverage(Box::new(Coverage {
+ kind: counter_kind,
+ code_region: some_code_region,
+ })),
+ };
+ data.statements.insert(0, statement);
+}
+
+// Non-code expressions are injected into the coverage map, without generating executable code.
+fn inject_intermediate_expression(mir_body: &mut mir::Body<'_>, expression: CoverageKind) {
+ debug_assert!(matches!(expression, CoverageKind::Expression { .. }));
+ debug!(" injecting non-code expression {:?}", expression);
+ let inject_in_bb = mir::START_BLOCK;
+ let data = &mut mir_body[inject_in_bb];
+ let source_info = data.terminator().source_info;
+ let statement = Statement {
+ source_info,
+ kind: StatementKind::Coverage(Box::new(Coverage { kind: expression, code_region: None })),
+ };
+ data.statements.push(statement);
+}
+
+/// Convert the Span into its file name, start line and column, and end line and column
+fn make_code_region(
+ source_map: &SourceMap,
+ file_name: Symbol,
+ source_file: &Lrc<SourceFile>,
+ span: Span,
+ body_span: Span,
+) -> CodeRegion {
+ let (start_line, mut start_col) = source_file.lookup_file_pos(span.lo());
+ let (end_line, end_col) = if span.hi() == span.lo() {
+ let (end_line, mut end_col) = (start_line, start_col);
+ // Extend an empty span by one character so the region will be counted.
+ let CharPos(char_pos) = start_col;
+ if span.hi() == body_span.hi() {
+ start_col = CharPos(char_pos - 1);
+ } else {
+ end_col = CharPos(char_pos + 1);
+ }
+ (end_line, end_col)
+ } else {
+ source_file.lookup_file_pos(span.hi())
+ };
+ let start_line = source_map.doctest_offset_line(&source_file.name, start_line);
+ let end_line = source_map.doctest_offset_line(&source_file.name, end_line);
+ CodeRegion {
+ file_name,
+ start_line: start_line as u32,
+ start_col: start_col.to_u32() + 1,
+ end_line: end_line as u32,
+ end_col: end_col.to_u32() + 1,
+ }
+}
+
+fn fn_sig_and_body<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+) -> (Option<&'tcx rustc_hir::FnSig<'tcx>>, &'tcx rustc_hir::Body<'tcx>) {
+ // FIXME(#79625): Consider improving MIR to provide the information needed, to avoid going back
+ // to HIR for it.
+ let hir_node = tcx.hir().get_if_local(def_id).expect("expected DefId is local");
+ let fn_body_id = hir::map::associated_body(hir_node).expect("HIR node is a function with body");
+ (hir::map::fn_sig(hir_node), tcx.hir().body(fn_body_id))
+}
+
+fn get_body_span<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ hir_body: &rustc_hir::Body<'tcx>,
+ mir_body: &mut mir::Body<'tcx>,
+) -> Span {
+ let mut body_span = hir_body.value.span;
+ let def_id = mir_body.source.def_id();
+
+ if tcx.is_closure(def_id) {
+ // If the MIR function is a closure, and if the closure body span
+ // starts from a macro, but it's content is not in that macro, try
+ // to find a non-macro callsite, and instrument the spans there
+ // instead.
+ loop {
+ let expn_data = body_span.ctxt().outer_expn_data();
+ if expn_data.is_root() {
+ break;
+ }
+ if let ExpnKind::Macro { .. } = expn_data.kind {
+ body_span = expn_data.call_site;
+ } else {
+ break;
+ }
+ }
+ }
+
+ body_span
+}
+
+fn hash_mir_source<'tcx>(tcx: TyCtxt<'tcx>, hir_body: &'tcx rustc_hir::Body<'tcx>) -> u64 {
+ // FIXME(cjgillot) Stop hashing HIR manually here.
+ let owner = hir_body.id().hir_id.owner;
+ tcx.hir_owner_nodes(owner).unwrap().hash_including_bodies.to_smaller_hash()
+}
diff --git a/compiler/rustc_mir_transform/src/coverage/query.rs b/compiler/rustc_mir_transform/src/coverage/query.rs
new file mode 100644
index 000000000..9d02f58ae
--- /dev/null
+++ b/compiler/rustc_mir_transform/src/coverage/query.rs
@@ -0,0 +1,170 @@
+use super::*;
+
+use rustc_middle::mir::coverage::*;
+use rustc_middle::mir::{self, Body, Coverage, CoverageInfo};
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::{self, TyCtxt};
+use rustc_span::def_id::DefId;
+
+/// A `query` provider for retrieving coverage information injected into MIR.
+pub(crate) fn provide(providers: &mut Providers) {
+ providers.coverageinfo = |tcx, def_id| coverageinfo(tcx, def_id);
+ providers.covered_code_regions = |tcx, def_id| covered_code_regions(tcx, def_id);
+}
+
+/// The `num_counters` argument to `llvm.instrprof.increment` is the max counter_id + 1, or in
+/// other words, the number of counter value references injected into the MIR (plus 1 for the
+/// reserved `ZERO` counter, which uses counter ID `0` when included in an expression). Injected
+/// counters have a counter ID from `1..num_counters-1`.
+///
+/// `num_expressions` is the number of counter expressions added to the MIR body.
+///
+/// Both `num_counters` and `num_expressions` are used to initialize new vectors, during backend
+/// code generate, to lookup counters and expressions by simple u32 indexes.
+///
+/// MIR optimization may split and duplicate some BasicBlock sequences, or optimize out some code
+/// including injected counters. (It is OK if some counters are optimized out, but those counters
+/// are still included in the total `num_counters` or `num_expressions`.) Simply counting the
+/// calls may not work; but computing the number of counters or expressions by adding `1` to the
+/// highest ID (for a given instrumented function) is valid.
+///
+/// This visitor runs twice, first with `add_missing_operands` set to `false`, to find the maximum
+/// counter ID and maximum expression ID based on their enum variant `id` fields; then, as a
+/// safeguard, with `add_missing_operands` set to `true`, to find any other counter or expression
+/// IDs referenced by expression operands, if not already seen.
+///
+/// Ideally, each operand ID in a MIR `CoverageKind::Expression` will have a separate MIR `Coverage`
+/// statement for the `Counter` or `Expression` with the referenced ID. but since current or future
+/// MIR optimizations can theoretically optimize out segments of a MIR, it may not be possible to
+/// guarantee this, so the second pass ensures the `CoverageInfo` counts include all referenced IDs.
+struct CoverageVisitor {
+ info: CoverageInfo,
+ add_missing_operands: bool,
+}
+
+impl CoverageVisitor {
+ /// Updates `num_counters` to the maximum encountered zero-based counter_id plus 1. Note the
+ /// final computed number of counters should be the number of all `CoverageKind::Counter`
+ /// statements in the MIR *plus one* for the implicit `ZERO` counter.
+ #[inline(always)]
+ fn update_num_counters(&mut self, counter_id: u32) {
+ self.info.num_counters = std::cmp::max(self.info.num_counters, counter_id + 1);
+ }
+
+ /// Computes an expression index for each expression ID, and updates `num_expressions` to the
+ /// maximum encountered index plus 1.
+ #[inline(always)]
+ fn update_num_expressions(&mut self, expression_id: u32) {
+ let expression_index = u32::MAX - expression_id;
+ self.info.num_expressions = std::cmp::max(self.info.num_expressions, expression_index + 1);
+ }
+
+ fn update_from_expression_operand(&mut self, operand_id: u32) {
+ if operand_id >= self.info.num_counters {
+ let operand_as_expression_index = u32::MAX - operand_id;
+ if operand_as_expression_index >= self.info.num_expressions {
+ // The operand ID is outside the known range of counter IDs and also outside the
+ // known range of expression IDs. In either case, the result of a missing operand
+ // (if and when used in an expression) will be zero, so from a computation
+ // perspective, it doesn't matter whether it is interpreted as a counter or an
+ // expression.
+ //
+ // However, the `num_counters` and `num_expressions` query results are used to
+ // allocate arrays when generating the coverage map (during codegen), so choose
+ // the type that grows either `num_counters` or `num_expressions` the least.
+ if operand_id - self.info.num_counters
+ < operand_as_expression_index - self.info.num_expressions
+ {
+ self.update_num_counters(operand_id)
+ } else {
+ self.update_num_expressions(operand_id)
+ }
+ }
+ }
+ }
+
+ fn visit_body(&mut self, body: &Body<'_>) {
+ for bb_data in body.basic_blocks().iter() {
+ for statement in bb_data.statements.iter() {
+ if let StatementKind::Coverage(box ref coverage) = statement.kind {
+ if is_inlined(body, statement) {
+ continue;
+ }
+ self.visit_coverage(coverage);
+ }
+ }
+ }
+ }
+
+ fn visit_coverage(&mut self, coverage: &Coverage) {
+ if self.add_missing_operands {
+ match coverage.kind {
+ CoverageKind::Expression { lhs, rhs, .. } => {
+ self.update_from_expression_operand(u32::from(lhs));
+ self.update_from_expression_operand(u32::from(rhs));
+ }
+ _ => {}
+ }
+ } else {
+ match coverage.kind {
+ CoverageKind::Counter { id, .. } => {
+ self.update_num_counters(u32::from(id));
+ }
+ CoverageKind::Expression { id, .. } => {
+ self.update_num_expressions(u32::from(id));
+ }
+ _ => {}
+ }
+ }
+ }
+}
+
+fn coverageinfo<'tcx>(tcx: TyCtxt<'tcx>, instance_def: ty::InstanceDef<'tcx>) -> CoverageInfo {
+ let mir_body = tcx.instance_mir(instance_def);
+
+ let mut coverage_visitor = CoverageVisitor {
+ // num_counters always has at least the `ZERO` counter.
+ info: CoverageInfo { num_counters: 1, num_expressions: 0 },
+ add_missing_operands: false,
+ };
+
+ coverage_visitor.visit_body(mir_body);
+
+ coverage_visitor.add_missing_operands = true;
+ coverage_visitor.visit_body(mir_body);
+
+ coverage_visitor.info
+}
+
+fn covered_code_regions<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> Vec<&'tcx CodeRegion> {
+ let body = mir_body(tcx, def_id);
+ body.basic_blocks()
+ .iter()
+ .flat_map(|data| {
+ data.statements.iter().filter_map(|statement| match statement.kind {
+ StatementKind::Coverage(box ref coverage) => {
+ if is_inlined(body, statement) {
+ None
+ } else {
+ coverage.code_region.as_ref() // may be None
+ }
+ }
+ _ => None,
+ })
+ })
+ .collect()
+}
+
+fn is_inlined(body: &Body<'_>, statement: &Statement<'_>) -> bool {
+ let scope_data = &body.source_scopes[statement.source_info.scope];
+ scope_data.inlined.is_some() || scope_data.inlined_parent_scope.is_some()
+}
+
+/// This function ensures we obtain the correct MIR for the given item irrespective of
+/// whether that means const mir or runtime mir. For `const fn` this opts for runtime
+/// mir.
+fn mir_body<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> &'tcx mir::Body<'tcx> {
+ let id = ty::WithOptConstParam::unknown(def_id);
+ let def = ty::InstanceDef::Item(id);
+ tcx.instance_mir(def)
+}
diff --git a/compiler/rustc_mir_transform/src/coverage/spans.rs b/compiler/rustc_mir_transform/src/coverage/spans.rs
new file mode 100644
index 000000000..423e78317
--- /dev/null
+++ b/compiler/rustc_mir_transform/src/coverage/spans.rs
@@ -0,0 +1,892 @@
+use super::debug::term_type;
+use super::graph::{BasicCoverageBlock, BasicCoverageBlockData, CoverageGraph, START_BCB};
+
+use itertools::Itertools;
+use rustc_data_structures::graph::WithNumNodes;
+use rustc_middle::mir::spanview::source_range_no_file;
+use rustc_middle::mir::{
+ self, AggregateKind, BasicBlock, FakeReadCause, Rvalue, Statement, StatementKind, Terminator,
+ TerminatorKind,
+};
+use rustc_middle::ty::TyCtxt;
+use rustc_span::source_map::original_sp;
+use rustc_span::{BytePos, ExpnKind, MacroKind, Span, Symbol};
+
+use std::cell::RefCell;
+use std::cmp::Ordering;
+
+#[derive(Debug, Copy, Clone)]
+pub(super) enum CoverageStatement {
+ Statement(BasicBlock, Span, usize),
+ Terminator(BasicBlock, Span),
+}
+
+impl CoverageStatement {
+ pub fn format<'tcx>(&self, tcx: TyCtxt<'tcx>, mir_body: &mir::Body<'tcx>) -> String {
+ match *self {
+ Self::Statement(bb, span, stmt_index) => {
+ let stmt = &mir_body[bb].statements[stmt_index];
+ format!(
+ "{}: @{}[{}]: {:?}",
+ source_range_no_file(tcx, span),
+ bb.index(),
+ stmt_index,
+ stmt
+ )
+ }
+ Self::Terminator(bb, span) => {
+ let term = mir_body[bb].terminator();
+ format!(
+ "{}: @{}.{}: {:?}",
+ source_range_no_file(tcx, span),
+ bb.index(),
+ term_type(&term.kind),
+ term.kind
+ )
+ }
+ }
+ }
+
+ pub fn span(&self) -> Span {
+ match self {
+ Self::Statement(_, span, _) | Self::Terminator(_, span) => *span,
+ }
+ }
+}
+
+/// A BCB is deconstructed into one or more `Span`s. Each `Span` maps to a `CoverageSpan` that
+/// references the originating BCB and one or more MIR `Statement`s and/or `Terminator`s.
+/// Initially, the `Span`s come from the `Statement`s and `Terminator`s, but subsequent
+/// transforms can combine adjacent `Span`s and `CoverageSpan` from the same BCB, merging the
+/// `CoverageStatement` vectors, and the `Span`s to cover the extent of the combined `Span`s.
+///
+/// Note: A `CoverageStatement` merged into another CoverageSpan may come from a `BasicBlock` that
+/// is not part of the `CoverageSpan` bcb if the statement was included because it's `Span` matches
+/// or is subsumed by the `Span` associated with this `CoverageSpan`, and it's `BasicBlock`
+/// `is_dominated_by()` the `BasicBlock`s in this `CoverageSpan`.
+#[derive(Debug, Clone)]
+pub(super) struct CoverageSpan {
+ pub span: Span,
+ pub expn_span: Span,
+ pub current_macro_or_none: RefCell<Option<Option<Symbol>>>,
+ pub bcb: BasicCoverageBlock,
+ pub coverage_statements: Vec<CoverageStatement>,
+ pub is_closure: bool,
+}
+
+impl CoverageSpan {
+ pub fn for_fn_sig(fn_sig_span: Span) -> Self {
+ Self {
+ span: fn_sig_span,
+ expn_span: fn_sig_span,
+ current_macro_or_none: Default::default(),
+ bcb: START_BCB,
+ coverage_statements: vec![],
+ is_closure: false,
+ }
+ }
+
+ pub fn for_statement(
+ statement: &Statement<'_>,
+ span: Span,
+ expn_span: Span,
+ bcb: BasicCoverageBlock,
+ bb: BasicBlock,
+ stmt_index: usize,
+ ) -> Self {
+ let is_closure = match statement.kind {
+ StatementKind::Assign(box (_, Rvalue::Aggregate(box ref kind, _))) => {
+ matches!(kind, AggregateKind::Closure(_, _) | AggregateKind::Generator(_, _, _))
+ }
+ _ => false,
+ };
+
+ Self {
+ span,
+ expn_span,
+ current_macro_or_none: Default::default(),
+ bcb,
+ coverage_statements: vec![CoverageStatement::Statement(bb, span, stmt_index)],
+ is_closure,
+ }
+ }
+
+ pub fn for_terminator(
+ span: Span,
+ expn_span: Span,
+ bcb: BasicCoverageBlock,
+ bb: BasicBlock,
+ ) -> Self {
+ Self {
+ span,
+ expn_span,
+ current_macro_or_none: Default::default(),
+ bcb,
+ coverage_statements: vec![CoverageStatement::Terminator(bb, span)],
+ is_closure: false,
+ }
+ }
+
+ pub fn merge_from(&mut self, mut other: CoverageSpan) {
+ debug_assert!(self.is_mergeable(&other));
+ self.span = self.span.to(other.span);
+ self.coverage_statements.append(&mut other.coverage_statements);
+ }
+
+ pub fn cutoff_statements_at(&mut self, cutoff_pos: BytePos) {
+ self.coverage_statements.retain(|covstmt| covstmt.span().hi() <= cutoff_pos);
+ if let Some(highest_covstmt) =
+ self.coverage_statements.iter().max_by_key(|covstmt| covstmt.span().hi())
+ {
+ self.span = self.span.with_hi(highest_covstmt.span().hi());
+ }
+ }
+
+ #[inline]
+ pub fn is_mergeable(&self, other: &Self) -> bool {
+ self.is_in_same_bcb(other) && !(self.is_closure || other.is_closure)
+ }
+
+ #[inline]
+ pub fn is_in_same_bcb(&self, other: &Self) -> bool {
+ self.bcb == other.bcb
+ }
+
+ pub fn format<'tcx>(&self, tcx: TyCtxt<'tcx>, mir_body: &mir::Body<'tcx>) -> String {
+ format!(
+ "{}\n {}",
+ source_range_no_file(tcx, self.span),
+ self.format_coverage_statements(tcx, mir_body).replace('\n', "\n "),
+ )
+ }
+
+ pub fn format_coverage_statements<'tcx>(
+ &self,
+ tcx: TyCtxt<'tcx>,
+ mir_body: &mir::Body<'tcx>,
+ ) -> String {
+ let mut sorted_coverage_statements = self.coverage_statements.clone();
+ sorted_coverage_statements.sort_unstable_by_key(|covstmt| match *covstmt {
+ CoverageStatement::Statement(bb, _, index) => (bb, index),
+ CoverageStatement::Terminator(bb, _) => (bb, usize::MAX),
+ });
+ sorted_coverage_statements.iter().map(|covstmt| covstmt.format(tcx, mir_body)).join("\n")
+ }
+
+ /// If the span is part of a macro, returns the macro name symbol.
+ pub fn current_macro(&self) -> Option<Symbol> {
+ self.current_macro_or_none
+ .borrow_mut()
+ .get_or_insert_with(|| {
+ if let ExpnKind::Macro(MacroKind::Bang, current_macro) =
+ self.expn_span.ctxt().outer_expn_data().kind
+ {
+ return Some(current_macro);
+ }
+ None
+ })
+ .map(|symbol| symbol)
+ }
+
+ /// If the span is part of a macro, and the macro is visible (expands directly to the given
+ /// body_span), returns the macro name symbol.
+ pub fn visible_macro(&self, body_span: Span) -> Option<Symbol> {
+ if let Some(current_macro) = self.current_macro() && self
+ .expn_span
+ .parent_callsite()
+ .unwrap_or_else(|| bug!("macro must have a parent"))
+ .eq_ctxt(body_span)
+ {
+ return Some(current_macro);
+ }
+ None
+ }
+
+ pub fn is_macro_expansion(&self) -> bool {
+ self.current_macro().is_some()
+ }
+}
+
+/// Converts the initial set of `CoverageSpan`s (one per MIR `Statement` or `Terminator`) into a
+/// minimal set of `CoverageSpan`s, using the BCB CFG to determine where it is safe and useful to:
+///
+/// * Remove duplicate source code coverage regions
+/// * Merge spans that represent continuous (both in source code and control flow), non-branching
+/// execution
+/// * Carve out (leave uncovered) any span that will be counted by another MIR (notably, closures)
+pub struct CoverageSpans<'a, 'tcx> {
+ /// The MIR, used to look up `BasicBlockData`.
+ mir_body: &'a mir::Body<'tcx>,
+
+ /// A `Span` covering the signature of function for the MIR.
+ fn_sig_span: Span,
+
+ /// A `Span` covering the function body of the MIR (typically from left curly brace to right
+ /// curly brace).
+ body_span: Span,
+
+ /// The BasicCoverageBlock Control Flow Graph (BCB CFG).
+ basic_coverage_blocks: &'a CoverageGraph,
+
+ /// The initial set of `CoverageSpan`s, sorted by `Span` (`lo` and `hi`) and by relative
+ /// dominance between the `BasicCoverageBlock`s of equal `Span`s.
+ sorted_spans_iter: Option<std::vec::IntoIter<CoverageSpan>>,
+
+ /// The current `CoverageSpan` to compare to its `prev`, to possibly merge, discard, force the
+ /// discard of the `prev` (and or `pending_dups`), or keep both (with `prev` moved to
+ /// `pending_dups`). If `curr` is not discarded or merged, it becomes `prev` for the next
+ /// iteration.
+ some_curr: Option<CoverageSpan>,
+
+ /// The original `span` for `curr`, in case `curr.span()` is modified. The `curr_original_span`
+ /// **must not be mutated** (except when advancing to the next `curr`), even if `curr.span()`
+ /// is mutated.
+ curr_original_span: Span,
+
+ /// The CoverageSpan from a prior iteration; typically assigned from that iteration's `curr`.
+ /// If that `curr` was discarded, `prev` retains its value from the previous iteration.
+ some_prev: Option<CoverageSpan>,
+
+ /// Assigned from `curr_original_span` from the previous iteration. The `prev_original_span`
+ /// **must not be mutated** (except when advancing to the next `prev`), even if `prev.span()`
+ /// is mutated.
+ prev_original_span: Span,
+
+ /// A copy of the expn_span from the prior iteration.
+ prev_expn_span: Option<Span>,
+
+ /// One or more `CoverageSpan`s with the same `Span` but different `BasicCoverageBlock`s, and
+ /// no `BasicCoverageBlock` in this list dominates another `BasicCoverageBlock` in the list.
+ /// If a new `curr` span also fits this criteria (compared to an existing list of
+ /// `pending_dups`), that `curr` `CoverageSpan` moves to `prev` before possibly being added to
+ /// the `pending_dups` list, on the next iteration. As a result, if `prev` and `pending_dups`
+ /// have the same `Span`, the criteria for `pending_dups` holds for `prev` as well: a `prev`
+ /// with a matching `Span` does not dominate any `pending_dup` and no `pending_dup` dominates a
+ /// `prev` with a matching `Span`)
+ pending_dups: Vec<CoverageSpan>,
+
+ /// The final `CoverageSpan`s to add to the coverage map. A `Counter` or `Expression`
+ /// will also be injected into the MIR for each `CoverageSpan`.
+ refined_spans: Vec<CoverageSpan>,
+}
+
+impl<'a, 'tcx> CoverageSpans<'a, 'tcx> {
+ /// Generate a minimal set of `CoverageSpan`s, each representing a contiguous code region to be
+ /// counted.
+ ///
+ /// The basic steps are:
+ ///
+ /// 1. Extract an initial set of spans from the `Statement`s and `Terminator`s of each
+ /// `BasicCoverageBlockData`.
+ /// 2. Sort the spans by span.lo() (starting position). Spans that start at the same position
+ /// are sorted with longer spans before shorter spans; and equal spans are sorted
+ /// (deterministically) based on "dominator" relationship (if any).
+ /// 3. Traverse the spans in sorted order to identify spans that can be dropped (for instance,
+ /// if another span or spans are already counting the same code region), or should be merged
+ /// into a broader combined span (because it represents a contiguous, non-branching, and
+ /// uninterrupted region of source code).
+ ///
+ /// Closures are exposed in their enclosing functions as `Assign` `Rvalue`s, and since
+ /// closures have their own MIR, their `Span` in their enclosing function should be left
+ /// "uncovered".
+ ///
+ /// Note the resulting vector of `CoverageSpan`s may not be fully sorted (and does not need
+ /// to be).
+ pub(super) fn generate_coverage_spans(
+ mir_body: &'a mir::Body<'tcx>,
+ fn_sig_span: Span, // Ensured to be same SourceFile and SyntaxContext as `body_span`
+ body_span: Span,
+ basic_coverage_blocks: &'a CoverageGraph,
+ ) -> Vec<CoverageSpan> {
+ let mut coverage_spans = CoverageSpans {
+ mir_body,
+ fn_sig_span,
+ body_span,
+ basic_coverage_blocks,
+ sorted_spans_iter: None,
+ refined_spans: Vec::with_capacity(basic_coverage_blocks.num_nodes() * 2),
+ some_curr: None,
+ curr_original_span: Span::with_root_ctxt(BytePos(0), BytePos(0)),
+ some_prev: None,
+ prev_original_span: Span::with_root_ctxt(BytePos(0), BytePos(0)),
+ prev_expn_span: None,
+ pending_dups: Vec::new(),
+ };
+
+ let sorted_spans = coverage_spans.mir_to_initial_sorted_coverage_spans();
+
+ coverage_spans.sorted_spans_iter = Some(sorted_spans.into_iter());
+
+ coverage_spans.to_refined_spans()
+ }
+
+ fn mir_to_initial_sorted_coverage_spans(&self) -> Vec<CoverageSpan> {
+ let mut initial_spans =
+ Vec::<CoverageSpan>::with_capacity(self.mir_body.basic_blocks.len() * 2);
+ for (bcb, bcb_data) in self.basic_coverage_blocks.iter_enumerated() {
+ initial_spans.extend(self.bcb_to_initial_coverage_spans(bcb, bcb_data));
+ }
+
+ if initial_spans.is_empty() {
+ // This can happen if, for example, the function is unreachable (contains only a
+ // `BasicBlock`(s) with an `Unreachable` terminator).
+ return initial_spans;
+ }
+
+ initial_spans.push(CoverageSpan::for_fn_sig(self.fn_sig_span));
+
+ initial_spans.sort_unstable_by(|a, b| {
+ if a.span.lo() == b.span.lo() {
+ if a.span.hi() == b.span.hi() {
+ if a.is_in_same_bcb(b) {
+ Some(Ordering::Equal)
+ } else {
+ // Sort equal spans by dominator relationship, in reverse order (so
+ // dominators always come after the dominated equal spans). When later
+ // comparing two spans in order, the first will either dominate the second,
+ // or they will have no dominator relationship.
+ self.basic_coverage_blocks.dominators().rank_partial_cmp(b.bcb, a.bcb)
+ }
+ } else {
+ // Sort hi() in reverse order so shorter spans are attempted after longer spans.
+ // This guarantees that, if a `prev` span overlaps, and is not equal to, a
+ // `curr` span, the prev span either extends further left of the curr span, or
+ // they start at the same position and the prev span extends further right of
+ // the end of the curr span.
+ b.span.hi().partial_cmp(&a.span.hi())
+ }
+ } else {
+ a.span.lo().partial_cmp(&b.span.lo())
+ }
+ .unwrap()
+ });
+
+ initial_spans
+ }
+
+ /// Iterate through the sorted `CoverageSpan`s, and return the refined list of merged and
+ /// de-duplicated `CoverageSpan`s.
+ fn to_refined_spans(mut self) -> Vec<CoverageSpan> {
+ while self.next_coverage_span() {
+ if self.some_prev.is_none() {
+ debug!(" initial span");
+ self.check_invoked_macro_name_span();
+ } else if self.curr().is_mergeable(self.prev()) {
+ debug!(" same bcb (and neither is a closure), merge with prev={:?}", self.prev());
+ let prev = self.take_prev();
+ self.curr_mut().merge_from(prev);
+ self.check_invoked_macro_name_span();
+ // Note that curr.span may now differ from curr_original_span
+ } else if self.prev_ends_before_curr() {
+ debug!(
+ " different bcbs and disjoint spans, so keep curr for next iter, and add \
+ prev={:?}",
+ self.prev()
+ );
+ let prev = self.take_prev();
+ self.push_refined_span(prev);
+ self.check_invoked_macro_name_span();
+ } else if self.prev().is_closure {
+ // drop any equal or overlapping span (`curr`) and keep `prev` to test again in the
+ // next iter
+ debug!(
+ " curr overlaps a closure (prev). Drop curr and keep prev for next iter. \
+ prev={:?}",
+ self.prev()
+ );
+ self.take_curr();
+ } else if self.curr().is_closure {
+ self.carve_out_span_for_closure();
+ } else if self.prev_original_span == self.curr().span {
+ // Note that this compares the new (`curr`) span to `prev_original_span`.
+ // In this branch, the actual span byte range of `prev_original_span` is not
+ // important. What is important is knowing whether the new `curr` span was
+ // **originally** the same as the original span of `prev()`. The original spans
+ // reflect their original sort order, and for equal spans, conveys a partial
+ // ordering based on CFG dominator priority.
+ if self.prev().is_macro_expansion() && self.curr().is_macro_expansion() {
+ // Macros that expand to include branching (such as
+ // `assert_eq!()`, `assert_ne!()`, `info!()`, `debug!()`, or
+ // `trace!()) typically generate callee spans with identical
+ // ranges (typically the full span of the macro) for all
+ // `BasicBlocks`. This makes it impossible to distinguish
+ // the condition (`if val1 != val2`) from the optional
+ // branched statements (such as the call to `panic!()` on
+ // assert failure). In this case it is better (or less
+ // worse) to drop the optional branch bcbs and keep the
+ // non-conditional statements, to count when reached.
+ debug!(
+ " curr and prev are part of a macro expansion, and curr has the same span \
+ as prev, but is in a different bcb. Drop curr and keep prev for next iter. \
+ prev={:?}",
+ self.prev()
+ );
+ self.take_curr();
+ } else {
+ self.hold_pending_dups_unless_dominated();
+ }
+ } else {
+ self.cutoff_prev_at_overlapping_curr();
+ self.check_invoked_macro_name_span();
+ }
+ }
+
+ debug!(" AT END, adding last prev={:?}", self.prev());
+ let prev = self.take_prev();
+ let pending_dups = self.pending_dups.split_off(0);
+ for dup in pending_dups {
+ debug!(" ...adding at least one pending dup={:?}", dup);
+ self.push_refined_span(dup);
+ }
+
+ // Async functions wrap a closure that implements the body to be executed. The enclosing
+ // function is called and returns an `impl Future` without initially executing any of the
+ // body. To avoid showing the return from the enclosing function as a "covered" return from
+ // the closure, the enclosing function's `TerminatorKind::Return`s `CoverageSpan` is
+ // excluded. The closure's `Return` is the only one that will be counted. This provides
+ // adequate coverage, and more intuitive counts. (Avoids double-counting the closing brace
+ // of the function body.)
+ let body_ends_with_closure = if let Some(last_covspan) = self.refined_spans.last() {
+ last_covspan.is_closure && last_covspan.span.hi() == self.body_span.hi()
+ } else {
+ false
+ };
+
+ if !body_ends_with_closure {
+ self.push_refined_span(prev);
+ }
+
+ // Remove `CoverageSpan`s derived from closures, originally added to ensure the coverage
+ // regions for the current function leave room for the closure's own coverage regions
+ // (injected separately, from the closure's own MIR).
+ self.refined_spans.retain(|covspan| !covspan.is_closure);
+ self.refined_spans
+ }
+
+ fn push_refined_span(&mut self, covspan: CoverageSpan) {
+ let len = self.refined_spans.len();
+ if len > 0 {
+ let last = &mut self.refined_spans[len - 1];
+ if last.is_mergeable(&covspan) {
+ debug!(
+ "merging new refined span with last refined span, last={:?}, covspan={:?}",
+ last, covspan
+ );
+ last.merge_from(covspan);
+ return;
+ }
+ }
+ self.refined_spans.push(covspan)
+ }
+
+ fn check_invoked_macro_name_span(&mut self) {
+ if let Some(visible_macro) = self.curr().visible_macro(self.body_span) {
+ if self.prev_expn_span.map_or(true, |prev_expn_span| {
+ self.curr().expn_span.ctxt() != prev_expn_span.ctxt()
+ }) {
+ let merged_prefix_len = self.curr_original_span.lo() - self.curr().span.lo();
+ let after_macro_bang =
+ merged_prefix_len + BytePos(visible_macro.as_str().len() as u32 + 1);
+ let mut macro_name_cov = self.curr().clone();
+ self.curr_mut().span =
+ self.curr().span.with_lo(self.curr().span.lo() + after_macro_bang);
+ macro_name_cov.span =
+ macro_name_cov.span.with_hi(macro_name_cov.span.lo() + after_macro_bang);
+ debug!(
+ " and curr starts a new macro expansion, so add a new span just for \
+ the macro `{}!`, new span={:?}",
+ visible_macro, macro_name_cov
+ );
+ self.push_refined_span(macro_name_cov);
+ }
+ }
+ }
+
+ // Generate a set of `CoverageSpan`s from the filtered set of `Statement`s and `Terminator`s of
+ // the `BasicBlock`(s) in the given `BasicCoverageBlockData`. One `CoverageSpan` is generated
+ // for each `Statement` and `Terminator`. (Note that subsequent stages of coverage analysis will
+ // merge some `CoverageSpan`s, at which point a `CoverageSpan` may represent multiple
+ // `Statement`s and/or `Terminator`s.)
+ fn bcb_to_initial_coverage_spans(
+ &self,
+ bcb: BasicCoverageBlock,
+ bcb_data: &'a BasicCoverageBlockData,
+ ) -> Vec<CoverageSpan> {
+ bcb_data
+ .basic_blocks
+ .iter()
+ .flat_map(|&bb| {
+ let data = &self.mir_body[bb];
+ data.statements
+ .iter()
+ .enumerate()
+ .filter_map(move |(index, statement)| {
+ filtered_statement_span(statement).map(|span| {
+ CoverageSpan::for_statement(
+ statement,
+ function_source_span(span, self.body_span),
+ span,
+ bcb,
+ bb,
+ index,
+ )
+ })
+ })
+ .chain(filtered_terminator_span(data.terminator()).map(|span| {
+ CoverageSpan::for_terminator(
+ function_source_span(span, self.body_span),
+ span,
+ bcb,
+ bb,
+ )
+ }))
+ })
+ .collect()
+ }
+
+ fn curr(&self) -> &CoverageSpan {
+ self.some_curr
+ .as_ref()
+ .unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_curr"))
+ }
+
+ fn curr_mut(&mut self) -> &mut CoverageSpan {
+ self.some_curr
+ .as_mut()
+ .unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_curr"))
+ }
+
+ fn prev(&self) -> &CoverageSpan {
+ self.some_prev
+ .as_ref()
+ .unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_prev"))
+ }
+
+ fn prev_mut(&mut self) -> &mut CoverageSpan {
+ self.some_prev
+ .as_mut()
+ .unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_prev"))
+ }
+
+ fn take_prev(&mut self) -> CoverageSpan {
+ self.some_prev.take().unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_prev"))
+ }
+
+ /// If there are `pending_dups` but `prev` is not a matching dup (`prev.span` doesn't match the
+ /// `pending_dups` spans), then one of the following two things happened during the previous
+ /// iteration:
+ /// * the previous `curr` span (which is now `prev`) was not a duplicate of the pending_dups
+ /// (in which case there should be at least two spans in `pending_dups`); or
+ /// * the `span` of `prev` was modified by `curr_mut().merge_from(prev)` (in which case
+ /// `pending_dups` could have as few as one span)
+ /// In either case, no more spans will match the span of `pending_dups`, so
+ /// add the `pending_dups` if they don't overlap `curr`, and clear the list.
+ fn check_pending_dups(&mut self) {
+ if let Some(dup) = self.pending_dups.last() && dup.span != self.prev().span {
+ debug!(
+ " SAME spans, but pending_dups are NOT THE SAME, so BCBs matched on \
+ previous iteration, or prev started a new disjoint span"
+ );
+ if dup.span.hi() <= self.curr().span.lo() {
+ let pending_dups = self.pending_dups.split_off(0);
+ for dup in pending_dups.into_iter() {
+ debug!(" ...adding at least one pending={:?}", dup);
+ self.push_refined_span(dup);
+ }
+ } else {
+ self.pending_dups.clear();
+ }
+ }
+ }
+
+ /// Advance `prev` to `curr` (if any), and `curr` to the next `CoverageSpan` in sorted order.
+ fn next_coverage_span(&mut self) -> bool {
+ if let Some(curr) = self.some_curr.take() {
+ self.prev_expn_span = Some(curr.expn_span);
+ self.some_prev = Some(curr);
+ self.prev_original_span = self.curr_original_span;
+ }
+ while let Some(curr) = self.sorted_spans_iter.as_mut().unwrap().next() {
+ debug!("FOR curr={:?}", curr);
+ if self.some_prev.is_some() && self.prev_starts_after_next(&curr) {
+ debug!(
+ " prev.span starts after curr.span, so curr will be dropped (skipping past \
+ closure?); prev={:?}",
+ self.prev()
+ );
+ } else {
+ // Save a copy of the original span for `curr` in case the `CoverageSpan` is changed
+ // by `self.curr_mut().merge_from(prev)`.
+ self.curr_original_span = curr.span;
+ self.some_curr.replace(curr);
+ self.check_pending_dups();
+ return true;
+ }
+ }
+ false
+ }
+
+ /// If called, then the next call to `next_coverage_span()` will *not* update `prev` with the
+ /// `curr` coverage span.
+ fn take_curr(&mut self) -> CoverageSpan {
+ self.some_curr.take().unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_curr"))
+ }
+
+ /// Returns true if the curr span should be skipped because prev has already advanced beyond the
+ /// end of curr. This can only happen if a prior iteration updated `prev` to skip past a region
+ /// of code, such as skipping past a closure.
+ fn prev_starts_after_next(&self, next_curr: &CoverageSpan) -> bool {
+ self.prev().span.lo() > next_curr.span.lo()
+ }
+
+ /// Returns true if the curr span starts past the end of the prev span, which means they don't
+ /// overlap, so we now know the prev can be added to the refined coverage spans.
+ fn prev_ends_before_curr(&self) -> bool {
+ self.prev().span.hi() <= self.curr().span.lo()
+ }
+
+ /// If `prev`s span extends left of the closure (`curr`), carve out the closure's span from
+ /// `prev`'s span. (The closure's coverage counters will be injected when processing the
+ /// closure's own MIR.) Add the portion of the span to the left of the closure; and if the span
+ /// extends to the right of the closure, update `prev` to that portion of the span. For any
+ /// `pending_dups`, repeat the same process.
+ fn carve_out_span_for_closure(&mut self) {
+ let curr_span = self.curr().span;
+ let left_cutoff = curr_span.lo();
+ let right_cutoff = curr_span.hi();
+ let has_pre_closure_span = self.prev().span.lo() < right_cutoff;
+ let has_post_closure_span = self.prev().span.hi() > right_cutoff;
+ let mut pending_dups = self.pending_dups.split_off(0);
+ if has_pre_closure_span {
+ let mut pre_closure = self.prev().clone();
+ pre_closure.span = pre_closure.span.with_hi(left_cutoff);
+ debug!(" prev overlaps a closure. Adding span for pre_closure={:?}", pre_closure);
+ if !pending_dups.is_empty() {
+ for mut dup in pending_dups.iter().cloned() {
+ dup.span = dup.span.with_hi(left_cutoff);
+ debug!(" ...and at least one pre_closure dup={:?}", dup);
+ self.push_refined_span(dup);
+ }
+ }
+ self.push_refined_span(pre_closure);
+ }
+ if has_post_closure_span {
+ // Mutate `prev.span()` to start after the closure (and discard curr).
+ // (**NEVER** update `prev_original_span` because it affects the assumptions
+ // about how the `CoverageSpan`s are ordered.)
+ self.prev_mut().span = self.prev().span.with_lo(right_cutoff);
+ debug!(" Mutated prev.span to start after the closure. prev={:?}", self.prev());
+ for dup in pending_dups.iter_mut() {
+ debug!(" ...and at least one overlapping dup={:?}", dup);
+ dup.span = dup.span.with_lo(right_cutoff);
+ }
+ self.pending_dups.append(&mut pending_dups);
+ let closure_covspan = self.take_curr();
+ self.push_refined_span(closure_covspan); // since self.prev() was already updated
+ } else {
+ pending_dups.clear();
+ }
+ }
+
+ /// Called if `curr.span` equals `prev_original_span` (and potentially equal to all
+ /// `pending_dups` spans, if any). Keep in mind, `prev.span()` may have been changed.
+ /// If prev.span() was merged into other spans (with matching BCB, for instance),
+ /// `prev.span.hi()` will be greater than (further right of) `prev_original_span.hi()`.
+ /// If prev.span() was split off to the right of a closure, prev.span().lo() will be
+ /// greater than prev_original_span.lo(). The actual span of `prev_original_span` is
+ /// not as important as knowing that `prev()` **used to have the same span** as `curr(),
+ /// which means their sort order is still meaningful for determining the dominator
+ /// relationship.
+ ///
+ /// When two `CoverageSpan`s have the same `Span`, dominated spans can be discarded; but if
+ /// neither `CoverageSpan` dominates the other, both (or possibly more than two) are held,
+ /// until their disposition is determined. In this latter case, the `prev` dup is moved into
+ /// `pending_dups` so the new `curr` dup can be moved to `prev` for the next iteration.
+ fn hold_pending_dups_unless_dominated(&mut self) {
+ // Equal coverage spans are ordered by dominators before dominated (if any), so it should be
+ // impossible for `curr` to dominate any previous `CoverageSpan`.
+ debug_assert!(!self.span_bcb_is_dominated_by(self.prev(), self.curr()));
+
+ let initial_pending_count = self.pending_dups.len();
+ if initial_pending_count > 0 {
+ let mut pending_dups = self.pending_dups.split_off(0);
+ pending_dups.retain(|dup| !self.span_bcb_is_dominated_by(self.curr(), dup));
+ self.pending_dups.append(&mut pending_dups);
+ if self.pending_dups.len() < initial_pending_count {
+ debug!(
+ " discarded {} of {} pending_dups that dominated curr",
+ initial_pending_count - self.pending_dups.len(),
+ initial_pending_count
+ );
+ }
+ }
+
+ if self.span_bcb_is_dominated_by(self.curr(), self.prev()) {
+ debug!(
+ " different bcbs but SAME spans, and prev dominates curr. Discard prev={:?}",
+ self.prev()
+ );
+ self.cutoff_prev_at_overlapping_curr();
+ // If one span dominates the other, associate the span with the code from the dominated
+ // block only (`curr`), and discard the overlapping portion of the `prev` span. (Note
+ // that if `prev.span` is wider than `prev_original_span`, a `CoverageSpan` will still
+ // be created for `prev`s block, for the non-overlapping portion, left of `curr.span`.)
+ //
+ // For example:
+ // match somenum {
+ // x if x < 1 => { ... }
+ // }...
+ //
+ // The span for the first `x` is referenced by both the pattern block (every time it is
+ // evaluated) and the arm code (only when matched). The counter will be applied only to
+ // the dominated block. This allows coverage to track and highlight things like the
+ // assignment of `x` above, if the branch is matched, making `x` available to the arm
+ // code; and to track and highlight the question mark `?` "try" operator at the end of
+ // a function call returning a `Result`, so the `?` is covered when the function returns
+ // an `Err`, and not counted as covered if the function always returns `Ok`.
+ } else {
+ // Save `prev` in `pending_dups`. (`curr` will become `prev` in the next iteration.)
+ // If the `curr` CoverageSpan is later discarded, `pending_dups` can be discarded as
+ // well; but if `curr` is added to refined_spans, the `pending_dups` will also be added.
+ debug!(
+ " different bcbs but SAME spans, and neither dominates, so keep curr for \
+ next iter, and, pending upcoming spans (unless overlapping) add prev={:?}",
+ self.prev()
+ );
+ let prev = self.take_prev();
+ self.pending_dups.push(prev);
+ }
+ }
+
+ /// `curr` overlaps `prev`. If `prev`s span extends left of `curr`s span, keep _only_
+ /// statements that end before `curr.lo()` (if any), and add the portion of the
+ /// combined span for those statements. Any other statements have overlapping spans
+ /// that can be ignored because `curr` and/or other upcoming statements/spans inside
+ /// the overlap area will produce their own counters. This disambiguation process
+ /// avoids injecting multiple counters for overlapping spans, and the potential for
+ /// double-counting.
+ fn cutoff_prev_at_overlapping_curr(&mut self) {
+ debug!(
+ " different bcbs, overlapping spans, so ignore/drop pending and only add prev \
+ if it has statements that end before curr; prev={:?}",
+ self.prev()
+ );
+ if self.pending_dups.is_empty() {
+ let curr_span = self.curr().span;
+ self.prev_mut().cutoff_statements_at(curr_span.lo());
+ if self.prev().coverage_statements.is_empty() {
+ debug!(" ... no non-overlapping statements to add");
+ } else {
+ debug!(" ... adding modified prev={:?}", self.prev());
+ let prev = self.take_prev();
+ self.push_refined_span(prev);
+ }
+ } else {
+ // with `pending_dups`, `prev` cannot have any statements that don't overlap
+ self.pending_dups.clear();
+ }
+ }
+
+ fn span_bcb_is_dominated_by(&self, covspan: &CoverageSpan, dom_covspan: &CoverageSpan) -> bool {
+ self.basic_coverage_blocks.is_dominated_by(covspan.bcb, dom_covspan.bcb)
+ }
+}
+
+/// If the MIR `Statement` has a span contributive to computing coverage spans,
+/// return it; otherwise return `None`.
+pub(super) fn filtered_statement_span(statement: &Statement<'_>) -> Option<Span> {
+ match statement.kind {
+ // These statements have spans that are often outside the scope of the executed source code
+ // for their parent `BasicBlock`.
+ StatementKind::StorageLive(_)
+ | StatementKind::StorageDead(_)
+ // Coverage should not be encountered, but don't inject coverage coverage
+ | StatementKind::Coverage(_)
+ // Ignore `Nop`s
+ | StatementKind::Nop => None,
+
+ // FIXME(#78546): MIR InstrumentCoverage - Can the source_info.span for `FakeRead`
+ // statements be more consistent?
+ //
+ // FakeReadCause::ForGuardBinding, in this example:
+ // match somenum {
+ // x if x < 1 => { ... }
+ // }...
+ // The BasicBlock within the match arm code included one of these statements, but the span
+ // for it covered the `1` in this source. The actual statements have nothing to do with that
+ // source span:
+ // FakeRead(ForGuardBinding, _4);
+ // where `_4` is:
+ // _4 = &_1; (at the span for the first `x`)
+ // and `_1` is the `Place` for `somenum`.
+ //
+ // If and when the Issue is resolved, remove this special case match pattern:
+ StatementKind::FakeRead(box (cause, _)) if cause == FakeReadCause::ForGuardBinding => None,
+
+ // Retain spans from all other statements
+ StatementKind::FakeRead(box (_, _)) // Not including `ForGuardBinding`
+ | StatementKind::CopyNonOverlapping(..)
+ | StatementKind::Assign(_)
+ | StatementKind::SetDiscriminant { .. }
+ | StatementKind::Deinit(..)
+ | StatementKind::Retag(_, _)
+ | StatementKind::AscribeUserType(_, _) => {
+ Some(statement.source_info.span)
+ }
+ }
+}
+
+/// If the MIR `Terminator` has a span contributive to computing coverage spans,
+/// return it; otherwise return `None`.
+pub(super) fn filtered_terminator_span(terminator: &Terminator<'_>) -> Option<Span> {
+ match terminator.kind {
+ // These terminators have spans that don't positively contribute to computing a reasonable
+ // span of actually executed source code. (For example, SwitchInt terminators extracted from
+ // an `if condition { block }` has a span that includes the executed block, if true,
+ // but for coverage, the code region executed, up to *and* through the SwitchInt,
+ // actually stops before the if's block.)
+ TerminatorKind::Unreachable // Unreachable blocks are not connected to the MIR CFG
+ | TerminatorKind::Assert { .. }
+ | TerminatorKind::Drop { .. }
+ | TerminatorKind::DropAndReplace { .. }
+ | TerminatorKind::SwitchInt { .. }
+ // For `FalseEdge`, only the `real` branch is taken, so it is similar to a `Goto`.
+ | TerminatorKind::FalseEdge { .. }
+ | TerminatorKind::Goto { .. } => None,
+
+ // Call `func` operand can have a more specific span when part of a chain of calls
+ | TerminatorKind::Call { ref func, .. } => {
+ let mut span = terminator.source_info.span;
+ if let mir::Operand::Constant(box constant) = func {
+ if constant.span.lo() > span.lo() {
+ span = span.with_lo(constant.span.lo());
+ }
+ }
+ Some(span)
+ }
+
+ // Retain spans from all other terminators
+ TerminatorKind::Resume
+ | TerminatorKind::Abort
+ | TerminatorKind::Return
+ | TerminatorKind::Yield { .. }
+ | TerminatorKind::GeneratorDrop
+ | TerminatorKind::FalseUnwind { .. }
+ | TerminatorKind::InlineAsm { .. } => {
+ Some(terminator.source_info.span)
+ }
+ }
+}
+
+/// Returns an extrapolated span (pre-expansion[^1]) corresponding to a range
+/// within the function's body source. This span is guaranteed to be contained
+/// within, or equal to, the `body_span`. If the extrapolated span is not
+/// contained within the `body_span`, the `body_span` is returned.
+///
+/// [^1]Expansions result from Rust syntax including macros, syntactic sugar,
+/// etc.).
+#[inline]
+pub(super) fn function_source_span(span: Span, body_span: Span) -> Span {
+ let original_span = original_sp(span, body_span).with_ctxt(body_span.ctxt());
+ if body_span.contains(original_span) { original_span } else { body_span }
+}
diff --git a/compiler/rustc_mir_transform/src/coverage/test_macros/Cargo.toml b/compiler/rustc_mir_transform/src/coverage/test_macros/Cargo.toml
new file mode 100644
index 000000000..f5e8b6565
--- /dev/null
+++ b/compiler/rustc_mir_transform/src/coverage/test_macros/Cargo.toml
@@ -0,0 +1,8 @@
+[package]
+name = "coverage_test_macros"
+version = "0.0.0"
+edition = "2021"
+
+[lib]
+proc-macro = true
+doctest = false
diff --git a/compiler/rustc_mir_transform/src/coverage/test_macros/src/lib.rs b/compiler/rustc_mir_transform/src/coverage/test_macros/src/lib.rs
new file mode 100644
index 000000000..3d6095d27
--- /dev/null
+++ b/compiler/rustc_mir_transform/src/coverage/test_macros/src/lib.rs
@@ -0,0 +1,6 @@
+use proc_macro::TokenStream;
+
+#[proc_macro]
+pub fn let_bcb(item: TokenStream) -> TokenStream {
+ format!("let bcb{} = graph::BasicCoverageBlock::from_usize({});", item, item).parse().unwrap()
+}
diff --git a/compiler/rustc_mir_transform/src/coverage/tests.rs b/compiler/rustc_mir_transform/src/coverage/tests.rs
new file mode 100644
index 000000000..6380f0352
--- /dev/null
+++ b/compiler/rustc_mir_transform/src/coverage/tests.rs
@@ -0,0 +1,710 @@
+//! This crate hosts a selection of "unit tests" for components of the `InstrumentCoverage` MIR
+//! pass.
+//!
+//! ```shell
+//! ./x.py test --keep-stage 1 compiler/rustc_mir --test-args '--show-output coverage'
+//! ```
+//!
+//! The tests construct a few "mock" objects, as needed, to support the `InstrumentCoverage`
+//! functions and algorithms. Mocked objects include instances of `mir::Body`; including
+//! `Terminator`s of various `kind`s, and `Span` objects. Some functions used by or used on
+//! real, runtime versions of these mocked-up objects have constraints (such as cross-thread
+//! limitations) and deep dependencies on other elements of the full Rust compiler (which is
+//! *not* constructed or mocked for these tests).
+//!
+//! Of particular note, attempting to simply print elements of the `mir::Body` with default
+//! `Debug` formatting can fail because some `Debug` format implementations require the
+//! `TyCtxt`, obtained via a static global variable that is *not* set for these tests.
+//! Initializing the global type context is prohibitively complex for the scope and scale of these
+//! tests (essentially requiring initializing the entire compiler).
+//!
+//! Also note, some basic features of `Span` also rely on the `Span`s own "session globals", which
+//! are unrelated to the `TyCtxt` global. Without initializing the `Span` session globals, some
+//! basic, coverage-specific features would be impossible to test, but thankfully initializing these
+//! globals is comparatively simpler. The easiest way is to wrap the test in a closure argument
+//! to: `rustc_span::create_default_session_globals_then(|| { test_here(); })`.
+
+use super::counters;
+use super::debug;
+use super::graph;
+use super::spans;
+
+use coverage_test_macros::let_bcb;
+
+use itertools::Itertools;
+use rustc_data_structures::graph::WithNumNodes;
+use rustc_data_structures::graph::WithSuccessors;
+use rustc_index::vec::{Idx, IndexVec};
+use rustc_middle::mir::coverage::CoverageKind;
+use rustc_middle::mir::*;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_span::{self, BytePos, Pos, Span, DUMMY_SP};
+
+// All `TEMP_BLOCK` targets should be replaced before calling `to_body() -> mir::Body`.
+const TEMP_BLOCK: BasicBlock = BasicBlock::MAX;
+
+struct MockBlocks<'tcx> {
+ blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
+ dummy_place: Place<'tcx>,
+ next_local: usize,
+ bool_ty: Ty<'tcx>,
+}
+
+impl<'tcx> MockBlocks<'tcx> {
+ fn new() -> Self {
+ Self {
+ blocks: IndexVec::new(),
+ dummy_place: Place { local: RETURN_PLACE, projection: ty::List::empty() },
+ next_local: 0,
+ bool_ty: TyCtxt::BOOL_TY_FOR_UNIT_TESTING,
+ }
+ }
+
+ fn new_temp(&mut self) -> Local {
+ let index = self.next_local;
+ self.next_local += 1;
+ Local::new(index)
+ }
+
+ fn push(&mut self, kind: TerminatorKind<'tcx>) -> BasicBlock {
+ let next_lo = if let Some(last) = self.blocks.last() {
+ self.blocks[last].terminator().source_info.span.hi()
+ } else {
+ BytePos(1)
+ };
+ let next_hi = next_lo + BytePos(1);
+ self.blocks.push(BasicBlockData {
+ statements: vec![],
+ terminator: Some(Terminator {
+ source_info: SourceInfo::outermost(Span::with_root_ctxt(next_lo, next_hi)),
+ kind,
+ }),
+ is_cleanup: false,
+ })
+ }
+
+ fn link(&mut self, from_block: BasicBlock, to_block: BasicBlock) {
+ match self.blocks[from_block].terminator_mut().kind {
+ TerminatorKind::Assert { ref mut target, .. }
+ | TerminatorKind::Call { target: Some(ref mut target), .. }
+ | TerminatorKind::Drop { ref mut target, .. }
+ | TerminatorKind::DropAndReplace { ref mut target, .. }
+ | TerminatorKind::FalseEdge { real_target: ref mut target, .. }
+ | TerminatorKind::FalseUnwind { real_target: ref mut target, .. }
+ | TerminatorKind::Goto { ref mut target }
+ | TerminatorKind::InlineAsm { destination: Some(ref mut target), .. }
+ | TerminatorKind::Yield { resume: ref mut target, .. } => *target = to_block,
+ ref invalid => bug!("Invalid from_block: {:?}", invalid),
+ }
+ }
+
+ fn add_block_from(
+ &mut self,
+ some_from_block: Option<BasicBlock>,
+ to_kind: TerminatorKind<'tcx>,
+ ) -> BasicBlock {
+ let new_block = self.push(to_kind);
+ if let Some(from_block) = some_from_block {
+ self.link(from_block, new_block);
+ }
+ new_block
+ }
+
+ fn set_branch(&mut self, switchint: BasicBlock, branch_index: usize, to_block: BasicBlock) {
+ match self.blocks[switchint].terminator_mut().kind {
+ TerminatorKind::SwitchInt { ref mut targets, .. } => {
+ let mut branches = targets.iter().collect::<Vec<_>>();
+ let otherwise = if branch_index == branches.len() {
+ to_block
+ } else {
+ let old_otherwise = targets.otherwise();
+ if branch_index > branches.len() {
+ branches.push((branches.len() as u128, old_otherwise));
+ while branches.len() < branch_index {
+ branches.push((branches.len() as u128, TEMP_BLOCK));
+ }
+ to_block
+ } else {
+ branches[branch_index] = (branch_index as u128, to_block);
+ old_otherwise
+ }
+ };
+ *targets = SwitchTargets::new(branches.into_iter(), otherwise);
+ }
+ ref invalid => bug!("Invalid BasicBlock kind or no to_block: {:?}", invalid),
+ }
+ }
+
+ fn call(&mut self, some_from_block: Option<BasicBlock>) -> BasicBlock {
+ self.add_block_from(
+ some_from_block,
+ TerminatorKind::Call {
+ func: Operand::Copy(self.dummy_place.clone()),
+ args: vec![],
+ destination: self.dummy_place.clone(),
+ target: Some(TEMP_BLOCK),
+ cleanup: None,
+ from_hir_call: false,
+ fn_span: DUMMY_SP,
+ },
+ )
+ }
+
+ fn goto(&mut self, some_from_block: Option<BasicBlock>) -> BasicBlock {
+ self.add_block_from(some_from_block, TerminatorKind::Goto { target: TEMP_BLOCK })
+ }
+
+ fn switchint(&mut self, some_from_block: Option<BasicBlock>) -> BasicBlock {
+ let switchint_kind = TerminatorKind::SwitchInt {
+ discr: Operand::Move(Place::from(self.new_temp())),
+ switch_ty: self.bool_ty, // just a dummy value
+ targets: SwitchTargets::static_if(0, TEMP_BLOCK, TEMP_BLOCK),
+ };
+ self.add_block_from(some_from_block, switchint_kind)
+ }
+
+ fn return_(&mut self, some_from_block: Option<BasicBlock>) -> BasicBlock {
+ self.add_block_from(some_from_block, TerminatorKind::Return)
+ }
+
+ fn to_body(self) -> Body<'tcx> {
+ Body::new_cfg_only(self.blocks)
+ }
+}
+
+fn debug_basic_blocks<'tcx>(mir_body: &Body<'tcx>) -> String {
+ format!(
+ "{:?}",
+ mir_body
+ .basic_blocks()
+ .iter_enumerated()
+ .map(|(bb, data)| {
+ let term = &data.terminator();
+ let kind = &term.kind;
+ let span = term.source_info.span;
+ let sp = format!("(span:{},{})", span.lo().to_u32(), span.hi().to_u32());
+ match kind {
+ TerminatorKind::Assert { target, .. }
+ | TerminatorKind::Call { target: Some(target), .. }
+ | TerminatorKind::Drop { target, .. }
+ | TerminatorKind::DropAndReplace { target, .. }
+ | TerminatorKind::FalseEdge { real_target: target, .. }
+ | TerminatorKind::FalseUnwind { real_target: target, .. }
+ | TerminatorKind::Goto { target }
+ | TerminatorKind::InlineAsm { destination: Some(target), .. }
+ | TerminatorKind::Yield { resume: target, .. } => {
+ format!("{}{:?}:{} -> {:?}", sp, bb, debug::term_type(kind), target)
+ }
+ TerminatorKind::SwitchInt { targets, .. } => {
+ format!("{}{:?}:{} -> {:?}", sp, bb, debug::term_type(kind), targets)
+ }
+ _ => format!("{}{:?}:{}", sp, bb, debug::term_type(kind)),
+ }
+ })
+ .collect::<Vec<_>>()
+ )
+}
+
+static PRINT_GRAPHS: bool = false;
+
+fn print_mir_graphviz(name: &str, mir_body: &Body<'_>) {
+ if PRINT_GRAPHS {
+ println!(
+ "digraph {} {{\n{}\n}}",
+ name,
+ mir_body
+ .basic_blocks()
+ .iter_enumerated()
+ .map(|(bb, data)| {
+ format!(
+ " {:?} [label=\"{:?}: {}\"];\n{}",
+ bb,
+ bb,
+ debug::term_type(&data.terminator().kind),
+ mir_body
+ .basic_blocks
+ .successors(bb)
+ .map(|successor| { format!(" {:?} -> {:?};", bb, successor) })
+ .join("\n")
+ )
+ })
+ .join("\n")
+ );
+ }
+}
+
+fn print_coverage_graphviz(
+ name: &str,
+ mir_body: &Body<'_>,
+ basic_coverage_blocks: &graph::CoverageGraph,
+) {
+ if PRINT_GRAPHS {
+ println!(
+ "digraph {} {{\n{}\n}}",
+ name,
+ basic_coverage_blocks
+ .iter_enumerated()
+ .map(|(bcb, bcb_data)| {
+ format!(
+ " {:?} [label=\"{:?}: {}\"];\n{}",
+ bcb,
+ bcb,
+ debug::term_type(&bcb_data.terminator(mir_body).kind),
+ basic_coverage_blocks
+ .successors(bcb)
+ .map(|successor| { format!(" {:?} -> {:?};", bcb, successor) })
+ .join("\n")
+ )
+ })
+ .join("\n")
+ );
+ }
+}
+
+/// Create a mock `Body` with a simple flow.
+fn goto_switchint<'a>() -> Body<'a> {
+ let mut blocks = MockBlocks::new();
+ let start = blocks.call(None);
+ let goto = blocks.goto(Some(start));
+ let switchint = blocks.switchint(Some(goto));
+ let then_call = blocks.call(None);
+ let else_call = blocks.call(None);
+ blocks.set_branch(switchint, 0, then_call);
+ blocks.set_branch(switchint, 1, else_call);
+ blocks.return_(Some(then_call));
+ blocks.return_(Some(else_call));
+
+ let mir_body = blocks.to_body();
+ print_mir_graphviz("mir_goto_switchint", &mir_body);
+ /* Graphviz character plots created using: `graph-easy --as=boxart`:
+ ┌────────────────┐
+ │ bb0: Call │
+ └────────────────┘
+ │
+ │
+ ▼
+ ┌────────────────┐
+ │ bb1: Goto │
+ └────────────────┘
+ │
+ │
+ ▼
+ ┌─────────────┐ ┌────────────────┐
+ │ bb4: Call │ ◀── │ bb2: SwitchInt │
+ └─────────────┘ └────────────────┘
+ │ │
+ │ │
+ ▼ ▼
+ ┌─────────────┐ ┌────────────────┐
+ │ bb6: Return │ │ bb3: Call │
+ └─────────────┘ └────────────────┘
+ │
+ │
+ ▼
+ ┌────────────────┐
+ │ bb5: Return │
+ └────────────────┘
+ */
+ mir_body
+}
+
+macro_rules! assert_successors {
+ ($basic_coverage_blocks:ident, $i:ident, [$($successor:ident),*]) => {
+ let mut successors = $basic_coverage_blocks.successors[$i].clone();
+ successors.sort_unstable();
+ assert_eq!(successors, vec![$($successor),*]);
+ }
+}
+
+#[test]
+fn test_covgraph_goto_switchint() {
+ let mir_body = goto_switchint();
+ if false {
+ eprintln!("basic_blocks = {}", debug_basic_blocks(&mir_body));
+ }
+ let basic_coverage_blocks = graph::CoverageGraph::from_mir(&mir_body);
+ print_coverage_graphviz("covgraph_goto_switchint ", &mir_body, &basic_coverage_blocks);
+ /*
+ ┌──────────────┐ ┌─────────────────┐
+ │ bcb2: Return │ ◀── │ bcb0: SwitchInt │
+ └──────────────┘ └─────────────────┘
+ │
+ │
+ ▼
+ ┌─────────────────┐
+ │ bcb1: Return │
+ └─────────────────┘
+ */
+ assert_eq!(
+ basic_coverage_blocks.num_nodes(),
+ 3,
+ "basic_coverage_blocks: {:?}",
+ basic_coverage_blocks.iter_enumerated().collect::<Vec<_>>()
+ );
+
+ let_bcb!(0);
+ let_bcb!(1);
+ let_bcb!(2);
+
+ assert_successors!(basic_coverage_blocks, bcb0, [bcb1, bcb2]);
+ assert_successors!(basic_coverage_blocks, bcb1, []);
+ assert_successors!(basic_coverage_blocks, bcb2, []);
+}
+
+/// Create a mock `Body` with a loop.
+fn switchint_then_loop_else_return<'a>() -> Body<'a> {
+ let mut blocks = MockBlocks::new();
+ let start = blocks.call(None);
+ let switchint = blocks.switchint(Some(start));
+ let then_call = blocks.call(None);
+ blocks.set_branch(switchint, 0, then_call);
+ let backedge_goto = blocks.goto(Some(then_call));
+ blocks.link(backedge_goto, switchint);
+ let else_return = blocks.return_(None);
+ blocks.set_branch(switchint, 1, else_return);
+
+ let mir_body = blocks.to_body();
+ print_mir_graphviz("mir_switchint_then_loop_else_return", &mir_body);
+ /*
+ ┌────────────────┐
+ │ bb0: Call │
+ └────────────────┘
+ │
+ │
+ ▼
+ ┌─────────────┐ ┌────────────────┐
+ │ bb4: Return │ ◀── │ bb1: SwitchInt │ ◀┐
+ └─────────────┘ └────────────────┘ │
+ │ │
+ │ │
+ ▼ │
+ ┌────────────────┐ │
+ │ bb2: Call │ │
+ └────────────────┘ │
+ │ │
+ │ │
+ ▼ │
+ ┌────────────────┐ │
+ │ bb3: Goto │ ─┘
+ └────────────────┘
+ */
+ mir_body
+}
+
+#[test]
+fn test_covgraph_switchint_then_loop_else_return() {
+ let mir_body = switchint_then_loop_else_return();
+ let basic_coverage_blocks = graph::CoverageGraph::from_mir(&mir_body);
+ print_coverage_graphviz(
+ "covgraph_switchint_then_loop_else_return",
+ &mir_body,
+ &basic_coverage_blocks,
+ );
+ /*
+ ┌─────────────────┐
+ │ bcb0: Call │
+ └─────────────────┘
+ │
+ │
+ ▼
+ ┌────────────┐ ┌─────────────────┐
+ │ bcb3: Goto │ ◀── │ bcb1: SwitchInt │ ◀┐
+ └────────────┘ └─────────────────┘ │
+ │ │ │
+ │ │ │
+ │ ▼ │
+ │ ┌─────────────────┐ │
+ │ │ bcb2: Return │ │
+ │ └─────────────────┘ │
+ │ │
+ └─────────────────────────────────────┘
+ */
+ assert_eq!(
+ basic_coverage_blocks.num_nodes(),
+ 4,
+ "basic_coverage_blocks: {:?}",
+ basic_coverage_blocks.iter_enumerated().collect::<Vec<_>>()
+ );
+
+ let_bcb!(0);
+ let_bcb!(1);
+ let_bcb!(2);
+ let_bcb!(3);
+
+ assert_successors!(basic_coverage_blocks, bcb0, [bcb1]);
+ assert_successors!(basic_coverage_blocks, bcb1, [bcb2, bcb3]);
+ assert_successors!(basic_coverage_blocks, bcb2, []);
+ assert_successors!(basic_coverage_blocks, bcb3, [bcb1]);
+}
+
+/// Create a mock `Body` with nested loops.
+fn switchint_loop_then_inner_loop_else_break<'a>() -> Body<'a> {
+ let mut blocks = MockBlocks::new();
+ let start = blocks.call(None);
+ let switchint = blocks.switchint(Some(start));
+ let then_call = blocks.call(None);
+ blocks.set_branch(switchint, 0, then_call);
+ let else_return = blocks.return_(None);
+ blocks.set_branch(switchint, 1, else_return);
+
+ let inner_start = blocks.call(Some(then_call));
+ let inner_switchint = blocks.switchint(Some(inner_start));
+ let inner_then_call = blocks.call(None);
+ blocks.set_branch(inner_switchint, 0, inner_then_call);
+ let inner_backedge_goto = blocks.goto(Some(inner_then_call));
+ blocks.link(inner_backedge_goto, inner_switchint);
+ let inner_else_break_goto = blocks.goto(None);
+ blocks.set_branch(inner_switchint, 1, inner_else_break_goto);
+
+ let backedge_goto = blocks.goto(Some(inner_else_break_goto));
+ blocks.link(backedge_goto, switchint);
+
+ let mir_body = blocks.to_body();
+ print_mir_graphviz("mir_switchint_loop_then_inner_loop_else_break", &mir_body);
+ /*
+ ┌────────────────┐
+ │ bb0: Call │
+ └────────────────┘
+ │
+ │
+ ▼
+ ┌─────────────┐ ┌────────────────┐
+ │ bb3: Return │ ◀── │ bb1: SwitchInt │ ◀─────┐
+ └─────────────┘ └────────────────┘ │
+ │ │
+ │ │
+ ▼ │
+ ┌────────────────┐ │
+ │ bb2: Call │ │
+ └────────────────┘ │
+ │ │
+ │ │
+ ▼ │
+ ┌────────────────┐ │
+ │ bb4: Call │ │
+ └────────────────┘ │
+ │ │
+ │ │
+ ▼ │
+ ┌─────────────┐ ┌────────────────┐ │
+ │ bb8: Goto │ ◀── │ bb5: SwitchInt │ ◀┐ │
+ └─────────────┘ └────────────────┘ │ │
+ │ │ │ │
+ │ │ │ │
+ ▼ ▼ │ │
+ ┌─────────────┐ ┌────────────────┐ │ │
+ │ bb9: Goto │ ─┐ │ bb6: Call │ │ │
+ └─────────────┘ │ └────────────────┘ │ │
+ │ │ │ │
+ │ │ │ │
+ │ ▼ │ │
+ │ ┌────────────────┐ │ │
+ │ │ bb7: Goto │ ─┘ │
+ │ └────────────────┘ │
+ │ │
+ └───────────────────────────┘
+ */
+ mir_body
+}
+
+#[test]
+fn test_covgraph_switchint_loop_then_inner_loop_else_break() {
+ let mir_body = switchint_loop_then_inner_loop_else_break();
+ let basic_coverage_blocks = graph::CoverageGraph::from_mir(&mir_body);
+ print_coverage_graphviz(
+ "covgraph_switchint_loop_then_inner_loop_else_break",
+ &mir_body,
+ &basic_coverage_blocks,
+ );
+ /*
+ ┌─────────────────┐
+ │ bcb0: Call │
+ └─────────────────┘
+ │
+ │
+ ▼
+ ┌──────────────┐ ┌─────────────────┐
+ │ bcb2: Return │ ◀── │ bcb1: SwitchInt │ ◀┐
+ └──────────────┘ └─────────────────┘ │
+ │ │
+ │ │
+ ▼ │
+ ┌─────────────────┐ │
+ │ bcb3: Call │ │
+ └─────────────────┘ │
+ │ │
+ │ │
+ ▼ │
+ ┌──────────────┐ ┌─────────────────┐ │
+ │ bcb6: Goto │ ◀── │ bcb4: SwitchInt │ ◀┼────┐
+ └──────────────┘ └─────────────────┘ │ │
+ │ │ │ │
+ │ │ │ │
+ │ ▼ │ │
+ │ ┌─────────────────┐ │ │
+ │ │ bcb5: Goto │ ─┘ │
+ │ └─────────────────┘ │
+ │ │
+ └────────────────────────────────────────────┘
+ */
+ assert_eq!(
+ basic_coverage_blocks.num_nodes(),
+ 7,
+ "basic_coverage_blocks: {:?}",
+ basic_coverage_blocks.iter_enumerated().collect::<Vec<_>>()
+ );
+
+ let_bcb!(0);
+ let_bcb!(1);
+ let_bcb!(2);
+ let_bcb!(3);
+ let_bcb!(4);
+ let_bcb!(5);
+ let_bcb!(6);
+
+ assert_successors!(basic_coverage_blocks, bcb0, [bcb1]);
+ assert_successors!(basic_coverage_blocks, bcb1, [bcb2, bcb3]);
+ assert_successors!(basic_coverage_blocks, bcb2, []);
+ assert_successors!(basic_coverage_blocks, bcb3, [bcb4]);
+ assert_successors!(basic_coverage_blocks, bcb4, [bcb5, bcb6]);
+ assert_successors!(basic_coverage_blocks, bcb5, [bcb1]);
+ assert_successors!(basic_coverage_blocks, bcb6, [bcb4]);
+}
+
+#[test]
+fn test_find_loop_backedges_none() {
+ let mir_body = goto_switchint();
+ let basic_coverage_blocks = graph::CoverageGraph::from_mir(&mir_body);
+ if false {
+ eprintln!(
+ "basic_coverage_blocks = {:?}",
+ basic_coverage_blocks.iter_enumerated().collect::<Vec<_>>()
+ );
+ eprintln!("successors = {:?}", basic_coverage_blocks.successors);
+ }
+ let backedges = graph::find_loop_backedges(&basic_coverage_blocks);
+ assert_eq!(
+ backedges.iter_enumerated().map(|(_bcb, backedges)| backedges.len()).sum::<usize>(),
+ 0,
+ "backedges: {:?}",
+ backedges
+ );
+}
+
+#[test]
+fn test_find_loop_backedges_one() {
+ let mir_body = switchint_then_loop_else_return();
+ let basic_coverage_blocks = graph::CoverageGraph::from_mir(&mir_body);
+ let backedges = graph::find_loop_backedges(&basic_coverage_blocks);
+ assert_eq!(
+ backedges.iter_enumerated().map(|(_bcb, backedges)| backedges.len()).sum::<usize>(),
+ 1,
+ "backedges: {:?}",
+ backedges
+ );
+
+ let_bcb!(1);
+ let_bcb!(3);
+
+ assert_eq!(backedges[bcb1], vec![bcb3]);
+}
+
+#[test]
+fn test_find_loop_backedges_two() {
+ let mir_body = switchint_loop_then_inner_loop_else_break();
+ let basic_coverage_blocks = graph::CoverageGraph::from_mir(&mir_body);
+ let backedges = graph::find_loop_backedges(&basic_coverage_blocks);
+ assert_eq!(
+ backedges.iter_enumerated().map(|(_bcb, backedges)| backedges.len()).sum::<usize>(),
+ 2,
+ "backedges: {:?}",
+ backedges
+ );
+
+ let_bcb!(1);
+ let_bcb!(4);
+ let_bcb!(5);
+ let_bcb!(6);
+
+ assert_eq!(backedges[bcb1], vec![bcb5]);
+ assert_eq!(backedges[bcb4], vec![bcb6]);
+}
+
+#[test]
+fn test_traverse_coverage_with_loops() {
+ let mir_body = switchint_loop_then_inner_loop_else_break();
+ let basic_coverage_blocks = graph::CoverageGraph::from_mir(&mir_body);
+ let mut traversed_in_order = Vec::new();
+ let mut traversal = graph::TraverseCoverageGraphWithLoops::new(&basic_coverage_blocks);
+ while let Some(bcb) = traversal.next(&basic_coverage_blocks) {
+ traversed_in_order.push(bcb);
+ }
+
+ let_bcb!(6);
+
+ // bcb0 is visited first. Then bcb1 starts the first loop, and all remaining nodes, *except*
+ // bcb6 are inside the first loop.
+ assert_eq!(
+ *traversed_in_order.last().expect("should have elements"),
+ bcb6,
+ "bcb6 should not be visited until all nodes inside the first loop have been visited"
+ );
+}
+
+fn synthesize_body_span_from_terminators(mir_body: &Body<'_>) -> Span {
+ let mut some_span: Option<Span> = None;
+ for (_, data) in mir_body.basic_blocks().iter_enumerated() {
+ let term_span = data.terminator().source_info.span;
+ if let Some(span) = some_span.as_mut() {
+ *span = span.to(term_span);
+ } else {
+ some_span = Some(term_span)
+ }
+ }
+ some_span.expect("body must have at least one BasicBlock")
+}
+
+#[test]
+fn test_make_bcb_counters() {
+ rustc_span::create_default_session_globals_then(|| {
+ let mir_body = goto_switchint();
+ let body_span = synthesize_body_span_from_terminators(&mir_body);
+ let mut basic_coverage_blocks = graph::CoverageGraph::from_mir(&mir_body);
+ let mut coverage_spans = Vec::new();
+ for (bcb, data) in basic_coverage_blocks.iter_enumerated() {
+ if let Some(span) = spans::filtered_terminator_span(data.terminator(&mir_body)) {
+ coverage_spans.push(spans::CoverageSpan::for_terminator(
+ spans::function_source_span(span, body_span),
+ span,
+ bcb,
+ data.last_bb(),
+ ));
+ }
+ }
+ let mut coverage_counters = counters::CoverageCounters::new(0);
+ let intermediate_expressions = coverage_counters
+ .make_bcb_counters(&mut basic_coverage_blocks, &coverage_spans)
+ .expect("should be Ok");
+ assert_eq!(intermediate_expressions.len(), 0);
+
+ let_bcb!(1);
+ assert_eq!(
+ 1, // coincidentally, bcb1 has a `Counter` with id = 1
+ match basic_coverage_blocks[bcb1].counter().expect("should have a counter") {
+ CoverageKind::Counter { id, .. } => id,
+ _ => panic!("expected a Counter"),
+ }
+ .as_u32()
+ );
+
+ let_bcb!(2);
+ assert_eq!(
+ 2, // coincidentally, bcb2 has a `Counter` with id = 2
+ match basic_coverage_blocks[bcb2].counter().expect("should have a counter") {
+ CoverageKind::Counter { id, .. } => id,
+ _ => panic!("expected a Counter"),
+ }
+ .as_u32()
+ );
+ });
+}