summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_mir_transform/src/dataflow_const_prop.rs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_mir_transform/src/dataflow_const_prop.rs')
-rw-r--r--compiler/rustc_mir_transform/src/dataflow_const_prop.rs530
1 files changed, 530 insertions, 0 deletions
diff --git a/compiler/rustc_mir_transform/src/dataflow_const_prop.rs b/compiler/rustc_mir_transform/src/dataflow_const_prop.rs
new file mode 100644
index 000000000..e90273874
--- /dev/null
+++ b/compiler/rustc_mir_transform/src/dataflow_const_prop.rs
@@ -0,0 +1,530 @@
+//! A constant propagation optimization pass based on dataflow analysis.
+//!
+//! Currently, this pass only propagates scalar values.
+
+use rustc_const_eval::interpret::{ConstValue, ImmTy, Immediate, InterpCx, Scalar};
+use rustc_data_structures::fx::FxHashMap;
+use rustc_middle::mir::visit::{MutVisitor, Visitor};
+use rustc_middle::mir::*;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_mir_dataflow::value_analysis::{Map, State, TrackElem, ValueAnalysis, ValueOrPlace};
+use rustc_mir_dataflow::{lattice::FlatSet, Analysis, ResultsVisitor, SwitchIntEdgeEffects};
+use rustc_span::DUMMY_SP;
+
+use crate::MirPass;
+
+// These constants are somewhat random guesses and have not been optimized.
+// If `tcx.sess.mir_opt_level() >= 4`, we ignore the limits (this can become very expensive).
+const BLOCK_LIMIT: usize = 100;
+const PLACE_LIMIT: usize = 100;
+
+pub struct DataflowConstProp;
+
+impl<'tcx> MirPass<'tcx> for DataflowConstProp {
+ fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
+ sess.mir_opt_level() >= 3
+ }
+
+ #[instrument(skip_all level = "debug")]
+ fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
+ if tcx.sess.mir_opt_level() < 4 && body.basic_blocks.len() > BLOCK_LIMIT {
+ debug!("aborted dataflow const prop due too many basic blocks");
+ return;
+ }
+
+ // Decide which places to track during the analysis.
+ let map = Map::from_filter(tcx, body, Ty::is_scalar);
+
+ // We want to have a somewhat linear runtime w.r.t. the number of statements/terminators.
+ // Let's call this number `n`. Dataflow analysis has `O(h*n)` transfer function
+ // applications, where `h` is the height of the lattice. Because the height of our lattice
+ // is linear w.r.t. the number of tracked places, this is `O(tracked_places * n)`. However,
+ // because every transfer function application could traverse the whole map, this becomes
+ // `O(num_nodes * tracked_places * n)` in terms of time complexity. Since the number of
+ // map nodes is strongly correlated to the number of tracked places, this becomes more or
+ // less `O(n)` if we place a constant limit on the number of tracked places.
+ if tcx.sess.mir_opt_level() < 4 && map.tracked_places() > PLACE_LIMIT {
+ debug!("aborted dataflow const prop due to too many tracked places");
+ return;
+ }
+
+ // Perform the actual dataflow analysis.
+ let analysis = ConstAnalysis::new(tcx, body, map);
+ let results = debug_span!("analyze")
+ .in_scope(|| analysis.wrap().into_engine(tcx, body).iterate_to_fixpoint());
+
+ // Collect results and patch the body afterwards.
+ let mut visitor = CollectAndPatch::new(tcx, &results.analysis.0.map);
+ debug_span!("collect").in_scope(|| results.visit_reachable_with(body, &mut visitor));
+ debug_span!("patch").in_scope(|| visitor.visit_body(body));
+ }
+}
+
+struct ConstAnalysis<'tcx> {
+ map: Map,
+ tcx: TyCtxt<'tcx>,
+ ecx: InterpCx<'tcx, 'tcx, DummyMachine>,
+ param_env: ty::ParamEnv<'tcx>,
+}
+
+impl<'tcx> ValueAnalysis<'tcx> for ConstAnalysis<'tcx> {
+ type Value = FlatSet<ScalarTy<'tcx>>;
+
+ const NAME: &'static str = "ConstAnalysis";
+
+ fn map(&self) -> &Map {
+ &self.map
+ }
+
+ fn handle_assign(
+ &self,
+ target: Place<'tcx>,
+ rvalue: &Rvalue<'tcx>,
+ state: &mut State<Self::Value>,
+ ) {
+ match rvalue {
+ Rvalue::CheckedBinaryOp(op, box (left, right)) => {
+ let target = self.map().find(target.as_ref());
+ if let Some(target) = target {
+ // We should not track any projections other than
+ // what is overwritten below, but just in case...
+ state.flood_idx(target, self.map());
+ }
+
+ let value_target = target
+ .and_then(|target| self.map().apply(target, TrackElem::Field(0_u32.into())));
+ let overflow_target = target
+ .and_then(|target| self.map().apply(target, TrackElem::Field(1_u32.into())));
+
+ if value_target.is_some() || overflow_target.is_some() {
+ let (val, overflow) = self.binary_op(state, *op, left, right);
+
+ if let Some(value_target) = value_target {
+ state.assign_idx(value_target, ValueOrPlace::Value(val), self.map());
+ }
+ if let Some(overflow_target) = overflow_target {
+ let overflow = match overflow {
+ FlatSet::Top => FlatSet::Top,
+ FlatSet::Elem(overflow) => {
+ if overflow {
+ // Overflow cannot be reliably propagated. See: https://github.com/rust-lang/rust/pull/101168#issuecomment-1288091446
+ FlatSet::Top
+ } else {
+ self.wrap_scalar(Scalar::from_bool(false), self.tcx.types.bool)
+ }
+ }
+ FlatSet::Bottom => FlatSet::Bottom,
+ };
+ state.assign_idx(
+ overflow_target,
+ ValueOrPlace::Value(overflow),
+ self.map(),
+ );
+ }
+ }
+ }
+ _ => self.super_assign(target, rvalue, state),
+ }
+ }
+
+ fn handle_rvalue(
+ &self,
+ rvalue: &Rvalue<'tcx>,
+ state: &mut State<Self::Value>,
+ ) -> ValueOrPlace<Self::Value> {
+ match rvalue {
+ Rvalue::Cast(
+ kind @ (CastKind::IntToInt
+ | CastKind::FloatToInt
+ | CastKind::FloatToFloat
+ | CastKind::IntToFloat),
+ operand,
+ ty,
+ ) => match self.eval_operand(operand, state) {
+ FlatSet::Elem(op) => match kind {
+ CastKind::IntToInt | CastKind::IntToFloat => {
+ self.ecx.int_to_int_or_float(&op, *ty)
+ }
+ CastKind::FloatToInt | CastKind::FloatToFloat => {
+ self.ecx.float_to_float_or_int(&op, *ty)
+ }
+ _ => unreachable!(),
+ }
+ .map(|result| ValueOrPlace::Value(self.wrap_immediate(result, *ty)))
+ .unwrap_or(ValueOrPlace::top()),
+ _ => ValueOrPlace::top(),
+ },
+ Rvalue::BinaryOp(op, box (left, right)) => {
+ // Overflows must be ignored here.
+ let (val, _overflow) = self.binary_op(state, *op, left, right);
+ ValueOrPlace::Value(val)
+ }
+ Rvalue::UnaryOp(op, operand) => match self.eval_operand(operand, state) {
+ FlatSet::Elem(value) => self
+ .ecx
+ .unary_op(*op, &value)
+ .map(|val| ValueOrPlace::Value(self.wrap_immty(val)))
+ .unwrap_or(ValueOrPlace::Value(FlatSet::Top)),
+ FlatSet::Bottom => ValueOrPlace::Value(FlatSet::Bottom),
+ FlatSet::Top => ValueOrPlace::Value(FlatSet::Top),
+ },
+ _ => self.super_rvalue(rvalue, state),
+ }
+ }
+
+ fn handle_constant(
+ &self,
+ constant: &Constant<'tcx>,
+ _state: &mut State<Self::Value>,
+ ) -> Self::Value {
+ constant
+ .literal
+ .eval(self.tcx, self.param_env)
+ .try_to_scalar()
+ .map(|value| FlatSet::Elem(ScalarTy(value, constant.ty())))
+ .unwrap_or(FlatSet::Top)
+ }
+
+ fn handle_switch_int(
+ &self,
+ discr: &Operand<'tcx>,
+ apply_edge_effects: &mut impl SwitchIntEdgeEffects<State<Self::Value>>,
+ ) {
+ // FIXME: The dataflow framework only provides the state if we call `apply()`, which makes
+ // this more inefficient than it has to be.
+ let mut discr_value = None;
+ let mut handled = false;
+ apply_edge_effects.apply(|state, target| {
+ let discr_value = match discr_value {
+ Some(value) => value,
+ None => {
+ let value = match self.handle_operand(discr, state) {
+ ValueOrPlace::Value(value) => value,
+ ValueOrPlace::Place(place) => state.get_idx(place, self.map()),
+ };
+ let result = match value {
+ FlatSet::Top => FlatSet::Top,
+ FlatSet::Elem(ScalarTy(scalar, _)) => {
+ let int = scalar.assert_int();
+ FlatSet::Elem(int.assert_bits(int.size()))
+ }
+ FlatSet::Bottom => FlatSet::Bottom,
+ };
+ discr_value = Some(result);
+ result
+ }
+ };
+
+ let FlatSet::Elem(choice) = discr_value else {
+ // Do nothing if we don't know which branch will be taken.
+ return
+ };
+
+ if target.value.map(|n| n == choice).unwrap_or(!handled) {
+ // Branch is taken. Has no effect on state.
+ handled = true;
+ } else {
+ // Branch is not taken.
+ state.mark_unreachable();
+ }
+ })
+ }
+}
+
+#[derive(Clone, PartialEq, Eq)]
+struct ScalarTy<'tcx>(Scalar, Ty<'tcx>);
+
+impl<'tcx> std::fmt::Debug for ScalarTy<'tcx> {
+ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
+ // This is used for dataflow visualization, so we return something more concise.
+ std::fmt::Display::fmt(&ConstantKind::Val(ConstValue::Scalar(self.0), self.1), f)
+ }
+}
+
+impl<'tcx> ConstAnalysis<'tcx> {
+ pub fn new(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, map: Map) -> Self {
+ let param_env = tcx.param_env(body.source.def_id());
+ Self {
+ map,
+ tcx,
+ ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine),
+ param_env: param_env,
+ }
+ }
+
+ fn binary_op(
+ &self,
+ state: &mut State<FlatSet<ScalarTy<'tcx>>>,
+ op: BinOp,
+ left: &Operand<'tcx>,
+ right: &Operand<'tcx>,
+ ) -> (FlatSet<ScalarTy<'tcx>>, FlatSet<bool>) {
+ let left = self.eval_operand(left, state);
+ let right = self.eval_operand(right, state);
+ match (left, right) {
+ (FlatSet::Elem(left), FlatSet::Elem(right)) => {
+ match self.ecx.overflowing_binary_op(op, &left, &right) {
+ Ok((val, overflow, ty)) => (self.wrap_scalar(val, ty), FlatSet::Elem(overflow)),
+ _ => (FlatSet::Top, FlatSet::Top),
+ }
+ }
+ (FlatSet::Bottom, _) | (_, FlatSet::Bottom) => (FlatSet::Bottom, FlatSet::Bottom),
+ (_, _) => {
+ // Could attempt some algebraic simplifcations here.
+ (FlatSet::Top, FlatSet::Top)
+ }
+ }
+ }
+
+ fn eval_operand(
+ &self,
+ op: &Operand<'tcx>,
+ state: &mut State<FlatSet<ScalarTy<'tcx>>>,
+ ) -> FlatSet<ImmTy<'tcx>> {
+ let value = match self.handle_operand(op, state) {
+ ValueOrPlace::Value(value) => value,
+ ValueOrPlace::Place(place) => state.get_idx(place, &self.map),
+ };
+ match value {
+ FlatSet::Top => FlatSet::Top,
+ FlatSet::Elem(ScalarTy(scalar, ty)) => self
+ .tcx
+ .layout_of(self.param_env.and(ty))
+ .map(|layout| FlatSet::Elem(ImmTy::from_scalar(scalar, layout)))
+ .unwrap_or(FlatSet::Top),
+ FlatSet::Bottom => FlatSet::Bottom,
+ }
+ }
+
+ fn wrap_scalar(&self, scalar: Scalar, ty: Ty<'tcx>) -> FlatSet<ScalarTy<'tcx>> {
+ FlatSet::Elem(ScalarTy(scalar, ty))
+ }
+
+ fn wrap_immediate(&self, imm: Immediate, ty: Ty<'tcx>) -> FlatSet<ScalarTy<'tcx>> {
+ match imm {
+ Immediate::Scalar(scalar) => self.wrap_scalar(scalar, ty),
+ _ => FlatSet::Top,
+ }
+ }
+
+ fn wrap_immty(&self, val: ImmTy<'tcx>) -> FlatSet<ScalarTy<'tcx>> {
+ self.wrap_immediate(*val, val.layout.ty)
+ }
+}
+
+struct CollectAndPatch<'tcx, 'map> {
+ tcx: TyCtxt<'tcx>,
+ map: &'map Map,
+
+ /// For a given MIR location, this stores the values of the operands used by that location. In
+ /// particular, this is before the effect, such that the operands of `_1 = _1 + _2` are
+ /// properly captured. (This may become UB soon, but it is currently emitted even by safe code.)
+ before_effect: FxHashMap<(Location, Place<'tcx>), ScalarTy<'tcx>>,
+
+ /// Stores the assigned values for assignments where the Rvalue is constant.
+ assignments: FxHashMap<Location, ScalarTy<'tcx>>,
+}
+
+impl<'tcx, 'map> CollectAndPatch<'tcx, 'map> {
+ fn new(tcx: TyCtxt<'tcx>, map: &'map Map) -> Self {
+ Self { tcx, map, before_effect: FxHashMap::default(), assignments: FxHashMap::default() }
+ }
+
+ fn make_operand(&self, scalar: ScalarTy<'tcx>) -> Operand<'tcx> {
+ Operand::Constant(Box::new(Constant {
+ span: DUMMY_SP,
+ user_ty: None,
+ literal: ConstantKind::Val(ConstValue::Scalar(scalar.0), scalar.1),
+ }))
+ }
+}
+
+impl<'mir, 'tcx, 'map> ResultsVisitor<'mir, 'tcx> for CollectAndPatch<'tcx, 'map> {
+ type FlowState = State<FlatSet<ScalarTy<'tcx>>>;
+
+ fn visit_statement_before_primary_effect(
+ &mut self,
+ state: &Self::FlowState,
+ statement: &'mir Statement<'tcx>,
+ location: Location,
+ ) {
+ match &statement.kind {
+ StatementKind::Assign(box (_, rvalue)) => {
+ OperandCollector { state, visitor: self }.visit_rvalue(rvalue, location);
+ }
+ _ => (),
+ }
+ }
+
+ fn visit_statement_after_primary_effect(
+ &mut self,
+ state: &Self::FlowState,
+ statement: &'mir Statement<'tcx>,
+ location: Location,
+ ) {
+ match statement.kind {
+ StatementKind::Assign(box (_, Rvalue::Use(Operand::Constant(_)))) => {
+ // Don't overwrite the assignment if it already uses a constant (to keep the span).
+ }
+ StatementKind::Assign(box (place, _)) => match state.get(place.as_ref(), self.map) {
+ FlatSet::Top => (),
+ FlatSet::Elem(value) => {
+ self.assignments.insert(location, value);
+ }
+ FlatSet::Bottom => {
+ // This assignment is either unreachable, or an uninitialized value is assigned.
+ }
+ },
+ _ => (),
+ }
+ }
+
+ fn visit_terminator_before_primary_effect(
+ &mut self,
+ state: &Self::FlowState,
+ terminator: &'mir Terminator<'tcx>,
+ location: Location,
+ ) {
+ OperandCollector { state, visitor: self }.visit_terminator(terminator, location);
+ }
+}
+
+impl<'tcx, 'map> MutVisitor<'tcx> for CollectAndPatch<'tcx, 'map> {
+ fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
+ self.tcx
+ }
+
+ fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
+ if let Some(value) = self.assignments.get(&location) {
+ match &mut statement.kind {
+ StatementKind::Assign(box (_, rvalue)) => {
+ *rvalue = Rvalue::Use(self.make_operand(value.clone()));
+ }
+ _ => bug!("found assignment info for non-assign statement"),
+ }
+ } else {
+ self.super_statement(statement, location);
+ }
+ }
+
+ fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
+ match operand {
+ Operand::Copy(place) | Operand::Move(place) => {
+ if let Some(value) = self.before_effect.get(&(location, *place)) {
+ *operand = self.make_operand(value.clone());
+ }
+ }
+ _ => (),
+ }
+ }
+}
+
+struct OperandCollector<'tcx, 'map, 'a> {
+ state: &'a State<FlatSet<ScalarTy<'tcx>>>,
+ visitor: &'a mut CollectAndPatch<'tcx, 'map>,
+}
+
+impl<'tcx, 'map, 'a> Visitor<'tcx> for OperandCollector<'tcx, 'map, 'a> {
+ fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
+ match operand {
+ Operand::Copy(place) | Operand::Move(place) => {
+ match self.state.get(place.as_ref(), self.visitor.map) {
+ FlatSet::Top => (),
+ FlatSet::Elem(value) => {
+ self.visitor.before_effect.insert((location, *place), value);
+ }
+ FlatSet::Bottom => (),
+ }
+ }
+ _ => (),
+ }
+ }
+}
+
+struct DummyMachine;
+
+impl<'mir, 'tcx> rustc_const_eval::interpret::Machine<'mir, 'tcx> for DummyMachine {
+ rustc_const_eval::interpret::compile_time_machine!(<'mir, 'tcx>);
+ type MemoryKind = !;
+ const PANIC_ON_ALLOC_FAIL: bool = true;
+
+ fn enforce_alignment(_ecx: &InterpCx<'mir, 'tcx, Self>) -> bool {
+ unimplemented!()
+ }
+
+ fn enforce_validity(_ecx: &InterpCx<'mir, 'tcx, Self>) -> bool {
+ unimplemented!()
+ }
+
+ fn find_mir_or_eval_fn(
+ _ecx: &mut InterpCx<'mir, 'tcx, Self>,
+ _instance: ty::Instance<'tcx>,
+ _abi: rustc_target::spec::abi::Abi,
+ _args: &[rustc_const_eval::interpret::OpTy<'tcx, Self::Provenance>],
+ _destination: &rustc_const_eval::interpret::PlaceTy<'tcx, Self::Provenance>,
+ _target: Option<BasicBlock>,
+ _unwind: rustc_const_eval::interpret::StackPopUnwind,
+ ) -> interpret::InterpResult<'tcx, Option<(&'mir Body<'tcx>, ty::Instance<'tcx>)>> {
+ unimplemented!()
+ }
+
+ fn call_intrinsic(
+ _ecx: &mut InterpCx<'mir, 'tcx, Self>,
+ _instance: ty::Instance<'tcx>,
+ _args: &[rustc_const_eval::interpret::OpTy<'tcx, Self::Provenance>],
+ _destination: &rustc_const_eval::interpret::PlaceTy<'tcx, Self::Provenance>,
+ _target: Option<BasicBlock>,
+ _unwind: rustc_const_eval::interpret::StackPopUnwind,
+ ) -> interpret::InterpResult<'tcx> {
+ unimplemented!()
+ }
+
+ fn assert_panic(
+ _ecx: &mut InterpCx<'mir, 'tcx, Self>,
+ _msg: &rustc_middle::mir::AssertMessage<'tcx>,
+ _unwind: Option<BasicBlock>,
+ ) -> interpret::InterpResult<'tcx> {
+ unimplemented!()
+ }
+
+ fn binary_ptr_op(
+ _ecx: &InterpCx<'mir, 'tcx, Self>,
+ _bin_op: BinOp,
+ _left: &rustc_const_eval::interpret::ImmTy<'tcx, Self::Provenance>,
+ _right: &rustc_const_eval::interpret::ImmTy<'tcx, Self::Provenance>,
+ ) -> interpret::InterpResult<'tcx, (interpret::Scalar<Self::Provenance>, bool, Ty<'tcx>)> {
+ throw_unsup!(Unsupported("".into()))
+ }
+
+ fn expose_ptr(
+ _ecx: &mut InterpCx<'mir, 'tcx, Self>,
+ _ptr: interpret::Pointer<Self::Provenance>,
+ ) -> interpret::InterpResult<'tcx> {
+ unimplemented!()
+ }
+
+ fn init_frame_extra(
+ _ecx: &mut InterpCx<'mir, 'tcx, Self>,
+ _frame: rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance>,
+ ) -> interpret::InterpResult<
+ 'tcx,
+ rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>,
+ > {
+ unimplemented!()
+ }
+
+ fn stack<'a>(
+ _ecx: &'a InterpCx<'mir, 'tcx, Self>,
+ ) -> &'a [rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>]
+ {
+ unimplemented!()
+ }
+
+ fn stack_mut<'a>(
+ _ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
+ ) -> &'a mut Vec<
+ rustc_const_eval::interpret::Frame<'mir, 'tcx, Self::Provenance, Self::FrameExtra>,
+ > {
+ unimplemented!()
+ }
+}