summaryrefslogtreecommitdiffstats
path: root/compiler/rustc_monomorphize
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/rustc_monomorphize')
-rw-r--r--compiler/rustc_monomorphize/Cargo.toml18
-rw-r--r--compiler/rustc_monomorphize/src/collector.rs1463
-rw-r--r--compiler/rustc_monomorphize/src/lib.rs49
-rw-r--r--compiler/rustc_monomorphize/src/partitioning/default.rs560
-rw-r--r--compiler/rustc_monomorphize/src/partitioning/merging.rs111
-rw-r--r--compiler/rustc_monomorphize/src/partitioning/mod.rs515
-rw-r--r--compiler/rustc_monomorphize/src/polymorphize.rs385
-rw-r--r--compiler/rustc_monomorphize/src/util.rs70
8 files changed, 3171 insertions, 0 deletions
diff --git a/compiler/rustc_monomorphize/Cargo.toml b/compiler/rustc_monomorphize/Cargo.toml
new file mode 100644
index 000000000..41ba4d4b6
--- /dev/null
+++ b/compiler/rustc_monomorphize/Cargo.toml
@@ -0,0 +1,18 @@
+[package]
+name = "rustc_monomorphize"
+version = "0.0.0"
+edition = "2021"
+
+[lib]
+doctest = false
+
+[dependencies]
+smallvec = { version = "1.8.1", features = ["union", "may_dangle"] }
+tracing = "0.1"
+rustc_data_structures = { path = "../rustc_data_structures" }
+rustc_hir = { path = "../rustc_hir" }
+rustc_index = { path = "../rustc_index" }
+rustc_middle = { path = "../rustc_middle" }
+rustc_session = { path = "../rustc_session" }
+rustc_span = { path = "../rustc_span" }
+rustc_target = { path = "../rustc_target" }
diff --git a/compiler/rustc_monomorphize/src/collector.rs b/compiler/rustc_monomorphize/src/collector.rs
new file mode 100644
index 000000000..68b65658c
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/collector.rs
@@ -0,0 +1,1463 @@
+//! Mono Item Collection
+//! ====================
+//!
+//! This module is responsible for discovering all items that will contribute
+//! to code generation of the crate. The important part here is that it not only
+//! needs to find syntax-level items (functions, structs, etc) but also all
+//! their monomorphized instantiations. Every non-generic, non-const function
+//! maps to one LLVM artifact. Every generic function can produce
+//! from zero to N artifacts, depending on the sets of type arguments it
+//! is instantiated with.
+//! This also applies to generic items from other crates: A generic definition
+//! in crate X might produce monomorphizations that are compiled into crate Y.
+//! We also have to collect these here.
+//!
+//! The following kinds of "mono items" are handled here:
+//!
+//! - Functions
+//! - Methods
+//! - Closures
+//! - Statics
+//! - Drop glue
+//!
+//! The following things also result in LLVM artifacts, but are not collected
+//! here, since we instantiate them locally on demand when needed in a given
+//! codegen unit:
+//!
+//! - Constants
+//! - VTables
+//! - Object Shims
+//!
+//!
+//! General Algorithm
+//! -----------------
+//! Let's define some terms first:
+//!
+//! - A "mono item" is something that results in a function or global in
+//! the LLVM IR of a codegen unit. Mono items do not stand on their
+//! own, they can reference other mono items. For example, if function
+//! `foo()` calls function `bar()` then the mono item for `foo()`
+//! references the mono item for function `bar()`. In general, the
+//! definition for mono item A referencing a mono item B is that
+//! the LLVM artifact produced for A references the LLVM artifact produced
+//! for B.
+//!
+//! - Mono items and the references between them form a directed graph,
+//! where the mono items are the nodes and references form the edges.
+//! Let's call this graph the "mono item graph".
+//!
+//! - The mono item graph for a program contains all mono items
+//! that are needed in order to produce the complete LLVM IR of the program.
+//!
+//! The purpose of the algorithm implemented in this module is to build the
+//! mono item graph for the current crate. It runs in two phases:
+//!
+//! 1. Discover the roots of the graph by traversing the HIR of the crate.
+//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
+//! representation of the item corresponding to a given node, until no more
+//! new nodes are found.
+//!
+//! ### Discovering roots
+//!
+//! The roots of the mono item graph correspond to the public non-generic
+//! syntactic items in the source code. We find them by walking the HIR of the
+//! crate, and whenever we hit upon a public function, method, or static item,
+//! we create a mono item consisting of the items DefId and, since we only
+//! consider non-generic items, an empty type-substitution set. (In eager
+//! collection mode, during incremental compilation, all non-generic functions
+//! are considered as roots, as well as when the `-Clink-dead-code` option is
+//! specified. Functions marked `#[no_mangle]` and functions called by inlinable
+//! functions also always act as roots.)
+//!
+//! ### Finding neighbor nodes
+//! Given a mono item node, we can discover neighbors by inspecting its
+//! MIR. We walk the MIR and any time we hit upon something that signifies a
+//! reference to another mono item, we have found a neighbor. Since the
+//! mono item we are currently at is always monomorphic, we also know the
+//! concrete type arguments of its neighbors, and so all neighbors again will be
+//! monomorphic. The specific forms a reference to a neighboring node can take
+//! in MIR are quite diverse. Here is an overview:
+//!
+//! #### Calling Functions/Methods
+//! The most obvious form of one mono item referencing another is a
+//! function or method call (represented by a CALL terminator in MIR). But
+//! calls are not the only thing that might introduce a reference between two
+//! function mono items, and as we will see below, they are just a
+//! specialization of the form described next, and consequently will not get any
+//! special treatment in the algorithm.
+//!
+//! #### Taking a reference to a function or method
+//! A function does not need to actually be called in order to be a neighbor of
+//! another function. It suffices to just take a reference in order to introduce
+//! an edge. Consider the following example:
+//!
+//! ```
+//! # use core::fmt::Display;
+//! fn print_val<T: Display>(x: T) {
+//! println!("{}", x);
+//! }
+//!
+//! fn call_fn(f: &dyn Fn(i32), x: i32) {
+//! f(x);
+//! }
+//!
+//! fn main() {
+//! let print_i32 = print_val::<i32>;
+//! call_fn(&print_i32, 0);
+//! }
+//! ```
+//! The MIR of none of these functions will contain an explicit call to
+//! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
+//! an instance of this function. Thus, whenever we encounter a function or
+//! method in operand position, we treat it as a neighbor of the current
+//! mono item. Calls are just a special case of that.
+//!
+//! #### Closures
+//! In a way, closures are a simple case. Since every closure object needs to be
+//! constructed somewhere, we can reliably discover them by observing
+//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
+//! true for closures inlined from other crates.
+//!
+//! #### Drop glue
+//! Drop glue mono items are introduced by MIR drop-statements. The
+//! generated mono item will again have drop-glue item neighbors if the
+//! type to be dropped contains nested values that also need to be dropped. It
+//! might also have a function item neighbor for the explicit `Drop::drop`
+//! implementation of its type.
+//!
+//! #### Unsizing Casts
+//! A subtle way of introducing neighbor edges is by casting to a trait object.
+//! Since the resulting fat-pointer contains a reference to a vtable, we need to
+//! instantiate all object-save methods of the trait, as we need to store
+//! pointers to these functions even if they never get called anywhere. This can
+//! be seen as a special case of taking a function reference.
+//!
+//! #### Boxes
+//! Since `Box` expression have special compiler support, no explicit calls to
+//! `exchange_malloc()` and `box_free()` may show up in MIR, even if the
+//! compiler will generate them. We have to observe `Rvalue::Box` expressions
+//! and Box-typed drop-statements for that purpose.
+//!
+//!
+//! Interaction with Cross-Crate Inlining
+//! -------------------------------------
+//! The binary of a crate will not only contain machine code for the items
+//! defined in the source code of that crate. It will also contain monomorphic
+//! instantiations of any extern generic functions and of functions marked with
+//! `#[inline]`.
+//! The collection algorithm handles this more or less mono. If it is
+//! about to create a mono item for something with an external `DefId`,
+//! it will take a look if the MIR for that item is available, and if so just
+//! proceed normally. If the MIR is not available, it assumes that the item is
+//! just linked to and no node is created; which is exactly what we want, since
+//! no machine code should be generated in the current crate for such an item.
+//!
+//! Eager and Lazy Collection Mode
+//! ------------------------------
+//! Mono item collection can be performed in one of two modes:
+//!
+//! - Lazy mode means that items will only be instantiated when actually
+//! referenced. The goal is to produce the least amount of machine code
+//! possible.
+//!
+//! - Eager mode is meant to be used in conjunction with incremental compilation
+//! where a stable set of mono items is more important than a minimal
+//! one. Thus, eager mode will instantiate drop-glue for every drop-able type
+//! in the crate, even if no drop call for that type exists (yet). It will
+//! also instantiate default implementations of trait methods, something that
+//! otherwise is only done on demand.
+//!
+//!
+//! Open Issues
+//! -----------
+//! Some things are not yet fully implemented in the current version of this
+//! module.
+//!
+//! ### Const Fns
+//! Ideally, no mono item should be generated for const fns unless there
+//! is a call to them that cannot be evaluated at compile time. At the moment
+//! this is not implemented however: a mono item will be produced
+//! regardless of whether it is actually needed or not.
+
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_data_structures::sync::{par_for_each_in, MTLock, MTRef};
+use rustc_hir as hir;
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId};
+use rustc_hir::lang_items::LangItem;
+use rustc_index::bit_set::GrowableBitSet;
+use rustc_middle::mir::interpret::{AllocId, ConstValue};
+use rustc_middle::mir::interpret::{ErrorHandled, GlobalAlloc, Scalar};
+use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
+use rustc_middle::mir::visit::Visitor as MirVisitor;
+use rustc_middle::mir::{self, Local, Location};
+use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCast};
+use rustc_middle::ty::print::with_no_trimmed_paths;
+use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts};
+use rustc_middle::ty::{
+ self, GenericParamDefKind, Instance, Ty, TyCtxt, TypeFoldable, TypeVisitable, VtblEntry,
+};
+use rustc_middle::{middle::codegen_fn_attrs::CodegenFnAttrFlags, mir::visit::TyContext};
+use rustc_session::config::EntryFnType;
+use rustc_session::lint::builtin::LARGE_ASSIGNMENTS;
+use rustc_session::Limit;
+use rustc_span::source_map::{dummy_spanned, respan, Span, Spanned, DUMMY_SP};
+use rustc_target::abi::Size;
+use std::iter;
+use std::ops::Range;
+use std::path::PathBuf;
+
+#[derive(PartialEq)]
+pub enum MonoItemCollectionMode {
+ Eager,
+ Lazy,
+}
+
+/// Maps every mono item to all mono items it references in its
+/// body.
+pub struct InliningMap<'tcx> {
+ // Maps a source mono item to the range of mono items
+ // accessed by it.
+ // The range selects elements within the `targets` vecs.
+ index: FxHashMap<MonoItem<'tcx>, Range<usize>>,
+ targets: Vec<MonoItem<'tcx>>,
+
+ // Contains one bit per mono item in the `targets` field. That bit
+ // is true if that mono item needs to be inlined into every CGU.
+ inlines: GrowableBitSet<usize>,
+}
+
+/// Struct to store mono items in each collecting and if they should
+/// be inlined. We call `instantiation_mode` to get their inlining
+/// status when inserting new elements, which avoids calling it in
+/// `inlining_map.lock_mut()`. See the `collect_items_rec` implementation
+/// below.
+struct MonoItems<'tcx> {
+ // If this is false, we do not need to compute whether items
+ // will need to be inlined.
+ compute_inlining: bool,
+
+ // The TyCtxt used to determine whether the a item should
+ // be inlined.
+ tcx: TyCtxt<'tcx>,
+
+ // The collected mono items. The bool field in each element
+ // indicates whether this element should be inlined.
+ items: Vec<(Spanned<MonoItem<'tcx>>, bool /*inlined*/)>,
+}
+
+impl<'tcx> MonoItems<'tcx> {
+ #[inline]
+ fn push(&mut self, item: Spanned<MonoItem<'tcx>>) {
+ self.extend([item]);
+ }
+
+ #[inline]
+ fn extend<T: IntoIterator<Item = Spanned<MonoItem<'tcx>>>>(&mut self, iter: T) {
+ self.items.extend(iter.into_iter().map(|mono_item| {
+ let inlined = if !self.compute_inlining {
+ false
+ } else {
+ mono_item.node.instantiation_mode(self.tcx) == InstantiationMode::LocalCopy
+ };
+ (mono_item, inlined)
+ }))
+ }
+}
+
+impl<'tcx> InliningMap<'tcx> {
+ fn new() -> InliningMap<'tcx> {
+ InliningMap {
+ index: FxHashMap::default(),
+ targets: Vec::new(),
+ inlines: GrowableBitSet::with_capacity(1024),
+ }
+ }
+
+ fn record_accesses<'a>(
+ &mut self,
+ source: MonoItem<'tcx>,
+ new_targets: &'a [(Spanned<MonoItem<'tcx>>, bool)],
+ ) where
+ 'tcx: 'a,
+ {
+ let start_index = self.targets.len();
+ let new_items_count = new_targets.len();
+ let new_items_count_total = new_items_count + self.targets.len();
+
+ self.targets.reserve(new_items_count);
+ self.inlines.ensure(new_items_count_total);
+
+ for (i, (Spanned { node: mono_item, .. }, inlined)) in new_targets.into_iter().enumerate() {
+ self.targets.push(*mono_item);
+ if *inlined {
+ self.inlines.insert(i + start_index);
+ }
+ }
+
+ let end_index = self.targets.len();
+ assert!(self.index.insert(source, start_index..end_index).is_none());
+ }
+
+ // Internally iterate over all items referenced by `source` which will be
+ // made available for inlining.
+ pub fn with_inlining_candidates<F>(&self, source: MonoItem<'tcx>, mut f: F)
+ where
+ F: FnMut(MonoItem<'tcx>),
+ {
+ if let Some(range) = self.index.get(&source) {
+ for (i, candidate) in self.targets[range.clone()].iter().enumerate() {
+ if self.inlines.contains(range.start + i) {
+ f(*candidate);
+ }
+ }
+ }
+ }
+
+ // Internally iterate over all items and the things each accesses.
+ pub fn iter_accesses<F>(&self, mut f: F)
+ where
+ F: FnMut(MonoItem<'tcx>, &[MonoItem<'tcx>]),
+ {
+ for (&accessor, range) in &self.index {
+ f(accessor, &self.targets[range.clone()])
+ }
+ }
+}
+
+#[instrument(skip(tcx, mode), level = "debug")]
+pub fn collect_crate_mono_items(
+ tcx: TyCtxt<'_>,
+ mode: MonoItemCollectionMode,
+) -> (FxHashSet<MonoItem<'_>>, InliningMap<'_>) {
+ let _prof_timer = tcx.prof.generic_activity("monomorphization_collector");
+
+ let roots =
+ tcx.sess.time("monomorphization_collector_root_collections", || collect_roots(tcx, mode));
+
+ debug!("building mono item graph, beginning at roots");
+
+ let mut visited = MTLock::new(FxHashSet::default());
+ let mut inlining_map = MTLock::new(InliningMap::new());
+ let recursion_limit = tcx.recursion_limit();
+
+ {
+ let visited: MTRef<'_, _> = &mut visited;
+ let inlining_map: MTRef<'_, _> = &mut inlining_map;
+
+ tcx.sess.time("monomorphization_collector_graph_walk", || {
+ par_for_each_in(roots, |root| {
+ let mut recursion_depths = DefIdMap::default();
+ collect_items_rec(
+ tcx,
+ dummy_spanned(root),
+ visited,
+ &mut recursion_depths,
+ recursion_limit,
+ inlining_map,
+ );
+ });
+ });
+ }
+
+ (visited.into_inner(), inlining_map.into_inner())
+}
+
+// Find all non-generic items by walking the HIR. These items serve as roots to
+// start monomorphizing from.
+#[instrument(skip(tcx, mode), level = "debug")]
+fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionMode) -> Vec<MonoItem<'_>> {
+ debug!("collecting roots");
+ let mut roots = MonoItems { compute_inlining: false, tcx, items: Vec::new() };
+
+ {
+ let entry_fn = tcx.entry_fn(());
+
+ debug!("collect_roots: entry_fn = {:?}", entry_fn);
+
+ let mut collector = RootCollector { tcx, mode, entry_fn, output: &mut roots };
+
+ let crate_items = tcx.hir_crate_items(());
+
+ for id in crate_items.items() {
+ collector.process_item(id);
+ }
+
+ for id in crate_items.impl_items() {
+ collector.process_impl_item(id);
+ }
+
+ collector.push_extra_entry_roots();
+ }
+
+ // We can only codegen items that are instantiable - items all of
+ // whose predicates hold. Luckily, items that aren't instantiable
+ // can't actually be used, so we can just skip codegenning them.
+ roots
+ .items
+ .into_iter()
+ .filter_map(|(Spanned { node: mono_item, .. }, _)| {
+ mono_item.is_instantiable(tcx).then_some(mono_item)
+ })
+ .collect()
+}
+
+/// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a
+/// post-monorphization error is encountered during a collection step.
+#[instrument(skip(tcx, visited, recursion_depths, recursion_limit, inlining_map), level = "debug")]
+fn collect_items_rec<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ starting_point: Spanned<MonoItem<'tcx>>,
+ visited: MTRef<'_, MTLock<FxHashSet<MonoItem<'tcx>>>>,
+ recursion_depths: &mut DefIdMap<usize>,
+ recursion_limit: Limit,
+ inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>,
+) {
+ if !visited.lock_mut().insert(starting_point.node) {
+ // We've been here already, no need to search again.
+ return;
+ }
+ debug!("BEGIN collect_items_rec({})", starting_point.node);
+
+ let mut neighbors = MonoItems { compute_inlining: true, tcx, items: Vec::new() };
+ let recursion_depth_reset;
+
+ //
+ // Post-monomorphization errors MVP
+ //
+ // We can encounter errors while monomorphizing an item, but we don't have a good way of
+ // showing a complete stack of spans ultimately leading to collecting the erroneous one yet.
+ // (It's also currently unclear exactly which diagnostics and information would be interesting
+ // to report in such cases)
+ //
+ // This leads to suboptimal error reporting: a post-monomorphization error (PME) will be
+ // shown with just a spanned piece of code causing the error, without information on where
+ // it was called from. This is especially obscure if the erroneous mono item is in a
+ // dependency. See for example issue #85155, where, before minimization, a PME happened two
+ // crates downstream from libcore's stdarch, without a way to know which dependency was the
+ // cause.
+ //
+ // If such an error occurs in the current crate, its span will be enough to locate the
+ // source. If the cause is in another crate, the goal here is to quickly locate which mono
+ // item in the current crate is ultimately responsible for causing the error.
+ //
+ // To give at least _some_ context to the user: while collecting mono items, we check the
+ // error count. If it has changed, a PME occurred, and we trigger some diagnostics about the
+ // current step of mono items collection.
+ //
+ // FIXME: don't rely on global state, instead bubble up errors. Note: this is very hard to do.
+ let error_count = tcx.sess.diagnostic().err_count();
+
+ match starting_point.node {
+ MonoItem::Static(def_id) => {
+ let instance = Instance::mono(tcx, def_id);
+
+ // Sanity check whether this ended up being collected accidentally
+ debug_assert!(should_codegen_locally(tcx, &instance));
+
+ let ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
+ visit_drop_use(tcx, ty, true, starting_point.span, &mut neighbors);
+
+ recursion_depth_reset = None;
+
+ if let Ok(alloc) = tcx.eval_static_initializer(def_id) {
+ for &id in alloc.inner().relocations().values() {
+ collect_miri(tcx, id, &mut neighbors);
+ }
+ }
+ }
+ MonoItem::Fn(instance) => {
+ // Sanity check whether this ended up being collected accidentally
+ debug_assert!(should_codegen_locally(tcx, &instance));
+
+ // Keep track of the monomorphization recursion depth
+ recursion_depth_reset = Some(check_recursion_limit(
+ tcx,
+ instance,
+ starting_point.span,
+ recursion_depths,
+ recursion_limit,
+ ));
+ check_type_length_limit(tcx, instance);
+
+ rustc_data_structures::stack::ensure_sufficient_stack(|| {
+ collect_neighbours(tcx, instance, &mut neighbors);
+ });
+ }
+ MonoItem::GlobalAsm(item_id) => {
+ recursion_depth_reset = None;
+
+ let item = tcx.hir().item(item_id);
+ if let hir::ItemKind::GlobalAsm(asm) = item.kind {
+ for (op, op_sp) in asm.operands {
+ match op {
+ hir::InlineAsmOperand::Const { .. } => {
+ // Only constants which resolve to a plain integer
+ // are supported. Therefore the value should not
+ // depend on any other items.
+ }
+ hir::InlineAsmOperand::SymFn { anon_const } => {
+ let fn_ty =
+ tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id);
+ visit_fn_use(tcx, fn_ty, false, *op_sp, &mut neighbors);
+ }
+ hir::InlineAsmOperand::SymStatic { path: _, def_id } => {
+ let instance = Instance::mono(tcx, *def_id);
+ if should_codegen_locally(tcx, &instance) {
+ trace!("collecting static {:?}", def_id);
+ neighbors.push(dummy_spanned(MonoItem::Static(*def_id)));
+ }
+ }
+ hir::InlineAsmOperand::In { .. }
+ | hir::InlineAsmOperand::Out { .. }
+ | hir::InlineAsmOperand::InOut { .. }
+ | hir::InlineAsmOperand::SplitInOut { .. } => {
+ span_bug!(*op_sp, "invalid operand type for global_asm!")
+ }
+ }
+ }
+ } else {
+ span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type")
+ }
+ }
+ }
+
+ // Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the
+ // mono item graph.
+ if tcx.sess.diagnostic().err_count() > error_count
+ && starting_point.node.is_generic_fn()
+ && starting_point.node.is_user_defined()
+ {
+ let formatted_item = with_no_trimmed_paths!(starting_point.node.to_string());
+ tcx.sess.span_note_without_error(
+ starting_point.span,
+ &format!("the above error was encountered while instantiating `{}`", formatted_item),
+ );
+ }
+ inlining_map.lock_mut().record_accesses(starting_point.node, &neighbors.items);
+
+ for (neighbour, _) in neighbors.items {
+ collect_items_rec(tcx, neighbour, visited, recursion_depths, recursion_limit, inlining_map);
+ }
+
+ if let Some((def_id, depth)) = recursion_depth_reset {
+ recursion_depths.insert(def_id, depth);
+ }
+
+ debug!("END collect_items_rec({})", starting_point.node);
+}
+
+/// Format instance name that is already known to be too long for rustc.
+/// Show only the first and last 32 characters to avoid blasting
+/// the user's terminal with thousands of lines of type-name.
+///
+/// If the type name is longer than before+after, it will be written to a file.
+fn shrunk_instance_name<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ instance: &Instance<'tcx>,
+ before: usize,
+ after: usize,
+) -> (String, Option<PathBuf>) {
+ let s = instance.to_string();
+
+ // Only use the shrunk version if it's really shorter.
+ // This also avoids the case where before and after slices overlap.
+ if s.chars().nth(before + after + 1).is_some() {
+ // An iterator of all byte positions including the end of the string.
+ let positions = || s.char_indices().map(|(i, _)| i).chain(iter::once(s.len()));
+
+ let shrunk = format!(
+ "{before}...{after}",
+ before = &s[..positions().nth(before).unwrap_or(s.len())],
+ after = &s[positions().rev().nth(after).unwrap_or(0)..],
+ );
+
+ let path = tcx.output_filenames(()).temp_path_ext("long-type.txt", None);
+ let written_to_path = std::fs::write(&path, s).ok().map(|_| path);
+
+ (shrunk, written_to_path)
+ } else {
+ (s, None)
+ }
+}
+
+fn check_recursion_limit<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ instance: Instance<'tcx>,
+ span: Span,
+ recursion_depths: &mut DefIdMap<usize>,
+ recursion_limit: Limit,
+) -> (DefId, usize) {
+ let def_id = instance.def_id();
+ let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
+ debug!(" => recursion depth={}", recursion_depth);
+
+ let adjusted_recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() {
+ // HACK: drop_in_place creates tight monomorphization loops. Give
+ // it more margin.
+ recursion_depth / 4
+ } else {
+ recursion_depth
+ };
+
+ // Code that needs to instantiate the same function recursively
+ // more than the recursion limit is assumed to be causing an
+ // infinite expansion.
+ if !recursion_limit.value_within_limit(adjusted_recursion_depth) {
+ let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
+ let error = format!("reached the recursion limit while instantiating `{}`", shrunk);
+ let mut err = tcx.sess.struct_span_fatal(span, &error);
+ err.span_note(
+ tcx.def_span(def_id),
+ &format!("`{}` defined here", tcx.def_path_str(def_id)),
+ );
+ if let Some(path) = written_to_path {
+ err.note(&format!("the full type name has been written to '{}'", path.display()));
+ }
+ err.emit()
+ }
+
+ recursion_depths.insert(def_id, recursion_depth + 1);
+
+ (def_id, recursion_depth)
+}
+
+fn check_type_length_limit<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) {
+ let type_length = instance
+ .substs
+ .iter()
+ .flat_map(|arg| arg.walk())
+ .filter(|arg| match arg.unpack() {
+ GenericArgKind::Type(_) | GenericArgKind::Const(_) => true,
+ GenericArgKind::Lifetime(_) => false,
+ })
+ .count();
+ debug!(" => type length={}", type_length);
+
+ // Rust code can easily create exponentially-long types using only a
+ // polynomial recursion depth. Even with the default recursion
+ // depth, you can easily get cases that take >2^60 steps to run,
+ // which means that rustc basically hangs.
+ //
+ // Bail out in these cases to avoid that bad user experience.
+ if !tcx.type_length_limit().value_within_limit(type_length) {
+ let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
+ let msg = format!("reached the type-length limit while instantiating `{}`", shrunk);
+ let mut diag = tcx.sess.struct_span_fatal(tcx.def_span(instance.def_id()), &msg);
+ if let Some(path) = written_to_path {
+ diag.note(&format!("the full type name has been written to '{}'", path.display()));
+ }
+ diag.help(&format!(
+ "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
+ type_length
+ ));
+ diag.emit()
+ }
+}
+
+struct MirNeighborCollector<'a, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ body: &'a mir::Body<'tcx>,
+ output: &'a mut MonoItems<'tcx>,
+ instance: Instance<'tcx>,
+}
+
+impl<'a, 'tcx> MirNeighborCollector<'a, 'tcx> {
+ pub fn monomorphize<T>(&self, value: T) -> T
+ where
+ T: TypeFoldable<'tcx>,
+ {
+ debug!("monomorphize: self.instance={:?}", self.instance);
+ self.instance.subst_mir_and_normalize_erasing_regions(
+ self.tcx,
+ ty::ParamEnv::reveal_all(),
+ value,
+ )
+ }
+}
+
+impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
+ fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
+ debug!("visiting rvalue {:?}", *rvalue);
+
+ let span = self.body.source_info(location).span;
+
+ match *rvalue {
+ // When doing an cast from a regular pointer to a fat pointer, we
+ // have to instantiate all methods of the trait being cast to, so we
+ // can build the appropriate vtable.
+ mir::Rvalue::Cast(
+ mir::CastKind::Pointer(PointerCast::Unsize),
+ ref operand,
+ target_ty,
+ ) => {
+ let target_ty = self.monomorphize(target_ty);
+ let source_ty = operand.ty(self.body, self.tcx);
+ let source_ty = self.monomorphize(source_ty);
+ let (source_ty, target_ty) =
+ find_vtable_types_for_unsizing(self.tcx, source_ty, target_ty);
+ // This could also be a different Unsize instruction, like
+ // from a fixed sized array to a slice. But we are only
+ // interested in things that produce a vtable.
+ if target_ty.is_trait() && !source_ty.is_trait() {
+ create_mono_items_for_vtable_methods(
+ self.tcx,
+ target_ty,
+ source_ty,
+ span,
+ self.output,
+ );
+ }
+ }
+ mir::Rvalue::Cast(
+ mir::CastKind::Pointer(PointerCast::ReifyFnPointer),
+ ref operand,
+ _,
+ ) => {
+ let fn_ty = operand.ty(self.body, self.tcx);
+ let fn_ty = self.monomorphize(fn_ty);
+ visit_fn_use(self.tcx, fn_ty, false, span, &mut self.output);
+ }
+ mir::Rvalue::Cast(
+ mir::CastKind::Pointer(PointerCast::ClosureFnPointer(_)),
+ ref operand,
+ _,
+ ) => {
+ let source_ty = operand.ty(self.body, self.tcx);
+ let source_ty = self.monomorphize(source_ty);
+ match *source_ty.kind() {
+ ty::Closure(def_id, substs) => {
+ let instance = Instance::resolve_closure(
+ self.tcx,
+ def_id,
+ substs,
+ ty::ClosureKind::FnOnce,
+ )
+ .expect("failed to normalize and resolve closure during codegen");
+ if should_codegen_locally(self.tcx, &instance) {
+ self.output.push(create_fn_mono_item(self.tcx, instance, span));
+ }
+ }
+ _ => bug!(),
+ }
+ }
+ mir::Rvalue::ThreadLocalRef(def_id) => {
+ assert!(self.tcx.is_thread_local_static(def_id));
+ let instance = Instance::mono(self.tcx, def_id);
+ if should_codegen_locally(self.tcx, &instance) {
+ trace!("collecting thread-local static {:?}", def_id);
+ self.output.push(respan(span, MonoItem::Static(def_id)));
+ }
+ }
+ _ => { /* not interesting */ }
+ }
+
+ self.super_rvalue(rvalue, location);
+ }
+
+ /// This does not walk the constant, as it has been handled entirely here and trying
+ /// to walk it would attempt to evaluate the `ty::Const` inside, which doesn't necessarily
+ /// work, as some constants cannot be represented in the type system.
+ #[instrument(skip(self), level = "debug")]
+ fn visit_constant(&mut self, constant: &mir::Constant<'tcx>, location: Location) {
+ let literal = self.monomorphize(constant.literal);
+ let val = match literal {
+ mir::ConstantKind::Val(val, _) => val,
+ mir::ConstantKind::Ty(ct) => match ct.kind() {
+ ty::ConstKind::Value(val) => self.tcx.valtree_to_const_val((ct.ty(), val)),
+ ty::ConstKind::Unevaluated(ct) => {
+ debug!(?ct);
+ let param_env = ty::ParamEnv::reveal_all();
+ match self.tcx.const_eval_resolve(param_env, ct, None) {
+ // The `monomorphize` call should have evaluated that constant already.
+ Ok(val) => val,
+ Err(ErrorHandled::Reported(_) | ErrorHandled::Linted) => return,
+ Err(ErrorHandled::TooGeneric) => span_bug!(
+ self.body.source_info(location).span,
+ "collection encountered polymorphic constant: {:?}",
+ literal
+ ),
+ }
+ }
+ _ => return,
+ },
+ };
+ collect_const_value(self.tcx, val, self.output);
+ self.visit_ty(literal.ty(), TyContext::Location(location));
+ }
+
+ #[instrument(skip(self), level = "debug")]
+ fn visit_const(&mut self, constant: ty::Const<'tcx>, location: Location) {
+ debug!("visiting const {:?} @ {:?}", constant, location);
+
+ let substituted_constant = self.monomorphize(constant);
+ let param_env = ty::ParamEnv::reveal_all();
+
+ match substituted_constant.kind() {
+ ty::ConstKind::Value(val) => {
+ let const_val = self.tcx.valtree_to_const_val((constant.ty(), val));
+ collect_const_value(self.tcx, const_val, self.output)
+ }
+ ty::ConstKind::Unevaluated(unevaluated) => {
+ match self.tcx.const_eval_resolve(param_env, unevaluated, None) {
+ // The `monomorphize` call should have evaluated that constant already.
+ Ok(val) => span_bug!(
+ self.body.source_info(location).span,
+ "collection encountered the unevaluated constant {} which evaluated to {:?}",
+ substituted_constant,
+ val
+ ),
+ Err(ErrorHandled::Reported(_) | ErrorHandled::Linted) => {}
+ Err(ErrorHandled::TooGeneric) => span_bug!(
+ self.body.source_info(location).span,
+ "collection encountered polymorphic constant: {}",
+ substituted_constant
+ ),
+ }
+ }
+ _ => {}
+ }
+
+ self.super_const(constant);
+ }
+
+ fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
+ debug!("visiting terminator {:?} @ {:?}", terminator, location);
+ let source = self.body.source_info(location).span;
+
+ let tcx = self.tcx;
+ match terminator.kind {
+ mir::TerminatorKind::Call { ref func, .. } => {
+ let callee_ty = func.ty(self.body, tcx);
+ let callee_ty = self.monomorphize(callee_ty);
+ visit_fn_use(self.tcx, callee_ty, true, source, &mut self.output);
+ }
+ mir::TerminatorKind::Drop { ref place, .. }
+ | mir::TerminatorKind::DropAndReplace { ref place, .. } => {
+ let ty = place.ty(self.body, self.tcx).ty;
+ let ty = self.monomorphize(ty);
+ visit_drop_use(self.tcx, ty, true, source, self.output);
+ }
+ mir::TerminatorKind::InlineAsm { ref operands, .. } => {
+ for op in operands {
+ match *op {
+ mir::InlineAsmOperand::SymFn { ref value } => {
+ let fn_ty = self.monomorphize(value.literal.ty());
+ visit_fn_use(self.tcx, fn_ty, false, source, &mut self.output);
+ }
+ mir::InlineAsmOperand::SymStatic { def_id } => {
+ let instance = Instance::mono(self.tcx, def_id);
+ if should_codegen_locally(self.tcx, &instance) {
+ trace!("collecting asm sym static {:?}", def_id);
+ self.output.push(respan(source, MonoItem::Static(def_id)));
+ }
+ }
+ _ => {}
+ }
+ }
+ }
+ mir::TerminatorKind::Assert { ref msg, .. } => {
+ let lang_item = match msg {
+ mir::AssertKind::BoundsCheck { .. } => LangItem::PanicBoundsCheck,
+ _ => LangItem::Panic,
+ };
+ let instance = Instance::mono(tcx, tcx.require_lang_item(lang_item, Some(source)));
+ if should_codegen_locally(tcx, &instance) {
+ self.output.push(create_fn_mono_item(tcx, instance, source));
+ }
+ }
+ mir::TerminatorKind::Abort { .. } => {
+ let instance = Instance::mono(
+ tcx,
+ tcx.require_lang_item(LangItem::PanicNoUnwind, Some(source)),
+ );
+ if should_codegen_locally(tcx, &instance) {
+ self.output.push(create_fn_mono_item(tcx, instance, source));
+ }
+ }
+ mir::TerminatorKind::Goto { .. }
+ | mir::TerminatorKind::SwitchInt { .. }
+ | mir::TerminatorKind::Resume
+ | mir::TerminatorKind::Return
+ | mir::TerminatorKind::Unreachable => {}
+ mir::TerminatorKind::GeneratorDrop
+ | mir::TerminatorKind::Yield { .. }
+ | mir::TerminatorKind::FalseEdge { .. }
+ | mir::TerminatorKind::FalseUnwind { .. } => bug!(),
+ }
+
+ self.super_terminator(terminator, location);
+ }
+
+ fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) {
+ self.super_operand(operand, location);
+ let limit = self.tcx.move_size_limit().0;
+ if limit == 0 {
+ return;
+ }
+ let limit = Size::from_bytes(limit);
+ let ty = operand.ty(self.body, self.tcx);
+ let ty = self.monomorphize(ty);
+ let layout = self.tcx.layout_of(ty::ParamEnv::reveal_all().and(ty));
+ if let Ok(layout) = layout {
+ if layout.size > limit {
+ debug!(?layout);
+ let source_info = self.body.source_info(location);
+ debug!(?source_info);
+ let lint_root = source_info.scope.lint_root(&self.body.source_scopes);
+ debug!(?lint_root);
+ let Some(lint_root) = lint_root else {
+ // This happens when the issue is in a function from a foreign crate that
+ // we monomorphized in the current crate. We can't get a `HirId` for things
+ // in other crates.
+ // FIXME: Find out where to report the lint on. Maybe simply crate-level lint root
+ // but correct span? This would make the lint at least accept crate-level lint attributes.
+ return;
+ };
+ self.tcx.struct_span_lint_hir(
+ LARGE_ASSIGNMENTS,
+ lint_root,
+ source_info.span,
+ |lint| {
+ let mut err = lint.build(&format!("moving {} bytes", layout.size.bytes()));
+ err.span_label(source_info.span, "value moved from here");
+ err.note(&format!(r#"The current maximum size is {}, but it can be customized with the move_size_limit attribute: `#![move_size_limit = "..."]`"#, limit.bytes()));
+ err.emit();
+ },
+ );
+ }
+ }
+ }
+
+ fn visit_local(
+ &mut self,
+ _place_local: Local,
+ _context: mir::visit::PlaceContext,
+ _location: Location,
+ ) {
+ }
+}
+
+fn visit_drop_use<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ ty: Ty<'tcx>,
+ is_direct_call: bool,
+ source: Span,
+ output: &mut MonoItems<'tcx>,
+) {
+ let instance = Instance::resolve_drop_in_place(tcx, ty);
+ visit_instance_use(tcx, instance, is_direct_call, source, output);
+}
+
+fn visit_fn_use<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ ty: Ty<'tcx>,
+ is_direct_call: bool,
+ source: Span,
+ output: &mut MonoItems<'tcx>,
+) {
+ if let ty::FnDef(def_id, substs) = *ty.kind() {
+ let instance = if is_direct_call {
+ ty::Instance::resolve(tcx, ty::ParamEnv::reveal_all(), def_id, substs).unwrap().unwrap()
+ } else {
+ ty::Instance::resolve_for_fn_ptr(tcx, ty::ParamEnv::reveal_all(), def_id, substs)
+ .unwrap()
+ };
+ visit_instance_use(tcx, instance, is_direct_call, source, output);
+ }
+}
+
+fn visit_instance_use<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ instance: ty::Instance<'tcx>,
+ is_direct_call: bool,
+ source: Span,
+ output: &mut MonoItems<'tcx>,
+) {
+ debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
+ if !should_codegen_locally(tcx, &instance) {
+ return;
+ }
+
+ match instance.def {
+ ty::InstanceDef::Virtual(..) | ty::InstanceDef::Intrinsic(_) => {
+ if !is_direct_call {
+ bug!("{:?} being reified", instance);
+ }
+ }
+ ty::InstanceDef::DropGlue(_, None) => {
+ // Don't need to emit noop drop glue if we are calling directly.
+ if !is_direct_call {
+ output.push(create_fn_mono_item(tcx, instance, source));
+ }
+ }
+ ty::InstanceDef::DropGlue(_, Some(_))
+ | ty::InstanceDef::VTableShim(..)
+ | ty::InstanceDef::ReifyShim(..)
+ | ty::InstanceDef::ClosureOnceShim { .. }
+ | ty::InstanceDef::Item(..)
+ | ty::InstanceDef::FnPtrShim(..)
+ | ty::InstanceDef::CloneShim(..) => {
+ output.push(create_fn_mono_item(tcx, instance, source));
+ }
+ }
+}
+
+/// Returns `true` if we should codegen an instance in the local crate, or returns `false` if we
+/// can just link to the upstream crate and therefore don't need a mono item.
+fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: &Instance<'tcx>) -> bool {
+ let Some(def_id) = instance.def.def_id_if_not_guaranteed_local_codegen() else {
+ return true;
+ };
+
+ if tcx.is_foreign_item(def_id) {
+ // Foreign items are always linked against, there's no way of instantiating them.
+ return false;
+ }
+
+ if def_id.is_local() {
+ // Local items cannot be referred to locally without monomorphizing them locally.
+ return true;
+ }
+
+ if tcx.is_reachable_non_generic(def_id)
+ || instance.polymorphize(tcx).upstream_monomorphization(tcx).is_some()
+ {
+ // We can link to the item in question, no instance needed in this crate.
+ return false;
+ }
+
+ if !tcx.is_mir_available(def_id) {
+ bug!("no MIR available for {:?}", def_id);
+ }
+
+ true
+}
+
+/// For a given pair of source and target type that occur in an unsizing coercion,
+/// this function finds the pair of types that determines the vtable linking
+/// them.
+///
+/// For example, the source type might be `&SomeStruct` and the target type
+/// might be `&SomeTrait` in a cast like:
+///
+/// let src: &SomeStruct = ...;
+/// let target = src as &SomeTrait;
+///
+/// Then the output of this function would be (SomeStruct, SomeTrait) since for
+/// constructing the `target` fat-pointer we need the vtable for that pair.
+///
+/// Things can get more complicated though because there's also the case where
+/// the unsized type occurs as a field:
+///
+/// ```rust
+/// struct ComplexStruct<T: ?Sized> {
+/// a: u32,
+/// b: f64,
+/// c: T
+/// }
+/// ```
+///
+/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
+/// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
+/// for the pair of `T` (which is a trait) and the concrete type that `T` was
+/// originally coerced from:
+///
+/// let src: &ComplexStruct<SomeStruct> = ...;
+/// let target = src as &ComplexStruct<SomeTrait>;
+///
+/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
+/// `(SomeStruct, SomeTrait)`.
+///
+/// Finally, there is also the case of custom unsizing coercions, e.g., for
+/// smart pointers such as `Rc` and `Arc`.
+fn find_vtable_types_for_unsizing<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ source_ty: Ty<'tcx>,
+ target_ty: Ty<'tcx>,
+) -> (Ty<'tcx>, Ty<'tcx>) {
+ let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| {
+ let param_env = ty::ParamEnv::reveal_all();
+ let type_has_metadata = |ty: Ty<'tcx>| -> bool {
+ if ty.is_sized(tcx.at(DUMMY_SP), param_env) {
+ return false;
+ }
+ let tail = tcx.struct_tail_erasing_lifetimes(ty, param_env);
+ match tail.kind() {
+ ty::Foreign(..) => false,
+ ty::Str | ty::Slice(..) | ty::Dynamic(..) => true,
+ _ => bug!("unexpected unsized tail: {:?}", tail),
+ }
+ };
+ if type_has_metadata(inner_source) {
+ (inner_source, inner_target)
+ } else {
+ tcx.struct_lockstep_tails_erasing_lifetimes(inner_source, inner_target, param_env)
+ }
+ };
+
+ match (&source_ty.kind(), &target_ty.kind()) {
+ (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
+ | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
+ ptr_vtable(*a, *b)
+ }
+ (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
+ ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
+ }
+
+ (&ty::Adt(source_adt_def, source_substs), &ty::Adt(target_adt_def, target_substs)) => {
+ assert_eq!(source_adt_def, target_adt_def);
+
+ let CustomCoerceUnsized::Struct(coerce_index) =
+ crate::custom_coerce_unsize_info(tcx, source_ty, target_ty);
+
+ let source_fields = &source_adt_def.non_enum_variant().fields;
+ let target_fields = &target_adt_def.non_enum_variant().fields;
+
+ assert!(
+ coerce_index < source_fields.len() && source_fields.len() == target_fields.len()
+ );
+
+ find_vtable_types_for_unsizing(
+ tcx,
+ source_fields[coerce_index].ty(tcx, source_substs),
+ target_fields[coerce_index].ty(tcx, target_substs),
+ )
+ }
+ _ => bug!(
+ "find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
+ source_ty,
+ target_ty
+ ),
+ }
+}
+
+#[instrument(skip(tcx), level = "debug")]
+fn create_fn_mono_item<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ instance: Instance<'tcx>,
+ source: Span,
+) -> Spanned<MonoItem<'tcx>> {
+ debug!("create_fn_mono_item(instance={})", instance);
+
+ let def_id = instance.def_id();
+ if tcx.sess.opts.unstable_opts.profile_closures && def_id.is_local() && tcx.is_closure(def_id) {
+ crate::util::dump_closure_profile(tcx, instance);
+ }
+
+ let respanned = respan(source, MonoItem::Fn(instance.polymorphize(tcx)));
+ debug!(?respanned);
+
+ respanned
+}
+
+/// Creates a `MonoItem` for each method that is referenced by the vtable for
+/// the given trait/impl pair.
+fn create_mono_items_for_vtable_methods<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ trait_ty: Ty<'tcx>,
+ impl_ty: Ty<'tcx>,
+ source: Span,
+ output: &mut MonoItems<'tcx>,
+) {
+ assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars());
+
+ if let ty::Dynamic(ref trait_ty, ..) = trait_ty.kind() {
+ if let Some(principal) = trait_ty.principal() {
+ let poly_trait_ref = principal.with_self_ty(tcx, impl_ty);
+ assert!(!poly_trait_ref.has_escaping_bound_vars());
+
+ // Walk all methods of the trait, including those of its supertraits
+ let entries = tcx.vtable_entries(poly_trait_ref);
+ let methods = entries
+ .iter()
+ .filter_map(|entry| match entry {
+ VtblEntry::MetadataDropInPlace
+ | VtblEntry::MetadataSize
+ | VtblEntry::MetadataAlign
+ | VtblEntry::Vacant => None,
+ VtblEntry::TraitVPtr(_) => {
+ // all super trait items already covered, so skip them.
+ None
+ }
+ VtblEntry::Method(instance) => {
+ Some(*instance).filter(|instance| should_codegen_locally(tcx, instance))
+ }
+ })
+ .map(|item| create_fn_mono_item(tcx, item, source));
+ output.extend(methods);
+ }
+
+ // Also add the destructor.
+ visit_drop_use(tcx, impl_ty, false, source, output);
+ }
+}
+
+//=-----------------------------------------------------------------------------
+// Root Collection
+//=-----------------------------------------------------------------------------
+
+struct RootCollector<'a, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ mode: MonoItemCollectionMode,
+ output: &'a mut MonoItems<'tcx>,
+ entry_fn: Option<(DefId, EntryFnType)>,
+}
+
+impl<'v> RootCollector<'_, 'v> {
+ fn process_item(&mut self, id: hir::ItemId) {
+ match self.tcx.def_kind(id.def_id) {
+ DefKind::Enum | DefKind::Struct | DefKind::Union => {
+ let item = self.tcx.hir().item(id);
+ match item.kind {
+ hir::ItemKind::Enum(_, ref generics)
+ | hir::ItemKind::Struct(_, ref generics)
+ | hir::ItemKind::Union(_, ref generics) => {
+ if generics.params.is_empty() {
+ if self.mode == MonoItemCollectionMode::Eager {
+ debug!(
+ "RootCollector: ADT drop-glue for {}",
+ self.tcx.def_path_str(item.def_id.to_def_id())
+ );
+
+ let ty =
+ Instance::new(item.def_id.to_def_id(), InternalSubsts::empty())
+ .ty(self.tcx, ty::ParamEnv::reveal_all());
+ visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output);
+ }
+ }
+ }
+ _ => bug!(),
+ }
+ }
+ DefKind::GlobalAsm => {
+ debug!(
+ "RootCollector: ItemKind::GlobalAsm({})",
+ self.tcx.def_path_str(id.def_id.to_def_id())
+ );
+ self.output.push(dummy_spanned(MonoItem::GlobalAsm(id)));
+ }
+ DefKind::Static(..) => {
+ debug!(
+ "RootCollector: ItemKind::Static({})",
+ self.tcx.def_path_str(id.def_id.to_def_id())
+ );
+ self.output.push(dummy_spanned(MonoItem::Static(id.def_id.to_def_id())));
+ }
+ DefKind::Const => {
+ // const items only generate mono items if they are
+ // actually used somewhere. Just declaring them is insufficient.
+
+ // but even just declaring them must collect the items they refer to
+ if let Ok(val) = self.tcx.const_eval_poly(id.def_id.to_def_id()) {
+ collect_const_value(self.tcx, val, &mut self.output);
+ }
+ }
+ DefKind::Impl => {
+ if self.mode == MonoItemCollectionMode::Eager {
+ let item = self.tcx.hir().item(id);
+ create_mono_items_for_default_impls(self.tcx, item, self.output);
+ }
+ }
+ DefKind::Fn => {
+ self.push_if_root(id.def_id);
+ }
+ _ => {}
+ }
+ }
+
+ fn process_impl_item(&mut self, id: hir::ImplItemId) {
+ if matches!(self.tcx.def_kind(id.def_id), DefKind::AssocFn) {
+ self.push_if_root(id.def_id);
+ }
+ }
+
+ fn is_root(&self, def_id: LocalDefId) -> bool {
+ !item_requires_monomorphization(self.tcx, def_id)
+ && match self.mode {
+ MonoItemCollectionMode::Eager => true,
+ MonoItemCollectionMode::Lazy => {
+ self.entry_fn.and_then(|(id, _)| id.as_local()) == Some(def_id)
+ || self.tcx.is_reachable_non_generic(def_id)
+ || self
+ .tcx
+ .codegen_fn_attrs(def_id)
+ .flags
+ .contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
+ }
+ }
+ }
+
+ /// If `def_id` represents a root, pushes it onto the list of
+ /// outputs. (Note that all roots must be monomorphic.)
+ #[instrument(skip(self), level = "debug")]
+ fn push_if_root(&mut self, def_id: LocalDefId) {
+ if self.is_root(def_id) {
+ debug!("RootCollector::push_if_root: found root def_id={:?}", def_id);
+
+ let instance = Instance::mono(self.tcx, def_id.to_def_id());
+ self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP));
+ }
+ }
+
+ /// As a special case, when/if we encounter the
+ /// `main()` function, we also have to generate a
+ /// monomorphized copy of the start lang item based on
+ /// the return type of `main`. This is not needed when
+ /// the user writes their own `start` manually.
+ fn push_extra_entry_roots(&mut self) {
+ let Some((main_def_id, EntryFnType::Main)) = self.entry_fn else {
+ return;
+ };
+
+ let start_def_id = match self.tcx.lang_items().require(LangItem::Start) {
+ Ok(s) => s,
+ Err(err) => self.tcx.sess.fatal(&err),
+ };
+ let main_ret_ty = self.tcx.fn_sig(main_def_id).output();
+
+ // Given that `main()` has no arguments,
+ // then its return type cannot have
+ // late-bound regions, since late-bound
+ // regions must appear in the argument
+ // listing.
+ let main_ret_ty = self.tcx.normalize_erasing_regions(
+ ty::ParamEnv::reveal_all(),
+ main_ret_ty.no_bound_vars().unwrap(),
+ );
+
+ let start_instance = Instance::resolve(
+ self.tcx,
+ ty::ParamEnv::reveal_all(),
+ start_def_id,
+ self.tcx.intern_substs(&[main_ret_ty.into()]),
+ )
+ .unwrap()
+ .unwrap();
+
+ self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP));
+ }
+}
+
+fn item_requires_monomorphization(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
+ let generics = tcx.generics_of(def_id);
+ generics.requires_monomorphization(tcx)
+}
+
+fn create_mono_items_for_default_impls<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ item: &'tcx hir::Item<'tcx>,
+ output: &mut MonoItems<'tcx>,
+) {
+ match item.kind {
+ hir::ItemKind::Impl(ref impl_) => {
+ for param in impl_.generics.params {
+ match param.kind {
+ hir::GenericParamKind::Lifetime { .. } => {}
+ hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => {
+ return;
+ }
+ }
+ }
+
+ debug!(
+ "create_mono_items_for_default_impls(item={})",
+ tcx.def_path_str(item.def_id.to_def_id())
+ );
+
+ if let Some(trait_ref) = tcx.impl_trait_ref(item.def_id) {
+ let param_env = ty::ParamEnv::reveal_all();
+ let trait_ref = tcx.normalize_erasing_regions(param_env, trait_ref);
+ let overridden_methods = tcx.impl_item_implementor_ids(item.def_id);
+ for method in tcx.provided_trait_methods(trait_ref.def_id) {
+ if overridden_methods.contains_key(&method.def_id) {
+ continue;
+ }
+
+ if tcx.generics_of(method.def_id).own_requires_monomorphization() {
+ continue;
+ }
+
+ let substs =
+ InternalSubsts::for_item(tcx, method.def_id, |param, _| match param.kind {
+ GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
+ GenericParamDefKind::Type { .. }
+ | GenericParamDefKind::Const { .. } => {
+ trait_ref.substs[param.index as usize]
+ }
+ });
+ let instance = ty::Instance::resolve(tcx, param_env, method.def_id, substs)
+ .unwrap()
+ .unwrap();
+
+ let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP);
+ if mono_item.node.is_instantiable(tcx) && should_codegen_locally(tcx, &instance)
+ {
+ output.push(mono_item);
+ }
+ }
+ }
+ }
+ _ => bug!(),
+ }
+}
+
+/// Scans the miri alloc in order to find function calls, closures, and drop-glue.
+fn collect_miri<'tcx>(tcx: TyCtxt<'tcx>, alloc_id: AllocId, output: &mut MonoItems<'tcx>) {
+ match tcx.global_alloc(alloc_id) {
+ GlobalAlloc::Static(def_id) => {
+ assert!(!tcx.is_thread_local_static(def_id));
+ let instance = Instance::mono(tcx, def_id);
+ if should_codegen_locally(tcx, &instance) {
+ trace!("collecting static {:?}", def_id);
+ output.push(dummy_spanned(MonoItem::Static(def_id)));
+ }
+ }
+ GlobalAlloc::Memory(alloc) => {
+ trace!("collecting {:?} with {:#?}", alloc_id, alloc);
+ for &inner in alloc.inner().relocations().values() {
+ rustc_data_structures::stack::ensure_sufficient_stack(|| {
+ collect_miri(tcx, inner, output);
+ });
+ }
+ }
+ GlobalAlloc::Function(fn_instance) => {
+ if should_codegen_locally(tcx, &fn_instance) {
+ trace!("collecting {:?} with {:#?}", alloc_id, fn_instance);
+ output.push(create_fn_mono_item(tcx, fn_instance, DUMMY_SP));
+ }
+ }
+ GlobalAlloc::VTable(ty, trait_ref) => {
+ let alloc_id = tcx.vtable_allocation((ty, trait_ref));
+ collect_miri(tcx, alloc_id, output)
+ }
+ }
+}
+
+/// Scans the MIR in order to find function calls, closures, and drop-glue.
+#[instrument(skip(tcx, output), level = "debug")]
+fn collect_neighbours<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ instance: Instance<'tcx>,
+ output: &mut MonoItems<'tcx>,
+) {
+ let body = tcx.instance_mir(instance.def);
+ MirNeighborCollector { tcx, body: &body, output, instance }.visit_body(&body);
+}
+
+#[instrument(skip(tcx, output), level = "debug")]
+fn collect_const_value<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ value: ConstValue<'tcx>,
+ output: &mut MonoItems<'tcx>,
+) {
+ match value {
+ ConstValue::Scalar(Scalar::Ptr(ptr, _size)) => collect_miri(tcx, ptr.provenance, output),
+ ConstValue::Slice { data: alloc, start: _, end: _ } | ConstValue::ByRef { alloc, .. } => {
+ for &id in alloc.inner().relocations().values() {
+ collect_miri(tcx, id, output);
+ }
+ }
+ _ => {}
+ }
+}
diff --git a/compiler/rustc_monomorphize/src/lib.rs b/compiler/rustc_monomorphize/src/lib.rs
new file mode 100644
index 000000000..ef4560b5e
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/lib.rs
@@ -0,0 +1,49 @@
+#![feature(array_windows)]
+#![feature(control_flow_enum)]
+#![feature(let_else)]
+#![recursion_limit = "256"]
+#![allow(rustc::potential_query_instability)]
+
+#[macro_use]
+extern crate tracing;
+#[macro_use]
+extern crate rustc_middle;
+
+use rustc_hir::lang_items::LangItem;
+use rustc_middle::traits;
+use rustc_middle::ty::adjustment::CustomCoerceUnsized;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::{self, Ty, TyCtxt};
+
+mod collector;
+mod partitioning;
+mod polymorphize;
+mod util;
+
+fn custom_coerce_unsize_info<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ source_ty: Ty<'tcx>,
+ target_ty: Ty<'tcx>,
+) -> CustomCoerceUnsized {
+ let def_id = tcx.require_lang_item(LangItem::CoerceUnsized, None);
+
+ let trait_ref = ty::Binder::dummy(ty::TraitRef {
+ def_id,
+ substs: tcx.mk_substs_trait(source_ty, &[target_ty.into()]),
+ });
+
+ match tcx.codegen_fulfill_obligation((ty::ParamEnv::reveal_all(), trait_ref)) {
+ Ok(traits::ImplSource::UserDefined(traits::ImplSourceUserDefinedData {
+ impl_def_id,
+ ..
+ })) => tcx.coerce_unsized_info(impl_def_id).custom_kind.unwrap(),
+ impl_source => {
+ bug!("invalid `CoerceUnsized` impl_source: {:?}", impl_source);
+ }
+ }
+}
+
+pub fn provide(providers: &mut Providers) {
+ partitioning::provide(providers);
+ polymorphize::provide(providers);
+}
diff --git a/compiler/rustc_monomorphize/src/partitioning/default.rs b/compiler/rustc_monomorphize/src/partitioning/default.rs
new file mode 100644
index 000000000..15276569c
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/partitioning/default.rs
@@ -0,0 +1,560 @@
+use std::collections::hash_map::Entry;
+
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_hir::def::DefKind;
+use rustc_hir::def_id::{DefId, LOCAL_CRATE};
+use rustc_hir::definitions::DefPathDataName;
+use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
+use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel};
+use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, Linkage, Visibility};
+use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
+use rustc_middle::ty::print::characteristic_def_id_of_type;
+use rustc_middle::ty::{self, visit::TypeVisitable, DefIdTree, InstanceDef, TyCtxt};
+use rustc_span::symbol::Symbol;
+
+use super::PartitioningCx;
+use crate::collector::InliningMap;
+use crate::partitioning::merging;
+use crate::partitioning::{
+ MonoItemPlacement, Partitioner, PostInliningPartitioning, PreInliningPartitioning,
+};
+
+pub struct DefaultPartitioning;
+
+impl<'tcx> Partitioner<'tcx> for DefaultPartitioning {
+ fn place_root_mono_items(
+ &mut self,
+ cx: &PartitioningCx<'_, 'tcx>,
+ mono_items: &mut dyn Iterator<Item = MonoItem<'tcx>>,
+ ) -> PreInliningPartitioning<'tcx> {
+ let mut roots = FxHashSet::default();
+ let mut codegen_units = FxHashMap::default();
+ let is_incremental_build = cx.tcx.sess.opts.incremental.is_some();
+ let mut internalization_candidates = FxHashSet::default();
+
+ // Determine if monomorphizations instantiated in this crate will be made
+ // available to downstream crates. This depends on whether we are in
+ // share-generics mode and whether the current crate can even have
+ // downstream crates.
+ let export_generics =
+ cx.tcx.sess.opts.share_generics() && cx.tcx.local_crate_exports_generics();
+
+ let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
+ let cgu_name_cache = &mut FxHashMap::default();
+
+ for mono_item in mono_items {
+ match mono_item.instantiation_mode(cx.tcx) {
+ InstantiationMode::GloballyShared { .. } => {}
+ InstantiationMode::LocalCopy => continue,
+ }
+
+ let characteristic_def_id = characteristic_def_id_of_mono_item(cx.tcx, mono_item);
+ let is_volatile = is_incremental_build && mono_item.is_generic_fn();
+
+ let codegen_unit_name = match characteristic_def_id {
+ Some(def_id) => compute_codegen_unit_name(
+ cx.tcx,
+ cgu_name_builder,
+ def_id,
+ is_volatile,
+ cgu_name_cache,
+ ),
+ None => fallback_cgu_name(cgu_name_builder),
+ };
+
+ let codegen_unit = codegen_units
+ .entry(codegen_unit_name)
+ .or_insert_with(|| CodegenUnit::new(codegen_unit_name));
+
+ let mut can_be_internalized = true;
+ let (linkage, visibility) = mono_item_linkage_and_visibility(
+ cx.tcx,
+ &mono_item,
+ &mut can_be_internalized,
+ export_generics,
+ );
+ if visibility == Visibility::Hidden && can_be_internalized {
+ internalization_candidates.insert(mono_item);
+ }
+
+ codegen_unit.items_mut().insert(mono_item, (linkage, visibility));
+ roots.insert(mono_item);
+ }
+
+ // Always ensure we have at least one CGU; otherwise, if we have a
+ // crate with just types (for example), we could wind up with no CGU.
+ if codegen_units.is_empty() {
+ let codegen_unit_name = fallback_cgu_name(cgu_name_builder);
+ codegen_units.insert(codegen_unit_name, CodegenUnit::new(codegen_unit_name));
+ }
+
+ PreInliningPartitioning {
+ codegen_units: codegen_units
+ .into_iter()
+ .map(|(_, codegen_unit)| codegen_unit)
+ .collect(),
+ roots,
+ internalization_candidates,
+ }
+ }
+
+ fn merge_codegen_units(
+ &mut self,
+ cx: &PartitioningCx<'_, 'tcx>,
+ initial_partitioning: &mut PreInliningPartitioning<'tcx>,
+ ) {
+ merging::merge_codegen_units(cx, initial_partitioning);
+ }
+
+ fn place_inlined_mono_items(
+ &mut self,
+ cx: &PartitioningCx<'_, 'tcx>,
+ initial_partitioning: PreInliningPartitioning<'tcx>,
+ ) -> PostInliningPartitioning<'tcx> {
+ let mut new_partitioning = Vec::new();
+ let mut mono_item_placements = FxHashMap::default();
+
+ let PreInliningPartitioning {
+ codegen_units: initial_cgus,
+ roots,
+ internalization_candidates,
+ } = initial_partitioning;
+
+ let single_codegen_unit = initial_cgus.len() == 1;
+
+ for old_codegen_unit in initial_cgus {
+ // Collect all items that need to be available in this codegen unit.
+ let mut reachable = FxHashSet::default();
+ for root in old_codegen_unit.items().keys() {
+ follow_inlining(*root, cx.inlining_map, &mut reachable);
+ }
+
+ let mut new_codegen_unit = CodegenUnit::new(old_codegen_unit.name());
+
+ // Add all monomorphizations that are not already there.
+ for mono_item in reachable {
+ if let Some(linkage) = old_codegen_unit.items().get(&mono_item) {
+ // This is a root, just copy it over.
+ new_codegen_unit.items_mut().insert(mono_item, *linkage);
+ } else {
+ if roots.contains(&mono_item) {
+ bug!(
+ "GloballyShared mono-item inlined into other CGU: \
+ {:?}",
+ mono_item
+ );
+ }
+
+ // This is a CGU-private copy.
+ new_codegen_unit
+ .items_mut()
+ .insert(mono_item, (Linkage::Internal, Visibility::Default));
+ }
+
+ if !single_codegen_unit {
+ // If there is more than one codegen unit, we need to keep track
+ // in which codegen units each monomorphization is placed.
+ match mono_item_placements.entry(mono_item) {
+ Entry::Occupied(e) => {
+ let placement = e.into_mut();
+ debug_assert!(match *placement {
+ MonoItemPlacement::SingleCgu { cgu_name } => {
+ cgu_name != new_codegen_unit.name()
+ }
+ MonoItemPlacement::MultipleCgus => true,
+ });
+ *placement = MonoItemPlacement::MultipleCgus;
+ }
+ Entry::Vacant(e) => {
+ e.insert(MonoItemPlacement::SingleCgu {
+ cgu_name: new_codegen_unit.name(),
+ });
+ }
+ }
+ }
+ }
+
+ new_partitioning.push(new_codegen_unit);
+ }
+
+ return PostInliningPartitioning {
+ codegen_units: new_partitioning,
+ mono_item_placements,
+ internalization_candidates,
+ };
+
+ fn follow_inlining<'tcx>(
+ mono_item: MonoItem<'tcx>,
+ inlining_map: &InliningMap<'tcx>,
+ visited: &mut FxHashSet<MonoItem<'tcx>>,
+ ) {
+ if !visited.insert(mono_item) {
+ return;
+ }
+
+ inlining_map.with_inlining_candidates(mono_item, |target| {
+ follow_inlining(target, inlining_map, visited);
+ });
+ }
+ }
+
+ fn internalize_symbols(
+ &mut self,
+ cx: &PartitioningCx<'_, 'tcx>,
+ partitioning: &mut PostInliningPartitioning<'tcx>,
+ ) {
+ if partitioning.codegen_units.len() == 1 {
+ // Fast path for when there is only one codegen unit. In this case we
+ // can internalize all candidates, since there is nowhere else they
+ // could be accessed from.
+ for cgu in &mut partitioning.codegen_units {
+ for candidate in &partitioning.internalization_candidates {
+ cgu.items_mut().insert(*candidate, (Linkage::Internal, Visibility::Default));
+ }
+ }
+
+ return;
+ }
+
+ // Build a map from every monomorphization to all the monomorphizations that
+ // reference it.
+ let mut accessor_map: FxHashMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>> = Default::default();
+ cx.inlining_map.iter_accesses(|accessor, accessees| {
+ for accessee in accessees {
+ accessor_map.entry(*accessee).or_default().push(accessor);
+ }
+ });
+
+ let mono_item_placements = &partitioning.mono_item_placements;
+
+ // For each internalization candidates in each codegen unit, check if it is
+ // accessed from outside its defining codegen unit.
+ for cgu in &mut partitioning.codegen_units {
+ let home_cgu = MonoItemPlacement::SingleCgu { cgu_name: cgu.name() };
+
+ for (accessee, linkage_and_visibility) in cgu.items_mut() {
+ if !partitioning.internalization_candidates.contains(accessee) {
+ // This item is no candidate for internalizing, so skip it.
+ continue;
+ }
+ debug_assert_eq!(mono_item_placements[accessee], home_cgu);
+
+ if let Some(accessors) = accessor_map.get(accessee) {
+ if accessors
+ .iter()
+ .filter_map(|accessor| {
+ // Some accessors might not have been
+ // instantiated. We can safely ignore those.
+ mono_item_placements.get(accessor)
+ })
+ .any(|placement| *placement != home_cgu)
+ {
+ // Found an accessor from another CGU, so skip to the next
+ // item without marking this one as internal.
+ continue;
+ }
+ }
+
+ // If we got here, we did not find any accesses from other CGUs,
+ // so it's fine to make this monomorphization internal.
+ *linkage_and_visibility = (Linkage::Internal, Visibility::Default);
+ }
+ }
+ }
+}
+
+fn characteristic_def_id_of_mono_item<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ mono_item: MonoItem<'tcx>,
+) -> Option<DefId> {
+ match mono_item {
+ MonoItem::Fn(instance) => {
+ let def_id = match instance.def {
+ ty::InstanceDef::Item(def) => def.did,
+ ty::InstanceDef::VTableShim(..)
+ | ty::InstanceDef::ReifyShim(..)
+ | ty::InstanceDef::FnPtrShim(..)
+ | ty::InstanceDef::ClosureOnceShim { .. }
+ | ty::InstanceDef::Intrinsic(..)
+ | ty::InstanceDef::DropGlue(..)
+ | ty::InstanceDef::Virtual(..)
+ | ty::InstanceDef::CloneShim(..) => return None,
+ };
+
+ // If this is a method, we want to put it into the same module as
+ // its self-type. If the self-type does not provide a characteristic
+ // DefId, we use the location of the impl after all.
+
+ if tcx.trait_of_item(def_id).is_some() {
+ let self_ty = instance.substs.type_at(0);
+ // This is a default implementation of a trait method.
+ return characteristic_def_id_of_type(self_ty).or(Some(def_id));
+ }
+
+ if let Some(impl_def_id) = tcx.impl_of_method(def_id) {
+ if tcx.sess.opts.incremental.is_some()
+ && tcx.trait_id_of_impl(impl_def_id) == tcx.lang_items().drop_trait()
+ {
+ // Put `Drop::drop` into the same cgu as `drop_in_place`
+ // since `drop_in_place` is the only thing that can
+ // call it.
+ return None;
+ }
+
+ // When polymorphization is enabled, methods which do not depend on their generic
+ // parameters, but the self-type of their impl block do will fail to normalize.
+ if !tcx.sess.opts.unstable_opts.polymorphize || !instance.needs_subst() {
+ // This is a method within an impl, find out what the self-type is:
+ let impl_self_ty = tcx.subst_and_normalize_erasing_regions(
+ instance.substs,
+ ty::ParamEnv::reveal_all(),
+ tcx.type_of(impl_def_id),
+ );
+ if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
+ return Some(def_id);
+ }
+ }
+ }
+
+ Some(def_id)
+ }
+ MonoItem::Static(def_id) => Some(def_id),
+ MonoItem::GlobalAsm(item_id) => Some(item_id.def_id.to_def_id()),
+ }
+}
+
+fn compute_codegen_unit_name(
+ tcx: TyCtxt<'_>,
+ name_builder: &mut CodegenUnitNameBuilder<'_>,
+ def_id: DefId,
+ volatile: bool,
+ cache: &mut CguNameCache,
+) -> Symbol {
+ // Find the innermost module that is not nested within a function.
+ let mut current_def_id = def_id;
+ let mut cgu_def_id = None;
+ // Walk backwards from the item we want to find the module for.
+ loop {
+ if current_def_id.is_crate_root() {
+ if cgu_def_id.is_none() {
+ // If we have not found a module yet, take the crate root.
+ cgu_def_id = Some(def_id.krate.as_def_id());
+ }
+ break;
+ } else if tcx.def_kind(current_def_id) == DefKind::Mod {
+ if cgu_def_id.is_none() {
+ cgu_def_id = Some(current_def_id);
+ }
+ } else {
+ // If we encounter something that is not a module, throw away
+ // any module that we've found so far because we now know that
+ // it is nested within something else.
+ cgu_def_id = None;
+ }
+
+ current_def_id = tcx.parent(current_def_id);
+ }
+
+ let cgu_def_id = cgu_def_id.unwrap();
+
+ *cache.entry((cgu_def_id, volatile)).or_insert_with(|| {
+ let def_path = tcx.def_path(cgu_def_id);
+
+ let components = def_path.data.iter().map(|part| match part.data.name() {
+ DefPathDataName::Named(name) => name,
+ DefPathDataName::Anon { .. } => unreachable!(),
+ });
+
+ let volatile_suffix = volatile.then_some("volatile");
+
+ name_builder.build_cgu_name(def_path.krate, components, volatile_suffix)
+ })
+}
+
+// Anything we can't find a proper codegen unit for goes into this.
+fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol {
+ name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu"))
+}
+
+fn mono_item_linkage_and_visibility<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ mono_item: &MonoItem<'tcx>,
+ can_be_internalized: &mut bool,
+ export_generics: bool,
+) -> (Linkage, Visibility) {
+ if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) {
+ return (explicit_linkage, Visibility::Default);
+ }
+ let vis = mono_item_visibility(tcx, mono_item, can_be_internalized, export_generics);
+ (Linkage::External, vis)
+}
+
+type CguNameCache = FxHashMap<(DefId, bool), Symbol>;
+
+fn mono_item_visibility<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ mono_item: &MonoItem<'tcx>,
+ can_be_internalized: &mut bool,
+ export_generics: bool,
+) -> Visibility {
+ let instance = match mono_item {
+ // This is pretty complicated; see below.
+ MonoItem::Fn(instance) => instance,
+
+ // Misc handling for generics and such, but otherwise:
+ MonoItem::Static(def_id) => {
+ return if tcx.is_reachable_non_generic(*def_id) {
+ *can_be_internalized = false;
+ default_visibility(tcx, *def_id, false)
+ } else {
+ Visibility::Hidden
+ };
+ }
+ MonoItem::GlobalAsm(item_id) => {
+ return if tcx.is_reachable_non_generic(item_id.def_id) {
+ *can_be_internalized = false;
+ default_visibility(tcx, item_id.def_id.to_def_id(), false)
+ } else {
+ Visibility::Hidden
+ };
+ }
+ };
+
+ let def_id = match instance.def {
+ InstanceDef::Item(def) => def.did,
+ InstanceDef::DropGlue(def_id, Some(_)) => def_id,
+
+ // These are all compiler glue and such, never exported, always hidden.
+ InstanceDef::VTableShim(..)
+ | InstanceDef::ReifyShim(..)
+ | InstanceDef::FnPtrShim(..)
+ | InstanceDef::Virtual(..)
+ | InstanceDef::Intrinsic(..)
+ | InstanceDef::ClosureOnceShim { .. }
+ | InstanceDef::DropGlue(..)
+ | InstanceDef::CloneShim(..) => return Visibility::Hidden,
+ };
+
+ // The `start_fn` lang item is actually a monomorphized instance of a
+ // function in the standard library, used for the `main` function. We don't
+ // want to export it so we tag it with `Hidden` visibility but this symbol
+ // is only referenced from the actual `main` symbol which we unfortunately
+ // don't know anything about during partitioning/collection. As a result we
+ // forcibly keep this symbol out of the `internalization_candidates` set.
+ //
+ // FIXME: eventually we don't want to always force this symbol to have
+ // hidden visibility, it should indeed be a candidate for
+ // internalization, but we have to understand that it's referenced
+ // from the `main` symbol we'll generate later.
+ //
+ // This may be fixable with a new `InstanceDef` perhaps? Unsure!
+ if tcx.lang_items().start_fn() == Some(def_id) {
+ *can_be_internalized = false;
+ return Visibility::Hidden;
+ }
+
+ let is_generic = instance.substs.non_erasable_generics().next().is_some();
+
+ // Upstream `DefId` instances get different handling than local ones.
+ let Some(def_id) = def_id.as_local() else {
+ return if export_generics && is_generic {
+ // If it is an upstream monomorphization and we export generics, we must make
+ // it available to downstream crates.
+ *can_be_internalized = false;
+ default_visibility(tcx, def_id, true)
+ } else {
+ Visibility::Hidden
+ };
+ };
+
+ if is_generic {
+ if export_generics {
+ if tcx.is_unreachable_local_definition(def_id) {
+ // This instance cannot be used from another crate.
+ Visibility::Hidden
+ } else {
+ // This instance might be useful in a downstream crate.
+ *can_be_internalized = false;
+ default_visibility(tcx, def_id.to_def_id(), true)
+ }
+ } else {
+ // We are not exporting generics or the definition is not reachable
+ // for downstream crates, we can internalize its instantiations.
+ Visibility::Hidden
+ }
+ } else {
+ // If this isn't a generic function then we mark this a `Default` if
+ // this is a reachable item, meaning that it's a symbol other crates may
+ // access when they link to us.
+ if tcx.is_reachable_non_generic(def_id.to_def_id()) {
+ *can_be_internalized = false;
+ debug_assert!(!is_generic);
+ return default_visibility(tcx, def_id.to_def_id(), false);
+ }
+
+ // If this isn't reachable then we're gonna tag this with `Hidden`
+ // visibility. In some situations though we'll want to prevent this
+ // symbol from being internalized.
+ //
+ // There's two categories of items here:
+ //
+ // * First is weak lang items. These are basically mechanisms for
+ // libcore to forward-reference symbols defined later in crates like
+ // the standard library or `#[panic_handler]` definitions. The
+ // definition of these weak lang items needs to be referencable by
+ // libcore, so we're no longer a candidate for internalization.
+ // Removal of these functions can't be done by LLVM but rather must be
+ // done by the linker as it's a non-local decision.
+ //
+ // * Second is "std internal symbols". Currently this is primarily used
+ // for allocator symbols. Allocators are a little weird in their
+ // implementation, but the idea is that the compiler, at the last
+ // minute, defines an allocator with an injected object file. The
+ // `alloc` crate references these symbols (`__rust_alloc`) and the
+ // definition doesn't get hooked up until a linked crate artifact is
+ // generated.
+ //
+ // The symbols synthesized by the compiler (`__rust_alloc`) are thin
+ // veneers around the actual implementation, some other symbol which
+ // implements the same ABI. These symbols (things like `__rg_alloc`,
+ // `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std
+ // internal symbols".
+ //
+ // The std-internal symbols here **should not show up in a dll as an
+ // exported interface**, so they return `false` from
+ // `is_reachable_non_generic` above and we'll give them `Hidden`
+ // visibility below. Like the weak lang items, though, we can't let
+ // LLVM internalize them as this decision is left up to the linker to
+ // omit them, so prevent them from being internalized.
+ let attrs = tcx.codegen_fn_attrs(def_id);
+ if attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
+ *can_be_internalized = false;
+ }
+
+ Visibility::Hidden
+ }
+}
+
+fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility {
+ if !tcx.sess.target.default_hidden_visibility {
+ return Visibility::Default;
+ }
+
+ // Generic functions never have export-level C.
+ if is_generic {
+ return Visibility::Hidden;
+ }
+
+ // Things with export level C don't get instantiated in
+ // downstream crates.
+ if !id.is_local() {
+ return Visibility::Hidden;
+ }
+
+ // C-export level items remain at `Default`, all other internal
+ // items become `Hidden`.
+ match tcx.reachable_non_generics(id.krate).get(&id) {
+ Some(SymbolExportInfo { level: SymbolExportLevel::C, .. }) => Visibility::Default,
+ _ => Visibility::Hidden,
+ }
+}
diff --git a/compiler/rustc_monomorphize/src/partitioning/merging.rs b/compiler/rustc_monomorphize/src/partitioning/merging.rs
new file mode 100644
index 000000000..02bb8dea0
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/partitioning/merging.rs
@@ -0,0 +1,111 @@
+use std::cmp;
+
+use rustc_data_structures::fx::FxHashMap;
+use rustc_hir::def_id::LOCAL_CRATE;
+use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder};
+use rustc_span::symbol::Symbol;
+
+use super::PartitioningCx;
+use crate::partitioning::PreInliningPartitioning;
+
+pub fn merge_codegen_units<'tcx>(
+ cx: &PartitioningCx<'_, 'tcx>,
+ initial_partitioning: &mut PreInliningPartitioning<'tcx>,
+) {
+ assert!(cx.target_cgu_count >= 1);
+ let codegen_units = &mut initial_partitioning.codegen_units;
+
+ // Note that at this point in time the `codegen_units` here may not be in a
+ // deterministic order (but we know they're deterministically the same set).
+ // We want this merging to produce a deterministic ordering of codegen units
+ // from the input.
+ //
+ // Due to basically how we've implemented the merging below (merge the two
+ // smallest into each other) we're sure to start off with a deterministic
+ // order (sorted by name). This'll mean that if two cgus have the same size
+ // the stable sort below will keep everything nice and deterministic.
+ codegen_units.sort_by(|a, b| a.name().as_str().partial_cmp(b.name().as_str()).unwrap());
+
+ // This map keeps track of what got merged into what.
+ let mut cgu_contents: FxHashMap<Symbol, Vec<Symbol>> =
+ codegen_units.iter().map(|cgu| (cgu.name(), vec![cgu.name()])).collect();
+
+ // Merge the two smallest codegen units until the target size is reached.
+ while codegen_units.len() > cx.target_cgu_count {
+ // Sort small cgus to the back
+ codegen_units.sort_by_cached_key(|cgu| cmp::Reverse(cgu.size_estimate()));
+ let mut smallest = codegen_units.pop().unwrap();
+ let second_smallest = codegen_units.last_mut().unwrap();
+
+ // Move the mono-items from `smallest` to `second_smallest`
+ second_smallest.modify_size_estimate(smallest.size_estimate());
+ for (k, v) in smallest.items_mut().drain() {
+ second_smallest.items_mut().insert(k, v);
+ }
+
+ // Record that `second_smallest` now contains all the stuff that was in
+ // `smallest` before.
+ let mut consumed_cgu_names = cgu_contents.remove(&smallest.name()).unwrap();
+ cgu_contents.get_mut(&second_smallest.name()).unwrap().append(&mut consumed_cgu_names);
+
+ debug!(
+ "CodegenUnit {} merged into CodegenUnit {}",
+ smallest.name(),
+ second_smallest.name()
+ );
+ }
+
+ let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
+
+ if cx.tcx.sess.opts.incremental.is_some() {
+ // If we are doing incremental compilation, we want CGU names to
+ // reflect the path of the source level module they correspond to.
+ // For CGUs that contain the code of multiple modules because of the
+ // merging done above, we use a concatenation of the names of
+ // all contained CGUs.
+ let new_cgu_names: FxHashMap<Symbol, String> = cgu_contents
+ .into_iter()
+ // This `filter` makes sure we only update the name of CGUs that
+ // were actually modified by merging.
+ .filter(|(_, cgu_contents)| cgu_contents.len() > 1)
+ .map(|(current_cgu_name, cgu_contents)| {
+ let mut cgu_contents: Vec<&str> = cgu_contents.iter().map(|s| s.as_str()).collect();
+
+ // Sort the names, so things are deterministic and easy to
+ // predict.
+
+ // We are sorting primitive &strs here so we can use unstable sort
+ cgu_contents.sort_unstable();
+
+ (current_cgu_name, cgu_contents.join("--"))
+ })
+ .collect();
+
+ for cgu in codegen_units.iter_mut() {
+ if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) {
+ if cx.tcx.sess.opts.unstable_opts.human_readable_cgu_names {
+ cgu.set_name(Symbol::intern(&new_cgu_name));
+ } else {
+ // If we don't require CGU names to be human-readable, we
+ // use a fixed length hash of the composite CGU name
+ // instead.
+ let new_cgu_name = CodegenUnit::mangle_name(&new_cgu_name);
+ cgu.set_name(Symbol::intern(&new_cgu_name));
+ }
+ }
+ }
+ } else {
+ // If we are compiling non-incrementally we just generate simple CGU
+ // names containing an index.
+ for (index, cgu) in codegen_units.iter_mut().enumerate() {
+ cgu.set_name(numbered_codegen_unit_name(cgu_name_builder, index));
+ }
+ }
+}
+
+fn numbered_codegen_unit_name(
+ name_builder: &mut CodegenUnitNameBuilder<'_>,
+ index: usize,
+) -> Symbol {
+ name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(index))
+}
diff --git a/compiler/rustc_monomorphize/src/partitioning/mod.rs b/compiler/rustc_monomorphize/src/partitioning/mod.rs
new file mode 100644
index 000000000..ff2d38693
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/partitioning/mod.rs
@@ -0,0 +1,515 @@
+//! Partitioning Codegen Units for Incremental Compilation
+//! ======================================================
+//!
+//! The task of this module is to take the complete set of monomorphizations of
+//! a crate and produce a set of codegen units from it, where a codegen unit
+//! is a named set of (mono-item, linkage) pairs. That is, this module
+//! decides which monomorphization appears in which codegen units with which
+//! linkage. The following paragraphs describe some of the background on the
+//! partitioning scheme.
+//!
+//! The most important opportunity for saving on compilation time with
+//! incremental compilation is to avoid re-codegenning and re-optimizing code.
+//! Since the unit of codegen and optimization for LLVM is "modules" or, how
+//! we call them "codegen units", the particulars of how much time can be saved
+//! by incremental compilation are tightly linked to how the output program is
+//! partitioned into these codegen units prior to passing it to LLVM --
+//! especially because we have to treat codegen units as opaque entities once
+//! they are created: There is no way for us to incrementally update an existing
+//! LLVM module and so we have to build any such module from scratch if it was
+//! affected by some change in the source code.
+//!
+//! From that point of view it would make sense to maximize the number of
+//! codegen units by, for example, putting each function into its own module.
+//! That way only those modules would have to be re-compiled that were actually
+//! affected by some change, minimizing the number of functions that could have
+//! been re-used but just happened to be located in a module that is
+//! re-compiled.
+//!
+//! However, since LLVM optimization does not work across module boundaries,
+//! using such a highly granular partitioning would lead to very slow runtime
+//! code since it would effectively prohibit inlining and other inter-procedure
+//! optimizations. We want to avoid that as much as possible.
+//!
+//! Thus we end up with a trade-off: The bigger the codegen units, the better
+//! LLVM's optimizer can do its work, but also the smaller the compilation time
+//! reduction we get from incremental compilation.
+//!
+//! Ideally, we would create a partitioning such that there are few big codegen
+//! units with few interdependencies between them. For now though, we use the
+//! following heuristic to determine the partitioning:
+//!
+//! - There are two codegen units for every source-level module:
+//! - One for "stable", that is non-generic, code
+//! - One for more "volatile" code, i.e., monomorphized instances of functions
+//! defined in that module
+//!
+//! In order to see why this heuristic makes sense, let's take a look at when a
+//! codegen unit can get invalidated:
+//!
+//! 1. The most straightforward case is when the BODY of a function or global
+//! changes. Then any codegen unit containing the code for that item has to be
+//! re-compiled. Note that this includes all codegen units where the function
+//! has been inlined.
+//!
+//! 2. The next case is when the SIGNATURE of a function or global changes. In
+//! this case, all codegen units containing a REFERENCE to that item have to be
+//! re-compiled. This is a superset of case 1.
+//!
+//! 3. The final and most subtle case is when a REFERENCE to a generic function
+//! is added or removed somewhere. Even though the definition of the function
+//! might be unchanged, a new REFERENCE might introduce a new monomorphized
+//! instance of this function which has to be placed and compiled somewhere.
+//! Conversely, when removing a REFERENCE, it might have been the last one with
+//! that particular set of generic arguments and thus we have to remove it.
+//!
+//! From the above we see that just using one codegen unit per source-level
+//! module is not such a good idea, since just adding a REFERENCE to some
+//! generic item somewhere else would invalidate everything within the module
+//! containing the generic item. The heuristic above reduces this detrimental
+//! side-effect of references a little by at least not touching the non-generic
+//! code of the module.
+//!
+//! A Note on Inlining
+//! ------------------
+//! As briefly mentioned above, in order for LLVM to be able to inline a
+//! function call, the body of the function has to be available in the LLVM
+//! module where the call is made. This has a few consequences for partitioning:
+//!
+//! - The partitioning algorithm has to take care of placing functions into all
+//! codegen units where they should be available for inlining. It also has to
+//! decide on the correct linkage for these functions.
+//!
+//! - The partitioning algorithm has to know which functions are likely to get
+//! inlined, so it can distribute function instantiations accordingly. Since
+//! there is no way of knowing for sure which functions LLVM will decide to
+//! inline in the end, we apply a heuristic here: Only functions marked with
+//! `#[inline]` are considered for inlining by the partitioner. The current
+//! implementation will not try to determine if a function is likely to be
+//! inlined by looking at the functions definition.
+//!
+//! Note though that as a side-effect of creating a codegen units per
+//! source-level module, functions from the same module will be available for
+//! inlining, even when they are not marked `#[inline]`.
+
+mod default;
+mod merging;
+
+use rustc_data_structures::fx::{FxHashMap, FxHashSet};
+use rustc_data_structures::sync;
+use rustc_hir::def_id::DefIdSet;
+use rustc_middle::mir;
+use rustc_middle::mir::mono::MonoItem;
+use rustc_middle::mir::mono::{CodegenUnit, Linkage};
+use rustc_middle::ty::print::with_no_trimmed_paths;
+use rustc_middle::ty::query::Providers;
+use rustc_middle::ty::TyCtxt;
+use rustc_span::symbol::Symbol;
+
+use crate::collector::InliningMap;
+use crate::collector::{self, MonoItemCollectionMode};
+
+pub struct PartitioningCx<'a, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ target_cgu_count: usize,
+ inlining_map: &'a InliningMap<'tcx>,
+}
+
+trait Partitioner<'tcx> {
+ fn place_root_mono_items(
+ &mut self,
+ cx: &PartitioningCx<'_, 'tcx>,
+ mono_items: &mut dyn Iterator<Item = MonoItem<'tcx>>,
+ ) -> PreInliningPartitioning<'tcx>;
+
+ fn merge_codegen_units(
+ &mut self,
+ cx: &PartitioningCx<'_, 'tcx>,
+ initial_partitioning: &mut PreInliningPartitioning<'tcx>,
+ );
+
+ fn place_inlined_mono_items(
+ &mut self,
+ cx: &PartitioningCx<'_, 'tcx>,
+ initial_partitioning: PreInliningPartitioning<'tcx>,
+ ) -> PostInliningPartitioning<'tcx>;
+
+ fn internalize_symbols(
+ &mut self,
+ cx: &PartitioningCx<'_, 'tcx>,
+ partitioning: &mut PostInliningPartitioning<'tcx>,
+ );
+}
+
+fn get_partitioner<'tcx>(tcx: TyCtxt<'tcx>) -> Box<dyn Partitioner<'tcx>> {
+ let strategy = match &tcx.sess.opts.unstable_opts.cgu_partitioning_strategy {
+ None => "default",
+ Some(s) => &s[..],
+ };
+
+ match strategy {
+ "default" => Box::new(default::DefaultPartitioning),
+ _ => tcx.sess.fatal("unknown partitioning strategy"),
+ }
+}
+
+pub fn partition<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ mono_items: &mut dyn Iterator<Item = MonoItem<'tcx>>,
+ max_cgu_count: usize,
+ inlining_map: &InliningMap<'tcx>,
+) -> Vec<CodegenUnit<'tcx>> {
+ let _prof_timer = tcx.prof.generic_activity("cgu_partitioning");
+
+ let mut partitioner = get_partitioner(tcx);
+ let cx = &PartitioningCx { tcx, target_cgu_count: max_cgu_count, inlining_map };
+ // In the first step, we place all regular monomorphizations into their
+ // respective 'home' codegen unit. Regular monomorphizations are all
+ // functions and statics defined in the local crate.
+ let mut initial_partitioning = {
+ let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_roots");
+ partitioner.place_root_mono_items(cx, mono_items)
+ };
+
+ initial_partitioning.codegen_units.iter_mut().for_each(|cgu| cgu.estimate_size(tcx));
+
+ debug_dump(tcx, "INITIAL PARTITIONING:", initial_partitioning.codegen_units.iter());
+
+ // Merge until we have at most `max_cgu_count` codegen units.
+ {
+ let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_merge_cgus");
+ partitioner.merge_codegen_units(cx, &mut initial_partitioning);
+ debug_dump(tcx, "POST MERGING:", initial_partitioning.codegen_units.iter());
+ }
+
+ // In the next step, we use the inlining map to determine which additional
+ // monomorphizations have to go into each codegen unit. These additional
+ // monomorphizations can be drop-glue, functions from external crates, and
+ // local functions the definition of which is marked with `#[inline]`.
+ let mut post_inlining = {
+ let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_inline_items");
+ partitioner.place_inlined_mono_items(cx, initial_partitioning)
+ };
+
+ post_inlining.codegen_units.iter_mut().for_each(|cgu| cgu.estimate_size(tcx));
+
+ debug_dump(tcx, "POST INLINING:", post_inlining.codegen_units.iter());
+
+ // Next we try to make as many symbols "internal" as possible, so LLVM has
+ // more freedom to optimize.
+ if !tcx.sess.link_dead_code() {
+ let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_internalize_symbols");
+ partitioner.internalize_symbols(cx, &mut post_inlining);
+ }
+
+ let instrument_dead_code =
+ tcx.sess.instrument_coverage() && !tcx.sess.instrument_coverage_except_unused_functions();
+
+ if instrument_dead_code {
+ assert!(
+ post_inlining.codegen_units.len() > 0,
+ "There must be at least one CGU that code coverage data can be generated in."
+ );
+
+ // Find the smallest CGU that has exported symbols and put the dead
+ // function stubs in that CGU. We look for exported symbols to increase
+ // the likelihood the linker won't throw away the dead functions.
+ // FIXME(#92165): In order to truly resolve this, we need to make sure
+ // the object file (CGU) containing the dead function stubs is included
+ // in the final binary. This will probably require forcing these
+ // function symbols to be included via `-u` or `/include` linker args.
+ let mut cgus: Vec<_> = post_inlining.codegen_units.iter_mut().collect();
+ cgus.sort_by_key(|cgu| cgu.size_estimate());
+
+ let dead_code_cgu =
+ if let Some(cgu) = cgus.into_iter().rev().find(|cgu| {
+ cgu.items().iter().any(|(_, (linkage, _))| *linkage == Linkage::External)
+ }) {
+ cgu
+ } else {
+ // If there are no CGUs that have externally linked items,
+ // then we just pick the first CGU as a fallback.
+ &mut post_inlining.codegen_units[0]
+ };
+ dead_code_cgu.make_code_coverage_dead_code_cgu();
+ }
+
+ // Finally, sort by codegen unit name, so that we get deterministic results.
+ let PostInliningPartitioning {
+ codegen_units: mut result,
+ mono_item_placements: _,
+ internalization_candidates: _,
+ } = post_inlining;
+
+ result.sort_by(|a, b| a.name().as_str().partial_cmp(b.name().as_str()).unwrap());
+
+ result
+}
+
+pub struct PreInliningPartitioning<'tcx> {
+ codegen_units: Vec<CodegenUnit<'tcx>>,
+ roots: FxHashSet<MonoItem<'tcx>>,
+ internalization_candidates: FxHashSet<MonoItem<'tcx>>,
+}
+
+/// For symbol internalization, we need to know whether a symbol/mono-item is
+/// accessed from outside the codegen unit it is defined in. This type is used
+/// to keep track of that.
+#[derive(Clone, PartialEq, Eq, Debug)]
+enum MonoItemPlacement {
+ SingleCgu { cgu_name: Symbol },
+ MultipleCgus,
+}
+
+struct PostInliningPartitioning<'tcx> {
+ codegen_units: Vec<CodegenUnit<'tcx>>,
+ mono_item_placements: FxHashMap<MonoItem<'tcx>, MonoItemPlacement>,
+ internalization_candidates: FxHashSet<MonoItem<'tcx>>,
+}
+
+fn debug_dump<'a, 'tcx, I>(tcx: TyCtxt<'tcx>, label: &str, cgus: I)
+where
+ I: Iterator<Item = &'a CodegenUnit<'tcx>>,
+ 'tcx: 'a,
+{
+ let dump = move || {
+ use std::fmt::Write;
+
+ let s = &mut String::new();
+ let _ = writeln!(s, "{}", label);
+ for cgu in cgus {
+ let _ =
+ writeln!(s, "CodegenUnit {} estimated size {} :", cgu.name(), cgu.size_estimate());
+
+ for (mono_item, linkage) in cgu.items() {
+ let symbol_name = mono_item.symbol_name(tcx).name;
+ let symbol_hash_start = symbol_name.rfind('h');
+ let symbol_hash = symbol_hash_start.map_or("<no hash>", |i| &symbol_name[i..]);
+
+ let _ = writeln!(
+ s,
+ " - {} [{:?}] [{}] estimated size {}",
+ mono_item,
+ linkage,
+ symbol_hash,
+ mono_item.size_estimate(tcx)
+ );
+ }
+
+ let _ = writeln!(s, "");
+ }
+
+ std::mem::take(s)
+ };
+
+ debug!("{}", dump());
+}
+
+#[inline(never)] // give this a place in the profiler
+fn assert_symbols_are_distinct<'a, 'tcx, I>(tcx: TyCtxt<'tcx>, mono_items: I)
+where
+ I: Iterator<Item = &'a MonoItem<'tcx>>,
+ 'tcx: 'a,
+{
+ let _prof_timer = tcx.prof.generic_activity("assert_symbols_are_distinct");
+
+ let mut symbols: Vec<_> =
+ mono_items.map(|mono_item| (mono_item, mono_item.symbol_name(tcx))).collect();
+
+ symbols.sort_by_key(|sym| sym.1);
+
+ for &[(mono_item1, ref sym1), (mono_item2, ref sym2)] in symbols.array_windows() {
+ if sym1 == sym2 {
+ let span1 = mono_item1.local_span(tcx);
+ let span2 = mono_item2.local_span(tcx);
+
+ // Deterministically select one of the spans for error reporting
+ let span = match (span1, span2) {
+ (Some(span1), Some(span2)) => {
+ Some(if span1.lo().0 > span2.lo().0 { span1 } else { span2 })
+ }
+ (span1, span2) => span1.or(span2),
+ };
+
+ let error_message = format!("symbol `{}` is already defined", sym1);
+
+ if let Some(span) = span {
+ tcx.sess.span_fatal(span, &error_message)
+ } else {
+ tcx.sess.fatal(&error_message)
+ }
+ }
+ }
+}
+
+fn collect_and_partition_mono_items<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ (): (),
+) -> (&'tcx DefIdSet, &'tcx [CodegenUnit<'tcx>]) {
+ let collection_mode = match tcx.sess.opts.unstable_opts.print_mono_items {
+ Some(ref s) => {
+ let mode_string = s.to_lowercase();
+ let mode_string = mode_string.trim();
+ if mode_string == "eager" {
+ MonoItemCollectionMode::Eager
+ } else {
+ if mode_string != "lazy" {
+ let message = format!(
+ "Unknown codegen-item collection mode '{}'. \
+ Falling back to 'lazy' mode.",
+ mode_string
+ );
+ tcx.sess.warn(&message);
+ }
+
+ MonoItemCollectionMode::Lazy
+ }
+ }
+ None => {
+ if tcx.sess.link_dead_code() {
+ MonoItemCollectionMode::Eager
+ } else {
+ MonoItemCollectionMode::Lazy
+ }
+ }
+ };
+
+ let (items, inlining_map) = collector::collect_crate_mono_items(tcx, collection_mode);
+
+ tcx.sess.abort_if_errors();
+
+ let (codegen_units, _) = tcx.sess.time("partition_and_assert_distinct_symbols", || {
+ sync::join(
+ || {
+ let mut codegen_units = partition(
+ tcx,
+ &mut items.iter().cloned(),
+ tcx.sess.codegen_units(),
+ &inlining_map,
+ );
+ codegen_units[0].make_primary();
+ &*tcx.arena.alloc_from_iter(codegen_units)
+ },
+ || assert_symbols_are_distinct(tcx, items.iter()),
+ )
+ });
+
+ if tcx.prof.enabled() {
+ // Record CGU size estimates for self-profiling.
+ for cgu in codegen_units {
+ tcx.prof.artifact_size(
+ "codegen_unit_size_estimate",
+ cgu.name().as_str(),
+ cgu.size_estimate() as u64,
+ );
+ }
+ }
+
+ let mono_items: DefIdSet = items
+ .iter()
+ .filter_map(|mono_item| match *mono_item {
+ MonoItem::Fn(ref instance) => Some(instance.def_id()),
+ MonoItem::Static(def_id) => Some(def_id),
+ _ => None,
+ })
+ .collect();
+
+ if tcx.sess.opts.unstable_opts.print_mono_items.is_some() {
+ let mut item_to_cgus: FxHashMap<_, Vec<_>> = Default::default();
+
+ for cgu in codegen_units {
+ for (&mono_item, &linkage) in cgu.items() {
+ item_to_cgus.entry(mono_item).or_default().push((cgu.name(), linkage));
+ }
+ }
+
+ let mut item_keys: Vec<_> = items
+ .iter()
+ .map(|i| {
+ let mut output = with_no_trimmed_paths!(i.to_string());
+ output.push_str(" @@");
+ let mut empty = Vec::new();
+ let cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty);
+ cgus.sort_by_key(|(name, _)| *name);
+ cgus.dedup();
+ for &(ref cgu_name, (linkage, _)) in cgus.iter() {
+ output.push(' ');
+ output.push_str(cgu_name.as_str());
+
+ let linkage_abbrev = match linkage {
+ Linkage::External => "External",
+ Linkage::AvailableExternally => "Available",
+ Linkage::LinkOnceAny => "OnceAny",
+ Linkage::LinkOnceODR => "OnceODR",
+ Linkage::WeakAny => "WeakAny",
+ Linkage::WeakODR => "WeakODR",
+ Linkage::Appending => "Appending",
+ Linkage::Internal => "Internal",
+ Linkage::Private => "Private",
+ Linkage::ExternalWeak => "ExternalWeak",
+ Linkage::Common => "Common",
+ };
+
+ output.push('[');
+ output.push_str(linkage_abbrev);
+ output.push(']');
+ }
+ output
+ })
+ .collect();
+
+ item_keys.sort();
+
+ for item in item_keys {
+ println!("MONO_ITEM {}", item);
+ }
+ }
+
+ (tcx.arena.alloc(mono_items), codegen_units)
+}
+
+fn codegened_and_inlined_items<'tcx>(tcx: TyCtxt<'tcx>, (): ()) -> &'tcx DefIdSet {
+ let (items, cgus) = tcx.collect_and_partition_mono_items(());
+ let mut visited = DefIdSet::default();
+ let mut result = items.clone();
+
+ for cgu in cgus {
+ for (item, _) in cgu.items() {
+ if let MonoItem::Fn(ref instance) = item {
+ let did = instance.def_id();
+ if !visited.insert(did) {
+ continue;
+ }
+ let body = tcx.instance_mir(instance.def);
+ for block in body.basic_blocks() {
+ for statement in &block.statements {
+ let mir::StatementKind::Coverage(_) = statement.kind else { continue };
+ let scope = statement.source_info.scope;
+ if let Some(inlined) = scope.inlined_instance(&body.source_scopes) {
+ result.insert(inlined.def_id());
+ }
+ }
+ }
+ }
+ }
+ }
+
+ tcx.arena.alloc(result)
+}
+
+pub fn provide(providers: &mut Providers) {
+ providers.collect_and_partition_mono_items = collect_and_partition_mono_items;
+ providers.codegened_and_inlined_items = codegened_and_inlined_items;
+
+ providers.is_codegened_item = |tcx, def_id| {
+ let (all_mono_items, _) = tcx.collect_and_partition_mono_items(());
+ all_mono_items.contains(&def_id)
+ };
+
+ providers.codegen_unit = |tcx, name| {
+ let (_, all) = tcx.collect_and_partition_mono_items(());
+ all.iter()
+ .find(|cgu| cgu.name() == name)
+ .unwrap_or_else(|| panic!("failed to find cgu with name {:?}", name))
+ };
+}
diff --git a/compiler/rustc_monomorphize/src/polymorphize.rs b/compiler/rustc_monomorphize/src/polymorphize.rs
new file mode 100644
index 000000000..394843e51
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/polymorphize.rs
@@ -0,0 +1,385 @@
+//! Polymorphization Analysis
+//! =========================
+//!
+//! This module implements an analysis of functions, methods and closures to determine which
+//! generic parameters are unused (and eventually, in what ways generic parameters are used - only
+//! for their size, offset of a field, etc.).
+
+use rustc_hir::{def::DefKind, def_id::DefId, ConstContext};
+use rustc_index::bit_set::FiniteBitSet;
+use rustc_middle::mir::{
+ visit::{TyContext, Visitor},
+ Local, LocalDecl, Location,
+};
+use rustc_middle::ty::{
+ self,
+ query::Providers,
+ subst::SubstsRef,
+ visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor},
+ Const, Ty, TyCtxt,
+};
+use rustc_span::symbol::sym;
+use std::convert::TryInto;
+use std::ops::ControlFlow;
+
+/// Provide implementations of queries relating to polymorphization analysis.
+pub fn provide(providers: &mut Providers) {
+ providers.unused_generic_params = unused_generic_params;
+}
+
+/// Determine which generic parameters are used by the instance.
+///
+/// Returns a bitset where bits representing unused parameters are set (`is_empty` indicates all
+/// parameters are used).
+#[instrument(level = "debug", skip(tcx))]
+fn unused_generic_params<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ instance: ty::InstanceDef<'tcx>,
+) -> FiniteBitSet<u32> {
+ if !tcx.sess.opts.unstable_opts.polymorphize {
+ // If polymorphization disabled, then all parameters are used.
+ return FiniteBitSet::new_empty();
+ }
+
+ let def_id = instance.def_id();
+ // Exit early if this instance should not be polymorphized.
+ if !should_polymorphize(tcx, def_id, instance) {
+ return FiniteBitSet::new_empty();
+ }
+
+ let generics = tcx.generics_of(def_id);
+ debug!(?generics);
+
+ // Exit early when there are no parameters to be unused.
+ if generics.count() == 0 {
+ return FiniteBitSet::new_empty();
+ }
+
+ // Create a bitset with N rightmost ones for each parameter.
+ let generics_count: u32 =
+ generics.count().try_into().expect("more generic parameters than can fit into a `u32`");
+ let mut unused_parameters = FiniteBitSet::<u32>::new_empty();
+ unused_parameters.set_range(0..generics_count);
+ debug!(?unused_parameters, "(start)");
+
+ mark_used_by_default_parameters(tcx, def_id, generics, &mut unused_parameters);
+ debug!(?unused_parameters, "(after default)");
+
+ // Visit MIR and accumulate used generic parameters.
+ let body = match tcx.hir().body_const_context(def_id.expect_local()) {
+ // Const functions are actually called and should thus be considered for polymorphization
+ // via their runtime MIR.
+ Some(ConstContext::ConstFn) | None => tcx.optimized_mir(def_id),
+ Some(_) => tcx.mir_for_ctfe(def_id),
+ };
+ let mut vis = MarkUsedGenericParams { tcx, def_id, unused_parameters: &mut unused_parameters };
+ vis.visit_body(body);
+ debug!(?unused_parameters, "(end)");
+
+ // Emit errors for debugging and testing if enabled.
+ if !unused_parameters.is_empty() {
+ emit_unused_generic_params_error(tcx, def_id, generics, &unused_parameters);
+ }
+
+ unused_parameters
+}
+
+/// Returns `true` if the instance should be polymorphized.
+fn should_polymorphize<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+ instance: ty::InstanceDef<'tcx>,
+) -> bool {
+ // If an instance's MIR body is not polymorphic then the modified substitutions that are
+ // derived from polymorphization's result won't make any difference.
+ if !instance.has_polymorphic_mir_body() {
+ return false;
+ }
+
+ // Don't polymorphize intrinsics or virtual calls - calling `instance_mir` will panic.
+ if matches!(instance, ty::InstanceDef::Intrinsic(..) | ty::InstanceDef::Virtual(..)) {
+ return false;
+ }
+
+ // Polymorphization results are stored in cross-crate metadata only when there are unused
+ // parameters, so assume that non-local items must have only used parameters (else this query
+ // would not be invoked, and the cross-crate metadata used instead).
+ if !def_id.is_local() {
+ return false;
+ }
+
+ // Foreign items have no bodies to analyze.
+ if tcx.is_foreign_item(def_id) {
+ return false;
+ }
+
+ // Make sure there is MIR available.
+ match tcx.hir().body_const_context(def_id.expect_local()) {
+ Some(ConstContext::ConstFn) | None if !tcx.is_mir_available(def_id) => {
+ debug!("no mir available");
+ return false;
+ }
+ Some(_) if !tcx.is_ctfe_mir_available(def_id) => {
+ debug!("no ctfe mir available");
+ return false;
+ }
+ _ => true,
+ }
+}
+
+/// Some parameters are considered used-by-default, such as non-generic parameters and the dummy
+/// generic parameters from closures, this function marks them as used. `leaf_is_closure` should
+/// be `true` if the item that `unused_generic_params` was invoked on is a closure.
+#[instrument(level = "debug", skip(tcx, def_id, generics, unused_parameters))]
+fn mark_used_by_default_parameters<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+ generics: &'tcx ty::Generics,
+ unused_parameters: &mut FiniteBitSet<u32>,
+) {
+ match tcx.def_kind(def_id) {
+ DefKind::Closure | DefKind::Generator => {
+ for param in &generics.params {
+ debug!(?param, "(closure/gen)");
+ unused_parameters.clear(param.index);
+ }
+ }
+ DefKind::Mod
+ | DefKind::Struct
+ | DefKind::Union
+ | DefKind::Enum
+ | DefKind::Variant
+ | DefKind::Trait
+ | DefKind::TyAlias
+ | DefKind::ForeignTy
+ | DefKind::TraitAlias
+ | DefKind::AssocTy
+ | DefKind::TyParam
+ | DefKind::Fn
+ | DefKind::Const
+ | DefKind::ConstParam
+ | DefKind::Static(_)
+ | DefKind::Ctor(_, _)
+ | DefKind::AssocFn
+ | DefKind::AssocConst
+ | DefKind::Macro(_)
+ | DefKind::ExternCrate
+ | DefKind::Use
+ | DefKind::ForeignMod
+ | DefKind::AnonConst
+ | DefKind::InlineConst
+ | DefKind::OpaqueTy
+ | DefKind::Field
+ | DefKind::LifetimeParam
+ | DefKind::GlobalAsm
+ | DefKind::Impl => {
+ for param in &generics.params {
+ debug!(?param, "(other)");
+ if let ty::GenericParamDefKind::Lifetime = param.kind {
+ unused_parameters.clear(param.index);
+ }
+ }
+ }
+ }
+
+ if let Some(parent) = generics.parent {
+ mark_used_by_default_parameters(tcx, parent, tcx.generics_of(parent), unused_parameters);
+ }
+}
+
+/// Emit errors for the function annotated by `#[rustc_polymorphize_error]`, labelling each generic
+/// parameter which was unused.
+#[instrument(level = "debug", skip(tcx, generics))]
+fn emit_unused_generic_params_error<'tcx>(
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+ generics: &'tcx ty::Generics,
+ unused_parameters: &FiniteBitSet<u32>,
+) {
+ let base_def_id = tcx.typeck_root_def_id(def_id);
+ if !tcx.has_attr(base_def_id, sym::rustc_polymorphize_error) {
+ return;
+ }
+
+ let fn_span = match tcx.opt_item_ident(def_id) {
+ Some(ident) => ident.span,
+ _ => tcx.def_span(def_id),
+ };
+
+ let mut err = tcx.sess.struct_span_err(fn_span, "item has unused generic parameters");
+
+ let mut next_generics = Some(generics);
+ while let Some(generics) = next_generics {
+ for param in &generics.params {
+ if unused_parameters.contains(param.index).unwrap_or(false) {
+ debug!(?param);
+ let def_span = tcx.def_span(param.def_id);
+ err.span_label(def_span, &format!("generic parameter `{}` is unused", param.name));
+ }
+ }
+
+ next_generics = generics.parent.map(|did| tcx.generics_of(did));
+ }
+
+ err.emit();
+}
+
+/// Visitor used to aggregate generic parameter uses.
+struct MarkUsedGenericParams<'a, 'tcx> {
+ tcx: TyCtxt<'tcx>,
+ def_id: DefId,
+ unused_parameters: &'a mut FiniteBitSet<u32>,
+}
+
+impl<'a, 'tcx> MarkUsedGenericParams<'a, 'tcx> {
+ /// Invoke `unused_generic_params` on a body contained within the current item (e.g.
+ /// a closure, generator or constant).
+ #[instrument(level = "debug", skip(self, def_id, substs))]
+ fn visit_child_body(&mut self, def_id: DefId, substs: SubstsRef<'tcx>) {
+ let instance = ty::InstanceDef::Item(ty::WithOptConstParam::unknown(def_id));
+ let unused = self.tcx.unused_generic_params(instance);
+ debug!(?self.unused_parameters, ?unused);
+ for (i, arg) in substs.iter().enumerate() {
+ let i = i.try_into().unwrap();
+ if !unused.contains(i).unwrap_or(false) {
+ arg.visit_with(self);
+ }
+ }
+ debug!(?self.unused_parameters);
+ }
+}
+
+impl<'a, 'tcx> Visitor<'tcx> for MarkUsedGenericParams<'a, 'tcx> {
+ #[instrument(level = "debug", skip(self, local))]
+ fn visit_local_decl(&mut self, local: Local, local_decl: &LocalDecl<'tcx>) {
+ if local == Local::from_usize(1) {
+ let def_kind = self.tcx.def_kind(self.def_id);
+ if matches!(def_kind, DefKind::Closure | DefKind::Generator) {
+ // Skip visiting the closure/generator that is currently being processed. This only
+ // happens because the first argument to the closure is a reference to itself and
+ // that will call `visit_substs`, resulting in each generic parameter captured being
+ // considered used by default.
+ debug!("skipping closure substs");
+ return;
+ }
+ }
+
+ self.super_local_decl(local, local_decl);
+ }
+
+ fn visit_const(&mut self, c: Const<'tcx>, _: Location) {
+ c.visit_with(self);
+ }
+
+ fn visit_ty(&mut self, ty: Ty<'tcx>, _: TyContext) {
+ ty.visit_with(self);
+ }
+}
+
+impl<'a, 'tcx> TypeVisitor<'tcx> for MarkUsedGenericParams<'a, 'tcx> {
+ #[instrument(level = "debug", skip(self))]
+ fn visit_const(&mut self, c: Const<'tcx>) -> ControlFlow<Self::BreakTy> {
+ if !c.has_param_types_or_consts() {
+ return ControlFlow::CONTINUE;
+ }
+
+ match c.kind() {
+ ty::ConstKind::Param(param) => {
+ debug!(?param);
+ self.unused_parameters.clear(param.index);
+ ControlFlow::CONTINUE
+ }
+ ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs: _, promoted: Some(p)})
+ // Avoid considering `T` unused when constants are of the form:
+ // `<Self as Foo<T>>::foo::promoted[p]`
+ if self.def_id == def.did && !self.tcx.generics_of(def.did).has_self =>
+ {
+ // If there is a promoted, don't look at the substs - since it will always contain
+ // the generic parameters, instead, traverse the promoted MIR.
+ let promoted = self.tcx.promoted_mir(def.did);
+ self.visit_body(&promoted[p]);
+ ControlFlow::CONTINUE
+ }
+ ty::ConstKind::Unevaluated(uv)
+ if matches!(self.tcx.def_kind(uv.def.did), DefKind::AnonConst | DefKind::InlineConst) =>
+ {
+ self.visit_child_body(uv.def.did, uv.substs);
+ ControlFlow::CONTINUE
+ }
+ _ => c.super_visit_with(self),
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+ if !ty.has_param_types_or_consts() {
+ return ControlFlow::CONTINUE;
+ }
+
+ match *ty.kind() {
+ ty::Closure(def_id, substs) | ty::Generator(def_id, substs, ..) => {
+ debug!(?def_id);
+ // Avoid cycle errors with generators.
+ if def_id == self.def_id {
+ return ControlFlow::CONTINUE;
+ }
+
+ // Consider any generic parameters used by any closures/generators as used in the
+ // parent.
+ self.visit_child_body(def_id, substs);
+ ControlFlow::CONTINUE
+ }
+ ty::Param(param) => {
+ debug!(?param);
+ self.unused_parameters.clear(param.index);
+ ControlFlow::CONTINUE
+ }
+ _ => ty.super_visit_with(self),
+ }
+ }
+}
+
+/// Visitor used to check if a generic parameter is used.
+struct HasUsedGenericParams<'a> {
+ unused_parameters: &'a FiniteBitSet<u32>,
+}
+
+impl<'a, 'tcx> TypeVisitor<'tcx> for HasUsedGenericParams<'a> {
+ type BreakTy = ();
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_const(&mut self, c: Const<'tcx>) -> ControlFlow<Self::BreakTy> {
+ if !c.has_param_types_or_consts() {
+ return ControlFlow::CONTINUE;
+ }
+
+ match c.kind() {
+ ty::ConstKind::Param(param) => {
+ if self.unused_parameters.contains(param.index).unwrap_or(false) {
+ ControlFlow::CONTINUE
+ } else {
+ ControlFlow::BREAK
+ }
+ }
+ _ => c.super_visit_with(self),
+ }
+ }
+
+ #[instrument(level = "debug", skip(self))]
+ fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
+ if !ty.has_param_types_or_consts() {
+ return ControlFlow::CONTINUE;
+ }
+
+ match ty.kind() {
+ ty::Param(param) => {
+ if self.unused_parameters.contains(param.index).unwrap_or(false) {
+ ControlFlow::CONTINUE
+ } else {
+ ControlFlow::BREAK
+ }
+ }
+ _ => ty.super_visit_with(self),
+ }
+ }
+}
diff --git a/compiler/rustc_monomorphize/src/util.rs b/compiler/rustc_monomorphize/src/util.rs
new file mode 100644
index 000000000..847e64dc2
--- /dev/null
+++ b/compiler/rustc_monomorphize/src/util.rs
@@ -0,0 +1,70 @@
+use rustc_middle::ty::{self, ClosureSizeProfileData, Instance, TyCtxt};
+use std::fs::OpenOptions;
+use std::io::prelude::*;
+
+/// For a given closure, writes out the data for the profiling the impact of RFC 2229 on
+/// closure size into a CSV.
+///
+/// During the same compile all closures dump the information in the same file
+/// "closure_profile_XXXXX.csv", which is created in the directory where the compiler is invoked.
+pub(crate) fn dump_closure_profile<'tcx>(tcx: TyCtxt<'tcx>, closure_instance: Instance<'tcx>) {
+ let Ok(mut file) = OpenOptions::new()
+ .create(true)
+ .append(true)
+ .open(&format!("closure_profile_{}.csv", std::process::id()))
+ else {
+ eprintln!("Cound't open file for writing closure profile");
+ return;
+ };
+
+ let closure_def_id = closure_instance.def_id().expect_local();
+ let typeck_results = tcx.typeck(closure_def_id);
+
+ if typeck_results.closure_size_eval.contains_key(&closure_def_id) {
+ let param_env = ty::ParamEnv::reveal_all();
+
+ let ClosureSizeProfileData { before_feature_tys, after_feature_tys } =
+ typeck_results.closure_size_eval[&closure_def_id];
+
+ let before_feature_tys = tcx.subst_and_normalize_erasing_regions(
+ closure_instance.substs,
+ param_env,
+ before_feature_tys,
+ );
+ let after_feature_tys = tcx.subst_and_normalize_erasing_regions(
+ closure_instance.substs,
+ param_env,
+ after_feature_tys,
+ );
+
+ let new_size = tcx
+ .layout_of(param_env.and(after_feature_tys))
+ .map(|l| format!("{:?}", l.size.bytes()))
+ .unwrap_or_else(|e| format!("Failed {:?}", e));
+
+ let old_size = tcx
+ .layout_of(param_env.and(before_feature_tys))
+ .map(|l| format!("{:?}", l.size.bytes()))
+ .unwrap_or_else(|e| format!("Failed {:?}", e));
+
+ let closure_span = tcx.def_span(closure_def_id);
+ let src_file = tcx.sess.source_map().span_to_filename(closure_span);
+ let line_nos = tcx
+ .sess
+ .source_map()
+ .span_to_lines(closure_span)
+ .map(|l| format!("{:?} {:?}", l.lines.first(), l.lines.last()))
+ .unwrap_or_else(|e| format!("{:?}", e));
+
+ if let Err(e) = writeln!(
+ file,
+ "{}, {}, {}, {:?}",
+ old_size,
+ new_size,
+ src_file.prefer_local(),
+ line_nos
+ ) {
+ eprintln!("Error writing to file {}", e)
+ }
+ }
+}